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Management Summary

This research dives into the intricate challenge of reducing fuel costs within the trans-
portation industry, particularly by optimizing truck refueling decisions along a fixed
route. The research adopts a comprehensive approach, considering factors like fuel price
uncertainty, limited access to real-time fuel prices, and the rapid expansion of the prob-
lem size. What sets this research apart is the incorporation of price uncertainty into
the model through a forecast of fuel prices. The proposed solution method involves
an innovative application of Reinforcement Learning (RL), framed within a sequential
decision-making framework. The ultimate goal is to present a solution framework that is
both academically innovative and practically relevant. A case study at Nijhof-Wassink’s
Dry Bulk Logistics (DBL) department validates the RL approach’s effectiveness in a
real-world context.

In examining the current situation at Nijhof-Wassink Group and the existing litera-
ture, several noteworthy findings emerge, emphasizing both the practical and academic
relevance of this research. The analysis of Nijhof-Wassink Group’s current situation,
highlights the substantial impact of fuel costs, constituting 21% of total operating ex-
penses in the DBL sector for 2022. A 1% reduction in fuel costs corresponds to an
impressive 8% increase in profits, underscoring the financial significance of efficient refu-
eling decisions. The absence of a dedicated decision support tool accentuates the need
for a comprehensive solution. On the academic front, the literature review positions our
research within the transportation sector. The review identified existing approaches, pro-
viding valuable insights into different facets of the refueling problem. To our knowledge,
none of the works incorporated price variability, thus neglecting the stochastic nature of
fuel prices over time. The contribution of this work lies in introducing a novel element
by incorporating fuel price uncertainty through a Machine Learning algorithm for price
forecasting within a Markov Decision Process (MDP). This integration of uncertainty
in fuel prices and the application of RL techniques set the approach in this research
apart and contribute to advancing the understanding of optimal refueling strategies in
the transportation industry.

The sequential decision-making framework with an RL approach is validated by a case
study at Nijhof-Wassink. A subset of 21 routes is selected and historical data is collected,
prepared, and constructed as input for RL. The subset of routes covers 30% of the total
trips driven and 28% of the total kilometres driven in the period of half a year. For the
RL algorithm, both a Q-Learning algorithm and a SARSA algorithm are tested. Eval-
uations favored the Q-Learning algorithm, showcasing a marginal 0.02% performance
advantage over SARSA. Exposing the RL algorithm to 10 new routes demonstrated the
generalizability and wider applicability of the RL algorithm. A thorough comparative
analysis highlighted the RL algorithm’s impressive performance, with a 0.3% deviation
from the deterministic optimal solution, a 3% improvement over the benchmark heuristic,
and an 11% cost reduction compared to historical decisions. Realizing this cost decrease
within the DBL department, saves between 660 and 990 thousand euros, increasing their
profits by an impressive 88%. The computational findings for the Q-Learning algorithm,
strongly support the effectiveness of RL in addressing the Fixed Route Vehicle Refueling
Problem (FRVRP). Furthermore, these findings underscore the potential for fuel cost
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reduction within the industry and a successful innovative implementation of stochastic
fuel prices.

In addition to validating the framework’s effectiveness, the study also yielded significant
insights across various decision-making levels. Firstly, in the realm of predicting fuel
prices, an analysis showed substantial variability influenced by independent variables,
underscoring the importance of accounting for fuel price stochasticity. Notably, the anal-
ysis revealed that predicted fuel prices are lowest in Belgium and within network groups
associated with fuel company Y. Operationally, the RL algorithm’s policies showcased
refueling cost differentials along routes and how the polices are generated for varying ini-
tial fuel levels. Tactical examinations delved into detour trade-offs, indicating a €0.005
reduction in net fuel price per extra kilometer for profitable detours on a typical 417
km route. Strategically, the study emphasized the profitability of prioritizing refueling
decisions over negotiating extra discounts, as the latter showed minimal potential profit
gains. These insights collectively underscore the efficacy and versatility of the framework
in addressing challenges within the transportation industry.

Concluding, this research proves the contribution of RL in optimizing complex refueling
decisions and its potential for real-world implementation. Furthermore, this research
provides a framework for sequential-decision making under uncertainty that optimizes
the refueling decisions for fixed routes on an operational level.

Recommendations for the company include continuing the project to reduce fuel costs
and focusing on improving data structure and quality. While the ideal scenario involves a
live connection with the trucks’ board computers for real-time advice, it is recommended
first to enhance data structure and quality, gradually progressing from descriptive ana-
lytics to more complex prescriptive analytics like an RL model.

The thesis acknowledges certain limitations and suggests avenues for future research. It
underscores possible improvements including extending the model’s evaluation to longer
routes and venturing into an infinite MDP framework to enhance decision-making capa-
bilities for unseen routes. Recommendations include expanding the case study with more
historical data or applying the policies in real life to strengthen and validate the model’s
practical contribution. In the realm of future research, changes to the MDP formula-
tion are proposed to enhance applicability. These include broadening the action space,
integrating driving-rest time regulations, adding AdBlue levels to the state space, and
increasing the drivers’ freedom. These changes aim to make the model more adaptive,
comprehensive, and aligned with real-world refueling strategies.

In summary, this research contributes a sequential decision-making framework under
price uncertainty, which defines the FRVRP as an MDP and solves it with RL. The
computational results prove the contribution of an RL approach in optimizing complex
refueling decisions and its potential for real-world implementation. Furthermore, the RL
approach is validated through practical application and lays the groundwork for future
enhancements and implementation within the transportation industry.
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1. Introduction

This master thesis explores the performance of a novel decision-making framework that
aims to reduce the refueling costs for trucking companies within the transportation in-
dustry. The framework should advise at which gas station a truck should refuel along a
fixed route. This advice should take into account the complexities of the problem such
as the variability of the fuel prices, lack of access to the fuel prices and the fast-growing
problem size. To tackle these challenges we propose a novel RL approach. This section
begins by outlining the problem context and research motivation (Section 1.1), followed
by a description of the research aim (Section 1.2). Subsequently, the solution framework
is presented (Section 1.3), followed by an introduction about the company under study
(Section 1.4). Afterwards, the problem definition (Section 1.5) and the research questions
(Section 1.6) are discussed. Finally, the problem-solving approach is outlined (Section
1.7) and the structure of this research is introduced (Section 1.8).

1.1. Problem Context and Research Motivation

The transportation industry plays a pivotal role in ensuring that everything we see around
us, from the items in this room to the clothing we are currently wearing, reaches its
destination. This industry relies on different transportation modes such as trucks, ships,
trains, and planes to move goods from various corners of the world to their destination.
Trucking companies play a major role, accounting for around 77% of the total inland
freight transportation in Europe (EuroStat, 2023). This statistic highlights the extensive
distances these trucks cover annually, and the fuel consumption required to cover these
distances. Inherent to the transportation sector are the low-profit margins and high
costs. Especially, refueling costs emerge as a major contributor to the costs, representing
approximately 20% to 30% of the operational costs in both Europe and the United States
(Mckinnon, 2023; Persyn et al., 2019; Leslie and Murray, 2022). Hence, research on
reducing refueling costs has been a topic of interest within the transportation domain in
recent years (Lin et al., 2007; Suzuki, 2008, 2009; Rodrigues Junior and Cruz, 2013; Lin,
2014; Suzuki and Lan, 2018). On top of that, the increase and fluctuations in fuel prices
only further heightened the need for research on this topic (Bureau of Transportation
Statistics, 2022; NOS, 2023). The complexity of the refueling problem can be devoted
to several factors. Firstly, the decision whether to refuel must be made at each gas
station. This decision involves a trade-off between factors such as the current fuel level,
the remaining distance to the destination, the trade-off between the costs of a detour vs.
the benefits of a lower price, and the price of the upcoming gas stations. The last factor,
the prices of the upcoming gas stations, adds an additional layer of complexity as these
prices are unknown and are influenced by many factors such as the region, brand and date.
Moreover, as the route length or the number of potential actions increases, the problem
size grows rapidly, leading to potentially unacceptable long solution times. To effectively
address these challenges and optimize cost reduction in refueling decisions, a suitable
framework is required to deal with the stochastic prices and growing problem size. This
framework should deal with these limitations and capture the intrinsic complexities of the
system, which often involves uncertainty under sequential and online decision-making.
The current body of literature on refueling problems does not incorporate the complexity
of stochastic and unknown prices resulting in a research gap this thesis aims to cover.
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1.2. Research Aim

This research aims to reduce the refueling costs for trucking companies in the transporta-
tion sector by developing and validating an online sequential decision-making framework
with uncertain fuel prices. This framework contributes to the existing body of litera-
ture by addressing a previously overlooked aspect: The uncertainty associated with fuel
prices. The framework is set out to consider the complexities of the refueling decisions
including factors such as the current fuel level, the remaining distance to the destination,
the costs of a detour, and the stochastic price of the current and upcoming gas stations.
The fuel prices have a stochastic nature that can vary depending on factors such as the
region, the location, the owner company of the gas station, the time of the day, the crude
oil price, and the possible price agreements the logistics company made for a discount
on the liter price. These price fluctuations can impact the decision and that decision
can in turn impact the following chain of decisions. This research aims to capture this
stochasticity by deploying a machine-learning approach. In the end, this research should
provide an online sequential decision-making framework to find the best decisions for a
logistics company, aiming to minimize the refueling costs over its routes.

1.3. The Framework

This research proposes to express the refueling problem under sequential decision-making
as a Markov Decision Process (MDP). MDP is a framework for modeling stochastic dy-
namic programs by defining the state, actions, transition function and probabilities, and
rewards (Powell, 2011). Our MDP has a finite horizon that covers the start to the end
of the route. In Section 4 the MDP is defined and the mathematical formulation is pre-
sented. The solution of the MDP is a policy that determines which action to take in
each state so that the total expected reward, which is the negative counterpart of the
refueling cost, is maximized. We note that the refueling problem can become large-scale
as the number of states (e.g., amount of fuel in the tank per truck per route) and the
feasible actions (i.e., the amount of fuel to put in the tank per truck per route) as the
level of granularity and the transportation network grows. Hence, deriving the transition
probabilities between states and incorporating them to solve such a large-scale problem
is intractable as it suffers from the curses of dimensionality (Chang et al., 2013; Powell,
2011). Hence, we apply RL, which is promising for complex, online, stochastic, and
large-scale problems such as refueling decisions (Abdullah et al., 2021; Giannoccaro and
Pontrandolfo, 2002; Nazari et al., 2018). Reinforcement Learning involves discovering
optimal actions by learning how to map situations to actions in order to maximize a
numerical reward signal. Instead of being explicitly instructed which actions to take,
the learner explores different actions to determine which ones yield the highest reward
(Sutton and Barto, 2018). While there is an increasing body of literature in the trans-
portation domain recognizing the potential of RL to tackle industry challenges, there is a
notable lack of information on RL as an approach to the refueling problem (Farazi et al.,
2021; Winder, 2021; Yan et al., 2022; Nazari et al., 2018). Therefore, this research seeks
to bridge this gap by expressing the refueling problem as an MDP and employing RL as
its solution method.

1.4. Company Introduction

In practice, a minor improvement on the operational cost per tour can decide whether a
freight services company is profitable or not. Therefore, the refueling problem is relevant
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for all trucking companies within the transportation industry seeking to reduce their
fuel costs. Thus, the optimization of costs has key importance in the operation of such
companies. To evaluate and demonstrate the RL approach a case study is executed at
Nijhof-Wassink Group. The Nijhof-Wassink Group comprises multiple companies and
activities that collectively provide a unique comprehensive offering within the logistics
sector. Two companies within the Nijhof-Wassink Group could benefit from a decision-
support tool for refueling decisions namely Wemmers and Nijhof-Wassink. Wemmers
provides transportation services for the food industry across Europe and Nijhof-Wassink
transports chemical and compound feed across multiple countries. The scope of the case
study is put on Nijhof-Wassink. Nijhof-Wassink has been a specialist in bulk transport by
road, rail, and water since 1967. Their fleet consists of around 800 trucks that are active
in the chemical and compound feed markets. The chemical sector typically involves
longer trips, with trucks transporting a single product from origin A to destination
B. In contrast, the feed sector utilizes trucks with multiple compartments, enabling a
single trip to involve deliveries from origin A to client B, then to client C, and finally
returning to origin A. The chemical sector comprises of three different sub-sectors Dry
Bulk Logistics (DBL), Liquid Bulk Logistics (LBL), and Fuel. This research focuses on
the chemical sector and more specifically the sub-sector DBL. In the DBL sector, the trips
are characterised by longer distances and covering diverse countries and regions. These
characteristics lead to a heightened level of price variability. The impact of choosing the
most economical gas station is more significant due to this fluctuation, as the decision-
making process becomes more challenging. As a result, guidance for these trips carries
increased importance. More details about DBL and the routes they drive can be found
in Section 2.3.

1.5. Problem Definition from Company Perspective

In the previous section, Nijhof-Wassink is introduced as a trucking company in the
Netherlands. Nijhof-Wassink aims to decrease fuel costs as they represent around 21% of
the operational costs. The internal budget of 2022 shows that decreasing the fuel costs is
crucial to the company as for each 1% decrease in fuel costs in the DBL sector, the profit
of DBL increases by 8%. Aiming for continuous innovation, they seek to explore how
the increasingly popular AI algorithms can contribute to solving the refueling problem.
Therefore, besides the academic contribution, this project aims to practically contribute
to Nijhof-Wassink by providing insights into the possibilities of an RL model, how it can
solve the refueling problem, and provide advice to the drivers. In the end, this research
provides a decision-making tool for the company that shows the potential fuel savings of
implementing such a model.

1.6. Research Questions

From the problem context and definition, the following main research question is derived:

“Can we provide near-optimal solutions for the refueling problem with stochastic fuel
prices by using a Reinforcement Learning approach, framed within a novel sequential
decision-making framework?”
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To answer the main research question, 10 research questions are answered. This sec-
tion describes per research question (RQ), the relevance, the aim, and if applicable the
data gathering method and the data analysis method.

1. How are refueling decisions currently made at Nijhof-Wassink?

The aim of answering this research question is to get an overview of the current
situation before starting on the case study. It is also done to compare the result of
this research to the current situation and see improvements. Lastly, it is important
to understand the current situation and see how a solution would fit in the current
environment. This knowledge is obtained through walk-in interviews (Chapter 2).

2. What approaches for solving the refueling problem are present in the literature and
how is the framework we propose a contribution to the existing body of literature?

The aim is to provide an overview of the refueling models present in the current
body of literature. We want to know their features and to which extent the com-
plexity of the refueling model is captured. Ultimately, we aim to point out the
novelty of our research by comparing our problem-solving approach to the existing
approaches. This knowledge question is exploratory where qualitative information
is found in the literature (Chapter 3).

3. What is the MDP formulation of the fixed-route vehicle refueling problem with
stochastic fuel prices?

The purpose of answering this research question is to develop a mathematical rep-
resentation of the refueling problem that describes the relationships between de-
cision variables, objectives, and constraints. The result of this research question
is a model that can be used as input for a computer program together with the
modeling assumptions and simplifications (Chapter 4).

4. How can we solve the MDP of the refueling problem and gain (near-)optimal re-
sults?

Once the problem statement is developed a solution method is needed. This re-
search question aims to present a suitable RL algorithm to solve the MDP and to
present 3 other solution methods to compare our approach with (Chapter 5).

5. What data is needed as input for the case study and how is the data collected, pre-
pared and constructed?

The relevance of this research question is to document what input data is needed
to execute the case study and how this data is collected and prepared. With the
data, the parameters of the model are defined (Chapter 6.1).

6. Which machine learning regression model do we select to forecast the uncertainty
in the fuel prices?
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This research question deals with the novel component of our framework, the price
uncertainty. Answering this research question involves selecting a regression model
to incorporate the stochastic nature of the fuel prices. The result of this question is
a file with forecasted fuel prices that is used as input for the RL algorithm (Chapter
6.2).

7. How are the parameters of the RL algorithm tuned to provide near-optimal results?

Algorithms are dependent on careful tuning of their parameters. The aim of this
research question is to find settings that optimize the performance of the algorithm
by executing experiments and tests (Chapter 6.3).

8. What are the results of the different solution methods, and what insights do the
results provide regarding the performance of the RL algorithm?

This question aims to quantitatively analyze the performance of RL and compare it
to three other solution methods. Proving RL performs close to the optimal solution
or outperforms a heuristic can validate its performance. Furthermore is comparing
the result of the RL model with the current situation useful for providing an esti-
mation of the cost reduction. This is relevant information for the management of
Nijhof-Wassink (Chapter 6.4).

9. What insights does this model in combination with this solution method provide to
the practical and academic communities?

This research question aims to analyse the results of the RL algorithm to provide
insights to the practical and academic communities on operational, tactical and
strategic levels. (Chapter 6.5).

10. Does this model have the potential to be further expanded and deployed in Nijhof-
Wassink?

This question is relevant for Nijhof-Wassink. The answer to this question should
provide them with insight into how and if the model should be deployed, and what
still needs to be done to further integrate the model and what obstacles still need
to be overcome (Chapter 7.4).

1.7. Problem Solving Approach

To address the research questions and guide the problem-solving process, the Cross-
Industry Standard Process for Data Mining (CRISP-DM) framework is employed (Wirth
and Hipp, 2000). This methodology provides a structured approach to solving complex
problems in data science and machine learning. The CRISP-DM framework consists
of six major phases: Business Understanding, Data Understanding, Data Preparation,
Modeling, Evaluation, and Deployment (see Figure 1).
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Figure 1: Phases of CRISP-DM process model for data mining (Wirth and Hipp, 2000)

The Business Understanding Phase focuses on understanding the objectives and
requirements of the project. This phase is addressed in Chapter 1 by providing the
problem context, the research motivation and the initial research questions. The business
understanding phase continues in Chapter 2 by delving into the finances and decision-
making within Nijhof-Wassink.
The Data Understanding Phase drives the focus to identify, collect, and analyze the
data sets that can help accomplish the project goals and gain a deeper understanding of
the problem. In this research, it is also vital to gather information from the literature and
the current situation. Chapters 2, 3, and 4 focus on this phase and consequently gather
information about the current refueling decision-making process at Nijhof-Wassink (RQ
1), explore existing refueling models in the literature (RQ 2), and gather data and expert
knowledge (RQ 3).
The Data Preparation Phase prepares the final data sets and formulates the data
requirements for the case study. This includes what data is needed, how it is collected,
and how it is prepared. In this phase, we answer RQ 5 and describe it in Chapter 6.1.
The Modeling Phase is dedicated to building and assessing various models based on
several modeling techniques. This phase is executed by answering RQ 4, 6 and 7 in
Chapter 5, 6.2, and 6.3. This phase involves the selection of an appropriate algorithm for
the refueling problem, presenting different modeling techniques for the prediction model
of the fuel prices, and tuning the RL parameters.
The Evaluation Phase examines the results of the model, and if it meets the business
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objectives. RQ 8 and RQ 9 address this phase and quantitatively analyze performance,
compare it to the current situation at Nijhof-Wassink, and derive insights for both prac-
tical and academic communities. The elaboration is presented in Chapter 6.4.
The Deployment Phase is about documenting a plan for deploying the model. In this
phase, we present what the next steps are for Nijhof-Wassink. Furthermore, this phase
summarizes the practical and academic contributions, communicates insights to relevant
communities, and explores the limitations of the RL model. These topics are covered in
RQ 10 in Chapter 7.

1.8. Outline

This thesis follows a structured approach, starting with Chapter 2 devoted to Business
Understanding. This chapter forms the basis for understanding the stakeholders involved,
the transportation network, the impact of fuel costs, the composition of the fuel prices,
and how current refueling decisions are taken. Moving on to Chapter 3, the Related
Work section provides a comprehensive review of existing literature, addressing different
approaches to fuel cost reduction. Moreover, this chapter is set to validate the novel-
ness of the framework and to address other areas of research that adopted sequential
decision-making under uncertainty. The subsequent two chapters dive into defining and
presenting the framework. First, in Chapter 4, the Mathematical Model is introduced,
elucidating the MDP with its decision epochs, states, actions, transitions, and rewards.
Second, Chapter 5 presents the Solution Methods for the MDP including two RL algo-
rithms. Furthermore, three other methods are introduced to compare the RL approach
against. After the general framework is presented, we continue with validating it by
executing a Case Study in Chapter 6. The case study consists of four parts (1) under-
standing, preparing and constructing the data (2) developing an RL regression model
for the prediction of the fuel prices (3) tuning the parameters of the RL algorithms, and
(4) executing the solution methods and presenting the results and insights. The research
concludes with Chapter 7, Conclusion, Future Research, and Recommendations.
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2. Business Understanding

This section describes the current situation and aims to answer the research question
“How are refueling decisions currently made at Nijhof-Wassink?”. Furthermore, we pro-
vide more background information to understand the problem in more depth. First, Sec-
tion 2.1 explains the business objectives of Nijhof-Wassink. Second, Section 2.2 presents
an analysis of the refueling decisions including the factors influencing the refueling de-
cisions, the stakeholders involved and the current refueling behavior at Nijhof-Wassink.
Third, Section 2.3 explains the transportation network and corresponding terms. Lastly,
Section 2.4, elaborates on the price agreements between Nijhof-Wassink and fuel compa-
nies.

2.1. Business Objectives

As mentioned before, the ultimate goal of Nijhof-Wassink is to reduce fuel costs. The
financial budget of 2022 highlights the importance, showing Nijhof-Wassink’s total fuel
cost ranged between 21 and 25 million euros. These fuel costs represent a substantial
21% of the operating costs, which include the cost price and direct sector costs. Focusing
on the Dry Bulk Logistics (DBL) sector, the area of our research, fuel costs were in the
range of 6 to 9 million euros, also accounting for 21% of the operating costs. These fig-
ures underscore the significant financial investment Nijhof-Wassink makes in fuel costs.
To better understand the potential impact on profitability, it is essential to assess how a
reduction in fuel costs translates into increased profits. Internal documents reveal that
each 1% decrease in fuel costs results in an impressive 8% increase in profits within the
DBL sector. This underscores the importance of managing and potentially reducing fuel
costs to enhance the company’s financial performance. To evaluate the feasibility of
achieving a 1% reduction in fuel costs, we examine the required decrease in the price
per liter to realize this reduction. Analyzing fuel transactions from the previous year
reveals that the average price per liter was approximately €1.63. Therefore, refueling at
an average price of €1.61 would already lead to a 1% decrease in refueling costs.

Nijhof-Wassink has been thinking about reducing fuel costs in the past and intending
to keep innovating, they want to know how the increasingly popular AI algorithms can
contribute to solving this refueling problem for them. In the ideal situation envisioned by
Nijhof Wassink, they have a model with real-time connectivity to trucks that would re-
ceive live data on fuel levels, locations, and destinations. The model would then generate
real-time advice on an operational level. The refueling advice is then sent directly to the
driver’s on-board computer. Although there is recognition of potential challenges related
to restricting drivers’ autonomy, this ideal model could significantly enhance decision-
making efficiency. This research aims to provide them with an RL algorithm within a
sequential decision-making framework that provides policies for refueling decisions.

2.2. Assessment of Refueling Decisions

For the development of a model, it is crucial to gain a deeper understanding of which
factors and stakeholders are involved in the decision-making of refueling decisions. First,
we gather all the factors that influence the refueling decisions. Second, we present the
stakeholder analysis of the refueling decisions. Lastly, an analysis is provided of the
current refueling behavior.
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2.2.1. Factors Influencing the Refueling Decisions

Defining a “good” refueling decision is one of the challenges identified by Nijhof-Wassink.
A refuel decision is defined as deciding at which gas station(s) to refuel and how much.
A question they raise is which factors they should take into account. Since their goal
is to reduce fuel costs we aim to find factors that influence the total refuel costs or
limit the refueling decision by practical constraints. Interviews find these factors and
include the price per liter, which involves considerations of both the unknown pump
price and existing price agreements influencing the direct fuel costs. More on the price
agreements in Section 2.4. Furthermore, the current fuel level and the time it takes
to refuel impact the refueling decision. Additionally, the option of combining refueling
with necessary breaks can influence the total refuel costs as the fixed cost for stopping is
reduced. Also, evaluating detour costs against lower fuel prices is important to determine
the best gas station. Another factor is taking into account the refueling of AdBlue to
determine if it is cost-efficient to combine refueling AdBlue and Diesel or not. Other
considerations encompass the avoidance of refueling before loading to prevent increased
weight, drivers’ personal preferences such as saving stamps or socializing with colleagues,
and the characteristics of gas stations, such as high-speed pumps, truck-friendly facilities,
and the availability of shops. Together with stakeholders, we identified the most impactful
factors: the net price per liter, the detour costs, the time costs for refueling and the fuel
level. Figure 2, visualizes these factors and their components. Including remaining
factors increases complexity or is not possible due to data or time constraints. They can
be part of future research.

Figure 2: Overview of factors influencing the refueling decision

2.2.2. Stakeholders of Refueling Decisions

While the previous section delved into the factors influencing refueling decisions, this
section explores the stakeholders affected by or impacting these decisions across various
planning levels within the organization. Organizational planning typically consists of
three levels: strategic, tactical, and operational planning. The strategic level, encompass-
ing long-term planning and decision-making, aligns with Nijhof-Wassink’s management
goal to reduce costs through optimized refueling decisions. The purchasing department,
as an internal stakeholder, plays a crucial role at this level by negotiating price agree-
ments with fuel companies every three years. These price agreements influence the net
fuel price through discounts on the liter price. Moving to the tactical planning level, fo-
cused on medium-term strategies spanning weeks to months, the Behavior Based Safety
(BBS) department plays a role by analysing driver behavior and promoting safe practices
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on the road. They can influence the refueling behavior of the drivers by introducing gen-
eralized rules for refueling decisions. Currently, the BBS department does not have an
active role in guiding the refueling decisions. At the operational level, involving day-to-
day decision-making, the refueling decision on when and how much to refuel is made. In
the present situation, the drivers make these decisions. However, in an ideal scenario, an
RL algorithm would guide these decisions and present the policy to drivers through the
board computer. Additionally, fuel companies impact operational decisions by changing
pump prices daily, introducing an uncertain element beyond the organization’s control.

2.2.3. Current Refueling Behavior

To understand the current refueling behavior of the drivers we examined the amount the
drivers refuel, at which fuel level they refuel, and the price discount for refueling. For
this analysis, we used all trips and refuels done within the first half year of 2023 in the
DBL sector. Figure 3 displays how much fuel drivers usually add at a time. The graph
suggests that drivers occasionally refuel in small amounts, possibly not filling up the tank
entirely or choosing to refuel when there is still enough fuel left. Figure 4 shows that
most drivers refuel during the trip if their fuel level is between 40% and 50% at the start.
A significant amount of refuels are done when the fuel level is above 50%, their range
is still around 636 kilometers, making refueling not necessary yet. From this graph, we
can conclude that drivers often refuel earlier than needed. Due to the time it takes to
refuel we assume that frequent small refuels result in higher overall costs due to more
stops. However, we do not have the data to confirm this. Besides the fuel amount, the
use of price agreements is also analyzed (Figure 5). Out of all the times drivers got fuel
for their trucks in the Netherlands, Germany, and Belgium, only 6% of them paid the
regular price without any discount. Around 42% of the time the amount of discount at
which drivers refueled was the maximum discount available. This does not mean they
got the absolute lowest price, but it does demonstrate that drivers frequently make use
of advantageous discounts. Making sure more drivers refuel at the highest discount could
help cut down on fuel costs.

Figure 3: Occurence of how many liters drivers refuel each time
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Figure 4: Occurence of refueling at different fuel levels

Figure 5: Count of each price discount level over the transactions

2.3. Transportation Network

In the context of this thesis, it is important to understand the four terms that are
employed to indicate distinct aspects of the transportation network: lanes, shifts, trips
and routes. A “lane” is defined as a distinctive route traversed by a truck, typically
extending from a point of loading to an ultimate point of unloading. These lanes represent
the specific paths undertaken during transportation operations and are reoccurring over
time. The term “shift” is used to indicate the traveled path from the moment the driver
starts working to the time he leaves this truck to go home. A shift is a sequence of
lanes arranged consecutively, and it may span across a single day or extend over multiple
days. Since the shifts are created by planners, each shift is distinct and does not often
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reoccur over time. A “trip” is characterized by a specific lane, executed on a certain
date, by a particular truck. Thus, each trip is unique, marked by the combination of a
specific lane, date, and assigned truck. This distinction ensures the individualization of
each transportation event within the company. Hence a trip is not reoccurring, but the
trip data can be used for validation and selection of routes. The term “route” is used to
indicate the path that is optimized with the model. The model will optimize the refueling
decisions based on the gas stations along that path. A route, in this context, consists of
one or more consecutive lanes. The complexity of determining optimal refueling points
increases with the length of the route, so the recommendation has more impact when
combining lanes. However, combining lanes results in more unique routes and routes
that are travelled less frequently. Training an RL model for a route that occurs two
times is not efficient as the training phase takes long and the policy can only be used
twice. To address this, we analyzed shifts over the past six months. Our objective was
to determine the optimal number of lanes included in our routes. We focused on lanes
exceeding 100 kilometers, and assessed the frequency and total count of unique routes.
The decision is informed by considerations of both optimization and efficiency, ensuring
that the model is trained on routes with sufficient occurrence to enhance its practical
application. The analysis led us to the conclusion that configuring routes to consist of
a single lane is currently the most effective approach. When including two lanes, the
distance of the most frequent routes did not increase significantly compared to including
one lane, however, the frequency decreased and the number of unique routes increased.
Including three lanes resulted in longer routes, but the frequency was insufficient to
validate the model and impractical for real-world use later on.

2.4. Price Agreements

As demonstrated fuel costs are a significant part of operational expenses for trucking
companies like Nijhof-Wassink. To mitigate these costs, transportation companies ne-
gotiate price agreements with fuel suppliers, securing discounts per liter of fuel. These
agreements vary across different gas stations, making it important to find out at which
gas stations they want the highest discount when discussing the price agreements and
afterwards refuel at those stations to maximize savings. Nijhof-Wassink has price agree-
ments with two anonymous fuel companies, hereafter referred to as Fuel Company X and
Fuel Company Y. Each fuel company has divided their gas stations into network groups
based on the location relative to the highway. Fuel Company X has network groups Econ-
omy, Super economy, Coverage, Non-core, and Motorway in the Netherlands, Belgium,
and Germany. The discounts differentiate per country but are the same for all network
groups. Company Y has different discounts for network groups NF1, NT1, NT2, NT3,
and NT4 in the Netherlands. In Belgium, the discount varies for different brands. In
Belgium, the gas stations are divided into network groups BF1, BT1, BT2, BT3, and
BT4. The exact discounts are confidential but typically range from 0 to 16 cents per
liter, emphasizing the potential for cost savings. However, a challenge arises as truck
drivers are often unaware of the specific price agreements negotiated by the company.
Additionally, the pump price, or the price customers pay at the pump, can vary sig-
nificantly between gas stations. This complexity creates a dilemma for drivers, as they
might choose to refuel at a gas station with a seemingly low pump price, assuming that
the station has the lowest net price. However, the challenge lies in the fact that the net
price, calculated as the pump price minus the discount, could be cheaper at another gas
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station since both the pump price and the discount are not known to the driver. For
instance, a driver might prefer refueling at “gas station A” with a pump price of €1.40
and a 5 cents discount, while overlooking the better option at “gas station B” with a
pump price of €1.46 and a 15 cents discount. Consequently, the model needs to account
for these price agreements and prefer the gas station with the lowest net price.

2.5. Take Away

The business understanding phase has provided crucial insights into the context of the
research conducted. The business objective of Nijhof-Wassink is to reduce the fuel costs,
which can impact the profits significantly. To achieve this they want to explore how
increasingly popular AI algorithms can contribute to solving their refueling problem. The
ideal situation includes a model that would generate real-time advice on an operational
level. Therefore, this research focuses on providing a decision-making framework and
evaluating the effectiveness of RL for refueling decisions. In the assessment phase, we
aimed to answer the research question “How are refueling decisions currently made at
Nijhof-Wassink?”. We identified the most impactful factors on the refueling decision
being the fuel level, the net price, the detour costs and the time costs for refueling.
Furthermore, we mapped out different stakeholders that impact or are impacted by the
refueling decision on the different planning levels. This showed that the drivers are
responsible for deciding where to refuel. Resulting, in the refueling decisions being made
on the experience of the driver without a data-driven approach.
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3. Related Work

This research is executed within the logistics sector, focusing on decreasing the fuel costs
for freight companies and improving their profits. With this literature review, we aim
to answer the knowledge question (RQ2): “What approaches for solving the refueling
problem are present in the literature and how is the framework we propose a contribution
to the existing body of literature?”. The review is conducted according to the guidelines
presented in Kitchenham (2004) and the process can be referenced in Appendix A.

The scope of this literature review includes research that aims to reduce fuel costs of
trucking companies with a mathematical model. The works are classified by problem
domain, meaning each class aims to reduce fuel costs according to a different problem
formulation. For each class, different relevant papers are presented and the differences
with our work are highlighted to point out the novelty of this research. Within research on
reducing refueling costs two problem domains are identified. We have problems that indi-
rectly impact fuel costs by minimizing the distances or CO2 emissions (Section 3.1), and
problems that directly impact refueling costs by advising on where to refuel (Section 3.2).
For the problems that directly optimize the refueling costs we have the variable-route ve-
hicle refueling problem (VRVRP) that optimizes refueling decision along a variable route
(Section 3.1.2). Within this class there is a subset of problems that consider refueling
decisions along a fixed route, fixed-route vehicle refueling problems (FRVRP)(Section
3.1.1). We also see that there are two different methods to incorporate the prices of
the fuel. One approach is to have a fixed price over all gas stations, this is usually the
case for problems that aim to indirectly decrease the fuel costs. Another approach is to
apply varying fuel prices to different gas stations. To our knowledge, all these approaches
are assuming deterministic prices. Our problem aims to minimize the direct fuel costs
over a set of fixed routes where the prices over gas stations vary. A new element that
we could not discover in the existing literature is that our problem adopts sequential
decision-making under uncertainty. To the best of our knowledge, we are the first to
incorporate varying fuel prices by predicting the prices for the objective function with
a Machine Learning (ML) algorithm. The section proceeds by first presenting the work
closest to ours, and finishing with relevant work in other areas such as recharging prob-
lems (Section 3.3), problems with sequential decision-making under uncertainty (Section
3.4), and MDPs (Section 3.5).

3.1. Problems Directly Reducing Fuel Costs

First, we discuss research that aims to optimize the direct fuel costs by advising where
to refuel on a fixed (Section 3.1.1) or variable route (Section 3.1.2). Within this domain,
the closest work to ours is Ottoni et al. (2021). They were the first to define the refu-
eling problem as a Markov Decision Process (MDP) and solve it with RL. Ottoni et al.
(2021) points out that no study in the current body of literature approaches the refuel-
ing model as an MDP with RL, even though this approach has proven to be effective in
combinatorial optimization problems (Ottoni et al., 2021). However, the work of Ottoni
et al. (2021) is distinctly different from ours on the three following points. Firstly, the
model does not incorporate the uncertainty of the prices while the ever-changing prices
do contribute to the complexity of the actual environment. Introducing the price as a
stochastic element in our problem better reflects reality and can lead to more accurate
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predictions. Our contribution is to forecast the prices with a Machine Learning (ML)
model and use this predicted price as input for the reward function. Secondly, the work
of Ottoni et al. (2021) falls under the class of variable-route vehicle refueling problems
(VRVRP) meaning they integrate routing into the solution. Including routing is not
relevant for trucking companies who mainly drive long shifts from A to B. Thirdly, our
reward function is more complete because, besides the predicted prices, we also incor-
porate some important aspects such as detour costs and price agreements in addition to
the fuel costs.

3.1.1. Fixed-Route Vehicle Refueling Problems

Our problem belongs to the class of fixed-route vehicle refueling problems (FRVRPs)
that considers reducing direct fuel costs by optimizing the refueling decisions along a
fixed route. FRVRPs are a subclass of variable-route refueling problems where the re-
fueling decisions are made along a variable route. Two relevant works in the area of
FRVRPs are Lin et al. (2007), which solves the fixed-path gas station problem with a
polynomial time algorithm, and Khuller et al. (2007), which presents a linear-time greedy
algorithm for finding optimal refueling policies. Both works are different from ours as
they do not take into account the uncertainty in the prices and the detours to the gas
stations. Later, Suzuki (2008) expanded the simple FRVRP model by including the min-
imum purchase quantity and the detour costs but neglecting the stochastic nature of fuel
prices. The problem is modelled as a mixed-integer linear program and solved to pro-
vide optimal solutions. In recent years, several studies developed variants of the FRVRP
of Suzuki (2008). These include (1) a decision support system solved with a heuristic
where drivers are free to choose where to refuel (Suzuki, 2009), (2) a heuristic approach
that incorporates the dynamic load of a truck into the fuel consumption (Suzuki et al.,
2014), and (3) a heuristic approach that successfully reduces the costs by taking into
account travel cost by avoiding refueling stops in front of hills and mountains (Suzuki
and Lan, 2018). These studies all provide (near) optimal results for the FRVRP but fail
to validate and test the model with real data. Therefore, Rodrigues Junior and Cruz
(2013) performed a case-study to prove the effectiveness of using the exact FRVRP as
proposed in Suzuki (2008) by showing a 2.3% decrease in total fuel costs. Suzuki (2014)
points out that exact methods have long run times and can not deal with large instances
because of the NP-hardness of the problem. This is a problem as the refueling problem
often requires quick near-to real-time solutions as many routes are traveled every day by
a trucking company. Suzuki (2014) introduced a variable reduction technique for solving
the FRVRP with exact methods. Also, the most recent research of Schulz and Suzuki
(2023) presents an efficient exact method for large instances. Both papers deal with big
problem instances but none of the variants of the FRVRP deal with varieties in the price.
Within the area of FRVRP an RL algorithm was never explored to solve this problem
even though it promises to deal with big solution spaces and provide quick solutions once
trained. After examining the current body of knowledge on fixed-route vehicle refueling
problems we conclude that to the best of our knowledge, we are the first to develop a
fixed-route vehicle refueling problem with sequential decision-making under stochastic
prices that is solved with Reinforcement Learning.
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3.1.2. Variable-Route Vehicle Refueling Problems

The other class of research within optimizing the direct fuel costs studies optimizing the
refueling decisions along a variable route. The variable-route vehicle refueling problem
(VRVRP) is a variant of the classic vehicle routing problem (VRP) that aims to solve
the trade-off between reducing travel distance and saving on fuel costs. In practice, this
means a route can be created that is longer in distance but visits cheaper gas stations.
Within this class, there are two approaches. The first approach solves the problem by
first determining the route and then the refueling decision. Khuller et al. (2007) and
Lin et al. (2007) provide examples of this approach, proving the VRP with refueling
decisions is NP-hard and solve the problem with heuristics. The second approach tries
to improve the solution by combining routing and refueling decisions in one algorithm.
One example is the work of Lin (2008) who expands the work of Lin et al. (2007). All
studies mentioned before assume that every gas station is located on the route resulting in
the work of Suzuki (2009), who created a more comprehensive VRVRP including detours
and driver freedom. The work of Suzuki (2009) is one of the few works that mention
that price fluctuations cause uncertainty. However, they deal with these fluctuations by
solving the model for real-time prices. This approach is not very suitable as the refueling
problem can become computationally extensive and fast solutions are required. More
recent research is from Neves-Moreira et al. (2020) and Bousonville et al. (2011) who
create a multi-period planning-horizon algorithm that integrates routing and decision
making. Suzuki and Dai (2013) and Lin (2014) both introduced the VRVRP with a
dual objective of minimizing both travel distance and fuel costs as other works tend
to cut fuel costs in exchange for increased vehicle miles leading to unwanted policies.
Most works that consider a variable route do have a fixed start and end point, however,
Farkas and Csehi (2017) aims to optimize the route and refueling decisions by matching
instant demand to a network of trucks. When comparing the problems within VRVRP
with our problem we find that all the works within VRVRP use different prices for gas
stations along the route, but none incorporate the variability and uncertainty of the
prices. Furthermore, this class of research is mainly focusing on a planning horizon
where the vehicle visits several customers on one trip. For our research, we focus on
transportation companies that travel long distances between the start and end point
making the FRVRP more suitable. We can conclude that our research is the first to take
into account the stochasticity of fuel prices within the body of literature that addresses
direct fuel costs.

3.2. Problems Indirectly Decreasing Fuel Costs

Another problem domain within refueling problems aims to indirectly decrease fuel costs
by reducing fuel consumption. Kuo (2010) developed a VRP that aims to reduce fuel
consumption and takes into account the speed and loading weight. Solving this problem
with simulated annealing resulted in a reduction in fuel consumption of 24.61%. Another
study conducted by Zhang et al. (2015) integrated fuel consumption into a VRP, revealing
not only a reduction in fuel consumption but also a trade-off relationship among fuel
consumption, carbon emissions, and vehicle operating costs. Furthermore, the research
of Xiao et al. (2012) is a good example of how taking into account fuel consumption by
adding the fuel consumption rate as a load-dependent function, can reduce fuel costs
by decreasing consumption by 5%. It is important to highlight that the works in this
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class assume one single price for fuel while in practice vehicles can refuel at different
prices. Therefore, we want to point out that minimizing fuel consumption is not the
same problem as minimizing fuel costs for the same fuel consumption. Neves-Moreira
et al. (2020) shows that solving problems that indirectly minimize fuel costs by using a
single fuel price leads to sub-optimal solutions when the vehicle can refuel at different
prices. In our work we not only deal with the regional price differences but also with the
price differences caused by the price agreements from trucking companies. We believe
the price differential between gas stations is so significant that taking into account both
the location of fueling stations and the price of gas is not only reasonable but pivotal for
achieving efficient operations. On top of that, we incorporate the variability of the fuel
prices in the reward function, by forecasting them with ML.

3.3. Problems Similar to Refueling Problems

There is a stream of similar research to ours that studies the application of RL algorithms
for the recharging decision problem of Electric Vehicles (EVs). From the review paper
Abdullah et al. (2021), we conclude that the problems with single agents and the objective
to minimise the charging costs for the EV owner are closest to our work. For instance,
Li et al. (2020) and Chiş et al. (2017) are particularly relevant as they both applied RL
successfully to find a constrained charging/discharging scheduling strategy to minimize
the charging cost for the driver as well as guarantee the EV can be fully charged. They
also take into account price uncertainty by predicting electricity prices for the upcoming
days. Chiş et al. (2013) executes similar research to optimize profit for owners of Plug-in
EVs. A difference with our work is the focus is on which day to recharge instead of which
charging station. Shi and Wong (2011) and Zhang et al. (2021) study the real-time EV
control problem under price uncertainty, meaning they provide real-time charging advice
to EV drivers. Both works incorporate uncertain electricity prices and formulate the
problem as an MDP. The results of the discussed works show that RL algorithms can
work effectively in an environment with uncertain prices and that they can increase profit
significantly.

3.4. Sequential Decision-Making Under Uncertainty

For our refueling problem, we develop a framework for sequential decision-making under
uncertainty. The framework incorporates that at each point in time when a driver arrives
at a detour point to a gas station, he stands for the decision to refuel or not. Sequential
decision-making under uncertainty has been widely applied in operations research, ML,
and computer science (Diederich, 2001). In sequential decision-making, ”control the-
ory” typically handles problems with continuous states and decisions, while problems,
including ours, with discrete states and decisions in discrete time fall under ”Markov
decision processes” (Powell, 2011). Discrete-time MDPs, hereafter just referred to as
MDPs, consist of some key elements namely the state space, the action space, the tran-
sition probabilities and the reward function. The state space evolves over discrete time
periods, where at each observed state an action is chosen from the action set. After this
action, two things will happen (1) the system receives the reward for that action, and (2)
the system evolves to the next state at the next time period with a transition probability
(Puterman, 1994; Powell, 2011; Sutton and Barto, 2018). MDPs can be straightforward
to formulate, but solving them is another matter. In Section 5 we present the different
exact and approximate solution methods and their relevant applications.
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3.5. Related Work for Markov Decision Processes

Examples of works for MDPs in operations research can be seen in transportation-,
inventory-, and energy problems. Inventory problems are closest to our problem as the
fuel in the tank can be seen as our inventory level and in each decision epoch the new
inventory level is decided on by buying more products. An example of an inventory prob-
lem with sequential decision-making is the work of Shin and Lee (2015), who defined the
inventory management problem with multiple suppliers and supply and demand uncer-
tainty as an MDP. The case study showed that exact value iteration and approximate
methods reduced the costs compared to the popular method that disregarded the uncer-
tainty and consideration of multiple criteria. Another work that uses the MDP framework
for an inventory problem is from Ahiska et al. (2013). They solve the stochastic inven-
tory control problem with unreliable sourcing showing a performance gain compared to
conventional methods.

Lin et al. (2007) and Suzuki (2014) also mentioned the FRVRP can be viewed as a
special case of the single-item, single-resource capacitated lot-sizing problem (CLSP),
with inventory bounds and fixed lot size. Some efficient algorithms exist that can solve
the deterministic CLSP with inventory bounds (Gutiérrez et al., 2003) or the CLSP
with minimum lot sizes (Okhrin and Richter, 2011). Atamtürk and Küçükyavuz (2005)
performs a polyhedral computational study on the CLSP with inventory bounds and
fixed costs. However, we are not aware of any efficient algorithm that can solve the CLSP
with both the inventory bound and the minimum lot size. An overview of deterministic
CLSPs can be found in Gicquel et al. (2008). Within the CLSP there are also works that
address stochastic single-item dynamic lot sizing problems and incorporate uncertainty
in demand. The review paper of Sox et al. (1999) shows that stochastic CLSPs are often
solved to optimality with linear models and near-optimal with heuristics. The works of
van Hezewijk et al. (2022) and Dellaert and Melo (1996) approach the problem differently
and formulate the stochastic CLSP as an MDP. van Hezewijk et al. (2022) solves the MDP
with deep RL and Dellaert and Melo (1996) solve the MDP with heurstics.

3.6. Take Away

In this literature review, we answered the knowledge question: “What refueling models
are present in the literature, what features do they have, and how is the framework we
propose a contribution to the existing body of literature?”. To answer this question a com-
prehensive overview of refueling models within the logistics sector, focusing on reducing
fuel costs for freight companies is presented. We classified existing research into two
main problem domains: those indirectly impacting fuel costs by minimizing distances or
emissions, and those directly optimizing refueling decisions. Our work falls within the
latter, specifically the FRVRP, aiming to minimize direct fuel costs along fixed routes
with varying fuel prices. We identified a gap in the literature, as existing approaches often
assume deterministic prices, overlooking the stochastic nature of fuel prices. Determinis-
tic prices decreases the complexity of the problem, however, a deterministic model might
not capture the range of possible outcomes and make overly positive or negative predic-
tions. Our proposed sequential decision-making framework entails defining the FRVRP
as an MDP and solving it with RL while incorporating a novel approach using machine
learning for price prediction.
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4. Mathematical Model

This section answers the research question “What is the MDP formulation of the fixed-
route vehicle refueling problem with stochastic fuel prices?” by modeling the refueling
problem as an MDP. The MDP for the refueling problem aims to optimize refueling
decisions along a set of fixed routes, considering varying fuel prices at different gas
stations, to minimize the overall refueling costs for a truck. This type of problem is
called the Fixed Route Vehicle Refueling Problem (FRVRP) (Lin et al., 2007; Suzuki,
2008; Khuller et al., 2007).

4.1. Markov Decision Process

An MDP is a mathematical framework for addressing problems involving sequential
decision-making under uncertain conditions. It is well-suited for addressing the refu-
eling problem, where uncertainties in fuel prices and the need for sequential decisions
along a route come into play. Due to minimal overlap between routes and the natural
start and termination point of a route, we present a finite horizon MDP that can model
the refueling problem for all the independent routes. The MDP considers the variable
refueling costs at each gas station, the different detour costs to reach a gas station, the
benefits of price agreements with certain gas stations, and the fixed costs for stopping
to refuel. Importantly, the uncertainty and variability of the prices are incorporated as
explained in Section 6.1.3. In the MDP model, we define the state as the fuel level of
the truck in liters and the action is whether to refuel or not at a nearby gas station.
Given the present state and the taken action, we can find the future state using the state
transition function. The solution of the MDP is a policy that determines which action to
take in each state so that the total expected reward, which is the negative counterpart
of the refueling cost, is maximized. All sets and parameters and their notation can be
found in Table 1 at the end of this paragraph. The problem is formulated as follows.

4.1.1. Decision Epochs

The decision epochs represent the discrete points when decisions are made. The total
number of decision epochs depends on the route. Therefore, to define the set of decision
epochs for routes, we use the set T = {1, 2, . . . , G} where G is the last fuel station along
the route r. In this model, the decision epochs are detour points to gas stations on the
routes. The choice of decision epochs may lead to having non-equidistant times between
two consecutive decision epochs.

4.1.2. States

The state of the system at point t, st ∈ S = {L,L + δ, L + 2δ, . . . , U}, for all decision
epochs t ∈ T . The state indicates the fuel left in the tank (in liters) at decision epoch t,
where L and U denote the lower bound and upper bound of the fuel level in the tank,
respectively. The increment level is δ, which is used to discretize the state space of the
system.
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4.1.3. Actions

The action of the system at each decision epoch t, at ∈ A = {0, 1}, where action 0 means
no refueling and action 1 means refuel up to the max level. We note that in theory, it
is possible to define the larger action space such that at ∈ At = {0, U − st}. However,
inspired by the drivers’ behavior that makes their tank completely full when they stop
on long-distance trips, we made this choice that helps to reduce the size of the problem
as well.

4.1.4. Transitions

The state of a system transitions from state st to st+1 as a function of present state st,
and action at, according to Equation (1). The transition is deterministic as the element
of uncertainty is absent in the state and action. We note that the element of uncertainty
is the price that impacts the reward of the system, which is discussed later. The fuel
level of the next state plus the fuel needed for the detour to the next gas station can not
be lower than L. The amount of fuel needed from the present detour point to the next
detour point is usage (ut), which is subtracted from the present fuel level (st). In case
the refueling action is taken, then the amount of fuel used inside the detour dt also needs
to be subtracted (in addition to ut) from the max level of fuel in the tank to account for
the fuel needed to return to the route.

st+1 = max
(
L, (1− at)(st − ut) + at(U − ut −

1

2
dt)

)
(1)

4.1.5. Reward

The goal is to maximize the total expected reward. To calculate the total expected
rewards we need the immediate rewards of taking action at in state st at decision epoch
t. The immediate reward is defined as the negative of the refueling costs at decision
epoch t, which is a function of st, st+1, at, and the uncertainty element p̂t. The refueling
costs are determined by the total usage for the trip (

∑
G
t=1ut), the length of the detour

(dt), the time costs of refueling (C), the time costs for the detour (bt), and the discount
per liter (kt). As can be noted, we only charge the liters that are used during the trip
while the first logical calculation that comes to mind is to include all fuel that is refueled
because you pay for it. However, this may result in the model preferring refueling at
the beginning of the route because the tank level is higher, and therefore fewer liters are
charged. This can result in refueling earlier on the trip at stations with higher fuel costs,
while later cheaper options are available. Alternatively, we could deduct the remaining
fuel inside the tank that remained unused at the end of the route, but this option is
less preferred from the practical perspective as the destination of one route could be
the origin of another route. If the next fuel level turns out to be less than L, a huge
penalty, −M is assigned as the truck cannot continue the trip to the destination point.
We calculate the immediate rewards using Equation (2).

rt(st, at, st+1, p̂t) =

{
−(at((p̂t − kt)(

∑
G
t=1ut + dt)− C − bt)) if st+1 > L,

−M if st+1 ≤ L.
(2)

Where p̂t − kt is the net fuel price per liter at decision epoch t, dt is the amount of fuel
consumed to reach the gas station inside the detour, C is the fixed time cost for stopping
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to refuel, and bt is the time costs for a detour. The fuel price p̂t is exogenous and
forecasted by a function dependent on the date, country and location. Further details
on the forecast are provided in Section 6.1.3. The time costs for a detour are taken into
account to cover the salary of the driver for making a longer detour to a gas station.
The terminal reward is the same as immediate rewards in other decision epochs. The
total reward can be calculated by using the state and time-dependent decision rules. We
denote the state and time-dependent decision rules, ht(st) : st → Ast , and use them to
indicate which action at to select when in state st at decision epoch t ∈ T . A sequence of
these decision rules denotes a policy π. The expected total reward of policy π is vπG(s1)
and equals

vπG(s1) = Eπ
s1 [rt(st, at)] (3)

The aim is to find a policy π∗ with the maximum expected total reward.

Table 1: Summary of model sets and parameters

Notation Definition
Sets
T Set of decision epochs representing detours points to gas stations
S Set of possible states with lower bound L, upperbound U , and step-size δ
A Set of actions that can be taken
Parameters/variables
t Decison epoch in set T
st State from set S the system is in at epoch t
at Action from set A that is chosen at time t
rt Immediate reward for taking action at, in state st
ut Usage to go from decision epoch t to t+ 1
dt Usage to go to the gas station at decision point t
p̂t Predicted price at the gas station located at decision epoch t
kt The discount per liter at the gas station located at decision epoch t
bt The costs for the time it takes to make the detour at decision epoch t
C Constant costs for the time it takes to stop for refueling
−M Big penalty assigned when the truck runs out of fuel

4.2. Assumptions and Simplifications

When defining the model several assumptions and simplifications were made. These are
listed and explained below:

i Start and end of route at first and last detour point.
In practice, the route starts from the origin to the destination. Without loss of
generality, we consider the starting point of the routes to be from the first detour
located close to the first gas station on each route, and the ending point of the routes
to be from the last detour point.

ii Deterministic fuel usage.
To simplify our model, we assume a deterministic fuel usage pattern for the trucks.
This means that the amount of fuel consumed by the trucks is considered to be
constant and predictable. While this simplification facilitates the modeling process,
it is essential to be aware of its deterministic nature when interpreting the results.
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iii The time to refuel is constant at every gas station and for each refuel size.
While in reality some stations have faster fuel lanes for trucks and refueling more
liters takes longer, the model assumes each refueling takes the same amount of time.

iv The truck has to be refueled completely.
In practice a driver can choose to refuel the amount he desires. However, for the
sake of reducing the size of the problem, the refueling decision is simplified to not
refueling or refueling up to the max level.

v The fuel level of the truck is discretized per liter.
To facilitate computational efficiency and practical implementation, we discretize
the fuel level of the truck per liter. This discretization approach allows for a more
manageable representation of fuel quantities in our model, striking a balance between
computational complexity and accuracy.

4.3. Take Away

The MDP for the FRVRP captures the refueling behavior of drivers by aligning the
decisions epochs with detour points to gas stations and the possible actions at each epoch
being no refueling or refueling up to the max level. The state of the MDP is denoted by
the fuel level. We keep things straightforward by assuming fuel usage between decision
epochs is predictable. The MDP transitions from one state to another by subtracting the
fuel usage from the fuel level and adding the refuel amount (if applicable). Immediate
rewards, composed of fuel and detour costs, quantify the financial implications of each
action in each state and navigate the model to an optimal policy. In the reward function,
forecasted fuel prices inject a crucial element of uncertainty. The total expected reward
of a policy is the sum of the immediate rewards over all decision epochs.
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5. Solution Methods

The first part of this section dives into various solution approaches for MDPs and addi-
tional topics such as policies, step-sizes, and the exploration-exploitation trade-off (Sec-
tion 5.1). The subsequent part of this section is dedicated to addressing the research
question “How can we solve the MDP of the refueling problem and gain (near-)optimal
results?” (Section 5.2). This section introduces four distinct solution methods: a rein-
forcement learning algorithm, an approach for establishing an upper bound, a benchmark
heuristic, and lastly, an examination of the historical decisions made by drivers.

5.1. Introduction of Solution Methods for Markov Decision Processes

MDPs can be straightforward to formulate, but solving them is another matter. Dy-
namic programming offers a framework in which MDPs can be solved. A standard
solution method, which is an exact algorithm, is backward induction (Puterman, 1994).
However, the state size of the refueling problem can grow large and the stochasticity
of the fuel prices introduces an extra layer of complexity. Additionally, exact methods
within dynamic programming presuppose complete knowledge of the MDP, encompass-
ing transition probabilities and rewards, which may not always be obtainable. Thus, as
is common with large and complex problems, we divert to approximate dynamic pro-
gramming for a suitable solution approach (Powell, 2011). For solving the MDPs with
approximate methods, we discuss three algorithmic strategies. Next, we introduce the
policy for choosing an action, and how we approximate the value function. Lastly, we
elaborate on how we tackle the challenges of exploration vs. exploitation and the learning
rate.

5.1.1. Approximate Algorithmic Strategies for Solving Finite Markov Decision Processes

Approximate dynamic programming is a powerful tool for addressing difficulties in solv-
ing large problems. However, its applicability extends to smaller problems that become
challenging when lacking a formal model of the information process or when uncertainty
exists about the transition function. For instance, in our problem, we have observations
of changes in fuel prices but we do not have a mathematical model that describes these
changes. Approximate dynamic programming involves progressing forward in time, pos-
ing two challenges to overcome. First, we need sample paths of fuel prices, that forecast
what might happen in the future (See Section 6.1.3). A sample path (ωn) refers to a
particular sequence of exogenous information generated for episode n of the algorithm.
Secondly, we require a policy to determine the way of decision-making as we advance to
the next state (See Section 5.1.3). As for solving an approximate dynamic program, we
present three major algorithmic strategies that have evolved. The first approximate strat-
egy is Reinforcement Learning (Sutton and Barto, 2018). RL is suitable for large-scale
problems, especially when not all elements of the mathematical model are fully known
or captured (e.g. the full transition probability is hard to be determined). The second
strategy is a Real-Time Dynamic Program (RTDP). RTDP is a variation of a dynamic
program designed to converge and make real-time decisions in small state-action space
problems. The third strategy is Approximate Value Iteration (AVI). AVI relaxes the
assumption of computing the one-step transition matrix, allowing for problem-solving in
situations with challenging transitions (Powell, 2011). Another method to solve the finite
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MDP is with heuristics. Heuristics are algorithms that involve relatively simple problems
with practical strategies. The performance of a heuristic depends on the problem.

5.1.2. Reinforcement Learning

From the three approximate strategies, the RL framework proved ideal for sequential
decision-making in unknown environments with large amounts of data (Gupta et al.,
2022; Sutton and Barto, 2018) and it has shown to be an effective tool for complex,
online, stochastic, and large-scale problems such as refueling decisions (Abdullah et al.,
2021; Giannoccaro and Pontrandolfo, 2002; Nazari et al., 2018). Also, when we look at
large-scale inventory problems, Shakya et al. (2022) shows that an RL approach for multi-
period inventory with stochastic demand outperformed other methods. Reinforcement
learning is a machine learning training method based on rewarding desired behaviours and
penalizing undesired ones. In RL, the goal is to learn policy π that optimizes the expected
rewards, where a policy is a sequence of actions based on the state in time-step i (Sutton
and Barto, 2018). Within RL, SARSA and Q-learning are two popular algorithms used
to learn optimal policies for agents in an environment (Powell, 2011; Sutton and Barto,
2018). While the algorithms share similarities, a key distinction is that SARSA learns
on-policy meaning the action selected for updating the value function is used in the next
decision epoch and Q-Learning is off-policy meaning the action selected for the update
function may be different than the action chosen in the next state. More elaboration
on both algortims follow in Section 5.2.1. The actual performance difference between
the two algorithms can vary based on the specific characteristics of the environment, so
experimenting might be needed to determine which algorithm performs better. When
looking at applications of these both algorithms in relevant work we see that Q-learning
is more commonly used for RL-based EV charging management systems (Abdullah et al.,
2021), but no papers compare both algorithms. The traveling salesman problem with
refueling from Ottoni et al. (2021), shows that for different problem instances, both
algorithms work equally well. Therefore, in this research, we test both SARSA and
Q-Learning to see which algorithm performs better.

5.1.3. Policy and Approximation of the Value Function

When solving MDPs with an approximate solution method such as RL, we need to es-
tablish the policy that dictates which action to choose in a given state. Powell (2011)
discusses four different policies: a myopic policy, a lookahead policy, a policy function
approximation, and a value function approximation. When adopting a myopic policy,
the action is based solely on the current state, without considering the long-term conse-
quences or future rewards associated with its actions. Therefore, if future rewards hold
significance, this policy may prove less suitable. On the contrary, a lookahead policy
considers the future by explicitly simulating or considering potential future states and
their consequences. This is however computationally expensive. The two remaining poli-
cies are value- and policy-function approximation, where value-function approximation
focuses on estimating the value of states (V values) or state-action pairs (Q values), and
policy-function approximation focuses on the value of a complete policy π. Value func-
tion approximation is the most commonly used policy for approximate solution methods
(Puterman, 1994; Powell, 2011). In RL, the model often aims to find the state-action
values (Q values), which is why we use value function approximation as our policy (Sut-
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ton and Barto, 2018; Powell, 2011).

Several strategies exist for how these values are stored and used in the value function
approximation: look-up tables, parametric representations, and non-parametric repre-
sentations. Look-up tables store the value approximations per state-action pair. This
is a straightforward but effective method. However, the matrix can become large when
the state-action space grows significantly. Parametric representations solve this issue
by estimating value functions using regression methods. However, the drawback is that
they are only effective if you can design an effective parametric model. Non-parametric
representations avoid the challenge of parameter tuning and offer tremendous potential,
but significant hurdles remain regarding complexity, data availability, and good approx-
imations (Powell, 2011). The size of our state-action space allows us to use a look-up
table, so we select this simple but effective approach.

5.1.4. Learning Rate and Exploration vs. Exploitation Trade-off

Using an approximate method to solve the MDP presents several challenges, with the
learning rate and the exploration-exploitation trade-off being among the most significant
ones (Sutton and Barto, 2018; Powell, 2011; Mes et al., 2017). First, the learning rate
is important as the core of approximate dynamic programming is some form of iterative
learning. In value function approximation, the approximations are updated with every
episode, but how much of the newly observed value is used for this approximation is
determined by the learning rate. A high learning rate puts more weight on the new
observations and, conversely, a low learning rate puts more weight on past observations.
Both settings have their benefits and drawbacks. A too high learning rate introduces
instability, while a too low learning rate causes slow convergence. The selection of an
appropriate learning rate is paramount for an RL algorithm’s success, influencing the
overall learning process (Powell and Ryzhov, 2012). Typically, an RL algorithm requires
different levels of the learning rate during training. Powell (2011) presents various step
sizes to dynamically adjust the learning rate during training, including deterministic,
stochastic, and optimal step sizes. The deterministic step size that is used in this research
is the straightforward yet efficient Generalized Harmonic Step Size (See Figure 6). This
step size is suitable for value iteration and RL, because of its larger step size (See Equation
(4)).
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Figure 6: Development of learning rate under harmonic step size with ∆ = 22500

αn−1 =
∆

∆+ n− 1
(4)

In navigating the exploration-exploitation trade-off for optimal performance, both al-
gorithms employ the epsilon-greedy method. This strategy, outlined in Powell (2011),
involves pure exploration ϵ percent of the time and pure exploitation the remaining 1− ϵ
percent. The epsilon value is dynamically adjusted every episode using the Generalized
Harmonic Step Size.

5.2. Outline of Selected Solution Methods

This section continues by outlining the different solution methods we adopt to determine
optimal or near-optimal policies for the FRVRP. In the first step, we present the RL
algorithms used for solving the MDP. Then, three methods are introduced to compare
the RL algorithm with. We start by presenting a method that provides an upper bound,
then we introduce a benchmark heuristic and, lastly, we compare the RL model with
historic decisions. The purpose of developing different solution methods is to assess the
performance of RL for the refueling problem.

5.2.1. Reinforcement Learning

This section introduces the Q-Learning and SARSA RL algorithms for the FRVRP. As
discussed before, both algorithms adopt an ϵ-greedy method for action selection and
a Generalized Harmonic step size that adjusts the ϵ-greedy and learning rate over the
training period. We opt to test both algorithms, recognizing that their performance
depends on specific problem characteristics, and the literature lacks a consensus on which
one outperforms the other in a similar context.
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Algorithm 1 and Algorithm 2 present the general pseudo code for SARSA and Q-
Learning, respectively. While the algorithms share similarities, a key distinction arises
from Q-Learning being off-policy and SARSA being on-policy. This distinction manifests
in two aspects: the update function for the state-action approximation and the timing of
action selection for the next state. Equations (5) and (6) illustrate the update functions
for Q-Learning and SARSA. Q-learning converges to the optimal policy as it maximizes
rewards using a greedy action selection strategy for the highlighted part of the update
function (Equation (5)). In contrast, SARSA employs an ϵ-greedy strategy, allowing it
to include exploration in the highlighted part (Equation (6)). Furthermore, the update
functions show that the value approximation depends on both the action taken in the
current state (at) and the action selected in the next state (at+1). In SARSA, the action
for the next state is determined in line 9 before updating the state-action value in line
10. Conversely, in Q-Learning, the next action is not determined before updating the
state-action value in line 9. In Q-Learning, the update function selects the next action
based on the one that yields the highest expected reward. This distinction reflects the
off-policy nature of Q-Learning, where the learning policy may differ from the target
policy and the on-policy nature of SARSA, where the learning policy may not differ from
the target policy.

Qn+1(st, at) = Qn(st, at) + α[r(st, at) + γ max
at+1

Qn(st+1, at+1) −Qn(st, at)] (5)

Qn+1(s, a) = Qn(st, at) + α[r(st, at) + γ Qn(st+1, at+1) −Qn(st, at)] (6)

Algorithm 1 SARSA algorithm

1: Set the parameters: α, γ, and ε
2: Initialize the matrix Q(s, a) = 0 for all pairs s,a
3: Observe the state st
4: Select the action at using ε-greedy method
5: repeat
6: Take the action at
7: Receive immediate reward r(st, at)
8: Observe the new state st+1

9: Select the new action at+1 using ε-greedy method
10: Update Q(st, at) with (6)
11: st = st+1

12: at = at+1

13: until stopping criterion is satisfied
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Algorithm 2 Q-Learning algorithm

1: Set the parameters: α, γ, and ε
2: Initialize the matrix Q(s, a) = 0 for all pairs s,a
3: Observe the state st
4: repeat
5: Select the action at using ε-greedy method
6: Take the action at
7: Receive immediate reward r(st, at)
8: Observe the new state st+1

9: Update Q(s, a) with (5)
10: st = st+1

11: until stopping criterion is satisfied

Now that the differences are highlighted we explain SARSA (Algorithm 3) and Q-
Learning (Algorithm 4) for the FRVRP line by line. Both algorithms start by initiating
the look-up table Q(s, a), the discount factor γ, the learning rate α, epsilon-greedy ex-
ploration parameter ϵ, and the number of episodes N (lines 1-2). The algorithm is an
iterative process that continues until the total number of episodes N is reached (line 3).
Within each episode, a new sample path of prices for the gas stations in the route is
forecasted (line 4). Also, the learning rate α and epsilon-greedy parameter ϵ are updated
using the Generalized Harmonic Step size, and an initial state is chosen (lines 5-7). Ad-
ditionally for SARSA, the first action is determined at this stage (line 8). Both SARSA
and Q-Learning then proceed by looping through the decision epochs. In the decision
epochs, Q-Learning first selects an action (line 9) and then both algorithms continue by
executing the chosen action, observing its reward and calculating the next state (lines 10-
12). Subsequently, Q-Learning updates the lookup table (line 11). In contrast, SARSA
chooses the action for the next state in line 11 before updating the lookup table in line 12.
After updating the lookup table, both algorithms prepare variables for the next decision
epoch by setting the next state to the current state. For SARSA, the next action is also
set as the current action. This process continues until all episodes are executed, resulting
in a lookup table capturing learned values that can be used to derive the optimal policy
for both algorithms.
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Algorithm 3 SARSA Algorithm for the FRVRP

1: Initialize the look-up table Q(s, a) with zeros
2: Initialize discount factor γ, α for learning rate, ϵ for epsilon greedy, and number of

episodes N
3: for n = 0, ..., N-1 do
4: Get sample price path ωn from forecast function
5: Update learning rate: α = ∆

∆+n−1
6: Update epsilon greedy: ϵ = e

e+n−1
7: Select initial state sn0
8: Choose action an0 from sn0 using ε-greedy method
9: for t = 0, ..., G-1 do

10: Take action ant
11: Observe reward r(snt , a

n
t , p̂

n
t ) Eq. (2)

12: Transition to next state snt+1 Eq. (1)
13: Choose action ant+1 from s′ using ε-greedy method
14: Update look-up table: Q(s, a) Eq. (6)
15: Update action: ant = ant+1

16: Update state: snt = snt+1

17: end for
18: end for

Algorithm 4 Q-Learning Algorithm for the FRVRP

1: Initialize the look-up table Q(s, a) with zeros
2: Initialize discount factor γ, α for learning rate, ϵ for epsilon greedy, and number of

episodes N
3: for n = 0, ..., N-1 do
4: Get sample price path ωn from forecast function
5: Update learning rate: α = ∆

∆+n−1
6: Update epsilon greedy: ϵ = e

e+n−1
7: Select initial state sn0
8: for t = 0, ..., G-1 do
9: Choose action an0 from sn0 using ε-greedy method

10: Take action ant
11: Observe reward r(snt , a

n
t , p̂

n
t ) Eq. (2)

12: Transition to next state snt+1 Eq. (1)
13: Update look-up table: Q(s, a) Eq. (5)
14: Update state: snt = snt+1

15: end for
16: end for
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5.2.2. Optimal Solution

The first method adopted to demonstrate the performance of the RL algorithm is an
exact method. We aim to find the upper bound for maximizing the negative costs of
the refueling problem by assuming the future prices are known to attain the optimality
gap of the RL algorithm. We can find the optimal solution by solving an Integer Linear
Program (ILP), calculating the reward for each starting fuel level. The solution space is
represented as S×AG. Since the action space (A) has size 2 and the state space (S) has
size 370, a problem instance where G = 130, has a solution space of 370×2130 = 5∗1041.
However, given that all routes fall under 1161 km and the model is required to fill up
the tank completely, the truck can always complete the route without requiring a second
refueling. Furthermore, a second refueling is never preferred due to the additional costs
it incurs. Consequently, we can add a constraint that restricts the number of refuels
on a route to reduce the problem size. The exact solution is calculated for every price
sequence and compared to the result of the FRVRP RL algorithm.

5.2.3. Benchmark Heuristic

The second method used to reflect on the performance of the RL algorithm is a bench-
mark heuristic. A benchmark heuristic refers to a heuristic that is used as a baseline
or reference point for comparison with other algorithms or methods. In the context of
optimization problems, a benchmark heuristic is often a simple heuristic that can provide
a reasonable solution quickly. It serves as a benchmark against which the performance
of other algorithms, in this case the RL algorithm, can be compared. Our benchmark
heuristic takes into account the same characteristics as the RL algorithm except that
the heuristic decisions are fixed and not impacted by uncertainty that is realized after
the decision is made. The logic applied is that the truck passes every gas station and
at every gas station the algorithm evaluates if the fuel level is below the lower bound
because then the driver needs to refuel at the current gas station. Otherwise, if the fuel
level drops below the lower bound within the next Z gas stations, the algorithm will
choose the cheapest of those gas stations to refuel. The algorithm can be found in the
pseudo-code presented in Algorithm 5.

The algorithm begins by initializing the route, sample price path, and the number of
look-ahead stations, denoted as Z (lines 1-3). The algorithm iterates through different
fuel levels, starting from lower bound L up to upper bound U with an increment of δ
(line 4). Within this loop, it further iterates through gas stations (line 6). The primary
objective is to make decisions regarding refueling at gas stations to optimize the overall
refuel cost. If the fuel level is below the lower bound L (line 8), the algorithm refuels
at the current gas station (line 9), calculates the immediate reward based on Equation
(2) (line 10), and proceeds to the next station. Suppose the fuel level in the next Z
stations reaches below the lower bound (line 11). In that case, it explores the upcoming
Z stations to find the refueling option with the lowest forecasted refueling costs, and
updates the refueling station, reward, and other related variables (lines 13-19). When
the refueling takes place at the current gas station the fuel level is set to the upper bound
minus the fuel needed to drive back to the route (lines 22-25). The algorithm continues
this process, adjusting the fuel level at each step (line 27) until all fuel levels and gas
stations are considered.
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Algorithm 5 Benchmark Heuristic Algorithm

1: Initialize route
2: Initialize sample price path
3: Initialize number of look-ahead stations Z
4: for f = L,L+ δ, L+ 2δ, . . . , U do ▷ Loop through fuel levels
5: Initialize refuel to False
6: for t = 0, . . . , G− 1 do ▷ Loop through gas stations
7: Calculate fuel needed to reach next five gas stations: usageZ
8: if f ≤ L then ▷ If the fuel level is under the lower bound
9: Refuel at current gas station: refuel = t

10: Calculate the reward according to Eq. (2)
11: else if f−usageZ≤ L and refuel = ”false” then ▷ If fuel level in Z stations

is under the lower bound
12: Initialize reward to −M
13: for station in range(t,min(t+ Z,G)) do ▷ Loop through next Z stations
14: Calculate the temp reward for station according to Eq. (2)
15: if temp reward > reward then ▷ Find cheapest station
16: Set reward to temp reward
17: Refuel at current gas station: refuel = t
18: end if
19: end for
20: end if
21: if t = refuel then ▷ If refueling takes place, up fuel level
22: Set fuel level f to upper bound minus detour usage
23: Set refuel to False
24: Total reward += reward
25: end if
26: if t < G then ▷ If we are not at the last station, set new fuel level
27: Set fuel to new state: f − usage to next station
28: end if
29: end for
30: end for

5.2.4. Historical Decisions

The third method involves evaluating the historical decisions made by drivers to demon-
strate the practical contribution of the model in making superior decisions. Utilizing
historic trip data, we compile an overview that entails the refueling occurrences at the
routes we trained. This overview includes the date, the fuel level at the start of the trip,
and the gas station the refueling took place. To compare the outcomes of the historic
decision and the RL algorithm, we determine the gas stations recommended by our RL
algorithm for refueling. Please note that as we derived the historical prices from transac-
tions, we do not have fuel prices for every possible refueling decision on a certain route at
the time of refueling. Therefore, we generate different sample paths of forecasted prices
for every route and gas station. Utilizing forecasted sample paths still provides valuable
insights into the potential cost savings of the model.
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5.3. Take Away

This section has introduced various solution methods for the MDP and aimed to ad-
dress the research question, “How can we solve the MDP of the refueling problem and
gain (near-)optimal results?”. The proposed framework in this research adopts an RL
approach to yield near-optimal outcomes. Within this RL framework, the harmonic step
size is employed for the learning rate, and actions are chosen using the epsilon-greedy
method, effectively balancing exploration and exploitation. A value function approxima-
tion determines the expected values of actions, and these state-action values are stored in
a lookup table. For the RL approach, two algorithms are chosen: the SARSA algorithm
and the Q-Learning algorithm. Since each algorithm has advantages and drawbacks
in different scenarios, this research evaluates both for a comprehensive understanding
of their performance. The validity of the RL approach is established by comparing it
to three other methods introduced in this section: an optimal solution, a benchmark
heuristic, and historical refueling decisions. This comparative analysis aims to assess the
effectiveness and efficiency of the RL approach in the context of the refueling problem.
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6. Case Study

This case study aims to bridge theoretical knowledge with practical application, offering
insights and informing decision-making processes. We build the case study following mul-
tiple steps inspired by CRISP-DM. First, we understand, collect, prepare and construct
the data for the input of our model (Section 6.1). Afterwards, we select and execute the
modeling techniques for the forecast of the fuel prices (Section 6.2). Then the parame-
ters for both the Q-Learning and SARSA algorithms are tuned for optimal performance
(Section 6.3). The next steps consider testing and validating the RL model (Section
6.4). We start by comparing the performance of the Q-learning- and SARSA algorithms
and selecting the best-performing algorithm for further testing (Section 6.4.1). Next,
to validate the robustness of the algorithm the model is exposed to 10 unseen routes
and the performance is verified (Section 6.4.2). Lastly, the RL model is tested against a
benchmark heuristic (Section 6.4.3), an optimal solution (Section 6.4.4), and the historic
driver decisions (Section 6.4.5). The case study concludes by showcasing insights derived
from the RL policies (Section 6.5).

6.1. Data

This section answers the research question “What data is needed as input for the case
study and how is the data collected, prepared and constructed?”. First, Section 6.1.1
focuses on identifying, collecting, and analysing the data sets. Second, the final data sets
are prepared for modeling in Section 6.1.2. Third, in Section 6.1.3 the data is processed
to construct the datasets that can be used as input for the model.

6.1.1. Data Understanding

This section dives into the data understanding phase of CRISP-DM. First, we identify
which data is still needed guided by the model parameters. Afterwards, we collect and
present the raw datasets and their features. From the mathematical model, we derived
the parameters and sets that still need to be defined.

1. The set of routes: R = {1, 2, . . . , Z}
2. The set of decision epochs: T = {1, 2, . . . , G}
3. The parameters U , L and δ for the state space: S = {L,L+ δ, L+ 2δ, . . . , U}
4. The amount of fuel needed from the present detour point to the next detour point:

ut

5. The amount of fuel used inside the detour: dt
6. The costs regarding extra time in the detour: bt
7. The uncertain price element: −p̂t
8. The big penalty: −M

9. The constant costs for stopping to refuel: C

To establish the definitions for these parameters, various data files are required, and
these are outlined in Table 2. First, we need a comprehensive list of gas stations where
Nijhof-Wassink could potentially refuel. For this we collect raw data files r.1, r.2 and r.4.
Second, we need a file with all the routes that Nijhof-Wassink’s trucks drive, so that we
can select the set of routes for the model. For this data file r.6 is collected. Third, we
need to determine the decision epochs of the routes and therefore find the gas stations
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along the selected routes. Furthermore, the detour of each gas station and the distance
between each detour point should be known. For this, we need raw data files r.1, r.2, r.3
and r.6. Fourth, we need data to define the state space, the big penalty, and the constant
costs, for this, we need an expert opinion. Last, we need forecasted sample paths of fuel
prices for training and testing the model.

For the fuel prices, we know that the prices at gas stations vary per gas station, per day
and sometimes even during the day and are thus not constant. When a driver needs to
decide whether to refuel, the real-time prices of the gas stations along the route are not
known, and this means the price at a gas station at a certain time is uncertain. We can
train the model by generating sample paths of fuel prices for random days. To construct
price paths we need the price of each gas station on route r on random days. We build
a predictive model to be trained for generating sample paths. When using these sample
paths, the RL agent is exposed to a range of outcomes that can result from the same
actions in similar states, reflecting the probabilistic nature of the environment. This can
help the RL agent learn how to make decisions in the presence of uncertainty. We use
the historic fuel transactions (r.5) to train a regression model.

The raw data files are presented in Table 2. In total six documents were acquired from
the procurement department, ORD and Qlik. ORD is a platform that stores trip data
and provides insights by presenting the data and Qlik is a data visualization tool that
stores the transaction data.

Table 2: Overview raw data

ID File name (sheet(s) used) Description Dimension (r x c) Retrieved from
r.1 20230310 Stationslijst.xlsx (1) Gas stations of fuel company ’x’ 3710 x 23 Procurement
r.2 Nijhof-Wassink stationslijst.xlsx (3) Gas stations of NW for fuel company ’y’ 24193 x 18 Procurement
r.3 platss prijzen 2022 Homebase.xlsx (1) The price/L at the home base 438 x 10 Procurement
r.4 20221219 Price agreements.xlsx (1-4) The price agreements per fuel company 40 x 5 Procurement
r.5 Fuel transactions export goed.xlsx (1) Fuel transactions in 2022 110265 x 16 Qlik database
r.6 Ritten export.xlsx (1) Trips DBL sector 09-22 to 03-23 53656 x 21 ORD database

6.1.2. Data Preparation

In this section, we use the raw data from Table 2 for further processing. Data preparation
is a critical phase in CRISP-DM framework. This phase involves cleaning, transforming,
and organizing raw data into a format suitable for analysis, ensuring accuracy and reli-
ability. Our data preparation consists of five steps. First, we create a list of all stations
including the price discounts (p.1), second, we create a list of all transactions (p.2), third
we scope both lists to reduce the size (p.3 & p.4). Fourth, the transactions are prepared
to create historical prices (p.5). Lastly, the trip data is cleaned and routes for the model
are selected (p.6 & p.7). An overview of all prepared files is presented in Table 3.

Table 3: Overview prepared data

ID File name (sheet(s) used) Description Dimensions (r x c) Retrieved from
p.1 AllStations.xlsx (1) All gas stations including price discount 28841 x 27 r.1, r.2, r.3
p.2 Fuel transactions export goed.xlsx (3) Fuel transactions DBL, incl homebase prices 109456 x 16 r.3, r.5
p.3 ScopedStationList.xlsx(1) Scoped list of gas stations 1558 x 27 p.1, p.2
p.4 ScopedTransactions.xlsx(1) Scoped list of transactions 58719 x 24 p.1, p.2
p.5 Prices4.xlsx(1) Transactions for input regression model 31521 x 13 p.4
p.6 RittenCSV.csv(1) Lanes of DBL with frequency 09-22 to 03-23 3317 x 9 r.6
p.7 selected routes.xlsx(1) The 21 routes selected for testing the model 22 x 9 p.6
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The first step of the data preparation phase involves merging files r.1 and r.2 to create
one file with all gas stations. Also, the quality of the data is checked by verifying the
GPS locations and checking for duplicates. Next, file r.4 is merged with the new list
to determine the price discount for each gas station. This results in file p.1, which con-
tains a comprehensive list of all gas stations including the location and the price discount.

The second step of the data preparation involves filtering the transactions, merging files
r.3 and r.5 and cleaning the transactions. File r.3 contains all the transactions in 2022,
however, our research focuses on the DBL sector, so the transactions are filtered to only
contain transactions for the DBL sector. The next operation involves merging files r.3
and r.5. File r.3 includes the total fuel costs and the price per liter for the refuels, how-
ever, at the home base these stats are unknown. We retrieved document r.5 from the
procurement department containing the daily liter price at the home base. Using these
liter prices we can add the price per liter and total costs for transactions at the home
base. Lastly, the transaction data is cleaned by removing outliers based on the price per
liter. Which decreased 2% of the data size. The result is data file p.2.

In the third step, we scope the gas stations and the transactions for two purposes. First,
to limit the solution space of the model and second, for the regression model we only want
to include gas stations with at least one data point. The transactions are then scoped
by removing transactions that are not matched with a gas station because they are not
useful as input for the regression model. The gas stations are scoped by only including
the stations where Nijhof-Wassink refueled in the last year. To find these stations we
need to match the transactions of the last year to the gas stations. Figure 7 presents the
logic of the matching algorithm. The result shows that 96% of the transactions can be
matched to a gas station and that only 13% of the gas stations were visited in the last
year. Filtering all gas stations results in file p.3, the scoped stations list. We also scope
the transaction list to only include the transactions that match a station. This results
in file p.4.
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Figure 7: Logic flow matching gas stations to transactions

In the fourth step, we want to prepare a data file with historic prices as input for a
regression model. A regression model can be trained to predict the value of unknown
data by using other known values. It mathematically models the relationship between
the unknown or dependent variable and the known or independent variable. In this case,
the dependent variable is the price per liter and the independent variables are the day,
month, year, country, and network group. The data needs to be prepared such that the
dependent variable and independent variables are stored in a data file. Currently in file
p.4, the country and network group is categorical data of string type, however, regression
models require numerical data. So, we use one hot encoding for those two variables. One
hot encoding is the process of converting categorical variables, such as “country” in our
case, into numerical representations like 0 or 1. The next operation is to aggregate the
transactions for each gas station per day, by taking the mean of the transactions on that
day. Aggregating the prices for each gas station per day reduces the noise in the data
and therefore the regression model will perform better. The assumption that we can
aggregate the data on a day is based on prices per day per gas station not varying a
lot. Therefore, one measure for each gas station per day is sufficient. To verify this, we
found that the average standard deviation was €0.003, and for 94% of the prices that
were aggregated, the standard deviation was below 1 cent. The aggregation resulted in
a 45% reduction of the data size. The resulting data file is p.5.

In the fifth and last step, the trip data is cleaned and analysed, involving removing
duplicates, removing trips of which the start or end location is unknown, and determining
the routes. We aim to use the trip data to determine the routes that should be tested
in the model and to calculate the gas stations along the routes. Therefore, we create a
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pivot table including unique trips and their characteristics such as the occurrence of the
trips, start country, end country, distance, start GPS and end GPS. The result is file p.6,
containing all lanes that can be used for training and testing the model. A selection of
routes is made because training and testing all 3316 lanes in this file is too time-intensive.
The selected set of routes should be diverse so that we can select robust parameters and
test the performance of the model for different types of routes. To provide insights into
the refueling problem, the set of routes should be a good representation of all the trips
driven. Taking into account these two factors we select a set of routes based on length, the
number of gas stations along the route, origin, and destination. Also, a high frequency
is needed to have sufficient historical data for testing. The result is a set of 21 routes
with diverse characteristics that are presented in Appendix B and visualized in Figure 8.
Note that some routes overlap and are therefore not completely visible. These 21 routes
cover 30% of the total trips driven and 28% of the total kilometres driven in that time
period. The new notation of the set of routes for the case study is: R = {1, 2, . . . , 21}.
File p.7 contains the selected routes and their characteristics.

Figure 8: Visualisation of 21 selected routes on map

6.1.3. Data Construction

In the previous section, we selected the set of routes and in this section, we need to
construct the characteristics of each route including the gas stations along each route,
the usage between detour points, the usage and time from a detour point to a gas station,
and the time costs of refueling. An overview of data files generated for model input can
be found in Table 4.

Table 4: Overview generated data

ID File name (sheet(s) used ) Description Dimensions (r x c) Retrieved from
i.1 Final routes input.csv For each route the gas stations and usage between detour points 22 x 6 p.3, p.7
i.2 Detours.csv For each gas station on each route the detour usage and time 1063 x 5 i.1, p.3
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For each route, the set of decision epochs T , the usage between detour points ut, the usage
of detours dt, the time cost bt and the time costs for refueling C need to be generated.
This information is retrieved by a Python script of which the logic flow can be found
in Figure 9. First, we need to generate the route coordinates by using the TomTom
Routing API. The start and end points of the routes are used as input. Next, to find the
gas stations along route r we compare the coordinates of the route with the coordinates
of the gas stations. Gas stations within a 10 km radius of the route are added to the
“along route list”. The detour points of a route are found by looking for the coordinates
on the route that are closest to the gas stations. Then, with the TomTom Routing
API the distance between detour points, the detour distance, and the detour time is
calculated. From internal documents, we find the costs per minute and the average fuel
consumption of 3.14 km/l. With this information the usage ut and detour time costs bt
can be calculated. Figure 9 shows file i.1 contains the gas stations along the route usage
between detour points and file i.2 contains the detour usage and time for each station on
each route. Lastly, based on expert opinions the time costs of refueling are C = €20,-.

Figure 9: Logic flow route information

6.1.4. State Space and Big Penalty

In previous sections, raw data is prepared and used to generate model input. This section
aims to define the following remaining parameters and constants.

• The parameters U , L and δ for the state space: S = {L,L+ δ, L+ 2δ, . . . , U}

• The big penalty: −M

The state space is defined with an upper bound of 400 liters and a lower bound of 30
liters. The upper bound is the maximum capacity of the fuel tank and the lower bound is
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based on the drivers’ behavior and the distance between gas stations. Figure 4 in Section
2.2, shows drivers’ discomfort with excessively low fuel levels. A driver will not adhere
to the advice when he feels uncomfortable with driving with low fuel levels. Besides, we
install a buffer for when a route is longer than expected or the gas station for refueling
is closed. In some countries, the distance between fuel stations can be 60 km, resulting
in additional fuel consumption of 20 liters. In this situation, the buffer of 30 liters is
enough to drive to the next gas station. The fuel level is discretized per liter, yielding the
following state space: S = {30, 31, 32, . . . , 400}. Within the model, a significant penalty
M = −9999 is assigned for running out of fuel. It is approximately ten times more
negative than the reward for refueling, so this strategic penalty ensures that running out
of fuel is never the optimal choice.

6.1.5. Take Away

This section answered the research question “What data is needed as input for the case
study and how is the data collected, prepared and constructed?”. The data collection,
preparation, and construction process for the case study involved a systematic approach,
following the CRISP-DM framework. Various raw data sources, including gas station
details, fuel transactions, and trip data, were acquired and prepared to create compre-
hensive datasets suitable for modeling. The data preparation included merging, cleaning,
and scoping operations to refine the datasets. To construct model input, gas stations
along routes, usage between detour points, detour usage, and time costs were determined.
The state space and big penalty parameters were also defined. The resulting datasets
provide a solid foundation, enabling the development and testing of the RL algorithm
and modeling the stochastic fuel prices.
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6.2. Modeling of Fuel Prices

The novel component of our sequential decision-making framework is introducing the
stochastic nature of fuel prices at the pump by a predictive model for these prices.
This section aims to answer the research question “Which machine learning regression
model do we select to forecast the uncertainty in the fuel prices?”. This section starts by
presenting and selecting different regression models (Section 6.2.1). Next, we generate
the test design and assess the performance of different regression models (Section 6.2.2).

6.2.1. Presenting Different Regression Models

Different regression models are suitable to use, so we try a variety of regression models
from the SKLearn package that uses machine learning namely: Random Forest, Decision
Tree Regressor, Gradient Boosting Regressor, and the K-Nearest Neighbour Regressor.
The goal is to learn a model F to predict values of the form ŷ = F (x) where x represents
the independent variable(s) and ŷ is a prediction for the dependent variable. In this case,
the dependent variable is the price per liter and the independent variables are the day,
month, year, country, and network group. Equation (7) shows the prediction function
for the fuel prices and Table 5 the range of values each independent variable can take.

p̂t = F (day, month, year, country, network-group) (7)

Table 5: List of values the independent variables can adopt

Independent variable Set of possible values
Day {1, ..., 30}
Month {1, ..., 12}
Year {2022, 2023}
Country {Netherlands, Belgium, Germany}

Network-Group
{NT1, NT2, NT3, NT4, NF1, Super Economy, Economy, Coverage,
Motorway, Non-core, BT1, BT2, BT3, BT4, BT5, BF1}

6.2.2. Results and Validation of Regression Models

To train the regression model and test it afterwards, data file p.5 is split into a train and
test set (80%-20%). The performance measures used to evaluate the regression models
are R-squared and the Root Mean Squared Error (RMSE). The result of testing the
different regression models after training is showcased in Table 6. It shows that the
Gradient Booster Regressor provides the best test results for our data. The formulation
of a Gradient Boosting Regressor involves combining multiple weak learners (usually
decision trees) to create a strong predictive model. The general idea is to sequentially fit
new models to the residuals of the previous ones, with each new model focusing on the
errors made by the ensemble so far (Friedman, 2001). The model is trained by minimizing
the Mean Squared Error (MSE) of the predicted value ŷ and the observed value y.
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Table 6: Performance of regression models on the test set

Regression model Parameter R-squared RMSE
Random Forest 100 0.82 0.059
Decision Tree - 0.81 0.060
Gradient Booster 100 0.83 0.057
K-nearest neighbours 5 0.80 0.062

For each route, we generate a data set of N price paths by drawing a random date for
each episode n and then predict the price path consisting of prices for the gas stations
along that route. This results in a different sequence of prices for each episode. For each
route, we generate separate files with sample paths for training the model and for testing
the model. The RL model can learn the patterns in the price data and find a solution
suitable for price levels that change over time.

6.2.3. Take Away

In this modeling phase, the focus was on creating a model for forecasting fuel prices
at the pump, introducing the stochastic nature of the fuel prices within the sequential
decision-making framework. This is done by answering the following research ques-
tion,“Which machine learning regression model do we select to forecast the uncertainty
in the fuel prices?”. This section considered various machine learning regression mod-
els, including Random Forest, Decision Tree Regressor, Gradient Boosting Regressor,
and K-Nearest Neighbour Regressor. The models were trained and evaluated using key
performance measures such as R-squared and Root Mean Squared Error (RMSE). The
Gradient Boosting Regressor emerged as the most suitable model for our dataset, exhibit-
ing the highest R-squared and the lowest RMSE. The trained regression model enables
the generation of diverse price paths for each route.
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6.3. RL Parameter Definition

In RL algorithms, various parameters play crucial roles in shaping the algorithm’s behav-
ior, influencing the performance and the quality of the results. So, the success of an RL
algorithm hinges significantly on the careful tuning of its parameters (Powell and Ryzhov,
2012). Therefore, this section answers the research question “How are the parameters
of the RL algorithm tuned to provide near-optimal results?”. The key parameters in our
two RL algorithms include: the number of episodes (N), the discount factor (γ), the
learning rate (α), and the epsilon-greedy (e). First, the experimental set-up is presented
in Section 6.3.1 and afterwards, the results are shared in Section 6.3.2.

6.3.1. Experimental Set-up

As mentioned in Section 5.1, we adopt the generalized harmonic step size for the learn-
ing rate and the epsilon greedy. We aim to find the parameter setting that works for
various routes with different characteristics so that unseen routes, that are not in set
R = {1, 2, . . . , 21}, can be trained with those settings as well. Two commonly employed
methodologies for parameter tuning in RL research are acknowledged (Dabney, 2014).
The first approach involves manual testing of each algorithm with a relatively small
collection of parameter values, reporting the best results found. The second methodol-
ogy performs a large parameter optimization procedure and is more complete but more
computationally- and time-intensive. However, given time constraints, we opt for the
first approach. The number of episodes is found by manually experimenting and the dis-
count factor is based on expert opinions and reasoning to see how future rewards relate to
current rewards. The learning rate and the epsilon-greedy are found by designing exper-
iments with different combinations of parameter settings. For the experimental design,
we employ Latin hypercube sampling (LHS), a statistical method that enables the gener-
ation of a near-random sample of parameter values from a multidimensional distribution
(Pilz et al., 2023). LHS is advantageous as it reduces the number of experiments com-
pared to a full-factorial design that tests all possible combinations. For the experimental
design of the LHS, we find upper and lower bounds for e and ∆ by manually testing
different parameter settings for various routes. The range for e is between 0.01 and 9.55
and for ∆ between 14500 and 95500. Lowering the lower bound caused worse results
and increasing the upper bound did not improve or worsen the result. Note that these
settings are tailored for the total number of iterations and increasing or decreasing the
number of iterations results in different bounds. In total, we generated 30 experiments
using the LHS method Appendix C.

6.3.2. Tuning of Parameters

First, we discuss the discount factor and the number of episodes and afterwards, the
learning rate and the epsilon-greedy. For the number of episodes, it is important to de-
termine at which episode the algorithm converges to a good solution and for the discount
factor, we need to define the importance of future rewards relative to the immediate
rewards (Powell, 2011; Sutton and Barto, 2018). The number of episodes is set on N
= 200,000 and the discount factor is set to γ = 1, meaning future rewards are equally
important as current rewards. This makes sense because the time span of a route covers
several hours and thus the costs of refueling at a later stage are equally important as
refueling earlier.
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For the results of the LHS experiments each route within the set R undergoes training
for 200,000 episodes, with for every episode a new forecasted price path. Each route
is trained for all the parameter settings determined in the 30 experiments. We aim to
find a robust general parameter setting that works for all routes in set R. The result of
a policy is determined by exposing the trained policy to 20 new forecasted price paths
and taking the average of the reward over these 20 price paths. The performance of a
parameter setting is evaluated by summing the rewards over all routes for that parameter
setting. Choosing a general parameter setting may result in performance loss compared
to selecting flexible parameter settings per route. The result of the flexible parameter
setting is calculated by determining the best parameter setting for each route and then
summing these rewards.

Table 7 shows the result for the flexible parameter settings, for both Q-Learning and
SARSA. The table shows for each route, the number of decision epochs, the best param-
eter settings and the corresponding result. The total result is the sum of the reward of all
routes and is 180163.2 for SARSA and 180194.4 for Q-Learning. The graph on the left
in Figure 10, shows that routes with more decision epochs require higher values for the
learning rate. A higher value for the learning rate results in a slower decreasing learning
rate meaning longer routes need faster learning in the beginning to ensure a good result.
Furthermore, the graph on the right in Figure 10 shows that the epsilon-greedy needs to
be as small as possible meaning fast exploitation is important for good results.
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Table 7: Result of SARSA and Q-Learning for flexible parameter settings

SARSA Q-Learning
Route #epochs Result ∆ e Result ∆ e
328 60 7101.2 41500 0.05 7101.2 41500 0.05
353 20 3414.7 23500 0.10 3414.7 23500 0.10
510 30 6171.3 23500 0.10 6171.1 68500 4.15
678 20 2715.9 23500 0.10 2715.9 23500 0.10
804 45 2121.0 23500 0.10 2121.0 41500 0.05
1236 133 34089.3 95500 0.51 34138.8 95500 0.51
1237 47 6691.7 32500 1.45 6692.8 23500 5.05
1238 34 3391.4 59500 0.42 3401.5 59500 0.08
1556 47 9884.6 23500 0.10 9884.6 23500 0.10
1675 113 20952.5 95500 0.09 20937.6 95500 6.85
1888 17 1866.0 23500 0.10 1866.0 23500 0.10
1915 113 16228.0 77500 0.03 16221.4 95500 0.09
1997 32 5837.1 23500 0.10 5837.1 23500 0.10
2621 20 1166.9 68500 0.07 1166.9 23500 0.10
2622 75 14291.5 77500 0.03 14293.1 50500 9.55
2642 101 18959.9 95500 0.09 18950.7 95500 0.51
2820 42 4846.4 23500 0.10 4846.4 23500 0.10
2910 53 9245.5 23500 0.10 9245.5 23500 0.10
2941 25 6385.3 23500 0.10 6385.3 23500 0.10
3170 20 2187.0 23500 0.10 2187.0 23500 0.10
3208 36 2615.9 23500 0.10 2615.9 23500 0.10

Total result 180163.2 180194.4

Figure 10: Relationship of ∆ and e and number of decision epochs T for SARSA and Q-Learning

As mentioned before, we aim to find one general parameter setting that performs well on
all routes so that the algorithm is robust and can be used on unseen routes as well. For
each parameter setting, we trained all routes independently and afterwards retrieved the
total result for that parameter setting by summing the reward over all routes. The best
15 total results for SARSA and Q-Learning can be found in Table 8 and 9, respectively.
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For SARSA the comprehensive results are available in Appendix D.1 and for Q-Learning
the complete results can be referenced in Appendix D.2.

Table 8: 15 best experiments of general parameter settings for the SARSA algorithm

Experiment ∆ e Total result Gap
8 95500 0.09 180322.6 0.09%
2 86500 0.04 180565.3 0.22%
6 77500 0.03 180732.0 0.32%
1 68500 0.07 180733.7 0.32%
11 77500 0.15 180922.5 0.42%
5 59500 0.08 181259.7 0.61%
4 50500 0.01 181775.1 0.89%
3 41500 0.05 181973.8 1.00%
9 32500 0.06 182909.7 1.52%
13 50500 0.24 182929.5 1.54%
12 59500 0.42 183405.8 1.80%
0 23500 0.10 185138.7 2.76%
7 14500 0.02 185701.1 3.07%
19 86500 0.33 189979.6 5.45%
18 41500 0.69 192005.7 6.57%

Table 9: 15 best experiments of general parameter settings for the Q-Learning algorithm

Experiment ∆ e Total result Gap
17 95500 0.51 180305.9 0.06%
25 95500 6.85 180409.0 0.12%
8 95500 0.09 180409.2 0.12%
22 86500 2.35 180468.5 0.15%
2 86500 0.04 180507.4 0.17%
19 86500 0.33 180534.9 0.19%
6 77500 0.03 180542.6 0.19%
11 77500 0.15 180595.0 0.22%
28 77500 3.25 180607.9 0.23%
14 68500 0.60 180769.4 0.32%
1 68500 0.07 180815.3 0.34%
23 59500 8.65 180921.7 0.40%
26 68500 4.15 180975.7 0.43%
12 59500 0.42 180999.7 0.45%
5 59500 0.08 181166.9 0.54%

To estimate the performance loss due to selecting a general parameter setting, the total
result per parameter setting is compared with the total result of the flexible parameters.
The gap is calculated by Equation (8) and the result is shown in the last column.

Gap =
Total result general− Total result flexible

Total result flexible
× 100% (8)
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Analyzing the results for both algorithms, we observe that for Q-Learning the learning
rate (∆) has a more pronounced impact on performance compared to the epsilon-greedy
(e) (Figure 11). Interestingly, this stands in contrast to the SARSA-based algorithm’s
behavior where the epsilon-greedy (e) has more impact on the performance (Figure 12).
However, for both algorithms, the trend reveals that higher ∆ values correlate with
improved outcomes, while lower ∆ values result in less favorable performance. The
gap between the total result per parameter setting and the total result of the flexible
parameters shows that the Q-Learning-based algorithm demonstrates robust performance
across various configurations, with the most significant gap being around 3% (Appendix
D.2). In contrast, the SARSA-based algorithm appears more sensitive to parameter
settings, showcasing a substantial 110% gap with the result of the flexible parameters
settings (Appendix D.1).

Figure 11: The positive influence of a larger ∆ on the total costs for the Q-Learning algorithm
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Figure 12: The positive influence of a smaller e on the total costs for the SARSA algorithm

The best results for Q-Learning are achieved with the parameter setting ∆ = 95500 and
e = 0.51 and for the SARSA with the parameter setting ∆ = 95500 and e = 0.09. To
assess the stability and convergence of the algorithm with these parameter settings, we
observed various state-action approximations (Q-values) over the episodes. Figure 13
and Figure 14 on the next page show the Q-values for route r over the episodes, where
f is the fuel level, t the decision epoch and a the action that is taken. The graphs
show fast convergence in the initial phases due to higher learning rates, and towards the
end, Q-values stabilize with some observed fluctuations. To assess the acceptability of
these fluctuations, we analyze the Q-values over the last 20,000 episodes. The observed
fluctuations remain within a 4% bound, and these fluctuations did not trigger a policy
change any more. To conclude, we find the best performance is with parameter settings
∆ = 95500 and e = 0.09 for SARSA, and ∆ = 95500 and e = 0.51 for Q-Learning.
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Figure 13: The convergence of the Q-values of state-action pair Q(t, f, a) for Q-Learning

Figure 14: The convergence of the Q-values of state-action pair Q(t, f, a) for SARSA
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6.3.3. Take Away

To answer the research question, “How are the parameters of the RL algorithm tuned
to provide near-optimal results?”, we delved into the nuanced process of tuning the RL
parameters. By manually testing we found the optimal number of episodes to be 200,000
and the gamma is set to 1, giving future rewards the same importance as immediate
rewards. We determined boundary settings for tuning the learning rate and epsilon
greedy and created 30 LHS experiments. These experiments identified general parame-
ter configurations for both SARSA and Q-Learning that work well for all routes. The
results showed that SARSA demonstrated sensitivity to the parameters settings, while
Q-Learning showcased a good performance over all settings. The optimal general param-
eter setting for Q-Learning is ∆ = 95,500 and e = 0.51 and for SARSA ∆ = 95,500 and
e = 0.09.
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6.4. Computational Results

In this section, we address the research question “What are the results of the different
solution methods, and what insights do the results provide regarding the performance of
the RL algorithm?”. First, we test both SARSA and Q-Learning to determine the better-
performing RL algorithm in Section 6.4.1. Second, we aim to validate the generalizability
of our algorithm and the chosen parameters. Hence, we train and test a set of new unseen
routes in Section 6.4.2. Thereafter, we analyse the performance by comparing the RL
approach to a benchmark heuristic in Section 6.4.3, the optimal solution in Section 6.4.4,
and the historical refuel decisions in Section 6.4.5. The methods are compared by using
20 sample price paths. For the RL model, the policies gained from training the model
are tested by applying them to these 20 new sample paths. The result of a route is the
average reward of these 20 sample paths. At the end, the results are summarized in
Section 6.4.6

6.4.1. Q-Learning VS. SARSA

In this section, we evaluate the suitability of two RL algorithms, Q-learning and SARSA,
for addressing the FRVRP. The results in Table 10 show the average reward over the 20
price paths for both SARSA and Q-Learning. The last column presents the performance
gap as calculated by Equation (9).

Gap =
Result Q-Learning− Result SARSA

Result SARSA
× 100% (9)

The total result is the sum of the result over all routes and the average performance
gap. The average performance gap indicates a modest performance distinction, with Q-
Learning demonstrating a slightly favorable outcome for the FRVRP. Given the observed
sensitivity of the SARSA algorithm to the parameter settings and our objective to extend
the model to additional routes, we conclude that Q-Learning is more suitable for our
FRVRP.
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Table 10: Q-Learning algorithm vs. SARSA algorithm

*Q = Q-Learning, S = SARSA, n.a. = not applicable

Route Result SARSA Result Q-Learning Gap Best*
2642 18959.9 18950.7 -0.05% Q
3208 2615.9 2615.9 0.00% n.a.
804 2121.9 2121.9 0.00% n.a.
1997 5837.1 5837.1 0.00% n.a.
2820 4846.4 4846.4 0.00% n.a.
1236 34198.2 34138.8 -0.17% Q
510 6171.4 6171.4 0.00% n.a.
328 7101.2 7101.2 0.00% n.a.
353 3414.7 3414.7 0.00% n.a.
1915 16241.7 16262.3 0.13% S
2621 1166.9 1166.9 0.00% n.a.
2941 6385.3 6385.3 0.00% n.a.
1675 20952.5 20983.2 0.15% S
2910 9245.5 9245.5 0.00% n.a.
1237 6700.8 6699.2 -0.02% Q
1556 9884.6 9884.6 0.00% n.a.
678 2715.9 2715.9 0.00% n.a.
1888 1866.0 1866.0 0.00% n.a.
2622 14308.0 14310.4 0.02% S
3170 2187.0 2187.0 0.00% n.a.
1238 3401.5 3401.5 0.00% n.a.

Total result 180322.6 180305.9 -0.01% Q

6.4.2. Parameter Validation and Generalization

To prove the generalizability of the algorithm it is critical to validate the algorithm’s
effectiveness on routes beyond the training set. For the training set the parameter con-
figuration, specifically with ∆ = 95500 and e = 0.51, has demonstrated optimal perfor-
mance on our training set of routes. To verify this generalizability, we selected a test set
of 10 representative routes that cover various characteristics. The details of these routes,
along with their characteristics, are outlined in Appendix E. These routes are trained by
executing 200,000 episodes with in each episode a new forecasted price path. The result
is the average reward of exposing the trained policies to 20 new forecasted price paths.
Our objective is to assess the suitability of the parameters by examining the gap with
the upper bound we derived from the optimal solution method (Equation (10)).

Optimality gap =
Result Q-Learning− Result optimal

Result optimal
× 100% (10)

If the observed gap closely aligns with the optimality gap identified in the training set,
it suggests that the performance on routes outside the training set remains consistent
with those parameters. The upper bound of the test set is found by applying the optimal
method demonstrated in Section 5.2. Table 11 reveals a 0.68% gap with the optimal
solution, confirming that these parameter settings remain effective when training on
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routes beyond the initial set. We do see that longer routes such as route 538 with
131 decision epochs perform worse than shorter routes, which can be explained by the
increase in dimension of the problem. Consequently, we can conclude that the identified
parameters are well-suited for training on a diverse range of routes and that the Q-
Learning algorithm can be generalized to other problem instances.

Table 11: Results of parameter testing

Route # decision epochs Result optimal Result Q-Learning Gap
538 131 22941.8 23501.0 2.44%
1055 73 13095.5 13161.4 0.50%
2959 71 15329.8 15384.3 0.36%
2148 66 46871.7 47580.5 1.51%
1511 65 53362.7 53841.5 0.90%
287 55 24444.6 24462.5 0.07%
88 43 8329.9 8413.2 1.00%
3204 42 3275.9 3275.9 0.00%
1457 40 9292.7 9292.7 0.00%
1510 32 4243.2 4243.2 0.00%

Total result 201187.8 203156.1 0.68%

6.4.3. Benchmark Heuristic VS. Reinforcement Learning

To validate the performance of RL, the performance of the Q-Learning algorithm is com-
pared against the benchmark heuristic introduced in Section 5.2. We recall that the basic
idea is that the truck passes every gas station and at every gas station the algorithm
evaluates if the fuel level is below the lower bound because then the driver needs to refuel
at the current gas station. Otherwise, if the fuel level drops below the lower bound within
the next Z gas stations, the algorithm will choose the cheapest of those gas stations to
refuel. As determined in Section 6.1.4, the lower- and upper bounds of the fuel levels are
30 and 400. We set the parameter Z, which determines the number of future stations
that are taken into account, at 5 because at the moment a driver decides refueling is
needed we assume he thinks 5 gas stations ahead. The biggest difference between real
life and the heuristic is that for the heuristic the fuel prices of these next five gas stations
are given. The heuristic is thus deterministic in comparison to our RL model which takes
into account that the prices of the next gas stations are unknown.

Table 12 shows the results of Q-Learning and the heuristic and presents the total result
at the bottom of the table including, the sum of the costs over all routes and the average
gap. The performance gap in the last column of the table is calculated by Equation (11).

Gap =
Result Q-Learning− Result heuristic

Result heuristic
× 100% (11)
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Table 12: Q-Learning algorithm versus Benchmark Heuristic algorithm

Route Result Q-Learning Result Heuristic Gap Best
2642 18950.7 19409.9 -2.37% Q
3208 2615.9 2688.5 -2.70% Q
804 2121.9 2208.0 -3.90% Q
1997 5837.1 5814.3 0.39% H
2820 4846.4 5110.9 -5.18% Q
1236 34138.8 34640.6 -1.45% Q
510 6171.4 6354.9 -2.89% Q
328 7101.2 7486.8 -5.15% Q
353 3414.7 3504.2 -2.55% Q
1915 16262.3 17451.8 -6.84% Q
2621 1166.9 1205.4 -3.19% Q
2941 6385.3 6539.9 -2.37% Q
1675 20983.2 22506.3 -6.79% Q
2910 9245.5 9955.5 -7.13% Q
1237 6699.2 7002.3 -4.33% Q
1556 9884.6 10589.9 -6.67% Q
678 2715.9 2774.8 -2.12% Q
1888 1866.0 1913.2 -2.47% Q
2622 14310.4 14545.0 -1.61% Q
3170 2187.0 2248.8 -2.75% Q
1238 3401.5 3577.0 -4.91% Q

Total result 180305.9 187528.1 -3.67% RL

The obtained results reveal that the RL algorithm consistently outperforms the heuristic
method across a range of routes with 3.67% lower costs. Specifically, the RL model
achieved a total average cost per route of 180305.9, while the heuristic resulted in a
total cost of 187528.1. This result signifies an overall cost improvement when adopting
RL for refueling decisions. In real-life the performance of RL would be even better
as the heuristic policy does not consider the price stochasticity, possibly resulting in
too optimistic or pessimistic policies. These findings underscore the effectiveness of
RL in learning optimal strategies for refueling, showcasing its adaptability to dynamic
conditions and superior route optimization capabilities compared to a heuristic method.
When diving into the results and gaining a deeper understanding as to why the RL model
performs better we find that the heuristic especially performs worse over routes where
you have few gas stations with significantly lower refuel costs. If the prices are low at a
few points of the route the heuristic can not always select those gas stations because it
can choose from the 5 gas stations before the fuel level dips below 30. To demonstrate
this we selected route 328, with fuel level 67 at t = 0. When the driver starts with fuel
level 67 on this route, the fuel level reaches below the lower bound at the 51st decision
epoch. Figure 15 shows the refueling costs, calculated with a randomly selected price
path, for each decision epoch. We see that the refueling cost varies between €142 and
€79 highlighting the importance of a good refueling decision. Both algorithms should
refuel before the dotted line at the 51st station. The RL algorithm selects the station
at decision epoch 17 with costs of €79.87, while the heuristics can only select a gas
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station in decision epochs 46 until 50. The best option for the heuristic is station 46
with corresponding costs of €94.60. In this example, the RL outperforms the heuristic
by 18% explaining the overall gap in performance between RL and the heuristic.

Figure 15: Refueling policies RL and heuristic for route 328 and start fuel level 67

6.4.4. Optimal Solution VS. Reinforcement Learning

This section is dedicated to demonstrating the RL algorithm’s capability to yield near-
optimal solutions for the FRVRP. This section aims to find an upper bound for the
stochastic FRVRP, by lifting the non-anticipativity and thus allowing decisions to depend
on future information. The model is transformed into a deterministic model and can be
solved quickly to provide optimal solutions. The solution is used to validate the high
performance of the RL algorithm over various routes and fuel levels, by calculating the
optimality gap for each route (Equation (10)). Table 13 presents the results, including
the total results at the bottom, representing the sum of the results over all routes and
the average optimality gap.
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Table 13: Q-learning-based FRVRP algorithm versus Optimal Solution

Route # decision epochs Result Q-Learning Result Optimal Gap
1236 133 34138.8 33495.0 1.93%
1675 113 20983.2 20750.7 1.13%
1915 113 16262.3 16138.4 0.77%
2642 101 18950.7 18820.0 0.70%
2622 75 14310.4 14233.2 0.54%
1237 47 6699.2 6665.1 0.51%
1238 34 3401.5 3391.4 0.29%
328 60 7101.2 7097.9 0.05%
510 30 6171.4 6168.8 0.04%
804 45 2121.9 2121.0 0.04%
1997 32 5837.1 5835.5 0.03%
353 20 3414.7 3414.7 0.00%
678 20 2715.9 2715.9 0.00%
1556 47 9884.6 9884.6 0.00%
1888 17 1866.0 1866.0 0.00%
2621 20 1166.9 1166.9 0.00%
2820 42 4846.4 4846.4 0.00%
2910 53 9245.5 9245.5 0.00%
2941 25 6385.3 6385.3 0.00%
3170 20 2187.0 2187.0 0.00%
3208 36 2615.9 2615.9 0.00%

Total result 180305.9 179045.2 0.29%

Observing the results, it becomes evident that for around 50% of the routes, the RL
algorithm consistently provides the optimal solution. This implies that, across all tested
price sequences for those routes, the RL algorithm’s advised refueling strategy aligns with
the optimal solution. It can be inferred that, for these specific routes, fluctuating prices
do not significantly alter the optimal refueling decision. For routes where optimality is
not achieved, the gap with the optimal solution remains relatively small, ranging from
0.03% to 1.93%. The overall optimality gap is calculated to be 0.29%. Notably, Figure
16 shows the RL algorithm’s performance experiences a decline with longer routes, where
the dimension of the problem increases. As an example, the longest route is 1236, with
a length of 133, and this route exhibits the largest gap to the optimal solution. In
summary, the RL algorithm consistently provides solutions close to optimal, with an
overall optimality gap of 0.29%.
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Figure 16: The decreasing performance of the RL algorithm when the problem size grows

6.4.5. Historical Refuel Decisions VS. Reinforcement Learning

This section compares the refueling decisions of the driver with the refueling advice of
the model and shows potential savings in the costs. The hypothesis is that the model’s
advice is better and thus the refuel costs decrease compared to the driver’s decision. This
part of the results is crucial to show the practical contribution and indicate potential sav-
ings by implementing the RL algorithm as a decision-making tool. The refuels done by
drivers on the routes in set R are retrieved from the historical data. This results in 166
refuels that can be compared with the advice of the model. In the next paragraph, we
elaborate on the results and show the highlights.

As for the characteristics of the drivers’ refueling behaviour, we see that the home base
is the most popular location, covering 95% of all refuels used for comparison. The fuel
station is considered the cheapest by the company and therefore most drivers fill up their
tank after arriving at the home base so that they can depart with a full tank the next day.
However, because of the finite nature of the model, it does not take into account that the
truck will drive another route the next day. Therefore, when the home base is located at
the end of a route the model will never advise to refuel there. The model will only refuel
when the end can not be reached with at least 30 liters still in the tank. In practice, this
finite nature does not matter because the next morning when the driver departs from the
home base the model will advise to refuel there if it is the cheapest gas station. For the
comparison, we do not include the refuels at the home base as the behavior of refueling
at the end of the route can not be compared with the behavior of the model. So, we
look at the other 5% of refuels that are not done at the home base. Table 14 shows the
results by presenting the average costs over 20 random price sequences and the average
performance gap for each refueling decision. At the bottom of the table, the summed
costs over all refuelings and the total average gap are presented. From these results, we
conclude that the model’s advice outperforms the driver’s decision by on average 10%
per route and a decrease in total costs by 11%. Table 15 shows more details on prices
and discounts at the gas stations. We see that in 10/10 routes the model chooses a gas
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station with cheaper or equal net prices. Interestingly, all advices from the model also
have an equal or higher discount. Assuming the predictions of the prices are reliable,
we can say that the highest price reductions are most favorable when refueling. Note
that these refuels only cover 25% of the trained routes and a few fuel levels due to the
limited data availability. So, even though the results show an 11% decrease in costs, this
is merely an indication because adding extra historical refueling decisions can change the
total result and conclusions significantly.

Table 14: Results comparison of driver decisions (d) vs. model advice (m)

ID Route Fuel level Refuel location (d) Refuel location (m) Cost (d) Cost (m) Gap
9 1236 121.6 essoheerdehetveen bsposs 218.76 212.39 3%
142 1236 146.1 essoapeldoorndebrink g&varendonk 212.35 187.16 13%
279 1238 228.8 stdcoevorden shellokken 65.03 61.56 6%
280 1238 228.8 stdcoevorden shellokken 65.03 61.56 6%
727 2622 62.4 truckshellantwerpenhaven200 g&vtruckstationbeverenwaas 145.70 124.44 17%
1260 2642 78.4 stdnijkerk essobunnikdeforten 182.43 156.45 17%
1516 1236 150.2 truckshellarendonk g&varendonk 207.86 187.16 11%
1924 510 94.4 truckshellgent essogentkennedylaan 86.22 75.15 15%
2085 1238 137.6 stdcoevorden shellokken 65.03 61.56 6%

Total result 1248.41 1127.44 10%

Table 15: Details on comparison of historic decisions and RL

ID Route *Price (d) Discount (d) Cost (d) *Price (m) Discount (m) Cost (m)
9 1236 1.53 -0.11 218.76 1.47 -0.1625 212.39
142 1236 1.47 -0.1625 212.35 1.26 -0.3151 187.16
279 1238 1.54 -0.145 65.03 1.54 -0.145 61.56
280 1238 1.54 -0.145 65.03 1.54 -0.145 61.56
727 2622 1.47 -0.2051 145.70 1.30 -0.3151 124.44
1260 2642 1.60 -0.145 182.43 1.51 -0.1625 156.45
1516 1236 1.43 -0.2051 207.86 1.26 -0.3151 187.16
1924 510 1.44 -0.2051 86.22 1.29 -0.2801 75.15
2085 1238 1.54 -0.145 65.03 1.54 -0.145 61.56

*The price is the net price including the discount

6.4.6. Take Away

The computational results section aimed to answer the research question “What are the
results of the different solution methods, and what insights do the results provide regard-
ing the performance of the RL algorithm?”. The section started, by determining the
best algorithm (Section 6.4.1). By evaluating the performance of both SARSA and Q-
Learning, we observed that the Q-Learning-based algorithm achieved marginally better
results, with only a 0.02% performance advantage. Given its consistent and slightly bet-
ter performance, the Q-Learning-based FRVRP algorithm emerged as the most effective.
Subsequently, we validated the RL algorithm with the parameter setting by proving the
gap with the lower bound stays within bounds when tested on 10 unseen routes (Section
6.4.2). These results contribute valuable insights into the application of RL techniques
for solving the FRVRP. In the next step, we conducted a comparative analysis of the
RL algorithm against a benchmark heuristic (Section 6.4.3), against the optimal so-
lution (Section 6.4.4) and the historical refuel decisions (Section 6.4.5). Notably, the
RL algorithm demonstrated a 0.3% deviation from the deterministic optimal solution,
showcasing its proficiency in providing solutions close to the lower bound. Furthermore,
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The RL algorithm outperformed the benchmark heuristic by 3% and showcased an 11%
improvement in refueling costs compared to the historical driver decisions. A notewor-
thy insight from the historical comparison indicated that choosing stations with high
discounts leads to the most cost-effective solution.
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6.5. Insights

This section aims to answer the research question “What insights does this model in com-
bination with this solution method provide to the practical and academic communities?”.
The objective is to dive into a comprehensive understanding of the learned policies and
decision-making processes of the RL algorithm. The analysis yields insights from the
reinforcement learning policies and reveals relationships between various variables. To
begin, Section 6.5.1 analyses the predicted fuel prices to evaluate the impact of inde-
pendent variables on forecasted pump prices. Subsequently, Section 6.5.2 illustrates and
visualizes the policies at an operational planning level. Moving forward, Section 6.5.3
delves into insights on the tactical planning level. Finally, Section 6.5.4 presents strategic
insights gained from the model’s results.

6.5.1. Predicted Fuel Prices

A distinctive and innovative aspect of this research involves capturing the stochastic na-
ture of fuel prices at the pump through an ML regression model. This section aims to
shed light on the impact of various independent variables—day, month, year, country,
and network group—on the forecasted fuel prices. To conduct this analysis, 200 prices
were generated for each network group in each country over a one-year period.

Figure 17 illustrates the results, revealing two key insights. Firstly, the significant gap
between the minimum and maximum fuel prices, along with an average standard devia-
tion of 0.11 over all categories, underscores the substantial variability in prices over the
course of a year. This variability implies that incorporating these price fluctuations over
time can lead to more accurate and reliable policies. Secondly, the figure demonstrates
the influence of network groups and countries on pump prices. For instance, the average
forecasted price for Germany (DE) is 1.76, the Netherlands (NL) is 1.69, and Belgium
(BE) is 1.62. It is important to note that these values represent pump prices, with the
final net price being determined by the pump price minus the discount.

The analysis further reveals distinctions among network groups within each country.
These network groups belong to two different fuel companies, denoted as company X
and company Y. A detailed examination of price levels at the network groups of both
companies indicates that company Y consistently offers lower pump prices than company
X in both the Netherlands (by 5 cents on average) and Belgium (by 6 cents on average).
When looking at the network groups we see that in the Netherlands, group NT1 has the
lowest average pump price, in Belgium, BT1, and in Germany, Non-core. The analysis
on fuel prices provides insights into the impact of independent variables on fuel prices
and underscores the importance of taking into account this variability in the model.
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Figure 17: The minimum, maximum and average of 200 forecasted prices over time for the different
countries and network groups

6.5.2. Operational Level

This section offers more insights into the policies on an operational level by visualizing
and analysing policies from the RL algorithm. A policy defines which action to choose at
any given time in a given state by choosing the action with the highest state-action value.
Our policy is deterministic, so the agent will always choose the same action for a given
state and time. Consider an illustrative example with three gas stations along a route.
At the first decision epoch, the driver, with a fuel level of 38, contemplates whether to
refuel or not. The lookup table provides the state-action values for both options, and the
driver opts not to refuel as it yields the highest value. This decision transitions the driver
to the next epoch with a new state, reducing the fuel level to 33. Subsequently, for the
state-action pair in the second epoch (fuel level: 33), refueling emerges as the optimal
action. The driver refuels, progresses to the next epoch with a new fuel level of 398, and
at the final gas station, the best action is to refrain from refueling, logically aligning with
the recent refueling. Thus, the policy for the initial state (s0 = 38) is represented as
[0, 1, 0]. The model encompasses 370 states from which the truck can commence its jour-
ney, resulting in 370 unique policies for each route. Resulting in this research generating
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a total of 21 × 370 = 7770 policies. The subsequent exploration focuses on a detailed
analysis of route 2642, which spans 260 kilometers with 110 gas stations along the route.

Figure 18 displays route 2642 with circle markers representing gas stations along the
route. The average of 20 forecasted sample paths of prices is used to show the aver-
age refueling costs per station. Green markers indicate lower costs, while red markers
represent higher costs. Along this route, the total refueling costs vary from €149 to
€200, demonstrating a 30% difference. This emphasizes the significance of selecting an
optimal refueling point. Additionally, the figure illustrates a trend where cheaper gas
stations tend to be closer to the route, while more expensive ones are situated farther
away. This observation suggests that increasing detours for potentially lower prices may
not be profitable, as discussed further in Section 6.5.3.

Figure 18: Gas stations along route 2642 with color indication for refueling cost

Moving on to the policies, Figure 19 showcases route 2642 with recommended gas stations.
The marker size indicates the frequency of gas station recommendations. It is important
to note that this representation is based on the average of forecasted price paths, and
the total refueling costs in other price paths may differ. The figure reveals that the
gas station with the lowest costs (€149) is the most frequently chosen. However, as
the fuel level can drop below the lower bound before reaching this gas station, more
expensive alternatives are selected earlier. Furthermore, after the cheapest gas station
more pricier gas stations are selected as well. This is reasonable because the difference
in total refueling costs can change for different forecasted price paths.
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Figure 19: The gas stations that are selected for refueling over all policies for route 2642 with the size
indicating the amount of advised refuelings

In Figure 20, the total refueling costs of policies from an initial fuel level of 31 to 123 are
presented. Lower initial fuel levels exhibit higher total refueling costs due to an inability
to reach the cheaper gas stations. Post fuel level 79, a decrease is observed because
the gas station with costs of 149 is reached. For initial fuel levels higher than 115,
no refueling occurs as the driver can complete the route without additional fuel. This
pattern of lower total refueling costs with higher initial fuel levels is consistent across
various routes. However, the cut-off point for refueling during the trip is route-specific
and depends on the total fuel usage.

Figure 20: Costs of policies over different initial fuel levels (s0) for route 2642

In summary, Figure 21 presents a map featuring gas stations advised across all policies
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and routes. The marker size indicates the frequency of recommendations in policies.
The map highlights a total of 108 different gas stations, with 83% being exclusively
recommended in a single route, while the remaining 17% are advised in 2 to 4 other
routes as well. Refer to Table 16 for details on these gas stations and the frequency of
recommendations. The map reveals two notable hotspots for refueling locations: Zuid-
Holland and Rijssen, where the company is situated. Zuid-Holland emerges as a potential
area for Nijhof-Wassink to negotiate higher discounts, offering significant cost-saving
opportunities.

Figure 21: Gas stations advised in all policies over all routes with the size indicating the amount of
advised refuelings
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Table 16: Gas stations that are advised in multiple routes

Gas station #routes #refuels
Esso Bodegraven 4 35
Home base Rijssen 3 195
Esso Deventersiemelinksweg 3 18
BSP Apeldoorn Ecofactorij 3 9
Shellstation Struik 3 3
Esso Apeldoorn de Brink 3 19
Esso Midwolda 3 46
Gabriels Power Aaltertieltsestwg 2 12
Argos Hoogvliet 2 2
Shellstation Maatveld 2 28
Esso Bunnik de Forten 2 7
Shellstation Vondelingenweg 2 13
Esso Express Spijkenisse noord 2 2
Shell Okken 2 31
Esso Gentkennedylaan 2 7
Shellstation Portland 2 3
Esso Hardinxvelddenbout 2 38
Shellstation Rijssensestraat 2 2

6.5.3. Tactical Level

On the tactical planning level, the focus of insights shifts towards medium-term strate-
gies spanning weeks to months. This section aims to establish relationships within the
reward function and offer advice regarding the preferred network group or country for
refueling by executing policy analysis.

Beginning with an examination of the variables in the reward function, see Equation
(12), which consists of three parts. The first component (depicted in purple) represents
fuel costs influenced by the net price and usage across the entire route. The second
term (depicted in red) accounts for detour costs, incorporating factors such as detour
length, detour time, net price, and fixed time costs. The third term (depicted in green)
represents the fixed cost associated with the time taken to refuel. Given that usage
remains constant over a route, the reward function introduces a trade-off for each route,
weighing the detour length or time against the net fuel price.

rt(st, at, st+1, p̂t) =

−(at( (p̂t − kt)×
∑

G
t=1ut + (p̂t − kt)× dt − bt − C )) if st+1 > L,

−M if st+1 ≤ L.
(12)

To provide insight into this trade-off, Figure 22 illustrates how much the net fuel price
should decrease for each additional kilometer of detour. For instance, on route 1236, a
driver may extend their detour by 1 km if they can refuel for €0.005 cheaper. Similarly,
on route 2622, a driver might consider a 1 km longer detour if the refueling cost is
€0.007 lower. Notably, the graph reveals another relationship: the shorter the route,
the lower the usage, and the more significant the impact of detour costs. Figure 22
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exemplifies this phenomenon, demonstrating that for route 1236, with a usage of 133
liters, the relationship between detour length and net fuel price is less steep compared to
route 2622, with a usage of 75 liters. This analysis contributes valuable insights into the
nuanced dynamics of the trade-offs involved in refueling decisions across different routes.

Figure 22: The relationship between the detour costs and the net fuel price

Second, the policy analysis is to find out which characteristics make gas stations prefer-
able for refueling. First, we investigate in which country to refuel when a route traverses
multiple countries. From the routes that we trained, route 1997 crosses the Dutch-
German border and routes 1236 and 2622 cross the Dutch-Belgium border. For each
scenario we analyze the policies, counting the instances where the recommendation ad-
vises refueling in one country over the other. In 72% of the policies, refueling in the
Netherlands is recommended over Belgium. This is counter intuitive to the expectations
due to the tax benefits in Belgium. However, this result can be explained by 75% of
the route being in the Netherlands. For the routes crossing the Dutch-German border,
Germany is recommended over the Netherlands in 58% of the policies. This is interesting
as the forecasted pump prices in Figure 17 show better results for the Netherlands and
the price agreements are also better in the Netherlands. The statistics can be explained
by the route starting in Germany and taking place for 60% in Germany. For advice on
which country is preferable it is required to test more routes that cross borders because
currently, the characteristics of the route have a big impact on the result.

Delving further into the analysis of policies concerning refueling in the Netherlands and
Belgium, we shift our focus to the frequent recommendations of specific network groups.
Network groups categorize gas stations within a fuel company based on location and pric-
ing, with price agreements often varying across these groups. Illustrated in Figure 23 is
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the distribution of refueling recommendations across network groups in the Netherlands.
The red groups represent stations affiliated with fuel company X, while the blue groups
belong to fuel company Y. The figure reveals that 67% of the refueling recommendations
within the Netherlands advocate refueling at company Y. To be more specific, the major-
ity of the recommendations are within network group NT1 with 52%. Similarly, Figure
24 outlines a parallel distribution, this time focusing on network groups in Belgium. The
graph illustrates a recommendation in favour of fuel company Y, with percentages stand-
ing at 90% versus 10% for company X. Notably, the optimal network groups in Belgium
emerge as BT2 and BT4 with refueling recommendations of 27% and 26%, respectively.

Figure 23: Representation of how often a network group is advised in a policy in the Netherlands
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Figure 24: Representation of how often a network group is advised in a policy in Belgium

6.5.4. Strategic Level

Strategic insights center around Nijhof-Wassink’s management goal of reducing fuel costs
and their existing price agreements with fuel companies. For the goal of fuel cost reduc-
tion, we demonstrated the RL approach for refueling decisions can potentially decrease
the total refueling costs for the DBL department by 11%, translating to an 88% increase
in profits (Section 6.4.5). The refueling costs are influenced directly by the net prices,
determined by discounts in price agreements and forecasted pump prices. Therefore, the
subsequent analysis concentrates on delving into the dynamics of price agreements.

The analysis of price agreements involves selecting one network group and examining
what happens to the total costs over all routes when an extra discount is negotiated. The
network group selected is the NT1 network group of company Y because this network is
recommended the most. Since this network group is frequently recommended, negotiating
additional discounts for this group has the most substantial impact on total refueling
costs. Figure 25 illustrates the results, revealing that, at first glance, extra discounts do
not significantly impact total fuel costs, with less than a 1% decrease for a 5-cent extra
discount. However, given that small changes in costs can determine the profitability of a
transportation company and that a 1% decrease in fuel costs leads to an 8% increase in
profit for Nijhof-Wassink, this result can still have a significant impact on the business.
Table 17 provides a detailed overview of the increase in profit corresponding to extra
discounts compared to the “no extra discount” scenario. Negotiating additional discounts
can be challenging and, as shown, may not lead to substantial profit increases. Therefore,
it is crucial to recognize that, rather than solely focusing on optimizing price agreements,
emphasizing refining refueling advice through decision-making tools is a more effective
strategy. Nevertheless, the RL approach proves valuable in testing various scenarios for
price agreements, aiding in the determination of which approach outperforms others.
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Figure 25: Relationship between the total fuel costs and extra discount

Table 17: The increase in profit for every discount level compared to the current discount level

Extra discount Increase in profit
€ 0.00 0.00%
€ 0.01 1.07%
€ 0.02 1.23%
€ 0.03 3.60%
€ 0.04 4.67%
€ 0.05 6.30%

6.5.5. Take Away

This comprehensive analysis aimed to address the research question “What insights does
this model, in combination with the solution method, provide to the practical and aca-
demic communities?”. The study unfolded valuable insights across multiple levels of
decision-making. Firstly, in predicting fuel prices, the model highlighted the substantial
variability in fuel prices influenced by independent variables, underlining the importance
of considering the stochastic nature of the fuel prices. The insights showed that the pre-
dicted fuel prices are the lowest in Belgium and at network groups of fuel company Y. At
the operational level, the RL algorithm’s policies demonstrated refueling cost differentials
along routes and the policies for different initial fuel levels. Tactical insights unveiled
trade-offs in detour decisions for different lengths of routes. It showed for a route of 417
km, a 1 km extra detour should result in a net fuel price reduction of €0.005 to be prof-
itable. Strategic considerations revealed potential profit gains through the negotiation
of extra price discounts. The insight showed that focusing on refueling decisions is more
profitable than focusing on price agreements.
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7. Conclusion, Future Research, and Recommendations

This section begins with the conclusion of the research in Section 7.1, where we restate
the aim, present the results, and address the main research question. After this, Section
7.2 outlines the key contributions for both academic and practical communities. Moving
forward, Section 7.3 discusses the limitations and suggests directions for future research.
Lastly, in Section 7.4, we provide recommendations tailored for Nijhof-Wassink.

7.1. Conclusion

The present research aimed to introduce a novel framework to reduce fuel costs for
trucking companies in the transportation industry. The business understanding phase
at Nijhof-Wassink underscored the practical significance of this research, showcasing a
substantial 21% of total operating costs allocated to fuel and an impressive 8% increase
in profits achievable through a 1% fuel cost reduction. This study revealed gaps in
existing approaches for the refueling problem in the literature regarding variable and
unknown fuel prices, and scalability to larger problem instances. Therefore, this research
set out to develop a sequential decision-making framework that considers the complexi-
ties of the problem such as the variability of the fuel prices, limited access to fuel prices,
and the fast-growing problem size. By framing the refueling problem as an MDP and
leveraging RL techniques, the study seeks to offer a practical and academically novel
decision-making framework. Ultimately, the goal was to answer the following main re-
search question: “Can we provide near-optimal solutions for the refueling problem with
stochastic fuel prices by using a Reinforcement Learning approach, framed within a novel
sequential decision-making framework?”. To answer the research question, this study
investigated the performance of the novel framework through a case study conducted at
the DBL department of Nijhof-Wassink.

The FRVRP is defined as an MDP, where the decision epochs are the detour points to
a nearby gas station, the state is the fuel level, and the action space is not refueling
or refueling. The MDP considers the variable refueling costs at each gas station, the
different detour costs to reach a gas station, the benefits of price agreements with cer-
tain gas stations, and the fixed costs for stopping to refuel. This research solves the
MDP approximately with RL, which has proven to be an effective approach for complex,
stochastic, and large-scale problems such as refueling decisions. Within RL, SARSA and
Q-learning are two popular algorithms used to learn optimal policies for agents in an en-
vironment. For the FRVRP, Q-Learning demonstrated slightly better performance and
less sensitivity to the parameters settings than SARSA.

The computational results of this study have not only validated RL for solving the
FRVRP but also provided crucial insights into its practical efficacy. First, we ensured
the generalizability of the framework, establishing the RL algorithm successfully ap-
plies to unseen scenarios. Subsequent analyses compared the RL algorithm against a
benchmark heuristic, an optimal deterministic solution, and historical refuel decisions.
Notably, the RL algorithm demonstrated a commendable 0.3% deviation from the deter-
ministic optimal solution, underscoring its ability to provide solutions close to the lower
bound. Moreover, it outperformed the benchmark heuristic by 3% and exhibited an 11%
improvement in refueling costs compared to historical driver decisions. Realizing this
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cost decrease within the DBL department saves between 660 and 990 thousand euros,
increasing their profits by an impressive 88%.

Additionally, the study unfolded valuable insights across multiple decision-making levels.
Firstly, in predicting fuel prices, the model highlighted substantial price variability in-
fluenced by independent variables, emphasizing the importance of considering fuel price
stochasticity. The insights showed that the predicted fuel prices are the lowest in Belgium
and at network groups of fuel company Y. At the operational level, the RL algorithm’s
policies demonstrated variations in refueling costs along routes and in policies for different
initial fuel levels. Tactical analyses uncovered detour trade-offs, suggesting a €0.005 re-
duction in net fuel price per extra kilometer for profitable detours on a route of 417 km.
Strategically, the study emphasized the profitability of focusing on refueling decisions
over price agreements, showcasing minimal potential profit gains through negotiation of
extra discounts.

Overall, these results not only confirm the RL algorithm’s effectiveness in providing
near-optimal solutions, but also shed light on its practical superiority in addressing the
complexities of the FRVRP by incorporating the uncertainty of the fuel prices in the
decision-making process. We conclude that the Reinforcement Learning approach, inte-
grated into a novel sequential decision-making framework, effectively addresses the main
research question with near-optimal policies resulting in an optimality gap of 0.3%.

7.2. Main Contributions

To summarize, the main academic and practical contributions of this research are (1)
a data-driven mathematical framework using MDP approach for the refueling problem
(2) an RL algorithm as an appropriate solution method to tackle the uncertainty and
complexity of the problem with a 0.3% optimality gap, (3) an ML regression model to
deal with the uncertainty of the fuel prices and (4), a case study at Nijhof-Wassink that
successfully proved the practical use of this model. These contributions advance the un-
derstanding and practical implementation of optimal refueling strategies, paving the way
for new research, and more efficient and cost-effective operations in the transportation
industry.

The main contributions for Nijhof-Wassink are (1) indicating a possible 88% increase in
profits by decreasing the refuel costs by 11% with the policies from the RL algorithm (2)
new knowledge of AI and its potential use for the refueling problem (3) a well-performing
RL algorithm applicable to all fixed routes within Nijhof-Wassink Group (3) insights and
improvements in the data structure surrounding refueling decisions, and (4) tactical and
operational insights from the RL policies to improve refueling decisions and decrease
refueling costs.

7.3. Limitations and Future Research

Despite the contributions of the proposed MDP model for the Fixed Route Vehicle Refu-
eling Problem, it is crucial to acknowledge certain limitations and provide directions for
future research. First, the model’s performance has been evaluated primarily on short
routes, and its effectiveness under more extended routes remains uncertain. This raises
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questions about the robustness of the model’s decision-making capabilities for bigger
problem instances. Future research can entail extending the case study to accommodate
longer routes, causing multiple refueling instances. Second, when confronted with routes
that have not been trained, the RL limits its ability to provide meaningful recommen-
dations. Future research on this limitation can include venturing the refueling problem
into an infinite MDP framework. For the infinite MDP we propose including all gas
stations in a network where the transition from one gas station to another is probabilis-
tic. Training the network yields a policy for every gas station enabling recommendations
for unseen routes and thereby expanding the model’s utility in diverse and unforeseen
scenarios. Third, the validation of the model’s practical contributions is hampered by
the limited availability of historical data. The scarcity of extensive and diverse datasets
restricts the depth of insights that can be drawn regarding the model’s real-world ap-
plicability. For future research, the case study can be expanded by more historical data
or applying the policies in real-life to strengthen and validate the practical contribution.
Fourth, while the refueling problem is modeled as a finite MDP optimized over a single
route, real-world scenarios often involve consecutive routes. In situations where the truck
can complete the first route without refueling but requires refueling for the subsequent
route, the current approach only considers gas stations along the second route. However,
there may be cheaper refueling options available along the first route. To address this
limitation, it is proposed to introduce a terminal reward that considers both the terminal
fuel level and the expected reward of the route driven next. By doing so, refueling in the
first route is incentivized to achieve a better reward by avoiding a high terminal reward
when refueling in the subsequent route.

In the realm of future research, several changes to the MDP formulation can be explored
to possibly enhance the applicability of the proposed MDP model for the FRVRP. The
first change in the formulation is broadening the action space to include the decision of
the amount to refuel at each station. This offers a more accurate representation of real-
world refueling strategies and the possibility of refueling smaller batches. The second
addition to the formulation is incorporating the fuel price prediction into the state space.
This can render the model more adaptive to dynamic price conditions by providing advice
based on the price level as well. The third factor that can be added to the formulation
is the integration of driving-rest time regulations in the state space. This provides the
opportunity to save costs by combining refueling with resting. The fourth addition is
adding the fuel level of AdBlue to the state space. AdBlue is an essential additive in
diesel trucks and is not available at every gas station. The policies emerging from the RL
algorithm advise refueling at gas stations without AdBlue 53% of the time. Combining
refueling diesel and AdBlue, can contribute to more complete and cost-effective advice
on where to refuel. The fifth change in formulation is regarding the element of driver
freedom. According to Suzuki (2009) the driver should be given a free choice for practical
use. To incorporate this in the model the formulation can be changed to provide a list of
preferred gas stations at the start of a route instead of advice to refuel in a predetermined
gas station.

7.4. Recommendations for the Company

In this section we present the recommendations for Nijhof-Wassink and address the last
research question “Does this model have the potential to be further expanded and de-
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ployed in Nijhof-Wassink?”. During the case study at Nijhof-Wassink Group, we gained
insight into the organization and their challenges. In Section 2.1 we showed that for each
percent of fuel savings, the profit increases by 8%. Subsequently, we highly recommend
continuing the project to reduce fuel costs. This section aims to provide the company
with the next steps on how to reduce fuel costs. At the beginning of this research,
Nijhof-Wassink stated their ideal situation is having a data-driven approach to generate
real-time advice to the drivers via a live connection with the board computers of the
trucks. Figure 26 shows different data-driven approaches companies can adopt to sup-
port decision-making: descriptive analysis, predictive analysis, and prescriptive analysis.
For all these approaches good data structure and quality are required, however, this has
proven to be an ongoing challenge during this project. Besides, we see that prescriptive
analytics such as the RL model provide the most value, but are complex and costly to
implement. Considering the absence of any existing decision support tool, data-driven
approach, or established data structure for refueling decisions, we believe that imple-
menting prescriptive analytics at this stage might be too ambitious for Nijhof-Wassink.
Our recommendation is to prioritize enhancing the data structure and quality initially.
Subsequently, utilizing descriptive analytics can aid in formulating strategic decisions.

Figure 26: Different data-driven approaches for decision making in businesses
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Figure 27: Visualization of envisioned data structure

For improving the data structure and quality we envison the ideal situation as depicted
in Figure 27. The following actions may be taken to achieve this data structure:

1. Keep a database with all the gas stations, their correct GPS location and charac-
teristics such as truck refueling, AbBlue, and price agreement.

2. Collect the daily fuel prices for all gas stations and add them to the gas station
list.

3. Develop an identifier for each gas station so that a transaction can be matched to
a gas station from the gas station list.

4. Work on improving the data quality of the fuel transactions since the price per liter
that is paid shows a lot of outliers, also the price discounts do not equal the price
discounts retrieved from the price agreements.

5. Work on adding the price per liter of the home bases to the transactions to complete
the overview.

6. In the trip data from ORD we can see on which trip a driver refueled. However,
we do not know at which gas station and for which price. Create a connection so
that the refueling decision can be evaluated.
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7. Create identifiers for all lanes. This way you can collect the gas stations, and their
detours for each lane and access this data when a shift consists of multiple lanes
instead of calculating it again.

Once the data structure and quality are ensured, Nijhof-Wassink can focus on visualizing
the data with descriptive analytic tools. This improves the data understanding and sup-
ports developing decision strategies. The visualization can work as a validation tool for
strategic decisions. Furthermore, the visualization enables Nijhof-Wassink to estimate
the potential cost savings and determine the amount worth investing in a decision-making
tool. With in-house expertise in developing visualizations, this proves to be the most
cost-effective next step.

When Nijhof-Wassink is ready for the next step towards prescriptive analytics, RL can
be a powerful tool to solve the refueling problem, particularly if the company intends to
expand the scope by incorporating longer routes, additional actions, or other extensions
outlined for further research. Given the complexity of developing RL, we present alter-
native, simpler methods that discard the stochasticity of the fuel prices. The first option
involves solving each route to optimality, with the average fuel prices over a period of
time, using the optimal method presented in this research. When Nijhof-Wassink wishes
to increase the length of a route so that two refuelings are needed, they can adapt the
optimal method or decide to use the benchmark heuristic presented in this research.
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Chiş, A., Lundén, J., Koivunen, V., 2013. Scheduling of plug-in electric vehicle battery charging with
price prediction , 1–5doi:10.1109/ISGTEurope.2013.6695263.
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Appendix A. Literature Search Documentation

The systematic literature review is conducted according to the steps of Kitchenhamm
(2004). For this literature review we used digital libraries, reference lists from relevant
studies and the Internet. In order to construct a good search string, synonyms and closely
relates terms are identified by trial and error and linked with the Boolean OR. See Table
A.18.

Table A.18: Search terms

Key word Related terms
Refueling OR refuel* OR recharg* OR fueling OR charging
Optimization OR solving OR problem OR model OR policy OR VRP
Logistics OR transportation OR logistical OR transport OR truck OR vehicle
Approach OR exact OR heuristic OR MDP OR RL OR linear OR deterministic OR stochastic

From these search terms we can compose our final search query that covers all topics we
want to include:

(Refueling OR Refuel* OR recharg* OR fueling OR charging OR ‘fuel consumption’)
AND (Optimization OR Solving OR problem OR model OR approach) AND (Logistics
OR Transportation OR logistical OR transport OR truck) AND (Approach OR exact
OR heuristic OR MDP OR Markov decision OR Reinforcement learning OR linear OR
deterministic OR stochastic)

The search process documentation can be found in Table A.19. The databases that are
used are chosen on whether they cover a relevant research area for our problem and the
size of the database.

Table A.19: Final searches

Database Query Hits Sources retrieved

Scopus
Final query 150 14
(inventory AND (“sequential decision making” OR MDP OR RL) 277 3

Scholar Final query 40.600 4
Reference lists n.a. n.a. 9
Internet n.a. n.a. 3
Books n.a. n.a. 3
Total 36

Later, additional topics such as related work in MDPs and inventory management are
added. In total 35 papers are used for the literature review and several problem classes
were covered.
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Appendix B. Selected routes

Table B.20: Route information

Route ID Frequency # Decision Epochs Orgin Destination
0 2642 747 101 NL NL
1 3208 506 36 NL NL
2 804 278 45 NL NL
3 1997 233 32 DE NL
4 2820 230 42 NL NL
5 1236 223 133 NL BE
6 510 208 30 BE BE
7 328 207 60 NL NL
8 353 193 20 NL NL
9 1915 177 113 NL NL
10 2621 176 20 NL NL
11 2941 171 25 NL NL
12 1675 157 113 NL NL
13 2910 148 53 NL NL
14 1237 126 47 NL NL
15 1556 124 47 NL NL
16 678 123 20 BE BE
17 1888 111 17 NL NL
18 2622 111 75 NL BE
19 3170 111 20 NL NL
20 1238 110 34 NL NL
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Appendix C. Experiment configurations

Table C.21: Experiment configurations

Experiment ∆ e
0 23500 0.10
1 68500 0.07
2 86500 0.04
3 41500 0.05
4 50500 0.01
5 59500 0.08
6 77500 0.03
7 14500 0.02
8 95500 0.09
9 32500 0.06
10 14500 0.78
11 77500 0.15
12 59500 0.42
13 50500 0.24
14 68500 0.60
15 32500 0.96
16 23500 0.87
17 95500 0.51
18 41500 0.69
19 86500 0.33
20 50500 9.55
21 23500 5.05
22 86500 2.35
23 59500 8.65
24 41500 7.75
25 95500 6.85
26 68500 4.15
27 14500 5.95
28 77500 3.25
29 32500 1.45
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Appendix D. Results: parameter tuning

Appendix D.1. Best results per experimental settings SARSA-based FRVRP algorithm

Table D.22: Result of SARSA-based FRVRP algorithm with parameter settings ∆ and e

Experiment ∆ e Total result Gap
8 95500 0.09 180322.6 0.09%
2 86500 0.04 180565.3 0.22%
6 77500 0.03 180732.0 0.32%
1 68500 0.07 180733.7 0.32%
11 77500 0.15 180922.5 0.42%
5 59500 0.08 181259.7 0.61%
4 50500 0.01 181775.1 0.89%
3 41500 0.05 181973.8 1.00%
9 32500 0.06 182909.7 1.52%
13 50500 0.24 182929.5 1.54%
12 59500 0.42 183405.8 1.80%
0 23500 0.10 185138.7 2.76%
7 14500 0.02 185701.1 3.07%
19 86500 0.33 189979.6 5.45%
18 41500 0.69 192005.7 6.57%
14 68500 0.60 192178.1 6.67%
17 95500 0.51 197566.7 9.66%
10 14500 0.78 203963.0 13.21%
15 32500 0.96 205407.4 14.01%
29 32500 1.45 209820.6 16.46%
16 23500 0.87 217914.7 20.95%
22 86500 2.35 244503.6 35.71%
21 23500 5.05 259213.0 43.88%
28 77500 3.25 264433.4 46.77%
27 14500 5.95 273425.0 51.77%
26 68500 4.15 285242.4 58.32%
24 41500 7.75 312017.1 73.19%
25 95500 6.85 342288.4 89.99%
20 50500 9.55 361966.6 100.91%
23 59500 8.65 377582.1 109.58%
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Appendix D.2. Best results per experimental settings Q-Learning-based FRVRP algo-
rithm

Table D.23: Result of Q-Learning-based FRVRP algorithm with parameter settings ∆ and e

Experiment ∆ e Total result Gap
17 95500 0.51 180305.9 0.06%
25 95500 6.85 180409.0 0.12%
8 95500 0.09 180409.2 0.12%
22 86500 2.35 180468.5 0.15%
2 86500 0.04 180507.4 0.17%
19 86500 0.33 180534.9 0.19%
6 77500 0.03 180542.6 0.19%
11 77500 0.15 180595.0 0.22%
28 77500 3.25 180607.9 0.23%
14 68500 0.60 180769.4 0.32%
1 68500 0.07 180815.3 0.34%
23 59500 8.65 180921.7 0.40%
26 68500 4.15 180975.7 0.43%
12 59500 0.42 180999.7 0.45%
5 59500 0.08 181166.9 0.54%
20 50500 9.55 181453.2 0.70%
4 50500 0.01 181748.6 0.86%
13 50500 0.24 181799.1 0.89%
3 41500 0.05 181936.8 0.97%
24 41500 7.75 181945.6 0.97%
18 41500 0.69 181996.8 1.00%
15 32500 0.96 182441.4 1.25%
29 32500 1.45 182807.8 1.45%
9 32500 0.06 182826.7 1.46%
0 23500 0.10 183915.9 2.07%
21 23500 5.05 184018.7 2.12%
16 23500 0.87 184022.0 2.12%
7 14500 0.02 185687.1 3.05%
10 14500 0.78 185785.5 3.10%
27 14500 5.95 185885.0 3.16%
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Appendix E. Selected routes for testing

Table E.24: Route information parameter testing

Route ID # Decision Epochs Orgin Destination
0 1055 73 BE DE
1 1511 65 NL DE
2 538 131 NL NL
3 1510 32 NL DE
4 88 43 NL BE
5 2148 66 BE DE
6 1457 40 NL DE
7 3204 42 NL NL
8 2959 71 DE BE
9 287 55 BE DE
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