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ABSTRACT 

Deep learning methods has been used in the point cloud classification applications. Particularly, it is used 

to provide as-built conditions of the buildings for construction progress monitoring. However, there is 

limited availability of labeled indoor point cloud datasets publicly available to train the deep learning 

network. Consequently, it can brings incorrect information and lead to cost overrun. Nevertheless, 

Building Information Models or BIM are available as it is used as the design model for the buildings. 

Therefore, this research leverages the BIM models to generate synthetic point clouds that can overcome 

this problem. 

The main results of this research is that this approach can successfully generate the synthetic point clouds 

to be used as additional dataset for point clouds classification. The networks trained on the synthetic point 

clouds has 14.22% mean – Intersection over Union (m-IoU) differences compared to the benchmark 

point clouds dataset, the S3DIS. Additionally, by augmenting the synthetic point clouds and the S3DIS 

dataset, it has 17.69% m-IoU differences compared to only using the S3DIS dataset. However, this 

approach failed completely classify stair and window elements due to class-imbalance and inter-class 

similarity problems. 

Keywords: Building information model, deep Learning, point cloud classification, construction progress 

monitoring 
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1. INTRODUCTION 

Point cloud classification is challenging in processing Terrestrial Laser Scanning (TLS) data. Despite the 

use of deep learning methods, there is limited availability of labeled indoor point cloud datasets publicly 

available to train the network (Gao et al., 2020; Marcus, 2018; Sun et al., 2017). For example, even though 

the Stanford 3D Indoor Scene Dataset or S3DIS (Armeni et al., 2016) provides a large-scale indoor point 

cloud, it only covers office architectural layout types. Utilizing the S3DIS dataset for non-office buildings 

(e.g., universities, hospitals, malls, or schools) can lead to network performance degradation (Gao et al., 

2020). As point cloud classification is one of the important procedures in construction progress 

monitoring, it can provide incorrect as-built conditions of the buildings and lead to cost overrun (Son & 

Kim, 2010). The reason is that the deep learning methods require labeled datasets corresponding to the 

target application (Gao et al., 2020). Therefore, this research leverages BIM models to generate labeled 

point clouds that can overcome this problem. 

The uses of BIM models in construction progress monitoring are introduced in Section 1.1. Then, Section 

1.2 and Section 1.3 present the deep learning methods for point cloud classification and its challenges, 

respectively. Last, Section 1.4, Section 1.5, and Section 1.7 define the hypothesis and objectives of this 

research. Some references in this research defined point cloud classification as point cloud semantic 

segmentation, as it is often used in computer vision (Xie et al., 2019). 

1.1. Construction Progress Monitoring 

Delays or deviations from the planned schedule often occur in building construction (Baldwin et al., 

1971). It can be due to multiple factors, including bad weather, equipment failure, material shortage, 

jurisdictional disputes, etc. Consequently, it can increase the risk of exceeding the allocated labor, 

equipment, and materials expenses. Therefore, construction progress monitoring is required. 

Construction progress monitoring ensures the building constructions follow the planned schedule (Arditi 

& Gunaydin, 1997). It involves regularly obtaining information on the as-built condition of the building's 

indoor scenes. In particular, the information is expressed in terms of the ID, category attribute classes, 

and location of the indoor building elements (e.g., beam, ceiling, column, door, floor, railing, stair, wall, 

and window) that has been built. The information is compiled into documentation and shared with the 

other stakeholders. Then, the information is analyzed and compared against the planned schedule and the 

design model to determine the construction progress. After that, mitigation measures are taken if delays 

are identified. 

BIM, or Building Information Models, has been widely used as the design model in the construction 

domain (Kim et al., 2013; Son & Kim, 2010; Turkan et al., 2012; Xiong et al., 2013). BIM models refer to 
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a three-dimensional digital representation of buildings planned to be constructed. It contains information 

about the building's elements (e.g., ID, category attribute classes, and location). 

1.2. Scan-to-BIM Methods 

The traditional methods of construction progress monitoring are done through manual data collection 

with documentation in written descriptions, photographs, videos, or sketches (Arditi & Gunaydin, 1997). 

While it gives a basic identification of the construction progress, it demands significant time, increasing the 

inefficiency. It requires 30 to 49 % of site managers' time (Son & Kim, 2010). Then, it also lacks 

comprehensive documentation, which can cause improper decision-making from the stakeholders. For 

example, if 60% of project completion is judged as 50%, stakeholders will assign more resources than 

needed, leading to construction cost overruns (Son & Kim, 2010). As a result, the Scan-to-BIM method 

has been utilized to facilitate construction progress monitoring with faster data collection and 

comprehensive documentation (Hajian & Becerik-Gerber, 2010). 

The Scan-to-BIM methods can provide a 3D model of the as-built condition of the indoor building 

elements (Kim et al., 2013; Son & Kim, 2010; Turkan et al., 2012; Xiong et al., 2013). The 3D model 

enhances understanding regarding the construction progress, allowing efficient stakeholder 

communication and appropriate decision-making. In addition, the 3D model can be overlayed with the 

design model for a direct and fast comparison. The workflow of the methods is data collection, data 

annotation, and 3D model reconstruction per building element. 

Terrestrial Laser Scanning (TLS) technology can be used for the Scan-to-BIM process as data collection 

(Hajian & Becerik-Gerber, 2010). It has faster data collection than the traditional methods of construction 

progress monitoring, with 0.347 hours per 100m2  compared to 0.875 hours per 100m2  (Griffiths & 

Boehm, 2019a). It measures the laser pulse travel distances sent by the sensor system, reflected by the 

visible building elements' surfaces, and received back at the sensor system (Vosselman & Maas, 2010). 

Then, millions of 3D points, known as point clouds, are generated. The point clouds represent the visible 

building elements' surfaces with three-dimensional spatial coordinates and color features. The 

measurements are performed in several locations inside the buildings to acquire necessary coverage of the 

buildings. After that, the point clouds acquired from each measurement are merged in a single coordinate 

system. 

Point clouds, acquired from Terrestrial Laser Scanning (TLS), lack semantic information regarding the 

building element it represents (Vosselman & Maas, 2010). Therefore, classification is necessary to turn 

them into meaningful scenes for 3D model reconstruction (Garcia-Garcia et al., 2017). In particular, point 

cloud classification labels each point cloud based on what building element it represents. Deep learning 

methods have been applied for point cloud classification, especially for indoor scenes (Garcia-Garcia et al., 
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2017; Griffiths & Boehm, 2019a; Guo et al., 2019). Compared to the traditional methods (e.g., Support 

Vector Machine or Random Forest), the deep learning methods has the key advantage of not needing a 

huge fine-tuning to extract meaningful features, generating higher results (Garcia-Garcia et al., 2017). In 

particular, the Kernel Point Fully Convolutional Network, or KP-FCNN (Thomas et al., 2019) achieved a 

good result in the indoor point cloud dataset of Stanford Large-Scale 3D Indoor Spaces or S3DIS 

(Armeni et al., 2016). The KP-FCNN has a mean Intersection-over-Union or m-IoU of 67.1% for the 

network's overall performance. 

As mentioned at the beginning of the research, the key requirements for using deep learning methods are 

to provide labeled datasets (Gao et al., 2020; Marcus, 2018; Sun et al., 2017). Specifically, the datasets must 

be accurate regarding geometric and semantic information. Then, datasets also must be relevant to the 

target application regarding the shapes, spatial distributions, orientations, range, and noise. The deep 

learning methods use the datasets to train the network, where the network learns discriminative features of 

each class in the dataset. Then, the learned features are used to predict the unlabeled dataset of the target 

application. If the key requirement is unmet, the network can encounter inconsistent features in the 

predicted datasets, resulting in biased parameter estimation and poor performance. 

1.3. Problem Statement 

As mentioned at the beginning of the research, there is a limited availability of labeled indoor point cloud 

datasets publicly available. Several indoor point cloud datasets, such as NYU Depth Dataset V2 or 

NYDV2 (Couprie et al., 2013), SceneNN (Hua et al., 2016), Matterport3D (Chang et al., 2017), and 

ScanNet (Dai et al., 2017) was captured using an RGB-D camera with lower accuracy than laser scanning 

technology. Then, despite covering indoor scenes, Paris-Lille-3D (Roynard et al., 2018) and HPS (Guzov 

et al., 2021) do not have any annotation regarding category attributes, which requires manual annotation. 

Last, the Stanford 3D Indoor Scene Dataset or S3DIS (Armeni et al., 2016) only consists of indoor office 

scenes. Therefore, there is a massive need for a more diverse point cloud dataset, particularly one that 

covers indoor scenes with other architectural layout types. 

Gao et al. (2020) have a performance degradation when the networks that trained on rural scenes, from 

SemanticKITTI (Zhou et al., 2020) and SemanticPOSS (Pan et al., 2020), are used to predict on urban 

scenes, and contrariwise. The reason is that the rural scenes dataset have distinct shapes from the urban 

scenes dataset (Gao et al., 2020; Marcus, 2018; Sun et al., 2017). One method to address this problem is to 

obtain additional labeled datasets involving manual data collection and classification (Garcia-Garcia et al., 

2017). However, similar to the traditional methods of construction progress monitoring mentioned in 

Section 1.2, the process is laborious and time-consuming, which can increase the construction cost. 

Additionally, manual classification is a subjective process that can make the results inconsistent from 

multiple operators and decrease the network performance. 
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1.4. The First Hypothesis Solution 

Given the problems in Section 1.3, this research proposed a method to leverage existing BIM models. The 

geometric and semantic information from the BIM models is converted into synthetic point clouds (Ma et 

al., 2020; Noichl et al., 2021; Zhai et al., 2022). Then, the synthetic point clouds have a label corresponding 

to the building elements (e.g., beam, ceiling, column, door, floor, railing, stair, wall, and window). This 

approach does not utilize manual data collection and classification, which makes it an inexpensive and 

non-subjective process. Furthermore, since the buildings are constructed based on the BIM models, the 

synthetic point clouds will share similar architectural layouts with the constructed building. It makes the 

synthetic point clouds relevant to the point cloud classification for this building. Therefore, the first 

hypothesis of this research is that utilizing the BIM models has the potential to help point cloud 

classification at indoor scenes. In particular, it generates labeled synthetic point clouds to train the deep 

learning network. 

1.5. The Second Hypothesis Solution 

Multiple research recommends generating synthetic datasets must have real point cloud characteristics to 

increase the classification performance (Ma et al., 2020; Noichl et al., 2021; Zhai et al., 2022). These 

characteristics include the local point cloud distribution, occlusion effect, sensor system noise, and glass 

reflectivity, which will be described more in Section 2.1.4, Section 2.1.5, and Section 2.1.6. Thus, the 

second hypothesis of this research is that including real point cloud characteristics in the synthetic point 

clouds can increase the point cloud classification performance. 

1.6. The Third Hypothesis Solution 

Compared to synthetic point clouds, the S3DIS dataset can possess certain unknown real point cloud 

characteristics beyond the local point cloud distribution, occlusion effect, sensor system noise, and glass 

reflectivity. To address this difference and enhance classification performance, a domain adaptation 

method can include these characteristics in the synthetic point clouds. Domain adaptation is a method to 

adapt networks when the training and test datasets are derived from different source domains (Torralba & 

Efros, 2011). This method can be done by training the network with the augmentation of the S3DIS 

datasets and the synthetic point clouds. In this method, the network is trained with the augmentation of 

the S3DIS datasets and the synthetic point clouds. 

 

Ma et al. (2020) have previously generated synthetic point clouds in indoor scenes to tackle the limited 

datasets availability problem. However, they had lower classification results of - 11.81% mean Intersection 

over Union (m-IoU) when the networks trained on the synthetic point clouds compared with the real 
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point clouds. Nevertheless, they achieved a 7.1% m-IoU increase in indoor classification tasks by 

combining the real point clouds with the synthetic point clouds derived from the BIM model. Similarly, 

Yue et al. (2018) and Wang et al. (2019) also demonstrated that augmenting synthetic point clouds with 

real point clouds boost the classification results by 9.0% m-IoU compared to solely using the real point 

clouds to train the network. Therefore, the third hypothesis of this research is that utilizing the 

combination of the synthetic point clouds and the S3DIS dataset to train the network can include 

unknown real point cloud characteristics into the synthetic point clouds and can improve the classification 

performance. 

1.7. Research Objectives and Questions 

The research's main objective is to confirm the BIM models' effectiveness for point cloud classification 

applications to overcome the problem of limited availability of labeled indoor point cloud datasets. 

Specifically, the BIM models are converted into labeled synthetic point clouds to train the deep learning 

network. In this regard, a framework is designed for construction progress monitoring by implementing 

the BIM models, a virtual laser scanner tool, and a KP-FCNN in the synthetic point cloud generation and 

classification. The main objective of the research is divided into sub-objectives with the following research 

questions. 

1. Mitigate the problem of limited availability of labeled indoor point cloud datasets. 

- How will the results changed when the same synthetic point clouds are used in different 

construction stages of the buildings? 

- How can the augmentation of the synthetic point clouds and the S3DIS dataset can improve the 

classification results? 

2. Generate the synthetic point cloud as realistic as possible to improve the classification 

results. 

- What is the right way to simulate the local point cloud distribution and occlusion effect to help 

the point cloud classification? 

- How can including sensor system noise in the synthetic point clouds help the point cloud 

classification? 

- How can the synthetic point clouds that consider the glass as transparent object help the point 

cloud classification? 

3. Configure the deep learning network to classify point clouds in indoor construction scenes. 

- How robust is the KP-FCNN deep learning network in point cloud classification in indoor 

scenes?
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2. LITERATURE REVIEW 

This Chapter presents the constraints of various methods in addressing the limited availability of labeled 

indoor point cloud datasets mentioned in Section 1.3. The objective is to establish a motivation for using 

the approach described in Section 1.4. This chapter also describes the limitations of some deep learning 

networks to motivate the adoption of the Kernel Point-Fully Convolutional Neural Network or KP-

FCNN (Thomas et al., 2019). 

2.1. Battling The Limited Availability of Labeled Indoor Point Clouds Datasets 

Multiple research has been conducted to overcome the problems due to the limited availability of labeled 

indoor point cloud datasets publicly available, described at the beginning of the paper and in Section 1.3, 

2.1.1. Methods Not Requiring Huge Labeled Point Clouds 

Various research developed deep learning methods for point cloud classification that do not need huge 

labeled point clouds. It includes incorporating weak supervision methods and self-supervised methods 

into the network. Xu & Lee (2020) performed weak supervision methods, where the network is trained 

using partially labeled point cloud datasets. It estimates the learning gradient and utilizes additional spatial 

and color smoothness constraints. However, the methods involve multiple iterations, making the process 

computationally more expensive than the supervised methods. 

Motivated by the prediction pretext task for image classification, Sauder & Sievers (2019) propose self-

supervised methods. The network learns the spatial distribution of point clouds where some parts are 

randomly rearranged. The limitation of this approach is the lack of evaluation regarding how to fine-tune 

the approach to a specific domain. 

2.1.2. The Data Augmentation Methods 

Multiple research also proposed data augmentation methods to generate additional labeled point clouds 

and increases the point clouds' diversity. Chen et al. (2020) introduce PointMixup. It interpolates and finds 

the linear shortest path between two point clouds to generate a new scene. Compared to the supervised 

methods that use only the available point clouds, PointMixup in a semi-supervised setting increases the 

network accuracy from 73.5% to 82.0%. 
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Emunds et al. (2021) present IFCNet as data augmentation. It comprises geometric and semantic 

information of single-entity IFC classes to generate additional point clouds.  However, these methods 

limit their focus to object-level point clouds without scene-level point clouds. 

2.1.3. Generating Synthetic Point Clouds 

Numerous research converts the virtual environment into synthetic point clouds to extend the limited 

point cloud datasets availability. These methods can perform point cloud classification at the scene-level, 

overcoming the previous methods. Yue et al. (2018) and Wu et al. (2018) produced synthetic point clouds 

in urban scenes derived from video games' three-dimensional models, named GTA-V. Despite that, 

manual efforts were involved for semantic labeling since video game models have insufficient semantic 

information. 

Ma et al. (2020) and Zhai et al. (2022) generated synthetic point clouds in indoor scenes. Using Autodesk 

Revit and Trimble SketchUp, they constructed the BIM models from the S3DIS dataset (Armeni et al., 

2016). Then, they randomly put the point clouds on the BIM model surfaces using Feature Manipulation 

Engine (FME) Workbench. 

Both approaches stated that the synthetic point clouds do not have some characteristics of the real point 

clouds or those acquired from Terrestrial Laser Scanners (TLS). It includes local point cloud distribution, 

occlusion effect, sensor system noise, and glass reflectivity. Consequently, the performance of the network 

trained with the synthetic point clouds is not comparable with one trained with the S3DIS dataset. 

2.1.4. Generating Synthetic Point Clouds that Consider Local Point Cloud Distribution and Occlusion Effect 

During the scanning process, the occlusion effect can happen when an area is occluded from the sensor 

system’s view by an object between them (Vosselman & Maas, 2010). It can result in incomplete data in 

the acquired point cloud. Then, local point cloud distribution from the point clouds acquired by the 

sensor is uneven. It happens because of the sensor system's perspective effects and radial motions. It is 

also due to the varying distance between the sensor system and the object, as the point cloud density 

increases when the object is closer to the sensor system. 

Dosovitskiy et al. (2017), Griffiths & Boehm (2019b), and F. Wang et al. (2019) modeled the occlusion 

effect and uneven local point cloud distribution in the synthetic point clouds at urban scenes. Using the 

autonomous driving simulator CARLA (Dosovitskiy et al., 2017) and the Blensor (Gschwandtner et al., 

2011), they simulated a laser emitted from a Terrestrial Laser Scanner by placing multiple virtual sensor 

systems in the virtual environments. However, they do not examine the importance of the occlusion effect 

and the uneven local point cloud distribution. 
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2.1.5. Generating Synthetic Point Clouds that Consider Sensor System Noise 

Sensor system measurements always include noise, which refers to unwanted variations in the output 

(Vosselman & Maas, 2010). Based on the sensor system quality, it can be caused by the mistake in 

measuring the distance between the sensor system and the objects. The sensor system noise can interfere 

with the position of the point cloud and represent a flat surface as a rough surface. 

Wu et al. (2018) transferred the noise distribution of SemanticKITTI (Behley et al., 2019) into synthetic 

point clouds using a domain adaptation method of geodesic correlation alignment. The motivation behind 

the method is to address the domain shift problem, where there is a discrepancy in the sensor system 

noise level between the synthetic point clouds and SemanticKITTI point clouds. The network accuracy 

doubled from 29.0% to 57.4% compared to the network without geodesic correlation alignment. Hence, 

there is a possibility that point cloud classification results can be improved by including sensor system 

noise. 

2.1.6. Generating Synthetic Point Clouds that Consider Glass Reflectivity 

Window elements in the buildings consist of transparent glass and a non-transparent frame (Vosselman & 

Maas, 2010). When a laser pulse from a laser scanner encounters the transparent glass, most of the laser 

pulse can pass through without returning the laser pulse. The reason is that the transparent object's 

refractive index closely matches the surrounding medium. As a result, a point cloud for a glass object is 

not generated. Nevertheless, as illustrated in Figure 2.1, there are also cases where some fraction of the 

laser energy is absorbed by the transparent object, generating a point cloud. Unfortunately, there has not 

been any research that verifies whether the glass object should be considered transparent or non-

transparent in synthetic point clouds to have good classification results. 

 

 
window element 

 
wall element 

The ITC 2022 dataset 

Figure 2.1 Window Element in the ITC 2022 dataset (Source: Author) 
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2.2. Deep Learning Networks on Point Clouds 

Other than the challenge described at the beginning of the research and in Section 1.3, point cloud 

classification also can not directly use deep learning 2D convolution operation (Garcia-Garcia et al., 2017; 

Griffiths & Boehm, 2019a; Xie et al., 2019). The reason is due to the nature of point clouds. Unlike raster, 

the point cloud is unordered (invariant to permutations), unstructured (varying distances to neighboring 

point clouds), and irregular (unevenly sampled). 

2.2.1. Indirect Methods 

Multi-view-based methods (Su et al., 2015) overcome these challenges by converting point clouds into 

multiple 2D images using projection from several positions. Then, it applies a convolution operation with 

2D kernels. But it suffers from occlusion sensitivity which can bring information loss. Then, voxel-based 

methods (C. Wang et al., 2019) convert point clouds into a fixed-size 3D grid structure and apply a 

convolution operation with 3D kernels. However, the methods convert the space not occupied by point 

clouds into voxels, leading to huge computation costs. 

2.2.2. Direct Methods 

Multiple networks from the point-based methods can directly take point clouds as input. PointNet (Qi et 

al., 2016) is the first method that applies deep learning convolution operation on point clouds. It is built 

on a multilayer perceptron (MLP) and a max-pooling function. The limitation of this method is that it 

does not capture local features. Then, the network can only handle 2048 point clouds at a time, making 

the method unable to handle large-scale point clouds. 

PointNet++ (Qi et al., 2017) applies a PointNet in a hierarchical structure with a shared multilayer 

perceptron (MLP) function for local region computation. Then, the Pointwise Convolution method (Hua 

et al., 2017) creates multiple local neighborhoods where each input point cloud is used as the centroid. 

Then, the neighboring point clouds are sampled based on the adjusted radius value from the centroid. 

After that, the convolution operation is done independently for each local region. Unlike PointNet, 

PointNet++ and Pointwise Convolution learns individual point cloud features, which make them 

insensitive to varying density of point clouds. However, these methods do not explore local correlation, 

making them incapable of capturing small detailed features. 

2.2.3. Direct Methods that Explore Local Correlation 

Improved from the PointNet, some networks can capture the point cloud correlation in the local 

neighborhood. Graph-based methods (Klokov & Lempitsky, 2017) represents the input point clouds with 

a kd-tree graph structure and treats each point cloud as a node. The kd-network captures hierarchical 
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relations between point clouds. However, the point clouds at the same depth level do not capture 

overlapping receptive fields. 

PointCNN (Li et al., 2018) randomly samples the input point clouds and selects the neighboring ones 

based on the k - Nearest Neighbors (k-NN). Then, it utilized an X-transformation on the neighboring 

point clouds before applying a shared multilayer perceptron (MLP) function. The X-transformation 

explores the local correlations between point clouds in a local neighborhood to improve discriminative 

capability. 

RandLa-Net (Hu et al., 2019) randomly samples the point clouds and does not use graph construction or 

kernelization, which requires less computation cost. Then, it captures and captures the local features of the 

point clouds using attentive pooling. However, it does not work effectively using small-scale point clouds 

since it does not learn point clouds independently. 

2.3. Kernel Point Fully Convolutional Network (KP–FCNN) Deep Learning Network 

As mentioned in Section 1.2, the Kernel Point Fully Convolutional Network or KP-FCNN proposed by 

Thomas et al. (2019) achieved a good point cloud classification performance in indoor scenes. 

Furthermore, the network does not have the limitations of previous networks mentioned in Section 2.2. 

Therefore, this research utilizes this network. KP-FCNN is a point-based deep learning method that 

directly learns the point clouds without converting them into intermediate data format, making it 

computationally efficient.  

KP-FCNN has multiple layers with different receptive fields to learn input point clouds that vary in 

density and scale. The smaller features can only be captured at a lower receptive field, while the larger ones 

need higher receptive fields. KP-FCNN utilizes a pooling layer to increase the receptive field at every 

layer. It progressively downsamples the amount of the input point clouds using kernel point convolution 

of KPConv operation and grid subsampling operation. Table 1 explains multiple network parameters for 

the KP-FCNN need to be set during the network design. 

Then, KP-FCNN has two different sampling strategies. The random picking strategy arbitrarily samples 

the input point clouds and samples the same number for each class. Contrarily, the regular picking strategy 

has a spatially consistent sampling method. 
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Table 1. Kernel Point Fully Convolutional Network Parameters 

Network Parameters Descriptions Operation 

The input features number 𝐷𝑖𝑛 
The number of input features (e.g., x, y, z, R, G, and B) 

with one additional default value 

Kernel Point 

Convolution 

(KPConv) 

The input sphere radius 𝑟 

A radius of the local neighborhood 𝑁𝑥 that controls 

which kernel point 𝑥𝑖 computed for the convolution 

process of input point cloud 𝑥 

The convolution radius 𝑟 
A radius of the kernel domain ball 𝐵𝑟

3 which controls the 

position of the kernel points 𝑥̅𝑘 

The kernel influence distance 𝜎 
A correlation function at the given kernel point neighbor 

𝑦𝑖  and the kernel point 𝑥̅𝑘 in the kernel domain ball 𝐵𝑟
3 

The kernel points number 𝐾 
The number of kernel points 𝑥̅𝑘 for the kernel domain 

ball 𝐵𝑟
3. 

The size of the first voxel grids 𝑑𝑙0 The cell size of the first grid subsampling Grid 

Subsampling Sampling Strategy Method to reduce the number of point clouds 

2.3.1. Kernel Point Convolution (KPConv) Operation 

Kernel point convolution (KPConv) operations are performed on each input point cloud at each network 

layer (Thomas et al., 2019). The convolution operation has kernel points arranged consistently spherically 

with a specified sphere radius and kernel point number. It used the specified distance from the 

neighboring point clouds to give each kernel a unique weight. From Figure 2.2, the constant distance 

guarantees a consistent receptive field that helps the network learn more meaningful representations 

compared to the k - Nearest Neighbors (k-NN) method used by PointCNN (Li et al., 2018). The results of 

this operation will update the features of the input point clouds in the next layer. Equation (1), Equation 

(2), and Equation (3) explain the KPConv operation on the point clouds. 

 
Figure 2.2. KPConv Network Kernels Fixed-size Radius (Source: Thomas et al. (2019)) 

(𝐹 ∗ 𝑔)(𝑥) = ∑ 𝑔(𝑥𝑖 − 𝑥)𝑓𝑖

𝑥𝑖∈𝑁𝑥

 Equation (1) 

The convolution operation at the given input point cloud 𝑥 requires the feature of the input point clouds 

𝐹. A set of kernel points 𝑥𝑖  is generated inside the local neighborhood 𝑁𝑥  with the given input point 



TRAINING DEEP NETWORKS WITH BIM MODELS FOR INDOOR POINT CLOUD CLASSIFICATION 

19 

cloud 𝑥 at the center. The shape of the local neighborhood 𝑁𝑥 is defined by the input sphere radius 𝑟. 

These kernel points 𝑥𝑖 have the same position and feature properties as the corresponding input point 

cloud 𝑥. The convolution operation computes a weighted sum of the features 𝑓𝑖 of these kernel points 𝑥𝑖 

using Equation (1). The weights are determined by the kernel function 𝑔, where it would be higher when 

the distance from the kernel points 𝑥𝑖 to the given input point cloud 𝑥 is closer. 

𝑔(𝑦𝑖) = ∑ ℎ(𝑦𝑖  , 𝑥̅𝑘)𝑊𝑘

𝑘<𝐾

 Equation (2) 

The kernel point neighbor 𝑦𝑖 is defined as the kernel point 𝑥𝑖 with a position relative to the given input 

point cloud 𝑥. A set of 𝐾-number kernel points 𝑥̅𝑘 are generated inside the kernel domain ball 𝐵𝑟
3 with 

the given input point cloud 𝑥 at the center. The shape of the kernel domain ball 𝐵𝑟
3 is defined by the 

convolution radius 𝑟. Each kernel point 𝑥̅𝑘  is accompanied by a weight matrix 𝑊𝑘  learned during the 

network training. The kernel function 𝑔 at the given kernel point neighbor 𝑦𝑖 is a weighted sum of the 

learned weight matrix 𝑊𝑘  and is calculated using Equation (2). The weights are determined by the 

correlation function ℎ, which takes the position of the kernel point neighbors 𝑦𝑖 and the kernel points 𝑥̅𝑘. 

ℎ (𝑦𝑖  , 𝑥̅𝑘) = max (0, 1 −
‖𝑦𝑖 − 𝑥̅𝑘‖

𝜎
) Equation (3) 

Equation (3) shows that the value of the correlation function ℎ is ranged from zero to one. The value will 

be close to one when the distance from the kernel point neighbor 𝑦𝑖 to the kernel point 𝑥̅𝑘 is near. On the 

contrary, the value will be zero when the distance is the same as the kernel influence distance 𝜎. 

2.3.2. Grid Subsampling Operation 

Grid subsampling operation is performed at each layer of the network, with the adjustable cell size of the 

first voxel grids 𝑑𝑙0 (Thomas et al., 2019). The operation divides the input point clouds into voxel grids with 

a consistent size and location. Then, a support point cloud is generated inside each voxel grid at the input 

point cloud closest to the voxel grid's centroid. It will not be generated without an input point cloud inside 

a voxel grid. After that, strided convolution is performed to the voxel grids, doubling the cell size of the 

voxel grids, reducing the number of input point clouds by a factor of four, and increasing the receptive 

field. A smaller voxel grid corresponds to a smaller receptive field allowing the network to capture local 

features. 
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3. METHODOLOGY 

Based on the hypothesis described in Section 1.4, Section 1.5, and Section 1.6, this research performs the 

methodology with the workflow illustrated in Figure 3.1. First, this research defines the building element 

classes in classification based on the BIM models and the construction progress monitoring domain. 

Second, the BIM model preparation is defined in Section 3.2. Third, this research converts the BIM 

models into five sets of synthetic point clouds with different configurations in Section 3.3. Fourth, data 

preparation and normalization are done to the point clouds in Section 3.4 and Section 3.5. Fifth, the 

network training and testing process is described in Section 3.6. Last, the metrics used for the network 

performance evaluation are reviewed in Section 3.7. 

 

Figure 3.1 The Research Workflow 

3.1. Class Definition 

The initial step in the methodology is to determine the classes of building elements that should be 

considered for classification. There are two conditions for the class definition. The first condition is that it 

belongs to the main structural elements commonly built from the beginning of the construction process 

(Baldwin et al., 1971). The second condition corresponds with the BIM models used to design the 

building. The classes selected for this research are beam, ceiling, column, door, floor, railing, stair, wall, 

and window. 

Section 1.1 describes the BIM models in the Industry Foundation Class (IFC) standards to define the 

element's attributes. Table 2 shows all IFC-related classes of the BIM models. Not all IFC classes are 

utilized for this research, as some need to be classified, and some are unused entirely. The IFC classes of 
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the BIM models selected for this research are displayed in Table 3. Lastly, the IFC class is exported 

separately for further annotation processing. BIMVision (BIMvision - Freeware IFC Model Viewer, 2023) 

performs the IFC class export and classification. 

Table 2. List of IFC Class Available in the BIM models 

No IFC Class  No IFC Class  No IFC Class 

1 IFC Annotation  11 IFC FlowController  21 IFC Space 

2 IFC Beam  12 IFC FlowFitting  22 IFC Stair 

3 IFC Building Element Proxy  13 IFC FlowTerminal  23 IFC Standard Wall 

4 IFC Column  14 IFC Member  24 IFC Stairway 

5 IFC Covering  15 IFC Plate  25 IFC Wall 

6 IFC Curtain Wall  16 IFC Railing  26 IFC Window 

7 IFC Door  17 IFC Ramp    

8 IFC Element Assembly  18 IFC Ramp Flight    

9 IFC Element Furniture  19 IFC Roof    

10 IFC Footing  20 IFC Slab    

 
Table 3. List of IFC Class used in this Research 

No IFC class 

1 IFC Beam 

2 IFC Column 

3 IFC Wall 

4 IFC Door 

5 IFC Window 

6 IFC Slab 

7 IFC Stair 

8 IFC Railing 

9 IFC Roof 

 

Table 4 details the IFC classes unused in this research. These IFC classes are unused because they are not 

present in the actual building, not present in the indoor scenes, and do not belong to the structural 

building elements (e.g., beam, ceiling, column, door, floor, railing, stair, wall, and window). For example, 

Figure 3.2 shows that IFC Space and IFC Annotation are imaginary elements not present in the real 

world. Then, Figure 3.4 illustrates that IFC Flow Terminal, IFC Flow Controller, and IFC Flow Fitting do 

not belong to the structural building elements. After that, Figure 3.4 displays that the table, chair, and 

storage belonging to the IFC Element Furniture do not have detailed shapes. Last, Figure 3.3 shows that 

IFC Footing is located below the building and not in the indoor scenes. 
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Table 4. List of IFC Class Not Used in this Research 

No IFC Class The reason why it is not used 

1 IFC Annotation 

Not present in the actual building 2 IFC Covering 

3 IFC Space 

4 IFC Element 

Assembly Not present in the indoor scenes 

5 IFC Footing 

6 IFC FlowController 

Do not belong to the building's 

structural elements 

7 IFC FlowFitting 

8 IFC FlowTerminal 

9 IFC Element 

Furniture 

 

 

BIM models 

 

IFC Space 

 

IFC Annotation 

Figure 3.2 IFC Space and IFC Annotation in BIM models (Source: Author) 

 

BIM models 

 

IFC Footing 

Figure 3.3 IFC Footing in BIM models (Source: Author) 
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IFC Element Furniture 
(Table and Chair) 

 

IFC Element Furniture 
(Storage) 

 

IFC Element Furniture 
(Chair) 

 

IFC Flow Terminal  

IFC Flow Controller 

 

IFC Flow Fitting 

Figure 3.4 IFC Classes not Belong to the Structural Element (Source: Author) 

 
Table 5 describes the IFC classes that need the classification process. The classification process is needed 

because one IFC class can include multiple other IFC classes (Son & Kim, 2010). Figure 5.1 shows IFC 

Curtain Wall contains multiple IFC classes, including IFC Door, IFC Wall, and IFC Window. 

Furthermore, Figure 3.6 shows that even IFC Stair does not contain IFC Slab and IFC Railing, it still 

includes elements similar to slab/floor and railing. Therefore, the IFC Curtain Wall rand IFC Stair require 

more classification to separate them into multiple IFC classes. 

Table 5. A list of IFC class need to be classified 

No IFC Class Activity 

1 IFC Building Element Proxy 

The object must be classified as IFC Door, IFC Stair, IFC Wall, IFC 

Railing, and IFC Window. 

2 IFC Curtain Wall 

3 IFC Member 

4 IFC Plate 

5 IFC Ramp The object needs to be classified as IFC Floor 

6 IFC Stair The object needs to be classified as IFC Floor, IFC Railing, and IFC Stair 

7 IFC Standard Wall The object needs to be classified as IFC Wall 

8 IFC Stairway The object needs to be classified as IFC Stair 

9 IFC Ramp Flight The object needs to be classified as IFC Floor 
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Figure 3.5. IFC Curtain Wall in BIM models 
(Source: Author) 

 

Figure 3.6. IFC Stair in BIM models 
(Source: Author) 

3.2. OBJ Conversion 

The Wavefront OBJ format is the standard for the synthetic point clouds generation tool of Blensor 

(Gschwandtner et al., 2011) and CloudCompare (CloudCompare - Home, 2023). Therefore, the Blender 

BIM plugin (BlenderBIM Add-on - Beautiful, Detailed, and Data-Rich OpenBIM, 2023) converts the IFC format 

to OBJ format. Since the Wavefront OBJ format does not include semantic information, the element class 

label is put in the file name. 

3.3. Synthetic Point Clouds Generation 

This research utilizes four methods of synthetic point cloud generation: 1) Ideal method, 2) Simulated 

method, 3) Methods with noise, and 4) Methods with transparent glass. 

3.3.1. Ideal Method 

Derived from the method proposed by Ma et al. (2020) described in Section 2.1.3, this method directly 

converts the surface geometries of the BIM models into synthetic point clouds illustrated in Figure 3.7. 

Using the open-source CloudCompare (CloudCompare - Home, 2023), this method randomly samples the 

point clouds with the density based on the density of the point clouds to be predicted. Then, the process 

is performed individually per element class. The synthetic point clouds are stored in the .txt format with 

ASCII standard. The label corresponding to the element class is kept in the file name. 
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Figure 3.7. The Ideal Method of Synthetic Point Cloud Generation (Source: Author) 

 

3.3.2. Simulated Method 

Based on the method proposed by Griffiths & Boehm (2019b) described in Section 2.1.4, this method 

utilizes laser scanning simulation in the BIM models to generate synthetic point clouds, as illustrated in 

Figure 3.8. Using the open-source software Blensor (Gschwandtner et al., 2011), this method places 

multiple virtual sensor systems in the BIM models with the configuration based on the sensor system 

model that acquire the point clouds to be predicted. The configuration used in this research can be seen in 

Table 6. A set of point clouds is produced for each sensor system. Then, the point clouds derived from all 

scans are merged into one set of point clouds. Registration is unnecessary because the scans are aligned in 

the same coordinate system. The resulting synthetic point clouds are stored in the .txt format with ASCII 

standard.  

 
Figure 3.8. The Simulated Method of Synthetic Point Cloud Generation (Source: Author)  

Table 6. Parameters for the Virtual Laser Scanner 

Simulation Parameters Value 

Vertical Laser Angle's Range -60.00 to 60.00 degree 

Vertical Laser Angle's Resolution 0.25 degree 

Horizontal Laser Angle's Range -180.00 to 180.00 degree 

Horizontal Laser Angle's Resolution 0.25 degree 

Maximum Distance 50 meter 

Sensor System Height 1.5 meter 
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Since Blensor only takes the Wavefront OBJ, which does not have semantic information, a semantic label 

can not be directly assigned to the synthetic point clouds during the laser scanning simulation. Hence, an 

annotation process is utilized. The annotation process uses the mesh-to-point nearest distance method 

from CloudCompare. It selects the point clouds with a 0.001 m distance from the 3D model with one 

building element class. Then, the selected point clouds are exported into a new set of point clouds with 

the label based on the building element class. This method is performed iteratively per each class so that 

point clouds with different classes are separated. The synthetic point clouds are stored in the .txt format 

with ASCII standard. Then, the label for the point cloud is stored in the file name. 

3.3.3. Ideal and Simulated Method with Noise 

For the Ideal Method with Noise, multiple noise value is defined using the normal distribution of the 

Gaussian function illustrated in Equation (4). Then, the x value of this function is derived from the 

random value ranging from 0.00 to 1.00. After that, the noise value is added to the X, Y, and Z coordinate 

feature of the Synthetic Point Clouds generated from the Ideal Method. 

For the Simulated Method with Noise, the open-source software Blensor (Gschwandtner et al., 2011) 

offers noise simulation in synthetic point clouds. The Blensor simulated the sensor system noise in the 

distance between the sensor system and the 3D models of the building elements. It needs the 

configuration for the Gaussian function's mean and standard deviation, as seen in Equation (4). 

𝑦(𝑥) =
1

√2π𝜎2
𝑒

(𝑥−μ)
2

2𝜎2  Equation (4) 

3.3.4. Ideal and Simulated Method with Transparent Glass 

This method redos the class definition from Section 3.1. It removes the IFC Window and utilizes IFC 

Member as the window’s frame. After that, this method uses a similar approach to the Ideal Method or 

Simulated Method. 

3.4. Data Preparation 

This step synchronizes the file data composition for the synthetic point clouds with the S3DIS dataset 

(Armeni et al., 2016). The first data preparation process is to separate these files into multiple Rooms and 

save them in different folders. The process uses the point-to-mesh distance method of the open-source 

software CloudCompare. Then, the room assignment is based on the IFC Space from the BIM models. 

The second data preparation process is to group the Room folders into six different Areas and save them 

in six different folders. One Area folder only takes the Room folders from the same floors. This research 
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classified the Room into five types: Hallway, Office, Stair, Storage, and WC. The name for each Room 

folder is named based on its Room type combined with its index. The name for each synthetic point cloud 

file is named based on its building element class. 

3.5. Data Normalization 

This step is done because similar feature units make the network easily focus on the close relationships 

between values rather than their absolute values (K. Dhana Sree & C. Shoba Bindu, 2018). It converts the 

range in the point cloud’s features, especially X, Y, and Z coordinate geometric features, to a common 

distribution. In particular, it moves all point clouds in one area so that a point cloud that originally has the 

lowest coordinate value is located at the coordinate origin (0,0,0). The normalization is done using the 

transformation method of the open-source software CloudCompare. 

Moreover, point clouds for indoor scenes that include multiple stories of the element must be separated 

based on the floor and bring the elements from the upper floor to the ground floor. Most publicly 

available point cloud datasets, such as S3DIS (Armeni et al., 2016), only include single-story buildings. If 

these datasets directly classify the elements on the second floor, it can identify the floor element belonging 

to the second floor as a ceiling element, causing misclassifications. 

3.6. Point Cloud Classification 

With an adequate performance in indoor scenes described in Section 1.2, the Kernel Point Fully 

Convolutional Network, or KP-FCNN (Thomas et al., 2019), is chosen for point cloud classification. This 

research utilized the Rigid version. The reason is that this research focuses on the building elements (e.g., 

window, wall, and door) with simple shapes as it can accomplish more on simple shapes elements 

compared to Deform version. The network training parameters used in this research are summarized in 

Table 7. Then, this research utilized the network parameters listed in Table 8. The motivations behind the 

configuration of these parameters are explained in the sub-Section below. 

Table 7. Network Training Parameter used in this Research 

Training Parameter Value 

Maximum epoch 400 

Optimizer Adam 

Momentum Gradient Descent 0.98 

Initial Learning Rate 10^(-2) 

Batch size 6 
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Table 8. Two Network Parameters of KP-FCNN used in this Research 

Network Parameters 
Name 

Network Parameter – 1 Network Parameter – 2 

the input features number 𝐷𝑖𝑛 5 5 

the size of the first voxel grids 𝑑𝑙0 0.04 m 0.04 m 

the input sphere radius 𝑟 2.00 m 2.00 m 

the convolution radius 𝑟 2.50 m 2.50 m 

the kernel influence distance 𝜎 1.20 m 1.20 m 

the number of kernel points 𝐾 11 15 

Sampling Strategy Regular Random 

 

3.6.1. Simulated The Configuration of the Input Features Number 𝐷𝑖𝑛 

The geometry features give a relevant understanding of building elements' shapes and spatial distribution 

(Zhai et al., 2022). In particular, ceiling and beam elements are located at the top of other elements, while 

the floor is at the bottom. Then, window, wall, and door elements are usually adjacent. Therefore, the 

geometry features are included as the first three columns of the point clouds. Contrarily, the color features 

are insignificant because most elements have the same color of grey, as seen in Figure 3.9. 

Consequently, it does not give unique information for each element. Nevertheless, since KPConv still 

requires the color feature, it is still included as the fourth column of the point cloud. They are assigned the 

constant value of 255.0. Additionally, the KPConv requires one standard constant feature, which only 

affects the value of input features number 𝐷𝑖𝑛 (Thomas et al., 2019). Therefore, the input features 𝐷𝑖𝑛 

used in this research is 5. 

  

  
Figure 3.9. Construction Scenes of the New ITC Building (Source: Author) 
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3.6.2. The Configuration of the Size of the First Voxel Grids 𝒅𝒍𝟎 

The building elements can vary in size. There are the large elements (e.g., door, wall, and window) and the 

small elements (e.g., beam, column, and railing). To be able to capture large elements while also being 

capable of capturing small elements, this research requires a larger size of the first voxel grids 𝑑𝑙0 

compared to the default value. With that, the size of the first voxel grids 𝑑𝑙0 used in this research is 0.04 

m. 

3.6.3. The Configuration of the Input Sphere Radius 𝒓, the Convolution Radius 𝒓, and the Kernel Influence Distance 

𝝈 

Thomas et al. (2019) advise that the input sphere radius 𝑟 should be 50 times the size of the first voxel 

grids 𝑑𝑙0. It is done so that the voxel grid size on the last layer will not exceed the input sphere radius 𝑟. 

In addition, window, wall, and door elements have similar shapes but have a unique element distribution. 

As a result, this research requires a larger value of the input sphere radius 𝑟, the convolution radius 𝑟, and 

the kernel influence distance 𝜎 with 2 m, 2.5 m, and 1.2 m, respectively. 

3.6.4. The Configuration of the Number of Kernel Points 𝑲, Sampling Method, and Training Parameters 

In the indoor building scenes, there are majority elements (e.g., ceiling, floor, and wall) with a huge 

quantity of point clouds and minority elements (e.g., beam, column, and stair) with a small quantity. It 

makes the dataset unbalanced since the majority elements dominate the minority element. Smaller kernel 

points work best with a majority of large elements, while larger kernel points work best with a minority of 

small elements (Thomas et al., 2019). Then, the regular picking strategy works best with most large 

elements, and the random picking strategy works best with a minority of small elements. Therefore, to 

overcome the unbalanced dataset, this research used two configurations of these parameters. The first is 

11 kernel points 𝐾 with the random picking strategy. The second is 15 kernel points 𝐾 with the regular 

picking strategy. 

3.7. Evaluation 

Based on the metrics used to evaluate most of the point cloud dataset, including the S3DIS dataset 

(Armeni et al., 2016), the quantitative performance for point cloud classification per class is evaluated 

using Precision, Recall, F-1 score, and Intersection Over Union or IoU. Then, the average values of IoU 

are computed to represent the overall performance. This research does not use Overall Accuracy since 

building elements in the indoor scene datasets can be unbalanced, as explained in Section 3.6.4. The 

reason is that Overall Accuracy measures the percentage of the correctly predicted datasets where the 

majority elements have a higher influence on the results than the minority elements (Everingham et al., 

2010). It can lead to poor evaluation of the network with unbalanced datasets. 
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Precision, Recall, and F-1 Scores are appropriate for performance evaluation for each class (Everingham et 

al., 2010). These metrics are not meant for the whole class because the averaged value of all classes does 

not represent the datasets correctly predicted as negative. Precision measures the percentage of the actual 

datasets correctly predicted for one class. Then, Recall measures the percentage of the dataset's prediction 

that is correct for one class. After that, F-1 Score combines Precision and Recall using a harmonic average. 

Nevertheless, the average value of Intersection over Union or IoU for the whole class can represent the 

network classification's performance since it applies the same influence for all classes (Everingham et al., 

2010). It measures the percentage of the union of predicted and actual datasets correctly predicted for one 

class. 
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4. DATA AND TOOLS 

The primary datasets used in this research are the BIM model, the New ITC Building Point Clouds 

datasets, and the S3DIS dataset (Armeni et al., 2016). They are described in Section 4.1, Section 4.2, and 

Section 4.3. Then, this research used the hardware and the software with explanations under Section 4.4 

and Section 4.5, respectively. 

4.1. The BIM model for the New ITC Building 

This BIM model covers multiple elements in indoor scenes, including beams, columns, doors, railing, 

roof, floor, stairs, walls, and windows. It has the geometric and semantic information of building elements 

standardized in Industry Foundation Class format or IFC. It is used as a design model for the construction 

phase of the new ITC building, as seen in Figure 4.1. The new ITC building is located at Hallenweg 21, 

7522 NH Enschede, the Netherlands. The location of the building can be seen in Figure 4.2. It is a two-

story building with 220m length and 50m width. It is possible to use the dataset since both are provided 

and owned by the ITC, Faculty Geo-Information Science and Earth Observation, University of Twente. 

 
Figure 4.1. BIM model for the New ITC Building (Source: Author) 
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Figure 4.2. The Location for the New ITC Building (Source: Google Maps) 

4.2. The New ITC Building Point Cloud Datasets 

The point clouds are derived from the indoor scenes of the new ITC building during the construction 

phase. The sensor system model used is Riegl VZ-400i. 155 scan positions were used to measure the point 

clouds. Table 9 describes the specification of the sensor system during the data measurement. The point 

clouds are manually labeled within the Digital Twin@ITC project. 

The New ITC Building Point Cloud Datasets consist of the ITC 2022 dataset acquired in April 2022 and 

the ITC 2021 dataset acquired in April 2021. Figure 4.3 illustrates both datasets. The figure shows that the 

ITC 2022 dataset consists of multiple building elements, including beams, columns, railing, roof, floor, 

stairs, walls, and windows. Then, unlike the ITC 2022 dataset, the ITC 2021 dataset does not have a stair 

element. 

Table 9. Configurations of Terrestrial Laser Scanning Simulation 

Specifications Value 

Measurement Range 1.5m to 600m 

Accuracy 5mm 

vertical Field of View 1000 deg 

Horizontal Field of View 3600 deg 

Pulse repetition rate Up to 300,000 points per second 

Laser wavelength 1550 nm 
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The ITC 2022 dataset 

 
The ITC 2022 dataset 

without Ceiling Element  

 
The ITC 2021 dataset 

 
The ITC 2021 dataset 

without Ceiling Element 

 
Figure 4.3 The New ITC Building Point Cloud Datasets (Source: Author) 

4.3. The Stanford Large-Scale 3D Indoor Spaces or S3DIS dataset 

As described in Section 1.3, this dataset is one of the benchmark point cloud datasets publicly available 

(Armeni et al., 2016). Stanford University developed the dataset. It contains over 215 million point clouds 

of 271 rooms from three different buildings. Each point cloud belongs to one of the multiple semantic 

classes, which regular indoor scenes have, including permanent elements (i.e., ceiling, floor, wall, beam, 

column, stairs, window, and door), furniture (i.e., table, sofa, board, bookcase, and chair), and clutter. 

4.4. Hardware 

BIM model conversion to synthetic point clouds is executed on a local computer. It has a 64-bit processor 

and 475.0 Giga Bytes memory. It has a Central Processing Unit (CPU) of AMD Ryzen 5 5600H with 

Radeon Graphics and a Graphics Processing Unit (GPU) of NVIDIA GeForce RTX 3050 Ti. 

The classification process is performed on the remote Linux server provided by the Faculty of ITC, 

University of Twente. It has a 64-bit processor and 256 Giga Bytes memory. It has a Central Processing 

Unit (CPU) of Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz and a Graphics Processing Unit (GPU) of 

NVIDIA A40. 
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4.5. Software 

Synthetic point clouds generation is executed using the open-source Blensor (Gschwandtner et al., 2011) 

and CloudCompare (CloudCompare - Home, 2023). Then, Python programming language with version 3.8 is 

used to manage the synthetic point clouds. It has multiple libraries, including Numpy, Scikit-learn, Pandas, 

and Matplotlib. These processes are carried out on a local computer. 

For the classification of point clouds, this research used the open-source PyTorch implementation for the 

KP-FCNN network (Thomas et al., 2019). The network is carried out in a conda virtual environment, with 

Python3.8, PyTorch 1.10.2, CUDA 11.3, and cuDNN 8.2.0. The open-source PuTTY (Download PuTTY: 

Latest Release (0.78), 2023) is used for accessing the remote Linux server, while WinSCP (WinSCP :: Official 

Site :: Free SFTP and FTP Client for Windows, 2023) is used for data transfer. 
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5. EXPERIMENTS 

Based on the objective mentioned in Section 1.6, this research executes four experiments to answer the 

research questions. 

5.1. Experiment 1 –  Comparing the Synthetic Point Clouds and the S3DIS Dataset 

Driven by the limitations explained in Section 1.3 and based on the hypothesis described in Section 1.4, an 

experiment is conducted to investigate the viability of the BIM models in point cloud classification. This 

experiment compares two networks trained with distinct datasets: 1) the synthetic point clouds generated 

from the BIM models and 2) the point clouds derived from the publicly available benchmark point clouds 

dataset, S3DIS (Armeni et al., 2016). 

5.2. Experiment 2 – Comparing the Ideal and the Simulated Method of Synthetic Point Clouds 

Generation 

As described in Section 2.1.4, no research has been conducted on the importance of the occlusion effect 

and the local point cloud distribution in synthetic point clouds. Then, using the second hypothesis made 

in Section 1.5, an experiment is held to compare two different methods for synthetic point cloud 

generation: 1) the Ideal Method that does not have the occlusion effect and has random local point cloud 

distribution and 2) the Simulated Method simulate the occlusion effect and the local point cloud 

distribution from the real point clouds. 

5.3. Experiment 3 – Comparing the Synthetic Point Clouds on Varying Levels of Sensor System Noise 

Motivated by the methods proposed by Griffiths & Boehm (2019b) explained in Section 2.1.5 and based 

on the second hypothesis made in Section 1.5, an experiment is carried out to confirm the influence of the 

sensor system noise of the synthetic point clouds in the classification performance. This experiment 

compares the network trained with the synthetic point clouds with seven different sensor system noise 

levels, including 0 m, 0.005 m, 0.01 m, 0.03 m, 0.05 m, 0.1 m, and 0.3 m. 

5.4. Experiment 4 – Comparing the Synthetic Point Clouds that Consider the Glass as Transparent and 

Non-Transparent 

This research presents an experiment that explores whether glass elements should be deemed transparent 

in synthetic point clouds and its impact on the classification performance of window elements. It is 

derived from the hypothesis and motivation described in Section 1.5 and Section 2.1.6, respectively. This 

experiment compares two networks trained with distinct datasets: 1) synthetic point clouds considering 



TRAINING DEEP NETWORKS WITH BIM MODELS FOR INDOOR POINT CLOUD CLASSIFICATION 

36 

glass objects as transparent, and 2) synthetic point clouds considering glass objects as non-transparent. 

Both datasets are generated using the Ideal Method. 

5.5. Experiment 5 – Augmenting the Synthetic Point Clouds and the S3DIS Dataset 

With the third hypothesis made in Section 1.6, this research conducts an experiment to adapt the synthetic 

point clouds utilizing the S3DIS dataset. In particular, this experiment evaluates the network trained with 

the combination of the synthetic point clouds and the S3DIS dataset. Then, the results are compared with 

the network trained only on the synthetic point clouds or the S3DIS dataset alone. 

5.6. Experiment 1 – 5 Execution 

To experiment 1 to 5, this research used the methodology described in Section 3. The workflow converts 

the BIM model, used as a design model to construct the New ITC Building explained in Section 4.1, into 

16 sets of synthetic point clouds. Table 10 describes the name and configurations of these sets. Then, the 

network is evaluated using the ITC 2022 Dataset described in Section 4.2.  

Table 10. Sets of Synthetic Point Clouds Generated in this Research 

No Name Generation Method Noise Transparent Glass 

1 Synthetic Point Clouds - 1a Ideal Method 0 m No 

2 Synthetic Point Clouds - 1b Ideal Method with Noise 0.005 m No 

3 Synthetic Point Clouds - 1c Ideal Method with Noise 0.01 m No 

4 Synthetic Point Clouds - 1d Ideal Method with Noise 0.03 m No 

5 Synthetic Point Clouds - 1e Ideal Method with Noise 0.05 m No 

6 Synthetic Point Clouds - 1f Ideal Method with Noise 0.1 m No 

7 Synthetic Point Clouds - 1g Ideal Method with Noise 0.3 m No 

8 Synthetic Point Clouds - 1h 
Ideal Method with Transparent 
Window 

0 m Yes 

9 Synthetic Point Clouds - 2a Simulated Method 0 m No 

10 Synthetic Point Clouds - 2b Simulated Method with Noise 0.005 m No 

11 Synthetic Point Clouds - 2c Simulated Method with Noise 0.01 m No 

12 Synthetic Point Clouds - 2d Simulated Method with Noise 0.03 m No 

13 Synthetic Point Clouds - 2e Simulated Method with Noise 0.05 m No 

14 Synthetic Point Clouds - 2f Simulated Method with Noise 0.1 m No 

15 Synthetic Point Clouds - 2g Simulated Method with Noise 0.3 m No 

16 Synthetic Point Clouds - 2h 
Simulated Method with 
Transparent Window 

0 m Yes 
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5.7. Experiment 6 – Applying the Proposed Approach on Different Construction Stages 

Similar to Experiment – 1, this research experiment on how robust this approach is to different stages of 

building construction. This experiment compares two networks trained with distinct datasets: 1) the 

synthetic point clouds and 2) the S3DIS dataset. The networks are tested using the ITC 2021 dataset 

described in Section 4.2. Then, the results are compared with the networks tested using the ITC 2022 

dataset. 
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6. RESULTS 

This Chapter presents the classification results of the networks trained with every synthetic point cloud 

and S3DIS dataset (Armeni et al., 2016). The networks are evaluated using multiple measures, including 

Precision, Recall, F-1 Score, and Intersection over Union or IoU. Since the test dataset does not have a 

door element, the door element is excluded from the calculation for the network's overall performance. 

6.1. Networks Trained using Network Parameter – 1 and Tested on the ITC 2022 dataset 

6.1.1. Networks Trained with the Synthetic Point Clouds Generated from the Ideal Method 

Table 11 shows the performance of the Ideal method, where it attains 39.98% m-IoU as the highest 

network overall performance from the Synthetic Point Clouds – 1e. Most network has floor element with 

high classification result. It has the IoU ranged from 7.66% to 92.87%. Then, huge amounts of stair 

elements are unidentified since 15.4% IoU is the highest classification result. After that, as the noise in the 

synthetic point clouds increased to 0.05 m, the network overall performance also increased. However, 

overall network performance is reduced as the noise increases beyond 0.05 m. After that, the synthetic 

point clouds that consider the glass a transparent object reduced the network's overall performance. 

Table 11. Results of the Network Trained with the Synthetic Point Clouds 
Generated from the Ideal Method 

Synthetic 

Point 

Clouds 

Dataset 

Noise 

(m) 

Transparent 

Glass 

Evaluation 

m-IoU 

(%) 

IoU for each Building Element (%) 

Beam Column Door Railing Ceiling Floor Stair Wall Window 

– 1a 0.000 No 20.94 30.69 19.69 0.00 8.07 1.81 62.53 5.95 20.21 18.57 

– 1b 0.005 No 23.78 47.26 11.28 0.00 11.49 0.92 49.62 15.04 42.31 12.31 

– 1c 0.010 No 29.16 46.13 28.57 0.00 32.29 12.13 51.88 3.06 40.43 18.81 

– 1d 0.030 No 35.62 60.72 7.17 0.00 36.20 46.69 64.14 7.70 34.40 27.97 

– 1e 0.050 No 39.98 62.86 17.12 0.00 0.00 86.75 92.87 0.00 51.96 8.27 

– 1f 0.100 No 36.56 62.83 0.00 0.00 8.92 72.40 73.54 4.83 43.82 26.17 

– 1g 0.300 No 12.93 1.24 0.01 0.00 5.78 62.00 7.66 0.00 26.74 0.00 

– 1h 0.000 Yes 25.43 40.78 11.92 0.00 23.36 41.97 41.81 6.65 31.95 5.03 
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6.1.2. Networks Trained with the Synthetic Point Clouds Generated from the Simulated Method 

Table 12 shows that the Simulated method achieves an m-IoU of 51.54% as the highest network overall 

performance from the Synthetic Point Clouds – 2c. Like the Ideal method results, overall network 

performance increases as the noise in the synthetic point clouds increases to 0.01 m. Then, beyond 0.01 m 

noise level, the network's overall performance is reduced. Unlike the Ideal method results, considering 

glass as a transparent object does not reduce the network's overall performance. Instead, it has comparable 

results. The networks, up to 0.001 m noise level, accurately classified ceiling and floor elements where 

each element gained IoU higher than 80.00%. Meanwhile, the window element is poorly classified, with 

24.24% IoU as the highest classification result. 

Table 12. Results of the Network Trained with the Synthetic Point Clouds 
Generated from the Simulated Method 

Synthetic 

Point 

Clouds 

Dataset 

Noise 

(m) 

Transparent 

Glass 

Evaluation 

m-IoU 

(%) 

IoU for each Building Element (%) 

Beam Column Door Railing Ceiling Floor Stair Wall Window 

– 2a 0.000 No 38.35 23.80 1.51 0.00 42.53 87.44 81.22 24.21 21.87 24.24 

– 2b 0.005 No 40.47 47.13 5.08 0.00 21.98 84.03 85.46 24.01 32.24 23.81 

– 2c 0.010 No 51.54 67.95 30.45 0.00 52.25 84.38 92.62 24.93 36.94 22.80 

– 2d 0.030 No 44.91 72.20 35.08 0.00 32.17 62.28 72.24 25.48 48.22 11.59 

– 2e 0.050 No 33.82 48.47 18.46 0.00 19.07 53.13 63.49 8.14 46.29 13.52 

– 2f 0.100 No 28.10 50.42 14.19 0.00 34.51 8.76 43.41 28.53 44.21 0.74 

– 2g 0.300 No 24.45 1.98 2.03 0.00 0.00 60.60 90.18 0.00 38.66 2.18 

– 2h 0.000 No 38.50 35.26 15.49 0.00 60.09 84.39 54.01 13.76 36.39 8.60 
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6.1.3. Networks Trained with the S3DIS dataset 

The overall performance of the network is shown in Table 13. It has m-IoU of 37.32%. It performs better 

than seven out of eight networks generated from the Ideal method. Contrarily, it performs less than most 

of the networks generated from the Simulated method (five out of eight networks). Like the networks 

generated from the Ideal and Simulated method, the ceiling and floor elements are the most well-

classified, with IoU higher than 70.00%. Column element is the lowest classification result of the network, 

with 4.28% IoU. Then, the network also fails to identify the beam, wall, and window element, where it 

only achieves IoU lower than 20.00%. Nevertheless, unlike the networks generated from the Ideal and 

Simulated method, it has a high stair classification result, with 76.07% IoU. Then, it has 0.00% IoU for the 

railing element since the S3DIS dataset does not provide any point clouds. 

Table 13. Results of the Network Trained with the S3DIS dataset 

Dataset 

Evaluation 

m-IoU 

(%) 

IoU for each Building Element (%) 

Beam Column Door Railing Ceiling Floor Stair Wall Window 

S3DIS 37.32 17.80 4.28 0.00 0.00 72.88 92.80 76.07 17.77 16.93 

 

6.1.4. Networks Trained with the Augmentation of Synthetic Point Clouds – 2c and S3DIS dataset 

As the network with the highest overall performance compared to others, it has 51.5% m-IoU. The 

network has the highest overall performance compared to all previously mentioned networks. It has 

55.01% m-IoU. Comparable to previous networks, the element with significant classification results is 

ceiling and floor elements, with IoU higher than 80.0%. Even though the network has the highest overall 

performance compared to others, the network is still unable to identify column elements completely. 

Table 14. Results of the Network Trained with the Augmentation of Synthetic Point Clouds – 2c and S3DIS dataset 

Dataset 

Evaluation 

m-IoU 

(%) 

IoU for each Building Element (%) 

Beam Column Door Railing Ceiling Floor Stair Wall Window 

Synthetic 

Point 

Clouds 

– 2c 

+ 

S3DIS 

55.01 69.09 24.97 0.00 64.71 86.28 92.88 32.96 38.14 31.06 
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6.2. Networks Trained using Network Parameter – 1 and Tested on the ITC 2021 dataset 

ITC 2021 dataset does not include a stair element. As a result, the classification result for it is 0.00%. 

Therefore, the calculation of the m-IoU excludes the stair element. Table 15 shows the network attains 

61.39% as the highest overall network performance. Similar to previous networks, elements with extensive 

coverage and simple geometry, like ceiling and floor, achieve higher classification results than others. 

Then, railing and window elements are the least well-classified, with IoU lower than 10%. Nevertheless, 

compared to the networks trained on the ITC 2022 dataset, it has higher classification results for beam 

and column elements. 

Table 15. Results of the Network Trained using Network Parameter – 1 
and Tested on the ITC 2021 dataset 

Dataset 

Evaluation 

m-IoU 

(%) 

IoU for each Building Element (%) 

Beam Column Door Railing Ceiling Floor Stair Wall Window 

SPC – 1a 42.39 49.33 86.71 0.00 0.23 60.56 99.19 0.00 0.35 0.35 

SPC – 1b 40.43 57.93 86.05 0.00 7.20 47.11 73.24 0.00 1.35 10.09 

SPC – 1c 52.96 68.56 80.96 0.00 0.00 82.13 98.20 0.00 40.14 0.75 

SPC – 1h 39.18 44.93 89.65 0.00 0.03 29.89 60.19 0.00 49.41 0.14 

SPC – 2a 56.79 85.24 69.29 0.00 0.31 90.86 98.20 0.00 51.95 1.71 

SPC – 2b 59.24 87.37 73.14 0.00 0.57 91.52 98.39 0.00 63.51 0.18 

SPC – 2c 61.39 86.88 87.07 0.00 7.14 92.18 98.29 0.00 56.54 1.66 

SPC – 2h 59.82 84.89 75.52 0.00 0.83 92.25 98.94 0.00 65.24 1.04 

S3DIS 33.89 31.16 1.36 0.00 0.00 77.47 98.78 0.00 28.48 0.00 

SPC = Synthetic Point Clouds 
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6.3. Networks Trained using Network Parameter – 2 and Tested on the ITC 2022 dataset 

As seen from Table 16, similar to the networks trained using Network Parameter – 1, the highest network 

overall performance of these networks is achieved from the Synthetic Point Clouds – 2c, with m-IoU of 

48.10%. The structural elements, like the ceiling and floor, are well-classified, and the column element is 

poorly identified. After that, the network's overall performance increases as the noise in the synthetic 

point clouds increases. 

Table 16. Results of the Networks Trained using Network Parameter – 2 
and Tested on the ITC 2022 dataset 

Dataset 

Evaluation 

m-IoU 

(%) 

IoU for each Building Element (%) 

Beam Column Door Railing Ceiling Floor Stair Wall Window 

SPC – 1a 25.73 30.89 8.63 0.00 0.00 26.42 89.98 3.47 38.98 7.49 

SPC – 1b 23.86 23.90 17.54 0.00 0.00 7.29 85.91 5.05 39.68 11.48 

SPC – 1c 32.12 34.57 13.85 0.00 0.00 60.94 82.16 12.34 36.73 16.41 

SPC – 1h 27.13 36.97 13.18 0.00 0.00 51.81 66.27 7.22 38.99 2.58 

SPC – 2a 36.49 43.16 5.17 0.00 12.13 81.02 83.69 27.53 23.10 16.15 

SPC – 2b 39.40 43.66 15.64 0.00 8.43 79.72 94.19 27.07 31.67 14.79 

SPC – 2c 48.10 66.17 14.82 0.00 28.59 85.35 94.64 40.94 36.41 17.90 

SPC – 2h 38.39 37.50 1.17 0.00 20.22 87.60 89.11 23.87 30.65 17.00 

S3DIS 39.93 37.70 0.17 0.00 0.00 82.33 90.85 63.19 23.56 21.67 

SPC = Synthetic Point Clouds 
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7. DISCUSSION 

This Chapter analyses the results presented in Section 6 to answer the research questions mentioned in 

Section 1.7. 

7.1. Common Performance for All Networks Trained using Network Parameter – 1 and Tested on ITC 

2022 dataset 

Based on the results reviewed in Section 6, the network trained on the Synthetic Point Clouds – 2c has the 

highest classification performance with 51.54% m-IoU. The network is generated from the Simulated 

method and includes a 0.01 m noise level. Then, most networks have the ceiling and floor as the highest 

classified elements, with the average IoU of 51.66% and 66.49%, respectively. On the contrary, most 

networks have the stair as the poorest-classified element, with an average IoU of 12.28%. 

7.1.1. The Class Imbalance Problem 

Low classification results of the networks can be attributed to the class imbalance problem. It occurs 

when there is an imbalance quantity of point clouds for each element that train the network (Zhang et al., 

2020). KP-FCNN utilizes point-based cross entropy for the classification loss function. During the 

network training phase, it sums up the loss from each neighboring point cloud from any elements and 

updates the network parameters. However, the loss can be significantly influenced by the majority 

elements with larger point clouds than minority elements. As a result, the network captures fewer features 

from the minority elements and leads to poor classification performance for the minority elements. 

As mentioned in Section 3.6.4, elements in indoor scenes of buildings are unbalanced where the majority 

elements (e.g., ceiling, floor, and wall) with a huge quantity of point clouds dominate the minority 

elements (e.g., column, railing, and stair) with a small quantity. Table 17 shows the number of point clouds 

and the classification result for each element for the network trained with Synthetic Point Clouds – 1a and 

Synthetic Point Clouds – 2a. From that table, it is apparent that there is a correlation between fewer point 

clouds and low classification results, especially for column, railing, and stair elements (marked in red). The 

ceiling and floor elements have the highest results as they have many point clouds (marked in green). 

Therefore, it can be concluded that the class imbalance problem in the datasets causes poor classification 

results. 
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Table 17. The Quantity and the Results of Network Trained with the Synthetic Point Clouds – 1a 
and the Synthetic Point Clouds – 2a 

Dataset Evaluation 
Building Element 

Beam Column Door Railing Ceiling Floor Stair Wall Window 

Synthetic 

Point 

Clouds 

– 1a 

Quantity 
8,972, 

447 

1,860, 

634 

9,516, 

129 

772, 

409 

43,554, 

213 

20,977 

,986 

1,044, 

355 

44,280,2

52 

12,433, 

382 

Quantity (%) 6.26 1.30 6.64 0.54 30.37 14.63 0.73 30.88 8.67 

IoU (%) 30.69 19.69 0.00 8.07 1.81 62.53 5.95 20.21 18.57 

m-IoU (%) 20.94 

Synthetic 

Point 

Clouds 

– 2a 

Quantity 
9,903 

,988 

3,000 

,496 

13,719 

,522 

942 

,781 

19,129 

,928 

45,659 

,298 

748 

,873 

112,973,

617 

23,605 

,059 

Quantity (%) 4.31 1.31 5.97 0.41 8.33 19.88 0.33 49.19 10.28 

IoU (%) 23.80 1.51 0.00 42.53 87.44 81.22 24.21 21.87 24.24 

m-IoU (%) 38.35 

 

7.1.2. The Inter-Class Similarity Problem 

Low classification results of the networks can also be derived from the inter-class similarity problem. It 

can occur when different elements used to train the network exhibit similar appearances, which makes 

their geometry features indistinguishable (Venkataramanan et al., 2021). Since this research utilizes only 

the geometry features from the point clouds mentioned in Section 3.6.1, this condition confuses the 

network to differentiate between them. As a result, it leads to lower classification performance. 

From Table 17, beam, column, and window elements have a high point cloud quantity but have lower 

classification results (marked in red). Table 18 shows the normalized precision confusion matrix for the 

network trained on the Synthetic Point Clouds – 2a. From that table, it can be seen that there is a high 

precision value between beam, wall, and window elements (marked in red), which means there is a huge 

confusion between them. Then, Figure 7.1, Figure 7.2, Figure 7.3, and Figure 7.4 illustrates the IFC data 

for column, beam, wall, and window elements. Figure 7.4 shows that the window element has multiple 

variations that share similar shapes to beam, column, and wall elements. As a result, it can be summarized 

that inter-class similarity problem in the datasets causes poor classification results. 

Table 18. The Recall Matrix of the Network trained with the Synthetic Point Clouds – 2a 
Recall Matrix (%) 

 Ground Truth 

  beam column door railing ceiling floor stair wall window 

P
re

d
ic

ti
o

n
 

beam 24.41 0.00 0.00 0.00 0.59 0.00 0.00 0.39 0.74 
column 0.02 2.15 0.00 0.08 0.00 0.00 0.00 0.51 3.12 

door 0.00 25.81 0.00 36.68 0.00 0.02 0.05 16.92 11.66 
railing 0.01 0.14 0.00 44.30 0.00 0.27 0.01 0.34 0.15 
ceiling 11.60 0.00 0.00 0.00 95.04 0.00 0.00 0.37 10.47 
floor 0.07 0.05 0.00 0.00 0.72 82.35 0.00 0.14 0.70 
stair 1.52 0.27 0.00 6.82 0.20 7.59 99.83 0.49 1.64 
wall 0.05 0.03 0.00 0.27 0.08 0.59 0.00 22.34 1.38 

window 62.31 71.55 0.00 11.86 3.38 9.18 0.11 58.49 70.14 
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Figure 7.1. Column Element in the BIM models 

(Source: Author) 

 
Figure 7.2. Beam Element in the BIM models 

(Source: Author) 

 
Figure 7.3. Wall Element in the BIM models 

(Source: Author) 

 
Figure 7.4. Window Element in the BIM models 

(Source: Author) 
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7.1.3. Other Misclassification Problem 

Additionally, certain wall elements are incorrectly classified as windows, not because of the class imbalance 

and the inter-class similarity problems. Figure 7.5 shows that this wall element has different shapes 

compared to the one in the synthetic point clouds or the BIM model. Instead, it has similar shapes to 

windows. This wall element is believed to be the same as the one presented in the BIM model but is still in 

construction. Thus, it can be inferred that incomplete elements pose a higher risk of low classification 

performance since they have a distinct appearance than finished ones. 

 
wall element, ITC 2022 dataset 

 
wall element, 

Synthetic Point Clouds – 1a 

 
wall element, BIM model 

Figure 7.5. Wall Element in the ITC 2022 dataset, the Synthetic Point Clouds – 1a, and the BIM model 
(Source: Author) 
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7.2. Experiment 1 – Comparing the Synthetic Point Clouds and the S3DIS Dataset 

This Section presents a comparative analysis of the network trained with the synthetic point clouds and 

those trained with the S3DIS dataset (Armeni et al., 2016). As previewed in Section 6.1.3, most synthetic 

point clouds outperformed the S3DIS dataset, particularly the Synthetic Point Clouds – 2c with a 14.22% 

m-IoU difference. Table 17 provides a comprehensive comparison between these datasets for each 

element. It highlights that the classification result for each element in the Synthetic Point Clouds – 2c also 

outperformed the S3DIS dataset, especially for beam and column elements, with 50.15% and 26.17% IoU 

differences, respectively. However, even though the Synthetic Point Clouds – 2c has a higher quantity of 

point clouds for the stair element, the S3DIS dataset still has superior classification results, with a 51.14% 

IoU difference. 

Table 19. The Quantity and the Results of Network Trained with S3DIS Dataset and the Synthetic Point Clouds – 2c 

Dataset Evaluation 
Building Element 

Beam Column Door Railing Ceiling Floor Stair Wall Window 

S3DIS 

Quantity 
4,742, 

256 

5,528, 

480 

13,065, 

914 
0 

52,712, 

823 

45,207, 

796 

598, 

622 

75,941, 

217 

6,891, 

880 

Quantity (%) 2.32 2.70 6.38 0.00 25.75 22.09 0.29 37.10 3.37 

IoU (%) 17.80 4.28 0.00 0.00 72.88 92.80 76.07 17.77 16.93 

m-IoU (%) 37.31 

Synthetic 

Point 

Clouds 

– 2c 

Quantity 
9,818, 

542 

2,874, 

775 

16,501, 

670 

962, 

921 

8,712, 

074 

52,394, 

079 

742, 

708 

102,187, 

077 

21,775, 

139 

Quantity (%) 4.55 1.33 7.64 0.45 4.03 24.26 0.34 47.32 10.08 

IoU (%) 67.95 30.45 0.00 52.25 84.38 92.62 24.93 36.94 22.80 

m-IoU (%) 51.53 
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As described in Section 1.3, the low performance of the S3DIS dataset happens as a consequence of the 

network's inability to classify unfamiliar elements, especially beam and column elements. Figure 7.6 and 

Figure 7.7 compares the appearance of beam and column elements in the S3DIS dataset, the Synthetic 

Point Clouds – 2c, and the ITC 2022 dataset. Unlike the Synthetic Point Clouds – 2c, those derived from 

the S3DIS dataset have distinct shapes from the ITC 2022 dataset. Beam elements in the S3DIS datasets 

are not continuous, with huge gaps that split the elements. Then, column elements in the S3DIS datasets 

have wider widths and have incomplete point clouds at the bottom. These gaps can be derived from the 

occlusion effect, where the furniture elements block the column from the sensor system. 

 
Area - 2  

Area - 2 

  
Area - 4 

 

Area - 4 

 
Area - 6 

 

Area - 6 

Beam element, S3DIS 
Beam element, 

the Synthetic Point Clouds – 2c 
Beam element, 

the ITC 2022 dataset 

Figure 7.6. Beam Element in the S3DIS Dataset, Synthetic Point Clouds – 2c, and the ITC 2022 dataset 
(Source: Author) 
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Area - 4 

Column, S3DIS 

 
Area - 4 

Column, the Synthetic Point Clouds – 2c 

 

Column, The ITC 2022 dataset 

Figure 7.7. Column Element in the S3DIS Dataset, the Synthetic Point Clouds – 2c, 
and the ITC 2022 dataset (Source: Author) 
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The reason behind the higher stair classification performance accomplished by the S3DIS dataset can be 

derived from the difference in the density of point clouds. Figure 7.8 illustrates that the S3DIS dataset 

provides more quantity for a single stair than the Synthetic Point Clouds – 2c. In addition, the shape of 

the stair element in the S3DIS dataset does not differ from the ITC 2022 dataset. 

 
Quantity = 69,389 points 

 

 

Quantity = 75,905 points 

Stair, S3DIS 

 
Quantity = 17,078 points 

 
Quantity = 15,267 points 

Stair, the Synthetic Point Clouds – 2c 

 
Quantity = 97,809 points 

 
Quantity = 80,275 points 

Stair, the ITC 2022 dataset 

Figure 7.8. The Quantity for Certain Stairs in the S3DIS Dataset, Synthetic Point Clouds – 2c, 
and the ITC 2022 dataset (Source: Author) 
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7.3. Experiment 2 – Comparing the Ideal and the Simulated Method of Synthetic Point Clouds 

Generation 

This Section compares the classification performance of the network trained with two different datasets: 

1) the Synthetic Point Clouds – 1a generated from the Ideal Method that does not have the occlusion 

effect and has random local point cloud distribution, and 2) the Synthetic Point Clouds – 2a generated 

from the Simulated Method that simulates the occlusion effect and the local point cloud distribution from 

the real point clouds. 

Table 18 shows Synthetic Point Clouds – 2a outperforms Synthetic Point Clouds – 1 with 17.41% m-IoU 

differences. Figure 7.9 shows the front and side views of the local point cloud distributions obtained from 

three datasets: the ITC 2022 dataset, the Synthetic Point Clouds – 1a, and the Synthetic Point Clouds – 2a. 

These point clouds are derived from the flat surface of the wall element, all at the same location in the 

BIM model. These figures reveal that the point clouds in the ITC 2022 dataset primarily occupy the 

element surfaces, with a minor proportion positioned above the element surfaces. Particularly, the point 

clouds on the element surfaces exhibit a uniform distribution, while those above the element surfaces are 

randomly distributed. 

In contrast, the Synthetic Point Clouds – 1a and the Synthetic Point Clouds – 2a only have point clouds 

on the element surfaces, and none are located above the element surfaces. Nevertheless, the Synthetic 

Point Clouds – 2a closely resemble the ITC 2022 dataset in terms of the distribution on the element 

surfaces, exhibiting a uniform distribution. Contrarily, the Synthetic Point Clouds – 1 exhibit a random 

distribution. As a result, it can be concluded that the high performance of the Synthetic Point Clouds – 2a 

is due to its resemblance with the local point cloud distribution of the real point cloud, especially those 

that exhibit on the element surfaces. 

Table 20. the Results of Network Trained with the Synthetic Point Clouds – 1a and the Synthetic Point Clouds – 2a 
Synthetic 

Point 

Clouds 

Dataset 

Evaluation 

m-IoU 

(%) 

IoU for each Building Element (%) 

Beam Column Door Railing Ceiling Floor Stair Wall Window 

– 1a 20.94 30.69 19.69 0.00 8.07 1.81 62.53 5.95 20.21 18.57 

– 2a 38.35 23.80 1.51 0.00 42.53 87.44 81.22 24.21 21.87 24.24 

 



TRAINING DEEP NETWORKS WITH BIM MODELS FOR INDOOR POINT CLOUD CLASSIFICATION 

52 

 
Front View 

 

Front View 

 

Front View 

 
Side View 

 

Side View 

 

Side View 

the ITC 2022 dataset the Synthetic Point Clouds – 1 the Synthetic Point Clouds – 2 

Figure 7.9. Point Cloud Distribution in the ITC 2022 dataset, the Synthetic Point Clouds – 1a 
and the Synthetic Point Clouds – 2a (Source: Author) 
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Even though Synthetic Point Clouds – 1a has lower overall network performance, it has higher 

classification results for the beam and column element (marked in red) than Synthetic Point Clouds – 2a. 

Figure 7.10 shows that the column element has higher noise than the ceiling element. Therefore, it can be 

assumed that the network trained on the Synthetic Point Clouds – 1a can generalize well with higher 

noise-level elements. The reason is that the random local point cloud distribution on the element surfaces 

from the Synthetic Point Clouds – 1a can simulate the local point cloud distribution of the real point 

cloud, especially those positioned above the element surfaces. 

 
Top View 

  
Side View 

 

 
Top View 

 
Side View 

Column Element, 
the ITC 2022 dataset 

Ceiling Element, 
the ITC 2022 dataset 

Figure 7.10. Local Point Cloud Distribution for Column and Ceiling Elements 
in the ITC 2022 dataset (Source: Author) 
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7.4. Experiment 3 – Comparing the Synthetic Point Clouds on Varying Levels of Sensor System Noise 

This Section presents a comparative analysis of the classification performance of the network trained on 

three different point clouds with varying noise levels derived from the Ideal and Simulated methods. 

According to Table 21 and Figure 7.11, increasing the noise to a certain level enhances the network's 

overall performance. Despite that, increasing the noise beyond that level can also reduce the network's 

overall performance. For the Ideal method, the Synthetic Point Clouds – 1e, with 0.05 m noise level, 

achieves the highest result with 39.98% m-IoU. Then, for the Simulated method, the Synthetic Point 

Clouds – 2c, with 0.01 m noise level, achieves the highest result with 51.54% m-IoU. 

Table 21. The Results of the Network Trained with the Synthetic Point Clouds generated 
from the Ideal method and the Simulated method 

Ideal Method 
Dataset 

Noise 
(m) 

m-IoU 
(%) 

 
Simulated Method 

Dataset 
Noise 
(m) 

m-IoU 
(%) 

Synthetic Point Clouds – 1a 0 20.94  Synthetic Point Clouds – 2a 0 38.35 

Synthetic Point Clouds – 1b 0.005 23.78  Synthetic Point Clouds – 2b 0.005 40.47 

Synthetic Point Clouds – 1c 0.01 29.16  Synthetic Point Clouds – 2c 0.01 51.54 

Synthetic Point Clouds – 1d 0.03 35.62  Synthetic Point Clouds – 2d 0.03 44.91 

Synthetic Point Clouds – 1e 0.05 39.98  Synthetic Point Clouds – 2e 0.05 33.82 

Synthetic Point Clouds – 1f 0.1 36.56  Synthetic Point Clouds – 2f 0.1 28.10 

Synthetic Point Clouds – 1g 0.3 12.93  Synthetic Point Clouds – 2g 0.3 24.45 

 

 
Figure 7.11. The Graph between the Noise Level and the Network’s Overall Performance 

for the Ideal and Simulated Method (Source: Author) 

The superior classification results of the Synthetic Point Clouds – 2c can be attributed to a greater 

resemblance to the local point cloud distribution of the ITC 2022 dataset. Figure 7.12 shows the front and 

side view for the point cloud distribution of these datasets and the ITC 2022 dataset. They are all derived 

from the flat surface of the wall element located in the same location in the BIM model. From the front 

view, up until 0.01 m noise level, these datasets' local point cloud distribution exhibits no significant 

differences, demonstrating a uniform distribution that resembles the ITC 2022 dataset. However, beyond 
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the 0.01 m noise level, the local point cloud distribution starts to randomize, differing from the ITC 2022 

dataset. Then, from the side view, these datasets' local point cloud distribution is different, especially those 

positioned above the element surfaces. The Synthetic Point Clouds – 2c have approximately 50.0% of 

point clouds above the element surfaces, aligning more closely with the local point cloud distribution 

observed in the ITC 2022 dataset. It has a length of 0.03 m from the farthest point cloud to the element 

surfaces. 

 
Front View                     Side View 

the ITC 2022 dataset 

 
Front View                  Side View 

Synthetic Point Cloud – 2a, Noise 0.00 m 

 
Front View                   Side View 

Synthetic Point Cloud – 2e, Noise 0.05 m 

 
Front View                  Side View 

Synthetic Point Cloud – 2c, Noise 0.01 m 

 
Front View                                 Side View 

Synthetic Point Cloud – 2g, Noise 0.30 m 

Figure 7.12. The Front and the Side View of the Wall Element in the Synthetic Point Clouds 
Generated from the Simulated Method (Source: Author) 
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The high classification results achieved by Synthetic Point Clouds – 2c are proven by its ability to classify 

point clouds with high noise levels effectively. Figure 7.13 presents both the oblique and side views of the 

network's predictions using each point cloud, with the point clouds from the ITC 2022 dataset 

represented in blue. These Figures are obtained from the flat surface of the beam element located in the 

same location within the BIM model. It is evident from the figures that Synthetic Point Clouds – 2a fails 

to classify point clouds with noise. Then, the Synthetic Point Clouds – 2b correctly classify the point 

clouds with small noise. After that, the Synthetic Point Clouds – 2c successfully classify all point clouds 

affected by noise. Consequently, it can be concluded that the network exhibits higher classification 

performance when utilizing synthetic point clouds with noise levels akin to the configurations found in 

Terrestrial Laser Scanning. 

 
Oblique View 

 
Side View 

 the Synthetic Point Clouds – 2c 
  

the ITC 2022 dataset 

 
Oblique View 

 
Side View 

 the Synthetic Point Clouds – 2b 
  

the ITC 2022 dataset 

 
Oblique View 

 
Side View 

 the Synthetic Point Clouds – 2a 
  

the ITC 2022 dataset 

Figure 7.13. The Prediction for Beam Element in the Synthetic Point Clouds – 2c, Synthetic Point Clouds – 2b, 
and Synthetic Point Clouds – 2a (Source: Author) 
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7.5. Experiment 4 – Comparing the Synthetic Point Clouds that Consider the Glass as Transparent 

and Non-Transparent 

This Section compares the classification performance of the network trained on the synthetic point clouds 

that consider the glass a non-transparent object and the synthetic point clouds that consider it a 

transparent object. 

Window elements in the New ITC Building consist of transparent glass and a non-transparent frame. 

Figure 7.14 displays the prediction for the window element using the Synthetic Point Clouds – 2a and the 

Synthetic Point Clouds – 2h. It can be seen that the network trained on the Synthetic Point Clouds – 2a 

classifies the glass and the frame part of the window. Contrarily, the network trained on the Synthetic 

Point Clouds – 2h classifies only the frame part of the window. 

 

 
window element, the Synthetic Point Clouds – 2a 

 

 window element, the Synthetic Point Clouds – 2h 

Figure 7.14. The Prediction of Window Element using Synthetic Point Clouds – 2a 
and Synthetic Point Clouds – 2h (Source: Author) 

Table 20 shows that the beam and wall element classification result is increased when using the synthetic 

point clouds that consider glass as a transparent object. The reason is that removing the glass part from 

the window in the synthetic point clouds can reduce the similarity between the window with the beam and 

wall elements. As a result, this condition reduces the influence of the inter-class similarity problem 

described in Section 7.1.2. 
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Despite having different classification results for beam and wall elements, both datasets have similar m-

IoU values as the overall classification performance. Additionally, the classification result of the window 

element using the Synthetic Point Clouds – 2h is lower than that of Synthetic Point Clouds – 2a. The 

reason is that the ITC 2022 dataset used to test the network still has point clouds for the glass part of the 

window element, which is classified as a window. Then, the network can not learn the features of the glass 

part of the window element since the Synthetic Point Clouds – 2h do not provide any. As a result, the 

point clouds located at the glass part are misclassified as door and wall elements, decreasing the 

classification result for window elements. 

Table 22. The Results of the Network Trained with the Synthetic Point Clouds that consider the Glass Object 
as Transparent and Non-transparent 

Synthetic 

Point 

Clouds 

Dataset 

Transparent 

Glass 

Evaluation 

m-IoU 

(%) 

IoU for each Building Element (%) 

Beam Column Door Railing Ceiling Floor Stair Wall Window 

– 1a No 20.94 30.69 19.69 0.00 8.07 1.81 62.53 5.95 20.21 18.57 

– 1h Yes 25.434 40.78 11.92 0.00 23.36 41.97 41.81 6.65 31.95 5.03 

– 2a No 38.35 23.80 1.51 0.00 42.53 87.44 81.22 24.21 21.87 24.24 

– 2h Yes 38.50 35.26 15.49 0.00 60.09 84.39 54.01 13.76 36.39 8.60 

 

7.6. Experiment 5 – Augmenting the Synthetic Point Clouds and the S3DIS Dataset 

This Section compares the classification performance of the network trained on three different datasets: 

the Synthetic Point Clouds – 2c, the S3DIS datasets, and the augmentation of Synthetic Point Clouds – 2c 

and S3DIS datasets. 

As seen in Table 23Table 23. The Results of Network Trained with the Synthetic Point Clouds – 2c, the 

S3DIS dataset,, the network's overall performance has a 12.3% m-IoU increase by augmenting Synthetic 

Point Clouds – 2c and S3DIS datasets, compared to only S3DIS datasets. Despite that, not all elements 

experienced an enhancement in classification results. Only window and railing elements have higher 

classification results, while column and stair elements have reduced classification results. It assumed that 

the network can not learn different variations of column and stair elements from Synthetic Point Clouds – 

2c and S3DIS datasets, resulting in lower classification results. 
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Table 23. The Results of Network Trained with the Synthetic Point Clouds – 2c, the S3DIS dataset, 
and the Combination of the Synthetic Point Clouds – 2c and the S3DIS dataset 

Dataset 

Evaluation 

m-IoU 

(%) 

IoU for each Building Element (%) 

Beam Column Door Railing Ceiling Floor Stair Wall Window 

Synthetic 

Point 

Clouds 

– 2c 

51.54 67.95 30.45 0.00 52.25 84.38 92.62 24.93 36.94 22.80 

S3DIS 37.32 17.80 4.28 0.00 0.00 72.88 92.80 76.07 17.77 16.93 

Synthetic 

Point 

Clouds 

– 2c 

+ 

S3DIS 

55.01 69.09 24.97 0.00 64.71 86.28 92.88 32.96 38.14 31.06 

 

7.7. Experiment 6 – Applying the Proposed Approach on Different Construction Stages 

This Section compares the classification performance of the networks tested on the ITC 2021 and ITC 

2022 datasets.  

Based on Table 24, four similarities are found in the results of the networks tested on the ITC 2021 and 

ITC 2022 datasets. First, mirroring the findings revealed in Section 7.3, the Synthetic Point Clouds – 2a 

has better overall network performance than the Synthetic Point Clouds – 1a, proving that Simulated 

methods generate the synthetic point clouds with more resemble than the Ideal method. Second, similar to 

findings in Section 7.4, the classification results for each element are enhanced by increasing the noise 

level as the Synthetic Point Clouds – 2c has better results than the Synthetic Point Clouds – 2a. Third, 

parallels with the conclusions explained in Section 7.5, the classification result for the window element is 

lower in the Synthetic Point Clouds – 2h compared to the Synthetic Point Clouds – 2a. Fourth, 

reminiscent of the observations described in Section 7.2, the Synthetic Point Clouds – 2c has better overall 

network performance than the S3DIS dataset. It proved that the BIM model can help provide the 

synthetic point clouds that are more relevant to the point cloud classification for this building than the 

S3DIS dataset. 

Despite that, unlike the networks tested in the ITC 2022 dataset, the network tested on the ITC 2021 

dataset has higher classification results for beam, column, and wall elements. As mentioned in Section 

7.1.2, the window on the ITC 2022 dataset has multiple variations that lead to inter-class similarity 

problems and reduces the discriminative power of the network. Nevertheless, the ITC 2021 dataset only 

consists of a single window variation located on the ceiling, as seen in Figure 7.16. Additionally, they have 

distinct shapes with the beam, column, and wall elements, avoiding inter-class similarity problems. 
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Additionally, the network tested on the ITC 2021 dataset has poor railing and window elements results. 

The low classification result in the railing element is primarily because of the significant disparity of the 

railing element in the training and test datasets. Figure 7.15 illustrates that the railing element in the ITC 

2021 dataset is more complex than in synthetic point clouds. As a result, the network failed to identify the 

railing element in the ITC 2021 dataset. After that, the low classification result in the window element is 

due to the limited quantity of training datasets. As previously mentioned, the ITC 2021 dataset only 

consists of a single window variation on the ceiling. However, this window variation is only represented by 

a few point clouds. For example, in the synthetic point clouds – 2a, 591,387 out of 23,605,059 points, or 

2.5% from the window element in the synthetic point clouds. As a result, this window variation is under-

represented, and the network can not capture enough features to identify it in the test dataset. 

Therefore, it can be concluded that utilizing the proposed approach in different building construction 

stages may provide different classification results. 

Table 24. The Results of the Network Tested on the ITC 2021 and ITC 2022 datasets 

Dataset 
Test 

Dataset 

Evaluation 

m-IoU 

(%) 

IoU for each Building Element (%) 

Beam Column Door Railing Ceiling Floor Stair Wall Window 

Synthetic 

Point 

Clouds 

– 1a 

ITC 

2022 
20.94 30.69 19.69 0.00 8.07 1.81 62.53 5.95 20.21 18.57 

ITC 

2021 
42.39 49.33 86.71 0.00 0.23 60.56 99.19 0.00 0.35 0.35 

Synthetic 

Point 

Clouds 

– 2a 

ITC 

2022 
38.35 23.80 1.51 0.00 42.53 87.44 81.22 24.21 21.87 24.24 

ITC 

2021 
56.79 85.24 69.29 0.00 0.31 90.86 98.20 0.00 51.95 1.71 

Synthetic 

Point 

Clouds 

– 2c 

ITC 

2022 
51.54 67.95 30.45 0.00 52.25 84.38 92.62 24.93 36.94 22.80 

ITC 

2021 
61.39 86.88 87.07 0.00 7.14 92.18 98.29 0.00 56.54 1.66 

Synthetic 

Point 

Clouds 

– 2h 

ITC 

2022 
38.50 35.26 15.49 0.00 60.09 84.39 54.01 13.76 36.39 8.60 

ITC 

2021 
59.82 84.89 75.52 0.00 0.83 92.25 98.94 0.00 65.24 1.04 

S3DIS 

ITC 

2022 
37.32 17.80 4.28 0.00 0.00 72.88 92.80 76.07 17.77 16.93 

ITC 

2021 
33.89 31.16 1.36 0.00 0.00 77.47 98.78 0.00 28.48 0.00 
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Railing, ITC 2021 Dataset 

 

Railing, ITC 2022 Dataset 

 
Railing, BIM Model 

 
Railing, the Synthetic Point Clouds – 1a 

Figure 7.15. Railing Element in the ITC 2021 dataset, the ITC 2022 dataset, 
the BIM model, and the Synthetic Point Clouds – 1a (Source: Author) 

 
ITC 2021 Dataset 

 window element  ceiling element 

 beam element  wall element 

Figure 7.16. Window Element in the ITC 2021 Dataset (Source: Author) 

7.8. The Uses of KP-FCNN 

This section explores the utilization of KP-FCNN deep learning networks in this research. First, the 

classification performance of the networks trained using Network Parameter – 1 and those trained using 
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Network Parameter – 2 are compared. Then, utilizing a large voxel size for grid subsampling is also 

explored. 

As explained in Section 2.3, Network Parameter – 2 has a random picking strategy that arbitrarily samples 

the input point clouds and samples the same number for each class. It makes the network loss during the 

network training has balanced influences from each element, resulting in higher classification 

performance. Despite that, as seen in Table 25, there are no significant differences in the overall 

classification performance between the networks that used these parameters. It assumed that the inter-

class similarities problems described in Section 7.1.2 conflict with the influences of the random picking 

method. Hence, the random picking method fails to increase the influence of the minority elements. 

Additionally, as mentioned in Section 7.1.2, wall and window elements share similar shapes that confuse 

the network and lead to poor classification performance for the S3DIS dataset. Nevertheless, utilizing a 

large voxel size for grid subsampling in KP-FCNN, executed in Section 3.6.2, can make the network learn 

the position distribution of wall and window elements. As a result, the Synthetic Point Clouds – 2c has 

higher classification performance than the S3DIS dataset, especially for wall elements with 19.17% IoU 

differences. 

Table 25. The Results of Network Trained using Network Parameter – 1 and Network Parameter – 2 

Dataset 
Network 

Parameter 

Evaluation 

m-IoU 

(%) 

IoU for each Building Element (%) 

Beam Column Door Railing Ceiling Floor Stair Wall Window 

Synthetic 

Point 

Clouds 

– 1a 

1 20.94 30.69 19.69 0.00 8.07 1.81 62.53 5.95 20.21 18.57 

2 25.73 30.89 8.63 0.00 0.00 26.42 89.98 3.47 38.98 7.49 

Synthetic 

Point 

Clouds 

– 2a 

1 38.35 23.80 1.51 0.00 42.53 87.44 81.22 24.21 21.87 24.24 

2 36.49 43.16 5.17 0.00 12.13 81.02 83.69 27.53 23.10 16.15 

Synthetic 

Point 

Clouds 

– 2c 

1 51.54 67.95 30.45 0.00 52.25 84.38 92.62 24.93 36.94 22.80 

2 48.10 66.17 14.82 0.00 28.59 85.35 94.64 40.94 36.41 17.90 

Synthetic 

Point 

Clouds 

– 2h 

1 38.50 35.26 15.49 0.00 60.09 84.39 54.01 13.76 36.39 8.60 

2 38.39 37.50 1.17 0.00 20.22 87.60 89.11 23.87 30.65 17.00 

S3DIS 

1 37.32 17.80 4.28 0.00 0.00 72.88 92.80 76.07 17.77 16.93 

2 39.93 37.70 0.17 0.00 0.00 82.33 90.85 63.19 23.56 21.67 
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Wall Element Prediction using 
S3DIS 

 
Wall Element Prediction using 
the Synthetic Point Clouds – 2c 

Figure 7.17. The Prediction for the Wall Element using S3DIS Dataset and Synthetic Point Clouds – 2c 
(Source: Author) 

 

Wall Element in 
the ITC 2022 dataset 

Figure 7.18. Wall Element in the ITC 2022 dataset (Source: Author) 

7.9. Limitations 

Below are the limitations of the approach used in this research. 

The Inconsistency of the IFC Class in the BIM Model 

The BIM model is converted into synthetic point clouds with semantic information based on the IFC 

class. However, as explained in Section 3.1, the IFC class can not be used directly. For example, although 

the IFC stair does not include other IFC classes, it contains other elements, including floor and railing. 

Consequently, it can introduce inter-class similarity problems to the network, causing misclassifications. 

Therefore, the classification of the IFC class needs to be done as pre-processing. 

The Need for the Normalization in the Training Dataset 
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Then, as explained in Section 3.5, normalization needs to be done to the point clouds before using it to 

train the deep learning network. The limitation derived from this process is that the classified point clouds, 

with the acquired semantic information, can not be directly utilized on the target application. Specifically, 

the normalized point clouds must be returned to their original position. Then, the point clouds separated 

based on their floor must be combined back. Construction progress monitoring can not be done if the 

design model and the classified point clouds are in different positions. Therefore, another post-processing 

procedure is needed. 

Coordinate system transformation or registration methods can be utilized for this problem. The 

transformation parameters can be defined by comparing the normalized position with the original position 

of point clouds. Additionally, before the semantic classification process, adding an index feature to four 

point clouds can facilitate this process. It assists in the search for the corresponding point clouds in the 

normalized and the original point clouds. 
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8. CONCLUSION AND RECOMMENDATION 

This chapter concludes all of the research findings in Section 8.1. Then, the research questions mentioned 

in Section 1.7 are answered in Section 8.2. Lastly, multiple recommendations are described in Section 0 to 

improve the approach used in this research. 

8.1. Conclusion 

The main objective of this research is to confirm the effectiveness of of the BIM models for point cloud 

classification to overcome the problem of limited availability of labeled indoor point cloud datasets. This 

research focused to classify building elements found in the construction progress monitoring, including 

beam, ceiling, column, door, floor, railing, stair, wall, and window. The BIM models are converted into 

labeled synthetic point clouds with relevant shapes of the architectural layouts to the buildings to be 

predicted. Then, the synthetic point clouds are used to train the deep learning network. The results of this 

approach are evaluated based on the comparison with the benchmark point clouds dataset publicly 

available, S3DIS (Armeni et al., 2016). 

Leveraging existing BIM models are proven to be helpful for the point cloud classification at indoor 

scenes. The networks trained on the synthetic point clouds has a better network's overall performance 

than the S3DIS dataset. In Section 7.2, the Synthetic Point Clouds – 2c, generated from the Simulated 

method with 0.01 m noise level, has 14.22% mean – Intersection over Union (m-IoU) differences with the 

S3DIS dataset when tested on the ITC 2022 dataset. Section 7.7 also has similar results when tested on 

earlier stages of the construction, the ITC 2021 dataset. The Synthetic Point Clouds – 2c has 27.50% m-

IoU differences with the S3DIS dataset. Then, based on Section 3.3, this approach does not utilize manual 

data collection and classification, which makes it an inexpensive and non-subjective process. 

There is a case where the S3DIS dataset remains superior compared to the Synthetic Point Clouds. The 

S3DIS dataset has higher classification results for the stair element by 51.14% IoU since it has higher 

point cloud density. Therefore, synthetic point cloud generation methods should be configured to have a 

sufficient density of point clouds. 

Additionally, as mentioned in Section 7.1.1 and Section 7.1.2, this research encountered class-imbalance 

and inter-class similarity problems that degraded the network performance. Small amounts of stair 

element, with less than one percent of overall point clouds, are dominated by floor and ceiling elements. 

As a result, it only has 25.48% IoU as the higest classification results. After that, the network struggles to 

differentiate between beam, wall, and window elements. There are multiple variations of window elements 
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that share similar shapes to others, resulting in low window classification result with 27.97% IoU as the 

highest result. 

8.2. Answer to Research Questions 

This section answers the research questions mentioned in Section 1.7 

1. How will the results changed when the same synthetic point clouds are used in different 

construction stages of the buildings? 

Utilizing the same synthetic point clouds in different construction stages can have different 

results. In Section 7.7, when the networks are tested on the ITC 2021 dataset, the classification 

performance is higher than those tested on the ITC 2022 dataset. For example, the Synthetic 

Point Clouds – 1a and Synthetic Point Clouds – 2a can have higher results by 21.45% m-IoU and 

18.44% m-IoU, respectively. The reason is that, unlike the ITC 2022 dataset, the ITC 2021 dataset 

does not have multiple variations of window elements, reducing the influence of the inter-class 

similarity problem described in Section 7.1.2. Contrarily, in Section 7.1.3, the networks completely 

unidentified certain wall elements. The reason is that this wall element is unfinished, which has 

distinct shapes from one in the BIM model. Instead, it resembles the window elements. 

Therefore, synthetic point clouds should provide elements for all conditions. 

 

2. How can the augmentation of the synthetic point clouds and the S3DIS dataset can 

improve the classification results? 

The third hypothesis of this research is proven as the combination of the synthetic point clouds 

and the real point clouds can increase the classification performance compared to only using a 

single dataset. In Section 7.6, the classification performance of the networks trained on the 

Synthetic Point Clouds – 2c and the S3DIS dataset are 51.54% m-IoU and 37.32% m-IoU, 

respectively. Nevertheless, augmenting the Synthetic Point Clouds – 2c and the S3DIS dataset has 

55.01% m-IoU, much higher than using the Synthetic Point Clouds – 2c or the S3DIS dataset 

alone. The reason is that the network can learn real point cloud characteristics other than local 

point cloud distribution, occlusion effect, and sensor system noise in the S3DIS dataset, not 

included in the Synthetic Point Clouds – 2c. 

3. What is the right way to simulate the local point cloud distribution and occlusion effect to 

help the point cloud classification? 

Part of the second hypothesis of this research is proven as including the real point cloud 

characteristics of the local point cloud distribution and occlusion effect in the synthetic point 

clouds can increase the point cloud classification performance. In Section 7.3, utilizing the 

Simulated method, the Synthetic Point Clouds – 2a closely resemble the ITC 2022 dataset 

regarding the distribution on the element surfaces, exhibiting a uniform distribution. As a result, it 

has a higher classification result by 17.41% m-IoU compared to the Synthetic Point Clouds – 1a, 
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generated from the Ideal method. Then, unlike the Synthetic Point Clouds – 1a, the Synthetic 

Point Clouds – 2a has comparable results with the S3DIS dataset. It only has 1.03% m-IoU 

differences. 

Also, in Section 7.4, when the sensor noise is added to the synthetic point clouds, all synthetic 

point clouds generated from the Simulated method outperform those generated from the Ideal 

method. The Synthetic Point Clouds – 2c, with the highest classification result from the Simulated 

method, outperforms the Synthetic Point Clouds – 1e, with the highest classification result from 

the Ideal method, by 11.56% m-IoU differences. Additionally, in Section 7.7, this condition also 

occured when the network is tested on earlier stages of the construction, the ITC 2021 dataset. 

The Synthetic Point Clouds – 2a has 14.40% m-IoU differences with the Synthetic Point Clouds – 

1a. 

4. How can including sensor system noise in the synthetic point clouds help the point cloud 

classification? 

The second hypothesis of this research is also proven as including the real point cloud 

characteristics of sensor system noise in the synthetic point clouds can increase the classification 

performance. In Section 7.4, when the sensor system noise is added, the synthetic point clouds 

closely resemble the ITC 2022 dataset regarding the distribution above the element surfaces, 

exhibiting a random distribution. As a result, the classification results are enhanced. The Synthetic 

Point Clouds – 1c, generated from the Ideal method with 0.01 m noise, has a higher classification 

result by 8.22% m-IoU than the Synthetic Point Clouds – 1a, with 0.00 m noise. Similarly, the 

Synthetic Point Clouds – 2c, generated from the Simulated method with 0.01 m noise, has higher 

classification results by 13.19% m-IoU than the Synthetic Point Clouds – 2a, with 0.00 m noise. 

Additionally, in Section 7.7, this condition also occured when the network is tested on earlier 

stages of the construction, the ITC 2021 dataset. The Synthetic Point Clouds – 1c and the 

Synthetic Point Clouds – 2c are higher than those without noise, with 10.57% m-IoU and 4.6% 

m-IoU differences, respectively. 

However, increasing the noise level beyond a certain level can degrade the classification 

performance. For the Ideal method, this noise level is 0.005 m while the Simulated method is 0.01 

m. The reason is that the synthetic point clouds no longer resemble the ITC 2022 dataset. 

Therefore, the sensor system noise level should be configured when it is added to the synthetic 

point clouds, where it should be similar to those from the real point clouds it will be predicted. 
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5. How can the synthetic point clouds that consider the glass as transparent object help the 

point cloud classification? 

The second hypothesis of this research is not proven, as considering glass as a transparent object 

does not increase the window element's classification result. In Section 7.5, the window element in 

the Synthetic Point Clouds – 1h, where it considers the glass as a transparent object, has a lower 

classification result than those in the Synthetic Point Clouds – 1a, where it does not consider the 

glass as a transparent object. It has 13.54% IoU differences. Similarly, the window element in the 

Synthetic Point Clouds – 2h also has lower classification results than those in the Synthetic Point 

Clouds – 2a, with 15.64% IoU differences. The reason is that the ITC 2022 dataset has point 

clouds at the window element's glass part. Since the synthetic point cloud does not provide any 

point clouds, the network misclassifies it to door and wall elements. Therefore, the synthetic point 

clouds should provide the feature for this object to the network. 

6. How robust is the KP-FCNN deep learning network in point cloud classification in 

indoor scenes?  

Utilizing a large voxel size for grid subsampling in KP-FCNN, executed in Section 3.6.2, can 

make the network learn the position distribution of wall and window elements, reducing the 

influence of the inter-class similarity problem described in Section 7.8. For example, the Synthetic 

Point Clouds – 2c has higher classification performance than the S3DIS dataset, especially for wall 

elements with 19.17% IoU differences. However, in Section 7.8, utilizing Network Parameter – 2 

of KP-FCNN to train the networks has similar results compared to using Network Parameter – 1. 

It assumed that the inter-class similarities problems described in Section 7.1.2 conflict with the 

influences of the random picking method. Hence, the random picking method fails to increase the 

influence of the minority elements. 

8.3. Recommendation 

With the target application of construction progress monitoring, this research converts the BIM model 

into point clouds representing multiple elements in indoor construction scenes. It comprises a beam, 

ceiling, column, door, floor, railing, stair, wall, and window. However, the current research does not 

emphasize the clutter elements since the BIM model does not have this information. It contradicts the fact 

that indoor construction scenes have various clutter elements, including humans, scaffolding, big 

machinery, etc. Therefore, the synthetic point clouds generated in this research can not be applied to the 

clutter point clouds. It would be valuable to explore the semantic segmentation of point clouds with 

clutter at indoor scenes, decreasing the pre-processing procedures. 
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APPENDIX : 

1. Networks trained using Network Parameter – 1 and tested on the ITC 2022 dataset 

a. Networks trained on the Synthetic Point Clouds – 1a 
Coonfusion and F1-Score Matrix 

 Ground Truth 

  beam column door railing ceiling floor stair wall window 

P
re

d
ic

ti
o

n
 

beam 
3401747 29143 9348 549945 6339 45934 1319951 48111 3698667 

46.97% 0.58% 0.16% 8.99% 0.13% 0.27% 22.17% 0.80% 19.76% 

column 
199 271581 163474 1503 0 1324 7489 34849 267266 

0.01% 32.90% 9.89% 0.08% 0.00% 0.01% 0.42% 1.89% 1.84% 

door 
0 0 0 0 0 0 0 0 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

railing 
0 6456 559427 407619 0 25407 254089 15618 1065667 

0.00% 0.40% 22.86% 14.94% 0.00% 0.18% 9.90% 0.59% 6.95% 

ceiling 
1650352 30 0 82225 406796 8347717 88087 28990 11794276 

11.88% 0.00% 0.00% 0.64% 3.56% 35.07% 0.70% 0.23% 46.51% 

floor 
4250 1507 13748 1212 0 16330388 630741 120542 139195 

0.00% 0.02% 0.14% 0.01% 0.00% 76.94% 6.30% 1.20% 0.61% 

stair 
0 6101 403 123978 0 258654 190041 9152 1552 

0.00% 0.82% 0.03% 6.68% 0.00% 0.00% 11.22% 0.00% 0.01% 

wall 
70320 265994 1314371 1246244 1714 81724 141589 2366369 5652198 

0.85% 4.42% 19.19% 17.48% 0.03% 0.45% 2.03% 33.63% 28.65% 

window 
249994 322367 498508 709398 32673 115585 164259 309092 5704212 

 3.71% 7.16% 9.35% 12.64% 0.76% 0.69% 3.01% 5.60% 31.32% 

 

b. Networks trained on the Synthetic Point Clouds – 1b 
Coonfusion and F1-Score Matrix  

 Ground Truth 

  beam column door railing ceiling floor stair wall window 

P
re

d
ic

ti
o

n
 

beam 
5805673 125027 10756 54456 26369 42077 424377 243356 2377094 

64.19% 1.82% 0.19% 0.96% 0.54% 0.20% 7.20% 2.93% 23.72% 

column 
962 546296 43372 0 0 1409 280 150270 5108 

0.02% 20.28% 3.20% 0.00% 0.00% 0.01% 0.02% 3.63% 0.09% 

door 
0 0 0 0 0 0 0 0 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

railing 
6 89300 513970 467580 0 13075 699452 80093 470773 

0.00% 2.56% 23.92% 20.61% 0.00% 0.08% 27.90% 1.62% 7.10% 

ceiling 
1725233 1042 0 231874 209374 15309045 220979 127144 4573782 

11.00% 0.01% 0.00% 1.89% 1.82% 56.15% 1.76% 0.85% 27.44% 

floor 
164 32599 14353 8369 0 16373379 727471 52205 33063 

0.00% 0.30% 0.15% 0.09% 0.00% 66.33% 7.30% 0.42% 0.23% 

stair 
16 27732 106 0 0 134324 427534 149 22 

0.00% 1.06% 0.01% 0.00% 0.00% 0.00% 26.15% 0.00% 0.00% 

wall 
306156 1567820 936869 1221821 2365 115500 53899 5549690 1386403 

3.04% 19.87% 14.30% 18.31% 0.04% 0.53% 0.78% 59.46% 12.56% 

window 
1142502 2250157 444017 219214 371911 141933 125597 1323133 2087624 

 13.37% 35.31% 8.82% 4.25% 8.53% 0.71% 2.33% 16.93% 21.93% 
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c. Networks trained on the Synthetic Point Clouds – 1c 
Coonfusion and F1-Score Matrix  

 Ground Truth 

  beam column door railing ceiling floor stair wall window 

P
re

d
ic

ti
o

n
 

beam 
4951449 30220 1808 140630 133609 111864 433677 585002 2720926 

63.14% 0.60% 0.04% 2.09% 2.08% 0.54% 8.61% 6.48% 24.44% 

column 
1320 375391 35023 20443 0 1561 2274 271461 40220 

0.04% 44.44% 5.27% 0.80% 0.00% 0.01% 0.26% 5.60% 0.58% 

door 
0 0 0 0 0 0 0 0 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

railing 
123 5223 194069 1632478 0 23822 193508 23027 262051 

0.00% 0.32% 13.31% 48.81% 0.00% 0.14% 11.71% 0.41% 3.38% 

ceiling 
667913 91 0 79706 2829152 14710758 31999 316514 3762340 

4.61% 0.00% 0.00% 0.60% 21.64% 53.69% 0.27% 2.02% 21.16% 

floor 
965 5745 746 199450 0 16954860 50568 26752 2509 

0.00% 0.06% 0.01% 1.85% 0.00% 68.32% 0.56% 0.20% 0.02% 

stair 
15 10532 0 230246 0 302786 46264 0 0 

0.00% 1.38% 0.00% 9.31% 0.00% 0.00% 5.93% 0.00% 0.00% 

wall 
215179 191097 242010 1447745 50444 140611 69110 5781000 3003327 

2.43% 3.16% 4.13% 18.69% 0.68% 0.65% 1.14% 57.58% 24.72% 

window 
738695 323537 108592 603891 736235 149062 142051 1936969 3367056 

 10.06% 7.15% 2.50% 9.69% 12.42% 0.74% 3.13% 22.73% 31.67% 

 

d. Networks trained on the Synthetic Point Clouds – 1d 
Coonfusion and F1-Score Matrix  

 Ground Truth 

  beam column door railing ceiling floor stair wall window 

P
re

d
ic

ti
o

n
 

beam 
7094814 483770 0 640 145728 34902 12696 927262 409373 

75.56% 5.21% 0.00% 0.01% 1.40% 0.20% 0.27% 11.38% 5.46% 

column 
954 682548 1785 657 0 1339 12 55382 5020 

0.02% 13.38% 0.38% 0.07% 0.00% 0.01% 0.00% 1.40% 0.15% 

door 
0 0 0 0 0 0 0 0 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

railing 
11 714938 123601 938628 0 20401 43521 212707 280522 

0.00% 12.13% 9.74% 53.15% 0.00% 0.14% 3.43% 4.47% 6.83% 

ceiling 
1984447 365 0 611 10847738 8567813 520 308875 688104 

12.38% 0.00% 0.00% 0.01% 63.66% 35.26% 0.00% 2.09% 4.87% 

floor 
89 3917 187 420 3880 16972648 36265 223243 954 

0.00% 0.03% 0.00% 0.00% 0.00% 78.15% 0.42% 1.83% 0.01% 

stair 
3 99201 0 7014 0 369278 56990 57277 40 

0.00% 1.98% 0.00% 0.78% 0.00% 0.00% 14.31% 0.00% 0.00% 

wall 
349765 4330128 59388 113099 29496 115763 16482 4689636 1436766 

3.36% 42.05% 1.05% 1.83% 0.26% 0.62% 0.29% 51.19% 16.89% 

window 
240075 3138643 19175 136424 654665 112385 40354 708486 3055881 

 2.70% 35.75% 0.46% 2.93% 6.62% 0.66% 0.97% 9.27% 43.71% 
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e. Networks trained on the Synthetic Point Clouds – 1e 
Coonfusion and F1-Score Matrix  

 Ground Truth 

  beam column door railing ceiling floor stair wall window 

P
re

d
ic

ti
o

n
 

beam 
8365448 25256 260 0 289982 64471 0 329322 34446 

77.20% 0.52% 0.01% 0.00% 1.86% 0.47% 0.00% 2.72% 0.59% 

column 
4462 199214 1446 0 0 4724 0 531579 6272 

0.07% 29.23% 0.26% 0.00% 0.00% 0.05% 0.00% 6.72% 0.39% 

door 
0 0 0 0 0 0 0 0 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

railing 
2 4444 331830 0 0 73872 0 1138084 786067 

0.00% 0.30% 24.41% 0.00% 0.00% 0.71% 0.00% 13.08% 32.55% 

ceiling 
1404028 25 0 0 20696030 227960 0 26907 43523 

8.03% 0.00% 0.00% 0.00% 92.91% 1.12% 0.00% 0.14% 0.35% 

floor 
23 360 75 0 19895 17155565 0 63210 2385 

0.00% 0.00% 0.00% 0.00% 0.00% 96.30% 0.00% 0.39% 0.02% 

stair 
0 44 203 0 0 508629 0 79731 1316 

0.00% 0.01% 0.04% 0.00% 0.00% 0.00% 0.00% 0.00% 0.09% 

wall 
637832 226386 37488 49 253425 212467 0 8961150 811726 

5.38% 3.85% 0.65% 0.00% 1.52% 1.44% 0.00% 68.39% 11.91% 

window 
2152434 159760 12789 133 894462 139506 1278 3936322 809404 

 20.83% 3.66% 0.30% 0.00% 5.91% 1.05% 0.03% 33.97% 15.27% 

 

f. Networks trained on the Synthetic Point Clouds – 1f 
Coonfusion and F1-Score Matrix  

 Ground Truth 

  beam column door railing ceiling floor stair wall window 

P
re

d
ic

ti
o

n
 

beam 
6554091 0 682646 28690 425872 20330 264279 884262 249015 

77.17% 0.00% 10.18% 0.59% 3.08% 0.14% 4.68% 7.72% 3.82% 

column 
1035 0 281834 741 0 2536 3459 457918 174 

0.02% 0.00% 11.17% 0.11% 0.00% 0.02% 0.24% 6.30% 0.01% 

door 
0 0 0 0 0 0 0 0 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

railing 
1 0 1000285 241015 0 29700 274426 788864 0 

0.00% 0.00% 30.17% 16.38% 0.00% 0.26% 12.12% 9.78% 0.00% 

ceiling 
875366 0 604 2081 17210036 3840679 36454 335442 97811 

5.78% 0.00% 0.00% 0.02% 83.99% 17.95% 0.30% 1.85% 0.74% 

floor 
0 0 12280 6067 0 15946516 1224342 52372 0 

0.00% 0.00% 0.11% 0.07% 0.00% 84.76% 12.60% 0.34% 0.00% 

stair 
0 0 1444 185876 0 271147 128314 3086 0 

0.00% 0.00% 0.06% 31.01% 0.00% 0.00% 9.22% 0.00% 0.00% 

wall 
344488 0 1571473 46939 217735 188805 91034 7598872 1081177 

3.62% 0.00% 20.36% 0.80% 1.47% 1.20% 1.37% 60.94% 14.35% 

window 
102045 0 746478 97544 727963 88258 171353 3677396 2495051 

 1.28% 0.00% 12.04% 2.24% 5.46% 0.62% 3.33% 33.58% 41.48% 
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g. Networks trained on the Synthetic Point Clouds – 1g 
Coonfusion and F1-Score Matrix  

 Ground Truth 

  beam column door railing ceiling floor stair wall window 

P
re

d
ic

ti
o

n
 

beam 
120396 7 14940 47074 8065695 4795 0 856272 6 

2.45% 0.00% 0.26% 0.99% 36.21% 0.09% 0.00% 4.26% 0.00% 

column 
153 58 12211 59 6607 0 0 728609 0 

0.02% 0.02% 0.79% 0.01% 0.00% 0.00% 0.00% 4.57% 0.00% 

door 
0 0 0 0 0 0 0 0 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

railing 
0 6811 633359 147012 0 44373 0 1502734 0 

0.00% 0.58% 26.98% 10.93% 0.00% 2.22% 0.00% 8.98% 0.00% 

ceiling 
1504 0 0 0 22134343 0 0 262614 12 

0.01% 0.00% 0.00% 0.00% 76.54% 0.00% 0.00% 0.98% 0.00% 

floor 
0 66 1499918 7796 0 1346277 0 14387466 0 

0.00% 0.00% 15.30% 0.09% 0.00% 14.24% 0.00% 59.50% 0.00% 

stair 
0 209 106013 137539 0 264850 0 81312 0 

0.00% 0.07% 7.18% 29.12% 0.00% 0.00% 0.00% 0.00% 0.00% 

wall 
254620 8 53038 70 1915802 1478 0 8915491 16 

4.30% 0.00% 0.79% 0.00% 8.23% 0.02% 0.00% 42.19% 0.00% 

window 
338400 9 41889 15134 3315877 10414 0 4384302 63 

 7.67% 0.00% 0.80% 0.36% 15.23% 0.21% 0.00% 22.35% 0.00% 

 

h. Networks trained on the Synthetic Point Clouds – 1h 
Coonfusion and F1-Score Matrix  

 Ground Truth 

  beam column door railing ceiling floor stair wall window 

P
re

d
ic

ti
o

n
 

beam 
6424081 189532 70561 37103 34833 12985 442094 247204 1650792 

57.93% 2.77% 0.96% 0.64% 0.36% 0.09% 5.08% 3.55% 25.64% 

column 
642 569040 87889 3213 0 349 9353 50902 26305 

0.01% 21.31% 2.75% 0.20% 0.00% 0.00% 0.21% 1.82% 1.17% 

door 
0 0 0 0 0 0 0 0 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

railing 
45 7872 1076139 903827 0 15930 292520 37878 92 

0.00% 0.23% 26.99% 37.88% 0.00% 0.15% 5.51% 1.06% 0.00% 

ceiling 
4150135 610 2727 11525 9723355 7839135 18509 61622 590855 

23.40% 0.00% 0.02% 0.09% 59.13% 38.29% 0.12% 0.45% 4.52% 

floor 
3796 6103 21113 2266 0 10551127 6557780 98305 1077 

0.00% 0.06% 0.18% 0.02% 0.00% 58.97% 51.38% 0.89% 0.01% 

stair 
0 557 542 40 0 34853 553285 592 0 

0.00% 0.02% 0.02% 0.00% 0.00% 0.00% 12.47% 0.00% 0.00% 

wall 
433482 1755928 2649189 1256142 39712 21888 186114 3868842 929226 

3.58% 22.32% 31.57% 18.50% 0.37% 0.15% 1.92% 48.43% 12.47% 

window 
2057616 2063710 1732254 223808 693644 67916 227431 471592 568117 

 19.43% 32.50% 25.20% 4.25% 7.46% 0.51% 2.77% 7.29% 9.57% 
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i. Networks trained on the Synthetic Point Clouds – 2a 
Coonfusion and F1-Score Matrix  

 Ground Truth 

  beam column door railing ceiling floor stair wall window 

P
re

d
ic

ti
o

n
 

beam 
2223970 2209 2 607 1056528 6703 138825 4425 5675916 

38.45% 0.05% 0.00% 0.01% 6.53% 0.06% 2.41% 0.07% 37.67% 

column 
9 16091 192974 1058 0 344 2034 226 534957 

0.00% 2.98% 8.34% 0.11% 0.00% 0.00% 0.13% 0.01% 4.91% 

door 
0 0 0 0 0 0 0 0 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

railing 
0 1763 856101 1033925 0 30 159106 6286 276924 

0.00% 0.13% 27.54% 59.68% 0.00% 0.00% 6.68% 0.25% 2.37% 

ceiling 
132488 10 1 6 21286725 161020 44608 16815 756800 

1.07% 0.00% 0.00% 0.00% 93.30% 0.87% 0.36% 0.13% 3.49% 

floor 
0 222 3394 45896 0 14198894 1308961 101943 1582571 

0.00% 0.00% 0.03% 0.50% 0.00% 89.64% 13.31% 1.02% 8.27% 

stair 
0 7 278 49 0 0 588744 0 645 

0.00% 0.00% 0.01% 0.01% 0.00% 0.00% 38.99% 0.00% 0.01% 

wall 
43458 57372 1885020 37426 41764 15777 54842 2489076 6515788 

0.64% 1.00% 25.09% 0.61% 0.24% 0.12% 0.81% 35.89% 40.51% 

window 
60271 253284 944883 11935 848653 56602 133333 111785 5685342 

 1.14% 6.00% 15.76% 0.26% 5.42% 0.50% 2.53% 2.06% 39.03% 

 

j. Networks trained on the Synthetic Point Clouds – 2b 
Coonfusion and F1-Score Matrix  

 Ground Truth 

  beam column door railing ceiling floor stair wall window 

P
re

d
ic

ti
o

n
 

beam 
4412489 2880 2114 16776 836171 57841 6478 74836 3699600 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

column 
264 50136 18432 1445 1 895 301 904 675317 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

door 
0 0 0 0 0 0 0 0 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

railing 
275 0 70434 537389 0 23135 138412 50669 1513783 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

ceiling 
65942 0 0 0 21919635 179557 2558 10832 219949 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

floor 
46 448 1 172 1765 15364836 51726 122486 1700287 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

stair 
13764 519 0 65 40 358694 195836 6310 14645 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

wall 
51127 50630 933923 78482 760358 33089 9771 3769850 5453293 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

window 
120938 184354 218624 14313 2089809 83786 16414 286572 5091278 

 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
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k. Networks trained on the Synthetic Point Clouds – 2c 
Coonfusion and F1-Score Matrix  

 Ground Truth 

  beam column door railing ceiling floor stair wall window 

P
re

d
ic

ti
o

n
 

beam 
6957597 135370 4303 1005 574189 61796 60672 101670 1212583 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

column 
576 545369 665 58019 0 1828 47 19845 121350 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

door 
0 0 0 0 0 0 0 0 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

railing 
10 2512 2265 1470732 0 16627 65678 367387 408728 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

ceiling 
245488 0 0 21 21676867 244838 121203 15519 94537 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

floor 
1 4175 2 6740 1589 16787144 33773 292301 116174 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

stair 
70 12053 0 703 0 349944 220048 3089 3988 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

wall 
264389 209581 906135 369207 579297 80337 2026 4859591 3869960 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

window 
620106 679933 95500 44924 2137002 126953 9515 1215264 3176891 

 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

 

l. Networks trained on the Synthetic Point Clouds – 2d 
Coonfusion and F1-Score Matrix  

 Ground Truth 

  beam column door railing ceiling floor stair wall window 

P
re

d
ic

ti
o

n
 

beam 
7963307 149546 0 247 477949 43213 81532 199916 193475 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

column 
3188 526443 5829 0 0 1684 797 178522 31234 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

door 
0 0 0 0 0 0 0 0 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

railing 
3 54050 51 850026 0 23293 456653 949733 348 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

ceiling 
446178 0 0 27 15718133 5591318 608911 21213 12693 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

floor 
2 1466 0 36 0 16718230 312228 209591 112 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

stair 
0 1300 0 0 0 19542 568489 570 12 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

wall 
502182 199698 295638 227165 486262 121888 39944 7688568 1579178 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

window 
968039 347065 199440 80744 1873775 101462 140956 3244523 1150084 

 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
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m. Networks trained on the Synthetic Point Clouds – 2e 
Coonfusion and F1-Score Matrix  

 Ground Truth 

  beam column door railing ceiling floor stair wall window 

P
re

d
ic

ti
o

n
 

beam 
5088481 344885 0 0 2059275 282383 5977 717542 610642 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

column 
2 602689 0 0 0 504 0 136193 8297 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

door 
0 0 0 0 0 0 0 0 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

railing 
7 11337 0 453612 0 317 381 1860980 7665 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

ceiling 
417417 1628 0 0 13704054 7641203 0 369595 264576 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

floor 
33 345 0 0 0 16305211 9650 896340 30074 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

stair 
0 98 0 0 0 371659 50841 164649 2548 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

wall 
178766 1146542 0 36521 28638 53613 464 8705587 990392 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

window 
792240 1011994 0 7542 1308717 91259 18233 3521111 1354992 

 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

 

n. Networks trained on the Synthetic Point Clouds – 2f 
Coonfusion and F1-Score Matrix  

 Ground Truth 

  beam column door railing ceiling floor stair wall window 

P
re

d
ic

ti
o

n
 

beam 
6204201 6965 0 63893 1574080 562472 444 285792 411338 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

column 
21 64038 0 9750 0 2280 0 647673 23931 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

door 
0 0 0 0 0 0 0 0 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

railing 
0 2 0 88422 0 26721 0 2219228 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

ceiling 
224850 0 0 12834 6534715 15450683 0 153140 22251 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

floor 
0 0 0 0 0 16957071 1838 282654 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

stair 
0 0 0 0 0 526550 0 63253 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

wall 
339870 27755 0 561710 545355 151162 0 8650409 864262 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

window 
1268057 280 0 134328 1874196 158721 60 4194696 475750 

 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
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o. Networks trained on the Synthetic Point Clouds – 2g 
Coonfusion and F1-Score Matrix  

 Ground Truth 

  beam column door railing ceiling floor stair wall window 

P
re

d
ic

ti
o

n
 

beam 
216588 0 0 33753 8709146 31748 0 101299 16651 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

column 
80243 15574 0 11 8577 752 0 619919 22609 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

door 
0 0 0 0 0 0 0 0 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

railing 
1 7 0 0 0 12820 0 2321250 1 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

ceiling 
26378 2 0 204 22163482 145740 0 62657 10 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

floor 
226 7 0 0 46677 16232530 0 962361 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

stair 
0 16 0 0 0 373449 0 216402 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

wall 
878838 8791 0 221777 2080480 92667 0 7324900 533070 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

window 
848492 12490 0 102780 3329540 100684 0 3523302 188800 

 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

 

p. Networks trained on the Synthetic Point Clouds – 2h 
Coonfusion and F1-Score Matrix  

 Ground Truth 

  beam column door railing ceiling floor stair wall window 

P
re

d
ic

ti
o

n
 

beam 
3432912 22154 165962 13488 569232 62469 460145 397370 3985453 

52.13% 0.43% 2.54% 0.24% 3.41% 0.65% 8.10% 5.25% 29.77% 

column 
453 273300 21429 24068 0 1284 53279 13878 360000 

0.02% 26.82% 0.91% 1.67% 0.00% 0.02% 3.56% 0.41% 3.91% 

door 
0 0 0 0 0 0 0 0 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

railing 
1 1799 158942 1678535 0 12668 459688 14790 7654 

0.00% 0.10% 5.04% 75.07% 0.00% 0.21% 20.07% 0.35% 0.08% 

ceiling 
146456 1108 12454 42 21369014 446 272555 97594 498804 

1.11% 0.01% 0.09% 0.00% 91.54% 0.00% 2.21% 0.69% 2.49% 

floor 
0 1500 608 180307 88932 9542335 284744 103315 7040120 

0.00% 0.02% 0.01% 1.86% 0.00% 70.14% 2.92% 0.89% 40.34% 

stair 
0 328 0 10739 0 235192 343091 0 453 

0.00% 0.03% 0.00% 0.79% 0.00% 0.00% 24.19% 0.00% 0.00% 

wall 
81224 161864 1885540 68486 519748 51212 56594 4582721 3733134 

1.07% 2.60% 24.96% 1.03% 2.93% 0.49% 0.85% 53.36% 25.92% 

window 
399686 828390 1725676 162161 1744923 62836 317001 824913 2040502 

 6.57% 17.63% 28.58% 3.17% 10.77% 0.70% 6.12% 11.67% 15.83% 
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q. Networks trained on the S3DIS dataset 
Coonfusion and F1-Score Matrix  

 Ground Truth 

  beam column door railing ceiling floor stair wall window 

P
re

d
ic

ti
o

n
 

beam 
1738055 81852 28806 0 4874162 37377 10446 1503567 834920 

30.22% 1.36% 0.59% 0.00% 25.24% 0.29% 0.22% 20.65% 7.27% 

column 
0 149888 32310 0 357 841 0 26965 537334 

0.00% 8.21% 4.74% 0.00% 0.00% 0.01% 0.00% 0.87% 7.36% 

door 
0 0 0 0 0 0 0 0 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

railing 
0 0 0 0 0 0 0 0 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

ceiling 
104476 10523 5 0 21884656 0 0 276303 122510 

0.84% 0.08% 0.00% 0.00% 84.31% 0.00% 0.00% 1.98% 0.68% 

floor 
0 12 1419 0 196231 16175425 21381 50098 797223 

0.00% 0.00% 0.02% 0.00% 0.00% 96.27% 0.24% 0.44% 5.13% 

stair 
0 0 114 0 0 35785 500184 1410 52398 

0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 86.41% 0.00% 0.73% 

wall 
311538 1060128 487236 0 346987 47779 35355 2856202 8329355 

3.93% 12.94% 6.92% 0.00% 1.61% 0.32% 0.50% 30.18% 60.96% 

window 
240022 1602354 65885 0 2211225 66806 495 740402 3178899 

 4.57% 29.11% 1.51% 0.00% 11.76% 0.55% 0.01% 10.92% 28.95% 

 

r. Networks trained on the augmentation of the Synthetic Point Clouds – 2c and the S3DIS dataset 
Coonfusion and F1-Score Matrix  

 Ground Truth 

  beam column door railing ceiling floor stair wall window 

P
re

d
ic

ti
o

n
 

beam 
6735713 83784 35124 3391 908735 25599 61634 71538 1183667 

81.72% 1.56% 0.72% 0.06% 5.31% 0.20% 1.13% 1.00% 11.53% 

column 
595 477781 1935 47530 0 1029 5625 16800 196402 

0.01% 39.96% 0.29% 3.37% 0.00% 0.01% 0.44% 0.57% 3.23% 

door 
0 0 0 0 0 0 0 0 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

railing 
0 3134 0 1731203 0 2183 411565 140187 46065 

0.00% 0.16% 0.00% 78.57% 0.00% 0.02% 19.96% 3.73% 0.67% 

ceiling 
177348 0 28 0 21995924 72325 719 6463 145666 

1.19% 0.00% 0.00% 0.00% 92.64% 0.37% 0.01% 0.05% 0.86% 

floor 
0 8105 2548 187198 94916 16246055 519069 79185 104457 

0.00% 0.09% 0.03% 1.94% 0.00% 96.31% 5.45% 0.71% 0.73% 

stair 
0 0 0 3 0 24 589838 0 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 49.58% 0.00% 0.00% 

wall 
144608 162163 510297 54169 515209 77629 44865 4506567 5125016 

1.56% 2.54% 8.70% 0.82% 2.84% 0.56% 0.69% 55.21% 45.41% 

window 
316889 908904 36473 48712 1574984 71225 156266 362451 4630184 

 4.09% 18.64% 0.84% 0.96% 9.49% 0.58% 3.16% 5.45% 47.40% 
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2. Networks trained using Network Parameter – 1 and tested on the ITC 2021 dataset 

a. Networks trained on the Synthetic Point Clouds – 1a 
Coonfusion and F1-Score Matrix  

 Ground Truth 

  beam column door railing ceiling floor stair wall window 

P
re

d
ic

ti
o

n
 

beam 
5230909 78951 0 69643 1612 0 0 11588 150071 

66.07% 2.48% 0.00% 2.23% 0.02% 0.00% 0.00% 0.36% 3.82% 

column 
269 736232 320 0 0 7942 8430 2365 11281 

0.00% 92.88% 0.05% 0.00% 0.00% 0.15% 2.12% 0.27% 0.73% 

door 
0 0 0 0 0 0 0 0 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

railing 
0 1484 459932 5810 0 1338 370 2155 1357179 

0.00% 0.11% 40.19% 0.46% 0.00% 0.02% 0.04% 0.15% 65.58% 

ceiling 
4890217 0 0 203450 10099309 1432 0 920798 125309 

36.86% 0.00% 0.00% 2.40% 75.44% 0.01% 0.00% 10.71% 1.35% 

floor 
123 1768 20 3996 0 9688396 17805 8449 35838 

0.00% 0.03% 0.00% 0.08% 0.00% 99.60% 0.36% 0.16% 0.59% 

stair 
0 0 0 0 0 0 0 0 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

wall 
30884 0 9 423129 1891 3 0 7179 620906 

0.54% 0.00% 0.00% 47.11% 0.03% 0.00% 0.00% 0.70% 36.58% 

window 
139587 0 0 6244 432717 0 0 1318 10126 

 2.57% 0.00% 0.00% 0.96% 7.78% 0.00% 0.00% 0.17% 0.70% 

 

b. Networks trained on the Synthetic Point Clouds – 1b 
Coonfusion and F1-Score Matrix  

 Ground Truth 

  beam column door railing ceiling floor stair wall window 

P
re

d
ic

ti
o

n
 

beam 
5181911 90201 0 88292 28 0 0 8228 174114 

73.36% 2.82% 0.00% 2.52% 0.00% 0.00% 0.00% 0.29% 3.93% 

column 
609 747182 419 8 0 10809 760 4787 2265 

0.01% 92.50% 0.08% 0.00% 0.00% 0.15% 0.19% 0.96% 0.11% 

door 
0 0 0 0 0 0 0 0 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

railing 
0 7955 222304 220533 0 1157 20403 13634 1342282 

0.00% 0.59% 21.68% 13.43% 0.00% 0.02% 2.21% 1.33% 52.21% 

ceiling 
3293483 394 0 179824 7747010 3472318 0 162170 1385316 

26.53% 0.00% 0.00% 2.03% 64.04% 23.60% 0.00% 1.97% 14.17% 

floor 
3 1497 3 38373 0 9698064 1142 13922 3391 

0.00% 0.03% 0.00% 0.68% 0.00% 84.56% 0.02% 0.28% 0.05% 

stair 
0 0 0 0 0 0 0 0 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

wall 
90196 1395 0 926758 77 0 0 17477 48098 

1.87% 0.14% 0.00% 72.96% 0.00% 0.00% 0.00% 2.67% 2.19% 

window 
17722 0 0 2710 205502 0 0 6248 357810 

 0.39% 0.00% 0.00% 0.26% 4.81% 0.00% 0.00% 1.53% 18.33% 
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c. Networks trained on the Synthetic Point Clouds – 1c 
Coonfusion and F1-Score Matrix  

 Ground Truth 

  beam column door railing ceiling floor stair wall window 

P
re

d
ic

ti
o

n
 

beam 
5284980 135021 0 7771 43033 0 0 65202 6767 

81.35% 4.18% 0.00% 0.26% 0.43% 0.00% 0.00% 2.01% 0.20% 

column 
55 754527 3 0 0 12205 0 36 13 

0.00% 89.48% 0.00% 0.00% 0.00% 0.23% 0.00% 0.00% 0.00% 

door 
0 0 0 0 0 0 0 0 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

railing 
28 20252 520638 0 0 12227 0 98600 1176523 

0.00% 1.47% 44.31% 0.00% 0.00% 0.21% 0.00% 7.10% 77.39% 

ceiling 
2031602 77 0 10607 13845831 142426 0 198540 11432 

17.15% 0.00% 0.00% 0.13% 90.19% 1.09% 0.00% 2.31% 0.13% 

floor 
4 4225 1006 0 0 9745615 0 4478 1067 

0.00% 0.08% 0.02% 0.00% 0.00% 99.09% 0.00% 0.08% 0.02% 

stair 
0 0 0 0 0 0 0 0 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

wall 
115814 4950 0 357644 19283 655 0 582843 2812 

2.71% 0.49% 0.00% 48.96% 0.25% 0.01% 0.00% 57.29% 0.24% 

window 
17856 614 0 1003 556046 0 0 1013 13460 

 0.44% 0.08% 0.00% 0.21% 7.39% 0.00% 0.00% 0.13% 1.49% 

 

d. Networks trained on the Synthetic Point Clouds – 1h 
Coonfusion and F1-Score Matrix  

 Ground Truth 

  beam column door railing ceiling floor stair wall window 

P
re

d
ic

ti
o

n
 

beam 
5425512 58045 0 6699 794 6 20 36076 15622 

62.00% 1.83% 0.00% 0.23% 0.02% 0.00% 0.00% 1.17% 0.56% 

column 
2452 748564 289 0 0 3782 10909 841 2 

0.04% 94.54% 0.02% 0.00% 0.00% 0.05% 1.43% 0.12% 0.00% 

door 
0 0 0 0 0 0 0 0 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

railing 
0 7813 1560633 524 0 550 256693 2052 3 

0.00% 0.59% 91.44% 0.05% 0.00% 0.01% 19.84% 0.17% 0.00% 

ceiling 
5741213 0 0 2320 4882128 5613523 1 1018 312 

40.72% 0.00% 0.00% 0.03% 46.02% 36.09% 0.00% 0.01% 0.00% 

floor 
0 1850 6697 62 0 9253810 486360 7613 3 

0.00% 0.03% 0.12% 0.00% 0.00% 75.15% 9.25% 0.15% 0.00% 

stair 
0 0 0 0 0 0 0 0 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

wall 
293437 442 17545 207558 360 0 4890 559139 630 

4.50% 0.05% 1.31% 31.88% 0.01% 0.00% 0.53% 66.14% 0.11% 

window 
496603 0 0 986 91458 9 40 52 844 

 7.91% 0.00% 0.00% 0.24% 3.29% 0.00% 0.01% 0.01% 0.28% 
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e. Networks trained on the Synthetic Point Clouds – 2a 
Coonfusion and F1-Score Matrix  

 Ground Truth 
  beam column door railing ceiling floor stair wall window 

P
re

d
ic

ti
o

n
 

beam 
5136918 65940 7430 0 129556 0 0 8304 194626 

92.03% 2.13% 0.25% 0.00% 1.18% 0.00% 0.00% 0.27% 4.82% 

column 
215 579465 0 0 0 1733 0 0 185426 

0.01% 81.86% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 11.24% 

door 
0 0 0 0 0 0 0 0 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

railing 
27 1313 457209 5758 0 514 0 16 1363431 

0.00% 0.11% 39.76% 0.63% 0.00% 0.01% 0.00% 0.00% 62.52% 

ceiling 
435694 0 0 0 15513549 0 0 0 291272 

3.99% 0.00% 0.00% 0.00% 95.21% 0.00% 0.00% 0.00% 3.10% 

floor 
0 0 8 0 0 9582541 0 13123 160723 

0.00% 0.00% 0.00% 0.00% 0.00% 99.09% 0.00% 0.25% 2.62% 

stair 
0 0 0 0 0 0 0 0 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

wall 
45163 2173 7140 0 169684 0 0 574272 285569 

1.35% 0.25% 0.92% 0.00% 1.95% 0.00% 0.00% 68.38% 15.79% 

window 
2371 0 0 0 535107 0 0 0 52514 

 0.08% 0.00% 0.00% 0.00% 6.32% 0.00% 0.00% 0.00% 3.36% 

 

f. Networks trained on the Synthetic Point Clouds – 2b 
Coonfusion and F1-Score Matrix  

 Ground Truth 

  beam column door railing ceiling floor stair wall window 

P
re

d
ic

ti
o

n
 

beam 
5238755 26500 1 4 144832 0 0 50871 81811 

93.26% 0.86% 0.00% 0.00% 1.30% 0.00% 0.00% 1.58% 2.38% 

column 
537 580214 1910 0 0 190 0 0 183988 

0.02% 84.48% 0.22% 0.00% 0.00% 0.00% 0.00% 0.00% 17.44% 

door 
0 0 0 0 0 0 0 0 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

railing 
0 0 935367 10446 0 505 200 2123 879627 

0.00% 0.00% 67.55% 1.14% 0.00% 0.01% 0.02% 0.16% 55.46% 

ceiling 
429608 0 0 0 15744109 0 0 58363 8435 

3.92% 0.00% 0.00% 0.00% 95.57% 0.00% 0.00% 0.68% 0.10% 

floor 
0 0 0 25 0 9599628 9 21973 134760 

0.00% 0.00% 0.00% 0.00% 0.00% 99.19% 0.00% 0.41% 2.43% 

stair 
0 0 0 0 0 0 0 0 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

wall 
16681 0 3692 0 238521 0 0 773609 51498 

0.49% 0.00% 0.36% 0.00% 2.68% 0.00% 0.00% 77.69% 4.24% 

window 
6363 0 0 0 579373 0 0 712 3544 

 0.20% 0.00% 0.00% 0.00% 6.70% 0.00% 0.00% 0.10% 0.37% 
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g. Networks trained on the Synthetic Point Clouds – 2c 
Coonfusion and F1-Score Matrix  

 Ground Truth 

  beam column door railing ceiling floor stair wall window 

P
re

d
ic

ti
o

n
 

beam 
5138214 42296 1 19 144324 0 0 47975 169945 

92.98% 1.34% 0.00% 0.00% 1.29% 0.00% 0.00% 1.52% 4.79% 

column 
1 716140 1 0 0 8483 76 14340 27798 

0.00% 93.09% 0.00% 0.00% 0.00% 0.16% 0.02% 1.85% 2.39% 

door 
0 0 0 0 0 0 0 0 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

railing 
1 12942 488917 130667 0 86614 30724 10046 1068357 

0.00% 1.00% 42.12% 13.34% 0.00% 1.49% 3.31% 0.77% 63.08% 

ceiling 
364448 0 0 0 15825631 0 8 21535 28893 

3.35% 0.00% 0.00% 0.00% 95.93% 0.00% 0.00% 0.25% 0.32% 

floor 
0 11 0 63 0 9682726 118 14097 59380 

0.00% 0.00% 0.00% 0.00% 0.00% 99.14% 0.00% 0.27% 1.05% 

stair 
0 0 0 0 0 0 0 0 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

wall 
4378 380 4515 141 230823 3 0 673984 169777 

0.13% 0.04% 0.57% 0.02% 2.59% 0.00% 0.00% 72.24% 12.85% 

window 
2870 0 0 357 551650 0 0 43 35072 

 0.09% 0.00% 0.00% 0.10% 6.36% 0.00% 0.00% 0.01% 3.26% 

 

h. Networks trained on the Synthetic Point Clouds – 2h 
Coonfusion and F1-Score Matrix  

 Ground Truth 

  beam column door railing ceiling floor stair wall window 

P
re

d
ic

ti
o

n
 

beam 
4991485 131192 9683 0 156367 0 165 60230 193652 

91.83% 4.13% 0.26% 0.00% 1.40% 0.00% 0.01% 1.85% 6.64% 

column 
1 678295 16149 3663 0 23530 45 43098 2058 

0.00% 86.05% 1.23% 0.93% 0.00% 0.45% 0.01% 4.98% 0.39% 

door 
0 0 0 0 0 0 0 0 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

railing 
1 31 1790284 15297 0 11617 97 1642 9299 

0.00% 0.00% 97.33% 1.66% 0.00% 0.20% 0.01% 0.12% 0.88% 

ceiling 
319772 39 0 0 15859104 0 9535 34301 17764 

2.97% 0.00% 0.00% 0.00% 95.97% 0.00% 0.12% 0.40% 0.21% 

floor 
0 0 617 391 0 9687900 0 14562 52925 

0.00% 0.00% 0.01% 0.01% 0.00% 99.47% 0.00% 0.27% 1.05% 

stair 
0 0 0 0 0 0 0 0 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

wall 
16128 67 33879 410 215717 278 245 808260 9017 

0.50% 0.01% 2.31% 0.07% 2.41% 0.01% 0.04% 78.96% 1.31% 

window 
1446 0 0 0 578348 0 0 1096 9102 

 0.05% 0.00% 0.00% 0.00% 6.65% 0.00% 0.00% 0.14% 2.06% 
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i. Networks trained on the S3DIS dataset 
Coonfusion and F1-Score Matrix  

 Ground Truth 
  beam column door railing ceiling floor stair wall window 

P
re

d
ic

ti
o

n
 

beam 
1745810 0 6 0 3670219 0 0 126739 0 

47.51% 0.00% 0.00% 0.00% 27.97% 0.00% 0.00% 3.65% 0.00% 

column 
116 10432 5620 0 11081 21 262 230587 508720 

0.01% 2.68% 1.45% 0.00% 0.00% 0.00% 0.07% 21.29% 33.75% 

door 
0 0 0 0 0 0 0 0 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

railing 
0 0 0 0 0 0 0 0 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

ceiling 
59716 0 5 0 16125751 0 0 55043 0 

0.66% 0.00% 0.00% 0.00% 87.31% 0.00% 0.00% 0.62% 0.00% 

floor 
0 0 0 0 0 9637996 423 30017 87959 

0.00% 0.00% 0.00% 0.00% 0.00% 99.39% 0.01% 0.54% 1.47% 

stair 
0 0 0 0 0 0 0 0 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

wall 
858 0 92 0 303972 659 54 955815 1650819 

0.04% 0.00% 0.01% 0.00% 2.57% 0.01% 0.00% 44.34% 63.99% 

window 
7 0 0 0 588964 0 0 1021 0 

 0.00% 0.00% 0.00% 0.00% 5.53% 0.00% 0.00% 0.10% 0.00% 

 

3. Networks trained using Network Parameter – 2 and tested on the ITC 2022 dataset 

a. Networks trained on the Synthetic Point Clouds – 1a 
Coonfusion and F1-Score Matrix  

 Ground Truth 

  beam column door railing ceiling floor stair wall window 

P
re

d
ic

ti
o

n
 

beam 
5065862 13886 3485 132 71511 15654 3073618 672718 192319 

47.20% 0.28% 0.06% 0.00% 0.89% 0.12% 29.26% 7.21% 2.11% 

column 
420 136807 93061 0 0 2093 27347 474460 13505 

0.01% 15.88% 4.35% 0.00% 0.00% 0.02% 0.43% 9.20% 0.27% 

door 
0 0 0 0 0 0 0 0 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

railing 
352 7333 784517 0 0 36685 684666 112141 708603 

0.00% 0.44% 26.77% 0.00% 0.00% 0.38% 9.62% 1.89% 12.39% 

ceiling 
4726199 320 0 1608 6135328 320334 5831244 447573 4935867 

27.20% 0.00% 0.00% 0.01% 41.80% 1.63% 34.00% 2.80% 31.34% 

floor 
2259 9876 7784 0 0 16221743 910852 23904 65197 

0.00% 0.11% 0.07% 0.00% 0.00% 94.72% 6.25% 0.18% 0.50% 

stair 
556 4271 2 0 0 165429 418631 938 0 

0.00% 0.55% 0.00% 0.00% 0.00% 0.00% 6.70% 0.00% 0.00% 

wall 
493733 213481 1681616 278908 25861 135916 519065 5806210 1985733 

4.20% 3.52% 22.93% 4.88% 0.29% 0.97% 4.51% 56.09% 19.62% 

window 
2064766 588864 957478 2210 723961 111117 434721 2023884 1199087 

 20.18% 12.97% 16.46% 0.05% 9.61% 0.88% 4.35% 22.91% 13.94% 
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b. Networks trained on the Synthetic Point Clouds – 1b 
Coonfusion and F1-Score Matrix  

 Ground Truth 

  beam column door railing ceiling floor stair wall window 

P
re

d
ic

ti
o

n
 

beam 
4333068 2833 0 135439 59849 65004 714669 135947 3662376 

38.58% 0.06% 0.00% 2.28% 1.09% 0.46% 12.47% 1.58% 24.68% 

column 
2594 271432 88793 4205 82 2121 55333 205000 118137 

0.04% 29.85% 6.08% 0.24% 0.00% 0.02% 3.57% 4.66% 1.11% 

door 
0 0 0 0 0 0 0 0 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

railing 
0 63788 947753 0 0 176738 594609 403440 147963 

0.00% 3.75% 42.07% 0.00% 0.00% 1.62% 25.37% 7.77% 1.29% 

ceiling 
7949709 126 0 67842 1647825 1513608 138388 126618 10954357 

44.47% 0.00% 0.00% 0.54% 13.58% 7.24% 1.12% 0.83% 50.99% 

floor 
16 7266 7597 0 226 16949693 212826 55396 8499 

0.00% 0.08% 0.08% 0.00% 0.00% 92.42% 2.17% 0.44% 0.04% 

stair 
0 14621 34 0 0 433481 141509 276 4 

0.00% 1.76% 0.00% 0.00% 0.00% 0.00% 9.62% 0.00% 0.00% 

wall 
168722 255513 865966 1314187 33918 157685 167113 5452525 2724894 

1.38% 4.18% 13.01% 18.87% 0.52% 1.03% 2.48% 56.81% 17.19% 

window 
900819 455256 260810 1269087 124270 139309 328050 1675699 2952788 

 8.39% 9.92% 5.08% 23.29% 2.49% 1.01% 6.27% 20.74% 20.59% 

 

c. Networks trained on the Synthetic Point Clouds – 1c 
Coonfusion and F1-Score Matrix  

 Ground Truth 

  beam column door railing ceiling floor stair wall window 

P
re

d
ic

ti
o

n
 

P
re

d
ic

ti
o

n
 

beam 3743798 8385 0 53476 113678 29830 429192 104338 4626488 
51.38% 0.14% 0.00% 0.98% 0.94% 0.21% 7.53% 1.37% 34.65% 

column 1386 420385 23963 0 0 1926 4648 83215 212170 
0.04% 24.34% 3.24% 0.00% 0.00% 0.02% 0.31% 2.42% 2.31% 

door 0 0 0 0 0 0 0 0 0 
0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

railing 
195 29934 269084 0 0 59684 734713 147162 1093555 

0.00% 1.19% 17.55% 0.00% 0.00% 0.54% 31.75% 3.48% 10.98% 

ceiling 
1005597 2 0 76974 14187922 2521067 15437 237195 4354279 
7.22% 0.00% 0.00% 0.64% 75.73% 11.93% 0.13% 1.66% 21.78% 

floor 
1771 17617 1698 0 200 16730431 423343 33936 32601 

0.00% 0.18% 0.02% 0.00% 0.00% 90.21% 4.33% 0.29% 0.19% 

stair 140 24657 0 0 0 248352 316619 42 5 
0.00% 1.50% 0.00% 0.00% 0.00% 0.00% 21.96% 0.00% 0.00% 

wall 184913 873911 278730 1213542 8835 148831 142945 4638679 3650137 
2.23% 12.62% 4.70% 18.71% 0.07% 0.96% 2.13% 53.73% 25.41% 

window 526854 1332315 157851 484678 760985 111159 226712 883084 3622450 
7.76% 24.64% 3.57% 9.76% 6.57% 0.80% 4.36% 12.41% 28.19% 
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d. Networks trained on the Synthetic Point Clouds – 1h 
Coonfusion and F1-Score Matrix  

 Ground Truth 
  beam column door railing ceiling floor stair wall window 

P
re

d
ic

ti
o

n
 

beam 
4674770 72334 174024 91270 816895 180847 1547557 829353 722135 

53.99% 1.17% 2.41% 1.70% 6.91% 1.16% 22.87% 9.92% 10.59% 

column 
859 466357 117093 0 152 1379 5841 90719 65297 

0.02% 23.29% 3.86% 0.00% 0.00% 0.01% 0.23% 2.17% 2.47% 

door 
0 0 0 0 0 0 0 0 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

railing 
3 27836 1591532 0 0 65042 484036 149800 16086 

0.00% 1.00% 41.61% 0.00% 0.00% 0.53% 14.33% 3.01% 0.47% 

ceiling 
1405383 303 3183 32074 12606425 5752346 502743 170497 1925519 

9.18% 0.00% 0.02% 0.27% 68.26% 25.83% 3.75% 1.14% 14.30% 

floor 
723 35580 27590 0 221 15693423 1195598 31228 257156 

0.00% 0.35% 0.24% 0.00% 0.00% 79.71% 11.04% 0.25% 2.36% 

stair 
5 14464 384 0 0 237082 337533 365 48 

0.00% 0.75% 0.01% 0.00% 0.00% 0.00% 13.47% 0.00% 0.00% 

wall 
272479 972931 2016032 1027405 164147 96199 104600 5259910 1226820 

2.82% 13.52% 24.50% 16.06% 1.28% 0.58% 1.34% 56.11% 15.66% 

window 
1854901 1666447 1386152 499554 951831 106989 245478 1076775 317961 

 22.74% 29.33% 20.65% 10.24% 8.41% 0.71% 3.92% 13.70% 5.03% 

 

e. Networks trained on the Synthetic Point Clouds – 2a 
Coonfusion and F1-Score Matrix  

 Ground Truth 

  beam column door railing ceiling floor stair wall window 

P
re

d
ic

ti
o

n
 

beam 
4270596 13673 1036919 245 1149496 27422 79478 93285 2438071 

60.29% 0.28% 15.27% 0.01% 6.50% 0.23% 1.45% 1.50% 20.68% 

column 
94 71471 112083 1 16 2131 17602 26422 517873 

0.00% 9.84% 4.30% 0.00% 0.00% 0.03% 1.37% 1.30% 6.81% 

door 
0 0 0 0 0 0 0 0 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

railing 
139 358 320936 306454 0 15022 732084 76373 882849 

0.00% 0.02% 9.43% 21.63% 0.00% 0.17% 35.25% 2.70% 10.51% 

ceiling 
137667 0 3657 0 21782595 117750 3498 19759 333547 

1.00% 0.00% 0.03% 0.00% 89.51% 0.63% 0.03% 0.15% 1.81% 

floor 
122 1766 3697 0 12323 14714272 67457 89034 2353146 

0.00% 0.02% 0.03% 0.00% 0.00% 91.12% 0.71% 0.87% 14.84% 

stair 
6445 2495 536 0 0 55382 520206 826 3817 

0.00% 0.39% 0.02% 0.00% 0.00% 0.00% 43.18% 0.00% 0.05% 

wall 
76270 110588 2231238 169440 856433 52767 132692 2714266 4796829 

0.94% 1.87% 28.59% 2.91% 4.58% 0.40% 2.05% 37.52% 37.47% 

window 
565939 504986 760725 22742 2470254 69871 266918 306279 3138374 

 8.60% 11.46% 12.10% 0.53% 14.37% 0.60% 5.38% 5.36% 27.81% 
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f. Networks trained on the Synthetic Point Clouds – 2b 
Coonfusion and F1-Score Matrix  

 Ground Truth 

  beam column door railing ceiling floor stair wall window 

P
re

d
ic

ti
o

n
 

beam 
4205828 74963 4 24 1885655 31795 221601 195536 2493779 

60.78% 1.26% 0.00% 0.00% 10.42% 0.24% 4.06% 2.73% 26.67% 

column 
37 482904 38398 0 74 4466 25805 12937 183078 

0.00% 27.04% 2.30% 0.00% 0.00% 0.05% 2.02% 0.43% 3.54% 

door 
0 0 0 0 0 0 0 0 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

railing 
0 35084 193692 199570 120 92902 642364 243568 926587 

0.00% 1.36% 7.86% 15.55% 0.00% 0.93% 31.02% 6.44% 15.54% 

ceiling 
123166 547 0 84 21942996 228319 15226 23125 65010 

0.91% 0.00% 0.00% 0.00% 88.72% 1.14% 0.13% 0.17% 0.41% 

floor 
8306 2227 189 0 5292 16892718 105765 113152 114068 

0.00% 0.02% 0.00% 0.00% 0.00% 97.01% 1.11% 1.01% 0.85% 

stair 
0 4223 52 0 0 64487 510710 10225 432 

0.00% 0.25% 0.00% 0.00% 0.00% 0.00% 42.61% 0.00% 0.01% 

wall 
80743 877952 1831225 26719 637076 162846 58053 3938376 3527533 

1.02% 12.57% 26.66% 0.47% 3.33% 1.13% 0.90% 48.10% 34.03% 

window 
311829 1345852 531294 5761 2598205 108514 227598 696794 2280241 

 4.86% 24.63% 9.93% 0.14% 14.77% 0.84% 4.59% 10.45% 25.77% 

 

g. Networks trained on the Synthetic Point Clouds – 2c 
Coonfusion and F1-Score Matrix  

 Ground Truth 

  beam column door railing ceiling floor stair wall window 

P
re

d
ic

ti
o

n
 

beam 
6635016 302852 4593 0 569487 33538 5044 44494 1514161 

79.64% 4.74% 0.10% 0.00% 3.42% 0.25% 0.10% 0.54% 16.43% 

column 
155 569428 0 106 0 5495 3355 22284 146866 

0.00% 25.81% 0.00% 0.01% 0.00% 0.06% 0.39% 0.56% 2.92% 

door 
0 0 0 0 0 0 0 0 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

railing 
11 29915 0 669704 0 85457 435169 686027 427538 

0.00% 1.00% 0.00% 44.46% 0.00% 0.85% 26.15% 14.33% 7.34% 

ceiling 
270023 9987 0 0 21434144 241175 307 17575 425262 

1.80% 0.08% 0.00% 0.00% 92.10% 1.20% 0.00% 0.12% 2.68% 

floor 
458 5627 0 1 83 17035518 30482 96442 73534 

0.00% 0.05% 0.00% 0.00% 0.00% 97.24% 0.33% 0.79% 0.55% 

stair 
736 12833 0 0 0 113338 460243 2420 207 

0.00% 0.60% 0.00% 0.00% 0.00% 0.00% 58.10% 0.00% 0.00% 

wall 
201627 1084974 259792 5185 428792 160589 7140 4906627 4085797 

2.16% 14.66% 4.55% 0.09% 2.43% 1.11% 0.12% 53.38% 39.94% 

window 
445772 1649067 5543 3597 1716705 119059 52900 1467752 2645693 

 5.69% 28.02% 0.13% 0.08% 10.64% 0.92% 1.16% 19.12% 30.37% 
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h. Networks trained on the Synthetic Point Clouds – 2h 
Coonfusion and F1-Score Matrix  

 Ground Truth 

   beam column door railing ceiling floor stair wall window 

P
re

d
ic

ti
o

n
 

beam 
3586257 15562 1174755 24328 539630 50042 659151 85715 2973745 

54.54% 0.31% 13.56% 0.47% 3.35% 0.40% 11.86% 1.29% 28.36% 

column 
180 18727 89801 0 0 5502 2944 1772 628769 

0.01% 2.32% 2.00% 0.00% 0.00% 0.07% 0.21% 0.07% 9.97% 

door 
0 0 0 0 0 0 0 0 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

railing 
0 2160 1453818 593294 0 63015 162779 44644 14201 

0.00% 0.13% 27.56% 33.64% 0.00% 0.68% 7.50% 1.37% 0.20% 

ceiling 
102092 676 66907 9627 21261304 1966 305646 35652 614603 

0.77% 0.01% 0.44% 0.08% 93.39% 0.01% 2.50% 0.27% 3.59% 

floor 
0 803 11600 3945 88658 15744150 55863 96320 1240566 

0.00% 0.01% 0.09% 0.04% 0.00% 94.24% 0.58% 0.90% 8.53% 

stair 
0 155 1651 333 0 72774 500337 248 14423 

0.00% 0.02% 0.04% 0.04% 0.00% 0.00% 38.54% 0.00% 0.23% 

wall 
69279 174646 3085245 289721 294230 125853 35900 3593070 3472579 

0.91% 2.91% 31.88% 4.70% 1.72% 0.92% 0.55% 46.92% 30.20% 

window 
283474 655711 2333310 272237 951085 106426 283621 318809 2901415 

 4.67% 14.61% 28.59% 5.85% 6.09% 0.88% 5.61% 5.19% 29.06% 

 

i. Networks trained on the S3DIS dataset 
Coonfusion and F1-Score Matrix  

 Ground Truth 

  beam column door railing ceiling floor stair wall window 

P
re

d
ic

ti
o

n
 

beam 
3861498 8139 514488 0 1230176 33123 14422 543962 2903377 

54.75% 0.17% 10.47% 0.00% 7.12% 0.26% 0.30% 7.63% 21.31% 

column 
0 1875 13154 0 47 616 318 52378 679309 

0.00% 0.33% 1.80% 0.00% 0.00% 0.01% 0.05% 1.77% 7.19% 

door 
0 0 0 0 0 0 0 0 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

railing 
0 0 0 0 0 0 0 0 0 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

ceiling 
160921 44 22781 0 21607542 0 8 185729 421448 

1.17% 0.00% 0.20% 0.00% 90.31% 0.00% 0.00% 1.35% 2.08% 

floor 
0 731 1522 0 733111 15911951 101865 218540 273805 

0.00% 0.01% 0.02% 0.00% 0.00% 95.21% 1.14% 1.95% 1.55% 

stair 
0 0 0 0 170 85969 476306 26515 943 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 77.45% 0.00% 0.01% 

wall 
226335 72288 150183 0 171052 76943 41625 3552502 9183902 

2.45% 1.04% 2.12% 0.00% 0.88% 0.52% 0.59% 38.14% 58.11% 

window 
747196 300643 14350 0 1711906 76575 5599 576709 4673110 

 11.41% 7.08% 0.33% 0.00% 10.20% 0.63% 0.13% 8.70% 35.62% 

 

 

 


