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Abstract
Monitoring training load is crucial for enhancing sports performance, as excessive load can lead
to fatigue accumulation and decreased performance. Research has extensively investigated sports
monitoring techniques, including measuring external and internal loads. Understanding fatigue
states helps coaches prevent nonfunctional overreaching and optimize training for improved per-
formance. Continuous monitoring, such as using non-invasive maximal effort tests, is essential to
detect declines in performance and adjust training accordingly.

In this study, a dataset is collected of young elite speed skaters consisting of data from morning
questionnaires, daily jump tests, Wingates tests, and information about training sessions. Despite
the amount of research already done in the direction of fatigue and sports performance some con-
nections are still not described in full detail. To get a better understanding of these connections,
three different methods are examined on this dataset in relation to fatigue. As a first method, the
importance of input variables is determined using a classification decision tree method. Using sta-
tistical tests the data of Wingate tests is analyzed and lastly, different Long Short-Term Memory
(LSTM) models are tested for their ability to predict resting heart rate (HR) data.

Monitoring daily jump height and using a wellness questionnaire did not effectively identify fatigue
in young elite speed skaters. Similarly, the Wingate test, conducted three times in five weeks,
failed to serve as a reliable measure of fatigue due to inconclusive results influenced by other
factors. However, a univariate LSTM model showed promise in predicting daily resting HR data,
with an average Root-Mean-Square Error (RMSE) of 1.5 beats per minute. Before this model
can be used in a practical situation, further research is needed to improve the performance of the
LSTM model. As a practical application, this model can allow for the detection of abnormal HR
patterns indicative of fatigue. Consequently, a combination of monitoring internal and external
loads, along with predictive resting HR data using LSTM models, offers a possible viable approach
to identifying fatigue in young elite speed skaters.
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1 Introduction
Monitoring training load (TL) is incredibly important to increase performance in sports activities
(Kreher & Schwartz, 2012) Therefore, a lot of research has been done on monitoring TL over the
past years (Halson, 2014). A well-established training scheme can increase sports performance,
provided that the training load is not too high. A too high training load, which could for exam-
ple be caused by too little rest between training sessions can lead to an accumulation of fatigue.
An increased state of fatigue can lead to worse sports performance or nonfunctional overreaching
(Kreher & Schwartz, 2012).

Training load can be measured as external or internal load. A difference between external and
internal load will reveal the level of fatigue of an athlete (Halson, 2014). The external load can be
measured as the physical work done by the body in terms of movement, such as power output or
pace. On the other hand, the internal load can be measured by internal characteristics, such as
heart rate (HR) or blood lactate concentration (McArdle et al., 2015). When keeping the power
output and duration constant, a lower HR in the longer term or a higher HR in the short term, can
indicate a state of fatigue. This could, for example, be observed during a cycling tour of an athlete.

Overreaching can be divided into three categories: functional overreaching, nonfunctional over-
reaching, and the overtraining syndrome. While functional overreaching will lead to positive train-
ing adaptions after the temporary performance decrement, the other two will keep having negative
effects on performance. The difference between functional and nonfunctional overreaching is really
small (Kreher & Schwartz, 2012). To stay on the good side of the line and benefit from the long-
term positive effects of functional overreaching, coaches must know the status of fatigue of their
athletes. An athlete is in functional overreaching if recovery takes days to weeks, while if recovery
takes longer, from several weeks to possibly years, one will speak of non-functional overreaching
or the overtraining syndrome. Prolonged fatigue is thus a sign of non-functional fatigue and by
monitoring fatigue coaches get more knowledge about the type of overreaching of their athletes
(Meeusen et al., 2006).

Besides steering towards functional overreaching, monitoring fatigue can also be used as a subjec-
tive measure to gain knowledge about how athletes perceive the training load. Perceived training
load can be used as an indicator of readiness for competitions. It is necessary to know whether an
athlete is prepared for competition to reduce chances of nonfunctional overreaching, injury, and
illness (Thorpe et al., 2017). In this paper, ‘recovered’ is defined as the ability to meet a certain
performance in a sport-specific activity. For example, completing the next training within the
planned intensity zones. The knowledge about the state of fatigue of athletes can also be used
to optimize the training load for athletes by individually modifying the training scheme. These
modifications can optimize training load and so increase sports performance.

An important indication of nonfunctional overreaching is a decrease in sports performance. To
indicate a decrease, sports performance should be monitored on a daily basis. Sports performance
should be monitored utilizing a maximal effort test that doesn’t influence the training sessions of
the athletes. Following these criteria, the test should be performed daily and must be non-invasive.
Jump tests on a weekly basis have been used in previous work as a non-invasive and maximal effort
test (Gavanda et al., 2023). Jump tests to monitor fatigue are also performed on an incidental
basis, next to other performance measures (Pupo et al., 2021).
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1.1 Research Gap
As explained above, in sports, keeping an eye on how fatigued athletes are is really important.
Currently, there does not exist one simple way to measure fatigue. If fatigue is monitored, a
combination of variables and tools is used which is time consuming for both athletes as coaches
and researchers. Ideally, a simple definitive tool to measure fatigue that is accurate and reli-
able is needed to help coaches and athlete to identify unexplained fatigue (Halson, 2014). Then,
coaches/athletes would be able to know the state of fatigue of an athlete at each moment in time.
To find such a tool and take into account the work already done in the field of monitoring fatigue, a
logical next step would be to monitor fatigue continuously over a longer time period to contribute
to better training load management (TLM).

From literature, it is known that certain variables have a relation with fatigue, for example, jump
height and resting heart rate. A lower jump height or a higher resting HR are indicators of a higher
state of fatigue (Budgett, 1998; Halson, 2014). However, other factors could be related to a lower
jump height or higher resting heart rate. Therefore the relationship between jump height, resting
heart rate, and fatigue is not yet investigated in sufficient detail.

In this study, the goal is to further investigate this connection between fatigue and jump height
and/or resting heart. The next goal is to identify fatigue concerning different aspects, such as self
reporting questionnaires, Wingate performance, and the training schedule. These two steps will
help to reach a bigger goal: a simple-to-use test or tool, which can accurately and reliably detect
some of the indicators of fatigue.

1.2 Research Objectives
In this work, the focus will be on the connection between fatigue and some indicators to identity
fatigue in young elite speed skaters in the Netherlands. These connections will be further inves-
tigated using machine learning models. The research in this work takes place at TalentNED, an
organization for talented young speed skaters and mountain bikers. More specifically, this research
is focused on the speed skate team of TalentNED. This leads to the following research question:

How can we monitor training load and identify fatigue in young elite speed skaters?

To be able to answer this question, first, a literature review is conducted on overtraining and
monitoring training load in different kinds of sports. A second literature review is executed on
different existing machine learning models within the health and sports domain. After this, a data
collection protocol, to obtain different indicators of fatigue, is designed and executed within the
group speed skaters of TalentNED.
This yields the following sub-research questions:

1. What are relevant variables to describe the training load of athletes?

2. How do the existing machine learning methods perform on the prediction of heart rates?

3. Can fatigue be identified by monitoring daily jump height and by a wellness questionnaire?

4. Can we use Wingate performance to measure fatigue in young elite speed skaters?

5. How can we predict resting HR data of young elite speed skaters?

This work contributes to the field of Sports Data Science by:

• presenting a univariate LSTM model that predicts resting HR.

• showing that Wingate performance data can not be used for identifying fatigue in young elite
speed skaters.

• concluding that the variant and format of an unsupervised daily reach and height jump test
is not a viable method to identify fatigue in young elite speed skaters.

7



1.3 Structure of this report
This work is structured as follows. In Section 2 a theoretical background is given with used
definitions and related work in TLM. Related works that already used data science for TLM
are discussed in Section 2.2. In these two sections, the first two research questions will also be
answered. Details about the subjects, the dataset, and data pre-processing steps used in this study
are described in Section 3. In Section 4, the methodology used to answer the last three sub-research
questions will be explained per sub-research question. The results of those methods are stated in
Section 5 in the same structure as the methodology in Section 4. The discussion of these results
and recommendations for further research will be given, per sub-research question in Section 6.
Finally, in Section 7, conclusions will be drawn and answers to the (sub-) research question(s) will
be given.
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2 Scientific Background
In this section, first TLM related parameters will be discussed and next some already existing
machine learning models in health and sports research will be discussed.

2.1 Training Load Management
In order to identify fatigue, it is important to know what fatigue is, and how fatigue follows from
training sessions. Fatigue could be divided into two categories, performance fatigability and per-
ceived fatigability. Performance fatigability describes a decrease in a performance measure, that
could be measured objectively. On the other hand, perceived fatigability refers to the subjective
feeling of the performer (Behrens et al., 2023). This work, will be mainly focussed on performance
fatigability, so from now on, if referred to fatigue it means performance fatigability. Following
these definitions, an athlete is called fatigued once he has not recovered from previous exercises
(Bishop et al., 2008). Therefore, in this work, ‘fatigued’ is defined as the inability to meet a cer-
tain performance in a sport-specific activity. On the other hand, perceived fatigue is defined as
an overwhelming sense of tiredness, lack of energy, or feeling of exhaustion (Krupp & Pollina, 1996).

Figure 1: Variables describing
training load.

One gets fatigued by training and the training load is mon-
itored to measure someone’s inability to meet a certain per-
formance. The state of fatigue can be seen as the difference
between internal load and external load variables. Therefore,
one can individually monitor the internal or external load
to monitor fatigue (McArdle et al., 2015). In Figure 1, a
schematic overview is given of the relevant variables to mon-
itor and measure internal and external load. In the following
section, these variables will be described in further detail.
Relevant research related to these variables can be found in
Table 1 and is also described after introducing the variables.

2.1.1 Internal load

The internal load can be measured with internal characteristics, such as the heart rate. Heart rate
(HR) is a variable that can be used as a fatigue measure. One’s oxygen uptake will increase linearly
with an increase in heart rate (McArdle et al., 2015). As oxygen uptake is a good indication of
exercise intensity, the heart rate can be seen as a viable method to assess internal load (McArdle
et al., 2015).

Heart rate recovery (HRR)
Subsequently, looking at heart rate as a plain variable, one can measure the recovery of the heart
rate as well. The heart rate will increase during exercise and will return slowly to a resting
baseline after exercise. Consequently, the more fatigued the athlete is, the longer it takes before
the heart rate is back at the resting baseline (Lambert & Borresen, 2006). Heart rate recovery
(HRR) can be calculated by taking the difference between the heart rate at the end of exercise and
after 60 seconds of recovery. The higher this value, the more fit the athlete is (Daanen et al., 2012).

Resting heart rate
Instead of looking at HRR, one can also look at the daily resting HR of athletes. An elevated
resting HR can be a sign of fatigue or overtraining (Budgett, 1998).
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Heart rate variability (HRV)
Another interesting variable related to the heart rate is heart rate variability (HRV), which is the
time difference between different heartbeats. With faster heart rates, there is less time between
successive heartbeats, and therefore there is a smaller opportunity to have higher variations in
these time intervals. Thus, higher heart rates will lead to a decrease in HRV and this is related to
stress fatigue (Jiménez Morgan & Molina Mora, 2017). As heart rate varies from person to person,
heart rate recovery and variability also have different baseline values for different athletes.

Various works have used heart rate variables to monitor training load and fatigue in athletes. For
example, Gavanda et al. (2023) did research on cheerleaders prior to the World Championship.
For two weeks, they measured heart rates daily, obtained questionnaire data about training and
recovery, and analyzed data from a jump test. During these two weeks of fatiguing pre-competition
training, the results of an Analysis of variance (ANOVA) test showed that the heart rate of the
cheerleaders increased over time.

Heart rate variables in this work
HRR requires a specific end time of the training, which probably will not be specific enough if
athletes should determine this on their own. Small measurement errors will influence the heart
rate recovery too much and therefore HRR will not be used in this work.
Not all the smartwatches that are used have HRV as a variable within the smartwatch, so HRV
will not be used in this work either. Resting HR and HR during activity will be used in this work
as internal load variables, as these are easy-to-collect and reliable variables.

Rate of Perceived Exertion (RPE)
Another popular variable to asses internal training load is the Rate of Perceived Exertion (Inoue
et al., 2022). With an RPE, the athletes can indicate how they perceived the training session. One
common scale to use RPE is the Borg RPE scale, which goes from 6 to 20. This scale is based on
the assumed linear relationship between RPE and heart rate, where an RPE of 6 corresponds with
a heart rate of 60 and an RPE of 20 with a heart rate of 200. An RPE of 6 corresponds with no
exertion at all, and an RPE of 20, so related to a heart rate of 200, is a maximal effort. Another
common RPE scale is the Borg CR10, a Category-Ratio (CR) scale between 0 and 10. In this
scale, 0 corresponds with no exertion at all, and exercising at an RPE of 10 is a maximal exercise
(Williams, 2017).

RPE in this work
RPE is a reliable variable to use as a measure of internal training load. Training load will be
calculated as RPE times duration, also called session RPE, and the obtained training load variable
will be used in this work.

Questionnaires
One can also use subjective variables obtained from questionnaires in addition to all these objective
variables. For instance, athletes can be asked how ready they are to train, how sore their muscles
are, and how they experienced their sleep duration and quality from a scale of one to five. A lot of
different questionnaires are available to analyze athletes daily; the Profile of Mood States (POMS)
(Douglas M. McNair, n.d.), Daily Analyses of Life Demands for Athletes (DALDA) (Rushall, 1990)
and the Recovery-Stress Questionnaire for Athletes (RESTQ-Sport) (González-Boto et al., 2008)
are commonly used psychological tools to monitor training load (Nässi et al., 2017). By using
subjective questions, perceived fatigue is measured instead of performance fatigability.
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Hamlin et al. (2019) researched training load and stress in young elite university athletes partici-
pating in all kinds of different sports in America. In their research, they mainly studied subjective
variables and with a single logistic regression, they found a negative correlation between the daily
questionnaire and the odds of injury. Hence, lower levels of mood or sleep duration and increased
levels of energy or stress were able to predict injury. Next to Hamlin et al. (2019) other works
used subjective questionnaires next to other variables to conclude training load and fatigue. For
example, Mendes et al. (2018) found a relation between the daily wellness of volleyball athletes
and the number of competitions in a week. Three days before the second match in a week a lower
daily wellness was found than in weeks with only one competition.

Questionnaire in this work
In this work, none of the questionnaires mentioned above will be used. The questionnaire that
will be used in this work is a questionnaire that has already been used within TalentNED for the
last year. For continuity, this questionnaire will be used. This questionnaire consists of questions
about sleep quality and duration, feelings of fatigue, stress, mood, and readiness to train. The
questionnaire looks like a simplified version of the DALDA questionnaire and can be found in
Appendix A.

2.1.2 External load

The external load can be measured in different ways for particular sports. For example, one can
monitor the power output obtained during cycling, while one can monitor the pace or speed ob-
tained for activities such as running or speed skating.

Neuromuscular function
One can inspect the neuromuscular function as well to investigate fatigue in athletes. Neuromus-
cular fatigue is the reduction in the maximal force a muscle can exert, or the inability to sustain
exercise at a required power (Bestwick-Stevenson et al., 2022). One common test type for fatigue
is a jump test. Variables such as jump height, flight time, mean power, peak power, and peak
velocity could be measured during jump tests to determine fatigue. In previous research, it has
been shown that athletes jump lower when one is more fatigued (Halson, 2014).

As can be seen in Table 1; Gupta et al. (2023), Pupo et al. (2021), Gavanda et al. (2023) and
Coutts et al. (2007) used a variant of a jump test to determine fatigue in athletes. Next to the
increase in heart rate of the cheerleaders, Gavanda et al. (2023) also found a decrease in jump
height during the fatiguing weeks before the World Championships.

Pupo et al. (2021) did research with athletes of different sports to analyze the relationship between
the vertical jump and performance in the physical sports judo, futsal, and sprinting. Jump height
was measured during a vertical jump, countermovement jump, and squat jump. With Pearson
linear correlation coefficients, a relation was found between the performances of sprinting athletes
on 20m and 200m and their results on these jump tests was found. After normalizing the obtained
results to reduce the effect of individual body mass, Pupo et al. (2021) concluded that jump height
and power output of vertical jumping tests are similar and positively correlated with the physical
performance tests for all analyzed sports.

Coutts et al. (2007) monitored the recovery of triathletes for a time period of one training block,
consisting of four weeks of training and two weeks of tapering. They measured the data of an over-
load group, following an overload training schedule and a control group, with a normal training
schedule. Data from a, twice per week performed, jump and a sub-maximal heart rate test were an-
alyzed using independent t-tests, together with data from the DALDA questionnaire. The athletes
performed a 3km time trial once a week as a performance measure for an indication of fatigue. The
results of this 3km time trial were compared with the 3km time trial before the fatiguing protocol
with a two-factor analysis of the covariance test. The athletes following the overload training were
significantly slower in this post-test than in the pre-test. No decrease in performance on the 3 km
time trial was found for the control group., which showed that the athletes in the overload group
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indeed were fatigued. The distance reached in the five-bound jump test was reduced for the group
that followed overload training and was not significantly changed for the group following regu-
lar training. As the overload group was fatigued after the overload training, Coutts et al. (2007)
showed that a five-bound jump test was able to identify fatigue in the athletes of the overload group.

Neuromuscular function in this work
In this work, a countermovement jump (CMJ) test is used as a measure of neuromuscular function
and where maximal jump height is the only measured variable. The CMJ is easy to perform
without restrictions and has high repeatability. The CMJ is a vertical jump where the movement
starts with a rapid downward motion (the countermovement) followed immediately by an explosive
upward jump to achieve maximum height. The reason to only measure the jump height of the
athletes is that they are capable of collecting this variable on their own without large measuring
errors. In this work, the approach of Coutts et al. (2007) is used as inspiration for the data protocol
explained in Section 3.3.
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2.2 Applications of machine learning in health and
sports research

In this section, some works will be described that already use machine learning techniques within
health and sports situations to predict and classify. First, articles in the health domain will be
discussed, following some predictive heart rate models and lastly some articles within the sports
and performance domain will be considered.

2.2.1 Health care

Recently, research has been done on data from COVID-19 patients. Pasic et al. (2022) and Giotta
et al. (2022) both used machine learning techniques, such as Neural Networks and Decision Trees
respectively, to predict the outcome of these COVID-19 patients. Within health care, with the
outcome of a patient, the results from care and treatments those patients have received whilst in
hospital are meant. In the following two studies, the possible outcomes are: discharged alive or
death. Pasic et al. (2022) looked at whether a combination of Neural Nets, hypothesis testing, and
confidence intervals could help physicians in their work of nursing COVID-19 patients. As input
variables, initial laboratory findings, demographics, and comorbidities were used, and a precision
of almost 97% in predicting a patient’s survival or death.

Giotta et al. (2022) did research into the application of a Decision Tree to predict the outcome of
COVID-19 patients. With this Decision Tree method, predictive variables were found, and on a
validation set the decision tree model reached a sensitivity of 99% in predicting survival or death.
A high sensitivity is preferable for both Pasic et al. (2022) and Giotta et al. (2022), because as few
false positives as possible are desired for the outcome of COVID-19 patients.

Antwi-Afari et al. (2023) and Bustos et al. (2022) have used Machine Learning techniques to
model physical fatigue in construction workers and firefighters respectively. Antwi-Afari et al.
(2023) has tested Artificial Neural Network (ANN), Decision Tree, Random Forest, K-Nearest
Neighbor (KNN), and Support Vector Machine (SVM) on the input of wearable insole devices to
model physical fatigue within construction workers. They found that the best results were achieved
by the Random Forest model with an accuracy of 86%.

In another field of work, Bustos et al. (2022) also tested different models, such as KNN, Boosted
Trees, Bagged Trees, Random Forests, SVM, and ANN to predict fatigue. Bustos et al. (2022)
used sensory data from heart rate, breathing rate, and core temperature from 24 firefighters during
an incremental running protocol to model physical fatigue. The best model they obtained was the
XGBoost classifier, a variant of Boosted Trees, with an accuracy of 82%.

2.2.2 Heart rate prediction

Oyeleye et al. (2022) and Luo and Wu (2020) looked at predicting heart rate using different
Machine Learning techniques. Oyeleye et al. (2022) compared autoregressive integrated moving
average (ARIMA) model, linear regression, support vector regression (SVR), KNN regressor, deci-
sion tree regressor, random forest regressor and Long Short-Term Memory (LSTM) with as input
variable different lengths of heart rate recordings. They found that the ARIMA and linear re-
gression models were the best to predict future HR with any given HR recording length. For HR
recordings of less than one minute, especially the KNN, LSTM and random forest models were not
good.

Luo and Wu (2020) were able to find a multivariate LSTM model that with input variables heart
rate, gender, age, physical activities, and mental state was able to predict the heart rate. They
used an Adam optimizer, which resulted in high validity and a root mean square error of less than
0.5 beats per minute (bpm).
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2.2.3 Sports performance

Within monitoring in the sports domain, Knobbe et al. (2017), De Leeuw et al. (2023) and Wang
et al. (2023) all used Machine Learning techniques to monitor the fitness and/or health of an
athlete. Wang et al. (2023) used data from wearable devices during training and or competition
with a model that combines Convolutional Neural Network (CNN), with LSTM and self-attention
mechanisms to predict the health status of an athlete. Their model achieves an accuracy of 0.93,
and also the specificity, precision, and F1 score are above 0.9.

To improve speed ice skating training programs Knobbe et al. (2017) analyzed fifteen years of
historical training, competition, and test data of a Dutch professional ice skating team. Using
aggregation techniques together with Linear Regression and Subgroup Discovery, they were able
to extract actionable and meaningful patterns that can be used to improve training schedules for
this ice skating team.

De Leeuw et al. (2023) presented a model for monitoring fitness in road cycling only dependent
on sensor data collected during bike rides. This model, unlike previous approaches, does take
into account the effect of earlier training days on the fitness of the athlete after a training or com-
petition. With this addition, the model of De Leeuw et al. (2023) has an explained variance of 0.86.

Instead of using machine learning techniques to monitor the fitness and/or health of an athlete,
Campbell et al. (2021) aimed to predict training load using wellness questionnaires in different
sports. With input variables such as sleep quality, readiness to train, general muscular soreness,
fatigue, stress, and mood machine learning models were trained on classifying the training load
of athletes. Different approaches such as regression, classification, and random forest models were
used, but all gave a low accuracy on the classification problem. Campbell et al. (2021) conclude
that their results suggest that wellness items have no predictive capacity towards training load.

2.3 Conclusion - literature review
The first two sub research questions are already answered in this literature section. Therefore, in
this subsection, a first conclusion and some hypotheses will be given related to the first two sub
research questions.

1) What are relevant variables to describe the training load of athletes?
According to the literature as described above, important variables to describe training load of ath-
letes can be divided into internal training load and external training load variables. An overview
of these variables is shown in Figure 1.

2) How do the existing machine learning methods perform on the prediction of heart
rates?
The current machine learning and deep learning methods that are already used for the predic-
tion of heart rates do show some promising results. The best methods found in the literature are;
ARIMA, linear regression, and a multivariate LSTM model (Luo & Wu, 2020; Oyeleye et al., 2022).

Given all the works above, the connection between fatigue and jump height and/or resting heart
needs to be examined further in detail. Next to these two variables, Hofman et al. (2017) showed
that specific for speed skaters the performance on a Wingate test is a predictive variable for
performance on ice. Therefore in this work the connection between power output on the Wingate
test and fatigue will also be investigated. The classification decision tree model as described by
Campbell et al. (2021) will be used for a better insight of the daily morning questionnaire. Finally,
the multivariate LSTM model of Luo and Wu (2020) shows promising results for predicting heart
rates. No model tried to predict resting heart rates yet, therefore this work tries to see if the LSTM
method of Luo and Wu (2020) has potential to predict daily resting HR.
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3 Dataset collection and curation
This work is based on a dataset of a junior sport development team ’TalentNED’ with a speed
skating and mountain bike team. The participants in this study are all members of the speed
skating team and on weekdays live and train together. In this section, the subject information
of this research is given and the dataset already present within TalentNED is described. Next, a
fatigue data collection protocol is presented to collect some extra data related to fatigue and finally
data processing will be discussed.

3.1 Subjects
In total twelve junior elite speed skaters participated in this research. The characteristics of the
subjects are shown in Table 2. All of the athletes are top-level athletes and perform on the highest
(inter)national ice skate level in their age category. In this work, they will be classified as elite
junior speed skaters.

Table 2: Characteristics of the subjects.

Variable Male athletes Female athletes
Total (n=12) (n=8) (n=4)
Age (years) 17.63± 0.92 17.50± 1.0
Height (cm) 183.38± 3.29 169.50± 5.8
Weight (kg) 78.48± 5.47 64.58± 6.36
Sprinter (n=2) (n=0)
All round (n=6) (n=4)

3.2 Available data within TalentNED
TalentNED
Starting April 2023, data has been collected for the twelve speed skaters. All this data is stored
and analyzed in an online platform named Sport Data Valley (SDV). Some analyzing methods
are already provided within this platform. Athletes and coaches can visual see the results of the
questionnaires in graphs. Next to the questionnaire data, they can see the power output, speed
and height profile of a bike ride once a smartwatch is connected to the platform. These graphs and
analysing tools are all fixed within the platform, and can thus not be changed per user. However,
a Jupyter environment is available where one can write their own analyses using all the available
data with for example Python (Van Rossum & Drake Jr, 1995). SDV aims to provide a data-
privacy-ensured platform that can be used by a broad audience.

Questionnaires
A total of four different questionnaires were taken by the athletes.

• Daily questionnaire: A daily questionnaire is taken in the morning, with questions regarding
sleep duration/quality, soreness, and readiness to train (Appendix A 8.1).

• Training log: After each training session, the athletes are asked to fill in their training log.
In the training log, they can specify the kind of training, the duration of the session, and an
RPE for the training, indicating how hard the training was (Appendix A 8.2).

• Evening questionnaire: Each evening, the athletes get a questionnaire asking how stressful
their day was on three different levels; physical, mental, and total (Appendix A 8.3).

• Weekly questionnaire: Every week the athletes are asked whether they are injured/ill and
whether they missed any training sessions because of this (Appendix A 8.4).
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Training load
The intended training load is known for all training sessions. This training load is calculated
by the training duration multiplied by the intended RPE, determined by the coach. The per-
ceived training load is a known variable, which is calculated by the variables, training duration,
and RPE, obtained from the training log. Next to the training load, it is known which kind of
training took place on which day, and therefore on which days multiple training sessions took place.

Wearable devices: Smartwatches
Next to the questionnaires, all the athletes are wearing a smartwatch from the brand ‘Polar’ or
‘Garmin’. From this device, it is possible to obtain their daily resting heart rate. Resting HR
is therefore one of the variables stored on a daily basis too. For the Garmin smartwatches, the
resting HR is the average heart rate of the 30-minute lowest heart rate over the day.

Wearable devices: Heart rate band
The athletes wear a heart rate band of either ‘Garmin’ or ‘Polar’ during all training sessions.

Wearable devices: Power output pedals
Next to heart rate data, power data is collected with Garmin Rally (Garmin Inc., Wichita KS,
USA) for training sessions on the bike. With a Garmin Edge (Garmin Inc., Wichita KS, USA),
these power data are collected and stored in SDV. For the training sessions on the bike, the heart
rate and power data can be combined for further analysis.

Wearable devices: Transponder
The athletes are also wearing a transponder during the ice skating training, which is connected to
MyLaps (MYLAPS Sports Technology, Haarlem, The Netherlands). With this timing system, lap
times are measured and saved for all athletes for the whole training session.

Tests: Powerpeak
Next to the data collected during training sessions, four times a year a six-second Powerpeak test
on a Watt bike (Wattbike Ltd, Nottingham, UK) is performed. During this test, the athletes have
to do an all-out sprint for six seconds (Herbert et al., 2015). The following variables are collected
for this test:

• Peak power: Highest power output obtained during the six seconds

• Mean power: Average power output obtained during the six seconds

• Body Mass: Before the Powerpeak, body mass is measured, such that Peak power and Mean
power could be normalized for analysis.

Tests: Wingate
Somewhat less frequent, around three times a year, a Wingate test, also on a Watt bike (Wattbike
Ltd, Nottingham, UK), is performed. During a Wingate test, the athletes have to perform a 30-
second all-out performance at maximal speed (Bar-Or, 1987). The following variables are collected
in the Wingate protocol:

• Peak power: Highest power output obtained during the 30 seconds

• Mean power: Average power output obtained during the 30 seconds

• Fatigue index: Drop off of mean power output, calculated by dividing the mean power output
of the first five seconds by the last five seconds, represented in a percentage.

• Per 5 seconds: The average power output for each interval of five seconds during the Wingate
is measured.

• Body Mass: Before the Wingate, body mass is measured, such that Peak power and Mean
power can be normalized for analysis.

Both the Wingate test and the six-second Powerpeak tests provide valid measures of peak power
output (Herbert et al., 2015). However, the six-second Powerpeak test is less invasive as it involves
a shorter duration of intense exercise than the Wingate test.
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3.3 Data collection for monitoring fatigue
To answer the sub-research question: ‘Can fatigue be identified by monitoring daily jump height
and by wellness questionnaires?’ the variable daily jump height should be added to the existing
dataset. To obtain this new dataset, there will be a data collection protocol of five weeks. These
five weeks consist of two training blocks of two weeks and the first week of a third training block.
These training blocks are centered around the first competitions of the ice skating season. A
schematic overview of the training sessions in the training blocks is shown in Figure 2.

Figure 2: Schematic overview of the different training sessions during the data collection protocol.

The collected variables in this protocol can visually be found in Figure 3 and consist of daily ques-
tionnaire, resting HR, a maximal jump test and a Wingate test.

Questionnaire
The questionnaire taken is the daily questionnaire described in Section 3.2, which has already been
used for some months. Interesting variables collected from this questionnaire are:

readiness to train- fatigue- soreness- mood-

stress- sleep duration- sleep quality-

Resting HR
Resting HR is a variable that is collected via a wearable device, the smartwatch. All the athletes
wear their smartwatch day and night and resting HR is calculated over the current day.

Maximal jump test
To measure the jump height, a vertec measuring tool is used, and the jump height is measured by
the highest bar the person is capable of reaching. The vertec measuring tool consists of 60 bars,
with between every bar 1 cm, such that in total the difference between the lowest and highest bar
is 60 cm. Daily jump height is then measured as the difference between the height of the highest
bar reached minus the length of the person with a stretched arm. The athletes will get three tries
for a maximal jump and only the highest jump height will be used as a variable.
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Figure 3: Protocol of fatigue data collection.

Wingate test
At the start of weeks 1, 3, and 6, a Wingate test is performed to obtain data about the anaerobic
capacity of the athletes. From the Wingate test, the interesting variables are mean power output,
peak power output, the fatigue index, and the progression of power output per five seconds. In
consideration with the coaches, it is decided to perform the Wingate test on Monday morning, at
the start of the new training week.

The athletes are familiar with the data collected as described in Section 3.2; daily questionnaire,
resting HR, and Wingate test. Because the athletes are not yet familiarised with the reach and
jump test used in this protocol, the athletes will have a two-week familiarisation period for the
jump test before the start of the protocol.

3.4 Collected dataset
In Table 3 the number of data points per athlete per variable could be found. The data collection
protocol eventually took place between September 11 and October 16. The data collection is there-
fore extended by one day, as during the protocol the decision was made, in collaboration with the
coaches, to perform the last Wingate at the start of week 6. This deviates from the data collection
protocol, which was to perform the last Wingate at the start of week 5, as can be seen in Figure 3.3

Table 3: Compliance of the collected variables during the data collection protocol.

Owner ID Daily Questionnaire Jump Height Resting HR Wingate
1819 33 14 35 3
2577 35 15 0 2
2583 33 12 15 3
1817 34 10 29 2
511 30 10 31 3
1818 32 17 27 3
1629 34 9 24 2
2573 35 15 24 2
2572 26 17 30 3
1319 35 18 35 3
2575 34 19 34 3
1821 32 12 33 2

Total 35 35 35 3
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As can be seen in Table 3 the athlete who performed the most jump tests, still only performed a
jump test on 19 out of the 35 days. Excluding weekend days, the athletes were expected to jump
26 times and only four athletes were able to miss less than 10 days of the jump test. To obtain a
dataset with more data points for the jump test, daily questionnaire, resting heart rate and daily
jump height of the two weeks which were meant as familiarisation for the jump height are also
used. This dataset consists of the amount of data points as can be seen in Table 4.

Table 4: Compliance of the collected variables during the familiarisation weeks of the jump test
protocol.

Owner ID Daily Questionnaire Jump Height Resting HR
1819 15 13 15
2577 15 13 5
2583 14 13 15
1817 15 13 15
511 15 12 13
1818 15 13 11
1629 15 13 15
2573 15 13 10
2572 13 10 13
1319 15 0 14
2575 15 13 15
1821 15 13 15

Total 15 13 15

The training sessions as shown in Figure 2 are converted to values. Each day has been split up
into two variables: the number of training sessions, and the intended RPE. The same is done for
the training sessions which took place during the familiarisation period of the jump test.

For the Wingate tests, the following variables are stored in a dataset:

Peak power- Mean power- Fatigue Index-

1"-5"- 6"-10"- 11"-15"-

16"-20"- 21"-25"- 26"-30"-

Peak power /kg- Mean power /kg-

3.5 Data preprocessing
The four main groups of variables, jump height, answers on the questionnaires, Wingate perfor-
mance and resting HR are all collected in different ways and therefore are stored as different data
streams.

Ideally, one data point per day is available for the resting HR and the answers from the ques-
tionnaire. This stream of data can be seen as a continuous time series. Next to resting HR and
questionnaire data, the daily height jump test is a time series, but this is not a continued time
series as the weekend results are missing. As the last collected variable, peak power output, mean
power output, and the fatiguing index are collected by a Wingate test. These variables can be seen
as three separate measurement points.
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After collecting the data, some preprocessing steps took place before analyses could be done on
the dataset. First of all, data cleaning was performed where duplicate or missing data was han-
dled (Fan et al., 2021). Duplicate data was sometimes present for the resting HR data and then
the data with the lowest resting HR was kept. Missing data could occur in the variables: daily
questionnaire, jump height, and resting heart rate. If one of the first two variables is missing it is
chosen to do nothing and thus not replace values for these Not A Numbers (NANs). If the resting
HR is missing this value is replaced by the average value of the resting HR of that athlete. Now on
successive time periods, a resting HR value is present and therefore this data stream can be seen
as a time series.

The second step is data integration. Here the different datasets are combined into one dataset.
The first two datasets containing data from the questionnaire, resting heart rate, jump test, and
Wingate tests are all variables collected, primarily, in the morning or during the day. The in-
formation about the training sessions on the day self is a variable collected in the evening. This
variable will have an influence on the fatigue of the athlete the day after the variable is collected
and therefore a time shift, of one day, is applied when combining the datasets.

After data integration, the next step is data reduction. Nothing related to data reduction is done
for this dataset.

The final step in the preprocessing is data transformation. Within data transformation, mainly
feature construction took place. With feature construction, new features (variables) are created
from the existing ones in a dataset with the goal of improving the performance of machine learning
models (Zheng & Casari, 2018). For all the variables from the questionnaire, the following extra
variables are created:

• Variable t− 1, the value of one day before

• Variable t− 2, the value of two days before

• Variable t− 3, the value of three days before

• Variable avgt3, the average value of the past three days

• Variable avgt5, the average value of the past five days

After the data preprocessing steps the final dataset is obtained: ‘Fatiguing athletes’, consisting
of 9 variables for which feature construction took place. For the variables Readiness to train and
the variables for the jump test and Wingate tests no feature construction happened. In total, the
dataset now consists of 67 features.
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4 Data analysis
In this section, the different tests applied to the dataset will be explained. First, the techniques
used to determine the importance of different variables will be introduced. Next, the statistical
analysis of the data for the Wingate tests will be discussed. Lastly, in the third subsection, a model
is presented to predict daily resting heart rates.

4.1 Importance of variables
Next to the literature review of which variables are important in monitoring and predicting fatigue,
the importance of features is also ranked for the ’fatiguing’ dataset. For four different dependent
variables; daily jump height, daily resting HR, daily feeling of fatigue, and daily readiness to
train, a classification decision tree is trained to classify the dependent variable. The ’fatiguing’
dataset consists of wellness questionnaires and a subjective variable; daily resting HR. This dataset
matches the dataset that Campbell et al. (2021) used for predicting an objective variable, namely
training load. Therefore, for our classification problem, a classification decision tree method can
be used too. In this subsection, a classification decision tree method with k-fold cross-validation is
described with an adjustment towards only using variables with the same probability distribution.

4.1.1 k-fold

The first step in training the decision tree model is with k-fold cross-validation, where k equals
three. Better performance can be obtained using k-fold cross-validation and it is a model that is
more robust for new data. The model is trained k times, each time using k − 1 folds for training
and the remaining fold for testing. This is done for each athlete individually, meaning that the
decision tree model differs for each athlete. Moreover, knowledge about the athlete is necessary
before the decision tree method can be applied.

4.1.2 Leave-one-user-out

The next step is to create a more generalized model, which is even more robust against newly seen
data. Therefore, k-fold cross-validation is still used, but now on the data of all twelve athletes
together. In this model k equals twelve, meaning the decision tree model is trained on the data of
the other eleven athletes and the test set is the resulting athlete. The advantage of k-fold cross-
validation in comparison with the leave-one-user-out approach is that a model is trained on data of
only that athlete. The goal of this is to let the model be more specific to the characteristics of the
athlete. For a new athlete, it is better to use the leave-one-user-out approach to make predictions,
as there is no data yet of the new athlete to train the model on. A disadvantage is that the model
is trained on the general group of athletes and no personal characteristics are taken into account.
Another advantage of the leave-one-user-out approach is that there is more data for the model to
train on, which will improve the performance of the model.

4.1.3 Train on variables with the same distribution

For the model to perform better, the distribution of the data of the training and test set should
match. Otherwise, the model will not be able to give a good classification of the dependent variable
of the test set. To ensure that these distributions match, an extra preprocessing step is added to
the process. A statistical test, the two-sample Anderson-Darling test, is used after the train and
test set are constructed. This test, which assesses if two samples come from the same distribution,
is added to the variables of the training and test set. In this test, the null hypothesis is be that
the two samples come from the same distribution, and the alternative hypothesis is be that the
samples come from a different distribution.
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For the Anderson-Darling test, the test statistic is given by:

A2 = − N

N1N2

N∑
i=1

[(2i− 1) · (lnF1(Xi) + ln 1− F2(Xi))],

with:

• N denotes the total sample size

• N1 and N2 are the sample sizes for the first and second samples

• F1(Xi) is the empirical cumulative distribution function of the first sample at the i-th ordered
observation

• F2(Yi) is the empirical cumulative distribution function of the second sample at the i-th
ordered observation

• ln is the natural logarithm

The test statistic A2 is then compared to the critical values from the Anderson-Darling distribution
to decide whether to reject the null hypothesis. If the null hypothesis can be rejected, this means
that the two samples are not coming from the same distribution (Razali & Wah, 2011). For each
feature, this test is done and only the features for which the null hypothesis could not be rejected
are used for the classifying decision tree method. Not being able to reject the null hypothesis does
not mean that the samples do or do not come from the same distribution. Still, it does give a
better indication of the underlying distribution of the samples.

4.2 Wingate performance to identify fatigue
To answer the sub-research question if the performance of a Wingate test could predict fatigue,
statistical analyses are done on the results of the three Wingate tests. With performance of a
Wingate test, the variables obtained during the Wingate test are meant. In this subsection the
connection between power output obtained of a Wingate test and fatigue will be investigated fur-
ther.

Only data is used from the athletes who did all three of the Wingate tests, so eventually, a dataset
of seven athletes was used. Before applying statistical tests, it is important to visualize the dataset.
Therefore, in the results section, a visualization of the dataset will be given first. Furthermore, in
this section, the following tests will be described and in the results section they will be evaluated
on the Wingate dataset; standardized t-test, Kruskal-Wallis test, and the Wilcoxon Signed Rank
test.

4.2.1 Standardized t-test

After visualizing, a standardized t-test (Kim, 2015) was performed to verify if the results of the
Wingate test differed at the start of the data collection protocol compared to the results of the
Wingate test at the end of the data collection protocol. The formula for the standardized t-test is
expressed as:

Z =
X − µ

s√
n

,

with the following parameters.

• Z is the standardized test statistic

• X is the sample mean

• µ is the population mean under the null hypothesis

• s is the standard deviation of the sample

• n is the sample size
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The resulting Z value will be compared to critical values from the standard normal distribution
to determine statistical significance. A large Z value indicates a significant deviation from the
population mean, suggesting that the sample mean is unlikely to have occurred by chance. The
p-value will be calculated using the Z value and the distribution under the null hypothesis and
statistical significance will be found if the p-value is less than a pre-determined significance level
(α) (Kim, 2015).

4.2.2 Kruskal-Wallis test

It is not known of the data of the Wingate tests satisfies the assumptions of a parametric test.
Therefore, next to the standardized t-test also a non-parametric test, the Kruskal Wallis test is
executed. This test is used to test if there are statistically significant differences among three or
more independent groups. The test involves ranking all observations across groups, calculating the
sum of ranks for each group, and then computing a test statistic H. The formula for H is given by:

H =
12

N(N + 1)

∑
i

R2
i

ni
− 3(N + 1),

with the following parameters.

• N is the total number of observations

• Ri is the sum of ranks for the i-th group

• ni is the number of observations in the i-th group

Just like the standardized t-test, a p-value is calculated and statistical significance will be found
if the p-value is less than a pre-determined significance level (α). The null hypothesis for this test
is that the population medians are equal, so for a p-value less than α we can assume that the
population means are different.

4.2.3 Wilcoxon Signed Rank

The Kruskal-Wallis test is a test for independent groups. However, the three particular groups
consist of the performance data on the three Wingates of the same group of athletes. Therefore, it
may be better to use a dependent test to check for differences in the means. Still, a non-parametric
test was used, but the decision was made to use the Wilcoxon Signed Rank test (Durango & Refugio,
2018). This test evaluates whether there is a significant difference between paired observations.
The test statistic W is calculated as the minimum of the sum of the ranks of positive and negative
differences. Statistical significance is then determined by comparing the test statistic to the critical
values from the Wilcoxon Signed Rank distribution.

W = min(
∑

Ranks of positive differences,
∑

Ranks of negative differences)

All these tests will only be performed on the single input features, like the power output of the
Wingate test or the jump height of the CMJ test. The same statistical tests, with small adaptions,
could also be performed on a combination of variables, while this is not done in this study it will
be discussed further in Section 6, the Discussion.

4.3 Resting HR prediction
One of the research questions as defined in the Introduction, Section 1.2, is specific on predicting
daily resting HR data. The goal of predicting daily resting HR is to check if the predicted resting
HR deviates from the measured resting HR. If a large deviation is occurring, this could be a sign
of the start of an elevated resting HR and thus a sign of non-functional overreaching. To predict
the resting HR of an athlete for the next day, a LSTM network is used. In this subsection, an
LSTM network is explained, and two variants of this network are described in detail. In the results
section, these two networks will be performed and evaluated.
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LSTM is a type of Recurrent Neural Network (RNN) architecture employed for time series forecast-
ing. An LSTM model works like a smart tool that remembers important details and decides what
to focus on from the past. It uses special memory cells and gates to store and recall information
selectively from previous time points. The model figures out how much importance to give to each
piece of historical data, allowing it to understand complex patterns in the time series (Anani, 2018).

Daily resting HR can be seen as a time series, so an LSTM model would be a logical tool for
predicting resting heart rate. As a basis, the model proposed by Luo and Wu (2020) is used such
that the LSTM network consists of an input layer, a hidden layer, and lastly a connected layer.
The structure of the LSTM network can be seen in Figure 4 and is described below. The input
layer has a dimension of the input data of 50 and an activation function of tangent hyperbolics.
The hidden layer is a combination of a fully connected dense layer with a dropout rate of 0.2 to
prevent overfitting (Srivastava et al., 2014). At last, a fully connected layer is added, with an
activation function of ReLU to connect the hidden layer and the output.

Figure 4: Visualisation of the LSTM network as used by Luo and Wu (2020).

The LSTM network can be used for an univariate time series problem as well as for a multivariate
time series problem. For the univariate time series problem, as an input variable only resting HR
data is used to predict a new resting heart rate, while for the multivariate time series problem also
other variables could be taken into account as input variables. In this work, both methods have
been used and are respectively described in the following two subsections.

4.3.1 Training parameters

A training set of 80% and a test set of 20% were used as training parameters for all three methods.
The random state was set at an integer, such that the same randomization was used each time
the model was run. Fitting the model is done in 50 epochs with batch size 16. The look-back
parameter of the model determines the number of previous resting HR used as input to predict
the next resting HR. This variable is set on five days in all the models.

4.3.2 Univariate Time Series

The first LSTM model that was trained used previous heart rate samples of an athlete to predict
the next resting heart rate. To generalize the model and provide more training data a model was
created that predicts the resting HR of one athlete trained on the resting HR data of the other
eleven athletes. The model weights are set by the training set, consisting of resting HR data points
of eleven athletes and the model is tested on the test dataset. The test dataset consists of the
raw dataset of HR points as well as a dataset where smoothing has been applied. As a smoothing
technique, exponential smoothing is used with different values for α, the smoothing factor.
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With exponential smoothing, data points are smoothened by assigning exponentially decreasing
weights to past observations. The new smoothed value will be calculated as follows:

ŷ = α · yt + (1− α) · ŷt−1,

with the following parameters:

• y is the actual observation at time t

• α is the smoothing parameter, where a smaller α gives more weight to past observations,
while a larger α gives more weight to the most recent observation (Shan et al., 2023)

4.3.3 Multivariate Time Series

Instead of only using previous resting HR data to predict resting heart rate, a multivariate time
series model takes into account more input variables. A first multivariate time series model is
trained on the following input variables; the daily readiness to train and feeling of fatigue together
with the RPE and number of trainings yesterday. The same training and testing distribution as
in the second univariate time series model is chosen, such that the model is generalized and can
predict resting HR data of unseen athletes. Here as well the test set consists of the raw dataset
and a smoothened dataset.

4.3.4 Multivariate Time Series with top 10 relevant features

In the previously described multivariate time series model the input variables are manually chosen.
To improve the prediction of the resting heart rate, a new model is trained on variables that have
the biggest correlation with resting HR. Therefore the features that come back in the top ten
for predicting resting HR with the highest importance are chosen from the previously described
decision tree method.
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5 Results
In this section, all the results of the tests and models described in Section 4 are stated. The
interpretation of these results will be given in Section 7. The structure of this section is the same
as the structure in the method section. It starts with an interpretation of the dataset, following by
the results about the importance of the variables, the statistical tests on the Wingate performance,
and ends with the model presented to predict daily resting heart rates.

5.1 ‘Fatiguing dataset’
Before giving the results to the subresearch questions, first in this subsection, an overview of the
complete dataset is given, with descriptive analysis and data visualization.

5.1.1 Descriptive analysis

As stated in Section 3.3 the collected dataset now consists of 67 features. In Table 3 and Table
4 the number of completed questionnaires, performed jump and Wingate tests, and the collected
daily resting heart rates can be found. This adds up to a total of 570 completed questionnaires,
307 jump tests, 473 daily resting heart rates, and 31 results of a Wingate test from 12 different
athletes.

5.1.2 Data visualisation

In Figure 5 four histograms could be seen of the variables; readiness to train, daily fatigue, normal-
ized max jump, and resting HR. For readiness to train and daily fatigue on the x-axis the different
answers are given and on the y-axis the frequency of how many times that answer is given. For
daily resting HR and daily max jump the x-axis shows the range of all the possible values these
variables could take and the y-axis shows the frequency of how many times that value could be
found in the dataset.

Figure 5: Visualization of the four variables; readiness to train, daily fatigue, normalized max
jump, and resting HR over the whole dataset.
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Inspecting the data in this way shows some interesting details. For the two variables of the daily
morning questionnaire daily fatigue and daily readiness, the most common answers given are 4.0
and 4.5. This means a low feeling of fatigue and a high feeling of readiness to train. Something
else worth noting is that the tail of the distribution is light-distributed, answers given below 3.0
or higher than 4.5 don’t occur that often. The distribution of the data is different for all four
variables. The distribution of the daily max jump seems to follow a normal distribution, if the
peak at a jump height of 48 or 49 cm is neglected.

Figure 6: Jump height of four athletes, where athlete 1319 only participated in the second data
collection protocol.

In Figure 6 the results of the daily jump test are plotted for four athletes. Due to an injury
athlete 1319 only started his jump test in the second data collection protocol and not during the
familiarisation period. Fluctuations in jump height can be found for all the athletes, but by visual
inspection, no general trend during the training blocks can be found.

5.2 Importance of variables
In this subsection the results of the classification decision tree as considered in Section 4.1 will be
presented. Therefore this section is based on the subresearch question:
Can fatigue be identified by monitoring daily jump height and by a wellness
questionnaire?

Before looking at the results of the classification, the features will be ranked on importance first.
The first results that will be discussed, are the ones of a standard k-fold cross-validation tech-
nique, followed by the more generalized leave-one-user-out cross-validation technique. Lastly, the
approach where only samples with a comparable probability distribution are used as features is
described. As a measure to analyse the performance of a decision tree method, accuracy is used.
Accuracy is calculated as follows:

Accuracy =
Correct

Correct + Incorrect
,

with correct the total amount of correct classified values and incorrect the amount of incorrectly
classified values.
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Before predicting the outcome of one of the four target variables, the decision tree model was
used to rank the input features on importance in classifying the target variable. Where a higher
importance means a higher contribution in predicting the target variable. For a random train set,
which is 80% of the total set, a decision tree model is trained and the ten features with the highest
importance are presented in Table 5 together with their importance. This is repeated for four
different target variables; Resting HR, Jump Height, Daily fatigue and Daily readiness.

Table 5: Ranked importance of the input features for different target variables, where a higher
importance means a higher contribution in classifying the target variable.

Rank Target variable

Resting HR Jump Height Daily fatigue Daily Readiness

1 daily sleep duration t-3 (0.052) daily soreness (0.043) resting hr (0.051) daily sleep quality (0.103)

2 daily-fatigue (0.041) daily soreness t-3 (0.035) daily sleep quality (0.050) daily readiness (0.101)

3 daily sleep duration (0.032) daily sleep duration t-1 (0.033) avg daily stress t5 (0.049) resting hr t-2 (0.034)

4 daily sleep quality (0.031) avg daily fatigue t3 (0.031) daily sleep duration t-2 (0.045) daily sleep duration t-3 (0.029)

5 daily readiness (0.031) daily stress (0.027) daily sleep quality t-2 (0.044) avg resting hr t3 (0.027)

6 daily soreness t-1(0.024) avg daily sleep duration t5 (0.026) daily stress t-2 (0.044) daily soreness t-1 (0.027)

7 daily fatigue t-3 (0.021) avg daily fatigue t5 (0.020) avg resting hr t5 (0.042) daily sleep duration (0.024)

8 nr training (0.020) resting hr t-3 (0.0195) avg daily sleep duration t3 (0.042) daily stress t-2 (0.023)

9 daily soreness (0.019) daily fatigue t-2 (0.019) avg daily sleep duration t5 (0.041) avg nr training t5 (0.022)

10 avg nr training t3 (0.017) daily sleep quality t-1 (0.019) daily sleep duration (0.039) daily stress t-1 (0.021)

Two variables that appear in all the four top ten lists are daily sleep duration and quality. With
both the single value of the previous days as well as the average over the last three and/or five
days. When looking at the four target variables, the feeling of fatigue influences all the other three
variables. Readiness to train and resting HR are less commonly found in the top ten important
input variables than the feeling of fatigue, but jump height never comes back as an important
variable. Next to these four variables and next to the sleep duration and quality, soreness and
stress do influence the results given in the wellness questionnaire.

5.2.1 k-fold

The results that can be found in Table 6 are from the classification decision tree model with k-fold
cross-validation where k equals three. The accuracies are shown per fold and an average is shown.

Table 6: Accuracies of classification of the decision tree with the k-fold cross-validation model
for different target variables.

Fold Target variable

Resting HR Jump Height Daily fatigue Daily Readiness

Fold 1 0.09 0.25 0.49 0.43

Fold 2 0.10 0.19 0.29 0.11

Fold 3 0.13 0.31 0.39 0.40

Average 0.11 0.25 0.39 0.31
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5.2.2 Leave-one-user-out

The next classification decision tree model is trained on data of eleven athletes and as test set data
of a new, unseen, athlete is used. The accuracies per athlete can be seen in Table 7 and at the end
the average accuracy per target variable is given.

Table 7: Accuracies of classification of the decision tree with the leave-one-user-out cross-
validation model for different target variables.

Athlete Target variable

Resting HR Jump Height Daily fatigue Daily Readiness

511 0.02 0.35 0.41 0.35

1319 0.02 0.29 0.37 0.27

1629 0.02 0.45 0.45 0.39

1817 0.08 0.29 0.35 0.39

1818 0.09 0.29 0.29 0.14

1819 0.02 0.25 0.55 0.47

1821 0.02 0.35 0.41 0.25

2572 0.02 0.33 0.49 0.47

2573 0.02 0.27 0.41 0.35

2575 0.12 0.18 0.53 0.61

2577 0.16 0.29 0.67 0.59

2583 0.02 0.29 0.59 0.45

Average 0.05 0.30 0.46 0.39

5.2.3 Train on variables with the same distribution

As a next step only features with the same probability distribution as variables in the test dataset
are used, to see if this improves the accuracies of the classification. Still, the leave-one-user-out
approach was used and accuracies can be found in Table 8.

Table 8: Accuracies of classification of the decision tree with extra preprocessing step to compare
distributions of the samples for different target variables.

Athlete Target variable

Resting HR Jump Height Daily fatigue Daily Readiness

511 0.10 0.05 0.47 0.49

1319 0.08 0 0.21 0.22

1629 0.06 0 0.39 0.31

1817 0.04 0.04 0.27 0.37

1818 0.12 0.04 0.41 0.31

1819 0.08 0.15 0.63 0.47

1821 0 0.04 0.59 0.51

2572 0 0.07 0.49 0.45

2573 0.08 0.19 0.45 0.33

2575 0 0 0.18 0.27

2577 0.06 0.04 0.29 0.24

2583 0.04 0.04 0.43 0.20

Average 0.06 0.07 0.41 0.35
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In Table 9, the comparison between the leave-one-user-out and train-on variables with the same
distribution is given. Because the assumption was that training on variables with the same distri-
bution would increase the accuracy in classifying, a positive value means an increase in performance
and a negative value will correlate with a decrease in performance.

Table 9: Comparison of accuracies of the two different decision tree models where a positive value
indicates that the last decision tree model has a better accuracy.

Athlete Target variable

Resting HR Jump Height Daily fatigue Daily Readiness

511 0.08 -0.30 0.06 0.14

1319 0.06 -0.29 -0.16 -0.05

1629 0.04 -0.45 -0.06 0.31

1817 -0.04 -0.25 -0.12 -0.02

1818 -0.03 -0.25 0.12 0.17

1819 0.06 -0.10 0.08 0

1821 -0.02 -0.31 0.18 0.26

2572 -0.02 -0.26 0.49 -0.02

2573 0.06 0.08 0.04 -0.02

2575 -0.12 -0.18 -0.35 -0.34

2577 -0.10 -0.25 -0.38 -0.35

2583 0.02 -0.25 -0.16 -0.25

Average 0.01 -0.23 -0.05 -0.04

In general, the accuracy of the classification of daily Resting HR is low in both models and in the
comparison, the difference does alternate in sign. Also, the performance of the models in classifying
the daily jump height is not high. Comparing both models on the variables Daily fatigue and Daily
Readiness does give a slightly better result for the model where all the input variables are used as
features.

5.3 Wingate performance to identify fatigue
In this subsection results related to the following sub-research question will be presented:
Can we use Wingate performance as a measure for fatigue in young elite speed skaters?

In this subsection, the dataset related to the three Wingate tests will be used, first for visual
inspection, and followed by three statistical tests to determine if a statistical difference can be
found between the results of the three tests.
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5.3.1 Visualization

Figure 7: Visualization of the results of the three different Wingates for the athletes who per-
formed three Wingates.

In Figure 7 the variables; peak and average power output and peak and average power output
per kilogram body weight are plotted in four separate figures. Looking at these four subplots, no
general trends between the three Wingate tests could be found. Some athletes seem to improve
their power output in the third Wingate test. But other athletes do show a decrease in the second
or third Wingate test.

Figure 8: Normalised Wingate performance variables including a normalized result of the daily
jump test and resting HR on the day of the performed Wingate test.
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A trend can be found by visually inspecting the Wingate performance variables, jump height, and
resting HR in Figure 8. It seems that there is an increase in performance on the second Wingate
test, while there is a decrease in the height the athletes jumped on this day. When looking at the
resting HR, the resting HR increases from test one to test two and from test two to test three.
These observations stated above are confirmed when looking at the means in Table 10.

Table 10: Mean of the samples of the three different moments of the Wingate test.

Variable Mean of the sample

Wingate 1 Wingate 2 Wingate 3

Peak (W) 1485.0 1492.0 1469.0

Average (W) 917.0 933.57 924.29

Peak (W/Kg) 19.37 19.57 19.28

Average (W/Kg) 11.96 12.26 12.12

Fatigue index 0.51 0.50 0.52

Jump height (cm) 53.57 52.14 52.57

5.3.2 Statistical tests

The results of the three different statistical tests performed on the dataset can be found in this
subsection.

Table 11: Results of the statistical tests on the three different Wingate tests during the data
collection protocol.

Variable T-test Wilcoxon signed rank Kruskal Wallis

p-value p-value p-value

1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3

Peak (W) 0.9664 0.9205 0.8855 0.8125 0.6875 0.5781 0.9890

Avg (W) 0.8719 0.9433 0.9270 0.5781 0.9375 0.5781 0.9863

Peak (W/Kg) 0.8439 0.9281 0.7665 1 0.9375 0.5781 0.9547

Avg (W/Kg) 0.6563 0.8097 0.8367 0.3750 0.8125 0.8125 0.9012

Fatigue index 0.8361 0.5917 0.3081 0.9375 0.5781 0.3750 0.6907

Jump height (cm) 0.6145 0.7470 0.8858 0.5781 0.8125 0.5781 0.8882

All the p-values in Table 11 are high, with the lowest one being 0.3750. With an α of 0.05, this
means that none of the tests was able to reject the null hypothesis and thus no statistical difference
between the three Wingate tests was found.
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5.4 Resting HR prediction
The last sub-research question that will be treated in the results section is:
How can we predict resting HR data of young elite speed skaters?

As a performance measure for the LSTM networks, the Root Mean Square Error (RMSE) is used.
RMSE is a commonly used metric to assess the quality of a predictive model and can be calculated
as follows:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2,

with the following parameters:

• n the number of observations

• yi the actual value

• ŷi the predicted value (Chai & Draxler, 2014)

5.4.1 Univariate Time Series

Figure 9: Prediction of the Resting HR of four athletes where the univariate LSTM model is
trained on the Resting HR data of the other athletes.

The predictions of the daily resting HR of the four athletes can be seen in Figure 9 and the first
thing to notice is that the green line of predictions does seem to follow the orange line of HR.
Sometimes it seems the green line does follow the orange line exactly and it seems to copy the
resting HR of yesterday. This will be further discussed in the Discussion, Section 6.3. In the raw
HR dataset sometimes large deviations from the average are found, and the model is not able to
capture those peaks. Comparing the green line of predictions with the blue line of the smoothened
HR dataset the trend is even better captured.
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5.4.2 Multivariate Time Series

Figure 10: Prediction of the Resting HR of four athletes where the multivariate LSTM model is
trained on the Resting HR data and features of the other athletes.

The same results can be seen for the predictions using the multivariate LSTM network. In general,
the predictions do follow the pattern of the resting HR data points but outliers are not predicted.
The green line still seems to follow the one-day shifted orange line, meaning the predicted resting
HR of today is approximately the resting HR of yesterday. In the prediction of the HR of athlete
1818 a strange peak in HR can be found, which can not be seen in the original data.

5.4.3 Multivariate Time Series with top 10 relevant features

For the improved multivariate LSTM model, the LSTM model is trained on the following variables;
daily sleep duration and quality, daily fatigue, daily readiness, daily soreness, and the number of
training sessions yesterday. These variables were used as these are the variables that came back in
the 5.2 section as the most important variables to predict resting HR. The results of this improved
multivariate LSTM model can be found in Figure 11.

Figure 11: Prediction of the Resting HR of four athletes where the multivariate LSTM model is
trained on the Resting HR data and relevant features of the other athletes.
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This multivariate LSTM network does not seem to improve the prediction of the daily resting HR.
On average the RMSE is the same as in the previous LSTM network, with randomly chosen input
variables.

5.4.4 Comparison univariate vs multivariate LSTM

In Table 12 the RMSE per athlete can be found in the predictions with the univariate and multi-
variate models. For all three the models the RMSE per athlete is given for prediction on the raw
dataset and on the smoothened dataset. For athletes 2577 and 2583 not enough HR data points
were present to evaluate the prediction. Thus no predictions are done.

Table 12: Comparison of the univariate and two multivariate LSTM models.

Athlete Root mean square error (RMSE)

Univariate
LSTM

Smooth
Univariate
LSTM

Multivariate
LSTM 1

Smooth 1
Multivariate
LSTM

Multivariate
LSTM 2

Smooth 2
Multivariate
LSTM

511 3.52 1.04 3.14 2.01 2.94 2.50

1319 3.83 1.67 2.31 1.42 3.56 2.53

1629 5.22 1.69 4.27 1.96 4.97 2.52

1817 4.47 1.50 3.65 1.75 4.59 3.38

1818 2.47 0.67 3.12 2.10 3.23 2.42

1819 6.42 1.28 6.25 1.83 6.10 1.80

1821 2.57 1.12 4.29 3.15 3.80 3.26

2572 4.52 2.74 3.94 3.55 3.42 3.59

2573 4.23 1.38 4.62 3.37 4.39 2.87

2575 3.60 0.82 3.67 1.26 3.58 1.38

Average 4.09 1.51 3.93 2.40 4.06 2.63

When looking at these results, no increase in performance can be found for the predictions made
on the raw HR data points. However, the predictions on the smoothed resting HR data points
do differ between the univariate and multivariate LSTM models. Especially for athlete 1819 the
RMSE for the raw dataset is really high. The individual predictions of all athletes for the three
different models can be found in Appendix B.

5.4.5 Exponential smoothing

Different values of smoothing factor α are tested and the average RMSE for the three models
described above is calculated per α. The results are plotted in Figure 12 below.

The performance of the two multivariate models decreases a lot if α becomes larger, while the
result of the univariate model has a small decrease between α = 0.2 and α = 0.6 and an increase
between α = 0.6 and α = 0.8. In general, the average RMSE of the univariate model is better
than those of the multivariate models. For the models described above results are given for the α
for which the average RMSE is the lowest, so α = 0.2 for the multivariate models and α = 0.6 for
the univariate model.
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Figure 12: Average RMSE values of the three different LSTM models and different α values.

5.4.6 Excluding yesterday’s resting HR as input

It seems as if the LSTM models attach great weight to yesterday’s resting HR as an input variable
in predicting today’s resting HR. To reduce this behavior the univariate LSTM model is now
trained on a slightly different look-back variable. Still, five days are used, but yesterday’s resting
HR is excluded from the input data. The model knows the resting HR data of the days t − 6 till
t− 2 to predict the resting HR of day t = 0. Hence, t− 1 is excluded as input data to prevent the
model from just copying the resting HR of yesterday as the predicted value of today.

Figure 13: Prediction of the Resting HR of four athletes where the univariate LSTM model is
trained on the Resting HR data of the other athletes and the model does not know yesterday’s
resting HR.

The results can be found in Figure 13. The performance metric, the RMSE, is approximately the
same as in Figure 9 for the four athletes. The copying behavior seems to be still present, however
shifted in days. This will be further discussed in the next section, the Discussion.
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6 Discussion
In this section, the results given in Section 5 will be analyzed and discussed. The results will be
interpreted in the same structure as the method and results section, starting with a subsection
about the variables, followed by the Wingate subsection, and ending with heart rate predictions.
At the end of each subsection, after the discussion of the results, also some recommendations for
further research are indicated.

6.1 Importance of variables
In the literature study, the most important variables to describe training load according to previous
studies are noted. Daily jump height is one of the variables used in previous research to monitor and
predict neuromuscular fatigue. In this study, a daily countermovement jump test was performed
in the morning, where jump height was measured by a vertec measuring tool. Unfortunately, this
jump test was not performed daily by the athletes participating in this study. The jump and reach
method was chosen because of its high reproducibility and because the test was easy to perform
by the athletes without supervision. But because it was to be performed without supervision,
the athletes forgot to jump in the morning. Hence, a considerable number of data points were
absent during the data collection process, leading to limited insights from the analyses conducted
on this dataset. A recommendation for other research is to have a data collection protocol where
supervision is present when working with young athletes. A classifying decision tree model is run
on the daily jump height, and three other variables; resting HR, daily fatigue, and daily readiness.
From this model, it was found that the most important input variables are:

readiness to train- fatigue- soreness-

stress- sleep duration- sleep quality-

All these variables are collected in the daily morning questionnaire and from the variables in this
questionnaire, only the daily mood is not present in the list of important input variables. The
importance of these variables is low, the highest importance is 0.103. Meaning that no single
variable has a dominant influence on the prediction of the target variable. Therefore no definite
conclusions can be made of these results. However, it is good to observe that many of the variables
currently used in the daily questionnaire at TalentNED are high in the ranked importance list.
Campbell et al. (2021) found that wellness questionnaires are not good at predicting training load
variables. The results of the classifying decision tree in this study are in line with that conclusion.
The accuracies for classifying resting HR and jump height are lower than 10%. The model is better
at classifying daily fatigue and daily readiness as those accuracies are higher. These variables come
from the same wellness questionnaire as a lot of input variables for this model, so higher values
for the importance are also expected. This can also explain why the model is better at classifying
daily fatigue and daily readiness.

The folds of the k-fold cross-validation are made in chronological order. So the first one-third of
the days are in fold 1 and the last one-third of the days are in fold 3. The results of the different
folds do vary a lot in their accuracy of predicting, this distribution of the folds could explain this.
If one fold consists of a specific sort of training in the periodization and the other two on another
type, it can explain why the testing on the first fold is worse once the model is trained on the
other two folds. Maybe this is happening by comparing fold 2 with fold 1 and 3 of the results,
the average accuracy in classifying daily fatigue and daily readiness is worse than in fold 1 and
3. This way of making the folds would be interesting to use for analysis if the different types of
training weeks match the number of folds made and this should be kept in mind when interpreting
the results. There are more interesting distributions in how the folds are made for the k-fold cross-
validation method. It could be argued that randomizing the folds would give an average better
accuracy, which improves the model but has less practical applications. Another interesting option
to take into account for further research is to make seven folds, where fold 1 consists of the data
on Mondays, fold 2 on Tuesdays, etc.
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The model which uses the leave one user out approach is a more generalized model than only
testing on the data of one athlete. This more generalized approach shows higher accuracies in
predicting the target variables, so the results are getting better. However, the results are still
lower than 50%. In total, there are nine answer options in the questionnaire, but none of the
athletes use the whole range of answer options. In the entire dataset, no athlete responded with
a score lower than 2, and also not all athletes ever rated a question in their questionnaire with a
5. This influences the accuracies in classifying the target variables, as now only seven answer op-
tions are left in the dataset. Therefore random guessing for these classifications is 1

7 = 14%, and at
least both the 3-fold cross-validation as the leave one user out perform better than random guessing.

With the leave one user out method, it is possible that in the training set the answer option 5 is
present, but in the test set the athlete never answered with a 5. Another issue in grouping the
answers of all athletes in one dataset is that it is not known if a 4 answer on the feeling of fatigue for
the athletes in the training set has the same meaning as a 4 on the feeling of fatigue for the athlete
in the test set. This will influence the accuracy in classifying but also has an influence on the
practical conclusions taken from this classification. It is also possible that some athletes are worse
at self-reflection in those wellness questionnaires and are therefore less consistent in their answer
options. Other possibilities are that they just always fill in an average or socially accepted answer.
This is something that always can happen when using daily wellness questionnaires and looking
for subjective answers but is important to take into account when interpreting these questionnaires.

In this study, there is only looked at the leave-one-user-out approach where the total dataset con-
sists of all athletes. For further research, it would also be interesting to perform leave-one-user-out
approaches on different groups of athletes. For example on a dataset of only female athletes,
male athletes, all-round or sprint athletes or combinations of those characteristics. These analyses
would be beneficial for the practical applications of the coaches and staff of the sports team. In
this study, this is not done, because the dataset didn’t consist of enough athletes to make this
distinction between different groups of athletes.

In general, based on this sub-research question it would be interesting in future research to look
at:

• Another range of answer options, for example, one to ten, such that, hopefully, more fluctu-
ations in the answers are present.

• The interpretation of answers of different athletes/subjects. Looking at the answers of ath-
letes over a longer time period to get a better idea of what someone’s interpretation of an
answer is.

• How good is a subject in reflecting on their wellness in a subjective questionnaire?

A first step would be to better instruct the subjects that they use the whole range of answer
options and that the questionnaire is not meant for a socially accepted, quick answer. Next to
this, an option could be to normalize the answers to the questionnaire between zero and one before
analyzing the data.

6.2 Wingate performance to identify fatigue
The next objective in this study was related to the three Wingate tests that were taken during the
data collection protocol. The dataset used in this analysis only consists of the period of the data
collection in September and October. The familiarisation period was added to the total dataset to
have more data for the analyses on daily jump height. Unfortunately, no Wingates are performed
before or after this familiarisation period and thus this dataset is not useful for the analysis regard-
ing the Wingate tests. Hofman et al. (2017) found that the Wingate test is a good performance
indicator for speed skaters on the 1500m, so according to their research, this test can be seen as
an ice-specific test. The 1500m in speed ice skating can be seen as a fatiguing event, and because
the Wingate test is used as a predictor for the performance on the 1500m it is hypothesized that
the Wingate test can also be used as an indicator for fatigue. As the Wingate test is a test on
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a Wattbike, it only can measure fatigue in the lower extremities. For this research, it is not a
problem, as ice skating is a sport where mainly the legs are used, but it can give a discrepancy in
the results.

The results of the performance on the Wingate test of the athletes are compared with the train-
ing schedule and therefore intended state of fatigue of the coaches. If the power output obtained
during a Wingate test is an indicator of fatigue it is expected that on the second Wingate, the
power output is the highest, as fatigue is less. Consequently, when also looking at the jump height
on the same day as the Wingate, it is expected that the jump height is also higher, as fatigue is less.

By visual inspection, there seems to be an improvement in performance in the second Wingate
test. The peak and average power output are higher than in tests one and three and the fatigue
index is lower. If looking at the graph and training scheme combined, the first interpretation is
that the Wingate test can detect fatigue in young elite speed skaters. However, when inspecting
the absolute values, only a small increase, between 10 and 30 Watt, in peak power output can be
seen. According to the coaches, this increase is negligible. For example, a change in air friction and
humidity could already lead to a change of 25 Watt in power output, when cycling at 1000 Watt
(Wainwright et al., 2017). Next to this error in power output, also the time of the day at which the
Wingate took place can influence the results. Souissi et al. (2007) found that the performance on
Wingate tests in the afternoon is better than the performance of the same group performed in the
morning. The order in which the athletes took their Wingate was different each time, resulting in
the possibility that one athlete took their first Wingate at 9 in the morning and their third Wingate
at 12, or the other way around. This can thus also influence the results of the performance on
the Wingate tests. All athletes did their second Wingate later in the morning/beginning of the
afternoon, which thus could lead to a better performance of this Wingate, without concluding
anything about the fatigue state of the athletes. These findings of no significant difference between
the results of the three Wingate tests are supported by the statistical tests performed on this data.
No significant results were found, meaning that it can’t be said that there is a difference between
the means of the three groups.

Due to time limitations, in this study, only single features are used as variables for the different
statistical tests. While on these single tests, no statistical significance could be found, it is possible
that when testing on the combination of multiple features, there would be statistical significance
between the three groups. The next step, for further research, would be, to also test on the com-
bination of certain features. For example, the average and peak power output combined. A paired
t-test could be used for these analyses, and different combinations of features should be tested.

In the visualization of the three Wingate tests in Figure 8 also the results of the daily jump height
were shown. By comparing the results of the three jump tests, the athletes seem to jump less high
on the day of the second Wingate test. Using the same assumption that the athletes should be less
fatigued on the day of the second Wingate test compared with the first and third, contradicts the
expected results. These results contradict the findings of Gupta et al. (2023), Pupo et al. (2021),
Gavanda et al. (2023) and Coutts et al. (2007), who all found that a jump test could be used to
identify fatigue. However, they all used different variants of jump tests, and no one used the reach
and height jump test as used in this research. There are some limitations with this jump test,
which could explain the contradicting results. First of all, the athletes were personally responsible
for jumping and writing down the results of their tests. Because the test was unsupervised the
athletes did not perform the test at the same moment in the morning. The agreement with the
athletes was that the test was performed around breakfast time, but some athletes sometimes
performed the test an hour after breakfast. Because the amount of jumps was already really low it
was decided to use all the jump tests that were performed before noon. But just like the Wingate,
the height jumped by a counter movement jump is higher in the afternoon than in the morning
(Heishman et al., 2017). Also on a group level, the time at which the jump test was performed
was not fixed. If on the schedule ice training was planned, the athletes jumped around seven in
the morning, while on a rest day on average, the athletes jumped at 10:00 AM.

40



Both results contradict the expectation that both power output and daily jump height are higher
in the second Wingate test, compared to the first and third Wingate test. Next to the limitations
of the used protocols as mentioned above, there is another discussion point. The assumption of
the coaches, that the athletes should be less fatigued on the day of the second Wingate could be
wrong. If this is the case and the state of fatigue during the three days is approximately the same,
it is expected that the tests will not show a significant difference. However, it is not expected that
the assumption of the coaches about the state of fatigue of the athletes is wrong, as the coaches of
the speed skating team are professional coaches.

For further research towards using the Wingate test as a measure for fatigue, it is important to make
sure the subjects perform the Wingate at the same time on different days. According to Hofman
et al. (2017), the Wingate test is a 1500m specific test for speed skaters, but in other research, this
isn’t confirmed nor contradicted. Therefore in further research, a more speed skaters-specific test
should be developed and the validity of the Wingate test for speed skaters could be tested. To be
able to say something about this form of the jump test, further research should be done on this
format where the athletes jump on a fixed time and with supervision, such that there are enough
data points to analyze.

6.3 Resting HR prediction
In this last subsection, the results of the models used for predicting daily resting HR are discussed.
The univariate LSTM method was already able to capture the trend but missed the peaks. The
average RMSE of the exponential smoothed model is around 1.5 beats per minute, which is decent.
Without smoothing the average RMSE is a lot higher, so the exponential smoothing makes the
predictions more accurate.

Two multivariate LSTM models were tested on the dataset, one where input variables are chosen
manually and one where the input variables come from the decision tree model. Both models had
comparable results in predicting without smoothing the data points, but the performance decreases
with the exponential smoothing of the data in comparison with the univariate model. The input
of extra variables does not increase the performance of the prediction of daily resting HR data.
From this, we can conclude that the most important input variable in predicting resting HR is
previous resting HR samples. And that the input variables are not that important in predicting
resting HR. This is in line with the results of the decision tree as discussed in Section 5.2 where
the importance of the variables is below the 0.052.

The performance of the models was better if tested on the smoothed data. With smoothing the
data, outliers, which are possible measurement errors, do have less influence on the performance
of the model. This of course benefits the performance. Yet, if the outliers signify potential non-
functional overreaching or illness rather than measurement errors, it poses a risk to smooth the
data, potentially erasing valuable insights encoded in these outliers.

As already mentioned in the Results section, the performance of the LSTM models could be de-
bated. The model does seem to copy the last input and with a small modification predicts this
value as the predicted heart rate of today. Additionally, when removing yesterday’s resting heart
rate from the input for the LSTM model, it still seems to copy patterns. However, now this copy-
ing happens with a value a few days before. If comparing the predictions from both models, it is
noticed that the forecasts are shifted by a few days.
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Copying is not a desired outcome of the LSTM network. LSTM networks are good models for
capturing trends and seasonality over a longer period of a time series. However, the training set
used in this study consists of, nine series of less than 60 input heart rates. No seasonality or trend
may be present (yet) in this, relatively small, dataset. It is expected that seasonality would be
present in daily resting HR, when measured over a longer period. During heavier training weeks
daily resting HR is expected to be higher than during rest or recovery weeks. Multiple train-
ing blocks with the same structure of heavy and rest weeks are present in the year schedule and
could show seasonality in daily resting HR. To verify in further research whether this assumption
is correct, an LSTM model to predict daily resting HR with a longer data collection protocol
should be tested. Oyeleye et al. (2022) did find that LSTM models with a recording duration of
1 min or shorter had a worse performance. This corresponds with the assumption that LSTM
is not a good machine learning model for predicting daily resting HR with a small training set.
According to Oyeleye et al. (2022) the ARIMA and linear regression methods showed promising
results in predicting heart rates also for input data with a small duration. For further research,
it could be interesting to check if an ARIMA or linear regression model could improve performance.

This research worked with daily resting HR data. In further research, it would be interesting to
use HRV in combination or instead of resting HR. Ni et al. (2022) used different HRV variables
to classify fatigue with a high accuracy. In this research, HRV is not used, due to not all the
athletes had a smartwatch that was able to monitor HRV. But as HRV as input variable does give
good results for classifying results it would be interesting to look at in another research. Another
interesting direction for further research is to investigate if deviations of predicted vs actual resting
HR data match certain moments of the athletes. For example, does a discrepancy happen between
the actual resting HR and the predicted resting HR the days before an athlete was feeling ill?
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7 Conclusion
In this section the conclusions of the results as given in Section 5 and 6 will be drawn and answers
to the research questions will be given. First, the answers to the first two sub-research questions
are repeated and the conclusions of the last three sub-research questions as stated in Section 1.2
will be treated one by one. Finally, an answer will be given to the main research question and an
overall conclusion of this research will be given.

1) What are relevant variables to describe the training load of athletes?
According to the literature as described above, important variables to describe the training load
of athletes can be divided into internal training load and external training load variables. A nice
overview of these variables is shown in Figure 1.

2) How do the existing machine learning methods perform on the prediction of heart
rates?
The current machine learning and deep learning methods that are already used for the prediction
of heart rates do show some promising results. The best methods found in the literature are;
ARIMA, linear regression, and a multivariate LSTM model.

3) Can fatigue be identified by monitoring daily jump height and by a wellness ques-
tionnaire?
During this research, the daily jump test was not executed correctly to use the daily jump height
to measure or predict fatigue. There should have been more jumps and more at the same time
moment for viable results. The classifying decision tree method used on, among other variables,
the answers on the wellness questionnaire doesn’t give promising results. Therefore, in this study
and with this group of subjects, the reach and height daily jump test is not a viable method to
identify fatigue. Also, the daily morning questionnaire as is currently used within TalentNED is
not capable of classifying fatigue with a decision tree model.
To conclude, fatigue can not be identified by monitoring daily jump height and the wellness ques-
tionnaire as used in this study.
With using classifying decision trees unfortunately the connection between daily jump height and
fatigue could not be explained further. Another technique that might be interesting to try is the
subgroup discovery as used by Knobbe et al. (2017) in their research towards speed skaters.

4) Can we use Wingate performance as a measure for fatigue in young elite speed
skaters?
The data collection period for the Wingate tests of this study consisted of four weeks, with a
Wingate test at the start, middle, and end of this period. The results visually showed some
changes in mean between the three tests but these discrepancies could be explained by other fac-
tors than fatigue. On the days of the Wingate test also the daily jump test was performed, and
these results differed from the Wingate test and the expectations. As the reliability of the jump
test in this research was already shown to be low, no conclusions can be drawn from this data.
In conclusion, the Wingate test, executed as in this study, can not be used as a measure of fatigue
in young elite speed skaters.

5) How can we predict resting HR data of young elite speed skaters?
Three LSTM models are compared in their results of predicting daily resting HR data. The model
with the best performance, defined as the lowest average RMSE, is the univariate LSTM model,
where the predictions were tested on exponential smoothed data points. The predictions had some
fluctuations compared to the actual data, but the trend was captured by the model. However, a
copying behavior seems to be present which makes the current results, despite a low RMSE, less
reliable. Before this model can be used for predicting resting HR, the copying of yesterday’s resting
HR behavior should be further investigated. If the problem related to this behavior is solved, the
univariate LSTM model has the potential to be used for predicting the resting HR data of young
elite speed skaters.
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The answers to the three sub-research questions above lead to an answer to the main research
question:

How can we monitor training load and identify fatigue in young elite speed skaters?

As found in the literature review, resting HR is a viable method to monitor fatigue in athletes.
A longer period of an elevated resting HR indicates fatigue in athletes. If resting HR can be pre-
dicted, fatigue can also be identified.

To finalize, the training load can be monitored by separate monitoring internal and external loads.
The use of a univariate LSTM model has the potential to predict resting HR, but more research is
needed for this. More research is also needed to test the hypothesis that a discrepancy in predicted
vs measured resting HR can identify fatigue in young elite speed skaters.
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8 Appendix A

8.1 Daily questionnaire

Figure 14: Example of the daily questionnaire
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8.2 Training log

Figure 15: Example of the training log questionnaire

8.3 Evening questionnaire

Figure 16: Example of the evening questionnaire
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8.4 Weekly questionnaire

Figure 17: Example of the weekly questionnaire
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9 Appendix B

9.1 Univariate LSTM network

Figure 18: Prediction of resting HR for athlete 511

Figure 19: Prediction of resting HR for athlete 1319
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Figure 20: Prediction of resting HR for athlete 1629

Figure 21: Prediction of resting HR for athlete 1817
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Figure 22: Prediction of resting HR for athlete 1818

Figure 23: Prediction of resting HR for athlete 1819
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Figure 24: Prediction of resting HR for athlete 1821

Figure 25: Prediction of resting HR for athlete 2572
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Figure 26: Prediction of resting HR for athlete 2573

Figure 27: Prediction of resting HR for athlete 2575
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9.2 Multivariate LSTM network 1

Figure 28: Prediction of resting HR for athlete 511

Figure 29: Prediction of resting HR for athlete 1319
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Figure 30: Prediction of resting HR for athlete 1629

Figure 31: Prediction of resting HR for athlete 1817
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Figure 32: Prediction of resting HR for athlete 1818

Figure 33: Prediction of resting HR for athlete 1819

58



Figure 34: Prediction of resting HR for athlete 1821

Figure 35: Prediction of resting HR for athlete 2572
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Figure 36: Prediction of resting HR for athlete 2573

Figure 37: Prediction of resting HR for athlete 2575
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9.3 Multivariate LSTM network 2

Figure 38: Prediction of resting HR for athlete 511

Figure 39: Prediction of resting HR for athlete 1319
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Figure 40: Prediction of resting HR for athlete 1629

Figure 41: Prediction of resting HR for athlete 1817
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Figure 42: Prediction of resting HR for athlete 1818

Figure 43: Prediction of resting HR for athlete 1819
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Figure 44: Prediction of resting HR for athlete 1821

Figure 45: Prediction of resting HR for athlete 2572
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Figure 46: Prediction of resting HR for athlete 2573

Figure 47: Prediction of resting HR for athlete 2575
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