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MANAGEMENT SUMMARY

This study was conducted at the Train Station Management (TM) department of Deutsche Bahn
AG (DB) in Magdeburg. The TMs, managed by DB’s subsidiary DB Station&Service AG (since
01.01.2024 fusion with DB Netze AG to DB InfraGo AG), monitor the operation of train stations
in Germany, provide equipment, facilitate communication between customers and the com-
pany, and ensure safety during travel to enhance the overall experience for passengers. The
safety and quality of physical train stations are maintained through regular safety inspections
and proactive maintenance efforts. Currently, TMs with train stations spread across different
geographical areas, such as the one in Magdeburg, face lengthy commutes to service stations
in the peripheral regions of their responsibility. These long travel distances reduce productive
work time, prompting TM Magdeburg to contemplate restructuring its operational strategy. In-
spectors follow a manually constructed schedule, while repair personnel get tasks assigned on
demand, starting their work from the office in Magdeburg. The proposed solution involves locat-
ing service teams at field offices, if applicable, to minimize travel time and distance, conserve
fuel, reduce emissions, and enhance work quality by shortening commute times. DB owns
properties at train stations with available space that can be outfitted to accommodate these
field offices.

Given the complexity and interrelation between location and routing problems, as evidenced by
existing research, the analysis of office locations alongside effective tour planning can be framed
as the Location-Routing Problem (LRP). Considering the periodic nature of station inspections
and variations in inspection frequencies across stations, this problem is extended to the Pe-
riodic LRP (PLRP). Balancing conflicting objectives, such as minimizing total travel distance
and cost per planning horizon while also minimizing the maximum duration of individual tours,
further complicates the optimization problem. This study aims to design an optimization ap-
proach that locates service teams to field offices, assigns the train stations to the teams respec-
tively, and provides a periodic tour schedule. To address this, a Mixed-Integer Linear Program
(MILP) was formulated to accommodate all relevant constraints. However, MILP struggles to
simultaneously address all objectives without prior knowledge of decision makers’ preferences
and cannot efficiently handle large problem instances within acceptable time frames. Conse-
quently, a metaheuristic approach called Multi-objective Adaptive Large Neighborhood Search
(MO-ALNS) was devised, incorporating customized operators to tackle this problem.

MO-ALNS operates by exploring the solution space using destroy and repair operators. In-
stead of seeking a single solution, it identifies non-dominated solutions to construct a Pareto
front representing trade-off solutions across multiple objectives. Additionally, it employs the
Roulette wheel method to dynamically adjust the probability of selecting operators based on
their past performance. It evaluates solutions using the Metropolis criterion, occasionally ac-
cepting worse solutions to encourage diversification.

Moreover, the algorithm underwent fine-tuning, focusing on optimizing improvement operators,
termination criteria, and other parameters. Ten scenarios were created using the Magdeburg
dataset to achieve this. These scenarios were generated by randomly selecting subsets from
the train station set and adjusting the number of service teams based on the subset’s size. Fol-
lowing the optimization process, the effectiveness of the solutions was assessed by comparing
them to results obtained through the optimization of each objective independently. This was
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done using single-objective equivalents to the MO-ALNS approach and incorporating the pro-
posed MILP method for smaller instances. The results indicate that, for smaller instances (up
to 100 stations), single-objective approaches excel by minimizing Key Performance Indicators
(KPIs) individually. Conversely, MO-ALNS is effective with larger datasets (more than 100 sta-
tions), offering the advantage of generating a comprehensive set of non-dominated solutions in
a single run.

Subsequently, a series of numerical experiments for the deterministic solution evaluation were
conducted, considering other four scenarios. These scenarios included variations such as an
additional service team, a reduced number of service teams, and an additional field office with
a favorable location, albeit at an additional rental cost. Alongside analyzing the Magdeburg
dataset, the TM region in Halle was also examined, encompassing scenarios with similar re-
source allocations. The model showcased versatility across TM regions and provided valuable
insights into team capacity management.

A more detailed analysis of the Magdeburg case was conducted, employing an extended run of
the MO-ALNSmethod, followed by a stochastic examination of a subset of the Pareto front. The
solutions adhered to a constraint of a maximum tour duration of 15 hours and required a mini-
mum improvement of 3% over the existing situation. The analysis revealed that the Stendal field
office was utilized in 78% of the resultant non-dominated set, indicating its explicit utilization for
reducing the total distance traveled by approximately 17% (∼ 1,100-1,900 km) and achieving
modest cost savings. Aschersleben and Dessau were selected in 39% and 35% of solutions,
respectively. Additional inclusion of one of these field offices showed a further reduction in to-
tal distance traveled, albeit with a slight cost increase. Furthermore, setting a maximum tour
duration estimate below 12.5 hours is feasible for constructing tour schedules and improves
workload balance by approximately 20%. Doing so will provide the least exposure to overtime
occurrences, which is supported by the results of the stochastic evaluation.

Examining the results for different numbers of open offices revealed that additional offices cor-
related positively with distance reduction but showed diminishing cost savings. Considering
fixed office installation costs, the profitability of adding a third or fourth office may be question-
able when keeping the current team structure. In scenarios where a cross-disciplinary team
structure covers at least 60% of maintenance trips during the scheduled tours, simultaneous
operation of all three field offices could lead to a substantial decrease in travel distances by
approximately 50% (around 5,800 km) and a monthly cost reduction of 11% (around €450) in
travel and operational expenses.

In conclusion, the MO-ALNS metaheuristic offers valuable insights into the complex interplay
between location and routing issues. While conclusions can be drawn regarding team-office
allocation, the tour schedules generated by each solution are not necessarily optimal. This is
attributed to the vast solution space, inadequately specific operators for tour optimization, and
insufficient runtime to obtain the true Pareto front. Nonetheless, this solution approach holds
promise for application across different regions, providing Deutsche Bahn with a versatile tool
to analyze strategies for managing train station operations and potential field office placements.

In addition to measurable factors, such as cost and time savings from reduced travel, the impact
on employee well-being, particularly the reduced time spent sitting in vehicles, should be con-
sidered. Moreover, the implications for interconnected departments must be considered when
employees and materials are outsourced to external offices.
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1 INTRODUCTION

The first chapter of this research report provides essential background information about the
company and describes the problem context, as well as the methodology employed to con-
duct this research. Section 1.1 introduces the company, while Section 1.2 provides a detailed
description of the identified problem. Following this, Section 1.3 explains the research goal.
Finally, Section 1.4 formulates the research questions, and Section 1.5 presents the research
design.

1.1 Introduction of Deutsche Bahn

Deutsche Bahn AG (DB) is Germany’s state-owned infrastructure and mobility service provider
for freight and public transportation. Their subsidiary, DB Netze AG, owns the longest railway
network in Europe with 33,400km (Statista, 2023). They oversee the transfer stations cru-
cial for commercial transport, while DB Station&Service AG (DB S&S), another wholly owned
subsidiary, manages most public transport train stations. DB envisions climate-friendly trans-
portation and a sustainable transport system through their strategic initiative ”Starke Schiene”
(meaning ’strong rail’ in English), aiming to create future-proof and livable cities (Deutsche Bahn
AG, 2023). This initiative is integral to Germany’s transition to greener transportation (Verkehr-
swende), a priority for the federal government. Promoting public transportation over private
vehicles and prioritizing freight transportation on railways are vital strategies. DB’s vision aligns
with the United Nations’ Sustainable Development Goals, facilitating Germany’s compliance
with European climate standards, including a commitment to total climate neutrality and the
exclusive use of renewable energies (Mamedova, 2022). To incentivize the public to choose
public transportation, enhancing its attractiveness and reliability is imperative. This involves not
only optimizing train connections but also ensuring high-quality service at train stations.

Figure 1.1: a) The Federal Republic of Germany divided into seven regions b) Region South-
east (Südost) divided into six subregions, which form each a train station management ©DB
Station&Service

DB S&S is tasked with operating and maintaining the train stations for passenger transporta-
tion (DB Station&Service AG, 2023). They aim to offer a comfortable and secure experience of
departures, transitions, and arrivals. This includes providing information through personnel at
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service points, signage, and posters as well as ensuring the physical facilities undergo regular
inspection and maintenance. Within Germany, the DB S&S is divided into seven regions, each
containing smaller subregions (see Figure 1.1), where they observe station operations (Janicki,
2016). The department responsible for managing the train station conditions within a subregion
is known as train station management (TM). Stations of all sizes undergo routine inspections to
address safety concerns, vandalism, graffiti, technical issues, and other forms of damage. Ad-
ditionally, showcases are equipped with various information, including timetables and relevant
updates.

Figure 1.2: Station Network of Subregion Magdeburg in the Region South-East ©DB S&S

The project explored by this thesis has been launched by the leader of the TM in Magdeburg in
the region South-East. They oversee an area of over 11,500 km2, accounting for more than a
quarter of the entire land area of the Netherlands. Their purview includes the management of
160 active and 38 inactive stations (SDB, 2023), as illustrated in Figure 1.2. Station inspectors
and repairmen travel by car from the central office in Magdeburg to conduct inspections and
maintenance across all stations. Inspectors adhere to prescribed tour schedules, where each
tour must be completed within a specific time window, termed the validity period. The stations
also have designated inspection frequencies, ranging from 2 to 12 weeks.

A tour is a sequence of stations that must be visited within the stipulated validity period. A sched-
ule is a set of small periods or slots within a planning horizon, dictating when a tour should be
concluded. Once a tour is allocated to a period in the schedule, it is routinely conducted dur-
ing that timeframe. A baseline tour schedule was constructed for the inspectors, which gets
adjusted on short notice based on immediate workload and pending tasks. The tours are not
only assigned to a certain period but also to employees. Inspectors are tasked with examin-
ing technical features, eliminating minor damages, and reporting more significant damages at
each station. Repair personnel subsequently receive directives to address the reported issues,
operating on an on-demand basis.
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1.2 Problem description

Based on a couple of observations, a need to reassess the operational procedures of station
supervision arose. Firstly, it was noted that many trips were being duplicated, with separate
teams conducting inspections and repairs. This practice stems from inspection crews following
designated routes to assess quality and safety while documenting any deficiencies encoun-
tered. Subsequently, the repair team responds to reported issues at the respective stations.
Given the prevalent incidents of vandalism at train stations (Bahnblogstelle, 2023), inspectors
frequently report damages of varying severity.

Consequently, the repair teams often traverse similar routes to those previously covered by the
inspection teams. Moreover, addressing particular repair tasks at distant outlying stations re-
quires extensive travel. In urgent cases, these trips cannot be delayed until other tasks closer
to that station arise. Additionally, many employees do not live in the surrounding area of the
starting point in Magdeburg. They travel far to reach the main office, only to commence tours
that might be in the surroundings of their private residences. DB S&S possesses several facili-
ties in other locations within the region that could serve as field offices, mitigating the need for
extensive travel and associated costs and carbon emissions. Notably, carbon emissions are of
concern in the first place, given the reliance on combustion engine vehicles within the fleet.

Furthermore, the current manual construction of the baseline tour schedule for TM Magdeburg
relies on estimations without a defined strategy. This leads to considerable variation in the num-
ber of stations covered per tour, which lacks a discernible underlying logic. While accounting
for differing station sizes is essential, a closer examination reveals that the tours have been
primarily structured based on the geographical layout of the train routes.

Figure 1.3: Problem cluster for DB S&S

The TM Magdeburg team is considering a strategic, operational shift based on identified issues
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such as lengthy travel distances, redundant visits, lack of station-to-tour allocation logic, and un-
even workload distribution. To visualize the connections between the problems in a structured
way, the issues are organized in a problem cluster, shown in Figure 1.3. This project focuses on
the action problems at the end of the causal chain, highlighted in green. High travel costs, the
concern about CO2 emissions, and a decline in work quality stem from several core problems,
as displayed in red. The intermediary blue boxes outline the causal chain, providing a com-
prehensive understanding of the TM Magdeburg scenario. Each core problem is elaborated
on:

1. The use of a combustion-engine vehicle fleet, rather than one powered by eco-friendly
energy sources, primarily contributes to carbon footprint significantly. However, since this
issue directly leads to only one action problem, it is not the primary focus. Moreover, tran-
sitioning to electric vehicles and establishing battery-charging stations primarily depends
on budget considerations. Factors such as limited battery capacity and extended charging
times may not align with other efficiency-related goals.

2. The next core problem concerns the inefficiency of tour routing logic. The absence of a
systematic approach to tour construction and reliance on a single starting point results in
extensive travel distances to remote stations. The lack of balance in tour plans regard-
ing station coverage hinders short-term planning flexibility. It creates an irregular work
environment, which causes a neglection of quality during busy times.

3. Lastly, the practice of separating inspection and maintenance tasks leads to duplicated
efforts and redundant station visits. Specifically, inspectors invest time in documenting
damages, only for a separate repair team to subsequently travel to the station for rectifi-
cation.

The third core problem can be mitigated by merging inspection and maintenance into teams of
two, each possessing cross-disciplinary expertise. This approach would accelerate inspections,
enable immediate basic maintenance, save time on damage reporting, and ensure a second
person is on-site for assistance. Consequently, most issues can be addressed immediately,
obviating the need for a subsequent station visit. This combined touring approach would be
implemented Monday to Thursday, reserving Fridays for special maintenance. In cases where
large damages necessitate specific materials or tools, it would be duly reported and scheduled
for handling during available time slots.

The project owner (responsible for TMMagdeburg) has endorsed the proposed team configura-
tion and workday arrangement upon request. While it may not align with every TM’s preference
due to considerations of flexibility or staffing constraints, the subsequent section will define the
project’s scope and limits.

Hence, the core problem of this project is defined as follows:

“Inefficient office allocation and tour routing within the region.”

1.3 Research goal

The DB S&S train station supervision department in Magdeburg wants to improve its operating
strategy, focusing on planning inspection and repair tours by installing field offices. Therefore,
this research aims to develop an optimization approach for decision support that encompasses
determining tour starting points from potential field offices, allocating service teams to offices,
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assigning stations to teams, and optimizing tour routes based on available resources and ser-
vice frequencies. Additionally, it aims to ensure a balanced workload for employees. While
retaining the original starting point with at least one team, using field offices is optional and can
be utilized by one or more teams. This optimization approach will be applied to one region at a
time but will be adaptable to all DB S&S management regions. Therefore, the research goal is
formulated as follows:

“Design an optimization approach that locates service teams to field offices, assigns
the train stations to the teams respectively, and provides a periodic tour schedule.”

Given the complexity of location and routing problems and the time constraints of a master the-
sis, it is imperative to define the study’s scope and limitations:

Scope:

• Selecting regional field offices and constructing a new routing plan aligned with the re-
sources and periodic schedule.

• Conducting a historical data analysis for comparison with the current situation.
• Designing a model applicable in different regions, serving as a foundation for a nationwide
rollout.

• Assuming homogeneity in cross-disciplinary teams as a management decision does not
limit the results if a TM decides against such a team structure.

• Adopting a four-day week for the tour schedule to allow flexibility for the schedule and the
short-term planning.

Limitations:

• Excluding short-notice adjustments of the tour schedule from the research.
• Relying on available data that documents the system’s performance, such as driver’s
logbooks since April 2021, the train station database (TSD), and the digital excellence
platform documenting the completed tasks at the train stations. Some TSD information
may require manual verification, updating, or supplementation.

• Omitting the consideration of vehicle equipment and employee qualification requirements
since these will be considered prerequisites for implementing the newly developed struc-
ture. With homogenous teams, the vehicle fleet is also anticipated to be homogeneous.

1.4 Research questions

The goal of this research is to answer the main research question. The goal will be reached by
systematically obtaining information to answer the sub-research questions. The main research
question is formulated as follows:

“How can a solution approach be designed to locate service teams to field offices,
assign the train stations to the teams respectively, and provide a periodic tour

schedule?”
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The following sub-research questions have been defined to solve the core problem and answer
the main research question. The first part concentrates on the current situation at DB Ser-
vice&Station. The problem context, including the requirements, assumptions, and limitations,
is investigated hereby.

1. How does DB S&S currently operate its tour routing?

• Which logic/methods are applied for the tour schedule?
• What are the most relevant key performance indicators (KPIs) for measuring the
efficiency of the routing schedule?

• How well does the current method perform according to certain KPIs?
• What are the circumstances and constraints given by DB S&S concerning the re-
structuring of their operating strategy?

Afterward, the literature is studied for existing information and solution approaches that could
be useful for this problem. The methodology that seems to be fitting must be analyzed in greater
detail to obtain an explicit overview and baseline for further decisions.

2. In the literature, what solution approaches are suggested to solve the problem?

• What literature is available about methods to solve the problem of DB S&S?
• What are the differences between the researched methods?
• Which methodology is most suitable for the problem?

With the gained knowledge about the potential models, the problem-specific details need to be
addressed. This will be processed in the third step of the research.

3. What should the design of the solution approach look like?

• What are the requirements and assumptions to be considered in the model?
• What input data is needed?
• What is the expected output?

When the solution approach is developed, it must be validated and tested for accuracy. Since
the company is looking for a concept that is applicable to all regions of Germany, the translation
to other scenarios must be tested.

4. How does the solution approach perform for the experiments and compared to
the current situation?

• Which experimental setups and scenarios should be considered?
• Is the model valid and generally applicable to different regions?
• How does the developed approach perform for different DB S&S train station man-
agement regions?

Lastly, the research needs to be interpreted and finalized with conclusions and recommenda-
tions for the routing operations at DB S&S.
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5. What can be concluded and recommended following the observations of the
result analysis?

• Which advantages and disadvantages are implicated by the solution approach?
• Which recommendations and conclusions can be formulated for DB S&S?
• Which aspects could be included in further research?

1.5 Research design

The research will be divided into multiple sections framing the design concept. Step by step,
the sub-research questions and, eventually, the main research question will be answered. The
stages are constructed as follows:

• Problem identification and analysis
• Solution generation
• Solution experimentation and model validation
• Evaluation, implementation, and interpretation

Including the required input and the necessary output, the phases of the research design are
schematically displayed in Figure 1.4.
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Figure 1.4: Graphical representation of the research design for the problem of DB S&S

8



2 CONTEXT ANALYSIS

This chapter presents a comprehensive context overview and addresses the first research ques-
tion: How does DB S&S currently manage its tour routing? Within the domain of train station
management (TM), roles overseeing station supervision encompass the leader, coordinating
and administrative staff, assistants, station inspectors, and repair personnel.

The latter two, crucial for on-site tasks, have tours scheduled as outlined in Section 2.1. Section
2.2 provides an overview of relevant KPIs, while Section 2.3 focuses on parameter estimations
for these indicators. The analysis of the current tour schedule results is presented in Section
2.4, and Section 2.5 outlines considerations for the proposed change in operational strategy.

2.1 Tour scheduling

The employees are assigned specific tours that they need to complete. A tour is a sequence of
train station visits where designated tasks are carried out. Inspection and repair teams travel to
stations by car, transporting necessary tools and materials. The vehicle fleet is stationed at the
main office within each subregion, serving as the starting point for every tour. These vehicles
are equipped with all the tools and materials required for the job. The supervisor manually plans
the work schedules for inspectors and repair personnel. Here, we have three different types of
scheduling.

Inspection baseline schedule:

The baseline schedule for the safety inspection is constructed with tours based on past inspec-
tions and the mandated check-up frequencies, ensuring they occur within the corresponding
validity periods. The tours mainly comprise the train routes connecting these stations despite
their far distances to travel.

The task of safety inspection covers all safety aspects on platforms, walkways, and station
buildings, including checking for missing or illegible safety signs, broken showcases, or any
irregularities in platform surfaces or edges. Any potential direct dangers or malfunctions must
be identified and addressed. If immediate resolution is not possible, temporary fixes or warn-
ings must be implemented, and a request for reinstatement work should be filed. Additionally,
unauthorized graffiti or stickers must be removed or obscured. This is the most critical task,
with prioritizing total safety, especially during staff shortages. While theoretically, almost any
TM employee can perform this task, it primarily falls to station inspectors and, secondarily,
craftsmen. Each inspector is assigned specific tours, fostering continuity in station service and
allowing employees to be familiar with their designated area. This territorial expertise facilitates
an efficient work routine, a key aspect to uphold.

Maintenance schedule:

The repair personnel’s schedule is determined based on registered orders. This task includes
addressing damages such as graffiti, damaged trash cans, signs, or dodger shelters. Urgent or
general reinstatement work is primarily the responsibility of repair personnel, provided it is within
their capability. Such tasks are conducted on-demand following reported damages, which can
be identified by inspectors or observers like passengers, fellow DB employees, or the police. If
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specialized tools or skills are required, or if outsourcing proves more economical, the task may
be delegated to a suitable company. Some tasks, for instance, those necessitating a ladder,
also require the presence of two individuals for mutual safety. Non-urgent tasks are postponed
until they can be incorporated into a comprehensive tour, preventing unnecessary travel time.
Downtime is utilized for preventative maintenance or facility restoration.

Short-term planning:

Lastly, the planning team refines the inspection baseline schedule on a weekly and daily basis
and tasks the repair personnel with upcoming tasks besides their planned reinstatement work.
Ad-hoc tasks like placing posters in showcases or reviewing the work of cleaning and gardening
companies may be added to the tour schedules of inspection and repair personnel when fea-
sible. Also, if an inspection tour from the previous day was not completed, it must be finished
within the designated time frame. In cases of employee absence due to vacation or illness,
priority is given to safety inspections to meet regulatory deadlines and address urgent safety
repairs. Only essential work is undertaken to achieve this. A missed inspection could result in
station closure, which has never occurred. In extreme circumstances, the head of train station
supervision, a qualified colleague, or even a neighboring TM may step in to complete the in-
spection. While safety inspections are the main focus for inspectors, repair personnel primarily
handle reinstatement work. However, both roles are qualified for almost all types of work.

2.2 Key Performance Indicators

The documentation and measurement of the system’s performance lack comprehensiveness.
The primary emphasis is completing prioritized tasks within specified deadlines or according to
urgency. Challenges arise from an exceptionally high number of absent employees due to sick-
ness or vacation, hindering the execution of planned tours. The tour-planning team prioritizes
safety and meeting quality-check deadlines above all else. All available resources, including
the planning team, will be mobilized if required. Many employees are qualified to serve as
train station inspectors, providing a contingency to prevent closures. Notably, the number of
late inspections is not a valuable indicator for this research, which focuses solely on baseline
scheduling rather than short-term adjustments. The focus remains on analyzing travel distances
and the associated cost savings from reduced fuel consumption, alongside consideration of po-
tential costs for field offices.

Travel distance:

In the vehicle, a logbook records the distance traveled daily and monthly. The distance traveled
can be used as an indicator and measured in kilometers. While this data includes all distances
traveled, not just originally scheduled routes, it complicates direct historical comparisons. Esti-
mating travel distances will yield more accurate values for direct comparison.

Cost:

Operating from the main office in Magdeburg incurs no additional costs. However, for potential
field offices, it is essential to account for fixed and operational expenses associated with em-
ployee placement. Fixed costs include necessary furniture and materials for the new offices.
Operational costs pertain to leased equipment such as printer systems and Wi-Fi access. Ma-
terial like sanitary articles, which are universally required regardless of the team’s location, are
not factored into the cost assessments.
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To standardize Key Performance Indicators (KPIs), the travel distance can be translated into gas
and wear cost based on the average mileage and prevailing gas price. According to TradingE-
conomics (2023), the diesel price in Germany is projected to rise to approximately 2.30$ in the
first half of 2024. Since 2024 is the earliest time this project could be implemented, we decided
to use the forecasted diesel price for further calculations. In Euros, the gas price will be around
€2.15. For instance, assuming the cars consume about 9 Liters of gas per 100km, and the
projected gas (diesel) price is €2.15 per liter, the cost per kilometer driven is:

9L

100km
· 2.15€

L
= 0.194

€
L

Including some value for wear and tear of a car, the cost can be rounded up to 0.35€/km.
This aligns with Germany’s general kilometer allowance, which is up to 0.38€/km (Deutscher
Bundestag, 2022). These traveling costs also need to be considered for the repair team since
they gain the same decrease in travel distance when placed in a field office. In summary, cost
is the most relevant KPI, categorized into three components:

• Travelling cost: €0.25 per km driven

• Operational cost: €500 per month per field office (when in use)

• Fixed cost: €1,000 one-time payment for field office installation

Workload balance:

Another crucial factor is workload balance. Ensuring each service team operates at approxi-
mately equal capacity necessitates measuring equity in tour scheduling. While estimating ser-
vice time and assigning stations to teams accordingly helps balance workload, it overlooks
potential disparities in travel distances to reach these stations. Consequently, considering ex-
pected service times at stations and anticipated travel times associated with assigned tours,
the total tour time offers a more effective indicator for balancing the baseline schedule. The
difference between the maximal and minimal total tour times is calculated to measure the work
balance. While in the case of optimization, minimizing the maximal tour time would also en-
courage the reduction of the travel time, this measure is more universal. Since the maximal
tour time can differentiate with different numbers of teams and stations by much, it is unclear
when the workload balance is good (enough).

2.3 Estimation of parameter

Measures need to be gathered and estimated to make the KPIs tangible and comparable. It is
important to acknowledge that travel time and service duration are subject to uncertainty. While
stochastic variations are primarily relevant for short-term planning, accurate service and travel
time estimations are essential for a realistic approach to the problem. This section outlines the
methodology for deriving these estimations.

2.3.1 Travel distance

We need to know the distances between the train stations to calculate the total distance covered
during a tour or the entire planning horizon. With 198 locations, this translates to 39,204 entries
in a distance matrix. While tools like Google Maps or other navigation systems can provide
precise point-to-point distances, it is hindering that Google’s Distance Matrix API has a daily
request limitation of 2,500 daily requests (Google, 2023). Generating the distance matrix for
TM Magdeburg alone would take approximately 15.7 days. Therefore, we explored estimations
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of travel distances.

We calculated straight-line distances using the coordinates (longitude and latitude) provided
by the train station database. We employed the Haversine formula to account for the Earth’s
curvature, a method widely recognized for determining great circle distances (Ballou, Rahardja,
Sakai, 2002). This formula is represented as follows:

DA−B = 6378{arccos(sin LATA ∗ sin LATB

+ cos LATA ∗ cos LATB ∗ cos |LONGA − LONGB |)}

Here DA−B denotes the great circle distance between the points A and B, 6378 (km) is the
radius of the earth, and LAT and LONG represent the latitude and longitude coordinates of the
point in the subscript in radians (Ballou et al., 2002).

While the straight-line distance offers an initial measure, it does not directly represent the actual
road distance. Further adjustments are needed. Ballou et al. (2002) introduced circuit factors
(a ratio of the straight-line distance to the actual road distance) to approach a more realistic
distance value. As the straight line represents the shortest distance between two points, the
factor must be greater than 1. Their research led to a circuit factor of 1.32 for Germany.

TDAB≈DA−B ∗ 1.32

Where TDAB is the travel distance on the actual road, DA−B is the straight-line distance as
calculated above, and 1.32 is the chosen circuit factor.

We followed a similar procedure, calculating circuit factors for a sample of distances between
stations. The average circuit factor was 1.33, with a standard deviation of 0.11. We also con-
ducted a regression analysis. The regression coefficients enabled the construction of a linear
regression equation with a y-intercept of 2.439 and a variable coefficient of 1.261:

RegTDAB = 2.439 + 1.261 ∗DA−B

Subsequently, we assessed the accuracy of travel distance estimation using measures like
Mean Square Error (MSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error
(MAPE). The results are displayed in Table 2.1.

Table 2.1: Measures of accuracy of travel distance estimation
Regression Circuit factor

MSE 17.996 19.169
MAPE 6.9% 6.7%
MAD -5.62E-16 -7.31E-03

It is evident from the results that the circuit factor formula, with a MAPE of 6.7%, provides a
reliable estimation of road distances compared to the regression approach (MAPE of 6.9%).
Both methods’ MSE values are close, demonstrating their comparable accuracy. Additionally,
the MAD values, though small, indicate minimal discrepancies. Importantly, the circuit factor
represents a more universal method since the regression analysis is based on real data spe-
cific to our context. Given its remarkably close performance to the regression approach, the
circuit factor is a highly practical and efficient tool for estimating road distances.
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The approach presented by Berens and Körling (1985) further supports this conclusion. Years
prior, they conducted a similar study, proposing a formula incorporating additional factors (up
to three) for various geographical conditions, such as terrain and road system development.
While their primary focus was U.S. roads, they also applied their model to the German road
system. However, they found only marginal improvements in accuracy compared to using a
single factor. Moreover, their results corroborated the effectiveness of the factor 1.32. Even
though some areas might be more rural, urban, or mountainous, the effort to determine addi-
tional factors outweighs its effect. Given that Germany does not exhibit extraordinary geograph-
ical circumstances or an irregular road system, we can confidently affirm the appropriateness
of using the circuit factor 1.32 to estimate road distance from a straight-line distance.

2.3.2 Travel time

The travel time varies based on the traffic conditions. Most vehicles in the Magdeburg fleet
display an average speed that was driven. These velocities lay around 50 km/h. This implies
that a driver requires approximately 1.2 minutes for each kilometer. We collected travel distance
data and estimated travel times using a routing application like Google Maps for 100 trips to
validate this. Dividing travel time by distance yielded a ratio denoting speed in minutes per
kilometer, termed the speed factor (SF). The relationship between travel speed (in min/km) and
travel distance (km) is illustrated in Figure 2.1.

Figure 2.1: Experimental and estimated speed factors based on area of TM Magdeburg

From our data, we derived an average speed of 1.03 min/km across all distances. This aver-
age is also reflected in the range of 20km to 50km, with a mean of 0.99. For longer distances
(>50km), the average speed drops to 0.88 min/km. This discrepancy is attributed to the use
of country roads and highways, where speed limits are considerably higher (mostly >70km/h)
compared to urban and village areas (≤ 50 km/h). Such longer distances typically occur when
an employee travels to or from a remote station. For distances below 20km, the speed factor
consistently exceeds 1 min/km, with the ratio increasing as distance decreases. This is due to
employees frequently covering shorter distances between stations, resulting in the car screen’s
average speed displaying below 60km/h (=̂ 1 min/km).
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To estimate the travel time (TT ) we introduced a speed factor (SF ) based on the travel distance
(TD):

SFAB =


2− 0.04 ∗ TDAB, for 0 ≤ TDAB < 20

1.4− 0.01 ∗ TDAB, for 20 ≤ TDAB < 50

0.9, for TDAB ≥ 50

Here, SFAB and TDAB represent the speed factor and travel distance for the journey from point
A to B, respectively. This function is defined by the red line in Figure 2.1. For distances less than
20km, between 20km and 40km, and between 40km and 60km, the speed factor is defined by
three linear functions depending on travel distance. For TD ≥ 50km, SF is a constant numerical
factor with a value of 0.9.

Table 2.2: Accuracy measures of sped factor estimation
SF

MSE 0.027
MAPE -8.2%
MAD -4.4E-02

Analyzing the accuracy measures (see Table 2.2), we observe low MSE and MAD values, indi-
cating that the estimation closely aligns with the actual data mean. The MAPE is approximately
17%, signifying that, on average, the estimation deviates about 17% from the actual mean.
Given the fluctuating nature of traffic flow and employee driving speeds between stations, we
conclude that the derived speed factor function is an effective estimator for converting travel
distance into travel time.

As employees are required to park and reverse their cars at each station, an additional 3 minutes
will be incorporated for each trip. Therefore, the following piece-wise-defined function will be
employed to estimate travel time in minutes.

TTAB = 3 + SFAB ∗ TDAB

=


3 + (2− 0.04 ∗ TDAB) ∗ TDAB, for 0AB < 20

3 + (1.4− 0.01 ∗ TDAB) ∗ TDAB, for 20 ≤ TDAB < 50

3 + 0.9 ∗ TDAB, for TDAB ≥ 50

2.3.3 Train station characteristics

The first intention to estimate the service time at each station was to assume that the “bigger”
the station, the more time needed to execute the safety inspection. However, interviewing em-
ployees about this presumption manifested that, to some extent, it may be applicable, but it is
not that simple. Therefore, here the train station classifications with their limits are investigated,
especially since they also play an important role in the inspection frequencies.

DB AG employs a detailed classification system to gauge the scale or significance of a station
(Janicki, 2016). Stations are broadly categorized into active and inactive. Active stations are
those regularly serviced with scheduled train stops, requiring a quality and safety check every
four weeks. On the other hand, inactive stations have no regular scheduled train stops and
consequently require inspections at longer intervals, specifically every twelve weeks. Regard-
less of classification, both types have a maximum five-day time frame for inspection completion.
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Table 2.3: Distribution of train station categories in TM Magdeburg
Category Frequency

inactive: 0 38
active: 1 0

2 1
3 5
4 6
5 20
6 79
7 50

Total: 198

Active stations are further graded based on their importance, ranging from classes 1 to 7, as
detailed in the specialized DB publication by Janicki (2016). These classes are determined
by weighted criteria such as platform edge count and length, daily passenger and train stop
volume, as well as provisions for disabled access (DB Station&Service AG, 2021). Class 1 sta-
tions hold the highest importance, offering top-tier services, often acting as hubs for numerous
long-distance train connections. Generally, it is observed that as importance and size increase,
the class numbers ascend to class 7. Class 7 stations serve the fewest passengers and are
predominantly in remote rural areas. They see such infrequent use that upgrading accessibil-
ity may not be deemed necessary. The most common classification is class 6, typically found
in sparsely populated rural regions, providing fundamental services for public railway trans-
portation. Table 2.3 presents the distribution of stations across these categories, while inactive
stations are designated as category 0 for simplicity and clear attribution.

Additionally, some stations have not been updated to accommodate the longer trains introduced
over the years. As a makeshift solution, platforms were extended, with markers indicating the
minimal safety distance to the platform edge. However, these markers are exposed to natural
elements. To ensure continuous safety with visible barrier lines, these stations require more
frequent checks every two weeks. TM Magdeburg oversees six such stations, classified under
either category 6 or 7.

Active, inactive, and special attention classifications play a crucial role in determining inspection
frequency. The classification scale offers insights into the time and effort required for inspec-
tions. The lower the class (excluding 0), the more comprehensive the service, and the greater
the number of elements to be assessed. Given that most stations fall into higher classes (6 or
7), which offer basic services, workload estimation needs to be extended.

Figure 2.2: Platform variations a) intermediate platform b) side-boarding platform

However, these classifications are not decisive enough for the service time estimation at each
station. The foundational work for the baseline schedule centers on safety inspections, involving
thoroughly examining every platform edge and other elements on the platform. This task is
one of the job’s most time-consuming yet predictable aspects. Consequently, the number of
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departure platforms should be considered when estimating workload. For instance, a station
with two tracks for train stops and passenger boarding/disembarking presents two potential
layouts (as depicted in Figure 2.2, Janicki, 2016). In scenario a), the platform is placed between
the train tracks, allowing the inspector to traverse one side and return on the other, all while
assessing the edges. In scenario b), two platforms accommodate an equal number of train
tracks. Here, the inspector walks along an edge for examination and back, doubling the time
required for walking. This aspect will be factored into workload and service time estimations.
Furthermore, more distance to walk occurs when the inspection of an entry building is included,
which can also not be deduced by the classification.

2.3.4 Service time

We consider various station characteristics to estimate the service time (ST ). As outlined in the
previous subsection, relying solely on classification yields inadequate estimates. Therefore, we
incorporate the following attributes to model task times exclusively for active stations. Inactive
stations receive a fixed service time of 15 minutes.

• Station classification
• Number of platforms
• Number of elevators
• Entry building (yes: 1 or no: 0)

Platforms are a useful factor as they house similar equipment requiring inspection and main-
tenance. Apart from walking along the edge, platforms entail additional checks for items like
trashcans, showcases, weather protection shelters, and grit containers for vandalism, safety,
cleanliness, or functionality. Tasks such as hanging up train schedules in showcases may also
be required. Based on estimations provided by the leader of train station supervision, the total
time for platform-related tasks is approximately 20 minutes per platform.

The number of elevators serves as an indicator of other technical equipment, such as digital
timetables or train indicator boards. This entails ensuring the functionality of technical devices
and emergency buttons in the elevators, a task estimated to take 15 minutes per elevator.

DB S&S typically does not own many entry buildings due to economic reasons; private owners
operate most. However, at six stations managed by TM Magdeburg, overseeing the safety and
quality of entry buildings is within their purview, necessitating extra time. This task is assigned
20 minutes per entry building.

Considering these characteristics, we estimate the working time for predictable tasks. The sta-
tion classification enables a more precise assessment of station size. Although vandalism does
not necessarily increase with station size, larger stations have longer walkways, more areas
where small debris may need to be addressed, and higher foot traffic, which can impact work
efficiency.

Each station will get an additional 20 minutes multiplied by its reverse classification. With re-
verse classification, it means that the classification number increases with the size of a station
so that 7 denotes the largest station type and 1 represents the smallest. However, to express
this mathematically, the classifications for active stations need to be reversed. Therefore, the
classification is manipulated by the following expression: (7−classificationi+1) for station i. As
a result, larger stations with typically lower classification numbers receive the highest additional
time. This adjustment accounts for inspectors’ challenges due to the station’s size. Therefore,
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the service time for station i is estimated as follows:

If classificationi = 0 then STi = 15.

Else,

STi = 20 + (7− classificationi+1)
2 + 18 ∗ numPlatformsi

+ 8 ∗ numElevatorsi + 20 ∗ entryBuildingi

While this formula estimates the time spent at a station, it does not account for unusual extreme
circumstances. Additionally, the estimated times may exceed the actual times in cases where
damage surveys are not needed.

2.3.5 Stochasticity

Each phase of the employees’ tasks is subject to varying degrees of uncertainty. This includes
unpredictable factors such as travel durations between points and the time required to complete
tasks at the stations.

Travel Time: Factors like rush hour, construction, and accidents significantly influence travel
time. Even with a predetermined route, anticipating rush hour traffic remains challenging, as
service times at stations are also unpredictable. However, it is possible to model an estimated
travel time based on the corresponding travel distance, which is most relevant for constructing
the baseline schedule.

Service Time: The time spent on tasks at the stations also fluctuates. Inspectors may en-
counter varying documentation needs or engage in minor tasks like updating timetables for
altered departure times. Conversely, there may be instances where no issues require atten-
tion, allowing for swift completion. Similar irregularities apply to maintenance teams, who may
find tasks larger or smaller than anticipated upon arrival. Consequently, tour schedules are
adjusted accordingly in both scenarios.

Acts of vandalism are not contingent on station size. Smaller rural stations may be targeted by
young individuals seeking an uninhibited environment. Meanwhile, larger stations may witness
groups passing through, some of whom may be predisposed to disruptive behavior, like football
fans leaving club stickers or venting frustration on showcases. However, larger stations are
more public-facing and undergo more frequent restoration efforts to maintain high standards.
As a result, an estimation of service time is determined by the classification and the specific
physical attributes overseen by DB S&S.

2.4 Analysis of current tour schedule

The current tour schedule comprises 33 individual tours conducted by six station inspectors.
From these six inspectors, one inspector is employed with reduced hours (by 25%), and an-
other one is also dedicated to executing reinstatement work. Tours 1 to 28 occur on a four-
week cycle, with some including one or two inactive stations that are only visited based on their
respective frequencies. Tours 26 to 28 cover the three central stations; each assigned its own
tour. Tours 29 to 34 solely consist of inactive stations and are conducted every twelve weeks.
We estimated the travel time per tour based on the distance traveled, assuming each tour is
completed without interruption. Additionally, understanding the time spent at each station is
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crucial for accurately estimating the tour duration. To this end, we derived an estimate of the
service time by considering the station’s classification and other specific information, such as
the number of platforms and elevators to be inspected, as well as whether the entry building
falls under the responsibility of DB S&S.

Figure 2.3: Travel time and service time per tour in TM Magdeburg (minimum and maximum of
tours 1 to 25 are marked)

Figure 2.3 illustrates the estimated travel and service times for each tour outlined in the baseline
schedule for TM Magdeburg. Excluding tours 26 to 33, we observe differences in travel time
and service time of up to 5 hours and 12.5 hours, respectively. Tour 28, centered around the
main station in Magdeburg (where the current office is located), necessitates no additional travel
time. Inactive stations, requiring minimal servicing, are allotted a flat-rate time of 15 minutes.

Figure 2.4 provides an overview of the total time estimates for each tour in TM Magdeburg.
Notably, these estimates exhibit significant variations across the tours, ranging from 7.5 hours
for Tour 18 to over 15 hours for Tour 10. While major shifts in traffic volume or tasks may lead
to longer total times, these estimates underscore the imbalanced nature of the tour structure.
Especially considering the reduced hourly capacity by the inspector covering tours 1 to 3, this
results in an estimate that would exceed three days. This gives little space for short-term ad-
justment and increases the pressure on the employee to finish the tour, leading to rushed work
with low quality and doing what is absolutely necessary.

Combining the travel time, service time, and total time for all tours, we arrive at the following
estimates:

• Total travel + service time: 322 hours

• Total travel time: 95 hours (30%)

• Total service time: 227 hours (70%)
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Figure 2.4: Total time estimation per Tour in TM Magdeburg (minimum and maximum of tours
1 to 25 are marked)

Considering a standard work week of eight hours per day, one full day is reserved for special
tasks and meetings. Additionally, 25% of the daily hours are dedicated to material prepara-
tion, paperwork handling, and documentation. Thus, within a four-week period (4 weeks

horizon · 4
days
week ·

6hoursday = 96 hours
horizon ), each inspector has approximately 96 hours available for actual travel and

station service (72 hours with 25% reduced work hours). Looking at the distribution of total
tour times among the inspectors in TM Magdeburg showed that each employee that is only
designated for the safety inspection has tours assigned that fulfill about 59%-67% of their avail-
able time. This indicates that the distribution between employees is relatively fair and that the
estimated durations leave considerable flexibility and spare time for short-term planning. Fur-
thermore, the hourly capacity of an employee must be considered to maintain a fair working
environment. Concluding the analysis of the current tour schedule, the values of the KPI mea-
sures are displayed in Table 2.4.

Table 2.4: KPIs of current Tour schedule
KPI Current value
Total travel distance 4,500 km
Total cost 2,250 €
Max. tour duration 925 min
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2.5 Consideration of adjusted operation strategy

This section explains the considerations made to make the change in operation strategy feasible
and as realistic as possible.

2.5.1 Office location

Currently, the main office in Magdeburg serves as the central hub for all operations within the
subregion. However, given its relatively distant location from certain stations, there is a notable
expenditure of time and fuel when employees travel to stations further away. Tomitigate this, the
concept of establishing field offices has been proposed. The DB company already possesses
suitable buildings at various train stations, making the implementation of offices and storage
units a straightforward process. Specifically, in the TM Magdeburg region, DB holds properties
at the Dessau, Stendal, and Aschersleben stations. While Magdeburg must remain designated
as the main office, the other three locations can be utilized as field offices. This implies that, for
the purposes of this thesis, at least one inspector or inspection team must be stationed at the
main office in Magdeburg. Similarly, for any additional location to function as an office, it must
accommodate at least one inspector or inspection team. To ensure that employees do not drive
to a field office that is even further away from their private stay, each team has a set of possible
offices that they can be located at.

2.5.2 Applying the cross-disciplinary team structure

Adopting the combined team structure or not, reducing tour distances due to installing field
offices has a positive effect on each case. When the repair personnel are located in a decen-
tralized manner, they also experience shorter travels to outside laying stations. This can be
already captured by accounting for twice the distance when calculating the travel cost in the
monetary objective.

The effect will be more noticeable when the new team structure is applied. This results in the
reduction of double tours of inspection and repair separately and can improve the work routine
at the station by saving documentation time and assisting one another. As the aphorism ”time
is money” indicates, time has a value that can be used to make a profit. Therefore, not wasting
time driving and documenting, using it instead for completing tasks and more qualitative work,
can be worth the money. However, since this system is just theoretically developed, there is no
indication of how big of an effect it has. Therefore, this aspect remains for the solution interpre-
tation and recommendations.

TM Magdeburg currently employs six individuals for the inspection tours and has three employ-
ees exclusively for maintenance duties. They aim to implement the combined team structure
consisting of four teams and one additional reserve employee. To facilitate this transition, the
development of the baseline schedule for Magdeburg, irrespective of the team configuration,
accommodates four inspectors or service teams.

2.5.3 Comparison of tour estimates to reality

The estimates applied to the current tour schedule in Section 2.4 are helpful for directly com-
paring with the newly developed tour schedule resulting from the solution approach. However,
looking at the drivers’ logbooks reveals the actual distances driven. The inspectors drive an
average of 7,500 km per month, and the repair personnel 5,300km per month. Table 2.5 shows
the ratios to the estimated total tour distance.
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Table 2.5: Distance ratios of real distance to tour distance estimate
Real km Ratio to estimate Used ratio Manipulated KPI

Inspection 7,500 1.667 1.5 6,750
Repair 5,300 1.178 1.1 4,950

Based on information from employees, it is proper to assume that some distance is due to trips
unrelated to the tour schedule or task-related activities. Therefore, a slightly reduced ratio will
be used for the objective manipulation and interpretation approach. To manipulate the distance
and cost KPI, the kilometers obtained by estimators (distanceest) are one time multiplied by
1.5 and added together with another time multiplied by 1.1 to account for the inspection and
repair trips separately. This total tour distance will also be used to calculate the travel cost. The
formulas for both KPIs are presented below.

TotalTourDistance = distanceest(1.5 + 1.1)

= 2.6 ∗ distanceest
TotalTravelCost = TotalTourDistance ∗ travelCostper km

Since each train station management will be confronted with fluctuating travel and service times
and tasks outside the baseline schedule, it is a justifiable assumption to apply manipulation
factors on a general basis. With these manipulation factors, the KPIs of travel distance and
costs are estimated to be 11,700km travel distance and €4,095 in total costs.

2.6 Conclusion

Inspectors and repair personnel responsible for train station inspections andmaintenance follow
a defined set of tasks, encompassing safety inspections, reinstatement work, technical activ-
ities, cleaning examination, and other station-related tasks. Emphasis is consistently placed
on prioritizing safety inspections and addressing situations proposing safety risks. While repair
personnel respond to maintenance tasks as they arise, inspectors adhere to a pre-determined
tour schedule, which is manually constructed based on the train routes. Both groups receive
tasks on short notice.

An analysis of the current situation at TM Magdeburg identifies operational inefficiencies within
their train station department’s manual schedule. There exists an opportunity for cost savings,
reduced environmental impact, and a more evenly distributed workload over the planning hori-
zon. To address these objectives, a new tour schedule needs to be constructed. Additionally,
the implementation of field offices, where employees and their equipment can be stationed, is
being explored. The project owner also desires a team structure that assigns schedules to pairs
of employees. While short-term adjustments will not be prioritized, the schedule should allow
flexibility for task inclusion, provide a time buffer, and accommodate employee shortages.

Even though travel and service times contain uncertainties, our focus lies on establishing a new
baseline schedule, and variations in time are of secondary concern. We employed estimations
for analysis to gain a clear understanding of travel distance, travel time, and service times.
Based on the current tour schedule and these estimates, we identified imbalances in workload
distribution among tours. Regular tours exhibit varying total estimated travel and service times,
ranging from 7.5 to over 15 hours. We plan to utilize the maximal tour duration as a key perfor-
mance indicator for efficient tour routing and a balanced schedule. Furthermore, the total travel
distance and total cost will be examined. Under these measures, the current tour schedule has
a total travel distance of 4,500km (11,700km manipulated), the associated costs are €4,095,
and the maximal tour duration lies at 15.4 hours.
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3 LITERATURE REVIEW

This chapter presents a comprehensive review of relevant literature pertinent to this research
while answering the second research question: In the literature, what solution approaches are
suggested to solve the location and routing problem? It begins with exploring literature related
to train operations and providing contextual information. Subsequently, it contextualizes the
planning levels associated with the maintenance problem of DB S&S in Section 3.2. Sections
3.3 and 3.4 introduce and elaborate on the two distinct subproblems: facility location and vehicle
routing. An explanation and literature review of the integrated Location-Routing Problem follows
this. Sections 3.6 and 3.7 deal with multi-objective approaches and the selected metaheuristic
Adaptive Large Neighborhood Search, respectively. Section 3.8 reflects on a stochastic evalu-
ation method. Finally, Section 3.9 summarizes the chapter with concluding remarks.

3.1 Railway operations

The maintenance operations of railway infrastructure cover various components, reflecting the
diversity of related literature and research. A crucial aspect of a reliable train system is the
functionality of the train tracks. Sedghi et al. (2021) recently reviewed railway track mainte-
nance planning and scheduling. In addition to national budgets, the European Union (EU27)
allocated €41.8 billion for the maintenance, upgrade, renewal, and expansion of European rail
infrastructure in 2020 (European Commission, 2023). Given the capital-intensive nature of the
rail sector, even minor operational improvements can significantly impact overall expenditures
and system efficiency (Sedghi et al., 2021).

In the context of train track maintenance, such improvements can be achieved through various
means, including optimizing maintenance policies (Gerum et al., 2019), crew scheduling and
routing (Peng & Ouyang, 2014), the strategic location of maintenance facilities (Xie et al., 2016),
and the application of sensor technologies for condition monitoring (Castillo-Mingorance et al.,
2020). Additionally, proper scheduling and maintenance of rolling stock and locomotives are
essential for ensuring safety, comfort, and punctuality in train services (Anderegg et al., 2003).
Tönissen and Arts (2020) introduced the Stochastic Maintenance Location Routing Allocation
Problem for Rolling Stock (SMLRAP), optimizing the locations of maintenance facilities and al-
locating rolling stock accordingly.

In the context of this thesis, the focus shifts to maintenance activities outside the train tracks.
While the trains themselves are not directly involved, the maintenance of train stations is equally
critical. Non-performance can lead to the decommissioning of stations, subsequently affecting
train operations. Addressing this challenge involves solving location and routing problems. Lo-
cating employees, along with their vehicles and equipment, in field offices for efficient coverage
of geographically dispersed stations constitutes a location problem. Constructing a new tour
plan for employees represents a routing problem. Notably, the tour plan is designed as a pe-
riodic schedule to meet legally required station inspection frequencies. Moreover, ensuring an
equitable workload distribution among employees or teams, both within each tour and over the
planning horizon, is imperative. Given the equal importance of both location and routing com-
ponents in achieving the most efficient solution for DB S&S, this research centers on Location-
Routing Problems (LRPs).
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To explore the LRP application in the context of railway operation, we conducted a search using
the Elsevier search engine Scopus to acquire unbiased information. Using the search query
(”location routing problem” OR location-routing) AND (train OR railway) AND (maintenance OR
inspection), we obtained four relevant results. Among these, three are contributions by Tönis-
sen and Arts (2018, 2020) and Tönissen et al. (2019), all centered on maintenance location
routing for rolling stock. Jamali (2019) delves into multimodal multi-vehicle hazardous materials
transport, considering costs dependent on the quantity of materials loaded. Since these initial
results provided limited insight, we broadened the search term to (”location routing problem” OR
location-routing) AND (train OR railway). This refinement yielded four additional articles focus-
ing on multimodal LRP models optimizing transportation on highways and high-speed railways
(Yu et al., 2023), the Euro-China expressway and its connection points (Lu et al., 2019b), as
well as the catering logistics for high-speed railway trains (Wu et al., 2017). Lu et al. (2019a)
concentrate on the refueling of locomotives.

While these papers are considered in the context of railway operations, it is essential to note
that there is limited overlap with our specific research attributes. Therefore, we will place more
emphasis on analyzing problem characteristics rather than relying on contextual relevance. This
approach will involve breaking down the problem and evaluating existing research that shares
pertinent characteristics.

3.2 Planning levels

The problem of this project addresses challenges across different planning levels. The first
subproblem involves determining the location for inspection teams at (field) offices. This falls
into the scope of network design or location theory, constructing a strategic problem (Farahani
& Hekmatfar, 2020). These decisions are expected to endure longer due to the substantial
time and financial investments required for potential changes. Since establishing a field office
involves significant costs, deciding on the placement of employees within existing facilities is a
long-term commitment.

The second subproblem pertains to the routing of the vehicles, a task that can be adjusted with
shorter notice and less effort. Constructing a recurrent skeleton plan constitutes tactical plan-
ning (Prodhon & Prins, 2008). The final adjustments made on the day prior, or the actual tour
days, are referred to as offline and online operational planning, respectively. Offline planning
incorporates pre-known events into the tour, while online planning involves last-minute adap-
tions, such as emergencies that demand immediate attention.

Traditionally, these two subproblems have been tackled separately due to the differing levels
of decision-making involved. The complexity significantly escalates when attempting to inte-
grate both steps. Facility location and vehicle routing are classified as NP-hard combinatorial
optimization problems (Nagy & Salhi, 2006). This implies that even finding optimal solutions
for each individual can only be achieved in exponential time due to their inherent complexity.
Nonetheless, Salhi and Rand (1989) demonstrated, through experimentation, that there exists
a substantial interdependence between vehicle routing and location allocation. This realization,
coupled with the growing international significance of logistics in the 1970s and 1980s, spurred
research into the Location-Routing Problem (Farahani & Hekmatfar, 2020).

3.3 Location problem

The first subproblem can be outlined as follows: Within a defined network of arcs (representing
streets), nodes (representing demand points, in this case, train stations), and potential facilities
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(a subset of nodes), it is aimed to select a subset of potential facilities as service team locations.
This selection is made with the objective of minimizing the total costs or travel distances to
all demand points. It is important to note that the train stations and the connecting streets
are pre-existing and cannot be altered. Thus, the network is considered fixed. The currently
established facility remains unchanged; however, additional field offices can be selected for
employee placement. The capacity of these facilities, indicating how many demand points they
can serve, depends on the number of service teams assigned to each facility. If a field office
is utilized, it must host at least one team. Similarly, the existing facility must host at least one
team as well. Consequently, when addressing a challenge of this nature, the following decisions
need to be made:

1. Which facility location will be utilized?

2. How many service teams will be stationed at each facility?

3. Who will be responsible for each train station?

This decision-making process is a core component of Facility Location Problems (FLPs), a
specific subset within the broader category of Network Design Problems (NDPs). FLPs con-
centrate on strategically placing facilities, such as warehouses, factories, or service centers,
within a network to efficiently serve a set of demand points (Marianov & Serra, 2002). This pro-
cess involves careful consideration of factors such as demand distribution, transportation costs,
and capacity constraints. In FLPs, the goal is to determine the optimal locations for facilities to
minimize costs or maximize benefits (Farahani & Hekmatfar, 2020). This optimization process
holds significance across various domains, including logistics, supply chain management, ur-
ban planning, and public services (Melo, Nickel, & Saldanha-da-Gama, 2009). In the context of
railway operations, facility location problems find broad applicability when finding locations, for
example, for infrastructure maintenance depots for all kinds of rail vehicles (Kim & Kim, 2021)
or resting facilities for trains of Railway Rapid Transit Systems (Canca & Barrena, 2018).

3.4 Routing problem

The second subproblem involves the routing and scheduling special field services for periodic
inspections and maintenance of demand points (train stations). They have different inspection
frequencies and validity periods for their required service. Service teams are tasked with con-
ducting on-site inspections and maintenance activities to fulfill these requirements. Therefore,
establishing a fixed schedule with defined tours that allocate specific work locations is crucial in
efficiently organizing these repetitive operations. Each service team operates from designated
starting and ending points for their assigned tour to distribute workload and ensure tours have
similar durations and time commitments. The key decisions to be made are:

1. Which station is covered by each tour?

2. Who is responsible for each tour?

3. In what period is each tour happening?

The unique characteristics that distinguish the DB S&S problem include the need for routing
with a balanced workload and adherence to a periodic schedule. Consequently, our investiga-
tion involves an examination of the Vehicle Routing Problem (VRP), incorporating both balance
constraints and objectives, along with a periodic extension of the VRP.

In general, VRP is recognized as an NP-hard problem that determines optimal routes for a
vehicle fleet to satisfy demand points (Oyola, Arntzen, & Woodruff, 2016). The pioneering work
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of Dantzig and Ramser in 1959 applied VRP to a fleet of gasoline delivery trucks. Since then,
numerous variations of VRP have been explored in diverse logistical contexts. In consumer
goods logistics, depots and vehicles are typically constrained by limited storage space and
carrying capacity, respectively. Additionally, route lengths may be restricted, particularly with
electric vehicles, due to battery limitations. These scenarios give rise to the Capacitated VRP
(CVRP), for which various exact and heuristic approaches have been developed. An example of
the railway operations context is the route planning of maintenance agents through the railway
network without disrupting the active train traffic by Buriuly, Vachani, Sinha, Ravitharan, and
Chaunhan (2022). Furthermore, Müller, Ehlers, and Gollnick (2019) proposed a drone routing
optimization to monitor the railway infrastructure.

3.5 Location-Routing Problem

The Location-Routing Problem (LRP) is a branch of locational analysis research distinguished
by its consideration of the fundamental problem of vehicle routing (Nagy & Salhi, 2006). A
thorough examination of LRP literature reveals many different variations for a wide range of
applications, including the distribution of goods (e.g., food or mail), waste collection, health-
care (mobile healthcare services), and stationing of military equipment (Farahani & Hekmatfar,
2020). Defining the problem comprehensively requires consideration of various aspects, which
existing research combines in diverse ways. However, due to the complexity of the two subprob-
lems, only a few exact formulations have been devised, with a greater emphasis on heuristic
approaches.

Breaking down the classical LRP involves three decisions based on a set of potential facility
locations, including their opening costs, a homogenous vehicle fleet, and a set of demand points
with known requests. Drexl and Schneider (2015) define three interdependent decisions that
are crucial for LRPs:

1. Which of the potential facilities should be utilized?

2. Which customer clusters should be formed?

3. Within each cluster, which sequence of demand points should be served by a vehicle?

The primary objective is to minimize the overall cost, encompassing facility opening costs, fixed
vehicle expenses, and route-related costs. As logistic costs represent a significant portion of
companies’ expenditures, the research on this topic has expanded rapidly over the years (Prod-
hon & Prins, 2014). Mathematical formulations and heuristics exist for various extensions of the
classical LRP.

To clearly understand LRP models and their alignment with our specific problem attributes, Fig-
ure 10 presents the taxonomy proposed by Mara, Kuo, and Sri Asih (2021). Notably, the sce-
nario characteristics include deterministic data, a periodic planning period, and single-trip vehi-
cle usage. Further scenario characteristics are not considered or, due to irrelevance, marked
as not allowed. The physical features of our problem concentrate on a single echelon with a
direct approach from a discrete number of facility locations to the demand points. Additionally,
we address single-service operations at train stations, denoted by vertices, hence adopting a
vertex-routing approach. The vehicle fleet is assumed to be homogeneous, and no capacity
constraints are applied for facilities or vehicles. Our objective function emphasizes cost reduc-
tion while ensuring an equitable distribution of workload. Consequently, models addressing
multiple objectives, particularly those related to cost reduction and workload balance, are rele-
vant to our investigation.
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Figure 3.1: Summary of relevant literature addressing Location-Routing Problems

These selected articles’ characteristics are summarized in Figure 3.1, with a specific emphasis
on vertex-routing, single-echelon, and single-modal environments. The data sets used are
categorized as either deterministic (D) or stochastic (S). Additionally, when an equity function is
incorporated into an objective or constraint, we focus only on workload balance (WL). A more
detailed and broader review has been done by Prodhon and Prins (2014), Drexl and Schneider
(2015), Mara et al. (2021), and Tadaros and Migdalas (2022).

3.5.1 Periodic LRP

The periodic dimension of the LRP was initially introduced by Prodhon (2008) and has gained
increasing attention in recent years. Drexl and Schneider (2015) describe the Periodic Location-
Routing Problem (PLRP) as a combination of the classical LRP and the Periodic Vehicle-Routing
Problem. Existing research relevant to our study has primarily focused on waste management
contexts (e.g., Kordi, Hasanzadeh-Moghimi, Paydar, and Asadi-Gangraj, 2023; Gläser, 2022;
Tunalioglu, Koc & Bektas, 2016), distribution logistics (e.g., Pirkwieser & Raidl, 2010; Li a&
Tang, 2021; Hemmelmayr, 2015), mobile healthcare (Savaser & Kara, 2022), and maintenance
of railway rolling stock (Tönissen & Arts, 2020).

Examining various solution methodologies, we first explore single-objective applications. Pirk-
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wieser and Raidl (2010) introduced a metaheuristic combining a Variable Neighborhood Search
(VNS) with three Integer Linear Programming (ILP)-based Very Large Neighborhood Searches
(VLNS), utilizing diverse shaking neighborhoods for diversification and local search for intensifi-
cation of the solution space. Hemmelmayr (2015) and Gläser (2022) developed Adaptive Large
Neighborhood Search (ALNS) techniques that effectively handle both small and large instances
by destroying and repairing the current solution. Koc (2016) proposed the Unified-Adaptive
Large Neighborhood Search (U-ALNS) metaheuristic for various PLRP configurations, employ-
ing Simulated Annealing (SA) within an outer local search framework. Tunalioglu et al.(2016)
addressed the multi-period LRP in the context of olive oil mill wastewater collection, adapting
three versions of the ALNS algorithm, differing primarily in their selection of operators. Savaser
and Kara (2022) presented a heuristic based on a cluster first–route second approach, capable
of finding (near) optimal solutions within appropriate computational time, emphasizing conti-
nuity in the assigned service, evenly distributed periodic visits, and balanced workload within
constraints.

Subsequently, we delve into papers focusing on multi-objective PLRP solution approaches.
Vahdani, Veysmoradi, Shekari, andMousavi (2018) present two population-basedmulti-objective
optimization evolutionary algorithms, namely Non-dominated Sorting Genetic Algorithm-II (NS-
GAII) andMulti-Objective Particle SwarmOptimization (MOPSO), demonstrating favorable Pareto
solutions with NSGA-II excelling in the ideal answer criterion and MOPSO performing better
in generating diverse solutions. Rabbani, Heidari, and Yazdanparast (2019) enhance NSGA-
II with Monte Carlo simulation, yielding superior solutions for waste management challenges
compared to other simulation-optimization approaches. Mamaghani and Davari (2020) pro-
posed the Non-dominated Ranked Genetic Algorithm (NRGA) for a PLRP with simultaneous
pickups and deliveries. NRGA is NSGA-II-based with a modified selection strategy, outper-
forming NSGA-II regarding the diversity of solutions, while NSGA-II demonstrated better spac-
ing and runtime. Long, Zhang, Liang, Li, and Chen (2021) solve the multi-objective PLRP with a
Preference-Inspired Co-Evolutionary Algorithm with Tchebycheff decomposition (PICEA-g-td),
showing superior performance compared to three other algorithms, namely NSGA-II, MOEA/D
and PICEA-g. Tönissen and Arts (2020) present a Mixed-Integer Problem (MIP) for railway
rolling stock maintenance allocation, providing insights into facility number dependence on al-
location restrictions. Li and Tang (2021) proposed a Symbiotic Organisms Search (SOS) algo-
rithm for recycling logistics, considering route reliability across different problem instances and
effective and consistent solution generation.

In the realm of solution approach, a notable distinction arises between single- andmulti-objective
models. Single-objective PLRPs are predominantly solved using neighborhood search tech-
niques, particularly ALNS, to explore solution spaces efficiently. In contrast, multi-objective
PLRPs are mainly solved with evolutionary algorithms like NSGA-II, manifesting in their ability
to optimize conflicting objectives in diverse scenarios concurrently. Such distinct methodologies
underscore the need for specialized approaches in navigating the complexities of different LRP
problem formulations to achieve optimal solutions effectively. Neglecting the type of objective,
ALNS and NSGA-II represent two powerful metaheuristic approaches, each with distinct charac-
teristics and strategies for solving optimization problems. ALNS and NSGA-II differ significantly
in their methodologies, exploration of solution spaces, and handling of periodic LRPs.

3.5.2 LRP with workload balance

The workload balance is a critical aspect of our LRP formulation, impacting schedule equality,
flexibility, and employee satisfaction. Despite its significance, the integration of workload bal-
ance into LRPs remains infrequent.
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Notably, Savaser and Kara (2022) stand out in implementing workload balance with constraints
setting a maximal acceptable value. They focused on minimizing total travel distance as a sin-
gle objective, incorporating constraints for workload balance, and solving their mobile health-
care problem using a cluster-first, route-second algorithm. However, a few studies have trans-
formed themulti-objectivemodel into a single objective using different methodologies. Martinez-
Salazar, Molina, Angelo-Bello, Gomez, and Caballero (2014) addressed an extended LRP
known as Transportation LRP (TLRP), employing metaheuristics such as Scatter Tabu Search
Procedure for Non-Linear Multi-objective Optimization (SSPMO) and NSGA-II strategies. Their
objectives aimed at minimizing economic costs and the difference between maximal and min-
imal tour length. They applied the weighted sum method and epsilon constraint method to
obtain the exact frontier. While SSPMO generated high-quality solutions for small instances,
the NSGA-II-based heuristic performed better for large ones. Zhang, Li, Li, and Peng (2018)
proposed a hybrid intelligent algorithm integrating uncertain simulation and a genetic algorithm.
The objectives are described in one main objective (minimization of the maximum travel time)
and two goal constraints (minimization of relief cost and minimization of CO2 emissions). Nu-
merical experiments highlighted the efficiency and robustness of their designed heuristic.

As mentioned in the previous subsection, Vahdani et al. (2018) used NSGA-II and MOPSO
to address their multi-objective PLRP. Their approach to workload balance involved minimiz-
ing the maximal vehicle route while minimizing the total costs, and maximizing the minimal
route reliability. Shi et al. (2023) propose a bi-objective MILP for the simultaneous facility
location and vehicle routing problem. Their objectives focused on minimizing maximum vehi-
cle working time and total cost. They were solved using an NSGA-II-based hybrid heuristic
with a VNS procedure, yielding promising solution exploration and generation results. Lin and
Kwok (2006) applied Tabu Search (TS) and Simulated Annealing (SA) as metaheuristics in their
multi-objective LRP. They implemented workload balance by measuring the load imbalance and
working time imbalance per vehicle. TS outperforms SA on average within computation time
limits. Golmohammadi, Bonab, and Parishani (2016) proposed an Imperialist Competitive Al-
gorithm (ICA) for the multi-objective LRP, aiming to minimize total cost and difference in vehicle
travel distance. ICAs perform better than NSGA-II and PAES regarding quality and spacing met-
rics across various problem sizes. Similarly, Hadian, Golmohammadi, Hemmati, and Mashkani
(2019) introduce a Multi-Objective ICA (MOICA) for LRP with a capacitated and homogeneous
vehicle fleet, focusing on minimizing total costs and differences in distance traveled. MOICA
outperforms NSGA-II, especially for large problem instances. Lastly, Garlindres et al. (2023)
proposed aMixed-Integer Linear Programming (MILP) model and an Iterated Local Search (ILS)
and decomposition (ILS/D) for capacitated LRP, emphasizing workload balance among drivers
by minimizing the maximal route length, total cost minimization, and environmental impact re-
duction. Comparing Pareto fronts obtained from exact and approximate methods revealed the
favorable dispersion and convergence characteristics of ILS/D.

In conclusion, while workload balance remains a crucial aspect in Location Routing Problems
(LRP), it often takes a subsidiary role compared to other primary objectives. Consequently,
multi-objective models have predominantly been favored in addressing LRP concerns, allowing
for simultaneous consideration of workload balance besidesmonetary improvements. However,
even though multi-objective models seem to be preferred, practical methods exist to transform
these into single-objective frameworks. Techniques such as the weighted sum or epsilon con-
straint methods offer pathways to merge multiple objectives into a singular optimization goal,
providing an alternative approach for addressing workload balance within amore focused frame-
work (Deb, Sindhya, & Hakanen, 2016).
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3.6 Multi-objective approaches

Multi-objective optimization problems (MOPs), as defined by Schüzte and Hernández (2021),
involve optimizing multiple conflicting objectives while adhering to certain constraints. The
complexity inherent in these problems necessitates specialized techniques, particularly (meta)
heuristic methods, which primarily focus on the concept of Pareto dominance (Schüzte &Hernán-
dez, 2021). These techniques fall into two categories: single-solution-based and population-
based, depending on whether they manipulate a single solution or a set of solutions to explore
the search space diversely (Sharma & Kumar, 2022). Additionally, they can also be classified
into single- and multi-objective approaches. Single-objective techniques use a single fitness
function based on predetermined preferences, yielding a unique solution. In contrast, multi-
objective approaches consider conflicting objectives, generating a set of non-dominating solu-
tions.

Mara et al. (2021) provide an updated classification: commonly used techniques for single-
objective LRPs include Simulated Annealing, Genetic Algorithms, Tabu Search, (Variable) Neigh-
borhood Search, and Particle Swarm Optimization. Conversely, for multi-objective LRP mod-
els, widely used techniques are the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) and
Multi-Objective Particle Swarm Optimization (MOPSO). In our specific literature review, NSGA-
II in the population-based category and neighborhood search heuristics (particularly ALNS) in
the single-solution-based category were most frequently employed. ALNS was primarily used
to address the periodic aspect, while NSGA-II stood out for multi-objective criteria. However,
techniques were also applied to simplify multi-objective problems. Ehrgott (2005) and Deb et
al. (2016) provide comprehensive overviews. Some commonly used methods include:

• TheParetomethod collects all trade-off solutions dominant in different objectives, forming
the Pareto front.

• Scalarization, or weighted-sum method, merges multi-objective function into a scalar
fitness function using pre-assigning weights and normalization. However, difficulties in
weight selection and non-convexity led to the development of the epsilon constraint method.

• The epsilon constraint method optimizes one objective while treating others as con-
straints, demanding careful selection of epsilon.

• The lexicographic method considers single objectives in sorted order, starting with the
most important one, solving the optimization problem multiple times.

• Goal programming assigns goals to each objective, aiming to minimize deviations from
these goals.

This flexibility in modeling methods tailors approaches to specific problem needs. For our study,
we use the Pareto method to optimize all objectives simultaneously. This postpones preference
decisions until after the generation of a set of trade-off solutions. Selecting parameters a priori
heavily depends on the decision-maker’s favorability regarding the different criteria. Further-
more, transforming multiple objectives into one limits the exploration of the Pareto front and
does not guarantee Pareto optimality (Deb et al., 2016).

Metaheuristics employing Pareto-optimality concepts are predominantly population-basedmulti-
objective optimization techniques since they can search for many efficient solutions simultane-
ously, e.g., NSGA-II or MOPSO (Ehrgott & Gandibleux, 2000). Furthermore, single-solution
approaches have been adapted by maintaining an archive of non-dominated solutions and up-
dating it with each iteration of the algorithm. This way, multi-objective versions of, e.g., Genetic
Algorithm (MOGA) or Simulated Annealing (MOSA) have been developed (Ngatchou et al.,
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2005). Furthermore, Schaus and Hartert (2013) propose the multi-objective large neighbor-
hood search (MOLNS).

Our literature review indicates that Adaptive Large Neighborhood Search is an intriguing so-
lution approach for Periodic Location-Routing Problems, especially in its multi-objective exten-
sion. Rifai, Nguyen, and Dawal (2016) developedMulti-Objective Adaptive Large Neighborhood
Search (MOALNS) for flow shop scheduling, showing superior results compared to LNS, ALNS,
and NSGA-II applications, supporting the effectiveness of MOALNS. Although MOALNS with
the Pareto method has not been applied to location-routing problems, Ke and Zhai (2014) pro-
posed a similar population-based algorithm (MALNS) for a vehicle routing problem with efficient
results. This underlines the lack of practice and research of ALNS in the multi-objective envi-
ronment of different contexts.

We focus on the Pareto method because it precisely represents trade-off solutions. Addition-
ally, we will solve each single-objective instance for reference. Comparing these results en-
sures Pareto-optimality and evaluates ALNS compatibility with strictly multi-objective solutions,
an area still relatively unexplored (Mara, Norcahyo, Jodiawan, Lusiatoro, & Rifai, 2022). In
summary, our strategy involves leveraging the efficacy of ALNS in addressing periodic LRPs
and harnessing the power of the Pareto method to address multiple objectives. This approach
promises a robust solution for our specific problem and contributes significantly to exploring
Multi-Objective Adaptive Large Neighborhood Search, particularly within the context of LRPs.

3.7 Adaptive Large Neighborhood Search

Adaptive Large Neighborhood Search (ALNS) is a widely employed metaheuristic belonging
to the family of Local Search algorithms, extensively utilized in diverse problem domains like
routing, scheduling, and location problems (Mara et al., 2022). Originating as an extension of
the Large Neighborhood Search (LNS) developed by Ropke and Pisinger in 2006, ALNS func-
tions by iteratively exploring expansive neighborhoods of solutions and dynamically adapting
its search strategy based on past performance (Ropke & Pisinger, 2007). The fundamental
concept involves cyclically destroying and repairing parts of the solution to avoid local optima,
thereby exploring a broader solution space (Mara et al., 2022). When applying the algorithm,
key considerations include determining the adaptive mechanism, acceptance and termination
criteria, and selecting destroy and repair operators. Mara et al. (2022) conducted a comprehen-
sive survey on ALNS, revealing the prevalent use of the Roulette Wheel adaptive mechanism,
the Metropolis acceptance criterion (also known as the Simulated Annealing criterion), and the
iteration count as a termination criterion. These parameters form the standard structure of
ALNS, as outlined in Figure 3.2. On average, six destroy and four repair heuristics are utilized,
although some practitioners also employ combined heuristics.

The standard algorithm is structured as follows: The ALNS algorithm starts with initializing the
parameters. A feasible initial solution S needs to be generated, which starts to be the newly
obtained solution S′ and the best-known solution so far S∗ (line 2). The initial temperature T0

and the cooling factor α are given as input (line 1), where the current temperature T gets ini-
tialized with T0 (line 2). The weights (w−

i , w
+
i ) and probabilities (p−, p+) to the selected set of

destroy and repair heuristics must be initialized (line 3). Afterward, a while-loop starts, which
runs until the stopping criterion is met. Within the loop, first, the destroy and repair heuristics
get selected according to the Roulette Wheel method (line 5) and applied (line 6). Now, the per-
formance of the obtained solution is evaluated. If the solution is better than the current solution,
it will be accepted (lines 7-8). If it is better than the current best solution S∗, the solution will
be the new S∗ (lines 9-10). Otherwise, a probability is generated with which the solution will be
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Figure 3.2: Pseudocode for ALNS algorithm proposed by Mara et al. (2022)

accepted as the current solution to continue the algorithm (lines 12-15: single-objective varia-
tion). Afterward, whether the operator probabilities and weights need to be updated is checked.
Every s iteration, the algorithm subsequently calculates probabilities for each heuristic i relative
to the sum of all heuristic weights ( wi∑|Ω|

j=1 wj

). These iterations are counted by i, incremented by

i = i+ 1 (line 21), and after the update, reset to 0 (line 19). The temperature for the Metropolis
acceptance probability gets updated in line 21. Finally, when the stopping criterion is reached,
the best solution gets returned (line 23).

Despite being a single-solution-based heuristic, ALNS can be extended to address multi-objec-
tive problems by maintaining an archive of non-dominated solutions. Multi-objective ALNS
(MOALNS), incorporating the Pareto method introduced by Rifai et al. (2016), has shown
promising results. In MOALNS, akin to ALNS, the algorithm utilizes the Metropolis acceptance
method but instead identifies non-dominated solutions in each iteration to construct the Pareto
frontier. This mechanism draws inspiration from the Archived Multi-Objective Simulated Anneal-
ing (AMOSA) algorithm proposed by Bandyopadhyay, Saha, Maulik, and Deb (2008). Although
MOALNS has not explicitly been applied to Location-Routing Problems, related algorithms such
as MALNS by Ke and Zhai (2014) Vehicle Routing Problem, modifications proposed by Labdiad,
Nasri, Hafidi, and Khhalif (2021) for VRPs, and the extension by Wang, Wang, Fan, Wang, and
Zhen (2023) for VRPs with a split algorithm exist. Additionally, Cota et al. (2019) developed
a MOALNS with decomposition for a machine scheduling problem, indicating the algorithm’s
applicability across diverse contexts with promising results. Given its versatility and favorable
performance, MOALNS appears to hold promise as a practical algorithm for solving our periodic
Location-Routing Problem (PLRP).

31



3.8 Stochastic evaluation

Simulation is a complex process involving creating a model to imitate a real-world system, al-
lowing experimentation to comprehend its behavior and assess operation strategies (Shannon,
1975). Therefore, these are frequently used to analyze stochastic systems or risk in finan-
cial processes. Simulation methods provide a means to explore and predict outcomes without
actual implementation, offering valuable insights and aiding decision-making (Hillier & Lieber-
man, 2021). Due to the progress in computational processing power and pseudo-random num-
ber generators, techniques like the Monte Carlo simulation have been incorporated into the
spectrum of solving stochastic combinatorial problems (Rabbani et al., 2019). In this context,
stochastic variables are treated as deterministic with their expected values, and the solution
space is searched for appropriate feasible solutions. Subsequently, for the most promising so-
lutions identified based on predetermined performance indicators, simulation is employed to
generate estimates for the corresponding stochastic problem instances (Juan, Faulin, Gras-
man, Rabe, & Figueira, 2015). These results can then be used to reevaluate the solutions
based on their variability, robustness, or expected value rather than their objective function (de
León, Lalla-Ruiz, Melian-Batista, & Monero-Vega, 2021). While Monte Carlo simulation pro-
vides a valuable means to incorporate uncertainty, the results are not anticipated to be optimal.
Instead, a trade-off between different solution variations can be determined by considering pref-
erences such as risk aversion.

In Location-Routing Problems, Monte Carlo simulation has proven instrumental in evaluating
and optimizing complex systems affected by stochastic factors. For instance, Rabbani et al.
(2019) utilized Monte Carlo simulation to address a stochastic multi-period industrial hazardous
waste LRP, integrating it with NSGA-II. Their study introduced stochasticity in factors such as
transportation costs, demand fluctuations, and service times, allowing for a comprehensive
analysis of the robustness and efficiency of hazardous waste management strategies over mul-
tiple time periods. Integrating Monte Carlo simulation with NSGA-II facilitated the exploration of
diverse solution alternatives under uncertain conditions, providing decision-makers with valu-
able insights into the trade-offs between cost, risk, and service quality in hazardous waste lo-
gistics. This instance demonstrates the practicality of Monte Carlo simulation in addressing
stochasticity within logistical and operational contexts, facilitating informed decision-making,
and enhancing system performance.

3.9 Conclusion

The DB S&S problem addresses two complex combinatorial optimization challenges: the Facil-
ity Location Problem (FLP) and the Vehicle Routing Problem (VRP). Location-Routing Problems
(LRPs) are a crucial link between the strategic planning of FLPs and the tactical optimization of
VRPs. In an LRP, the objective is to simultaneously determine the optimal locations for facilities
and the corresponding routes for vehicles. This approach considers facility location and vehicle
routing decisions, providing a comprehensive solution for efficient logistics operations.

Research in LRPs covers various topics andmethodologies, exploring various problem variants.
These variants, whose characters can be recognized in the problem context of this project,
focus on single- and multi-objective formulations, periodic models, and considerations of eq-
uity regarding workload. In the context of railway operations, LRPs have found applications
primarily in multimodal transportation and rolling stock management. When examining LRP
models independently of context while considering our problem attributes, we noted that simul-
taneously addressing monetary and workload objectives is commonly achieved through multi-
objective models but not necessarily. However, the relevant periodic LRPs employ Adaptive
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Large Neighborhood Search (ALNS) as the most frequent solution approach. Although these
papers concentrate on single objectives, there are efficient methods to apply a metaheuristic
to multi-objective problems. Among these is the Pareto method, which we use to approach
the problem, considering all objectives simultaneously. Additionally, we will solve each mono-
objective problem as a comparison to ensure Pareto-optimality and fill the gap of applying ALNS
to LRP in a multi-objective environment.

By selecting ALNS as the solution approach and applying both the Pareto method and single-
objective solution to evaluate the multiple solution criteria, we aim to gain insight into employing
ALNS in a multi-objective setting and compare the quality of solutions obtained between the
single-objective instances and the ones obtained with the Pareto method. Furthermore, we aim
to investigate the outcomes using stochastic evaluation methods like the Monte Carlo simula-
tion. They provide insight into the robustness of constructed solutions for the general stochastic
properties of service and travel time in real-world applications.
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4 SOLUTION DESIGN

This chapter addresses the third research question: What should the design of the solution
approach look like? Firstly, the problem of DB Station&Service is defined as a multi-objective
optimization problem in Section 4.1, followed by the description of assumptions in Section 4.2.
Section 4.3 presents the mathematical formulation of the model, elucidating the notation, objec-
tive functions, and constraints. Subsequently, Section 4.4 delves into describing the employed
metaheuristic and its components. An algorithm for stochastic evaluation of promising solutions
is presented in Section 4.5. The chapter concludes with a summary in Section 4.6.

4.1 Formal problem definition

The multi-objective periodic location-routing problem with workload balance combines several
complex components. The problem is defined on an undirected graph G = (N,A), where
N = D ∪M is the set of nodes. D is the set of demand points representing the train stations
that must be visited according to their specific inspection frequency freqi. STi shows the esti-
mated service time at station i ∈ D. M is the set of offices from which the main office (m = 1)
must be used while the others are potential field offices. The graph’s arcs are represented by
the set A, defined as (i, j) : i, j ∈ N . The distance and travel time between location i ∈ N and
j ∈ N are shown by distij and TTij , respectively, while the travel cost per kilometer driven is
given by TC. S represents the set of service teams that complete the service at the stations,
where service means the completion of required tasks described in Section 2.3. T is the set of
time slots that account for the planning horizon, which complies with the four-week frequency
of the most important active stations. Each week is split into two time-slots, which divide the
horizon into slots indexed as T = 1, 2,…, 8. Each team s ∈ S must complete one tour in each
time slot t ∈ T . Furthermore, each team s ∈ S gets an office assigned from which they depart
and finish each tour. The possible office assignments per team s ∈ S are given by possi with
1 if possible and 0 if not. The monthly running cost per field office is given OC. We assume
homogeneity for the service teams with their vehicles since they have the same education and
equipment.

For the problem formulation, the following decision variables are defined. Let zsi be a binary
variable equal to 1 if team s ∈ S is located at office i ∈ M , and 0 otherwise. Following, yi
represents the decision that office i ∈ M gets utilized with 1, 0 otherwise. A third set of binary
variables indicates when and from which team a station is served, namely wst

i is equal to 1 if
station i ∈ D is being served by team s ∈ S in period t ∈ T , and 0 otherwise. The last set of
binary variables xstij indicates the traveled arcs. The variable equals 1 if team s ∈ S travels in
time slot t ∈ T on arc (i, j) ∈ A, 0 otherwise.

The problem consists of choosing the best team-to-office assignment and constructing a peri-
odical tour schedule serving all stations in a particular geographical area according to their fre-
quencies. The literature review shows that a Location-Routing model is an appropriate model
to approach the given problem of DB S&S. The location and routing decisions should be made
under the objectives of balancing the workload between tours and teams by minimizing the max-
imal estimated time needed for a tour while minimizing the total costs and total travel distance.
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4.2 Assumptions

To streamline the complexity of the process, the following assumptions have been made:

• Validity Periods: The time windows for task completion are disregarded, as tours are
already planned within a two-day timeframe, allowing sufficient flexibility. Any deviations
will be addressed during short-term scheduling.

• Distance Calculation: The distancematrix is computed using the Haversine Formula to de-
termine straight-line distance, supplemented by a distance factor (refer to Section 2.3.1).
Subsequently, travel time is estimated based on speed factors outlined in Section 2.3.2.

• Accounting for Travel Distance Fluctuation: The difference in travel distance between
theoretical schedule and reality is included through a distance factor as elaborated in
Section 2.5.3.

• Service Time Estimation: The service time at each train station is estimated based on its
physical attributes and classification, detailed in Sections 2.3.3 and 2.3.4.

• Station Information: Details regarding stations, such as coordinates and physical attributes,
as well as resource information, like the number of teams and offices, are provided through
individual inputs from the TM.

• Workload Balancing: Assuming an equal number of tours assigned to each service team,
workload balancing is achieved byminimizing the disparity in total tour times across teams.

• Treatment of Inactive Stations: Inactive stations, which occur every 12 weeks, are treated
as if they occur every four weeks to simplify planning. However, service is only required for
every third planning horizon, so the workload calculation is adjusted accordingly using a
workload manipulation factor (acti). This factor distinguishes between active and inactive
stations, taking a value of 1 for active stations and 1/3 for inactive stations.

The required input includes station information such as coordinates, classification, and fre-
quency and infrastructure details like the number of platforms, elevators, and DB-owned entry
buildings. Frequency data is essential for accurately constructing the tour schedule, while the
remaining information informs estimations for travel distance, travel time, and service time.

4.3 Mixed-Integer Linear Program

This subsection presents the proposed mathematical formulation starting with the notations fol-
lowed by the mathematical formulation, divided into objective function and constraints together
with explanations, respectively.

4.3.1 Notations and definitions

For better understanding and guidance in the solution design, the problem has been formulated
as a mathematical model. Due to the complexity of location-routing problems and the size of
this specific problem instance, it is impossible to obtain a solution. A heuristic algorithm to solve
the problem is formulated in Section 4.4.

35



Sets

D Set of demand points (stations) {0,….., |D| − 1}
D′ Set of i ∈ D with freqi = 2

M Set of (potential) offices {|D|,….., |D|+ |M | − 1}, |D| : already existing office
N Set of nodes, N = D ∪M

S Set of service teams {1,….., s}
T Set of time slots {1,…, t}

i, j Indices to nodes i, j ∈ N

s Indices to service teams
t Indices to time slots

Parameters

freqi frequency of service at station i ∈ D

STi estimated service time at station i ∈ D

TTij estimated travel time from location i ∈ N to location j ∈ N

distij distance from location i ∈ N to location j ∈ N

TC cost for gas and wearing per 1km distance traveled
OCi monthly cost per utilized (field) office i

possi indication whether team s ∈ S can be assigned to i ∈M

acti workload manipulation factor for station i ∈ D

caps service capacity of team s ∈ S (fraction of usual work hours)
Fdist distance factor to overcome the reality gap (see Section 2.5.3)
WL time limit of a tour restricted by the size of the time slots
M large positive number

Decision variables

wst
i =

{
1 if station i ∈ D is served by team s ∈ S in time slot t ∈ T

0 otherwise

xstij =

{
1 if team s ∈ S drives in time slot t ∈ T from location i ∈ N to location j ∈ N

0 otherwise

yi =

{
1 if office i ∈M gets utilized
0 otherwise

zsi =

{
1 if team s ∈ S is located at office i ∈M

0 otherwise
usti arrival time from team s ∈ S in time slot t ∈ T at location i ∈ N

Rmax maximal tour duration (travel and service times) of all tours
Rst total tour time for tour traveled by team s ∈ S at time t ∈ T
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4.3.2 Mathematical model

Objective functions

Minimize L1 =
∑
t∈T

∑
s∈S

∑
i∈N

∑
j∈N

xstij ∗ distij (4.1)

Minimize L2 =
∑
i∈M

yi ∗OCi +
∑
t∈T

∑
s∈S

∑
i∈N

∑
j∈N

xstij ∗ distij ∗ Fdist ∗ TC (4.2)

Minimize L3 = Rmax (4.3)

Constraints
Subject to:

zsi ≤ yi ∀i ∈M, s ∈ S (4.4)∑
s∈S

zs1 ≥ 1 (4.5)∑
i∈D

zsi = 1 ∀s ∈ S (4.6)

poss1 ≥ zsi ∀i ∈M, s ∈ S (4.7)∑
i∈N

xstij = wst
j ∀j ∈ N, s ∈ S, t ∈ T (4.8)∑

i∈D
wst
i ≥ 1 ∀s ∈ S, t ∈ T (4.9)∑

t∈T

∑
s∈S

wst
i = freqi ∀i ∈ D (4.10)

wst
i = w

s((t+
|T |

freqi
)mod |T |)

i ∀i ∈ D′, s ∈ S, t ∈ T (4.11)∑
i∈N

xstih −
∑
j∈N

xsthj = 0 ∀h ∈ N, s ∈ S, t ∈ T (4.12)

∑
j∈D

xstij = zsi ∀i ∈M, s ∈ S, t ∈ T (4.13)

usti + TTij − ustj ≤ (1− xstij)M ∀i, j ∈ D, s ∈ S, t ∈ T (4.14)∑
j∈D

xstij = 0 ∀i ∈M, s ∈ S, t ∈ T (4.15)

Rst =

∑
i∈D

(wst
i ∗ STi) +

∑
i∈N

∑
j∈N

(xstij ∗ TTij)

caps
∀s ∈ S, t ∈ T (4.16)

Rmax ≥ Rst ∀s ∈ S, t ∈ T (4.17)
Rmax ≤WL (4.18)
wst
i ∈ {0, 1} ∀i ∈ D, s ∈ S, t ∈ T (4.19)

xstij ∈ {0, 1} ∀i, j ∈ N, s ∈ S, t ∈ T (4.20)
yi ∈ {0, 1} ∀i ∈M (4.21)
zsi ∈ {0, 1} ∀i ∈M, s ∈ S (4.22)
usti ∈ R+ ∀i ∈ N, s ∈ S, t ∈ T (4.23)
Rst ∈ R+ ∀s ∈ S, t ∈ T (4.24)

Rmax ∈ R+ (4.25)

The first objective (4.1) deals with minimizing the total distance of all tours. The total monthly
cost is minimized in the second objective (4.2). The first component contains the monthly cost
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of running the utilized field offices. The second component comprises the traveling costs that
arise with the tour schedule of one planning horizon. In the third objective (4.3), the maximal
tour duration of the individual tours over the whole planning horizon is minimized. This aims for
equally long tours while lowering each tour duration.

Constraint (4.4) and (4.5) ensures that a team can only be assigned to an open office but must
be assigned to exactly one office. Constraint (4.6) ensures that at least one service team will
still use the original office. Constraint (4.7) ensures that each team can only be located at
one of their possible offices. Constraint (4.8) ensures that each station is served by only one
team when they are being served, while constraint (4.9) ensures that each slot for each team
contains a tour consisting of at least 1 station. Constraint (4.10) ensures that each station is
served in the amount according to their frequency. Constraint (4.11) ensures the time difference
is assigned correctly according to the frequency. To do so, it uses the modulo operation mod.
This constraint can be modified depending on given frequencies. Constraint (4.12) secures
route continuity, while constraint (4.13) ensures that a team can only travel from an assigned
office. Constraint (4.14) deals with subtour elimination within an assigned tour per team per
time-slot as proposed by Lalla-Ruiz and Voß (2020). Constraint (4.15) ensures that no trips
between two offices are occurring. Constraint (4.16) calculates the duration estimation for a
tour assigned to service team s in period t with respect to a service team’s capacity. Following,
constraint (4.17) establishes the maximum estimated tour duration of all tours. Constraints
(4.19) to (4.22) are integrality constraints that guarantee that these decision variables are binary
integers. Constraints (4.23) to (4.25) define usti , Rst, andRmax as positive continuous variables.

4.4 Metaheuristic solution approach

For large instances of the problem, obtaining a feasible solution utilizing the MILP within an
acceptable time is difficult. Hence, as the literature also suggested, a heuristic is necessary.
It has been decided to apply the Adaptive Large Neighborhood Search (ALNS) as it has been
used in similar LRPs in literature. In addition, given the multi-objective nature of this problem,
we propose to enhance it by implementing a multi-objective variant utilizing the Pareto method,
a strategy commonly employed in addressing complex problems such as vehicle routing. This
section outlines the methodology of the Multi-Objective Adaptive Large Neighborhood Search
(MO-ALNS) metaheuristic used to solve the problem described above.

4.4.1 Algorithm definition

The ALNS algorithm’s standard framework, outlined in Section 3.7, necessitates the selection
of various components. Research by Mara et al. (2022) identifies the Roulette Wheel adaptive
mechanism and the Metropolis acceptance criterion as popular choices due to their simplicity
and effectiveness. Consequently, we incorporate these elements into our adaptation. Deter-
mining the termination criterion will occur during the algorithmic adjustments detailed in Chapter
5.

Its adaptability is at the core of ALNS, particularly evident in its treatment of destroy and repair
operators. These operators, denoted as Ω− and Ω+, respectively, are pivotal to ALNS’s effi-
cacy. The Roulette Wheel selection principle assigns probabilities, represented by p−i and p+i
for destroy and repair operators, based on their respective weights, w−

i and w+
i . These weights

are reassessed after every ηs iteration, ensuring that operators with a significant impact on solu-
tion improvement are more likely to be chosen. Additionally, to enhance the diversification and
intensification of the solution space, a diminishing degree of destruction is applied, optimizing
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Algorithm 1 MO-ALNS-1
Input: feasible solution S, Ω−,Ω+, ηmax, α, T0, LB,UB

1: initialize ND by adding S
2: set S′ ← S, i← 1, ηs ← 0.1ηmax, T ← T0

3: initialize w−, w+, p−, p+

4: while stopping criterion not reached do
5: select a destroy and repair heuristic from Ω− and Ω+ using the Roulette wheel selection
6: set S′ ← repair(destroy(S))
7: ND and S ←MO_Metropolis(S′)
8: if i = ηs then
9: update w−, w+, p−, p+

10: update degree of destruction LB and UB
11: i = 0
12: end if
13: T = T0 ∗ (TN

T0
)

i
ηmax , i = i+ 1

14: end while
Output: ND

the operators’ effectiveness.

We integrate improvement operators into our methodology to further enhance exploration within
the solution space. Specifically, three variants of the Multi-Objective Adaptive Large Neighbor-
hood Search (MO-ALNS) have been devised, each incorporating these operators differently.
The operators directly manipulate solutions to refine them without reliance on destroy or repair
heuristics. The features of these three versions are delineated as follows:

1. MO-ALNS-1: In this approach, the improvement methods will be integrated into the set
of destroy heuristics. However, unlike other instances, no subsequent repair heuristic will
be applied.

2. MO-ALNS-2: Upon applying a series of neighborhood operators, the improvement meth-
ods from a predefined set Ω∗ will be chosen using the roulette wheel mechanism. Subse-
quently, their selection probabilities (p∗i ) and weights (w∗

i ) will be updated like the destroy
and repair heuristics.

3. MO-ALNS-3: In this version, improvement strategies are selected after neighborhood op-
erators have been applied based on the potential of the current solution. The assessment
of whether a solution is promising or not is done in comparison to the existing Pareto
front. When a solution shows promise, a second roulette wheel mechanism chooses an
improvement operator from a predefined set Ω∗. This process involves updating associ-
ated probabilities (p∗i ) and weights (w∗

i ). Subsequently, the chosen enhancement operator
is applied.

The MO-ALNS-2 algorithm draws inspiration from Gläser’s (2022) ALNS algorithm, structured
in two main phases: shaking and local search. Conversely, the development of MO-ALNS-3 is
influenced by the sequential large neighborhood search (LNS-S) method proposed by Hemmel-
mayr (2015) and further refined by Cota et al. (2019). Following the generation of a solution,
whether it is accepted must be decided. Unlike greedy approaches that only accept solutions
with improved objective values, the Metropolis criterion employed here evaluates worse solu-
tions based on a calculated acceptance probability, considering both the obtained solution’s
performance and the temperature. This strategy helps prevent the algorithm from becoming
trapped in local optima. Further elaboration on this approach, due to its differentiation between
single-objective and multi-objective contexts, is provided in Section 4.4.5 for clarity and depth
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Algorithm 2 MO-ALNS 2 & 3
Replacements of Line 5 and 6 of Algorithm 1 to obtain MO-ALNS-2 and MO-ALNS-3

Additional Input: Ω∗

Version 2:
select a destroy, repair and improvement heuristic from Ω−, Ω+ and Ω∗ using the Roulette wheel
selection
S′ ← improvement(repair(destroy(S)))

Version 3:
select a destroy and repair heuristic from Ω− and Ω+ using the Roulette wheel selection
set S′ ← repair(destroy(S))
if S′ is a promising solution then

select an improvement heuristic from Ω∗ using the Roulette wheel selection
setS′ ← improvement(S′)

end if

of understanding.

Utilizing these methodologies, Algorithm 1 displays the structure of the applied algorithm. The
modifications leading to versions MO-ALNS-2 and -3 are presented in the combined Algorithm
2. These algorithms deviate from the standard ALNS algorithm outlined in Section 3.7 by the
following key steps:

• Implementation of a decreasing degree of destruction, with the updating procedure occur-
ring every ηs iterations.

• Establishment of termination criteria based on empirical observations, either after a max-
imal number of iterations or a number of non-improving iterations.

• Development of tailored operators to yield high-quality solutions within a reasonable com-
putational time frame.

• Integration of improvement methodologies in three distinct versions.

• Introduction of a mechanism for analyzing multiple objectives facilitated by creating an
archive containing non-dominating solutions.

• Adaptation of the cooling schedule to a less iteration-sensitive variant.

4.4.2 Initial solution

The ALNS algorithm relies on an initial solution to initiate its search among neighboring solu-
tions. This initial solution is constructed randomly in three phases. Firstly, offices are randomly
selected from available options for each team. If the main office is not selected, a random team
is chosen to occupy it. The next phase involves systematically iterating through team tours and
time slots, randomly assigning a station to the tour schedule. If a station is already assigned,
the algorithm proceeds to the next tour unless the current tour length is shorter than a calcu-
lated threshold (=rounddown(|N |/(|S| ∗ |T |))). To ensure feasibility, stations are immediately
assigned based on their frequency. Subsequently, each tour undergoes a check to determine
if a ’nearest neighbor’ tour construction improves its distance. If an improvement is found, the
tour is updated; otherwise, the nearest neighbor tour is discarded.

Since the initial solution significantly influences ALNS outcomes, we opted for random initial-
ization to explore a broader solution space. We aim to establish a slightly more efficient upper
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bound for objectives by setting a minimum tour length and considering nearest neighbor im-
provements. Nevertheless, maintaining feasibility remains paramount. The pseudocode for the
initial solution is presented in Algorithm 3.

Algorithm 3 Initial solution: pseudo-random approach
Input: Information about stations, offices, teams, and preferences
1: for k ← 0 to (numTeams− 1) do
2: assign random office to team k from its preference
3: end for
4: if main office is not assigned then
5: locate random team in main office
6: end if
7: while unassigned stations > 0 do
8: for t← 0 to (slots− 1) do
9: for s← 0 to (numTeams− 1) do
10: set station← randint(0, numStations− 1)
11: if len(Tour[t][s]) < 4 then
12: while station already assigned do
13: set station← randint(0, numStations− 1)
14: end while
15: end if
16: Tour[t][s] append station
17: insert station in Tour according to frequency
18: end for
19: end for
20: end while
Output: Tour, Allocation

4.4.3 Solution representation

Figure 4.1: Display of Solution

The representation in this context defines how solutions
are encoded for the problem at hand. Each station is as-
signed a unique identification number (ID), with the main
office typically designated ID-0. A feasible chromosome,
representing a potential solution, comprises two distinct
matrices. The first matrix is a 1×S array, where S rep-
resents the total number of teams involved. This matrix
outlines each team (denoted by index s) and its corre-
sponding assigned office, identified by its unique number.
The secondmatrix is three-dimensional, depicting the pe-
riodic tour schedule. Each row of this matrix illustrates the
sequence of stations to be served by each team s during
each time slot t. Here, G denotes the maximum number
of stations permissible in a tour. None-values denote any
blank spots within this matrix and do not impact the tour
schedule. Combined, these matrices form a feasible so-

lution for the problem under consideration.

Figure 4.1 provides an illustrative example of such a representation for a small-scale instance.
The output of the entire algorithm is the Pareto front obtained, which comprises a set of trade-
off solutions. The objectives and the complete solution representation are outputted for each
solution within this set that is not dominated by any other solution.
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4.4.4 Adaptive weight adjustment procedure

Following Section 3.7, the Roulette-wheel technique stands out as the most effective method
for selecting destroy and repair heuristics and is also applied for choosing improvement opera-
tors. This technique assigns weights to each heuristic, which are calculated individually for the
destroy heuristics, repair heuristics, and improvement procedures. The weight calculation for
each method i is derived as ( wi∑|Ω|

j=1 wj

), where Ω represents the set of available heuristics. Every

ηs iteration, these weights are updated for the new segment considering the weights from the
previous segment. Here, ηs is defined as ηs = 0.05 ∗ ηmax, ensuring updates occur relative to
the maximum number of iterations (ηmax). For the upcoming segment j+1 the weight update is
computed as wi,j+1 = wi,j(1−rw)+rwΦi/ξi, where rw represents the roulette wheel parameter,
Φi signifies the score assigned to heuristic i in the past segment, and ξi denotes the number
of selections during the past segment (Ropke & Prisinger, 2006). Note that after the updating
procedure, scores and selection counts are reset to 0.

The scores are updated based on performance. For the single-objective ALNS, if the obtained
solution results in the best solution so far (S′ < S and S′ < S∗), then the scores for the applied
to destroy and repair heuristics are increased by σ1. Similarly, if the new solution is better than
the current one (S′ < S), the scores for the applied operators are increased by σ2. Conversely, if
the new solution is inferior but accepted per the Metropolis criterion, the scores for the employed
heuristics are increased by σ3.

4.4.5 Acceptance criteria

Acceptance of a solution within the Metropolis criterion, also known as the Simulated Annealing
criterion, is contingent upon its performance compared to the current solution and best solu-
tion(s) so far. A new solution, denoted as S′, is accepted if it yields superior results to the current
solution S. Conversely, if it performs worse, an acceptance probability is computed to deter-
mine whether it should be adopted as the new current solution. The calculation of acceptance
probability varies between single- and multi-objective contexts, both of which involve using a
temperature parameter. In each iteration i, the temperature T is determined using a cooling
schedule proposed by Bandyopadhyay et al. (2008), given by the formula T = T0 ∗ (TN

T0
)

i
ηmax ,

where T0 is the initial temperature and TN is the final temperature. This cooling schedule con-
siders the number of iterations to ensure a controlled temperature adjustment. Consequently,
the algorithm initiates with more diversification, like a random search, and progresses towards
intensification resembling a local search.

For the single-objective version, the acceptance criterion assigns a probability of acceptance,
expressed as e−f(S′)−f(S)/T , to the new solution S′, where T denotes the current temperature.
This version is depicted in the standard ALNS algorithm (Figure 3.2). In contrast, the multi-
objective variant involves a more intricate acceptance criterion and solution update mechanism.
Drawing inspiration from Archived Multi-Objective Simulated Annealing (AMOSA), proposed by
Bandyopadhyay et al. (2008), this variant stores Pareto-optimal solutions. To achieve this,
a procedure is introduced to quantify domination between two solutions a and b, denoted as
∆doma,b and calculated as follows:

∆doma,b =

∏O
o=1,fo(a) ̸=fo(b)

|fo(a)− fo(b)|
R1o −R2o

This calculation involves the number of objectives M , as well as the maximum (R1o) and mini-
mum (R2o) values of each objective o in the approximated Pareto front. Since the true Pareto
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front is inaccessible, the approximated front comprises mutually non-dominated solutions iden-
tified during the search process (Heilig, Lalla-Ruiz, & Voß, 2017). The complete procedure is
presented in Algorithm 4, as detailed by Rifai et al. (2021).

Algorithm 4 Procedure for the acceptance criteria and Archive update
Input: S, S′, ND, T
check the domination status of the newly obtained solution S′ with respect to the current solution S and
the non-dominated set ND
1: if S ≻ S′ then
2: ∆̄ = ((

∑k
i=1 ∆i,S′) + ∆S,S′)/(k + 1)

3: P = 1/(1 + exp(∆̄·T ))
4: if rand[0, 1] ≤ P then
5: set S ← S′;Score = σ3

6: end if
7: else if S and S′ are non-dominating each other then
8: if Ak ≻ S′, k ≥ 1 then
9: ∆̄ = (

∑k
i=1 ∆i,S′)/k

10: P = 1/(1 + exp(∆̄·T ))
11: if rand[0, 1] ≤ P then
12: set S ← S′;Score = σ3

13: end if
14: else if all A ∈ ND and S′ are non-dominating each other then
15: set S ← S′;Score = σ2

16: insert S′ to ND
17: else if S′ ≻ Ak, k ≥ 1 then
18: set S ← S′;Score = σ2

19: insert S′ to ND
20: ND = ND \Ak

21: end if
22: else if S′ ≻ S then
23: if Ak ≻ S′, k ≥ 1 then
24: ∆min = mini∈k∆i,S′

25: P = 1/(1 + exp(−∆min))
26: if rand(0, 1) ≤ P then
27: set S ← S′;Score = σ3

28: else
29: set S ← Ak with ∆min

30: end if
31: else if all A ∈ ND and S′ are non-dominating each other then
32: set S ← S′;Score = σ2

33: insert S′ to ND
34: else if S′ ≻ Ak, k ≥ 1 then
35: set S ← S′;Score = σ2

36: insert S′ to ND
37: ND = ND \Ak

38: end if
39: end if
Output: S, ND, Score

4.4.6 Operators

The operators are selected based on the Roulette Wheel method. The operator weights and
probabilities, as well as the degree of destruction, are updated after ηs iterations.
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Destroy heuristics

By applying destroy heuristics, several variables are eliminated from the current solution. The
magnitude of this elimination, termed the “degree of destruction”, profoundly influences the per-
formance of the ALNS algorithm. If the degree is too small, the algorithm lacks diversity and
fails to explore the full breadth of potential solutions within the neighborhood. Conversely, an
overly large degree leads to diminished intensification, resulting in suboptimal solutions and in-
creased computational time. Drawing inspiration from Koc’s work (2016), we adopt a strategy
of gradually reducing the degree of destruction as the algorithm processes, thereby concentrat-
ing efforts on promising solution areas. This adaptive adjustment is governed by an updating
procedure defined as follows:

LBj+1 = LBj − ηs(UBmax−UBmin)
ηmax

; UBj+1 = UBj − ηs(UBmax−UBmin)
ηmax

Here, LBj+1 and UBj+1 represent the updated lower and upper bounds of the degree of de-
struction for segment j+1, respectively. LBj and UBj denote the previous lower and upper
bounds, while LBmax and LBmin (likewise for UBmax and UBmin) represent the maximum and
minimum limits for the degree of destruction. ηs and ηmax operate as scaling parameters.

In our implementation, several destroy heuristics have been integrated. The degree of de-
struction is dynamically determined within predefined lower and upper bounds at each iteration
segment. Specifically, a random integer k, uniformly distributed between |D|∗LB and |D|∗UB,
is used to determine the number of stations to be removed from the tour schedule, where |D|
represents the total number of train stations.

Random removal (RR): This heuristic randomly removes k stations from the given solution and
saves them in a removal list. In the case of multiple occurrences in the tour schedule due to a
station’s frequency, all duplicates will be removed.

Worst removal – distance (WD): This heuristic removes k stations that add the most distance
value to the total tour distance sequentially.

Worst removal – workload (WW): This heuristic looks for the tour with the longest total tour
time and removes the station with the worst distance within that tour. This is repeated k times.

No-related removal (NR): This heuristic is inspired by the commonly used related removal,
where related demand points get removed. However, stations that do not have any related sta-
tions in their tour are removed. The attribute “related” refers to the areal closeness determined
by the distance radius to other stations. The closeness variables with the quality of the given
solution. Starting with a large radius, it might be the case that every station has a related station
in its tour, and the removal list remains empty. In that case, the closeness value will be reduced
until stations can be removed. Since this heuristic is newly developed, the pseudocode is dis-
played in Algorithm 5.

In addition to classical destroy and repair heuristics, an operator that manipulates the team-
office allocation has been implemented. This can be selected with the roulette wheel procedure
as a destroy heuristic, but no repair heuristic will be needed afterward. The following office
operator has been implemented:

Change random office (CO): Here, the office of a random team is changed to a random office
out of its preferences. When the team only has one possible office, another team is chosen.
Also, it is guaranteed that the main office will remain in use.
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Algorithm 5 Destroy heuristic: No-related removal
Input: Tour
Initialize removed and Dist = 75
while removed is empty and Dist > 10 do

for t← 0 to (slots− 1) do
for s← 0 to (numTeams− 1) do

if len(Tour[t][s]) > 1 then
for n← 0 to len(Tour[t][s]) do

Check if there is a station in Tour[t][s] with distance < Dist
end for
if no station in Tour[t][s] with distance < Dist then

add Tour[t][s][n] to removed
remove Tour[t][s][n] and all its duplicates

end if
end if

end for
end for
Dist− = 10

end while
Output: Tour, removed

Change all offices (AO): This operator changes the office of all teams if possible. When it hap-
pens that no team would be located at the main office, a random team is chosen to be located
there.

Only main office (OMO): This operator locates all teams in the main office to also allow ex-
ploring the case when no field offices will be used.

Open all offices (OO): Since closing offices will always lead to lower costs, we decided to force
the algorithm to open all offices. However, since this will mainly lead to high costs, this operator
is not used individually but during the improvement of operator WO, as explained below.

Repair heuristics

Given a removal list, repair heuristics insert the removed stations into the destroyed tour plan.
The heuristics insert stations according to their frequency and maintain feasibility.
The following repair heuristics have been implemented:

Greedy repair distance (GD): This heuristic searches the partially constructed tour for the best
position to insert each removed station sequentially. Here, the best position is determined by
the least increase in distance to the total tour length value.

Insert shortest tour (ST): This heuristic works like the distance greedy repair. The difference
is that now it looks first for the shortest tour and then determines which of the removed stations
fits best and in what position determined by the least increase of distance to the total tour length
value.

Insert nearest neighbor – short tour (NN-ST): This heuristic is an extended version of the
previous nearest neighbor heuristic. It places a station only next to its nearest neighbor if it is
on a tour shorter than ‘the average tour time plus one hour’.
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Greedy repair workload – distance (WL-D): This heuristic looks for tours that are not wors-
ening the workload balance. If there are multiple, from these tours, the logic of the GD heuristic
is used to select the position that adds the least to the total distance.

Insert to best office (BO): For each removed station, the heuristic determines which currently
used office is the closest and which tours begin there. Afterward, from these tours, the logic of
the GD heuristic is used to select the position that adds the least to the total distance.

Improvement heuristics

Furthermore, improvement methods that reconstruct a given solution are applied to obtain more
quality solutions within a shorter time. These are the following:

Workload balance (WB): This operator looks for the longest tour and removes the station that
contributed the most amount to its tour length, as well as all frequency-related duplicates. After-
ward, this removed station is inserted with the NNST repair heuristic. This gets repeated until
no improvement is obtained.

Workload balance with office (WO): This local search operator is an extension to WB. It is
constructed by combining the opening of all offices or changing one office to get the stations
more clustered by region. With a probability of 0.5, the operator OO is accessed to open all
offices; else, operator CO is used. Afterwards, the regular WB local search is used. The two
workload balance local search procedures are addressed separately, so the performance of
changing an office or not can be evaluated during the roulette wheel method.

Rearrange per Team (RT): This operator searches the tours of each team individually to im-
prove the tour structure of one team without changing the general clustering of stations between
the teams. Systematically, cycling through the tours of team s, the best position in those tours
for each station gets checked by looking at the improvement of the sum of the lengths of each
tour.

Swap (SW): This method swaps a station with another station and determines which swap re-
sults in the best distance improvement. This is repeated systematically until no improvement is
made.

Leveling Tours (LT): This operator looks for tours whose total tour time is lower than the max-
imal service time of all stations. Then the best fitting station from tours with a total tour time
higher than the average is selected and added to that short tour.

4.5 Stochastic evaluation

Service teams often encounter travel and service time variations during train station operations,
as explained in Section 2.3.5. Understanding how the stochastic factors impact the quality of
tour scheduling is crucial. Therefore, we integrate these parameters into our evaluation process.
This entails conducting numerous stochastic scenarios through Monte Carlo simulation and
analyzing the results. To realize this, we introduce Algorithm 6.
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Algorithm 6 Stochastic simulation
1: DetProblem = deterministic problem
2: StochProblem = stochastic problem
3: ND = MO-ALNS1(DetProblem)
4: ND∗ ←systematically selected solutions of ND with si ∈ ND∗

5: for (s ∈ ND∗) do
6: for (j = 1; j ≤ 1000; j ++) do
7: values[j] = Evaluate(s, StochProblem)
8: end for
9: end for
10: Analysis(values)

Initially, the algorithm applies theMO-ALNSmetaheuristic once, generating a set of non-dominated
solutions, which are subsequently utilized in a Monte Carlo simulation. Finally, the outcomes
are examined using box plots for clear visualization.

The selection of solutions from the non-dominated set is based on weighted scores derived from
normalized objectives, scaled against their respective minimum and maximum values. These
weighted scores are computed using the weights outlined in Table 4.1. The first three weights
prioritize performance in individual objectives, whereas the fourth weight combination aims for
a balanced approach. The remaining six weight combinations emphasize one or two objectives
more heavily. If a solution achieves the minimum weighted score in one weight combination
but has already been selected by a previous combination, the following weight combination is
considered. This process continues until an as-yet-unselected solution is eligible for inclusion
in the solution set for stochastic analysis so that a total of ten solutions will be considered. The
order for applying the objective weight configurations follows the order shown in Table 4.1.

Table 4.1: Selection scheme for stochastic analysis
Solution Dist. weight Cost weight WL weight

1 1 0 0
2 0 1 0
3 0 0 1
4 1/3 1/3 1/3
5 0.5 0.25 0.25
6 0.25 0.5 0.25
7 0.25 0.25 0.5
8 0.4 0.2 0.4
9 0.2 0.4 0.4
10 0.4 0.4 0.2

4.6 Conclusion

This chapter answers the research question “What should the design of the solution approach
look like?” and its respective sub-questions. After a formal problem definition of the Location-
Routing Problem in Section 4.1, the assumptions and requirements are stated upon which the
implementations of the problem as Adaptive Large Neighborhood Search (ALNS) and Mixed-
Integer Linear Program (MILP) are based. The solution approach focuses on optimizing the total
distance of the periodic tour schedule while minimizing the travel and office operation costs as
well as the maximal tour duration by locating the service teams to (field) offices considering the
possible periodic tour schedule.
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The mathematical model is described, including the notation of the used sets, parameters, and
decision variables, as well as the objective functions and constraints. Afterward, the meta-
heuristic Multi-Objective ALNS (MO-ALNS) is adapted to suit our problem. Each component of
the algorithm is described. Information about the train stations, offices, and service teams is
needed for input. A solution will then be output as a list indicating the office locations per team
and a three-dimensional matrix containing the tours per team and time slot. While the MILP
can only generate one solution for one objective for only a small scenario within a reasonable
time, the MO-ALNS heuristic will use destroy, repair, and improvement operators to assess all
objectives simultaneously and collect non-dominated solutions. Starting with a pseudo-random-
generated initial solution, the metaheuristic manipulates solutions with operators selected by the
Roulette Wheel method. This method evaluates and chooses the operators based on their past
performance, providing the heuristic with its adaptability. Furthermore, the Metropolis criterion
is applied to accept not only better solutions but also worse solutions to foster diversification.

The selection of improvement operators is carried out in three different ways: in the first version,
they are chosen concurrently with destroy operators; in the second version, one improvement
operator is selected and applied in each iteration following the destroy and repair operators; and
in the third version, an improvement operator is applied after the destroy and repair operators,
but exclusively to promising solutions. The most effective implementation of improvement oper-
ators, the termination criteria, and other parameters will be determined during the experimental
phase outlined in the following chapter. Additionally, a stochastic evaluation algorithm utilizing
Monte Carlo simulation has been proposed to understand the impact of stochastic factors on
the quality of tour scheduling.
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5 EVALUATION

In this chapter, the fourth research question is answered: How does the solution approach
perform for the experiments in comparison to the current situation? Firstly, the experimental
design is determined in Section 5.1. Afterward, we present the different scenarios that will be
used to approach the experiments. The execution of the experiments is sequentially explained,
and results are displayed. The insights gained and required for the following experiments are
interpreted and summarized for each experiment. The first set of experiments addressing the
algorithmic of the proposed model is presented in Section 5.3, while the second set of ex-
periments is designed to gain specific insight into the company’s problem and is presented in
Section 5.4. As displayed in Section 5.5, the third set of experiments focuses on analyzing the
robustness of proposed solutions stochastically.

5.1 Experimental design

In this section, we define experiments to improve and evaluate the performance of the proposed
solution approach. They are distinguished into six categories, which are explained below. The
first three experiments deal with tuning the algorithm, the fourth one with validating the models,
and the last two with practical insights. The experiments are conducted on aWindows computer
with an Intel Core i5 processor of 2.5GHz and 16GB RAM. All codes have been implemented
in Python (3.11.3) with Spyder 5.4.3 IDE.

1. Operator selection: This study compares the three proposed variations of improvement
operator implementation into the Multi-Objective Adaptive Large Neighborhood Search
(MO-ALNS) algorithm in terms of their efficacy in refining initial solutions within a limited
number of iterations. Evaluation criteria include running time, hypervolume, and the size
of the resulting non-dominated front.

2. Termination criterion: This experiment evaluates the stopping criteria for the algorithm. It
investigates whether the algorithm converges to a satisfactory solution within a predeter-
mined runtime, thus determining an appropriate benchmark for the number of iterations
required for convergence.

3. Parameter selection: During parameter selection, various values for the roulette wheel
parameter and performance scores are tested to enhance the algorithm’s efficiency in
evaluating operator performance.

4. Algorithm performance analysis: This experiment compares the results obtained from the
MO-ALNS algorithm with those from the single-objective equivalent ALNS and, if avail-
able, with results from the mathematical Mixed Integer Linear Programming (MILP) model.

5. Deterministic solution evaluation: This experiment evaluates the current state of two train
stationmanagement regions to understand resource allocation and demonstrate themodel’s
applicability to other regions.

6. Stochastic solution evaluation: The final experiment incorporates stochasticity in travel
and service times. A subset of potentially good solutions from the Pareto front is eval-
uated using Monte Carlo simulation to assess the fitness of tour schedules to given time
frames and resources, providing robust decision support.
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The temperature parameters (T0 = 100, TN = 1) were chosen beforehand to allow for the
acceptance of suboptimal solutions at the outset of the algorithm, with their likelihood of accep-
tance diminishing as the algorithm progresses. The performance scores (σ1, σ2, σ3 = 33, 9, 13)
and roulette wheel parameter (rw = 0.1) have been proposed by Ropke and Prisinger (2005)
and favorably applied in other studies, e.g., the one by Gläser (2022). These will be used for
experiments 1 and 2 and addressed in experiment 3.

5.2 Scenarios

For the parameter tuning, data sets of different sizes and components are needed. The original
set of TMMagdeburg has 198 stations, four offices, and four teams (MDB-7). From this, multiple
sets of different numbers of stations, offices, and teams are randomly generated. Also, to create
larger scenarios, fictive stations are used as fillers. A total of 10 scenarios will be used to assess
the algorithm’s quality for different instances. The number of stations, possible offices, and
teams of each scenario are presented in Table 5.1.

Table 5.1: Overview of scenarios for parameter tuning
Data instance Stations Offices Teams

MDB-1 50 3 2
MDB-2 50 4 2
MDB-3 100 3 3
MDB-4 100 4 3
MDB-5 150 4 3
MDB-6 150 4 4
MDB-7 198 4 4
MDB-8 198 4 5
MDB-9 250 4 5
MDB-10 250 5 5

Looking at the research question regarding the model validity and applicability in different re-
gions, we are interested in data sets of different TMs besides the one in Magdeburg. Because
of its close relation to this TM and good data accessibility, we use data instances from TM Halle
(HAL) in the southeast region. Besides their original data (-A), additional instances are created
for MDB and HAL. The second set (-B) has an extra team, while the third set (-C) contains an
additional field office option outside of DB property, which means a higher cost (€1500) due
to rent but in a favorable location. The last set (-D) has the property to have one less service
team than the current situation. The number of stations, possible offices, and teams of these
scenarios are presented in Table 5.2.

Table 5.2: Overview of scenarios for numerical experiments
Data instance Stations Offices Teams

MDB-A 198 4 4
MDB-B 198 4 5
MDB-C 198 5 4
MDB-D 198 4 3
HAL-A 159 3 3
HAL-B 159 3 4
HAL-C 159 4 3
HAL-D 159 3 2

Parameter tuning necessitates scenarios of varying scales, whereas obtaining company-specific
numerical insights solely requires using real-world settings. For this reason, these two distinct

50



sets of scenarios are employed. To connect the utilization of the scenarios with the execution
of experiments, Table 5.3 provides a concise overview of the order of actions, goals, and the
respective scenarios employed for each experiment.

Table 5.3: Overview of experiments and their goal
Order Experiment Goal Scenarios
1 Operator selection Selecting the most efficient implementation

of improvement operators.
MDB-4, -7,
-9

2 Termination criterion Selecting a fitting termination criterion. MDB-4, -7,
-9

3 Parameter selection Finding algorithm- and model-specific pa-
rameter settings to archive the best solving
performance regarding the remaining exper-
iments.

MDB-1 to
MDB-10

4 Algorithm performance
analysis

Analyzing the model behavior when dealing
with scenarios of different sizes and resource
parameters.

MDB-1 to
MDB-10

5 Deterministic solution
evaluation for two TMs

Gaining insight into the regional applicability
of the solution approach combined with first
insights into solution interpretation.

MDB-A to
-D, HAL-A
to -D

6 Stochastic solution
evaluation

Executing stochastic scenarios to conclude
the best decision-making strategy.

MDB-A

5.3 Parameter tuning

In this section, the subsequently executed experiments to improve the algorithmic are explained,
and their results and conclusions are presented.

5.3.1 Operator selection

OperatorSel The most efficient MO-ALNS version of the three proposed ones must be selected.
For a selected data instance, all three versions are executed with a termination criterion of 500
iterations to obtain the improvement from the initial solution with the same number of iterations.
Next to the percentage improvement from the initial solution to the minimal obtained value of
each objective, the hypervolume, number of obtained non-dominated solutions, and runtime are
considered as additional performance metrics for each version.

The hypervolume (HV) is a metric used to assess the quality of a Pareto front in multi-objective
optimization. It measures the volume of the space dominated by the Pareto front in the objective
space, considering a reference point outside the front or the nadir point (While, Bradstreet, &
Barone, 2012). A higher hypervolume indicates a better Pareto front, representing a more ex-
tensive diversity and convergence of the objective space by the non-dominated solutions (Rifai
et al., 2021). The Python pymoo package presented by Blank and Deb (2020) is used for the
calculation.

This study examines the effectiveness of three different approaches for implementing improve-
ment heuristics. The results from scenarios MDB-4, -7, and -9 are presented in Table 5.4. The
percentage improvement of the three objectives from the initial solution, the hypervolume, the
size of the obtained solution set, and the running time are documented. The best values for
each criterion of the heuristic versions per scenario are colored in blue. MO-ALNS-1 demon-
strates significantly lower running times than the other methods and consistently achieves the
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Table 5.4: Results to operator selection experiment
Scenario Version Dist. Cost WL HV Size ND Run time

MO-ALNS-1 51% 34% 64% 0.7773 23 293.846
MDB-4 MO-ALNS-2 50% 37% 65% 0.5313 27 657.714

MO-ALNS-3 47% 53% 63% 0.6539 31 423.493
MO-ALNS-1 57% 53% 82% 0.7737 23 1380.151

MDB-7 MO-ALNS-2 57% 51% 76% 0.744 27 3227.035
MO-ALNS-3 43% 41% 84% 0.7733 30 1803.921
MO-ALNS-1 60% 55% 80% 0.8671 36 2689.164

MDB-9 MO-ALNS-2 57% 41% 77% 0.705 17 9422.695
MO-ALNS-3 48% 47% 79% 0.802 26 3462.118

highest hypervolume across all instances. Moreover, the improvement from the initial solution
to the minimum achieved values per objective is most pronounced in six out of nine cases. Par-
ticularly noteworthy is the substantial improvement across all three objectives for the largest in-
stance (MDB-9), which indicates that MO-ALNS-1 holds the most promise among the algorithm
variants. In contrast, MO-ALNS-2 yields unfavorable long running times across all instances,
ranging from 2 to 3.5 times longer than MO-ALNS-1. Meanwhile, MO-ALNS-3 exhibits only a
modest increase in running time, ranging from 25% to 45% longer than MO-ALNS-1. Based on
these observations, we decided to proceed with version MO-ALNS-1.

5.3.2 Termination criterion

In the context of optimizing performance, the decision on when to terminate the algorithm is
crucial. Using the best-performing version MO-ALNS-1, this decision is based on analyzing
variations in the Pareto fronts obtained through two termination conditions: after a maximal
number of iterations, denoted as ηmax, or after 0.1 ∗ ηmax iterations without improvement. Fur-
thermore, various ηmax values have been explored to ascertain their impact on the algorithm’s
performance. The assessment of outcomes involves considering key metrics such as hyper-
volume (HV), the quantity of non-dominated solutions obtained, and the algorithm’s running
time. We also document instances where the algorithm faces 0.1 ∗ ηmax iterations without any
improvement and terminates before reaching ηmax. This analysis sheds light on the potential
efficiency of utilizing non-improvement iterations as termination criteria, especially if the algo-
rithm recurrently converges early.

The results of the termination criterion experiment are tabulated in Table 5.5. We conducted
three scenarios of different sizes for each selected ηmax value to obtain themetrics asmentioned
above. The best-performing values of HV and ND size within each scenario are highlighted in
blue. Instances of early termination are documented with the respective iteration number, while
scenarios without early termination are marked with an X.

Notably, the algorithm terminated early only once before reaching the maximum number of it-
erations. Observing the runtime, it is evident that for iteration thresholds up to ηmax = 1, 000,
all executions were completed within two hours, which was deemed acceptable. Additionally, a
recognizable trend of the non-dominated solution set expanding in size with increased iterations
suggests the potential benefit of further iterations. Moreover, the hypervolume metric demon-
strates its peak average (0.81), with runs comprising 2,000 iterations, followed by those with 500
iterations (0.72) and 1,000 iterations (0.72). The similarity in the sizes of non-dominated sets
for 500 and 1,000 iterations elucidates the comparable hypervolume averages between them,
while the averages for 1,000 iterations display greater consistency across the three instances.
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Table 5.5: Results for runs with different ηmax values
ηmax Instance Run time HV Size ND Early term.

MDB-4 74.279 0.4801 14 X
100 MDB-7 409.665 0.5195 17 X

MDB-9 601.388 0.2351 8 at iteration 31
MDB-4 326.482 0.4966 26 X

500 MDB-7 1637.872 0.73 32 X
MDB-9 4532.923 0.946 20 X
MDB-4 622.268 0.5907 25 X

1000 MDB-7 3240.04 0.8744 38 X
MDB-9 6019.769 0.6856 17 X
MDB-4 1484.818 0.722 43 X

2000 MDB-7 6608.428 0.8235 34 X
MDB-9 15682.963 0.8704 39 X
MDB-4 6056.04 0.4574 43 X

5000 MDB-7 17370.867 0.8011 63 X
MDB-9 33753.954 0.775 50 X

Furthermore, it becomes evident that opting for a lower percentage of ηmax as the maximal
number of non-improvement iterations might not be advisable. This choice could potentially
hinder the algorithm’s ability to escape from local optima. Considering the dynamics of opti-
mization processes, it is plausible that certain iterations are necessary to explore alternative
solutions and navigate away from suboptimal local regions. Considering this, the rationale for
choosing a maximal number of 1,000 iterations as the termination criterion seems a sufficient
choice. This threshold strikes a balance between computational efficiency and exploration of
the solution space. It allows the algorithm sufficient time to converge towards promising solu-
tions while avoiding excessive computational costs. Therefore, based on the observed trends
and the need to balance computational resources with solution quality, a maximal number of
1,000 iterations emerges as the most prudent choice for terminating the algorithm in this study
concerning executing several experiments.

5.3.3 Parameter selection

This experiment investigates the impact of the roulette wheel parameter rw and various com-
binations of performance scores σi. Ropke and Prisinger (2006) proposed a strategy where a
’worse but accepted’ solution (σ3) is rewarded more than a ’better than current’ solution (σ2),
intending to promote diversification. They suggested using higher integer values (33, 9, 13) for
these scores, a suggestion also supported by other researchers such as Gläser (2022). Fol-
lowing this, we adopted these score values but varied the ranges experimentally. We selected
four different combinations to observe how they influence the promotion of diversification and
the spacing between the scores. Additionally, we will assess the impact of the roulette wheel
parameter by considering three different values (0.1, 0.2, 0.3). The results are documented in
Tables 5.6 and 5.7 for the roulette wheel parameter and performance score analysis, respec-
tively. For each scenario, the best obtained objective values over all parameter selections are
highlighted in blue as 0.0(%). The other values present the percentage increase from these
best values per scenario.

Concluded from the results presented in Table 5.6, the roulette wheel parameter rw = 0.2 con-
sistently yields favorable outcomes. In 9 out of 10 scenarios, at least one of the objectives
archives the minimum across the three experiments. Consequently, this value is selected, and
the process proceeds to evaluate the optimal performance scores.
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Table 5.6: Results roulette wheel parameter tuning (in %)
rw = 0.1 rw = 0.2 rw = 0.3

Scenario Dist. Cost WL Dist. Cost WL Dist. Cost WL
MDB-1 4.1 0.9 0.0 0.0 0.0 6.3 23.0 2.5 2.8
MDB-2 0.0 0.6 1.4 2.1 0.0 0.0 0.6 3.7 2.8
MDB-3 9.8 5.4 0.0 0.0 0.0 3.2 14.3 11.6 3.4
MDB-4 6.5 0.0 7.0 0.0 11.5 0.0 0.4 0.2 2.1
MDB-5 5.6 12.6 0.0 12.1 0.0 3.2 0.0 13.9 1.7
MDB-6 0.0 3.5 0.0 7.6 0.0 6.6 1.6 2.7 4.7
MDB-7 6.8 4.7 5.6 0.0 0.0 0.0 13.9 15.6 2.4
MDB-8 7.1 5.8 5.1 0.0 6.9 0.0 8.0 0.0 2.7
MDB-9 0.0 0.1 0.0 3.9 0.3 1.3 8.6 0.0 0.3
MDB-10 10.4 9.9 0.0 0.0 4.8 4.0 11.3 0.0 10.1
AVG 5.0 4.3 1.9 2.6 2.3 2.5 8.2 5.0 3.3

In evaluating various scores, our objective is to ascertain the extent to which diversification,
characterized by accepting suboptimal solutions, should be prioritized over enhancing the cur-
rent solution. Additionally, we aim to determine the relative decrease in scores when accepting
suboptimal solutions compared to attaining a new addition to the non-dominated set.

Table 5.7: Results performance scores (in %)
S1: (33,9,13) S2: (33,13,9) S3: (33,11,22) S4: (33,22,11)

Scenario Dist. Cost WL Dist. Cost WL Dist. Cost WL Dist. Cost WL
MDB-1 3.0 1.7 5.8 12.3 0.0 4.1 3.4 9.4 2.2 0.0 7.0 0.0
MDB-2 2.1 3.5 3.1 4.4 3.3 0.0 0.0 1.6 6.2 0.3 0.0 6.4
MDB-3 8.7 0.0 3.9 0.0 12.1 0.0 11.7 7.5 0.6 8.4 0.7 3.6
MDB-4 18.2 12.7 0.0 15.6 0.0 4.3 11.4 10.6 1.6 0.0 1.9 1.6
MDB-5 15.2 1.0 3.2 7.1 10.0 3.0 2.9 16.6 0.0 0.0 0.0 1.2
MDB-6 6.8 5.2 4.3 3.2 0.0 2.2 1.6 0.2 2.2 0.0 3.1 0.0
MDB-7 0.0 9.8 2.3 14.3 0.0 0.0 6.3 23.9 2.3 13.2 11.9 2.3
MDB-8 0.0 6.4 0.0 10.9 7.2 1.0 5.9 5.1 2.6 11.3 0.0 1.7
MDB-9 9.8 1.6 0.0 3.4 1.4 0.4 9.2 0.0 6.3 0.0 1.8 1.0
MDB-10 0.0 4.3 0.0 10.3 9.4 4.5 17.4 6.8 4.8 11.9 0.0 0.7
AVG 6.4 4.6 2.3 8.2 4.3 1.9 7.0 8.2 2.9 4.5 2.6 1.9

Table 5.7 shows the results of the performance score assessment. The score combination de-
noted as S4 exhibits the highest frequency of scenarios where at least one objective performs
optimally in eight scenarios. In six out of the ten scenarios, both S1 and S2 demonstrate optimal
performance in at least one objective, whereas S3 achieves this in only three scenarios. On
average, S4 displays a deviation of 3.0%, whereas S1 and S2 exhibit deviations of 4.4% and
4.8%, respectively, and S3 displays a deviation of 6.0%. Given the consistent attainment of low
objective values by S4, potentially indicating a superior Pareto front, we have selected these
performance scores for proceeding with our solution approach.

Concluding, the parameter settings as displayed in Table 5.8 have been selected.

5.3.4 Algorithm performance analysis

First, the models need to be validated to assess the solution quality of the MO-ALNS based on
the single-objective equivalent ALNS and the MILP. For both ALNS metaheuristics, a function
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Table 5.8: Parameter settings used in (MO-)ALNS
Description Selected values
Total number of iterations ηmax 1,000
Number of iterations for roulette wheel ηs 0.05ηmax

Initial temperature T0 100
Final temperature TN 1
Roulette wheel parameter rw 0.2
New global/ Pareto solution σ1 44
Better than /dominating current solutionσ2 22
Worse but accepted solution σ3 11
Lower limit of degree of destruction 3-13% of |D|
Lower limit of degree of destruction 10-30% of |D|

is programmed to check and guarantee the feasibility of the solutions. For the MILP, very small
instances were generated, which can be solved in a reasonable time to optimality. The results
were manually checked for incongruities of office allocation, tour construction, and frequency
assignments as well as calculations of the objectives. The absence of discrepancies confirms
the mathematical model’s validity in addressing the given problem. Since the validity of the
models is guaranteed, the effectiveness of the MO-ALNS method is evaluated by comparing
the results to both MILP for smaller instances and the ALNS algorithm when optimizing each
objective separately.

Table 5.9: Comparison of results generated by MO-ALNS, ALNS, and MILP for small instances
MO-ALNS ALNS MILP

Scenario Focus Dist. Cost WL Dist. Cost WL Dist. Cost WL Gap(%)
Dist. 1644.12 1996.15 596 1531.63 1893.78 698 1726.0 2070.66 575 23.56

MDB-1 Cost 1879.75 1710.57 597 1655.62 1506.61 705 1941.63 1766.88 582 34.94
WL 2004.87 2324.43 449 1930.27 2256.55 449 3378.48 3074.42 482 28.75
Dist. 1813.86 2150.61 614 1773.16 2113.58 696 1813.34 2150.14 662 39.11

MDB-2 Cost 2092.1 1903.81 695 2061.44 1875.91 684 2022.85 1840.79 682 21.32
WL 2576.26 2844.4 483 2524.47 2797.27 479 2978.08 3210.05 487 24.64
Dist. 2480.16 2756.95 666 2334.42 2124.32 790 2345.83 2634.71 687 34.92

MDB-75.1 Cost 2529.25 2301.62 615 2519.71 2292.94 713 2505.9 2280.37 708 29.01
WL 3317.43 3018.86 452 3077.37 3300.41 422 4467.31 4565.25 451 26.83
Dist. 2090.48 1902.34 774 1983.45 2304.94 897 2197.23 2499.48 861 43.18

MDB-75.2 Cost 2090.48 1902.34 774 2301.7 2094.55 786 2319.2 2110.47 826 45.23
WL 2869.23 2611.0 600 2820.02 3066.22 622 3702.98 3369.71 625 25.12

Due to computational constraints, we can only comprehensively compare all three methods for
MDB-1 and MDB-2 instances. Therefore, two additional scenarios (MDB-75.1 and MDB-75.2)
with each 75 stations were constructed to gain a clearer result. ALNS and MILP are executed
three times, each focusing on a specific objective, whereas MO-ALNS is executed once, target-
ing the minimum value for each objective. The results include values for three key performance
indicators (KPIs), presented in two tables: Table 5.9 displaying MILP-permissible scenarios and
Table 5.10 showing scenarios without MILP. The ”focus” column in these tables indicates the
optimization target in the single-objective approaches. Conversely, for the MO-ALNS method,
the focus indicates the objective for which the minimal value was sought from the Pareto front,
along with its complete solution. The best value per focus for each scenario is colored in blue.

Notably, MILP performs sub-optimally in both scenarios across all objective focuses. While
MILP is time-limited to 60 minutes, MO-ALNS and ALNS achieve results in under 15 minutes.
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The complexity of the Location-Routing Problem (LRP), comprising Facility Location and Ve-
hicle Routing subproblems with numerous decision variables, demands substantial memory
and time resources for solution evaluation, hindering MILP’s performance against heuristics.
Even though the running time was already 1 hour for the MILP, the gaps are undesirably high,
averaging 31%. Considering Table 5.9 and 5.10 results, MO-ALNS outperforms ALNS in reach-
ing minimum values for at least one objective for the larger scenario instances, while ALNS is
archiving superior results with the smaller instances. In general, all methods at one point yield
solutions that either dominate or are dominated by others, but with the majority of solutions
across the focuses being non-dominant to each other.

Table 5.10: Comparison of results generated by MO-ALNS and ALNS for large instances
MO-ALNS ALNS

Scenario Focus Dist. Cost WL Dist. Cost WL
Dist. 2471.51 3249.07 577 2360.32 3147.89 689

MDB-3 Cost 3350.69 3049.13 600 3055.75 2780.73 673
WL 3225.4 3935.11 520 2623.64 3387.51 548
Dist. 2248.17 3545.83 699 2513.78 2787.54 777

MDB-4 Cost 2770.51 3021.16 653 2917.52 2654.94 723
WL 3447.11 4136.87 528 3379.41 3575.26 540
Dist. 2415.08 3197.72 759 3022.5 3750.48 792

MDB-5 Cost 2787.19 3036.34 791 3639.19 3311.66 782
WL 3488.65 4174.67 657 3486.68 3672.88 679
Dist. 2732.79 3986.84 695 2896.95 4136.22 729

MDB-6 Cost 3377.58 3573.6 799 3791.44 3450.21 799
WL 3409.44 4602.59 599 2935.56 4171.36 589
Dist. 2981.05 4212.76 881 3291.95 4495.67 832

MDB-7 Cost 3511.78 3695.72 845 4305.51 3918.01 843
WL 4583.31 4670.81 705 3512.4 4696.28 708
Dist. 3447.2 4136.95 745 3869.93 4521.64 827

MDB-8 Cost 4347.37 3956.11 880 3997.96 4138.14 880
WL 4845.76 5409.64 621 4436.93 5537.61 569
Dist. 4188.33 5311.08 872 4209.55 4830.69 861

MDB-9 Cost 5088.33 4630.38 860 5154.3 4792.22 854
WL 7286.62 7130.82 694 4691.95 5769.67 678
Dist. 4262.81 4879.16 864 4475.08 5072.32 889

MDB-10 Cost 4262.81 4879.16 864 4693.4 4771.0 879
WL 4791.38 5360.16 741 5987.19 6948.34 676

This discrepancy may stem from the choice of operators in ALNS to simultaneously improve all
KPIs. Although the Roulette wheel procedure encourages operators to lead to improvement,
conflicting KPIs can hinder exploration and exploitation. In contrast, MO-ALNS gathers trade-off
solutions, enabling reentry into solution space using the AMOSA criterion for further exploration
and exploitation. Thus, MO-ALNS emerges as a valuable heuristic, capable of achieving sat-
isfactory solutions within reasonable timeframes compared to its single-objective counterpart,
ALNS, and the mathematical model MILP.

Nevertheless, when examining the KPIs, the inherent trade-offs become evident. Opting for
low cost often entails refusing the use of field offices, resulting in longer distances traveled
compared to scenarios where some field offices are utilized. Conversely, aiming for minimal
distance involves maximizing tour lengths, which may lead to unbalanced schedules for em-
ployees. On the other hand, imposing a strict limit on tour duration can help achieve a more
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balanced schedule, but it also does not guarantee optimal tour construction in every case. It
is apparent that pursuing either extreme solution comes with significant drawbacks. Hence,
neither extreme represents the optimal or even a satisfactory solution. This underscores the
importance of considering trade-offs, as captured by the MO-ALNS algorithm. Analyzing a
comprehensive set of non-dominated solutions can give a deeper understanding of feasible
and beneficial approaches for the given problem instance.

5.4 Deterministic solution evaluation

The metaheuristic method and its predefined parameters are applied to analyze the proposed
problem in-depth, providing significant insights pertinent to the company’s objectives. We eval-
uate the case of TMMagdeburg and its neighboring TMHalle, demonstrating the model’s adapt-
ability to diverse management regions. Subsequently, we present a comprehensive conclusion
derived from the collective assessments of both regions.

5.4.1 Magdeburg insights

In addition to the current situation in Magdeburg (referred to as scenario MDB-A), three alter-
native scenarios were examined theoretically. In scenario MDB-B, an extra service team was
considered, while in scenario MDB-C, the feasibility of adding another rental field office was ex-
plored due to its potentially advantageous location. To see the feasibility of long-term personnel
shortage, the case of one less service team is examined as scenario MDB-D. The findings fol-
lowing the obtained Pareto front per scenario are summarized in Table 5.11. The first entries
illustrate the range of the KPIs from their minimum to maximum values. Below, the complete
set of objective values and the number of utilized offices are provided for these solutions, which
achieve a minimum objective value. Furthermore, the table presents the percentage of solu-
tions where each field office is utilized and the percentage of utilized offices overall.

From the results, it can be observed that the range of the objective values varies in the obtained
Pareto fronts. Even though not all offices are utilized, the lowest maximal tour duration results
in the highest cost. This supports the statement from the last subsection that the balance of
the tours results in longer distances, which are more expensive than having some shorter and
a few very long tours.

Furthermore, we see that the fluctuation in the objectives is the highest in the case of MDB-B
since we have more human resources, which gives more flexibility for creating the schedule.
The total tour distance will be longer since we now have more tours which means more drives
from an office to stations and back. The maximal tour duration should be shorter since there
are more service teams to spread the work on. A lower minimal WL-objective value notices this.

The office selection also gives a clear result. The office in Stendal (SDL) is used in every solution
obtained in cases MDB-A, -B, and -C, which makes it the first choice of field office to install. In
all three cases, the second most selected office is the one in Aschersleben (ASL). In case A,
a total number of 3 offices appears the most often in the solution set, but those cases do not
have the overall majority. Therefore, depending on the decision-maker’s preferences, it is a
considerable choice. Similarly, opening even more offices can be advantageous when focusing
on providing the most comfort for the service teams without expecting a saving to the current
situation. Case C reveals that the rental office in Oebisfelde (OBF) would not be efficient, which
was expected since the other possible offices already provide good coverage of the region at a
much lower cost. Case D shows a different field office choice than the other three cases. Now
ASL is selected more often than SDL. This indicates a shift in strategy when the workforce is
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reduced. Also, the minimal WL value is much higher than in the other cases, which reflects a
loss of flexibility in the possible tour schedules.

Table 5.11: Results of numerical experiments for Magdeburg
Scenario: MDB-A Dist. Cost WL Num. Offices
Min 3002.93 3821.31 689
Max 4179.94 4721.59 863
Min. Dist. 3002.93 4232.67 815 4
Min. Cost 3649.79 3821.31 863 2
Min. WL 4089.66 4721.59 689 3
Field office ASL DSS SDL
Percentage of ND 64.7% 47.1% 100%
Number of Offices 1 2 3 4
Percentage of ND 0% 23.5% 41.2% 35.3%
Scenario: MDB-B Dist. Cost WL Num. Offices
Min 3292.26 4018.77 603
Max 5288.6 5312.63 869
Min. Dist. 3292.26 4495.96 755 4
Min. Cost 3866.78 4018.77 832 2
Min. WL 5288.6 5312.63 603 3
Field office ASL DSS SDL
Percentage of ND 55% 35% 100%
Number of Offices 1 2 3 4
Percentage of ND 0% 30% 50% 20%
Scenario: MDB-C Dist. Cost WL Num. Offices
Min 3085.65 3558.43 712
Max 3702.34 4311.19 881
Min. Dist. 3085.65 3807.94 881 3
Min. Cost 3360.91 3558.43 837 2
Min. WL 3638.67 4311.19 712 3
Field office ASL DSS SDL OBF
Percentage of ND 66.67% 0% 100% 0%
Number of Offices 1 2 3 4/5
Percentage of ND 0% 33.33% 66.67% 0%
Scenario: MDB-D Dist. Cost WL Num. Offices
Min 3457.61 3408.77 826
Max 4310.54 4733.25 900
Min. Dist. 3457.61 3646.43 875 2
Min. Cost 3745.9 3408.77 900 1
Min. WL 4102.47 4733.25 826 3
Field office ASL DSS SDL
Percentage of ND 61.54% 0% 15.38%
Number of Offices 1 2 3 4
Percentage of ND 38.46% 46.15% 15.38% 0%

5.4.2 Regional applicability: Halle

In a parallel manner to the examination conducted for Magdeburg, the present experiment in-
vestigates the scheduling dynamics in Halle to evaluate the feasibility of implementing the pro-
posed solution approach to different management regions of DB S&S. Halle, being compar-
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atively smaller in scale than Magdeburg, operates with three service teams. Moreover, the
management team in Halle also oversees geographically dispersed stations, utilizing a single
central office for operational coordination. The results summarizing the Pareto fronts of each
scenario are displayed in Table 5.12.

Table 5.12: Results of numerical experiments for Halle
Scenario: HAL-A Dist. Cost WL Num. Offices
Min 2186.76 2515.26 711
Max 3398.01 3729.18 883
Min. Dist. 2186.76 2989.95 853 3
Min. Cost 2764.02 2515.26 883 1
Min. WL 3398.01 3092.19 711 1
Field office BIT NMB
Percentage of ND 44.44% 38.89%
Number of Offices 1 2 3
Percentage of ND 44.44% 27.78% 27.78%
Scenario: HAL-B Dist. Cost WL Num. Offices
Min 2534.26 2762.38 555
Max 4093.28 4240.61 860
Min. Dist. 2534.26 2806.18 840 2
Min. Cost 3035.58 2762.38 860 1
Min. WL 4093.28 4224.88 555 2
Field office BIT NMB
Percentage of ND 85.19% 14.81%
Number of Offices 1 2 3
Percentage of ND 29.63% 55.56% 14.81%
Scenario: HAL-C Dist. Cost WL Num. Offices
Min 2251.52 2341.38 691
Max 3071.61 4234.5 879
Min. Dist. 2251.52 4048.88 853 3
Min. Cost 2572.94 2341.38 835 1
Min. WL 3071.61 2795.17 691 1
Field office BIT NMB LWB
Percentage of ND 0% 12.5% 50%
Number of Offices 1 2 3 4
Percentage of ND 50% 37.5% 12.5% 0%

Testing the solution approach on the Halle (HAL) dataset demonstrates its applicability to other
management regions of DB S&S. The model is designed with flexibility in mind, allowing for
customizable data inputs. Similar trends in results to those observed in the MDB dataset are
evident. In scenarios where additional teams are available (Case B), there is a tendency to
open more offices, resulting in a minimal increase in the total distance traveled compared to
Case A. Case C suggests that the rental office in Lutherstadt Wittenberg (LWB) may offer a
more advantageous location than the other potential field offices in Bitterfeld (BIT) and Naum-
burg (NMB). However, the higher cost associated with LWB must be carefully considered when
evaluating the solution set. The observation that half of the solutions do not utilize any field of-
fice supports the notion that the high rental cost of LWB may render it an unprofitable choice for
a field office location. Conversely, Case D, which considers fewer available teams, leads to an
empty solution set. This implies that the feasible solution space is too constrained to be found
within the given iteration or no feasible solution exists. Such findings suggest that a long-term
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shortage of employees could pose challenges in meeting inspection deadlines without resorting
to minimal efforts.

5.4.3 Insight summary

Insights gained from studying various train station management cases in Magdeburg and Halle
reveal several critical points about the proposed solution approach. Firstly, the model exhibits
adaptability across different regions and generates valuable feedback through a non-dominated
solution set. Analyzing the Pareto front obtained from this process sheds light on optimal team-
to-office configurations. Decision-makers can gather pertinent information by examining the
distribution of objective values and the prevalence of specific office utilization within the solu-
tion set. Furthermore, the feasibility or necessity of adjusting resources like teams or vehicles
can be predicted, providing valuable insights into team capacity management.

In Experiment 2, when examining the termination criterion, it was realized that the more often
the algorithm is executed, the better the solution. In Experiment 3, the quality assessment re-
vealed that the quality of the solution decreases with increasing scenario set. Combining that
insight with the current experiment implies that the adequacy of available resources significantly
influences the quality of solutions obtained within a predefined number of iterations. Introducing
additional offices or service teams expands the solution space but necessitates more algorith-
mic iterations to maintain comparable validity. Conversely, insufficient resources, particularly
inadequate personnel for station inspections, result in an empty solution set. Moreover, tours
exceeding a maximum duration of 900 minutes (equivalent to 15 hours) become impractical for
teams to manage within two days. Here, the algorithm would also need more time to find the
smaller feasible solution space if it exists.

Therefore, short running durations of the algorithm can provide a good impression of the so-
lution space but remain potential for improvement in the resulting tours of each solution and
identification of gaps within the true Pareto front. To enhance understanding of the train station
management in Magdeburg, the forthcoming experiment will increase the number of iterations
to expand the Pareto front, followed by a stochastic analysis.

5.5 Extended analysis with stochastic solution evaluation

To delve deeper into the problem identified by the leader of train station management in Magde-
burg, an extensive analysis of the problem is undertaken. This analysis involves the utilization
of a proposed algorithm outlined in Section 5.5, which employs a long Monte Carlo simulation
to provide statistical insights. The Pareto front obtained from the extended MO-ALNS run is ex-
amined in the first subsection to offer educated recommendations. Given the problem owner’s
interest in exploring changes to operational strategy, specifically the incorporation of cross-
disciplinary service teams for inspection and maintenance alongside the establishment of field
offices, both variations are thoroughly evaluated. Subsequently, attention is directed towards
a chosen subset of solutions that exhibit promise across multiple objectives, focusing on the
details of the stochastic evaluation and its outcomes.

5.5.1 Analysis of Pareto front

The MO-ALNS was applied over 5,000 iterations, yielding a non-dominated set of solutions,
depicted in Figure 5.1. The complete output, referenced herein, is detailed in Appendix A, in-
cluding improvement calculations. The visualization of the non-dominated set illustrates the
wide spread within the solution space, necessitating substantial computational resources for
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exploration. Despite the considerable iteration count, achieving a densely packed front was
unattainable. Nevertheless, Table 5.13, summarizing the non-dominating solutions, provides
enough information to draw conclusions. The first two rows illustrate the utilization percentage
of each field office within the obtained non-dominated set. Notably, the Standal field office was
selected in 78% of solutions, whereas Aschersleben and Dessau were selected in only 39%
and 35% of the obtained solutions, respectively. Statistics concerning the solutions with vary-
ing numbers of open offices are provided below. This includes the proportion of non-dominated
solutions relative to the number of active offices, along with their cumulative representation. For
example, 26% of solutions incorporated two offices, contributing to a cumulative utilization of at
least two offices in 78% of cases. Additionally, the table presents average distance and cost
improvements compared to the current scenario, considering both the existing team structure
and a hypothetical combined team structure. To recall from Chapter 2, the KPIs for the current
tour schedule are a total travel distance of 11,700 km (4,500km not manipulated), a monthly
cost of €4,095, and a maximum tour duration of 15.4 hours.

Figure 5.1: Three-dimensional Pareto front of scenario MDB-A

Table 5.13 presents that the model found solutions that use a single central office (1 open office)
which result in modest yet noticeable savings in both distance traveled and associated costs.
This underscores the potential for optimizing the current tour scheduling approach for greater
efficiency. Furthermore, when considering solutions with field offices, the decision to establish
such an office hinges on installation costs, which have not been factored in yet. Nonetheless,
the data suggests that establishing an office in Stendal would yield significant reductions in travel
distances and prove, even if just slightly, financially advantageous. The anticipated long-term
savings from decreased monthly expenditures are expected to outweigh the initial investment.
The projected distance savings of 17% equate to approximately 1,100km to 1,900km, depend-
ing on whether the repair personnel also benefit from the presence of this field office. Converting
this into time, the entire train station inspection crew is expected to save at least 18 hours during
each planning horizon.

The next viable location for a field office could be Aschersleben or Dessau. Adding another
office to the Magdeburg and Stendal locations would further minimize travel distances by an
additional 5% on average. However, its profitability remains questionable and contingent upon
the efficiency of the tour schedule. Notably, solutions with longer maximum tour durations ap-
pear to yield profitability in the Pareto front, while those with shorter maximum tour durations
may not offer significant cost savings. This underlines the importance of the trade-off between
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Table 5.13: Results of extended execution for TM Magdeburg
Field Office: Aschersleben Dessau Stendal
%age of use: 39% 35% 78%

Open offices: 1 2 3 4
%age of use 22% 26% 30% 22%
Cumulative %age 100% 78% 52% 22%
Current team structure:
Avg. Dist. improvement 7.77% 16.71% 21.69% 30.16%
Avg. Cost improvement 7.77% 4.50% -2.73% -6.47%
Combined team structure:
Avg. Dist. improvement 31.18% 37.86% 41.57% 47.89%
Avg. Cost improvement 31.18% 25.65% 17.15% 11.26%

cost savings and a balanced schedule. Moreover, the fixed costs of furnishing the office must
be considered. However, opening a third field office does not lead to cost improvement in any
of the non-dominated solutions obtained but an additional 8% distance saving.

These improvements are magnified when considering a cross-disciplinary team approach. As-
suming that only 60% of maintenance trips can be integrated into the combined team structure,
even greater reductions in distance and costs can be achieved, with all solutions providing cost
savings. This underscores the efficiency of installing all three field offices. Nevertheless, careful
planning is required for the combined team structure, ensuring compatibility among employees
and locations, as well as effective management of materials, equipment, and transportation.
Since the combined team structure was not analyzed during this study, the effect and possible
implementation results are based on assumptions. It is important to note that while the com-
bined team structure was not the primary focus of this study, this recommendation is founded
on a theoretical assumption of achieving a 60% reduction in the distance through combined trips.

The maximum tour duration was selected as the key performance indicator (KPI) regarding
workload balance. Setting an upper limit of 900 minutes for the maximum tour duration, which
is lower than the longest estimates in the current tour schedule, ensures improvement in this
aspect across all tours in the Pareto front. However, the average maximum tour duration across
the Pareto front (793 minutes, indicating a 14% improvement) suggests that a more balanced
schedule is achievable and advisable. Therefore, aiming for a solution around this average
value is recommended to ensure a balanced workload without compromising tour quality. Ad-
ditionally, the more travel distance saved, the more significant the reduction in maximum tour
duration, further emphasizing the benefits of optimizing travel routes.

5.5.2 Stochastic evaluation

Given the absence of reliable service time records in any Deutsche Bahn (DB) database, we
introduce uniformly distributed factors to adjust the estimated service and travel times. Our
approach involves the introduction of two distinct factor distributions, one representing a realistic
scenario and the other a pessimistic outlook, allowing for an examination of extreme conditions.
The selected distributions for these factors are displayed in Table 5.14

Table 5.14: Distributions for travel and service time factors
Realistic Pessimistic

Travel time factor U(0.8, 1.5) U(0.95, 1.5)
Service time factor U(0.75, 1.25) U(0.95, 1.25)
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Due to the unpredictable nature of traffic fluctuations and their impact on travel times, adjust-
ments are made conservatively. Travel time estimates may decrease by up to 30% or increase
by up to 70%, with a maximum multiplier of 1.5 applied to the original estimate. Conversely,
service times are less likely to be significantly extended, as the primary focus is completing
the entire service tour, with any extra work potentially deferred. However, it is also possible
that the estimated service time exceeds the actual requirement, resulting in unnecessary buffer
time. Therefore, adjustments to service times are equally likely to decrease or increase by up to
25%. These were selected for the realistic case, while for the pessimistic case, the probability
of decreased travel and/or service time is reduced.

Figure 5.2: Box plot representation of overtime fluctuation for realistic case

The selected measure for evaluating the selected solutions is the average total overtime. This
means every time a tour exceeds 900 minutes, overtime will be counted. During the Monte
Carlo simulation, each solution gets evaluated 1,000 times. In each run, new stochastic travel
and service times are calculated, and the overtime for each tour is summed up. The outcome
of each solution for the realistic case is represented in box plots in Figure 5.2, while the box plot
for the pessimistic case is presented in Figure 5.3.

The initial three box plots provide significant yet straightforward insights for both cases. These
plots depict solutions derived from greedy algorithms, each targeting a specific optimization
goal: minimizing distance (solution 1), cost (solution 2), or the maximal tour duration (solution
3). The first two solutions exhibit notable variance, with average overtime of approximately 50
and 190 minutes, respectively, escalating to 340 and 1,000 minutes under a pessimistic per-
spective. This indicates that prioritizing singular aspects such as distance or cost reduction may
lead to inefficient schedules, albeit compliant with given constraints. Notably, schedules with
shorter maximal tour durations display smaller fluctuations.

Further analysis of the realistic case reveals instances of overtime across all solutions except for
solution 2, identifiable through box plots or outlier points. Solution 5 notably displays frequent
overtime instances along with outliers. In contrast, solutions 4, 7, 9, and 10 display minimal
mean overtime, suggesting reliability in accommodating fluctuations. However, occasional in-
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Figure 5.3: Box plot representation of overtime fluctuation for pessimistic case

stances of overtime remain possible. From these solutions, only solution 7 remains with minimal
overtime for the pessimistic case, while the other three solutions have overtime occurrences in
12% to 20% of the simulation runs. The preference for solutions 2 and 7, emphasizing minimal
tour duration, particularly superior in the face of adverse travel and service time fluctuations,
underscores the necessity of a balanced tour schedule for continuous service provision.

Solutions 3, 4, 7, 9, and 10 have an overtime occurrence of under 1% and an average overtime
of less than one minute for the realistic case and at most 20% overtime occurrence and an
average overtime of fewer than three minutes for the pessimistic case. These solutions are
constructed to minimize the risk of overtime based on this Monte Carlo simulation, albeit under
the assumption of uniformly distributed travel and service times, which may not fully align with
real-world scenarios. Despite this simplification, their resilience to broad estimates suggests a
favorable condition. A comprehensive examination of these solutions, detailed in Appendix A,
reveals an average maximal tour duration ranging from 740 minutes for solutions 3, 4, 7, 9, and
10. This value appears reasonable, given the conflicting objectives at play.

5.6 Conclusion

This chapter answers the research question “How does the solution approach perform for the
experiments and compared to the current situation?” First, the experimental methodology em-
ployed in this study was outlined. The first experiments were designed to fine-tune the algo-
rithmic parameters of the proposed solution approach. Initially, twelve distinct scenarios were
constructed using data from the Magdeburg dataset. These scenarios varied in size, encom-
passing scenarios smaller, equal in size, and larger than real-world instances. Subsequently,
the performance of the Multi-Objective Adaptive Large Neighborhood Search (MO-ALNS) was
compared against both its single-objective counterpart, ALNS, and the mathematical formu-
lation represented by the Mixed Integer Linear Program (for smaller instances). The findings
underscored the superior efficiency of the MO-ALNS approach as the size of the data instances
increases while the single-objective methods are superior to the small scenarios.
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In the following experimental phase, valuable insights pertinent to the company were gained.
Real-world scenarios derived from train station management departments in both Magdeburg
and Halle were utilized. The model’s applicability to the Halle scenario yielded promising re-
sults, affirming the model’s generalizability. In the case of Magdeburg, which holds particular
significance for the project owner, it was realized that utilizing field offices is an effective strat-
egy. Notably, establishing a field office in Stendal seems most efficient, resulting in substantial
savings in travel distance (∼ 17% =̂ 1,100-1,900km) and, consequently, time while keeping the
cost reasonable. The addition of further field offices showed potential for further reduction in
total travel distance. However, the profitability of each decision necessitates a detailed evalua-
tion of the entire non-dominated set. Generally, as the utilization of offices increased, the total
distance traveled decreased, though cost improvements diminished. This is equivalent when
considering the cross-disciplinary team structure, but the distance improvement is up to 48%
(∼ 5,600km) and cost savings of 11% (∼ €450) even when utilizing all three field offices.

Lastly, the stochastic nature of the problem was addressed by incorporating variability in travel
and service times into the evaluation process. Potential solutions were assessed using Monte
Carlo simulations, providing insights into their flexibility in adapting to fluctuating conditions.
Analysis of the box plots presented in Section 5.5 elucidates that a tour schedule with a max-
imal tour duration of around 730 or lower should guarantee flexibility to adjust to unexpected
occurrences. A further look into the provided tour schedules revealed that the baseline sched-
ules obtained do not present optimal routings. Therefore, the schedule can be constructed even
more efficiently than the metaheuristic can compile.

Therefore, the resume from the experimental phase shows that the use of field offices, especially
Stendal, can reduce traveling distance and time for TM Magdeburg. Applying the combined
team structure will additionally be profitable in the long run. Furthermore, the proposed model
offers good decision support for locating teams to possible offices due to its exploration and
provision of a wide range of possible solutions. However, the tours for specific solutions still
have room for improvement. This can be solved by running the model for much more time
or solving the isolated subproblem, the Periodic Vehicle Routing Problem, to get the best tour
schedule for the chosen team-to-office allocation.
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6 CONCLUSION AND RECOMMENDATIONS

This chapter summarizes the conducted research and its outcomes in Section 6.1. Subse-
quently, in Section 6.2, recommendations for DB S&S stemming from these findings are pre-
sented. Section 6.3 discusses limitations and the potential of future research, while Section 6.4
addresses the contributions made to both theoretical frameworks and practical applications.

6.1 Conclusion

This research commenced by describing the problem faced by the head of the train station man-
agement in Magdeburg, leading to the main research goal. This is the design of an optimization
approach that locates service teams to field offices, assigns the train stations to the teams re-
spectively, and provides a periodic tour schedule. Given the crucial role of DB in Germany’s
transition to sustainable transportation, by contributing to the reduction of emissions as well as
making traveling by train as pleasant as possible, such a model holds significant potential for
each management region to reassess its operational approach. Guided by research questions
answered throughout each chapter, this research is concluded by answering the following main
research question:

“How can a solution approach be designed to locate service teams to field offices, assign the
train stations to the teams respectively, and provide a periodic tour schedule?”

To tackle this problem, the operating strategy of the inspections and maintenance tours has
been explored concerning the employee’s office location. The aim was to find a team-to-office
allocation and a periodic baseline tour schedule to reduce the distance traveled by the employ-
ees as well as total costs while keeping the tours balanced throughout the planning horizon.
Therefore, a Mixed Integer Linear Program (MILP) and a multi-objective Adaptive Large Neigh-
borhood Search (MO-ALNS) have been developed to optimize the location-routing problem.
Given the conflicting nature of our objectives, we employed the MO-ALNS to generate a set
of non-dominated solutions efficiently, providing insights into the optimal strategy for train sta-
tion inspection and maintenance. To ensure generality and applicability in other regions, we
fine-tuned the MO-ALNS algorithm and parameters, testing them against both single-objective
ALNS and MILP approaches. Using various scenarios and resources based on the Magdeburg
and Halle datasets, we conducted numerical experiments to validate the effectiveness of our
methodology.

Our results demonstrate that adjusting the operating strategy, such as opening a field office
in Stendal while maintaining separate team structures, can reduce travel distances by 17%
without increasing monthly costs. Additional offices contribute to further distance reductions,
albeit without cost benefits, especially due to initial installation expenses. However, by adopting
a combined team structure, travel distance savings can reach nearly 50%, justifying the monthly
office costs even with all possible field offices open. Although the tours generated by MO-ALNS
are not optimal, further improvements to the tour schedule are feasible. Through stochastic
simulations of travel and service times, we determined that a maximum tour duration of 12.5
hours is achievable and sufficient to accommodate unplanned services without compromising
work quality.
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6.2 Recommendations

Based on the analysis conducted of the MO-ALNS results, the recommendation for Deutsche
Bahn (DB) regarding the establishment of field offices is as follows: Firstly, it is advised to pri-
oritize the opening of a field office in Stendal due to its potential to significantly reduce travel
distances and generate monthly cost savings, despite the initial installation costs. Additionally,
considering the potential profitability, the next viable locations for field offices could be Asch-
ersleben or Dessau. The addition of another office could further minimize travel distances,
although its profitability remains uncertain and contingent upon efficient tour scheduling. How-
ever, the fixed costs associated with furnishing the office should be carefully evaluated but also
the time saving for the employees should be considered. Emphasizing the time aspect is sub-
stantial, as it ensures high-quality work, leading to improved customer satisfaction overall.

Moreover, implementing a cross-disciplinary team approach could lead to even greater reduc-
tions in distance and costs, potentially justifying the installation of all three field offices. Nonethe-
less, careful planning is required to ensure compatibility among employees and locations, as
well as effective management of materials, equipment, and transportation. It is crucial to aim
for a balanced workload by setting an upper limit for the maximum tour duration, ensuring im-
provement across all tours without compromising quality. Considering the broader impact of
field office installations on other work processes, both within and outside of train station inspec-
tion and maintenance, is also recommended to weigh the overall benefits and drawbacks of
this transformation thoroughly. The appreciation of values coming with distance, cost, and time
savings, as well as providing a consistent work schedule, remains to the project owner.

6.3 Limitations and further research

The study encounters several limitations that warrant consideration. Firstly, the computational
time requirements of the metaheuristic pose a significant constraint, particularly when dealing
with large instances, thereby restricting the full exploration of its potential. Addressing this lim-
itation could involve optimizing the programming efficiency and leveraging relevant packages,
alongside exploring alternative operators and heuristics to enhance performance. Additionally,
the non-optimality of tour schedules derived from the Pareto front highlights a need for further
investigation, such as integrating periodic vehicle routing analysis for the selected office alloca-
tion.

Moreover, data availability proves to be a challenge due to inadequate documentation of oper-
ations and inefficient administration of databanks. Ambiguous information within working steps
documentation hampers the derivation of valuable insights, while outdated information within
the train station databank necessitates manual retrieval of related data. Incorporating addi-
tional details, such as train line routes through each station, could further refine the analysis.
Furthermore, the study’s scope does not encompass the cross-disciplinary team structure, yet
exploring its impact on service time and station management dynamics could yield valuable
insights for future extensions. Initiating a pilot project to observe and document these effects
could offer a path forward in addressing this limitation.

6.4 Contribution

The research presented in this study significantly contributes to theoretical understanding and
practical application within the domain of train station inspection and maintenance and beyond.
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Contribution to theory

Research in train station inspection and maintenance has been relatively limited. While there
has been some investigation into the maintenance of rolling stock and other related areas, these
studies often lacked the necessity of establishing a baseline schedule and primarily focused
on addressing stochastic demand. Although periodic Location-Routing Problems have been
encountered in other contexts, considerations of workload balance were seldom integrated.
Furthermore, this study introduces a novel approach by combining Adaptive Large Neighbor-
hood Search (ALNS) with multi-objective analysis using the Pareto method, specifically tailored
to address periodic Location-Routing Problems. This unique methodology, customized for the
infrastructure of Deutsche Bahn (DB), presents a fresh perspective on optimizing inspection
processes. Moreover, the study synthesizes insights from various sources, incorporating im-
provement operators, degree of destruction, and other parameters to enhance the algorithm’s
efficiency.

Contribution to practice

In practical terms, the research provides DBwith a valuable decision support tool to enhance the
efficiency of their train station inspection departments across all regions. By offering a robust
framework for optimizing inspection schedules, the study enables DB to streamlinemaintenance
operations effectively. Additionally, the study offers educated recommendations to the Train
Station Management of Magdeburg regarding the selection and management of field offices.
These recommendations, based on thorough analysis and empirical evidence, provide action-
able insights to stakeholders, enabling a more strategic and efficient allocation of resources
within the realm of inspection and maintenance. Overall, the study’s contributions extend be-
yond theoretical advancements to directly impact and improve real-world practices within the
railway infrastructure management sector.
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APPENDICES

A Solution set for Magdeburg

Presentation of the obtained Pareto front with analysis of distance and cost improvements con-
sidering the current team structure and the combined team structure.

Figure 1: Excel output: Solution set for MDB-A

The conversion of the average distance and cost improvement is aligned with the amount of
influence on the maintenance crew. If the existing team structure is maintained and the im-
provements are only factored in for the inspectors, we observe a distance and cost improvement
of 1,296km and €15, denoted as ”Equates min”. However, if we assume that the repair team
also benefits proportionately from the operational change, then the enhancements increase to
2,247km and €26, labeled as ”Equates max.”

Presentation of the selected solutions for the stochastic evaluation and the average result of
the executed Monte Carlo (MC) simulation.

Figure 2: Excel output: Results of stochastic simulation
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