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Abstract

In a model of the real world, determining whether an object is in Line of Sight of an observer
requires performing a large series of simple calculations to verify there is no terrain or object ob-
structing the sight-line. Upon alteration of the simulation state due to a moving observer or target,
the aforementioned calculations are no longer valid and will need to be re-executed. When a time
constraint is applied, the concept of a large number of small calculations yields an interesting chal-
lenge; how can one structure these calculations such that they can be reliably performed within the
required time interval. Furthermore, approximation techniques can account for additional latency
improvements at the cost of precision or fidelity. In this paper, different approaches to solve this
problem for electro-optical and radar sensors are compared to determine a configuration which
provides the best results given a set of (latency and resource) limitations.

Keywords: line of sight, digital elevation model, sensor, electro-optical, radar



Chapter 1

Introduction

A radar system uses the reflection of emitted radio waves to determine the distance, elevation and
azimuth between itself and a target. An electro-optical sensor, in its simplest form, is a piece of
equipment responding to changes in light using the shortest optical distance between an observer
and a target. In the real world, both sensors adhere to the laws of physics that govern electro-
magnetic wave propagation. By definition, a model is a simplification of the real world. As
such, in a simulated environment, physical behavior is mirrored as closely as possible but never
perfectly. Given an environment, determining what is visible from a certain viewpoint is a solved
problem; given the positions of all objects in the area one can ‘brute-force’ to check for collisions
between the sight-line, terrain and objects. However, radar and electro-optical sensors are often
used on non-stationary objects like ships or airplanes, and their position is therefore subject to
change. Changing the position of the observer invalidates previous Line of Sight-calculations
due to changes in perspective. For example, a small change in perspective can result in a target
disappearing behind a mountain or vice versa. To handle information processing, there is an
interest in achieving accurate, fast and efficient calculations of radar and electro-optical sensors
coverage. In particular, in a dynamic environment with the potential for accounting for a large
amount of moving objects (or alternatively; entities). In particular, how should these computations
be executed such that they can be achieved in near real-time, and which approximations are viable
for real world use-cases.

In this paper, a set of possible approximation techniques for modeling electro-optical and radar
sensor behavior are studied. Using principles explained in chapter 2, a Line of Sight-service has
been developed in cooperation with Thales Netherlands B.V., situated in Hengelo, Overijssel. As a
leading manufacturer of marine radar systems, Thales is primarily interested in the naval domain.
As such, Thales will be able to establish a set of system requirements based on the approaches
and approximations studied in this paper along with their applicability and implications in a naval
environment. The goal of the aforementioned LoS-service is to serve as a tool in order to answer
the research questions stipulated in chapter 3 using the scientific method, whilst providing Thales
with a solid framework to productize potential spin-offs.
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Chapter 2

Background

2.1 Electro-optical sensor visibility in a vacuum

The most simplistic representation of the Line of Sight-problem is geometric Line of Sight. In this
model, light rays are modeled as geometric lines with an origin and 3-dimensional direction vector.
In three-dimensional space, it is advantageous to use the Earth-Centered Earth-Fixed (ECEF) ref-
erence system. In ECEF, the origin is the centre of the Earth, and the z-axis crosses the north- and
south pole. The use of geometry as a reduction in complexity works well in a vacuum, given the
absence of an atmosphere to interact with. In a vacuum, a photon (or light ray) travels in a straight
line when negating the effects of gravity. Atmospheric effects can greatly impact sensor coverage
and can, for example, change the maximal view distance through refraction [13]. Approaching op-
tical LoS as propagating in a vacuum allows the use of geometric approximations to determine the
angle between an observer and a target, as there is no need to account for gradients in temperature
or humidity as a function of height. Therefore, these calculations are far less resource-intensive.
Furthermore, when assuming a flat Earth as an approximation for small distances, determining the
angle between an observer and a target is trivial. Figure 2.1 shows an illustration of this example,
and equation 2.1 demonstrates the simplistic nature of the calculation.

θ

∆x

ztarget ´ zobserver

observer

target

Figure 2.1: Determining the angle between an observer and a target on a flat Earth approx-
imation only requires knowledge of the difference in height and the horizontal distance
between the observer and target.
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θobserverÑtarget “ arctan
ˆ

ztarget ´ zobserver

∆x

˙

(2.1)

Here ztarget and zobserver are the elevation of the observer and target respectively, relative to a
common reference frame such as the surface of the Earth. ∆x is the horizontal distance between
the observer and target.

Assuming a flat Earth, the question of determining LoS is reduced to comparing angles; by
sampling the terrain and determining the angle between the observer and the sample using formula
2.1, and comparing it against the angle between the observer and the target. If any intermediate
terrain sample angle θobserverÑterrain ą θobserverÑtarget, the sight-line between observer and target
is obstructed. If the contrary holds, there is Line of Sight; the target is visible from the perspective
of the observer (equation 2.2).

LoS “

#

true if @px, zq P S : arctan
´

z´z0
x´x0

¯

ă arctan
´

ztarget´z0
xtarget´x0

¯

f alse otherwise
(2.2)

2.1.1 Collision detection

In a simulated environment, for a given sight-line, there is a set of candidate objects that are near
and can possibly obstruct the view. These objects must each be checked for intersection using
a mathematical expression dependent on the shape of the object. An example of this is shown
in figure 2.2. In this simplified 2-dimensional visualization, checking whether p, q or r intersect
with sight-line a Ñ b requires querying the position and radius of p, q and r and performing a
calculation to check for an intersection with a circle. Due to sight-line a Ñ b being obstructed if
at least one object crosses the sight-line, the algorithm can terminate after finding one intersection.

a

b

r

q
p

Figure 2.2: A 2-dimensional illustration of LoS and the issues that arise when the number
of objects increases. For the sightline a Ñ b, objects p, q, r, . . . are queried for their
location and radius to check whether they intersects with the line. The calculation can be
aborted once one of the circles intersects, however, all circles will have to be queried in
order to ensure none of them intersect.
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Objects in a simulated environment conventionally consist of meshes of polygons. These poly-
gons are connected to each other to give the impression of a smooth surface and a complex object
contour. In theory, to check whether any given object obstructs a sight-line, a query must be per-
formed for each of the polygons in the mesh in a given area to check for intersection between the
sight-line and the polygon. If the surface of the polygon crosses the sight-line, the polygon is ‘in
front’ of the target with respect to the perspective of the observer and the sight-line is obstructed.
This implies that for complex, high-polygon-count objects, the computational time to determine
Line of Sight is much greater than for simple models. Therefore, it is beneficial to reduce the
number of faces and vertices an object contains in order to reduce complexity and computational
resources required. The formulae to determine intersection between a line and a primitive geo-
metric shape are well-established. In this paper, intersection computation is limited to spheres and
triangles. More complex shapes are a combination of multiple of these simplistic shapes in the
underlying model representations.

Perfect sphere

For a sphere with origin O⃗ and radius r, the problem of determining whether a line intersects with
the sphere is reduced to whether the distance between the origin or any point on the line is less
than r. Formula 2.3 determines whether a line intersects with a sphere.

O⃗ r

Figure 2.3: 3-dimensional sphere, with origin O⃗ and radius r.

intersectionO⃗line`v⃗ÑO⃗sphere`r “

"

true if p⃗v ¨ a⃗q2 ě a⃗ ¨ a⃗ ´ r2 where a “ O⃗sphere ´ O⃗line

f alse otherwise
(2.3)

Here, the equation for the sphere is denoted as O⃗sphere ` r, and the line as O⃗line ` v⃗.

Orthogonal triangle

Determining whether a line intersects with a triangle (figure 2.4) can be computed by using algo-
rithm 1. In this algorithm, an orthogonal triangle is used. I.e., the requirement A⃗B∡A⃗C “ 90˝ must
be satisfied. Two orthogonal triangles can form a rectangle, or any other combination of triangles
can form a series of complex shapes. Then, for every individual triangle, algorithm 1 is applied.
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C⃗ B⃗

A⃗

90˝

Figure 2.4: Orthogonal triangle in 3-dimensional space defined by the vertices A⃗, B⃗, C⃗.

Algorithm 1 Möller–Trumbore intersection algorithm [19]: Algorithm for determining
whether a line defined by the equation O⃗ ` v⃗t intersects a triangle defined by A⃗, B⃗ and C⃗

Require: A⃗B∡A⃗C “ 90˝ Ź Must be an orthogonal triangle
e⃗1 Ð B⃗ ´ A⃗ Ź Vector between A⃗ and B⃗
e⃗2 Ð C⃗ ´ A⃗ Ź Vector between A⃗ and C⃗
N⃗ Ð e⃗1 ˆ e⃗2 Ź Normal vector
d Ð ´v⃗ ¨ N⃗
if d = 0 then return f alse end if Ź Vector is parallel to the surface
A⃗O Ð O⃗ ´ A⃗
⃗DAO Ð A⃗O ˆ v⃗

u Ð 1
d e⃗2 ¨ ⃗DAO

v Ð ´1
d e⃗1 ¨ ⃗DAO

t Ð 1
d A⃗O ¨ N⃗

return t ě 0 ^ u ě 0 ^ v ě 0 ^ u ´ v ď 1

2.2 Radar visibility

2.2.1 Atmospheric ducting

Guglielmo Marconi sent a series of the Morse representation of the letter ‘S’ over the Atlantic
ocean in 1901 [4], much further than was originally anticipated to be possible due to the Earth’s
curvature. This would not have been possible without radar refracting in the atmosphere. When
specific conditions are met, a phenomenon coined as ‘ducting’ occurs, where the waves are trapped
and greatly exceed their normal range. The layers in the atmosphere act as a waveguide for the
radar signal. The sudden change in the refractive index bends the signal upwards or downwards
in such a way that the wave is carried forward, similar to how light travels in a fiber-optic cable.
Empirical analysis has been performed with the goal of approximating the behavior of waves
propagating over large bodies of water [3]. A visualization of this phenomenon is displayed in
figure 2.5.

The height of a duct differs for different regions on Earth, and is very situational and dependent
on the weather. For use in this paper, atmospheric data for different environments can be found
in previous research on the topic [12], and in cases where no data is available a plausible average
is chosen based on surrounding environments. From existing literature, a set of known average
evaporation duct heights is displayed in table 2.1.
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a
b

Figure 2.5: Visualization of the phenomenon of atmospheric ducting, where a radio wave’s
range is extended due to entrapment in a duct caused by a gradient in the Earth’s atmo-
spheric temperature and humidity.

Average duct height for known regions
Region Average duct height [m]
Labrador Sea 3.5
North Sea 6.4
Norwegian Sea 6.7
Bay of Biscay 8.2
Adriatic Sea 10.9
Aegean Sea 13.1
Arabian Sea 14.8
Gulf of Mexico 16.6
Caribbean Sea 17.6

Table 2.1: Average annual evaporation duct heights for a given area [12].

2.2.2 Parabolic Equation propagation model

Radar waves propagate in accordance with the laws governing all electro-magnetic radiation. In
the field of electrodynamics, Maxwell’s equations (equation B.1 [18]) are a well-established set of
differential equations which describe the relation between magnetic and electric fields. From these
equations, the solution for the split-step parabolic equation can be derived, resulting in equation
B.14. The full extent of this derivation is available in appendix B. In this general form, the field
is expressed as a function of surface distance x after applying the paraxial approximation [11].
Previous work on modeling the propagation of radar waves [20] resulted in a MATLAB®-tool
using the one-way and two-way split-step parabolic equation (SSPE). One-way and two-way in
this context entails neglecting or accounting for backward wave propagation (e.g., waves bouncing
back after interacting with a mountain or object) respectively.

The numerical solution of the one-way SSPE for narrow angles (ď 10 ´ 15 deg) [20] is given
by the following equation [14]:

upx ` ∆x, zq “ exptikpn2 ´ 1q
∆x
2

uF´1texpt´ipk sin θq2∆x
2k

uFtupx, zquu (2.4)

The numerical solution of the one-way SSPE for wide angles (ą 10 ´ 15 deg) [20] is given by
the following equation [24]:
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upx ` ∆x, zq “ exptikpn ´ 1q∆xuF´1texpt´
ipk sin θq2∆x

k
b

1 ´
pk sin θq2

k2 ` 1
uFtupx, zquu (2.5)

Here k is the wavenumber where k “ 2π
λ , x is the horizontal distance with respect to the radar

origin, z is the elevation, θ is the angle with respect to the horizon, n is the refractive index, and F
is a Fourier transformation (and F´1 the inverse Fourier transformation).

For the two-way SSPE for narrow and wide angles, the wave is split into a forward and back-
ward component upon colliding with the terrain (hterrainpxq ě z) until the field strength dissipates.
PETOOL [20] provides an extensive array of environmental effects to influence factors like atmo-
spheric ducting, and is able to perform calculations based on Digital Elevation Models (DEMs).
However, the license of PETOOL is relatively strict and as such, for the scope and use-case pre-
senting in this paper, an alternative solution is preferred.

2.2.3 Ray tracing propagation model

The resource-usage of PETOOL is approximately 1.5 ´ 4 ms per ∆x-step for a 1.6GHz dual-core
processor, depending on properties like terrain smoothness/conductivity [20]. Here, the number
of steps depends on the distance between the observer and target and can be in the range of multi-
ple thousands. Even when considering recent advancement in computing, the time and resources
required for a single query would exceed the (near) real-time requirement. For the use-case pre-
sented in this paper, the goal is to find a method which is sufficiently accurate whilst being able
to perform its calculations in (near) real-time. An alternative method to model radio wave prop-
agation is ray tracing. Here, the path a ray traverses is modelled by solving Snell’s equation for
stratified atmosphere [8] [2]. In this model, the atmosphere is approximated as a set of layers, and
the path of individual rays are traced after applying the effects of transitioning from one layer to
another. Differences in density and temperature cause the rays to bend, thereby altering the sensor
coverage with respect to a model in a vacuum.

PETOOL and ray tracing are found to largely agree within a range of 60 kilometers when not
considering beyond-LoS [8]. In beyond-LoS areas located far beyond the curvature of the Earth and
behind obstacles can still be visible due to the interaction between the radar waves and the tropo-
sphere. Given the assumption that modern radar systems can far exceed the range of 60 kilometers,
this model does not suffice. However, beyond that range, the curvature of the Earth introduces a
height drop of h « rp1 ´ cost 360˝

d uq “ 282.53 meters for Earth radius r “ 6371km, Earth cir-
cumference d “ 40030km. Therefore, for a terrain with peaks and for objects near the coast that
are located below this threshold, such an approximation will be accurate enough for collision de-
tection. This weakness should be considered when modeling radar for long distances using ray
tracing. PETOOL remains the dominant tool for high-accuracy long-distance simulations, but it
does not meet the real-time latency constraints.

2.2.4 Radar cross section

In radar simulation models, the surface of an object influences the amount of reflected signal the
radar is able to retrieve. The amount of reflected radiation depends on several factors, including
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the size of the object, the material, the angle at which the radar hits the target and the properties of
the radar itself like the polarization of the transmitted radio waves. For the purpose of modelling a
radar system, these factors are often combined into a single physical variable; radar cross-section
(RCS) σ [m2]. The RCS provides an abstraction on top of what would be a complicated compu-
tations, such that the surface area represented by the RCS can be interpreted as a the cross-section
of a perfectly isotropic sphere reflecting equally in all directions [27]. This constant is used in
the Parabolic Equation method to determine the signal-to-noise ratio of the bidirectional path be-
tween an observer and a target. Calculating the RCS is a difficult process, and outside the scope
of this paper. For situations where the value of this constant is unknown, σ “ 1 m2 is used as a
placeholder, as values of σ are commonly in this order of magnitude [22].

2.2.5 Terrain data representation

For the purpose of determining Line of Sight, it is common to express the terrain as a grid of points
instead of a mesh of polygons [7]. When expressing the terrain as a grid of elevation data, it is
possible to check whether the height at a given location is greater or less than the required height
for an object further away from it to be visible. For example, in the case of an observer at point a,
and target at point b. A mountain in-between point a and b obstructs the sight-line a Ñ b when the
angle between point a and the mountain top exceeds the angle between point a and point b. If the
angle between the observer and the target is greater than the angle between the observer and the
mountain top, there is Line of Sight. In a marching algorithm, the maximum angle is recorded and
propagated forward. This simple algorithm circumvents calculating collision detection with the
Earth’s surface in the form of a mesh of polygons. The grid representation of the Earth imposes
inherent limitations on the landscape. Any coordinate on the grid maps to exactly one elevation
value, it is therefore implied that for a grid point with height H : @h ă H the terrain at height h is
opaque. Therefore, a concave mountain or cave cannot be encoded in this format.

This representation is limited to terrain data, and does not apply to moving objects like vehicles
or complex static objects like trees. For this purpose, vector or mesh representations of these
objects can be employed. A possible format to encode the 3-dimensional model representation in
is an ArcGIS Shapefile [1], an Esri vector data format used in Geographic Information Systems for
embedding models and metadata of geographic features. The Shapefile can be parsed to extract
its position and geometric shape to check for collisions by performing collision detection on every
vertex of the selected model. Thereby requiring more computing power for a model with more
vertices and faces. To counteract this, a mesh simplification pre-computation step such as an
implementation based on the whale optimization algorithm [15] can be applied beforehand.

2.3 Coordinate reference systems

When considering a model of the Earth, the landscape can be represented as a collection of height
data points relative to the Earth ellipsoid (an approximation of the Earth surface taking into ac-
count its ellipsoidal shape). A Coordinate Reference System (CRS) is an approximation of the
shape of the Earth, relative to which a location can be determined. For example, the coordi-
nate plongitude 10˝, latitude 40˝q cannot be directly mapped to a location in 3-dimensional space
without defining its reference system. Several Coordinate Reference Systems exist, the most con-
ventional and widely-used being ‘World Geodetic System 1984’ (WGS84). A CRS comprises
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of two constants that approximate the height (semi-minor, polar axis) b and width (semi-major,
equatorial axis) a radii of the Earth. Most publicly available data sets which have utilized satellites
to measure the height of the terrain do not express the height of a coordinate with respect to the
centre of the Earth, but rather with respect to such a CRS, conventionally WGS84. In this paper,
DLR TanDEM-X [26] with respect to WGS84 is used unless stated otherwise. This data set is free
to use for academic purposes as per their license agreement and contains data with a resolution of
approximately 90 meter. Due to the dynamic nature of the sea level (due to the season, tides, etc.),
experiments will be exclusively performed on land.

2.3.1 Cartesian to LLA and vice versa

Conversion between Cartesian (x, y, z) and LLA (longitude l, latitude µ, altitude h) is required to
use DEMs for LoS-calculations. The elevation data is encoded as a 2-dimensional grid but the
sight-line propagates as a Cartesian vector in 3-dimensional space. A straight vector on the DEM
would result in a curved line as the DEM is relative to the curved ellipsoid. Equation 2.6 describe
the translation of LLA pl, µ, hq to the Cartesian coordinate system with intermediate variables λ
and r (equation 2.7) representing the geocentric latitude at mean sea-level and the radius at a
surface point respectively [17]. In this paper, Cartesian and ECEF (Earth-Centered, Earth-Fixed)
are used interchangeably. ECEF is a reference system where point p0, 0, 0q is the centre of the
Earth, the x-axis intersects with coordinate (longitude 90˝, latitude 0), the y-axis intersects with
(longitude 0, latitude 0) and the z-axis intersects with the north and south pole.

x “ r cos λ cos l ` h cos µ cos l

y “ r cos λ sin l ` h cos µ sin l

z “ r sin λ` h sin µ

(2.6)

λ “ arctantp1 ´ f q2 tan µu

r “

d

a2

1 ` pp1 ´ f q´2 ´ 1q sin2 λ

(2.7)

Conversion back to LLA from a Cartesian representation is a more computationally intense op-
eration, and requires a predefined number of iterations until convergence using Bowring’s method
[5]. The algorithm of translating a Cartesian point to LLA is defined in algorithm 2 [16].

2.4 Viewshed analysis

Viewshed analysis is a well-established method of mapping visibility of surrounding points given
a viewpoint and a collection of height data points. Computing a viewshed beforehand can yield
results of LoS-query to all surrounding points on a live system, reducing an LoS-query to a look-
up table request. Originating from the viewpoint, the minimal angle required for objects to be
visible beyond the horizon are recorded as the sight-line originating from the viewpoint propagates
outwards. The main advantage of this method is its sequential execution of simple arithmetic as
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Algorithm 2 Iterative algorithm for translating a Cartesian location to its LLA representa-
tion. Here a is the equatorial radius, f the flattening of the planet, e2 “ 1 ´ p1 ´ f q2 is the
square of the first eccentricity, s “

a

x2 ` y2 and N “ a?
1´e2 sin2 µ

[16]

Require: imax ą 0 Ź Iterations for converging of geodetic latitude
l Ð arctant

y
x u

βÐ arctant z
p1´ f qs u Ź Initial guess for reduced latitude

µÐ arctant
z`

e2p1´ f q

1´e2 a sin3 β

s´e2acos3β
u Ź Initial guess for geodetic latitude

βÐ arctant
p1´ f q sin µ

cos µ u Ź Recalculation of reduced latitude
i Ð 0
while i ă imax do

µÐ arctant
z`

e2p1´ f q

1´e2 a sin3 β

s´e2acos3β
u Ź Calculate geodetic latitude until convergence

i Ð i ` 1
end while
h Ð s cos µ` pz ` e2N sin µq sin µ´ N Ź Calculate altitude

elaborated in algorithm 3. Several widely-used viewshed algorithms will be discussed in this
section, along with their strengths and weaknesses.

Algorithm 3 Viewshed algorithm where vris is a Boolean array for visibility of terrain at
position i

Require: d ě 0 Ź Distance from origin is positive
Require: h0 ě heightp0q Ź Viewpoint is located above terrain

i Ð 0
αÐ ´8 Ź Arbitrarily low angle for initial comparison
vr0s Ð true
while i ă d do

h Ð heightpiq Ź Sample the height at the active location
i Ð i ` 1
γÐ atanp

h´h0
d q

if γ ą α then
αÐ γ Ź Record maximum angle
vris Ð true Ź Terrain is visible

else
vris Ð f alse Ź Terrain is in shadow

end if
end while

2.4.1 R3 & R2

R3 represents the most straightforward method for computing a viewshed; for every grid point,
the minimal required angle is computed using algorithm 3. The drawback of this algorithm is its
performance and scaling behavior; because every grid point constitutes a sight-line between the
observer and said grid point, this algorithm scales with Opr3q. It is, by definition, as accurate
as performing an LoS-query on the original DEM grid containing the elevation data. During the
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process of computing the minimal required angle in R3, the line between the observer and grid
point crosses several other grid points. For a query between the observer and a far-away grid point,
recording the intermediate values for the minimal required angle (α in algorithm 3) to the current
grid point on the viewshed omits a large number of additional calculations. In R2, only queries to
the outer ring of the viewshed are performed in order to process the full area of the viewshed by
utilizing this principle [23]. However, in reality, intermediate points will rarely exactly align with
the grid when only computing queries on the outer ring. Therefore, when only considering points
which are aligned exactly, most of the grid will remain empty and will as a result contain no data.
On the contrary, recording intermediate points to their closest corresponding grid point will cause
an error; a point close to the origin will potentially block more of the viewshed than in reality. To
mediate this issue, a constant ϵ can be defined. If distance d between point p and the closest grid
point is smaller than ϵ, the error incurred by recording the angle to the grid point is deemed within
an acceptable margin. Furthermore, in order to reduce ϵ, queries to points between points on the
edge of the viewshed can be made in order to increase the number of grid points within a distance
ϵ from any query. Setting ϵ to a value where no blind spots occur and where the results are as
close to the results of R3 results in optimal usage of the R2 algorithm. An illustration of the grid
alignment process of the R2 algorithm is given in figure 2.6.

O

pedge

a

b

p1
p2

p3

Figure 2.6: Illustration of the R2 algorithm where for a query O Ñ pedge, points p1,2,3 are
sampled. For a given ϵ “ 0.25, p1 and p3 would align to grid points a and b respectively.
Due to p2 being d “ 0.5 away from its neighbouring grid points, the result is computed
for the query O Ñ pedge as intermediate angle but not stored on the viewshed grid.

Decreasing the value for ϵ improves the accuracy of the data points on the grid; the values
recorded resemble values which are closer in proximity. In theory, setting ϵ “ 0 corresponds to
the result from R3. However, lower values for ϵ create ‘gaps’ on the grid with null data (for
example, p2 in figure 2.6 does not map to a grid point). An alternative approach to increasing
ϵ is to increase the number of sight-lines to the outer ring. Then, instead of performing 1 query
for every point on the edge of the viewshed, N queries are emitted with an offset of 1

N grid point
each. This increases the chance for a sight-line getting within a distance of ϵ of a grid point and
decreases the number of null data points.

2.4.2 (ML-)XDraw

XDraw is an algorithm for computing Line of Sight for rings emitting from a central point. The
algorithm aims to re-use calculations from the previous ring in its calculation of the next ring.
There have been effective efforts in improving this algorithm in the form of parallel composition.

11



Either by utilizing one or more Graphical Processing Units (GPUs) [6] or a cluster of servers [9].
The latter, also called Multi-Level XDraw (ML-XDraw), is a form of dividing up the rings around
the observer such that every section in said ring can be placed in a queue. Due to the reliance
of points in the previous ring, this can cause issues, as points near the outside of a section may
require points from a different sections’ inner ring. Drawing a margin around every section such
that every section partially overlaps with its neighbouring section solves this issue, but introduces
redundant calculations. If performed optimally, the number of redundant calculations is equal to
the number of points located on the boundary of every section.

O a

b cc1

Figure 2.7: XDraw algorithm visualization where the rings emanating from the centre all
have a different color. Here, the value for point c depends on the values for points a and
point b because the projection c1 lies between a and b.

Further research has focused on reducing effects of errors arising from parallel processing
XDraw, using fault-tolerant techniques [10]. In this paper, XDraw will be parallelized on the CPU
by subdividing the ring into octants, this way the borders between the sections are axis-aligned.
When dividing the surface of the viewshed into octants, the results of any section are completely
independent of another due to how XDraw operates. The algorithm compares the angle between a
point in the current ring to an interpolated angle in the previous ring, and computes the maximum.
This process of interpolating previously computed values can potentially compound an error as it
propagates outward. However, it has the advantage of scaling well due to every grid point being
manipulated exactly once and requiring just 3 queries per assignment (2 angles in the previous
ring and the elevation of the selected grid point).

2.5 Detection probability

The answer to the question of whether an object is in Line of Sight is not always a binary yes or no.
In some scenarios, it is desirable to model the probability of detection instead. In order to model
this behavior, the electro-optical and radar sensors require different approaches.
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2.5.1 Electro-optical sensor pixel coverage

In the use-case of this paper, an electro-optical sensor can be viewed as a simplified version of a
camera sensor; a rectangular grid of pixels where every pixel contains information of part of the
view. In a video game, the graphics card models the pixel values of this simulated camera sensor
by calculating the ‘ownership’ of every pixel’s color value. Even though this approach would be
valid for the purpose of calculating Line of Sight, a simplified model will suffice. Determining
whether the angle between the observer and target exceeds any intermediate angle between the
observer and the terrain will imply whether a sensor with infinitesimally small pixel areas will
detect the object. It simply answers the question of whether a geometric line can intersect both
the location of the observer and target without intersecting the terrain. However, to mirror the
behavior of a camera sensor with limited resolution and range, one can consider the principle of
pixel coverage. In this approach, the area of a pixel at a given distance d increases with d2 as per
the inverse square law. Therefore, if a target is visible at distance d ă d0 and has an area of A0,
the minimal area to detect the object at d “ 2d0 is 4A0. If the area is smaller than the defined
threshold, a probability can be calculated based on the area of the object and the area of the pixel
area at distance d. The area visible from the perspective of the observer can then be determined
by choosing a valid sampling rate and firing a set of sight-lines at the target (figure 2.8).

Figure 2.8: Illustration of the process of determining the area of a target visible from the
perspective of an observer. The ratio between the obfuscated samples and the total of
samples gives an indication of the ratio of the area of the object in view.

2.5.2 Radar signal-to-noise ratio

For the use-case of radar, a more complicated model is necessary. From a radar model, given
the properties of the receiver and target, an SNR (signal-to-noise ratio) is calculated. The SNR
indicates the strength of the signal with respect to background noise. For the purpose of this paper,
it is of interest to answer the question of whether a target is visible; either with a true or false or a
detection probability. Neither is a direct translation of SNR. As such, a detection model must be
applied to the resulting SNR value. The detection model takes a variety of properties into account,
such as the number of sensors on the radar and the observation time. As the detection models
contain sensitive information about the internal workings and capabilities of radar systems, it was
decided to be outside the scope of this paper. Instead, a step-function (equation 2.8) was chosen
as an activation function for the radar detection process. In reality, the behavior of this activation
function is more complicated, but for the scope of this paper, it is treated as a black box.

LoS “

"

true if SNRradar ě SNRtreshold

false otherwise
(2.8)
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Chapter 3

Research goals

The following set of research goals have been identified based on available knowledge in literature
and through discussions with experts based on the presented use-case. For every collection of
research questions, more relevant information and motivation is introduced beforehand.

3.1 Accounting for the curvature of the Earth

The curvature of the Earth poses a challenge for determining Line of Sight when working with
grid-based elevation data. Due to the data recorded being relative to a 2-dimensional plane, it does
not accurately portray the landscape it represents due to the absence of the Earth’s curvature on
the planar representation. Ideally, the DTED grid could be viewed as a flat Earth, then formula
2.1 could be utilized to determine the angle between the observer and grid points. However, the
further away a target is on the grid, the larger the discrepancy between the flat Earth model and the
real world. To model terrain and objects disappearing behind the horizon, multiple methods are
described which all have their strengths and weaknesses. These methods are compared in terms
of performance and accuracy. Comparing different methods of accounting for the curvature of the
Earth allows the selection of a valid approach for the purpose of calculating Line of Sight based
on the required fidelity of the use-case.

3.1.1 Exact approach

A Coordinate Reference System (CRS) describes a set of formulae to translate a coordinate to a
location in 3-dimensional space. Instead of computing the angle between an observer and target
using formula 2.1, a more exact approach would be to first translate the two coordinate to ECEF
and drawing two vectors; one from the observer normal to the surface and one from the observer
to the target. The angle between these two vectors can be calculated using formula 3.1.

θobserverÑtarget “ arccos

˜

N⃗ ¨ V⃗

|N⃗||V⃗|

¸

(3.1)
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Here N⃗ is the normal vector at the observer, and V⃗ is the vector from observer to target.

This approach works regardless of the CRS in use, as it operates in Cartesian space. With
this strength, its inherent weakness comes to light; conversion between the coordinate and ECEF
representation is required beforehand. This process is computationally expensive, as is illustrated
in formula 2.6 and algorithm 2. This method does produce the most accurate results in terms of
accounting for the curvature of the Earth, as it does not rely on compensating for curvature on a
flat, 2-dimensional surface but rather directly calculates angles in 3-dimensional space.

3.1.2 General formulae for Earth curvature drop-off

Coordinate reference systems consist of 2 constants, representing the radii at the equator and
the North and South pole. These two constants model an ellipsoidal shape, which is a better
approximation of the Earth’s surface than a perfect sphere due to centrifugal forces induced by
the Earth’s rotation on its shape. This causes the distance between the North and South pole to
be less than the distance between two points on the equator located at two opposite sides of the
Earth. This introduces difficulties when pre-calculating the drop-off induced by the curvature of
the Earth. For example, an observer at the North pole would experience a smoother surface than
an observer on the equator. Therefore, when determining a valid approximation for calculating the
drop-off caused by the curvature of the Earth, its ellipsoidal shape must be taken into account.

3.1.3 Projecting to a spherical CRS

As part of the preparatory research for this paper, an assessment of assuming a spherical Earth
was performed and shown in appendix A. Usage of a perfectly spherical CRS would allow the
application of the aforementioned principles and approximation techniques related to viewing the
Earth as a perfect sphere and formula A.1. Most widely-available DEM data, however, is recorded
as elevation relative to the WGS84 CRS. In order to increase the applicability of the results of this
research, it is of interest to use elevation data adhering to this standard. Projecting the elevation
data from an ellipsoidal CRS to a spherical CRS is introduced as a pre-computation subroutine.
This process is not as straightforward as correcting the elevation data, as the latitudinal location
of a coordinate is also subject to change. Given that both reference systems have valid methods to
convert between LLA and ECEF, converting from ellipsoidal to a spherical CRS is possible using
intermediate conversion to ECEF.

Research questions

The following research questions have been stipulated with respect to this subject:

RQ1. What is the impact of converting from WGS84 to a perfectly spherical CRS in terms of
conversion time and accuracy loss?

RQ2. Does the approximation approach provide a valid model of the Earth’s curvature, and at
what distances is this approximation valid?
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3.2 DEM sampling and interpolation techniques

Depending on the smoothness of the terrain, the difference in height at location (x, y) is marginally
different from the height data at (x ` ϵ, y ` ϵ) for small enough ϵ. Depending on the resolution of
the grid, the required fidelity and the gradient of the terrain elevation, reducing the resolution of the
grid may provide comparable results at lower computational costs. By reducing the information to
a lower-resolution grid there is a loss of information; in particular, the heights in-between points on
the grid. The way this disparity is handled influences the yes- or no-answer of whether there is in
fact Line of Sight. There are a number of possible reduction techniques from the high-resolution
version to the simplification. Researching the effects of low-resolution sample data on the LoS
queries allows for quantifying a set of requirements for the DTED resolution.

Naive The initial naive approach is to sample a point, then skip k points relating to the desired
resolution and to sample the next point. This is the computationally least expensive approach
as there are no additional calculations. However, when the resolution is relatively low this
may yield undesired results. If, for example, there is a narrow mountain blocking the view
between the observer and target, there is a possibility of sampling data in the valleys next
to the mountain and excluding the mountain top itself. This effectively omits the mountain
from the data, affecting LoS-queries.

Max/min To impede the negative effects introduced by naive sampling, the lowest or highest point in
the neighbourhood of a point on the grid can be sampled. This results in either a pessimistic
or optimistic answer to the LoS question. If there is Line of Sight between an observer and a
target with a mountain of height h between them, there must also be Line of Sight between an
observer and a target with a mountain of height h ´ ϵ between them (pessimistic approach).
Furthermore, if there is no Line of Sight with a mountain of height h there must also be no
Line of Sight with a mountain of height h ` ϵ (optimistic approach).

Average Instead of choosing an optimistic or pessimistic value for the height, the (weighted) average
of the surrounding points can be computed. This works well for smooth terrain. For uneven
terrain, this will even out peaks and troughs, possibly resulting in a flat section of terrain
where there should be a gradient.

Variable A possible approach worth exploring is to vary the grid density. It is possible to decrease
the grid resolution for homogeneous terrain, i.e., there is less difference between a point
and the points in its direct neighbourhood. An indifference in height data makes differences
at smaller distances less important, and therefore these can be neglected. The higher the
difference between nearby points, the higher the resolution of a DEM to fully represent its
properties.

When sampling a point which does not perfectly align with the grid, the data at this point is
undefined. Based on data of neighbouring grid points and the locality of the point to its neighbours,
the elevation data can be interpolated. There are a multitude of interpolation methods, of which
the most common methods have been selected. These are, in increasing order of complexity:

Aligned If the sampled point is exactly aligned with the grid, no interpolation is necessary and the
point can be sampled directly. Any interpolation method would by definition result in the
same value, but averting the increased computational complexity introduced by interpolation
yields a temporal advantage.
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Nearest neighbour The most simple method for sampling an intermediate data point is to sample the nearest
neighbouring grid point. The advantage of this method is its computational simplicity and
performance. For a relative grid distance d to the nearest grid point, when d ! 1

2 , this
approximation yields the best result. However, in the worst-case for d “ 1

2 , this method
yields inaccurate results based on the terrain gradient.

Linear Given that the sampled point is aligned with the grid in one dimension (relative distance
dx “ 0 _ dy “ 0), 1-dimensional linear interpolation can be applied. In this case, based on
relative locality d to its neighbours, a weighted average between the two key values of the
neighbours is returned. For this method, sampling two points is required.

Bi-linear Given that neither of the relative distances dx “ 0 _ dy “ 0, the point is located between
four grid points. Linear interpolation is applied to the two dimensions by first linearly
interpolation one dimension, and subsequently linearly interpolation the other dimension.
For this method, sampling four points is required.

Cubic Given that the sampled point is aligned with the grid in one dimension, a 1-dimensional
cubic interpolation can be applied. For a point between f0 and f1, for relative distance
d ą 0, points f´1, . . . , f2 are sampled. Cubic interpolation relies on the assumption that
the function is continuous, which holds for most terrain (counter-examples include Fjords,
Grand Canyon or other outliers). Based on locality d, and the surrounding sampled points,
a function is fitted for which the predicates (the sampled elevations at f´1, . . . , f2) hold. For
this method, sampling four points is required. This is identical to the bi-linear interpolation
technique. However, cubic interpolation requires more computation steps and is therefore
considered more complex.

Bi-cubic Given that neither of the relative distances is zero, the point is located between four grid
points. Bi-cubic interpolation is applied to the two dimensions by first applying cubic in-
terpolation in one dimension, and subsequently applying cubic interpolation to the other
dimension. For this method, sampling sixteen points is required. It is the most computa-
tionally expensive method, but considered the most accurate as it accounts for the gradient
of terrain of a larger neighbourhood.

Researching the effects of different interpolation techniques on the performance and accuracy
of LoS queries allows the selection of a valid approach based on the available resources and re-
quired fidelity. In particular, it is of interest how significant the difference is between bi-linear and
bi-cubic interpolation in terms of performance and accuracy.

Research questions

The following research questions have been stipulated with respect to this subject:

RQ3. What is the impact of different DTED sampling techniques on performance and accuracy?

RQ4. What is the impact of different DTED interpolation techniques on performance and accu-
racy?
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3.3 Pre-computing viewshed for (near) static observers

Utilizing viewshed algorithms like R2 and XDraw, intermediate results between the observer and
outer ring are cached and re-used when applicable. This allows for a more efficient method of
computing the minimal inclination angle for a given area. For a static observer, like a stationary
radar system, this would allow one computation to fulfill all future queries. However, in the scope
of this paper, all entities (including the observers) are considered to be dynamic. Quantifying under
which conditions an observer can be approximated as static in terms of re-using past viewshed
computations allows for the LoS-service to impose a hard upper limit on the computation time of
a viewshed. Furthermore, as an observer may come back to a previously visited location, keeping
a select number of previously computed viewsheds may provide a temporal advantage in order
to minimize duplicate calculations. To minimize the memory impact of retaining previously-
computed viewsheds, finding a valid method and data format to compress these results whilst
retaining precision and testing the performance and accuracy decrease versus the positive impact
on memory usage is of particular interest.

Research questions

The following research questions have been stipulated with respect to this subject:

RQ5. What are the advantages and disadvantages of different viewshed approaches with respect
to performance and accuracy?

RQ6. What is the number of static observer LoS queries at which pre-calculating an entire view-
shed is more efficient than individual queries?

RQ7. What is the maximum offset at which an observer can be approximated as static for the
purpose of re-using viewshed results?

RQ8. What is the performance and accuracy impact of compressing a viewshed?

3.4 Collision detection

Along with interacting with the DEM and atmosphere, a sight-line can also collide with an object.
Collision detection is the act of checking whether the path between two objects is obstructed by
another object. This object can be a collection of complex shapes, and intersecting with any of the
faces of the shape results in the signal being obstructed, absorbed or scattered (depending on the
surface roughness and angle with the surface normal vector).

In this paper, the objects to be tested for intersection are approximated as a set of spheres and
triangles because of the low amount of resources required for calculating intersections between
a line and the latter two shapes. A pre-processing step can reduce a complex shape with a high
number of polygons to a shape consisting of a relatively low number spheres and/or triangles. The
resulting simplification should have a maximum disagreement with the original model no more
than the allowed margin of error prescribes.
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Given the breadth and position of an object relative to an observer, objects that are certain to
not intersect with the sight-line can be eliminated. For an object consisting of a set of shapes, a
sphere is fitted which encompasses all its faces. If the sight-line does not intersect this sphere, all
its faces do not intersect either and the object can be eliminated from the queue of candidates. If the
sphere intersects with the sight-line, there can be two subsequent options; a) collision detection
is performed for each of the faces to determine whether the sight-line is obstructed or b) the
enveloping sphere is too far away in order to be perceived, and as such it is eliminated from the
queue of candidates.

Research questions

The following research question has been stipulated with respect to this subject:

RQ9. What are the performance and accuracy effects of exact mesh-based collision detection ver-
sus exclusively calculating collision detection of the enveloping sphere?

3.5 Radar detection model

The question of whether a radar system detects an object does not yield a binary yes/no answer.
Instead, in the simulation of radio waves propagating through space, the SNR (signal-to-noise
ratio) is computed for a slice of vertical space. Then, depending on the elevation of the target,
the appropriate SNR value can be queried from the result. Whether the object is visible is not
directly derivable from the SNR, and a detection model must be applied first. This detection model
accounts for the characteristics of the radar system, such as the amount of sensors, processing
performance, emitting power and detection time, and is able to compute a probability Ppdetectq “

f pp0, p1, . . . q for parameters pk. However, these detection models are complicated mechanisms
by itself, and require a significant amount of knowledge in the field of radar technology and access
to sensitive data to construct. Due to the limited scope and real-time requirements in the current
use-case, a simplified (though unrealistic) model for detection in the form of an SNR threshold is
considered.

Research questions

The following research question has been stipulated with respect to this subject:

RQ10. What is an appropriate SNR threshold to model the unique effects of radar propagation such
as refraction and ducting?
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Chapter 4

Methodology

In this paper, a set of research goals have been stipulated. For each of the research questions
mentioned in chapter 3, a hypothesis and research method are elaborated upon in this chapter.
Additionally, the architecture of the encompassing Line of Sight-service is illustrated in appendix
C. The goal of this service is to provide a framework under which the research can be performed,
as well as provide a starting point for Thales to further develop the results into a working product.

RQ1: What is the impact of converting from WGS84 to a perfectly
spherical CRS in terms of conversion time and accuracy loss?

Accounting for different Coordinate Reference Systems was adopted early in the design process. A
coordinate is always relative to a CRS (represented by a class of the subsequent type), and this class
contains all relevant methods. To test the problem statement, a random collection of coordinates
are generated and converted into spherical coordinates. This is done through first converting from
ellipsoidal WGS84 to ECEF and then from ECEF to spherical. Accuracy of the conversion is tested
by verifying the commutation relation; the conversion is bi-directional. Moreover, the resulting
converted spherical grid should contain all physical features of the original ellipsoidal grid. This
will be verified by converting both grid representations to an image and comparing high and low
elevation points. For this purpose, the island of Corsica in the Mediterranean was chosen as a
potential candidate as it contains a mountainous terrain close to sea.

To test for performance impact, a simple benchmark is run for various grid sizes where the time
spent on converting to the spherical CRS is measured. Then, a set of LoS-queries are executed.
The average time spent on n ě 1000 queries is measured and compared between the two services.

To test for accuracy impact, a set of Line of Sight queries will be performed. For the land mass
on Corsica, N ˆ N evenly-spaced coordinates with elevation zero are chosen. The elevation of ev-
ery point is set to the terrain elevation at the given coordinate on the grid; effectively producing Nˆ

N points on the surface of the Earth with varying elevation. Then, for every coordinate, N points
are added to an array with varying elevation above the terrain. FOr example, in the case of a coordi-
nate on the surface of the grid; pl, µ, hq, coordinates tpl, µ, hq, pl, µ, h ` ∆hq, . . . , pl, µ, h ` pN ´ 1q∆hqu

are added to the array. The total number of coordinates in the array is N3.
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Then, all permutations are fed into the Line of Sight service for both the spherical and ellip-
soidal CRS. Here, coordinate a with index i for 0 ď i ă N3 ´ 1 will combine with coordinates
b P

␣

i ` 1, . . . ,N3
(

. If the results of the LoS queries diverge (i.e., true for one, false for the other),
a subroutine is run. This subroutine will express the error of the LoS-service in meters by varying
the location of the target up or down depending on the results:

• If the ellipsoidal LoS-service answers with true and the spherical LoS-service answers with
false: move the target upward.

• If the ellipsoidal LoS-service answers with false and the spherical LoS-service answers with
true: move the target downward.

Height is varied until the two services agree, and the ∆h is recorded as an error statistic. It is
of interest to find the number of faulty queries, success percentage and the maximum error along
with the mean error and standard deviation.

Hypothesis 1: Due to the simpler mathematics of determining the angle between the observer
and target in the spherical representation, it is expected for the spherical CRS queries to be faster.
A rough estimate in the magnitude of the performance increase can range from ten to fifty percent
based on the total lines of code of each method. The conversion from the ellipsoidal to the spherical
CRS creates a time threshold, this process is estimated to consume several seconds for a regular
1200 ˆ 1200 size grid, based on the assumption that a single ellipsoidal coordinate to spherical
coordinate conversion takes less than one millisecond.

The physical features of the terrain should be visible after converting from ellipsoidal to spher-
ical, the latitudinal position of a coordinate is shifted and the scale is different. However, these
differences (if implemented correctly) should remain small, and the aim and expectation is for the
error rate to be below one percent.

Measurements and data characteristics

During this experiment, the distance between two locations will be measured in a simulated envi-
ronment. The first location is an arbitrary point on the grid to which a sight-line will be drawn from
the perspective of the observer. The second location being the point where (either by moving up-
ward or downward) the question of whether there is Line of Sight agrees with the ground truth. This
offset is measured with a precision of 10cm, and an average and standard deviation is calculated
in order to make more informed observations about the validity of the method in question. Line of
Sight is determined using the lineOfSight() method of the ElectroOpticalVacuumSensor
class (figure C.1) and results in binary true/false. The queries of this experiment and all other ex-
periments unless specified otherwise are performed on a 1200 ˆ 1200 DEM grid with a resolution
of approximately 90m over distances ranging from approximately 500m to 50km.

RQ2: Does the approximation approach provide a valid model of the
Earth’s curvature, and at what distances is this approximation valid?

To answer this question, first a valid approximation method must be found. To achieve this, both
an angle-dependent and distance-dependent function will be defined. These functions express the
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difference in elevation caused by the curvature of the Earth in both the (average) radius of the
Earth and the angular distance over the surface of the ellipsoid or surface distance respectively.
Two possible heuristic approaches are listed below.

∆h “ f pαq “ REarthp1 ´ cosαq (4.1)

This formula is based on the geometry of the Earth viewed as a perfect sphere, and is coined
the ‘central angle approach’.

∆h “ f pdq “ k
d2

REarth
(4.2)

This formula is based on the assumption that the difference in height increases in a quadratic
manner with distance, but decreases with the radius of the Earth and is coined the ‘geodesic ap-
proach’. Then, a similar approach to that of RQ1 is applied to find the statistics of utilizing this
method to correct for the curvature of the Earth. In other words, the displacement required for the
query of the exact approach and approximated approach is quantified as the error. Furthermore, a
flat Earth model where ∆h “ 0 is used as a baseline to compare results of either approach.

Hypothesis 2: Both the geodetic and central angle approach will yield an appropriate model
for approximating the curvature of the Earth in the distances studied in this paper, and require
fewer computational resources than both the exact vector-based ECEF method and the spherical
method.

Measurements and data characteristics

Similar to RQ1, the distance between the original location and location where the approximations’
LoS query result and the ground truth agree is measured. As a result of using the same methodol-
ogy, both methods which provide a different solution to the same problem statement of correcting
for the curvature of the Earth can be compared and their advantages quantified.

RQ3: What is the impact of different DTED sampling techniques on
performance and accuracy?

To quantify the effects of different sampling techniques, a single DEM tile is subdivided into
multiple fragments. These fragments are then reduced in resolution based on the gradients and
proximity to the observer. Flat terrain is reduced in complexity the most whilst complex terrain
retains its original resolution. The border between the Alps and flatland provide opportune condi-
tions to perform this experiment. Then, a similar approach to that of RQ1 is performed where the
displacement required for the LoS-queries to agree is quantified.

Hypothesis 3: The dynamic sampling method will result in the necessity of fewer samples, and as
such will be faster. However, due to the fragmentation of the data among multiple tiles instead of
the original singular tile, more overhead (induced by the need to find the correct tile corresponding
to a coordinate) may cause these performance increases to be spoiled.
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Measurements and data characteristics

In this experiment, a 1200 ˆ 1200 DEM tile with a resolution of approximately 90m is split up
in a 1200 ˆ 600 DEM tile with a resolution of 90m and a 1200 ˆ 600 DEM tile with a (reduced)
resolution of 180m. The latter DEM grid is reduced by using either of the techniques proposed;
maximum, minimum or average. Then, the same methodology as RQ1 is applied in order to
compare the results to both the results of RQ1 and RQ2.

RQ4: What is the impact of different DTED interpolation techniques
on performance and accuracy?

To test the effects of different interpolation techniques, identical queries are performed for three in-
terpolation methods which do not rely on existing alignment to the grid and therefore subsequently
can be performed on any coordinate: nearest-neighbour, bi-linear and bi-cubic interpolation.

To benchmark the performance of a given interpolation method, the duration of a set of 1000
queries is measured. Additionally, to test the accuracy of a given interpolation method, a ground
truth is needed. Assuming a regular 1200ˆ1200 grid, its resolution is reduced to a 600ˆ600 grid.
The reduction is performed such that for four neighbouring points on the old, high-resolution grid

are reduced to a single point
„

α β

γ δ

ȷ

ñ α, effectively removing points in an alternating fashion.

Then, the points β, γ and δ are queried according to the respective interpolation technique and
compared to the original values of the variable’s point.

This effectively compares the interpolation algorithm’s ability to reconstruct the original grid
after information has been removed, and the difference between the original value on the full
resolution grid and the value as a result of the interpolation on the reduced resolution grid is
quantified as the error of the interpolation algorithm.

Hypothesis 4: In the test scenario, nearest-neighbour will likely perform worst as it does not take
into account one of its neighbouring values. Furthermore, the more neighbouring points are taken
into account for a given interpolation algorithm, the more accurate the estimated elevation value
will be. Scaling is estimated to be t 9 20N, 22N and 24N for nearest-neighbour, bi-linear and
bi-cubic respectively, for N being the number of terrain queries.

Measurements and data characteristics

In this experiment, the original 1200 ˆ 1200 DEM tile with a resolution of approximately 90m is
reduced to a 600 ˆ 600 DEM tile with a resolution of approximately 180m. During this process,
information is lost as the process of reducing the grid resolution does not account for data in
neighbouring cells. For every four points in the original grid, one point remains in the reduced
grid. The latter three are reconstructed using the interpolation methods, where the difference
between the reconstructed interpolated value and the original value is quantified as the error of
the interpolation method in question. This serves as a quantified assessment of an interpolation
method’s ability to effectively estimate values of terrain in-between grid points.
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RQ5: What are the advantages and disadvantages of different view-
shed approaches with respect to performance and accuracy?

To test the performance and accuracy of the R2 and XDraw viewshed algorithms, both will be
compared to the R3 viewshed algorithm. In essence, R3 does not benefit from any optimization
techniques such as caching or re-use of calculations. It is comparable to performing all individual
queries subsequently and considered to be the most accurate viewshed method.

To compare the performance and accuracy of the viewshed algorithms, a number of interesting
locations (such as on peaks and in valleys) will be selected and a viewshed will be computed. The
time spent on performing the calculations will be measured and compared for different grid sizes.
The resulting grids will be rendered as an image and compared both visually and numerically. The
latter entails super-imposing both grids over each other and calculating the difference in angle for
every location. This results in an error map corresponding to the difference in angle for every
location, enabling making quantitative observations with regards to locations where the difference
between either algorithm in the greatest.

Hypothesis 5: R2 and XDraw will both be viable methods for computing a viewshed efficiently,
however the underlying algorithms are inherently different and will cause artifacts to form. XDraw
will likely perform better in terms of performance due to its low number of required calculations,
but will likely suffer from inaccuracies caused by interpolating angles.

Measurements and data characteristics

Along with measuring the performance of the viewshed algorithms by recording the Unix system
time stamp before and after computing the viewshed for an increasing viewshed size, the accu-
racy of the R2 and XDraw algorithm is compared. This is achieved by exporting the viewsheds
as text files in comma-separated values (CSV) format, importing the text files into MATLAB as
2-dimensional matrices and subtracting any given matrix by the ground truth. Here, the ground
truth is represented by a viewshed created using the resource intensive but accurate R3 algorithm.
Subtracting one matrix by another is an element-wise operation which results in a value for the er-
ror for every location on the grid; from this, a mean error and standard deviation can be calculated.
The resulting matrix will be visualized in order to examine locations with the greatest errors.

RQ6: What is the number of static observer LoS queries at which
pre-calculating an entire viewshed is more efficient than individual
queries?

The total time required to execute N LoS-queries, along with the required time to construct a
viewshed will be measured. Depending on the size of the viewshed, a different amount of queries
is required in order to ‘break-even’ in terms of computing time. Plotting the required queries as
a function of grid size is therefore of interest in order to determine the viability of viewshed pre-
computations on a live system to determine when it is wise to compute a viewshed in advance.
First, an appropriate value for N must be determined, this variable is elaborated upon in section
2.4.1. This is achieved by iteratively decreasing ϵ starting at ϵ “ 1

2 and increasing N starting
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at 1 until a balance between computational time and accuracy has been achieved which satisfies
the following set of criteria: a) the viewshed must have a mean error not exceeding 3˝ compared
to ground truth R3, b) the LoS-queries on a pre-defined number of points must return the same
answer as performing individual LoS-queries (verified by a unit test).

Hypothesis 6: Depending on the algorithm and grid size, it may take several hundreds of mil-
liseconds to compute a viewshed. Based on the assumption that a single query takes less than one
millisecond, break-even will likely occur around 5000 queries for a standard 1200 ˆ 1200 grid.
Likely, N ě 2 is required in order to achieve accurate results for ϵ ď 1

4 .

Measurements and data characteristics

Similar to RQ5, the Unix timestamp before and after viewshed creation is measured. This time
interval (as a function of grid size) is compared to the duration of individual queries. Due to
individual queries requiring sub-millisecond time intervals to compute, the duration over several
thousands is measured and the average is calculated. Then, from these measurements, a ratio
can be calculated which indicates a viewshed algorithm’s efficiency over performing individual
queries.

RQ7: What is the maximum offset at which an observer can be ap-
proximated as static for the purpose of re-using viewshed results?

The goal of this research question is to quantify the decrease in reliability by using a viewshed
originally meant for another location. Therefore, a number of grid points adjacent to each other
are selected and a viewshed is computed for each location for all algorithms. To quantify the
effects of using a previously-computed viewshed, the difference in minimal required angle will
be subtracted between a viewshed at position px, yq and position px ` ϵ, y ` ϵq for every location
on the viewshed, similar to RQ5. The mean error will be plotted as a function of an increasing
ϵ, indicating the error as a function of displacement. Here, a displacement of ϵ “ 0 will always
result in an error of 0 as the query location and viewshed location coincide. However, as the
displacement ϵ increases, any query made on the original grid may yield very different results
to a viewshed computed for the new location. In order to provide a tangible result, a worst-case
scenario is considered where the elevation for the grid points varies greatly.

Hypothesis 7: The distance ϵ for which the error is small enough to be considered accurate de-
pends on the position of the observer and the gradient of the terrain. For terrain with a high
gradient, a single positional shift on the grid can cause a high error. For a relatively flat terrain,
ϵ can be multiple grid points and not make a difference.

Measurements and data characteristics

Similar to RQ5, the viewsheds are compared in MATLAB using element-wise subtraction. Instead
of comparing results between different algorithms, the two viewsheds being compared are the
viewshed at zero displacement against viewsheds with the observer located on neighbouring grid
points where the distance to the surface of the DEM is kept constant. The mean error over the
absolute values on the resulting matrix is plotted as a function of the displacement.

25



RQ8: What is the performance and accuracy impact of compressing a
viewshed?

To quantify the impact on performance and accuracy, identical queries will be performed on an
uncompressed and compressed viewshed. The difference in latency will be measured for 10000
queries, and the value difference is recorded as the error. The mean error and standard deviation for
a given viewshed is computed and from this, a conclusion is drawn to determine the effectiveness
of compressing a viewshed in order to save resource usage.

In this paper, a viewshed is compressed by decreasing the precision of the variable storing the
relevant information and defining a linear function by which a value close to the original value
can be determined. Instead of a viewshed consuming 8 bytes for every grid point as a double[],
the grid is encoded as a 1 byte byte[]. The function v “ ax ` b is used to encode the values.
Here, v is the decoded value, in accordance with the original angle stored in the viewshed. a
is a scaling variable defined upon creation of the compressed viewshed such that the complete
range α P r0, πs can be expressed within the precious of a single byte, b is the minimal value in
the original viewshed and x is the compressed value. Furthermore, 16-bit short[] and 32-bit
float[] are considered as alternatives to the relatively imprecise 8-bit byte[].

E.g., for a viewshed with minimal value 10, and a maximal value 20, b = 10, and a is chosen
such that 10 “ a ˆ 00000000 ` 10 and 20 “ a ˆ 11111111 ` 10. Variables a and b are shared
across the entire compressed viewshed.

In order to compare the viability of using variables with varying precision, the original 64-bit
double[] values are first converted to the reduced precision variant. Then, every grid points’
value is compared; the difference between the full precision and reduced precision value is quanti-
fied. It is of interest to find the lowest-precision data type where the difference yields a negligible
difference in accuracy and a sizable resource usage advantage.

Hypothesis 8: Using this compression technique, sampling will take longer. However, it will still
outperform a single query. Accuracy will decrease due to the less-precise usage of a byte[]
instead of a double[], but due to the small range of angles (α P r0, πs), the precision of a
double[] does provide a noticeable difference.

Measurements and data characteristics

Similar to RQ5, the difference between values stored on a viewshed are compared to each other
using element-wise subtraction in MATLAB. In this case, the difference between angles stored on
the original grid (64-bit double[]) are compared to data format with less precision. The absolute
value of this difference is recorded for all grid points and the average and standard deviation is
computed. This process is used for all three viewshed algorithms (R3, R2 and XDraw), for every
data format. The resulting mean error is recorded in radians, and indicates how reliable the data
format is in general. Even a small angle can cause a large height difference over a long distance.
As such, the possible height difference induced by the angular error is quantified. Based on this
value, the data format is either determined to be valid or invalid for the intended use-case.
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RQ9: What are the performance and accuracy effects of exact mesh-
based collision detection versus exclusively calculating collision detec-
tion of the enveloping sphere?

To determine the effects of accounting for exact mesh collision detection and computing for col-
lisions using an enveloping sphere, a simplified 3d model of an airplane consisting of a cuboid
acting as the plane body and two triangles acting as its wings is chosen as a case study. This
model is then placed behind a mountain such that it is not visible form the perspective of the ob-
server. It then performs a ‘peek’ manoeuvre, and the electro-optical sensor detection probability
is recorded for three models; the enveloping sphere, a bounding box and the exact mesh model of
the simplified plane.

This sensor calculates the probability of detection from the perspective of the observer for the
entity as a function of displacement d. At d “ 0, Ppdetectq “ 0. As the entity moves upward
(d ą 0), at some point the sensor will detect the entity. Depending on the collision detection
method, the time of detection and corresponding probability of detection will vary. It is of interest
to quantify this difference in detection behavior in a scenario where these methods disagree. As
such, the entity is placed at a distance of 16km from the observer where Ppdetectq ă 1 for partial
visibility.

Hypothesis 9: Even though the difference in volume of a rectangular airplane and its enveloping
sphere are significantly different, approximating the model as a sphere enveloping its vertices
does not significantly influence the detection probability. However, due to its elongated design,
the ‘peek’ manoeuvre does create a worst-case scenario where the negative space of the sphere
is detected first. The bounding box model has less negative space and will therefore likely exhibit
behavior more true to the original, mesh-based model.

Measurements and data characteristics

In this experiment, the ElectroOpticalVacuumSensor class’ signalToNoiseRatio()method
is queried for an entity at different elevations. In this case, the query result translates to a value
from 0 to 1, representing the probability of detection. The shape of the object determines the
number of sight-lines which intersect with the entity, and this influences the elevation at which the
entity will be detected and the overall probability of detection. Using either a bounding box or
enveloping sphere as an approximation of the entity’s shape different behavior will arise, resulting
in different values for the probability of detection.

RQ10: What is an appropriate SNR threshold to model the unique
effects of radar propagation such as refraction and ducting?

To determine a valid SNR threshold, a radar propagation simulation will be run for which the Earth
contains no features other than the curvature beyond the horizon. In this simulation, the radar
should not see beyond the horizon. For the second simulation, an elevated duct is introduced, for
this simulation the radar should be able to see beyond the horizon. To further narrow the range of a
possible value for SNRthreshold, a mountain will be introduced and knife-edging (gentle curvature
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around the peak) should occur. This yields a possible range of values for the SNR threshold for
the placeholder detection model of equation 2.8.

First, a simulation is run for all scenarios where the raw SNR values resulting from the
Parabolic Equation model is visualized. Then, for every SNR threshold, the signal is reduced
to a binary true/false by mapping true to values equal or above to the threshold (indicated by the
color white) and false to values below the threshold (indicated by the color black). Using a defini-
tion of required system behavior, a window of likely candidate SNR thresholds is determined for
the simplified detection model.

Hypothesis 10: It is possible to chose an SNRthreshold such that complex behavior of a radar
can be mirrored without implementing a complicated detection model. Likely, the SNR threshold
should be SNR ! 1 for radar characteristic behavior to become apparent.

Measurements and data characteristics

Using the Parabolic Equation propagation model, the RadarPESensor class propagates the field
forward from the observer towards to target location using the propagate()method (figure C.1).
The initial conditions are defined by a vertical slice of values for the electromagnetic field for
varying altitudes, initiated by the initialField() method. The results are visualized by calling
the toBufferedImage() method, which produces an image containing the complex magnitudes
(a ` bi Ñ

?
a2 ` b2) of the magnetic field for all locations between the observer and target

between a minimum and maximum altitude. Furthermore, by dividing the complex magnitude of
the electro-magnetic field by the free-space path loss (FSPL), the SNR can be approximated. In
order to quantitatively determine a valid SNR range, several cut-off values will be chosen and the
aforementioned figure will be plotted where instead of a gray value representing the SNR, binary
black or white value will indicate the value being below or above this threshold.
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Chapter 5

Results

5.1 RQ1: What is the impact of converting from WGS84 to a per-
fectly spherical CRS in terms of conversion time and accuracy
loss?

Correctness of the projection method

To verify the correct translation of the WGS84 CRS to a spherical representation, a DEM tile of
the Mediterranean island of Corsica was used. Due to the island’s distance to the equator and the
ellipsoidal shape of the Earth, the elevation with respect to a spherical CRS will generally be less
than the elevation with respect to WGS84. In figure 5.1, a before and after view of the projection is
illustrated. On the right-hand side of the respective figures, a color map legend is shown by which
the elevation with respect to the CRS can be read. The white background indicates a lack of data at
the given location (no data recorded; null). The blue dots surrounded by white are measurement
errors of the satellite which mistook sea for land. Here, it is clearly visible that the elevation with
respect to the spherical CRS is lower than it was relative to the WGS84 CRS. Noteworthy is the
shift in latitude of all points. This is due to points on the WGS84 CRS not pointing directly to
the centre of the Earth, instead the data is tangential to the surface. Upon projecting the DEM, a
vector to the centre of the Earth is drawn, shifting the latitudinal position slightly. On a sphere,
this does not occur as a tangent on its surface will always point to the centre of the sphere.

Visual inspection of figure 5.1b allows us to verify the physical features are retained in the
spherical representation. Early implementations of the projection algorithm contained signifi-
cantly more null data points after converting between ellipsoidal to spherical representation. In
the projection process, the total area the DEM data spans is mutated and needs to be accounted
for. The coverage vector, a vector spanning from the north-western coordinate to the south-eastern
coordinate, requires adjustment as it is slightly different for the spherical CRS. Not accounting for
this difference instigates a grid shift of several meters, effectively causing an incorrect mapping of
grid points to coordinates.
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(a) DEM tile of the island of Corsica rela-
tive to the WGS84 CRS.

(b) DEM tile of the island of Corsica after
projecting to a spherical CRS.

Figure 5.1: The effect on coordinate position after projecting a DEM from WGS84 (a) to
a spherical CRS (b). As a result of translation to a different CRS, the latitude and altitude
of all coordinates are changed.

Sampling locations

The sampling locations for testing the LoS-services connected to either the WGS84 or spherical
CRS were chosen to be on land as the source DEM tiles did not contain information on mean sea
level. For this test described in the methodology, the value of N was chosen as 16. This yields a
grid of 16 ˆ 16 coordinates. Every coordinate has N “ 16 different values for elevation, starting
from 2m and incremented N times by 10m. The sampling locations are illustrated in figure 5.2.

Figure 5.2: Sampling locations for the correctness test of the spherical CRS.
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Correctness of LoS-queries

Performing the correctness test as described in the methodology yields interesting results. Even
though the underlying method for determining geometric LoS is inherently different, the results
overwhelmingly agree. Of all permutations of the 163 points (

řN3´1
i“1 N3 ´ i “ 1

2 N3pN3 ´ 1q

for N “ 16 gives 8386560 queries), 213 queries are incorrect. Incorrect in this context implies
the disagreement between the WGS84 and spherical CRS representation. The error E of most
incorrect queries is E ă 5 m. However, there are a number of outliers with E ě 300 m. All
queries for which E ě 50 m are displayed in table 5.2. All incorrect queries for which E ě 5m
are traceable to four observer locations, each with between 1 and 4 target locations when not
accounting for altitude. These locations are illustrated in figure 5.3.
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Figure 5.3: Locations of the incorrect queries; i.e., where the WGS84 and Sperical CRS
LoS-services disagree. Locations indicated by an asterisks (˚) are observers, locations
indicated with a circle (�) with matching color are its targets for which the Spherical LoS-
service response was incorrect.
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From figure 5.3, an interesting observation is the location of the observers; these are all lo-
cated on the edge of a point of high elevation and a valley. This causes interpolated values of
intermediate samples to vary greatly with small deviations in elevation. A small error in angle
close to the observer can cause a large error in meters further away due to how angles propagate.
The coordinate with the most errors (9.15˝, 42.05˝) is represented by the magenta asterisk and the
magenta circles are the coordinate position of its incorrect observers. The positive sign of the error
in table 5.2 indicates that the target was moved upward in order to become visible for the spherical
CRS-based LoS-services, thereby indicating that the spherical CRS obscures more of the LoS and
gives a more pessimistic view of the question of whether LoS is possible. Table 5.1 shows the
statistics resulting from the test.

Spherical CRS approximation statistics
Property # queries Mean µ [m] Standard deviation σ [m]
Error over all queries 8386560 0.001304 0.672515
Error over incorrect queries 231/8386560 47.320346 119.204413

Table 5.1: Statistics of the spherical CRS approximation technique.

For the WGS84-based LoS-service, 587307 of the 8386560 queries return true, and the remain-
ing 7799253 return false. The true/false ratio is 7 percent. Of all queries executed on the Sperical
CRS-based LoS-service, 8385396 of the 8385627 return the same response, 213 requests are in-
correct. The mean error of all queries is 1.3 ˆ 10´3m, and the standard deviation is 6.7 ˆ 10´1m.
When only considering the 213 incorrect queries, the mean error is 47.3m and the standard devia-
tion is 119.2m. This implies that, if a query is incorrect, its error may deviate greatly.

Latency induced by projecting a WGS84 DEM tile to a spherical CRS
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Figure 5.4: The time consumed for converting a tile from WGS84 to a spherical CRS.
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Incorrect queries where error E ě 50m (spherical CRS)
Observer coordinate Target coordinate Error [m]

(9.1500º, 42.0500º, 1930.88m) (9.2250º, 42.0500º, 1552.40m) 381.60
(9.1500º, 42.0500º, 1930.88m) (9.2250º, 42.0500º, 1562.40m) 371.60
(9.1500º, 42.0500º, 1930.88m) (9.2250º, 42.0500º, 1572.40m) 361.60
(9.1500º, 42.0500º, 1930.88m) (9.2250º, 42.0500º, 1582.40m) 351.60
(9.1500º, 42.0500º, 1930.88m) (9.2250º, 42.0500º, 1592.40m) 341.60
(9.1500º, 42.0500º, 1930.88m) (9.2250º, 42.0500º, 1602.40m) 331.60
(9.1500º, 42.0500º, 1930.88m) (9.2250º, 42.0500º, 1612.40m) 321.60
(9.1500º, 42.0500º, 1930.88m) (9.2250º, 42.0500º, 1622.40m) 311.60
(9.1500º, 42.0500º, 1930.88m) (9.2250º, 42.0500º, 1632.40m) 301.60
(9.1500º, 42.0500º, 1930.88m) (9.2250º, 42.0500º, 1642.40m) 291.60
(9.1500º, 42.0500º, 1930.88m) (9.2250º, 42.0500º, 1652.40m) 281.60
(9.1500º, 42.0500º, 1930.88m) (9.2250º, 42.0500º, 1662.40m) 271.60
(9.1500º, 42.0500º, 1930.88m) (9.2250º, 42.0500º, 1672.40m) 261.60
(9.1500º, 42.0500º, 1930.88m) (9.2250º, 42.0500º, 1682.40m) 251.60
(9.1500º, 42.0500º, 1930.88m) (9.2250º, 42.0500º, 1692.40m) 241.60
(9.1500º, 42.0500º, 1930.88m) (9.2250º, 42.0500º, 1702.40m) 231.60
(9.1500º, 42.0500º, 1930.88m) (9.2250º, 42.1625º, 1533.16m) 454.80
(9.1500º, 42.0500º, 1930.88m) (9.2250º, 42.1625º, 1543.16m) 444.80
(9.1500º, 42.0500º, 1930.88m) (9.2250º, 42.1625º, 1553.16m) 434.80
(9.1500º, 42.0500º, 1930.88m) (9.2250º, 42.1625º, 1563.16m) 424.80
(9.1500º, 42.0500º, 1930.88m) (9.2250º, 42.1625º, 1573.16m) 414.80
(9.1500º, 42.0500º, 1930.88m) (9.2250º, 42.1625º, 1583.16m) 404.80
(9.1500º, 42.0500º, 1930.88m) (9.2250º, 42.1625º, 1593.16m) 394.80
(9.1500º, 42.0500º, 1930.88m) (9.2250º, 42.1625º, 1603.16m) 384.80
(9.1500º, 42.0500º, 1930.88m) (9.2250º, 42.1625º, 1613.16m) 374.80
(9.1500º, 42.0500º, 1930.88m) (9.2250º, 42.1625º, 1623.16m) 364.80
(9.1500º, 42.0500º, 1930.88m) (9.2250º, 42.1625º, 1633.16m) 354.80
(9.1500º, 42.0500º, 1930.88m) (9.2250º, 42.1625º, 1643.16m) 344.80
(9.1500º, 42.0500º, 1930.88m) (9.2250º, 42.1625º, 1653.16m) 334.80
(9.1500º, 42.0500º, 1930.88m) (9.2250º, 42.1625º, 1663.16m) 324.80
(9.1500º, 42.0500º, 1930.88m) (9.2250º, 42.1625º, 1673.16m) 314.80

Table 5.2: Table containing information about the incorrect queries, i.e., queries where
consulting the spherical CRS instead of the Ellipsoidal WGS84 CRS resulting in a different
response with an error E ě 50 m.
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Projecting from the WGS84 Coordinate Reference System to the spherical CRS is necessary
before queries can be performed. This conversion consumes time, and its scaling is studied in this
section. Because every coordinate on the grid is sampled independently, and in a linear fashion,
scaling occurs with Opnq where n is the number of grid points. For a 4-core 4GHz CPU, the
following graph has been produced where the conversion time is plotted as a function of grid size.
Grid size is defined as the total number of grid points, i.e., n for a grid of dimensions

?
n ˆ

?
n.

From this graph can be read that a graph containing 2.25 million points (e.g., a 1500 ˆ 1500 grid)
takes approximately one second to convert to a spherical CRS.

Performance improvements of the spherical CRS over the ellipsoidal CRS

To benchmark the performance of either method, several millions of requests were performed on
a shuffled set of location permutations. In figure 5.6, the duration as a function of the number of
performed queries is displayed. The slope of the linear regression model of the data points corre-
spond to the mean time for a single LoS-query. For the WGS84 LoS-service this is approximately
0.1ms, and for the spherical CRS LoS-service this is approximately 0.07ms. Therefore, over-
all, the spherical CRS-based service is approximately 30 percent faster than the WGS84-based
service.
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Figure 5.5: Query duration for the WGS84-based LoS-service and the spherical CRS-
based LoS-service. Both exhibit linear scaling, but the slope of the spherical CRS-based
LoS-service is less steep. As such, it is a faster method overall.
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5.2 RQ2: Does the approximation approach provide a valid model of
the Earth’s curvature, and at what distances is this approxima-
tion valid?

In order to answer this research question, three approaches to approximating the curvature of the
Earth are studied.

Flat Earth Negating the curvature of the Earth, ∆h “ 0

Geodesic distance A distance-dependent function of the Earth’s curvature, ∆h “ f pdq “ k d2

REarth

Central angle An angle-dependent function of the Earth’s curvature: ∆h “ f pαq “ REarthp1 ´ cosαq

Flat Earth approximation

This method serves as a baseline for the Geodesic distance and Central angle methods. If the
curvature is approximated as zero (i.e., assuming a flat Earth), more queries are incorrect due to
objects not disappearing behind a horizon. For a small surface distance, this does not influence
the result of the LoS-queries, however, for longer distances this effect cannot be negated as will be
shown in the statistical analysis below.

Flat Earth approximation statistics
Property # queries Mean µ [m] Standard deviation σ [m]
Error over all queries 8386560 0.022246 0.972134
Error over incorrect queries 13319/8386560 14.007583 19.662518

Table 5.3: Statistics of the flat Earth approximation technique.

From this, it may be concluded that assuming a flat Earth is not a reliable method, for there is
a clear increase in incorrect queries to a total of 13319 for a similar scenario to RQ1. Because this
method requires no projection to another reference system however, the errors are less extreme.
The maximum error observed was 155.80m for query (9.1750˝, 42.1625˝, 862.94m) to (9.1750˝,
42.6125˝, 943.39m). This is due to the projection enabling the possibility of a grid shift of the
DEM data, which in turn can cause a significant error due to coordinates being incorrectly aligned.
The grid nature of a DEM coupled with the location shifting of the projection method makes this
an inherent problem to the spherical CRS. This was observed in the results of RQ1. Therefore, of
the incorrect queries, the mean error was 14m and the standard deviation was 19.67m.

Geodesic distance approximation

Approximating the curvature of the Earth using formula ∆h “ f pdq “ d2

2REarth
, i.e., formula 4.2 for

k “ 1
2 results in a promising model. For this approximation technique, the number of incorrect

queries is 36. For these 36 incorrect queries, the mean error is 11.3cm and the standard deviation
is 3.5cm. Additionally, the mean distance between the observer and target for the incorrect queries
is 20.9km, with a standard deviation of 12.5km. For targets close to the observer, the value of the
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formula 4.2 is low and nearly equal to that of the flat Earth model; which is a valid approximation
at short ranges. For larger ranges, the error increases, explaining the relatively large mean distance
between observer and target. Table 5.4 shows the results of the test.

Geodesic distance approximation statistics
Property # queries Mean µ [m] Standard deviation σ [m]
Error over all queries 8386560 0.000000 0.000247
Error over incorrect queries 36/8386560 0.113889 0.035074
Distance to incorrect queries 36/8386560 20869.994990 12509.092216

Table 5.4: Statistics of the Geodesic distance approximation technique.
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Figure 5.6: Query duration for the WGS84-based LoS-service and the Simplified WGS84-
based LoS-service. Both exhibit linear scaling, but the slope of the Simplified WGS84-
based LoS-service is less steep. As such, it is a faster method overall.

Central angle approximation

The Central angle approximation technique produced identical results to the Geodesic distance
technique. This is because the difference between formula 4.1 and 4.2 with k “ 1

2 is negligible
for the distances studied on the island of Corsica. As such, the curvature correction is near iden-
tical. Furthermore, given the ∆h “ 10cm (the incrementing step in determining the error), the
difference was not large enough to differ from the Geodesic distance approximation. In figure 5.7,
the similarity between the two methods is shown. These approximations are nearly equal, and
differ by approximately 25cm over 200km. As such, it is shown that these two methods are both
viable approximations and can be used interchangeably. In terms of performance, both methods
require a comparable number of calculations and no preference between the two methods has been
determined.
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5.3 RQ3: What is the impact of different DTED sampling techniques
on performance and accuracy?

To test the effectiveness of dynamic sampling, a DEM tile was selected which could potentially
benefit from fragmentation. In northern Italy, near the Alps, terrain with a high gradient borders
terrain with a relatively low gradient. A DEM tile near the Alps where this border is approximately
located in the centre of a horizontal divide was chosen. The tile was fragmented into two sections
by separating the northern (mountainous) and southern (flat) section and saving the DTED to
separate DEM tiles (figure 5.8). The goal of this research question is to test whether the LoS-
service can benefit from reducing the resolution of the flat terrain tile, whilst retaining detail of the
mountainous terrain. Multiple methods for reducing the resolution of the flat terrain tile are tested.

Where, for every four points
„

α β

γ δ

ȷ

:

$

&

%

p “ 1
4 pα` β` γ ` δq (average)

p “ max pα, β, γ, δq (maximum)
p “ min pα, β, γ, δq (minimum)

(5.1)

A similar statistical method to RQ1 is executed, with sampled points evenly distributed over
the DEM tiles. In this test, the reduced tile results are compared to a reference tile with the original
high resolution grid acting as the ground truth.

DTED grid resolution reduction statistics for 130804 queries
Correct Incorrect Distance

Method n [%] µ [m] σ [m] n µ [m] σ [m] µ [km] σ [km]
Average 98.58% 0.167607 3.734526 1861 11.780602 29.050092 31.0 16.6
Maximum 99.01% 0.247078 6.539534 1292 25.012229 60.931554 33.7 18.1
Minimum 97.63% 0.31166 4.209165 3101 13.147436 24.058438 31.8 16.9

Table 5.5: Table containing results on the effects of reducing the resolution of a flat section
of terrain and retaining detail on high-gradient terrain on accuracy.
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(a) DEM of the Alps in northern Italy, because this section has high elevation gradients its resolu-
tion is retained. Every grid point spans an area of approximately 90 ˆ 90m.

(b) DEM of the flatland south of the Alps in northern Italy, because this section is relatively flat its
resolution is reduced. Every grid point spans an area of approximately 180 ˆ 180m.

Figure 5.8: Elevation of the reduced resolution DEM where the northern section (a) retains
its original high resolution grid, and the southern section (b) is simplified by reducing the
grid resolution.

Table 5.5 shows that using the maximum method of p “ maxpα, β, γ, δq yields the most accu-
rate results, whilst the minimum method yields the least accurate results. In the case of taking the
maximum of all surrounding grid points, the terrain is perceived to be higher than it is in actuality.
Terrain with a greater elevation tends to block more LoS-queries. The opposite holds for the case
of taking the minimum of four surrounding grid points. However, because most of the queries are
false, taking the minimum has a greater effect on comparing just the true and false answers. This
is visible in table 5.5, where nincorrect “ 1292 for the maximum technique, and nincorrect “ 3101
for the minimum technique. The most accurate approximation (with the lowest mean error) is
taking the average of surrounding grid points, the highest mean error over all incorrect queries is
achieved when taking the maximum of surrounding grid points (µ “ 25.01m, σ “ 60.9m). In this
model, the absolute value of the error is studied. However, the maximum method gives a model
where there are very few false positives and an increased amount of false negatives. The opposite
holds for the minimum technique, where there are very few false negatives and an increased num-
ber of false positives. Whichever is preferred depends on the use-case; the maximum technique if
false positives are to be averted and vice versa. The average technique has the lowest mean error
µ overall, and is optimally utilized when the true/false responses are more equally distributed.
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Figure 5.9: Query duration for the full-resolution and reduced resolution LoS-service.

With regard to performance, the query duration for a reduced resolution grid was compared to
a full resolution grid. In figure 5.9, the cumulative query duration is plotted as a function of the
number of queries performed. The slope of both lines is the average duration per query, which is
significantly shorter for the reduced grid. This is due to the LoS-service performing fewer queries
on the grid.

5.4 RQ4: What is the impact of different DTED interpolation tech-
niques on performance and accuracy?

In order to test the impact on accuracy and performance for different interpolation techniques, a
high-resolution grid is reduced to a lower-resolution grid. When reducing the resolution, instead

of taking the maximum, minimum or average, for every four points
„

α β

γ δ

ȷ

, the new point p is

defined by p “ α. This way, intermediate points are effectively removed and the interpolation
method attempts to reconstruct these data points based on the surrounding grid. The error between
the ground truth (original high-resolution grid) and the interpolated value is analyzed for all points
on the original grid. An interesting difficulty arose when reducing the resolution of a grid which
required careful consideration of an appropriate approach; the DEM had a grid size of 1201ˆ1201
and as such, could not be divided into two parts and/or reduced in resolution without additional
steps. Because of this uneven number, the coverage vector had to be changed, and it was chosen
for the two tiles to overlap partially after splitting up the data in order to adhere to the conventions
of the source data. Additionally, the size of the grid is reduced to the nearest factor of 2 in order
to accommodate the resolution reduction schema. Unit tests were written to verify querying a
location on either the original or split-up chart returned exactly identical results in order to ensure
the experimental results are valid.
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Comparison between interpolation methods for 345600 samples
Method µ [m] σ [m] Total t [ms]
Nearest neighbour 16.589997 18.365425 62
Bi-linear 5.322557 6.952590 255
Bi-cubic 4.376876 5.768800 1211

Table 5.6: Table containing results on the effects of utilizing different interpolation tech-
niques on query accuracy and performance. The more complex the interpolation method,
the more accurate it is and the more resources are required for the computation.

Table 5.6 shows that the more complex the interpolation technique, the smaller the error is
between the ground truth and the interpolated value. Transitioning from nearest-neighbour to bi-
linear yields the highest increase in accuracy versus additional time spent; a factor 4 time increase
results in a factor 3 error decrease. However, when utilizing bi-cubic interpolation over bi-linear
interpolation, the computational time is 5 times greater, but the error is decreased by 20%. Bi-
cubic interpolation requires sampling 16 points whilst bi-linear interpolation requires 4. Likely,
additional overhead created by the underlying matrix multiplication logic used in the bi-cubic
interpolation method. For the purpose of this paper, bi-linear interpolation allows for a good
balance between the average error and the computational time required.

5.5 RQ5: What are the advantages and disadvantages of different
viewshed approaches with respect to performance and accuracy?

In this research question, the viewshed algorithms R2 and XDraw are compared against R3. In
this case, R3 serves as an accurate but slow baseline. Both algorithms outperform R3 in terms
of speed by approximating the intermediate LoS-calculations. In this process, R2 and XDraw
attempt to retain as much of the accuracy as possible. The LoS service distinguishes between two
different types of viewsheds, each with its own advantages; a radial and tile-based viewshed. The
former is defined as a viewshed around an observer for a radius r, covering a total area of πr2.
Determining whether such a viewshed is viable for a given target is simple; test radius r against
the geodetic distance between the observer and target. This type of viewshed uses a chart service
to query coordinates to receive elevation data, and as such can combine DEM data from multiple
tiles. This does, however, introduce additional overhead causing this method to be slower than its
counterpart. In the latter method, coined the tile-based viewshed, instead of passing an observer
coordinate and a radius, the viewshed is limited exclusively to the tile on which the observer is
located. This reduces the overhead of finding the appropriate tile, but limits its uses to the range
of the source tile. Both methods are compared in terms of performance and accuracy, due to the
slight difference in the implementation. For the radial viewshed construction, lines are drawn as
a function of an angle θ P r0, 2πq whilst the tile-based methods (due to the constant grid spacing)
can utilize the underlying grid itself for positioning (x P rx0, xmaxs, y P ry0, ymaxs).

Figure 5.10 shows the location of the observer, chosen due to the elevation gradient in its
vicinity. In the east, a high-elevation mountain blocks the view, this should be visible in the
viewshed in the form of high values for the minimal required angle. In the west, a valley dominates
the terrain. Here, more of the terrain is visible, resulting in lower minimal required angles.
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(a) Observer location relative to the island
of Corsica. The terrain in the south-west has
high elevation, but is far away, thus having
a small impact on the visibility.

(b) Observer location in a more zoomed-in
window, showing the terrain gradients in the
east and west. The mountain range in the
east has a high impact on visibility.

Figure 5.10: Observer location chosen for the purpose of comparing viewshed calcula-
tions. The location has good visibility in the west, but limited visibility in the east. This
allows for a quantitative comparison of different viewshed algorithms.

5.5.1 Performance comparison

Performance comparison between different viewshed methods
Computation time [ms]

Type Method WGS84 Spherical WGS84 Simplified

Tile-based
R3 291529 65890 164321
R2 3913 1355 2404

XDraw 906 249 488

Radial
R3 80341 20571 53220
R2 5965 2175 2927

Table 5.7: Table containing the time to compute a viewshed for the three considered al-
gorithms for a radial and tile-based viewshed. Due to different parameters and grid size, a
given radial viewshed method’s performance can exclusively be compared to other radial
viewshed method’s performance and vice versa.

Table 5.7 shows the time to compute a viewshed for different algorithms. A distinction between
tile-based† and radial‡ viewshed is made as additional overhead, caused by finding the correct
tile for a given coordinate influences the computation time. R3 is the most accurate because it
computes a separate LoS-query for every grid point, and does not re-use any results of previous
computations. However, it is significantly slower than R2 and XDraw. For further testing pur-
poses, R3 will be viewed as the ground truth, and R2 and XDraw are compared to its results. In
practice, R3 is too computationally intensive to have a practical advantage for dynamic observers.

†In this experiment, the tile-based viewshed has a grid size of 1201 ˆ 1201 and coverage of 1˝ ˆ 1˝.
‡In this experiment, the radial viewshed has a grid size of 600 ˆ 600 and coverage of 0.5˝ ˆ 0.5˝.
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XDraw only has a tile-based variant implemented, because the algorithm by itself is grid-based
and interpolates previously-computed angles. XDraw relies on querying either a previously com-
puted angle from its own viewshed grid or data from the parent DEM tile. The radial method
constructs a new grid with a custom resolution, causing a misalignment and requiring more over-
head to achieve this. In practice implementing XDraw for a radial grid is achievable, but the scope
was limited to its tile-based counterpart for this paper.

5.5.2 Accuracy comparison

To compare the accuracy of one viewshed method to another, both are compared to the ground
truth. In this case, R3 is, due to the individual LoS-queries for every grid point, as accurate as
performing a new query. An observer was placed in the position indicated on figure 5.10, and both
a tile-based and radial viewshed are computed relative to the WGS84 CRS.

In figure 5.11, the results of all three algorithms are shown for an observer located as de-
scribed in figure 5.10. In figure 5.11a and 5.11b, a tile-based and radial R3 viewshed are shown
respectively. Here, the gradient between different gridpoints is very smooth, especially in the
south-western segment. This smooth transition between angles is due to very small differences
in interpolated values for the points between the observer and a grid point. This strength is what
causes its main weakness; because every sight-line between the observer and a grid point intro-
duces a new sequence of interpolated locations, it is much more computationally intensive.

Furthermore, a qualitative measurement of the accuracy of LoS-queries performed on the view-
shed was performed, similar to the method of RQ2. In this experiment, an identical query will be
performed on a regular LoS-service and a viewshed created using the algorithm in question.

Viewshed accuracy statistics
Property Algorithm # queries Mean µ [m] Standard deviation σ [m]

Error over all queries
R2 130816 1.901540 23.549441

XDraw 130816 1.076787 17.419574

Error over incorrect queries
R2 1351 178.739156 143.302137

XDraw 1131 124.026614 140.424946

Distance to incorrect queries
R2 1351 11878.132996 6839.987261

XDraw 1131 16344.380819 7000.141811

Table 5.8: Statistics of utilizing a viewshed instead of performing individual LoS-queries.

Table 5.8 shows how accurate viewshed methods are in practice when performing a large
set of queries on the computed grid. In total, approximately 1 percent of the total number of
queries is incorrect when using the R2 or XDraw algorithm. XDraw performs marginally better
in practice. The mean distance of incorrect queries is greater for XDraw than for R2, while the
standard deviation is roughly equal. This indicates that R2 has more difficulty at the short range
than XDraw. Likewise, R2 has a greater mean error overall.
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(a) Tile-based R3 viewshed. (b) Radial R3 viewshed.

(c) Tile-based R2 viewshed. (d) Radial R2 viewshed.

(e) Tile-based XDraw viewshed.

Figure 5.11: Viewshed computations of an observer on the location indicated by figure
5.10 at a height of h “ 10m above the terrain, for all three viewshed algorithms relative
to the WGS84 CRS. The values on the grid represent the minimal required angle between
the observer an target in order to have Line of Sight.
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Figures 5.11c and 5.11d show the results of a tile-based and radial R2 viewshed implemen-
tation respectively. R2 attempts to fill the entire grid solely by performing queries to the outer
ring. Comparing the tile-based implementations (figures 5.11a and 5.11c) to their respective R3
counterpart, the main differences are located in the north-west and south-east of the observer. The
cause of this discrepancy is due to the high gradient of angles near the observer, as can be seen in
figure 5.10b. This does not occur in the radial viewshed (figures 5.11b and 5.11d).

Figure 5.11e shows the result of the tile-based XDraw implementation. Due to how XDraw
operates, intermediate angles on the computed grid are re-used for angles further outward. This can
cause interesting fragments where an angle propagates outward when in reality it does not obstruct
the view. Such an example is visible in the north-western section of figure 5.11e. Furthermore,
because every section is completely independent, and within a section the values in the inner ring
have the potential to propagate outward; clear borders between the octants become apparent.

(a) Tile-based R2 viewshed error. The mean
error µ « 2.64˝, σ « 3.88˝.

(b) Radial R2 viewshed error. The mean er-
ror µ « 1.38˝, σ « 1.29˝.

(c) Tile-based XDraw viewshed error. The
mean error µ « 2.76˝, σ « 3.69˝.

Figure 5.12: The absolute difference between the viewshed angle values of the R3 method
and the method being analyzed.
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5.6 RQ6: What is the number of static observer LoS queries at which
pre-calculating an entire viewshed is more efficient than individ-
ual queries?

To calculate the break-even number of queries for a given grid, the computation time as a function
of grid size for different viewshed methods is analyzed. The number of queries to which this time
is equal also depends on the CRS in use. Because R3 is functionally equivalent to performing a
query to every location, it is not considered for this research question. As such, the focus will be
on R2 and XDraw. In this experiment, a dummy tile grid of variable size containing zeros will
be converted to a viewshed. Then, given the previously measured query duration, the number of
queries to break even* will be determined for an algorithm as a function of the grid size.
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Figure 5.13: Viewshed computation scaling behavior, duration (left y-axis) and required
number of queries to break even (right y-axis) as a function of the total number of grid
points for a live system.

Figure 5.13 shows the scaling behavior of computing a viewshed for the R2 and XDraw al-
gorithm. On the x-axis the total number of grid points is displayed. Both methods exhibit linear
scaling with respect to the total number of grid points (quadratic with respect to the radius r). On
the left-hand side the total time to produce a viewshed is displayed, which is directly translat-
able to a number of LoS-queries as per previous results (1 query taking t « 1 ˆ 10´4s). E.g., a
2000 ˆ 2000 grid (total 4 ˆ 106 grid points) requires just 3 seconds to compute for XDraw, equal
to approximately 3 ˆ 104 individual queries. The ratio between grid points and required number
of queries to break-even is 400 : 14 for R2, and 400 : 3 for XDraw. As such, when considering
a static observer producing a viewshed can provide a significant temporal advantage. Especially
when considering one grid point contains the minimal required angle, and this angle can be utilized
for targets at any height at the specified location.

*This assumes viewshed calculations are performed on a live system and as such requires a given number of
queries before it is perceived as more performant. In reality, viewshed representations can be calculated off-line, given
the position or path of the observer is known beforehand.
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5.7 RQ7: What is the maximum offset at which an observer can be
approximated as static for the purpose of re-using viewshed re-
sults?

Re-using a previously-computed viewshed saves a significant amount of computational resources.
As such, the validity of this approach is tested by moving an observer along the surface of the
terrain for different offsets in degrees and calculating the mean of the element-wise difference
between the two viewsheds. Moving along the surface was chosen as this is comparable to a real-
world use-case, where the distance to the surface stays equal, and not the elevation with respect to
the CRS. For every ∆x, a new tile-based viewshed is created for all three algorithms, and the mean
difference in degrees is plotted as a function of the ∆x and shown in figure 5.14.

In figure 5.14a, the R3 algorithm is analyzed for the purpose of re-using previously computed
viewsheds. In the domain ∆x P r0, 0.02˝q, approximately 2km, this difference increases steadily
to a total mean error of 20˝, after which the mean error declines. The high difference between
the initial viewshed and the viewshed at ∆x « 0.015˝ is likely tied to the specific conditions
of this experiment. Where, at this displacement, the peaks happened to align with the troughs.
Further along the displacement graph, the mean error µ « 10 ˘ 5˝. Figure 5.14b shows the error
caused by displacement and utilizing the original viewshed for the R2 algorithm. Noteworthy is
the persistence of the peak at ∆x « 0.015˝, but the absence of the clear steady slope towards it.
Additionally, for higher ∆x, the values are more stable around µ « 10˝. Furthermore, figure 5.14c
illustrates the displacement error for the XDraw algorithm. These results are compelling due to
their similarity to figure 5.14a. The behavior of the mean error µ as a function of the displacement
∆x is similar for the initial domain ∆x P r0, 0.02˝q, and the same peaks and valleys as for higher
∆x are visually distinguishable.

Depending on the allowed maximum error induced by re-using a previously-computed view-
shed, this method may provide a viable approximation method. From the displacement error
figures 5.14a - 5.14c, for small displacement, the slope of the mean error displays hints of linear-
ity. Therefore, given a fidelity constraint, one can interpolate between these values to conclude a
maximal grid shift within the stipulated margin of error. At a shift of ∆x « 0.001˝ (approximately
100m, one grid point), the error can already be close to 2 ´ 3˝, which can make the difference
between a target being within or outside Line of Sight. The error caused by a displacement of
100m can be significant, depending on the surrounding terrain and the direction of movement. For
example, a ship close to the coast moving in parallel to the coastline will inhibit a large mean error
when re-using a previously-computed viewshed. If, instead, the ship is far away from the near-
est landmass and the ship moves away or toward the landmass, this mean error is minimized. In
this test, a worst-case scenario was considered over land where, overall, the gradient is relatively
high. These results do not rule out re-usage of former viewshed computations on sea, but define a
realistic upper bound for the mean error induced by such an approach.
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(a) Error between the viewshed at (x0, y0) versus (x0 ´∆x, y0) as a function of displacement ∆x for
the R3 algorithm. A shift of two grid points already causes a mean error µ of µ « 5˝.
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(b) Error between the viewshed at (x0, y0) versus (x0 ´∆x, y0) as a function of displacement ∆x for
the R2 algorithm. A shift of two grid points already causes a mean error µ of µ « 5˝.
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(c) Error between the viewshed at (x0, y0) versus (x0 ´∆x, y0) as a function of displacement ∆x for
the XDraw algorithm. A shift of two grid points already causes a mean error µ of µ « 5˝.

Figure 5.14: Error caused by re-using a previously-computed viewshed as if it were com-
puted at the new coordinate. The mean error µ increases quickly for small ∆x.
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5.8 RQ8: What is the performance and accuracy impact of com-
pressing a viewshed?

The precision of the variables used to store the minimal required angle for every grid point is
reduced and the impact on accuracy caused by this change is studied. The range from the minimal
to the maximal value on the grid is optimally used by setting all bits to 0 for the minimal angle,
and setting all bits to 1 for the maximum angle in the original viewshed. All other possible values
are a linear interpolation between these two values. This way, the impact of reducing the precision
is minimized, as more detail is concentrated where it is needed the most; primarily between 0˝

and 180˝ or a smaller range dependent on the minimal and maximal recorded angles.

Compressed viewshed precision loss statistics
Data format Mean error µ [rad] Standard deviation σ [rad]
byte[]; 8 bit 4.55 ˆ 10´3 2.68 ˆ 10´3

short[]; 16 bit 1.77 ˆ 10´5 1.0 ˆ 10´5

float[]; 32 bit 1.73 ˆ 10´8 9.98 ˆ 10´9

Table 5.9: The absolute difference in angles between the compressed and uncompressed
viewshed, quantifying the loss of precision when utilizing the given data format in a real-
world use-case of a viewshed of the island of Corsica.

The memory usage of a viewshed can be reduced by using a data format with lower precision.
However, this causes the quality of the stored information to degrade. Small differences in angles
are smoothed and the space of possible angles the viewshed can contain is reduced. This intro-
duces a domino effect, where a small error in an angle early on (the location of the observer) can
propagate outward. This is because the maximum angle is recorded whilst the sight-lines emanate
outward, and all values in an outer rings are either explicitly or implicitly compared to an incorrect
angle located nearer the observer. Table 5.9 shows the average error induced by utilizing a given
data format as a form of compression. This experiment was performed on an identical viewshed,
compressed using the three different data formats. The goal of this research question is to find the
optimal precision to store the minimal required angles whilst occupying the least amount of mem-
ory. The tables shows the byte[] format occupies the least amount of memory, but loses a lot of
precision. This is inferential, due to the limited number of possibilities (28 “ 256 different an-
gles). Over a distance of 10km, an error of µ “ 4.55ˆ10´3 rad can cause a difference in perceived
elevation of ∆h “ 103 ˆ tan µ “ 45.5m. Doubling the memory usage increases the precision sig-
nificantly (216 “ 65536 different angles). This decreases the mean error µ to µ « 1.77 ˆ 10´5 rad,
the difference in perceived elevation over 10km then becomes ∆h “ 103 ˆ tan µ “ 17.7cm.

Furthermore, there is no significant performance impact on encoding and decoding the angles
in the modified data format. Running a benchmark took the uncompressed viewshed 135ms to
look up every grid value on a 1200ˆ1200 size grid, and 139ms for the compressed viewshed. The
difference between these two measurements is negligible. Therefore, the decoding of the data does
not give rise to ample latency such that it influences the query duration in a significant manner as
the bottle-neck remains retrieving the variables from memory.
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Compressed viewshed accuracy statistics
Error over . . . Algorithm Precision # queries Mean µ [m] Std σ [m]

A
ll

qu
er

ie
s R2

byte[]; 8 bit 130816 2.177349 23.022003
short[]; 16 bit 130816 1.874981 23.396296
float[]; 32 bit 130816 1.910885 23.590728

Uncompressed; 64 bit 130816 1.901540 23.549441

XDraw

byte[]; 8 bit 130816 2.165639 19.355694
short[]; 16 bit 130816 1.076114 17.403355
float[]; 32 bit 130816 1.091881 17.540086

Uncompressed; 64 bit 130816 1.076787 17.419574

In
co

rr
ec

tq
ue

ri
es R2

byte[]; 8 bit 1894 92.581759 87.450610
short[]; 16 bit 1344 177.154985 143.813533
float[]; 32 bit 1349 177.342550 143.360521

Uncompressed; 64 bit 1351 178.739156 143.302137

XDraw

byte[]; 8 bit 3048 124.026614 140.424946
short[]; 16 bit 1122 124.943316 140.380712
float[]; 32 bit 1269 110.546730 138.069459

Uncompressed; 64 bit 1131 124.026614 140.424946

Table 5.10: Statistics of utilizing a compressed viewshed instead of performing individual
LoS-queries. The experiment is performed with identical parameters as the results in table
5.8. The data has been compressed to occupy less memory in the form of a byte[],
short[] and float[] (8, 16 and 32 bit precision respectively).

Table 5.10 shows the impact on accuracy of querying a compressed viewshed instead of per-
forming a new LoS-query without any viewshed. Here, the left column indicates the precision of
the variables in use. The original, uncompressed format utilizes a 64-bit double[]. Encoding the
angle in just 8 bit precision provides insufficient resolution to produce accurate results, indicated
by the relatively large mean error for both R2 and XDraw. From 16 bit precision and upward, the
differences become less noticeable. These data formats provide ample differentiation between the
angles to produce results similar to the original 64-bit double[]. As such, it is a valid strategy to
reduce memory usage by a factor of 4 by utilizing the 16-bit short[] data format instead of the
original 64-bit double[]. This is the optimal middle-ground between fidelity and memory usage
as is apparent from table 5.10.

5.9 RQ9: What are the performance and accuracy effects of exact
mesh-based collision detection versus exclusively calculating col-
lision detection of the enveloping sphere?

To examine the effects of substituting precise mesh-based collision detection with an enveloping
sphere, a suitable model was determined. The model used in the experiment represents a simplified
mesh of an airplane, such that the enveloping sphere does not optimally contain the 3d model. The
simplification was made to express the characteristics of an airplane, whilst negating most of
the details to decrease the total number of calculations as per algorithm 1. Figure 5.15 shows a
simplfified 3d model of the airplane used in testing.
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Figure 5.15: A simplified 3d model of an airplane, containing the main characteristics of a
sharp nose, wings and a body. The model contains just 12 vertices and 15 faces (orthogonal
triangles).

To determine whether an entity is visible to an observer, a simple implementation of a sensor
has been developed. This sensor defines a rectangular area which has to be exposed in order for
the sensor to detect the object. This rectangle expands in size the further away from the sensor an
object is, to simulate objects further away being perceived as smaller in size and therefore more
difficult to detect. Modeling the detection of visibility for an object from the point of view of an
observer occurs in three steps.

1. The first check is whether the sight-line between the observer and the entity encounters
terrain. This is achieved via LoS algorithm 3.1 for a uniformly sampled set of terrain points
on the grid. If at any point one angle between the observer and the terrain exceeds the angle
between the observer and the entity, there is no Line of Sight.

2. Second, obstruction by other objects is checked by approximating the model as a sphere
where the radius is equal to the point furthest from the centre of the model. This way, if the
sight-line does not intersect the sphere (calculated using equation 2.3), it is certain to not
intersect the model either.

3. Finally, if the previous calculation determined the sight-line to intersect with the enveloping
sphere, the individual faces (triangles) of the mesh are checked for intersection (calculated
using algorithm 1).

Furthermore, the probability of detection is modeled by dividing the visible region of an object
by the minimal required area to detect the object, capped at Ppdetectq “ 1. Calculating the visible
region from the point of view of an observer is achieved by drawing a circle with the radius of the
object’s enveloping sphere tangential to the vector between the observer and the target. This area
is divided into a grid of points with a density determined by the sampling resolution or number of
samples (32 ˆ 32 in this case). Then, for every point on this grid, a sight-line is emitted from the
observer to this point. The ratio between the samples with an intersection with the given entity
and the total number of samples gives a rough estimate of the visible region of the entity. In this
experiment, the necessity of calculating exact mesh collisions as opposed to collision detection
with the enveloping sphere and bounding box is examined, and the latency improvements of this
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change are quantified. This is done by conducting an experiment with a ‘peeking’ entity behind
a mountain. The probability of detection Ppdetectq is measured as the entity moves upward. The
difference in the value of Ppdetectq for both the exact mesh model and the enveloping sphere is
measured and displayed in figure 5.16.
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Figure 5.16: Probability of detection as a function of the elevation of an entity, where
Ppdetectq is calculated for mesh-based collision detection, an enveloping sphere and a
bounding box a for an edge case where the target is approximately 16km away from the
observer and near the maximum range of visibility.

Figure 5.16 shows the effect of approximating the surface of the simplistic representation of
the airplane (figure 5.15) as a sphere. Drawing a sphere around the airplane leaves a relatively
large amount of negative space. In the spherical approximation, detecting this space counts as a
detection. Hence, in figure 5.16, the enveloping sphere model is detected first. Eartly on, for low
elevation, Ppdetectq “ 0, as the elevation increases Ppdetectq Ñ 1. During an intermediate period
where 0 ă Ppdetectq ă 1 holds, the sensor has Line of Sight with a part of the surface of the
entity. However, depending on the predefined sensor region, it may not have exceeded a threshold.
The sensor region dictates the minimal required size of an object as a function of the distance,
its area scaling quadratically over distance from the sensor. This serves as a simplified model to
limit the view distance. In this experiment, the length of the plane is approximately 30m, with a
height of 4m. This creates a negative space of ∆h « 12m, which is visible in figure 5.16 as the
horizontal difference between the offset at which either model is detected. Here, the difference
of elevation between the moments the mesh-based and enveloping sphere models are detected
is approximately 12m. Furthermore, a bounding box drawn around the airplane was considered
as a viable alternative. Figure 5.16 shows the bounding box model behaves very similar to the
mesh-based method. This is because the negative space of the bounding box is much smaller, and
as such, there are fewer false positives. The advantage of the bounding box method as opposed
to the mesh-based method is its reliability; the bounding box will, by definition, always have 6
faces (each consisting of 2 triangles) defining its shape. The computation time of the mesh-based
model depends on the complexity of the 3d model. Therefore, the bounding box model is a good
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middle-ground between accuracy, performance and reliability for the purpose of calculating the
sensor coverage for the entity.

The previous experiment examined an environment where the number of total entities is one,
and is therefore not representative of a real-world use-case. Several methods will therefore be
compared by measuring the computation time as a function of the number of environmental entities
taken into account. To account for outliers, the average over N “ 100 queries is calculated, the
number of entities is step-wise increased by 100 until a total of 105 entities is reached.
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Figure 5.17

Figure 5.17 shows the scaling behavior of LoS-queries for a variable number of entities placed
in the world. To form a worst-case scenario, no filtering was performed on the entities in order
to omit performing redundant calculations for entities which are out of range. This represents a
real-world scenario where a large group of entities is clustered together. Two y-axes are drawn,
with the color indicating the results’ corresponding scale. The graph displays the amount of time
to process LoS for two points over a distance of 16km, given the presence of x entities, using
three different methods. The base duration of t ă 1ms as per previous results is overshadowed
by significant margins due to the collision detection logic for a high number of entities. However,
the impact is very limited for the enveloping sphere model, remaining t ă 2ms for N “ 105

entities. This is due to the simple arithmetic involved in calculating intersection with a sphere.
First applying intelligent filtering based on the location and proximity of entities, and subsequently
performing bounding box or mesh-based collisions detection will outperform any of the studied
methods displayed in figure 5.17. However, this filtering of entities is very situation-dependent
and difficult to quantify and therefore a worst-case scenario was studied. Based on the required
fidelity of an LoS-service, three options remain. These options are, in increasing order of fidelity
and resource usage; a) limiting collision detection to a sphere enveloping all vertices, b) limiting
collision detection to the bounding box enveloping all vertices, and c) calculating exact mesh-
based collision detection. The latter method (c) can call a subroutine for method a and/or b in
order to omit exact mesh-based collision detection if either returns false.
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5.10 RQ10: What is an appropriate SNR threshold to model the
unique effects of radar propagation such as refraction and duct-
ing?

To test the viability of the Parabolic Equation Radar model, three scenarios were considered;
a mountainous terrain with a realistic atmospheric density, a flat terrain with a monotonic atmo-
sphere and a flat terrain with an elevated duct. The raw output of the simulations are given in figure
5.18. Here, the black to white gradient represents the signal strength in the form of the signal-to-
noise ratio, and the green color represents the presence of terrain. In figures 5.18a - 5.18c, the SNR
for a bi-directional query to the location on the grid at a given location is shown. The algorithm is
initiated with a given set of radar parameters and initial conditions such as antenna height, emis-
sion angle and power. Then, using the Parabolic Equation (PE) model, step-wise the algorithm
marches towards to target. Memory usage is limited to a single slice z P tzmin, ..., zmaxu tangential
to the surface of the Earth at the observer’s position, and this matrix is mutated in-place. Depend-
ing on the maximum range of the query, the duration of the algorithm can vary from milliseconds
up to t « 20 seconds for a total range of d « 150km. This depends on the physical parameters as
well as the terrain sampling rate.

Figure 5.18a shows a query for a high-elevation antenna pointing towards a mountainous area.
As the radar waves strike the mountains, a blind zone behind the summit arises. However, due
to the physical properties of waves the signal ‘bends’ around the peak, akin to how sound waves
can bend around a corner. In the atmosphere, there is a distinct horizontal line above the terrain
where the SNR is stronger below and weaker above this line. This line represents a gradient in
temperature and density in the atmosphere. The gradient tends to reflect radio waves downward,
but parts do not reflect and pass through this layer. Once a radio wave escapes this duct, the
atmosphere is monotonic and therefore it continues without further perturbations. Figures 5.18b
and 5.18c show an example with identical parameters but a difference in atmospheric gradient; for
figure 5.18b the atmosphere is monotonic and for figure 5.18c an elevated duct is introduced. The
latter scenario, the duct, acts as a wave guide for the radio waves and carries the signal further
along the terrain. This behavior is characteristic for radio waves. Next, a simplified model will
be composed based on an SNR threshold which can translate these values for the SNR to a true
or false response from a LoS-service. This simplistic detection model is not rooted in physics, but
serves as a placeholder for a real detection model.
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(a) Radar propagation for mountainous terrain with temperature gradient in the atmosphere.
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(b) Radar propagation for flat terrain with a monotonic atmosphere.
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(c) Radar propagation for flat terrain with an elevated duct.

Figure 5.18: Radar propagation for three models; mountainous terrain with a temperature
gradient, flat terrain with a monotonic atmosphere and flat terrain with an elevated duct.
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In order to translate the matrix of values for the SNR to a matrix of boolean true or false,
a detection model consisting of a step function was considered. In this model, represented by
formula 2.8, the process of finding a correct value for the threshold consists of recognizing radar-
like behavior in a set of possible values of the threshold. This will be executed on case-by-case
basis, starting at the scenario illustrated in figure 5.18a, and ending with the scenario illustrated
in figures 5.18b and 5.18c. Formula 2.8 will be applied to the data in figures 5.18a - 5.18c, and
displayed as the color white for true, the color black for false and green for terrain.
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(c) LoSradar|SNRthreshold “ 0.25
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Figure 5.19: Radar Line of Sight for mountainous terrain illustrated in figure 5.18a for
different SNR thresholds applied to formula 2.8.

From this figure, it is clear that a SNR threshold of SNRthreshold ě 1 is too high, as figure 5.19a
displays a very clear radar dead zone where a target should be visible; right next to the antenna
without any terrain obstruction. Figure 5.19b displays similar behavior to that of an electro-optical
sensor; only sight-lines drawn directly from the observer to a point are visible. The waves do not
curve after passing a mountain summit. Further decreasing the threshold to SNRthreshold “ 0.25
and SNRthreshold “ 0.1 produce figures 5.19c and 5.19d respectively. Both show behavior similar
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to waves curving around the peaks, the latter showing a more extreme variant than the former.
Depending on the use-case, either of these values can produce interesting results for a simplistic
Radar LoS-service. In the next scenario, only the latter two SNR thresholds will be considered, and
behavior induced by an elevated duct as opposed to a monotonic atmosphere will be compared. In
a monotonic atmosphere, the signal is less prominent for larger distances.
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(e) LoSradar|SNRthreshold “ 0.05
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Figure 5.20: Radar Line of Sight for flat terrain illustrated in figures 5.18b and 5.18c for
different SNR thresholds applied to formula 2.8.
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In figure 5.20, a set of different values for the SNR threshold are compared. Decreasing the
thresholds leads to greater radar visibility in general, which is to be expected. For the value which
resulted as a potential candidate from figure 5.19; SNRthreshold “ 0.25 in figure 5.20b, there is
slight visibility beyond the horizon, with a dead-zone in-between. The dead-zone remains for
SNRthreshold “ 0.1 in figure 5.20d, but the visibility beyond the horizon is increased significantly.
This is due to the elevated duct guiding the radar waves across the duct situated near the surface of
the Earth. Further decreasing the threshold to SNRthreshold “ 0.05 in figure 5.20f results in visibil-
ity beyond the horizon for a distance of d « 125km. Due to radar parameters and characteristics
being unknown for the scope of this paper, whichever of these three is the most realistic is left
open. However, from existing research 2.5 it is known that elevated ducts can greatly increase the
range of a radar system. As such, depending on the use-case, scenario and radar characteristics, a
realistic threshold must be chosen which satisfies the behavioral constraints. Notably, this behav-
ior is only characteristic for the parameters used in this specific simulation of a radar sensor. As
such, when altering these values, the presented results and observations are invalidated.

In the presented use-case of real-time Line of Sight calculations the Parabolic Equation model
does not yield satisfying results. For medium range distances d ď 7km, the time to perform a
query equals t « 1s, and for small range distance d ď 1km the query duration is in the order of
magnitude of hundreds of milliseconds. For long range queries, the query duration far exceeds any
real time latency requirement. In order to consider applying the PE radar model to short ranges, it
must provide advantages over the much less computationally expensive geometric electro-optical
model. However, radar characteristics are mostly not present at the short range, and only become
apparent at the longer ranges. As such, in the domain where the PE model can be considered, the
geometric LoS model provides a more performant approach.
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Chapter 6

Conclusion

6.1 Accounting for the curvature of the Earth

RQ1: What is the impact of converting from WGS84 to a perfectly spherical CRS in
terms of conversion time and accuracy loss?

The first research question stipulated in this paper was an out-of-the-box approach to computing
the angle between an observer and a target. Given the complications imposed by the ellipsoidal
shape of the Earth and therefore the more complicated mathematics of determining the angle; the
question became whether projecting to a more convenient reference system can suffice. Initial
results showed a promising trend; computations are cheaper and most results are identical in the
initial unit tests. The error rate remained far below the 1 percent, as only 231 out of 8386560
queries were incorrect. However, more rigorous testing and quantification of the errors showed
the results of table 5.1 and the incorrect queries displayed in table 5.2. The magnitude of some of
the errors are significantly greater than anticipated and do not suffice for a LoS-service. However,
one can make the argument of the applicability to the current use-case; all incorrect queries arose
on locations near mountains, and for the naval domain this will not cause issues as a ship will not
get as close to a mountain as occurred in the experiment. In the experiment, the steep elevation
on the error-prone locations was approximately 1 kilometer over 90 meters (figure 5.3). As such,
in scenarios where the terrain gradient near the coast is below this threshold, the error induced
by the projection to the spherical CRS does not influence the queries in a significant manner. In
reality, this would exclude the usage of this model near locations with cliffs, as these can exceed
the aforementioned steep terrain gradient. The spherical CRS provides a framework of calculating
the angle between the observer and target represented by equation A.1 which is 30 percent less
computationally expensive than the exact vector-based ECEF approach of equation 3.1. Time
consumption for the projection of a grid tile to its spherical representation cost costs approximately
0.4ms per 1000 grid points, and approximately 1s for a common 1200 ˆ 1200 DEM tile on a 4-
core 4GHz CPU (not multi-threaded). As such, this pre-computation does not pose a bottleneck
for real-world usage when several seconds are available. Moreover, these tiles can be converted in
a background process as most of the miscellaneous computations for LoS are single-threaded due
to their consecutive nature. The physical features of the original tile were visible in the converted
tile, as is visible from figure 5.1a (before) and 5.1b (after). As a result of the elevation data being
relative to a sphere with a constant radius, the elevation and latitudinal positions have changed.
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RQ2: Does the approximation approach provide a valid model of the Earth’s curva-
ture, and at what distances is this approximation valid?

The formulae for approximating the curvature of the Earth provide a valid model for calculating
Line of Sight, where both the geodetic distance and central angle approach produce identical re-
sults in this experiment. The difference between the values of the curvature correction of either
method was negligible for the presented use-case, as is displayed in figure 5.7. Here, the differ-
ence between the two approximation techniques is shown to be up to 30cm for a distance of up
to 200km; too small to influence LoS-queries, as other factors such as the approximation of the
shape of objects (method-dependent) and the terrain sampling resolution of the DEM (90 meters)
overshadow this small value. On the island of Corsica, where the experiment was conducted, a
total of 36 errors were found between the exact vector-based ECEF approach and the approxi-
mation approach. Previous calculations shown in figures A.1a and A.1b illustrated a worst-case
scenario for approximating the curvature of the Earth using a spherical model, and these effects
are hereby shown to not influence the results in a magnitude considered influential. Moreover, this
approach outperforms the exact vector-based approach by 25 percent. As such, it is marginally
slower than the spherical model but its errors are much smaller. This is because the solution pro-
posed in this research question utilizes the original grid, and only translates the elevation value
of a grid point downward according to its surface distance to the observer; thereby omitting the
possibility of shifting the grid incorrectly as was the case in the projection method proposed in
RQ2. Furthermore, a model of a flat Earth was considered and shown to not perform well overall.
For queries at the short range, the flat Earth model can provide a valid approximation due to the
small amount of curvature-induced drop-off. However, in the short range, all alternative methods
are less computationally expensive to perform as well due to their cost increasing linearly with
distance. As such, there is no quantified advantage of using a flat Earth model for the short range.
The geodesic and central angle approach were generally faulty at the larger distances (10 ´ 20
km), indicated by the high value for the mean distance between the observer and target for the
incorrect queries displayed in table 5.4. The mean error over all incorrect queries remained small
at only 11cm. In other words, this method was only incorrect for queries where (on average)
an altitudinal difference of 11cm made the difference between LoS and no LoS. Therefore, this
method is a viable candidate for approximating the curvature of the Earth in a consistent and fast
manner, as this value is well within the error margin induced by the other factors mentioned be-
fore. In the use-case presented in this paper, where a balance must be struck between fidelity and
performance, this method provides the optimal middle-ground between a the computationally ex-
pensive exact vector-based ECEF method and the much less expensive but less reliable spherical
projection method.

6.2 DTED sampling and interpolation techniques

RQ3: What is the impact of different DTED sampling techniques on performance
and accuracy?

The three functions applied to every block of grid points (average, maximum and minimum) pro-
duced results in agreement with the hypothesis; an increased amount of incorrect LoS-queries for
either method. The minimum approach yielded the worst results, a 2.37 percent decrease in ac-
curacy as is displayed in table 5.5. In contrast, the maximum technique only resulted in a 0.99
percent accuracy decrease. This disparity is caused by the format of the experiment where, for
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the permutations of all grid points, most LoS-queries result in false. As such, the minimum ap-
proach which causes more queries to be true has more impact on the accuracy than the maximum
approach which has the opposite effect. The average method produced the most reliable results
where, most notably, the mean error over all and just the incorrect queries are the lowest; 16.7cm
and 11.8m respectively. However, in use-cases where a false positive is more detrimental than a
false negative, the choice to limit LoS using the maximum approach is preferred. Furthermore,
applying the maximum or minimum reduction technique can be a valid strategy in certain scenar-
ios. For example, in order to determine Line of Sight between an observer and a far-away target, a
low-resolution tile as a result of the maximum reduction approach can be used as an initial test; if
the response of the LoS-service is true, then the result of using the original tile will be true as well.
The inverse holds for the minimum approach; if the response of the LoS-service is false, the result
of using the original tile will be false as well. Depending on the conditions and exact use-case,
applying these resolution reduction techniques to a section of sea in the naval context can provide
latency improvements as is displayed in figure 5.9.

RQ4: What is the impact of different DTED interpolation techniques on perfor-
mance and accuracy?

Three prominent interpolation techniques were compared by first removing information from a
DEM grid and then attempting to recover the original data. This approach directly quantified the
applicability of either method to real-world usage, and its ability to fill in the ‘missing gaps’ on a
continuous grid. From table 5.6, the hypothesis was confirmed; the more computational resources
utilized in the interpolation process, the smaller the error. The bi-linear and bi-cubic interpolation
technique rely on the assumption of continuous terrain, as both attempt to fit a function between
their neighbouring points. As such, both techniques produced reliable results with a mean error of
5.3m and 4.4m respectively. Additionally, both techniques are significantly more reliable than the
nearest-neighbour approach, with its mean error of 16.6m. This large error is caused by the rela-
tively large delta between grid points in this experiment; 90m on the unaltered grid and 180m on
the reduced grid. Traveling a distance of 90 meters can cause a significant shift in elevation for a
terrain as mountainous as Corsica. The decrease in error between bi-linear and bi-cubic interpola-
tion is relatively small compared to the increased cost. Therefore, bi-linear interpolation provides
an optimal middle-ground between the inaccurate nearest-neighbour and the costly bi-cubic inter-
polation technique. If a higher fidelity is required, the decision to utilize bi-cubic interpolation
provides more reliable results at high cost. The error values in table 5.6 represent a mean over a
worst-case scenario where an 180 ˆ 180 meter grid was reconstructed into a 90 ˆ 90 meter grid
spanning the same area. The higher the resolution of a grid, the smaller the interpolation errors
will be overall. Given that most DEM grids considered for usage during the process of writing
this paper have approximately 100 ˆ 100 meters as their sampling resolution, performance will
be better than illustrated in table 5.6. To reduce the number of calculations and the complexity
of interpolation, an optimization was introduced in the sampling technique of the LoS-service in
order to half the computational resources required for interpolation. To achieve this, only points
aligned to at least one grid line are sampled. This way, for any grid point in the list of samples,
the distance between either its closest horizontal or vertical neighbour is zero and the interpolation
step in said dimension can be omitted.
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6.3 Pre-computing viewshed for (near) static observers

RQ5: What are the advantages and disadvantages of the different viewshed ap-
proaches with respect to performance and accuracy?

In the process of comparing R2 and XDraw to the baseline R3 viewshed algorithm, a number of
conclusions can be draw. For one, the accuracy of both algorithms is comparable, but a significant
mean error of 2.64m and 2.76 was established for R2 and XDraw respectively. An error of 2˝ over
a long distance represents a significant difference in elevation. However, most of these errors were
concentrated in certain regions, which can be found in figure 5.12.

For the R2 algorithm in particular, figure 5.12a shows a high magnitude error region in the
south-eastern segment of the tile. This is caused by uneven terrain in this section, which is located
very close to the observer. The largest section of the viewshed contains an error of less than
2˝, indicated by the dark blue regions. Here, pure dark blue represents an error of zero and
complete overlap between the results of R3 and R2. Furthermore, for the R2 algorithm, a careful
balance must be struck between two parameters; the grid alignment constants ϵ and the number of
intermediate edge queries N. The former constant represents the maximal proximity by which a
sampled grid point is considered for recording to the viewshed, here 0 ď ϵ ď 1

2 . Ideally, the value
of this constant would be as small as possible, or zero. However, then the final grid would have a
large section of null data due to intermediate points not being recorded to the grid. The second
constant N represents the number of queries to emit for every point located on the edge, with an
offset of 1

N grid point. Increasing the value for this integer value can enable usage of a decreased
value for ϵ, due to an increased possibility of any query crossing a given grid point and therefore
increase the accuracy of the resulting viewshed. Conversely, this does raise the required amount of
computational resources by a factor of N. In this experiment, N “ 4 provided the optimal balance
between resource usage and accuracy.

The XDraw algorithm performs more reliable in the presented use-case, this is shown in figure
5.12c. Here, the south-eastern region does not exhibit a large discrepancy between the results
of R3 and XDraw, as was the case with R2. However, this phenomenon occurs in the north-
western region instead. It is unclear why, as there is no direct conclusion to be drawn based on
the observer’s position illustrated in figure 5.10. Instead, this is likely caused by the interpolation
between two angles in the ring-based marching algorithm of XDraw. The algorithm compares the
angle between the current grid point and the observer to an interpolated angle in the previous ring.
This interpolation happens linearly, and this process can open up the possibility of propagating an
incorrect angle outward. This is a common artifact of the XDraw algorithm, together with the rise
of clear boundaries between the octants in the viewshed representation of figure 5.11e.

RQ6: What is the number of static observer LoS queries at which pre-calculating an
entire viewshed is more efficient than individual queries?

One of the advantages of the XDraw algorithm is its performance, requiring just below 22 percent
of the resources required for the R2 implementation. This is shown in figure 5.13, where the view-
shed computation time is plotted as a function of the total number of grid points. This difference
of a factor of 4 originates from the total number of queries being emitted for every grid point on
the edge, represented by the constant N. In the current implementation, N “ 4 was chosen as the
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ideal balance between accuracy and performance by a process of iteratively decreasing ϵ (starting
at ϵ “ 1

2 ) and increasing N (starting at N “ 1) until a pre-defined set of LoS-queries returned
the correct results and no empty grid points remained on the grid. However, this increases the
computational resources required to fill the grid. Decreasing N or increasing ϵ negatively affected
the quality of the resulting viewshed representation in the testing process, during which the moun-
tainous landscape on the island of Corsica was primarily used. More careful modification of the
parameters depending on the required fidelity can yield more optimal results. For example, in the
scope of the naval use-case, R2 can likely function with 1 ď N ă 4, due to few gradients in the
region surrounding the position of the observer. Thereby decreasing the computational resources
required to perform R2. The XDraw algorithm cannot be modified by changing parameters, but its
interpolation-reliant ring-based comparison of angles leaves room for future improvement. Ide-
ally, interpolation would not occur for a large delta between two neighbouring values in the inner
ring, as these are likely the cause of errors which are prone to propagating to outer rings. This will
further increase resource usage, but improve the fidelity.

Figure 5.13 shows the number of queries to ‘break-even’ on the right-hand y-axis, based on
previous query duration measurements. For a grid of size 2000 ˆ 2000 this is approximately
3 ˆ 104 queries, and for a grid size of 1200 ˆ 1200 this is approximately 2 ˆ 104 for the XDraw
algorithm. This corresponds to a grid points to query ratio of 400 : 3. This is increased by a
factor of 4.7 for the R2 algorithm in its current form with a grid point to query ratio of 400 : 14,
due to modifications made to increase its accuracy at the cost of performance as explained in the
previous paragraph. This is a relatively high number of queries to perform, and depending on
the use-case and velocity of the observer it may be a rare occurrence to reach this ‘break-even’
threshold before the viewshed is invalidated. However, the possibility to compute these viewsheds
off-line beforehand or in parallel must be considered before writing off this method as a viable
approach.

RQ7: What is the maximum offset at which an observer can be approximated as
static for the purpose of re-using viewshed results?

This research question represents questioning an important assumption of any viewshed repre-
sentation; the axiom its inherent validity is based on the position of the observer. Changing the
position of the observer inherently invalidates the previously-created viewshed due to a change
in perspective, and therefore all calculations must be revised. To test this axiom to experimental
data, the mean error of a full viewshed was compared for a range of values of the longitudinal
offset, the value by which the observer moves westward. For every value for the displacement,
a viewshed was computed and the average difference between the original and new viewshed is
calculated and recorded. The resulting graph, displayed in figure 5.14, shows this mean error as a
function of the horizontal displacement. Figure 5.14a and 5.14c in particular show behavior sim-
ilar to linear scaling for the displacement up to 0.01 degrees, roughly corresponding to a surface
distance less than 1km on the latitude of Corsica. Depending on the exact conditions, such as
the position of the observer and target, shifting a select few grid points can still provide a satis-
fying answer when queried from the viewshed corresponding to the previous position. However,
in general, the increase of the mean error is represented by a steep slope in the graphs of figure
5.14. This is caused by the relatively low resolution of the grid with respect to the gradient of the
surrounding, mountainous terrain. However, applying these results to the naval use-case implies
a resulting decreased overall error due to a larger separation between the ship and high-elevation
points. Furthermore, the direction of the observer influences the error between the current and pre-
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vious viewshed. In particular, considering the naval use-case, when the primary landmass is in a
given direction; moving away from this landmass causes a relatively low delta due to the marginal
change in perspective. Conversely, moving in parallel to the landmass maximizes the delta due to
significant changes in perspective induced this movement.

RQ8: What is the performance and accuracy impact of compressing a viewshed?

The initial test performed for the purpose of answering this research question examines the loss of
precision when encoding a value between 0 and π radians (or conversely 0˝ and 90˝) for different
data types. Table 5.9 shows a quantification of this precision loss of a real-world use-case on
the island of Corsica where a viewshed was compressed to occupy a fraction of the original 64-
bit array. The most imprecise primitive data type in Java is the 8-bit byte type, containing just
28 “ 256 different possible configurations. From the initial experiment, it can be concluded that
this precision does not suffice for the purpose of recording angles to the grid, as the mean error
of µ “ 4.55 ˆ 10´3 rad posed a significant difference of approximately 45.5m over a distance of
10km. The short data type occupies twice the memory of a byte, and therefore is considerably
more precise at 216 “ 65536 possible configurations. The mean error µ “ 1.77 ˆ 10´5 rad over
a distance of 10km becomes just 17.7cm. The float data type is even more precise, but exhibits
diminishing returns. Twice the memory usage from 16-bit to 32-bit further decreases the mean
error to µ “ 1.73 ˆ 10´8, but this does not influence the LoS-queries as the error has already
become negligible at 16-bit precision.

Furthermore, on top of quantifying the loss of precision when compressing the viewshed,
the compressed viewshed accuracy was compared to the baseline model of performing individual
LoS-queries. In table 5.10 these results are shown for the R2 and XDraw algorithm, for both
the tile-based and radial implementation. The same conclusion from table 5.9 can be formed;
the byte[] does not provide ample precision in order to encode the minimal required angles in
the viewshed. This can be concluded from the number of incorrect queries in the fourth column
of the ‘Error (incorrect)’ row. The number of incorrect queries is much greater for the byte[]
format for both the R2 and the XDraw algorithm. The difference being even more noticeable for
the latter, where 3048 queries are incorrect on the 8-bit byte[]-encoded viewshed, and just 1122
are incorrect for the 16-bit short[]-encoded viewshed. In some cases the short[] performed
better than the uncompressed viewshed, this is likely due to the rounding induced by the less
precise data type causing an unforeseen positive effect on the LoS-query. However, this difference
is minor compared to the difference between transitioning from the byte[] to the short[]. As
such, the short data type provides enough precision to encode a viewshed, and offers a reduction
in memory usage of a factor of 4 with respect to a 64-bit double. Additionally, testing was
performed on the latency induced by this simplistic method for encoding and decoding the angles
to and from the compressed viewshed, but no significant enough impact was measured.
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6.4 Collision detection

RQ9: What are the performance and accuracy effects of exact mesh-based collision
detection versus exclusively calculating collision detection of the enveloping sphere?

During this experiment, the viability of two different approximation methods for the purpose of
collision detection were researched. In particular, it was of interest to determine how close the
behavior of a detection model consisting of an enveloping sphere around the vertices of a 3d model
can come to exact mesh-based collision detection. To test this, a ‘peek’ manoeuvre was performed
behind a mountain at a large distance, and a sensor was simulated to detect the peeking object.
The shape of the object was chosen such that it portrays a worst-case scenario; an elongated
model which does not fit a sphere and therefore creates a significant amount of negative space
(« 80 percent). This negative space caused the enveloping sphere to be detected first, as is visible
in figure 5.16. Here, the 3d model of a plane moves upward as the elevation value of the x-axis
increases. For elevation ∆h “ 9m, the probability Ppdetectq increases, and the plane is reliably
detected at ∆h ě 10m. For the original, mesh-based model, this process occurs for ∆h ě 22m.
The elevation difference between the first moment of detection (i.e., where Ppdetectq ą 0 holds), is
approximately 12m; the amount of vertical space between the top of the 3d model and the top of the
enveloping sphere. Depending on the distance between the observer and the entity, the elevation
difference between the first moment of detection can correspond to an angle within a predefined
margin of error. For example, at 16km, this difference in angle corresponds to roughly ∆θ “

arctan
!

12
16ˆ103

)

“ 0.04˝. The error induced by using a viewshed or different CRS overshadows
this minor angular approximation. For entities close to the observer, an alternative must be defined.

Additionally, a bounding box model was proposed to approximate the shape of the 3d model.
This bounding box contains a constant number of faces for any shape it contains, and is therefore
reliable in terms of estimated computational resources. Figure 5.16 shows near-identical behavior
of the bounding box model and the original 3d model. However, the bounding box model is more
expensive to compute collision detection for, as is indicative of figure 5.17. In a scenario where
entities are located close to the observer, these additional expenses are worth the extra fidelity
in order to not obfuscate too much of the view. Ideally, an initial computationally inexpensive
task of performing collision detection with the enveloping sphere is performed before considering
computing collision detection on the bounding box. If the latter detection model returns false,
the bounding box model can be omitted. Due to the bounding box model performing well for the
scenario illustrated in figure 5.16, it is considered to be a viable alternative to mesh-based collision
detection at the medium to long-range. At the short range, the differences between the bounding
box and exact mesh-based collision detection become more apparent. In this range, a simplified
3d model of the original mesh can be used for this purpose. Algorithms to reduce the complexity
of a 3d model exist in literature [15]. As a result, the total error is then not only dependent on
the distance to the entity, but also on the quality of the mesh approximation of the model. Based
on the correctness of the mesh approximation, it can be decided the use the bounding box model
instead due to its constant and predictable performance.
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6.5 Radar detection model

RQ10: What is an appropriate SNR threshold to model the unique effects of radar
propagation such as refraction and ducting?

In order to incorporate radar-like behavior such as ducting and waves curving behind peaks without
embedding confidential or otherwise sensitive radar characteristics in a detection model, it was
chosen to model radar propagation using the parabolic equation (equation B.14) and to interpret
the SNR using a placeholder threshold-based detection model (equation 2.8). This model created
a set of interesting images, shown in figures 5.18a - 5.18c, which display this characteristic radar
behavior. In figure 5.18a, a realistic atmosphere was introduced, and the effects of knife-edging
(curving behind a mountain peak) occurs as a result. The SNRthreshold at which this occurred is
between SNRthreshold “ 0.25 (figure 5.19c) and SNRthreshold “ 0.1 (figure 5.19d). As such, for
this scenario (the atmospheric conditions, radar parameters) a SNRthreshold of 0.1 ď SNRthreshold ď

0.25 suffices for the stipulated set of requirements. Furthermore, in order to push the effect of an
increased range induced by radar ducting to its limit, a scenario on a flat surface was considered
in figures 5.18b and 5.18c. In both figures all radar parameters are identical, the only difference
being the atmospheric conditions; the former sensor being situated in a monotonic atmosphere,
and the latter sensor in a atmosphere containing an elevated duct. This duct acts as a wave-guide
for the radar waves, carrying them along the surface of the Earth and extending the maximum
range of the radar sensor. Depending on the exact atmospheric conditions of a given scenario,
and the detection sensitivity, either of the proposed values of SNRthreshold “ 0.25 (figure 5.20b),
SNRthreshold “ 0.1 (figure 5.20d) or SNRthreshold “ 0.05 (figure 5.20f) can be applied.

For the naval use-case presented in this paper, it is interesting to study the effects of this
extended range due to atmospheric conditions. However, this method is paired with increased
resource usage; up to a total of 20 seconds for one long-range query for a target at a distance of
125km. This model does not meet the real-time requirements, and can therefore not be considered
for usage in the LoS-service. The performance of the algorithm can be improved by decreasing
the sampling rate of the terrain and increasing the paraxial time step ∆x for the PE equation. How-
ever, this negatively affects the fidelity of the model due to sections of terrain not being correctly
accounted for, negating the prospects of the PE model over the electro-optical vacuum model.
Alternatively, the Parabolic Equation model can be implemented and compiled in a low-level pro-
gramming language such as C or C++, thereby allowing usage of high-performance Fast Fourier
Transform (FFT) libraries. This FFT operation concerns a significant part of the computation cost
in the algorithm, as is indicative of equation B.14. This can potentially decrease the computation
time of short to medium-range queries to within reach of the real-time requirements.
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Chapter 7

Discussion

The contents of this thesis concerned the answering of a set of research question and the delivery of
a proof-of-concept Line of Sight-service. Using this service, a set of experiments were conducted
to test the research questions of this paper. During the development of this proof-of-concept
alongside speaking with experts, the initially stipulated set of research questions were iteratively
scoped and reformulated in order to better fit the use-case of a naval simulation environment. In
particular, achieving accurate and performant LoS-queries on a grid-based DEM whilst accounting
for the curvature of the Earth was the first priority. In order to solve this problem statement, several
alternative approaches which were not put forward in this paper were considered as well. For
example, a model where the elevation data is projected to a planar surface in order to embed the
curvature of the Earth into the grid data itself. The spherical projection method instead attempted
to utilize the simplistic geometry of a perfectly spherical Earth in order to compute LoS. However,
as the Earth is not a perfect sphere, the elevation data had to be projected to a spherical CRS
first. The resulting LoS-service had very few incorrect queries, but some results presented were
unexpected. The solution found in literature; fitting a function to account for the curvature of the
Earth, provided a more reliable method instead.

In the process of implementing the viewshed algorithms, the underlying logic of handling the
grid data was modified and rewritten multiple times. Low-level control over the grid data structure
used in the LoS-service allowed for more granular control over several factors such as the logic for
interpolation and optimally sampling grid points based on grid alignment. The latter optimization
is a method to reduce the resources required to interpolate values by only considering data points
which are aligned to either the horizontal or vertical axis when performing an LoS-query. This
omits the requirement to interpolate in two dimensions, as the point is already aligned to one
of the two grid lines. Furthermore, the R2 and XDraw algorithms were implemented and found
to be relatively imprecise compared to R3. In practise, this imprecision is likely the result from
the algorithms sampling different elevation values as a result of interpolating different continuous
locations on the grid. This is caused by the terrain being very mountainous. Either a more flat
or more high-resolution DEM negates these negative effects. In the naval use-case where high
gradient terrain is absent in a radius around the ship, the errors presented in the results are likely
not a common occurrence.

On the subject of collision detection, two methods for approximating the shape of a 3d model
were studied; the enveloping sphere and bounding box model. Initial recommendations around this
subject were to develop an Octree data structure, where the locations of objects in the environment

66



were stored in a recursive data format. However, due to time limitations it was decided to not
include this in the LoS-service as of now. The initial problem was related to whether to encode the
3-dimensional ECEF location or the 2-dimensional coordinate position. The collision detection
logic relied on the ECEF positions of the models, as the sight-lines propagate in 3-dimensional
space. Conversely, all locations and queries were recorded in their coordinate form. Furthermore,
upon altering the position of an entity, its relation to the Octree must be re-calculated. Therefore,
in a scenario containing one observer and moving entities, there was no quantified advantage
to using the Octree in this stage of development. Instead, a reliable solution for the collision
detection problem statement was initially testing for collision with the enveloping sphere, and then
the bounding box and/or exact mesh model. For the naval context, the bounding box model suffices
for the purpose of collision detection. Additionally, the sensor size constant enables limiting the
maximal view distance of the electro-optical sensor by defining the minimal required size of an
object at a given distance.

The mathematics of the radar propagation physics introduced a steep learning curve for the
subject. Previous work and existing tools therefore provided a good starting point in understand-
ing the mechanisms behind the radar Split-Step Parabolic Equation model (equation B.14), and
enabled to development of a solution in Java. During the development process, the final key step
was to interpret a value for the SNR (signal-to-noise ratio) as a true or false. Discussing this with
experts on the field of radar propagation modeling yielded the conclusion that the development
of such a detection model would exceed the scope of the thesis due to the required expertise and
insights into radar characteristics. Instead, it was chosen to create a placeholder model which re-
sulted in satisfying results for the presented use-case. In any future implementations or spin-offs,
a high-fidelity detection model is of the essence in order to produce reliable results true to the
physical behavior of a radar system. However, the radar propagation model remained relatively
slow, and potential latency improvements will likely not decrease the computation time of long-
range radar LoS-queries to an order of magnitude considered (near) real-time. As such, either a
different model must be considered, or tolerance for a higher latency must be accepted into the
system requirements if the radar behavior must be modeled as accurately as possible.

The LoS-service developed as a result of the research conducted in this paper allows the cre-
ation of an API-endpoint, to which can be queried whether two points and/or entities are within
Line of Sight. In a simulation environment, such an API can determine whether an entity is able to
detect and therefore should react to an object or entity in its surroundings. Furthermore, collecting
the results of a set of LoS-queries using the radar model enables the construction of a so-called
‘radar display’ for the purpose of human interaction.

Priorities and viability ultimately determined several potential research questions to not be
applicable to the presented use-case. For example, the ray tracing model was developed but ul-
timately not studied due to initial simulations not presenting satisfying results. The atmospheric
effects are accounted for using Snell’s law, but these effects were negligible in the current imple-
mentation and the model was relatively computationally expensive. As such, more effort was put
into the electro-optical vacuum model and parabolic equation radar model. Future work can focus
more on a viable ray tracing implementation, potentially utilizing the efficiency of the GPU for
this purpose. Furthermore, as was described in an earlier chapter, GPU usage was omitted during
the research process due to requirements of the use-case; determining LoS using the CPU is possi-
ble according to existing research, and provides a multitude of advantages over LoS on the GPU.
Software services running on the CPU are more easily deployed, and can utilize CPU cycles of ex-
isting infrastructure instead of requiring a dedicated (potentially expensive and resource-intensive)
graphics card. In real-world use-cases where the size of a system must be taken into account, such
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as on a marine ship, a CPU-only service is advantageous as well due to its much smaller space-
and energy footprint. In future research, the alternative of approaching the problem on a GPU can
be studied more extensively, and can potentially be compared to the CPU-only approach in terms
of performance and cost.

General recommendations for an LoS API

From the conclusion and discussion of this paper, a set of general recommendations can be stip-
ulated for the purpose of defining a reliable Line of Sight-service. For one, the Parabolic Equa-
tion radar model as it is currently implemented does not meet the current scenario’s needs; the
signal-to-noise ratio resulting from the model is yet to be translate either to a binary true/false or a
probability of detection using a valid detection model. Additionally, at the longer ranges the model
struggles to meet real-time requirements without under-sampling the terrain. Stronger hardware
or possibly implementing the algorithm efficiently on a GPU can potentially alleviate this issue.
Geometric LoS allows a simplistic model of reality to perform queries in sub-millisecond latency,
and does suffice if accounting for atmospheric effects and ducting can be omitted. Furthermore,
this model allows for granular control over calculating detection probability in the form of sam-
pling a surface tangential to the sight-line. This way, because the individual queries are highly
performant, the surface which is visible to the observer from the point of view of the observer can
be approximated reliably.

Viewsheds yield interesting advantages over individual queries for static observers, and as such
can be utilized to their full strengths when simulating a radar system which is installed on a vantage
point. For a moving ship, depending on the required fidelity and the gradient of the surrounding
terrain, re-using a viewshed calculation of 90 meters away remains a valid option. Assuming a
ship does not exceed 100 km/h, a time interval of approximately 3 seconds is available before
a next viewshed is required, which (depending on the maximum range) is possible according to
the measurements presented in this paper. The advantages of computing the full viewshed over
performing individual queries are: a) only a single query to an LoS API is required and then cached
and b) the system can account for an arbitrary number of entities as all possible answers to future
queries are embedded in the viewshed grid.

For the purpose of modeling the entities in the environment for collision detection, three solu-
tions were proposed. The most performant method, the enveloping sphere, can serve as an initial
check to separate potential candidate entities from entities which are certain to not intersect the
sight-line. Then, depending on the number of meshes and available computing resources, either
the bounding box model or the 3d mesh will be checked for intersection. The advantage of the for-
mer method is its reliable scaling, as the resources required to compute for collision detection do
not depend on the complexity of the entity itself. However, at closer distances, the marine ships’
bridge (which extends vertically above all other parts of the ship), can cause false positives when
calculating whether the ship is in Line of Sight. Therefore, at closer distances, a simplified mesh
model may be preferred over both the enveloping sphere and bounding box model. Alternatively,
a distance-dependent mesh where the fidelity decreases as a function of distance from the observer
may attenuate the aforementioned issues.
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Appendix A

Perfectly spherical Earth
approximation assessment

Depending on the use-cases and range, approximating the shape of the Earth as a perfect sphere
can yield satisfying results when calculating the curvature of the Earth. When calculating an
average radius, it is beneficial to weigh the equatorial radius more than the polar radius. Given
constants a “ 6378137m and b “ 6356752.314245m of the WGS84 ellipsoid, this would result
in an average radius of 2a`b

3 “ 2ˆ6378137`6356752.314245
3 « 6371000m. Weighing the equatorial

radius twice positively influences the accuracy near the equator, and negatively near the North and
South pole. However, heuristically, most queries are located nearer to the equator than to the North
or South pole. In figure A.1a, a 2-dimensional representation of the spherical drop-off has been
plotted. The further away a target on the spherical Earth’s surface would be, the lower it would be
from the perspective of the observer. A similar representation can be viewed in figure A.1b, where
a 2-dimensional plane contains the drop-off when moving in either of the two dimensions. Due to
the spherical nature of this approximation, this layer is identical to any position the observer can
be positioned, and therefore this representation only has to be pre-computed once. Superimposing
this layer upon a DEM containing elevation data results in an approximation of the effect of the
curvature of the Earth. As a result, on a spherical Earth approximation, a line which is pointing
downwards from a high position (figure A.1c), would appear to curve upward when accounting
for the curvature of the Earth (figure A.1d).

The error introduced by approximating the ellipsoidal shape of the Earth by a perfect sphere
is shown in figures A.2a - A.2c. The difference between the radius of the Earth on the ellipsoidal
and spherical representation varies as a function of the angle between the North pole and the point
of interest. At α « 36˝ the two models intersect, this can be viewed in figure A.2a. The difference
in drop-off caused by the approximation has been visualized for two locations on Earth; for the
North pole (figure A.2b) and the Equator (figure A.2c). In the former figure, the error increases
as a function of displacement, then briefly decreases due to the intersection of the spherical and
ellipsoidal models before it increases again. In the latter, the error slowly increases over time as
the difference between the radius at the equator between the two models is constant. Therefore,
the two models never intersect. To conclude; for a distance along the surface corresponding to an
angle α ď 10˝ the error introduced by the spherical approximation is very small (« 50m) with
respect to the total distance travelled. At the equator, a longitudinal angle of 10˝ corresponds with
a distance of 10 2πr

360 “ 10 2ˆπˆ6371000
360 « 1112000m. Therefore, when considering a radius within

this bound, the spherical Earth approximation can be considered as a viable alternative.
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In a spherical reference system, the angle between an observer and a target can be calculated
using formula A.1.

θobserverÑtarget “ arctan
ˆ

r1 sinα
r0 ´ r1 cosα

˙

(A.1)

Here, α is the angle on a great circle between the observer and target positions, r1 is the
distance from the target to the centre of the Earth and r0 is the distance from the observer to the
centre of the Earth.
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(a) A 2-dimensional representation of the
drop-off introduced by the curved nature
of the Earth along a straight line.
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(b) A 3-dimensional representation of the
drop-off introduced by the curved nature
of the Earth.
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(c) An illustration of a sightline starting
at y “ 50km with a negative slope, when
approximating the Earth as a plane. When
plotting the distance between the sightline
and the plane, the result is a straight line.
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(a) The difference in radius between the ellipsoidal and spherical models on the North pole, the
region with the largest offset. The difference is minimal at angle α « 36˝, where the two represen-
tations intersect.
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(b) The difference in the drop-off between considering a uniform spherical drop-off versus an exact
ellipsoidal drop-off on the North pole. The difference is minimal at small angles α ď ϵ for small ϵ
and angle α « 36˝, where the two representations intersect.
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(c) The difference in the drop-off between considering a uniform spherical drop-off versus an exact
ellipsoidal drop-off on the Equator. The error steadily increases as a function of the angle α.

Figure A.2: The difference in drop-off for an ellipsoidal model of the surface of the Earth
and a spherical approximation for several points on the surface of the Earth. On the equa-
tor, the error steadily increases as a function of distance, whilst for observers on the North
or South pole a local minimum at d « 36km arises due to an intersection between the
ellipsoidal model and the spherical approximation.
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Appendix B

Derivation of the Split-Step Parabolic
Equation Radar propagation model

In order to derive the solution to the split-step parabolic equation for wave propagation, Maxwell’s
equations (equation B.1 [18]) are used as a starting point.

∇ ¨ E⃗ “ ρ{ϵ0 (B.1a)

∇ ¨ B⃗ “ 0 (B.1b)

∇ˆ E⃗ “ ´
δB⃗
δt

(B.1c)

∇ˆ B⃗ “ µ0pJ⃗ ` ϵ0
δE⃗
δt

q (B.1d)

Here, E⃗ is the electric field, B⃗ the magnetic field and J⃗ the current density. Constants ρ is the
electric charge density, and ϵ0 and µ0 are permittivity [F ¨m´1] and permeability [kg ¨m ¨ s´2 ¨ A´2]
in a vacuum respectively.

To describe the propagation of an electro-magnetic wave, starting from Maxwell’s equations
(B.1) for charge-free space (ρ “ 0, J⃗ “ 0) to form equations B.2.

∇ ¨ E⃗ “ 0 (B.2a)

∇ ¨ B⃗ “ 0 (B.2b)

∇ˆ E⃗ “ ´
δB⃗
δt

(B.2c)

∇ˆ B⃗ “ µ0ϵ0
δE⃗
δt

(B.2d)

Taking the curl of ∇ˆ E⃗ and ∇ˆ B⃗ in equation B.2 and re-substituting the equations for ∇ˆ E⃗
and ∇ˆ B⃗ of the resulting right-hand side of the equation results in equation B.3.
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∇ˆ p∇ˆ E⃗q “ ´µ0ϵ0
δ2E⃗
δt2 (B.3a)

∇ˆ p∇ˆ B⃗q “ ´µ0ϵ0
δ2B⃗
δt2 (B.3b)

Then, using the mathematical equation for the curl of a curl (equation B.4), and substituting
equations ∇ ¨ E⃗ “ 0 and ∇ ¨ B⃗ “ 0 of equation B.2 in equation B.4 results in equations B.5.

∇ˆ p∇ˆ A⃗q “ ∇p∇ ¨ A⃗q ´ ∇2A⃗ (B.4)

µ0ϵ0
δ2E⃗
δt2 ´ ∇2E⃗ “ 0 (B.5a)

µ0ϵ0
δ2B⃗
δt2 ´ ∇2B⃗ “ 0 (B.5b)

Substituting the speed of light c for 1?
µ0ϵ0

results in equation B.6.

1
c2

δ2E⃗
δt2 ´ ∇2E⃗ “ 0 (B.6a)

1
c2

δ2B⃗
δt2 ´ ∇2B⃗ “ 0 (B.6b)

Therefore, for a field u, a partial differential equation coined the ‘wave equation’ arises (equa-
tion B.7).

δ2u
δt2 “ c2

ˆ

δ2u
δx2 `

δ2u
δy2 `

δ2u
δz2

˙

(B.7)

Equation B.7 is the scalar wave equation, sometimes denoted as □u “ 0 where □ denotes the
d’Alembert operator 1

c2
δ
δt2 ´ ∇2 or in scalar form 1

c2
δ
δt2 ´ δ

δx2 ´ δ
δy2 ´ δ

δz2 .

The Helmholtz equation (equation B.8) represents a time-independent variant of the wave
equation:

∇2u “ ´k2u (B.8)

Here, k is eigenvalue and in the use-case of waves the wave number (k “ 2π
λ for wavelength

λ). It is obtained by applying the principle of separation of variables to the wave equation.
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Furthermore, after obtaining the Helmholtz equation for the time-independent solution to the
wave equation, applying the paraxial approximation yields a more applicable form for computer
modeling. In the paraxial approximation, the assumption is made that the derivative in the x-
direction slowly varies as a function of x: | δ

2u
δx2 | ! |⃗k δuδx |. Here, k, is the wave vector and the

angle is assumed to be small. The paraxial Helmholtz equation (equation B.9) can be derived by
substituting complex amplitude Ap⃗rq “ up⃗rqeikx into equation B.8 and assuming that under the
right conditions δ

2u
δz2 ` δ2u

δy2 “ 2ik δuδx “ 0 [21].

δ2A
δz2 `

δ2A
δy2 ` 2ik

δA
δx

` 2k2A “ 0 (B.9)

Expressing the wave equation in two-dimensional coordinates, by assuming azimuthal sym-
metry in the vertical axis, allows rewriting the equation B.9 in the 2-dimensional, cylindrical form
[25] as equation B.10.

δ2A
δz2 ` 2ik

δA
δx

` 2k2A “ 0 (B.10)

Isolating δAδx in equation B.10 results in equation B.11.

δA
δx

“
´i
2k
δ2A
δz2 ` 2ikA (B.11)

Computing the Fourier transform of Ap⃗rq results in equation B.12.

δUpx, pq

δx
“

´ip2

2k
δ2Upx, pq

δz2 ` 2ikUpx, pq (B.12)

Here, Upx, pq “ F tAp⃗rqu where F is the Fourier transform and p is the transformation vari-
able p “ k sin θ where θ is the propagation angle with respect to the horizon [25].

Furthermore, the Fourier Split-Step solution of the Parabolic Wave Equation can be derived
by taking the inverse Fourier transformation of both sides for range x ` ∆x by utilizing the rule
that the Fourier transformation of a derivative is a multiple of the transformation (equation B.13).
Applying this rule to equation B.12 results in equation B.14.

f̂ 1ppq “ F
"

δ

δx
f pxq

*

“ i2πp f̂ ppq (B.13)

Apx ` ∆x, zq “ eik∆xF´1
"

e
´i∆xp2

k F tAp⃗rqu

*

(B.14)

Here, F´1 is the inverse Fourier transformation.
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Appendix C

Line of Sight-service architecture

This section explains the overall architecture and inner workings of the LoS-service. The pri-
mary methods containing the sensor behavior are located in the Sensor abstract class and its
sub-classes, in particular the ElectroOpticalVacuumSensor and the RadarPESensor in figure
C.1. The former class models an electro-optical sensor as if it were operating in a vacuum using
geometry. The latter class utilizes the Parabolic Equation method to calculate the SNR (signal-to-
noise ratio) for a radar system. Due to a common super-class, both sensors can be queried in a
similar way and return an SNRResultEnvelope; which contains all relevant information relating
to the resulting signal strength. This result can then be applied to a DetectionModel, which
returns an LOSResultEnvelope. The resulting object contains relevant information on the query
result such as a binary true or false, as well as the point of collision with the terrain or an object.

Figure C.1: UML class diagram of the Sensor abstract class and its related classes.

Electro-Optical Sensor

The electro-optical sensor is modeled as a geometric LoS-sensor, assuming a vacuum as its medium.
This model has the benefit of being very computationally inexpensive to perform queries on. How-
ever, the phenomenon of extended LoS beyond the horizon due to refraction in the atmosphere is
unaccounted for. Calculating LoS consists of a call to the lineOfSight() method with two co-
ordinates as arguments; the position of the observer and the target. In this case, the target will be
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approximated as a point in space with zero volume, and LoS between the two points consists of
a binary true/false based on whether or not a direct geometric line can be drawn between these
two points in 3-dimensional space. Alternatively, an Entity object can be passed as an argument,
which represents a target with volume. Determining LoS between the observer and an Entity re-
quires emitting a group of sight-lines to a plane orthogonal to the sight-line between the observer
and the centre of the entity. Using a sampling technique to subdivide the plane tangential to the
sight-line (indicating the shape of the entity from the point of view of the observer), an estimation
of the sensor coverage is calculated based on the samples which intersect the model and samples
which are obstructed by terrain. An illustration of this is given in figure 2.8. Furthermore, de-
pending on the required fidelity, exact mesh-based collision detection can be omitted if the system
requirements allow for this approximated approach.

Parabolic Equation (PE) Radar Sensor

Performing an LoS-query on a PE radar sensor using the lineOfSight()method is very similar to
the electro-optical sensor, as both classes can be used interchangeably due to their common super-
class. However, instead of using geometry, the PE radar sensor utilizes a step-wise marching
algorithm towards the target. Querying LoS between an observer and a point by passing two
coordinates as arguments assumes a default radar cross-section (RCS) of σ “ 1 m2, and passing
an Entity object as second argument for the target can account for a custom value for the RCS.
The detection model assumes a step-function as described in formula 2.8, and is to be replaced by
a proper detection model for real-world usage due to its heavily simplified nature.

Entity collision detection

In order to perform collision detection queries, the shape of an object has to be denoted as a set of
geometric shapes. In principle, all complex shapes can be expressed as a combination of triangles
and spheres. Collision detection with either of these shapes is performed using algorithm 1 and
formula 2.3 respectively.

Figure C.2: UML class diagram of the Entity class and its related classes. All logic
associated with collision detection is housed in a intersects()method implementation.

Here, the Triangle and Sphere classes contain the collision detection logic, which is ab-
stracted for all other classes. The Entity class determines whether it collides with a geometric
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line by first checking for an intersection with its bounding sphere (a sphere containing all ver-
tices within its radius r), and then optionally performing mesh-based collision detection on its
faces. Additionally, the Entity class contains a method called toBoundingBox, which reduces
the model to a bounding box of its previously complex shape. This has the effect of reducing a
high-polygon model to a model containing (by definition) 12 triangles (6 faces, two triangles for
each face); thereby reducing the computational complexity for collision detection. The Entity
class contains a constructor which is able to parse Wavefront ‘.obj’-files, a file format which ex-
presses 3d models as a set of vertices and faces consisting of previously-defined vertices. To limit
the complexity of the developed parser, only orthogonal triangles are supported.

Coordinate Reference Systems

The initial development phase was focused on the foundation of all calculations; correctly account-
ing for different Coordinate Reference Systems. The current implementation contains a model
where a CoordinateReferenceSystem abstract super-class contains correct yet computation-
ally expensive algorithms to convert between LLA and ECEF for WGS84, as well as calculating
the angle between two coordinates, the distance on a great circle and the distance from a coordi-
nate to the centre of the Earth. Then, a different implementation is able to overwrite these methods
with a more candid algorithm based on the advantages the CRS provides. E.g., the spherical CRS
allows for computationally inexpensive calculation of the angle between two coordinates using
equation A.1. In the current implementation, a Coordinate object is always declared to be rela-
tive to a CRS, and has this information embedded in a private field. Because of this, all logic for
converting to a new CRS can be abstracted and delegated to the Coordinate class.

Figure C.3: UML class diagram of the CoordinateReferenceSystem abstract class and
its related classes.
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Chart & DEM Grid

The key to correctly handling DEM data is to implement a solid foundation for the underlying grid
in the form of an abstraction layer. This way, any grid-related methods can be used in a sub-class
without re-implementing similar logic. This class hierarchy is illustrated in figure C.4. For exam-
ple, the QueryableGrid class contains methods to convert between grid indices and coordinates,
as well as methods to interpolate between grid points in order to emulate a continuous surface
gradient. This interpolation logic is used in ChartTile to query the elevation at a coordinate as
well as in XDrawTileViewshed to interpolate the angle from a previous ring. This modularity
increases maintainability, and abstracts mathematics in the low-level classes. In the current im-
plementation, a Chart object is a collection of ChartTile objects, with its main responsibility to
find the tile(s) corresponding to a given coordinate or set of coordinates and delegating the retrieval
of elevation data to the correct tile. The interpolate() method in Chart creates an array of co-
ordinates with elevation data based on the grid resolution of every respective tile it passes. Then,
sampling is performed in alignment with the grid in order to limit the complexity of interpolation
to linear or cubic interpolation as opposed to bi-linear or bi-cubic interpolation.
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