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Tanser Karakash
Enschede, March 2023
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Management Summary

This research was conducted at Meilink Borculo B.V., located in Borculo, the Netherlands. As one
of the leading industrial packaging companies in the country, Meilink specializes in a wide range of
custom packaging solutions, including wooden boxes, cardboard packaging, exhibit packaging, and flight
cases. The company is committed to enhancing customer service by also managing the transportation
of products to and from its production sites.

Since Meilink started as a family business, manual operations still dominate their workflow. This
manual approach can be inefficient and costly, requiring attention as a core problem which was addressed
within this thesis. The objective of this research was to solve the core problem of manual transportation
planning. Because Meilink Borculo B.V.’s transportation services have significant prices, its primary
objective is to lower those costs by optimizing the routing process. Thus, the research question was
formulated as follows:

“How can Meilink Borculo B.V.’s current transportation planning processes be opti-
mized to reduce its transportation costs?”

To achieve this, the study aimed to:

• Analyze the current transportation system and identify inefficiencies.

• Explore applicable techniques and methods for formulating and solving complex vehicle routing
problems (VRP) in the existing literature.

• Develop and evaluate a solution approach tailored to Meilink’s specific problem characteristics and
KPIs.

The initial phase of this research performed comprehensive analysis to understand the current logistics
operations at Meilink Borculo B.V. This involved gathering data on various critical aspects for model
development, including the logistics structure, types of vehicles, routing practices, constraints, cost
structure, and Key Performance Indicators (KPIs). The analysis revealed that Meilink’s transportation
system is complex, characterized by daily delivery operations and categorization of order requests into
deliveries from the depot to customers and pickups from customers and suppliers to the depot.The
analysis identified a routing optimization challenge at Meilink, aiming to reduce transportation costs.
An extensive literature review was conducted to explore suitable modeling approaches and solution
methods for Meilink’s specific transportation characteristics.

The literature review clarified that Meilink’s transportation problem can be formulated as a Vehicle
Routing Problem (VRP). More specifically, the transportation problem of the company in case aligns with
a Multi-Trip Capacitated Vehicle Routing Problem with Divisible Delivery and Pickup Time Windows
and Private Fleet and Common Carriers (MTCVRPDDPTWPFCC). Although there are studies, which
have been researching each of these characteristics, either separately or in combination, there is no model
in the literature, which provides a comprehensive overview of all those characteristics together. In VRP
literature, the closest model has five out of the six characteristics of Meilink’s problem. Subsequently, the
thesis proposed a Mixed Integer Linear Programming (MILP) model taking all the problem constraints
into consideration. Due to the complexity of the model, the MILP is not able to solve the problem for
large instances in an efficient computation time. Therefore, a metaheuristic approach was formulated,
namely, a Variable Neighbourhood Search (VNS) metaheuristic, which is able to handle the larger data
instances.

For the experimental design, artificial data instances were developed for parameter tuning, together
with real-world data instances from company data. The settings for the VNS and MILP algorithms, such
as computation time and iteration limits, were optimized to ensure applicability to similar VRPs. For
the MILP, the maximum running time was set to 1800 seconds, which is aligned with the requirements
from Meilink. The VNS algorithm consists of initialisation phase, where a random initialisation was
selected, a shaking phase, with adaptive shaking on every 25% of the iterations without improvement,
and a local search phase with five distinct operators - Swap vehicles, 2-Opt, Swap customer, Reinsertion,
and Move.

Following parameter optimization, four experiments evaluated the methodologies under various con-
ditions, examining their impact on the objective function across different fleet compositions and routing
strategies. The experiments were focused on testing the models under different conditions and different
number of instances, ranging between 7 and 100 nodes. The scenarios were focused on evaluating the
efficiency and cost improvement of relying on mixed fleet, only private fleet, and solely common carriers.
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The last experiment was performed to showcase the contribution of routing all vehicles in the fleet and
the cost contribution of using such strategy.

The results of the experiments revealed the following:

• The MILP model performs better than the VNS in low-demand data instances by finding the
optimal solution within reasonable time. However, the exact method generates high optimality
gaps in high-demand scenarios, leading to very high costs and an average computation time of
1260 seconds.

• The VNS solution approach performs better than the MILP in high-demand data instances by
generating high improvements of approximately 30% on average, compared to the initial solution.
The VNS solves the problem within a reasonable computation time averaging only 18.53 seconds,
excluding the initialisation.

• By using the VNS approach, the current costs can be improved up to 64%.

• The average objective values of the VNS are lower than the ones’ of the MILP model across the
feasible experiments.

• Relying solely on private fleet is not optimal for the company, since the vehicles are unable to serve
all customers in high demand scenarios, generating an average of 23.40% unserved customers across
the real-world data instances.

• Using solely common carriers, without routing them could increase the transportation costs on
average.

• Routing the vehicles is essential for decreasing overall transportation costs.

• The most optimal strategies are using mixed fleet or relying solely on common carriers. However,
in both cases, all vehicles should be routed to achieve the best cost performance.

• For optimal private fleet utilization, trucks with IDs 3, 4, and 5 are recommended, either by
incorporating additional vehicles within the private fleet or alongside external trucks.

• Replacing manual transportation planning with optimized approach and incorporating that in a
tool can provide the company with an optimal resource utilization and improve the transportation
cost performance.

The solution approaches detailed in the thesis—namely, the Mixed Integer Linear Programming
(MILP) model for smaller instances and the Variable Neighborhood Search (VNS) metaheuristic for
larger ones—provide a comprehensive framework for optimizing Meilink Borculo B.V.’s transportation
process. The results demonstrate significant improvements in operational efficiency and cost reductions.
Therefore, it is recommended that Meilink Borculo B.V. incorporate routing tools into its operations,
moving away from manual transportation planning. Additionally, the company should continue utilizing
its private fleet vehicles as long as their daily fixed costs remain stable. However, it may need to either
expand its private fleet or continue using common carrier services. Given the company’s ability to
control routing for both internal and external vehicles, it is highly recommended to do so, as this leads to
significant cost reductions. The most cost-effective approach involves using common carriers exclusively,
provided the company can ensure a proper routing strategy.
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List of Acronyms

• ACO – Ant Colony Optimization

• AVNS – Adaptive Variable Neighbourhood Search

• CVRP – Capacitated Vehicle Routing Problem
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• KPI – Key Performance Indicator

• MILP – Mixed Integer Linear Program

• MTVRP – Multi-Trip Vehicle Routing Problem
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Delivery and Pickup Time Windows and Private Fleet and Common Carriers

• SA – Simulated Annealing

• SDVRP – Split Delivery Vehicle Routing Problem

• TS – Tabu Search

• VND – Variable Neighbourhood Descent

• VNS – Variable Neighbourhood Search

• VRP – Vehicle Routing Problem

• VRPB – Vehicle Routing Problem with Backhauls

• VRPCB – Vehicle Routing Problem with Clustered Backhauls

• VRPDDP – Vehicle Routing Problem with Divisible Delivery and Pickup
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• VRPPFCC – Vehicle Routing Problem with Private Fleet and Common Carrier
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1 Introduction

This chapter contains a description of the business in the case and its problems. Section 1.1’s objective
is to provide the reader with an overview of the industry in which the firm operates and its products and
services. Section 1.2 introduces the problem cluster, together with the core problems which are going to
be considered within this thesis. Section 1.3 outlines the goal of this research. Section 1.4 gives the main
research question and all sub-questions based on the problem statement and the core problem. Finally,
Section 1.5 provides an overview of the research design that is followed within the thesis.

1.1 Company description

Industrial packaging is critical in protecting commodities from damage, moisture, temperature, and
contamination. The primary goal of industrial packaging is to preserve industrial commodities during
transportation and storage (ITPPackaging, 2020). Because industrial packaging is a crucial component
in extending a product’s life, this industry has been developing, and in 2022, it was valued at over 6000
million USD, with growth predicted to double in the next five years (TheExpressWire, 2023).

Meilink Borculo B.V. is one of the largest industrial packaging companies in the Netherlands. The
company has a family business history, starting in 1874 with sawing planks of oak for local carpenters,
and then extending into the industrial packaging sector (MeilinkB.V., nd). Meilink specializes in custom
packaging, such as wooden boxes, cardboard packaging, exhibit packaging, and flight cases. Depending
on the client’s requirements, the package design may differ in terms of durability, handling, material type,
and cost. Packaging may occur either at the customer facility, which provides the client with shorter
lead times, or at one of Meilink’s facilities. To provide better services to the customers, the company
engages also in transporting the products from and to one of the production sites.

1.1.1 Meilink Borculo B.V

The company has a total of seven offices in the Netherlands, five of which are production and storage
locations as well. This research is conducted at the head office of Meilink, located in Borculo. The Borculo
location is the largest out of all five production locations, specializing in various types of industrial
packaging, but also in producing standardized boxes and packages. While the other sites rely solely on
third-party logistics companies to deliver the items within the Netherlands via road transport, the office
in Borculo has its private trucks. The company’s vehicles are used mostly for delivery to customers via
intra-Netherlands transportation, whereas third-party transportation vehicles are used when a product
needs to be sent a long distance, internationally, or in some other special cases. Hereafter, the thesis
focuses only on the Borculo location, referred to as Meilink or Meilink Borculo B.V., and the other office
locations are out of the scope of this paper.

1.1.2 Transportation system

The transportation process of Meilink involves a number of parties. The company utilizes its own
vehicles to transport items to clients throughout the Netherlands every day of the week. Figure 1 depicts
a simplified version of the different flows of products from and to the Borculo office.

Meilink is responsible for daily product deliveries within the Netherlands, where it uses either its
own trucks or external transportation services. The company seldom picks up items for packaging from
customers and transports them to the Borculo warehouse. Most of the time, clients arrange external
services in advance. Typically, the raw materials also come in a vehicle arranged by the supplier.
However, for specific products, Meilink trucks are scheduled to pick up the raw materials and deliver
them at the Borculo warehouse. Meilink Borculo primarily relies on its in-house vehicles as a preferred
choice for transporting its products, but often also employes common carrier vehicles.

In the case of a client from abroad, Meilink Borculo B.V. is not responsible for arranging the trans-
portation to the production location. Instead, Varekamp Project Services (VPS), also part of Meilink
Group, arranges for the goods to be transported first to ports, and then to the Borculo office with ex-
ternal carriers. Once packed or produced, the order is collected by external carriers and dispatched to
the client abroad.

Meilink’s offices are disconnected from one another, and each site operates as an independent entity.
The trucks at Borculo are not responsible for pick-up from Meilink’s other locations. Meilink Borculo
rarely delivers some goods to the other offices either through its private vehicles or through external
carriers. Other locations may also send some items to Borculo, but those use only external carriers.

1



Figure 1. Simplified overview of the different transportation flows between the Meilink offices, clients and suppliers. The
flows in blue are performed by both Meilink Borculo in-house trucks and common carriers, while those in black are

performed only by external service providers.

1.2 Problem statement

Several interviews with Meilink professionals were held to discover the true problem that has to be
handled. Figure 2 depicts the problem cluster. The identified action problem is high transportation
costs (red node). All the difficulties raised during the interviews were grouped in a problem cluster with
their associated linkages. The white nodes are all the subproblems, which have been identified during
the interviews. The core problem (green node) will be tackled in this research.

Figure 2. Problem cluster describing the core and subproblems at Meilink Borculo B.V. The core problem to be resolved
in this thesis is coloured in green, whereas the action problem is coloured in red.
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1.2.1 Action problem

As shown in Figure 1, the transportation process of Meilink consists of several parties (Section 1.1.2).
The company has to deliver to customers and other office locations, and sometimes collect raw materials
from the suppliers or a product for packing from the clients. This intricate transportation process is
performed by both external service providers and the company’s own trucks.

The result of the transportation network is the action problem of ‘High transportation costs’. An
action problem can be defined as any situation which is not in the way the problem owner wants it to
be (Heerkens and van Winden, 2017). In this context, the gap lies in the financial challenge created by
transportation planning. This challenge has to be further investigated by studying the underlying issues
contributing to it.

1.2.2 Core problems

A problem cluster is formulated with the aim of identifying potential problems and underlying causes,
as outlined by Heerkens and van Winden (2017). Core problems are identified by examining issues that
lack direct causes. In Figure 2, two core problems are identified: manual transportation planning and
non-standardized products/batches (in terms of volume and weight).

In this research, the core problem selected is manual transportation planning. This decision is based
on its potential for change within a six-month timeframe and the availability of resources. Given that
Meilink Borculo B.V. offers unique packaging, standardizing product volume and weight is not feasible.
Additionally, manual transportation planning is chosen over non-standardized products/batches due to
the former’s greater impact on operational efficiency. Manual transportation planning, same as non-
standardized products/batches, also leads to inaccuracies in estimating the number of items per vehicle,
resulting in underutilized vehicle capacity and potentially high transportation costs. The subsequent
lines offer brief descriptions of the two core problems and their associated impacts on the company’s
transportation process.

1.2.2.1 Not standardized products/batches (volume and weight)

Meilink, as a customer-oriented firm, offers unique packaging, and each of its clients has individual needs
in terms of material kind, durability, and size. The items are non-standardized and vary in weight and
volume. The personalized character of the items necessitates calculating their volume and determining
the optimum method of transportation. Because there is no specialized software for carrying out the
planning, the logistics department cannot predict how much space the items will take exactly and how
many of them can fit into a single truck. As a result, vehicles are frequently underutilized because of the
uncertainty of how much cargo may be carried. This results in inefficient use of resources, particularly
Meilink’s vehicles, resulting in excessive transportation expenses.

1.2.2.2 Thesis core problem: Manual transportation planning

Since Meilink started as a family business, manual operations still dominate their workflow. This is valid
also for transportation planning, where the logistics department relies heavily on employee experience
for planning the transportation of goods. Every morning the logistics department manually determines
the routes, by considering the accumulated orders and available vehicles. The manual approach to route
planning can be very subjective and time-consuming and does not take into account all of the available
data. Planning the routes can lead to inaccurate estimation of the number of items which fit within
a single truck which results in underutilized vehicle capacity. Since employees are unable to update
the truck capacity through the execution of routes and delivery to clients, the vehicles often end up
travelling empty. Trucks have to travel longer distances because the routes are not optimized and there
is no predetermined order of visiting the customers. This manual approach and the subproblems caused
by it can be inefficient and costly. Therefore, manual transportation planning requires attention as a
core problem to be addressed within this thesis.

1.3 Research goal

The objective of this research is to address the core problem of manual transportation planning, as
defined in the problem statement (Section 1.2). Meilink Borculo B.V. faces significant transportation
costs due to its reliance on both private fleet and common carriers. To effectively tackle the issue of high
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transportation costs, it is essential to optimize the routing process. This optimization involves addressing
the complexities inherent in managing various trucks within the private fleet, coordinating with common
carriers, and adhering to specific operational constraints.

By delving into the operational-level problem of daily vehicle routing, this research aims to provide
tactical guidance to the organization. At the tactical level, strategic decisions regarding the deployment
and utilization of resources, such as private fleet and common carriers, can significantly impact overall
transportation costs. Therefore, by resolving the underlying Vehicle Routing Problem (VRP) while
considering the unique characteristics, criteria, and restrictions of the company, this study attempts to
offer actionable insights.

By addressing both tactical and operational levels, this research aims to offer a comprehensive solution
that not only optimizes daily routing processes but also provides strategic recommendations for long-term
cost reduction and operational efficiency improvements.

1.4 Research Questions

Based on the problem statement and research goal described in Sections 1.2 and 1.3 the research question
is formulated as follows:

“How can Meilink Borculo B.V.’s current transportation planning processes be opti-
mized to reduce its transportation costs?”

In order to answer the main research question, several sub-questions are defined. Those act as a
path towards getting a systematic answer to the main research question and solving the core and action
problems. The sub-questions are divided into five categories and vary from understanding the context
of the process and gathering knowledge from the literature to solution generation, implementation, and
evaluation. The research sub-questions are explained below.

Current situation and problem context analysis

The first step of this research is analyzing and understanding the current situation. For this purpose,
information needs to be collected on different characteristics important for the model formulation. The
current logistics structure, number and types of vehicles owned, route planning, and all the existing
constraints and limitations, as well as the cost structure and other Key Performance Indicators (KPIs),
have to be determined. More specifically, the following research questions have to be answered:

1. What is the current transportation system offered by Meilink Borculo B.V?

1.1. What are the current transportation characteristics of Meilink?

1.2. Which criteria and factors influence the company’s route planning decisions?

1.3. What are the associated transportation costs for Meilink Borculo B.V?

1.4. What are the KPIs, constraints, and requirements linked to the logistics process of Meilink?

Literature review and analysis

The second part of the thesis focuses on collecting knowledge for different optimization techniques pro-
posed in the literature, related to the thesis problem. A look into the literature can contribute to
understanding the existing models and theories and give insight into how to formulate the most suitable
model and create a foundation for the solution approach.

2. Based on the literature, what are the applicable techniques and methods for modelling and solving a
vehicle routing problem?

2.1. Which VRP variant aligns with the characteristics of Meilink’s transportation process?

2.2. What are the solution approaches for the VRP proposed in the literature?

Design of solution approach

The third part is related to designing the solution approach and selecting a technique to solve the model.
This should be done in accordance with the time and resource constraints available. Moreover, the data
that is going to be used and the assumptions should be defined. Thus, the questions to be answered are:
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3. How should the solution approach for Meilink’s transportation process be designed?

3.1. How can the routing problem and solution approach for Meilink be formulated?

3.2. What are the requirements which have to be met by the solution approach?

3.3. What assumptions are underlying the solution approach?

Experimentation and evaluation

Once the model is formulated and the solution approach is designed, the performance of the model has
to be evaluated. Therefore, the solution has to be tested under various scenarios and evaluated under
each to have a good overview of its performance. The questions below provide an overview of the content
of this part:

4. How does the developed solution for optimizing Meilink’s transportation process perform compared
to the current situation?

4.1. Which scenarios are interesting to be investigated?

4.2. How does the solution approach perform in terms of costs and the other KPIs under the different
scenarios considered?

Conclusion, recommendations, and limitations

The final step is to provide an answer to the main research question and give recommendations to Meilink
based on the solution outcome. This requires answering the following questions:

5. What are the main conclusions and recommendations that can be drawn from the analysed results?

5.1. What are the main outcomes of the conducted research?

5.2. What are the recommendations that can be proposed to Meilink from the results of the experi-
ments?

5.3. What are the research’s theoretical and practical implications and corresponding limitations?

1.5 Research design

The study is divided into phases, each aiming to discover a solution to the main research question. Figure
3 depicts the procedure, together with the research questions to be answered in each phase, the required
inputs, and the desired output.

The problem identification step is discussed in Chapter 2, along with the problem context, current
transportation planning and process. Chapter 3 presents an overview of the literature, focusing on ex-
isting VRP models and solution approaches. Chapters 2 and 3 work together to provide the solution’s
conceptual structure. In Chapter 4 a solution approach for Meilink’s transportation problem is devel-
oped by establishing a mathematical model, solving and optimizing it by considering existing data and
expert opinion. Experiments are carried out and evaluated under different scenarios in Chapter 5. The
conclusions and recommendations for Meilink resulting from the experiments are provided in Chapter 6.
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Figure 3. Graphical representation of the research design.
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2 Problem context analysis

This chapter is dedicated to answer the research question “What is the current transportation system
offered by Meilink Borculo B.V?”. Therefore, the current transportation planning process within Meilink
Borculo is introduced in Section 2.1, together with the different factors which influence the employees’
decision-making. In Section 2.2 the current situation at Meilink Borculo B.V. is described with the
characteristics relevant to the problem. Section 2.3 provides an overview of the current cost structure of
the transportation services in Meilink. The KPIs linked to the logistics process of Meilink are outlined
in Section 2.4, followed by the problem requirements and limitations in Section 2.5.

2.1 Transportation planning process

The transportation system at Meilink is a complex process that involves weekday deliveries and requires
transportation decisions to be made on a daily basis. Transportation flows happen between the company
and its customers, suppliers and other company locations (Section 1.1.2). This process operates without
a dedicated route planning system but relies on several critical aspects to manage the transportation of
goods. Within this section, an overview of the planning process is developed, together with the current
decision-making criteria for routing.

2.1.1 Order processing and planning

Currently, Meilink engages in daily item deliveries, necessitating transportation decisions to be made
on a daily basis. Notably, there is no unique route planning system in place. However, several factors
significantly impact the decision-making. A comprehensive overview of the transportation planning
process for order deliveries of the Borculo location is provided in Figure 4. The planning is usually made
at the beginning of each day with the accumulated orders. The decision-making chart is followed for each
order, for which the deadline is the route planning day and is carried out manually by the department’s
staff.

Figure 4. Meilink’s transportation planning decision-making diagram.
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The process starts when the sales department receives an order and records order-specific charac-
teristics like delivery date and time, single product volume or batch size, and processes it further the
chain. In case the order is an item requiring packaging at the Borculo office, external transportation
arrangements are made by the customer. On rare occasions, customers may directly request Meilink’s
transportation services, where the trucks have to both collect the product from and deliver it to the
client. Those requests are recorded by the sales department within the system.

Once the order has been processed – either produced or packaged, and it is prepared for transporta-
tion, the route planning can begin. Within the logistics department, an internal program is employed
that provides an overview of all orders. This includes whether it is pickup or delivery, the type of item,
the number of items ordered, the department from which it is ordered (box factory, carton factory,
packing hall), current status (arrived, in process, ready, shipped), requested delivery date, client contact
information, delivery address, available vehicles, time-windows, product dimensions and weight. The
logistics department assigns clients who are located outside the Netherlands to external carriers and the
rest are planned for a visit by Meilink’s private fleet or common carrier.

2.1.2 Clustering and route optimization

Throughout the week, Meilink Borculo B.V. schedules its trucks to different regions. During the planning
process, the primary objective is to cluster together as many clients as possible based on the region and
city proximity. The planning process does not rely on any route optimization software or models; rather,
everything is done based on employee knowledge and experience. The logistics team checks whether all
the products fit within one truck. Additionally, if two or more clients have overlapping and short time
windows (e.g., 30 minutes), then they are not included in the same tour. If clients are situated in close
proximity, their time windows do not overlap, or those are not too short, and their items can fit within
a single truck, then the customers are scheduled in the same tour. In all other cases, clients are assigned
either to another available Meilink truck or to external carriers.

When Meilink has to collect goods from clients or suppliers, the decision-making process is outlined in
Figure 4. Several factors affect the planning. First, if the pick-up time window overlaps with the delivery
time windows, external trucks are scheduled. This is because Meilink’s trucks are typically assigned to
the delivery first, and the logistics team cannot recalculate the available capacity of the trucks along the
delivery route. When the time windows do not overlap and trucks are already scheduled for deliveries on
a route that passes by the pickup points, goods are collected on the return trip to the depot, after serving
each delivery point. Important to note that Meilink’s in-house trucks are primarily used for delivery to
clients, and pickups are performed only after deliveries are completed.

In both pickup and delivery requests, the truck drivers receive a list of points which they have to
visit and the according time to be there. The transportation department does not specify explicitly the
order of visiting the customer or the routes those trucks should undertake.

Meilink trucks can undertake multiple tours per day, provided the drivers’ working hours are consid-
ered. If they have to make two or more trips on the same day, the drivers are given the closest site first,
followed by the farthest. This is done to avoid delays and to adhere to the established time constraints.
Drivers are also getting exhausted and want to return home early, therefore they will refuse to undertake
two or more excursions if they are assigned to the furthest site initially.

2.1.3 In-house truck ownership vs. utilizing common carriers

Research on the transportation processes of manufacturing organizations discovered that outsourcing
transport is preferred over in-house transport, as the latter presents challenges linked to expenses associ-
ated with owning and maintaining cars (Bartalero et al., 2020). Furthermore, using third-party logistics
may lower environmental expenses since trucks are frequently used more efficiently (Tezuka, 2011). The
situation becomes even more difficult since the Dutch government has promised to lower carbon emissions
to net zero by 2050, which means companies must take responsibility for the prices of their transportation
services and CO2 emissions and endeavour to reduce them.

Outsourced carriers, on the other hand, cannot completely replace in-house transportation, and a
balanced solution between outsourcing and owning transportation is required for maximum efficiency
(Stojanović, 2017). Meilink uses its vehicles or outsources third-party logistics (3PL) providers to carry
to its demand points. However, there are no strict criteria for making a choice between those two
options. Also, there is no selection of demand points in the Netherlands, served only by external carriers.
Currently, external trucks are used only in the following situations:
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• The order must be sent outside of the Netherlands.

• The Meilink trucks are all booked for the day and are unable to serve the whole demand.

• The package dimensions do not fit in Meilink’s vehicles or there is not enough capacity available.

• The Meilink trucks drive to a certain location, but an order in the opposite direction must also be
satisfied.

• Several orders must be served within the same time window, yet the distance between them is
considerable.

• Meilink’s truck drivers have off-day(s).

Meilink engages third-party carriers for transportation services in the aforementioned instances. Meilink
does not do the route planning of the externally outsourced trucks. They only provide a list of customers,
who have to be visited within the day, together with additional characteristics like time-windows and
delivery points. The external service provider is then responsible for planning the routes and determining
how many trucks are required for the provided client list.

2.2 Characteristics

To develop a comprehensive understanding of Meilink’s system, a closer look should be taken into the
key aspects that define the logistics process. This includes understanding when demand occurs and how
it is distributed, the time windows that must be adhered to, and Meilink’s vehicles and their capacities.
Those aspects will be explored in the following sections.

2.2.1 Type of orders

Meilink makes trips to its clients every day of the week, except for Saturdays and Sundays. Customers
place a wide range of orders, varying in quantity and size. The demand is mostly deterministic, i.e., the
transportation department has the information before the route planning begins. Therefore, Meilink can
determine how often the client must be visited within a particular time period, and plan the transporta-
tion (as described in Section 2.1).

The order requests at Meilink can be categorized into two types: deliveries of goods from the depot to
customers and pickups of goods from both customers and suppliers to the depot. Based on the available
data for the period between September 2022 and September 2023, Meilink Borculo B.V. handled deliveries
to clients 81.27% of the time. In contrast, it has been involved in picking up goods from clients or suppliers
in 18.73% of the total orders.

Figure 5. Heatmap of Meilink Borculo’s number of transported orders in 2022-23.
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2.2.1.1 Delivery to clients

The largest proportion of transportation is linked with delivery of orders (81.27%). Meilink provides
transportation services to all of its customers and delivers goods upon their request. The trucks are
scheduled for visiting customers nodes from Monday to Friday. Since the deliveries abroad are executed
by Meilink’s subsidiary, those are out of the scope of this thesis. Therefore, only the demand nodes
within the Netherlands and nearby the borders are considered.

In Figure 5 a heatmap can be observed displaying the frequency of order deliveries to different regions
across the Netherlands from January 2022 to September 2023. The provinces of Overijssel, Gelderland,
Utrecht, and South Holland are visited the most, indicating higher demand from clients in these areas.
There, some customers received deliveries more than 200 times throughout the specified time period.
Significantly lower is the number of tours made to Limburg, Zeeland, Friesland, Groningen, and Drenthe.

Meilink transports goods also to both Belgium and Germany. Because of toll taxes, those destinations
are visited rarely by Meilink trucks, and usually, the products are delivered just near the border. External
carriers are responsible for servicing some of the more remote places from Borculo and often they make
multiple trips per day.

2.2.1.2 Pickup requests

When products need to be packaged at the Borculo office, the client is generally responsible to transport
them to the depot. In some situations, where clients may not be able to arrange transportation, they
request that Meilink’s trucks pick up the products and bring them to the packaging location. The
requests are typically known in advance when the client places an order.

Meilink’s usual practice is that suppliers are responsible for arranging transportation and delivering
orders using their own vehicles. There are occasional exceptions, such as when the items must be delivered
quickly, and the supplier cannot organize transportation. Furthermore, there are some suppliers who
do not handle transportation making it Meilink’s responsibility to collect the ordered goods. Orders to
suppliers are placed irregularly, and the quantity of commodities that Meilink must collect from them is
certain once the order is placed.

2.2.2 Time windows

When consumers place orders, they specify a preferred delivery date, expecting their purchases to arrive
within the agreed-upon time frame. These are subject to vary with each order, depending on clients’
preferences.

The time windows for the transportation planning from September 2022 to September 2023 are
presented in Table 1. The table gives an overview of the form of transportation, which may involve
delivering to customers or picking up from clients or suppliers. Most clients have broad time spans,
such as 8:00 AM to 4:30 PM. However, some clients prefer a specific delivery time, like 8:00 AM, with a
30-minute deviation allowance, creating a shorter time window of 8:00-8:30 AM.

Meilink endeavours to comply with client requirements, even if it means dispatching multiple trucks
to the same region or town to fulfil orders for two different clients who share the same delivery date and
time preference. These overlapping time windows indirectly increase transportation expenses since both
vehicles may return empty after making their deliveries.

10



Type Days Time window Visits
Delivery Mon-Fri 7:30-8:00 14
Delivery Mon-Fri 8:30-9:00 2
Delivery Mon-Fri 9:30-10:00 2
Delivery Mon-Fri 10:30-11:00 8
Delivery Mon-Fri 8:00-13:00 6
Delivery Mon-Fri 12:30-13:00 2

Delivery/Pick-up Mon-Fri 8:00-16:00 2154
Delivery/Pick-up Mon-Fri 8:00-16:30 364
Delivery/Pick-up Mon-Fri 8:00-17:00 450

Delivery Mon-Thur 7:30-16:45 4
Delivery Friday 7:30-12:15 4
Delivery Mon-Thur 6:00-12:00 2
Delivery Mon-Fri 7:00-15:00 3
Pick-up Mon-Fri 7:30-8:00 34
Pick-up Mon-Fri 10:30-11:00 2
Pick-up Mon-Fri 11:30-12:00 14
Pick-up Mon-Fri 8:00-13:00 7
Pick-up Mon-Fri 8:00-14:00 3
Pick-up Mon-Fri 8:00-16:00 2

Table 1. Overview of customer and supplier time windows with the number of visits required for the period September
2022 - September 2023.

2.2.3 Vehicles

Meilink Borculo owns a fleet of vehicles that it frequently utilizes for product deliveries. This fleet includes
four lorries, six trailers, and one box truck, each designed for specific cargo dimensions. Table 2 shows
each type of vehicle and its accompanying cargo dimensions. The box truck is smaller than the trailers.
Because the trailers must be attached to a lorry, the six trailers can never be utilized simultaneously.
Furthermore, all of the trailers have identical cargo space measurements. Because the materials to be
carried are not standardized, the truck dimensions are a critical part of Meilink’s transportation.

Common carriers come in a variety of sizes, including massive vehicles like mega-trailers. Because
the external transportation company’s fleet size is not specified, it is presumed that they can arrange as
many trucks as Meilink need per day.

Vehicle model Type Dimensions cargo space
Volvo Box truck 720x240x230cm

Mercedes Lorry -
Mercedes Lorry -
Mercedes Lorry -
Mercedes Lorry -

10, vlak. Schmitz Trailer 1360x240x250 cm
9, zwanehals, Van Hool Trailer 1360x240x250 cm

11, vlak, Schmitz Trailer 1360x240x250 cm
12,vlak,Schmitz Trailer 1360x240x250 cm

7, vlak Trailer 1360x240x250 cm
8,vlak Trailer 1360x240x250 cm

Table 2. Types of vehicles currently owned by the company and their dimensions.

2.3 Current transportation cost structure

Meilink Borculo primarily relies on its in-house vehicles as a preferred choice for transporting its products.
The daily distance covered by these vehicles is recorded and the expenditures made are evaluated. Clients
are charged for the delivery services, generating income for the company. Although clients are charged for
delivery services, Meilink’s actual transportation expenses, including driver salaries, fuel, maintenance,
and external transport costs, are subtracted from this income.
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In 2022, Meilink Borculo B.V.’s total labour costs, including truck driver wages, amounted to ap-
proximately 40% of the total transportation costs. Private fleet expenses amounted to 21%, with 74% of
those for fuel, and the remainder for maintenance, and insurance. Additional costs, such as depreciation,
brought the total for the private fleet to 66% from the total transportation costs. The private vehicles
travelled approximately 341,000 km in 2022.

Meilink also uses external service providers for transporting its goods. The total costs involved with
those external providers are 34% for the year 2022. External carriers charge a fixed fees based on the
destination points and not on the total distance travelled. The total distance covered by the external
carriers is approximately 237 500 km for the same year.

In summary, Meilink invests a significant amount of money in its transportation services amounting
to a total of €683,2001 for the year 2022. Despite charging clients for transportation, the goal is to
reduce the total transportation costs, as they have been substantially high over the past years, which
may eventually result in a net loss for the company in the upcoming periods.

2.4 Key performance indicators

The primary Key Performance Indicator (KPI) is the cost associated with transporting items to and
from the clients. The costs described in Section 2.3 should be decreased as much as feasible so that the
company can keep providing efficient transportation services. Moreover, this KPI is key in resolving the
action problem, provided by the company (Section 1.2.1). Optimizing the costs and decreasing the total
expenditures from the transportation services can contribute to the company’s profitability, ensuring
that transportation services remain competitive.

Another critical KPI to examine is the total distance travelled by the trucks. Within the total
distance, all the pick-ups to and from clients and suppliers are considered. Beyond the financial aspect,
this KPI has an environmental significance to Meilink, as reducing carbon emissions is one of their
current goals. Moreover, decreasing the total distance travelled usually leads to lower fuel consumption
resulting in a reduction in fuel-related expenses. By managing this KPI effectively, Meilink can decrease
its carbon footprint, together with decreasing its fuel consumption expenses and sometimes even the
total working hours of the drivers.

The last KPI is the number of trucks assigned to a trip each day. Employee wages are one of the
most significant cost components for the company. Optimizing vehicle usage by deploying enough trucks
is crucial in decreasing the total labour costs. Employees also require adequate rest days, therefore
optimizing the number of vehicles might potentially result in a more ideal work schedule for them. It
may also reduce maintenance expenses, as the fewer vehicles there are, the cheaper the total maintenance
expenditures. Consequently, this KPI has both financial and human factor aspects, aiming for efficient
operations for the company.

2.5 Requirements and limitations

There are several requirements and limitations, which have to be considered when formulating a solution
for the identified transportation problem. First, the clients’ specified time windows have to be satisfied,
even if it necessitates deploying two vehicles on the same route. When there is a need for both client
deliveries and collection of raw materials from suppliers on the same day, the priority is given to the
client. In case of a pickup, the priority is also given to the client first.

Each truck can make more than one tour per day and there is no constraint on the maximum number
of tours per vehicle, as long as the working hours of the company are not exceeded. There are no
limitations related to the number of trucks used per day, thus all five trucks can be used simultaneously.
Each truck driver can work at most 9 hours a day and only one driver is assigned per truck. Thus, the
total time a truck can be used per day is 9 hours. At the end of each tour, trucks must return back to
the depot. Tours cannot be planned on Saturdays and Sundays. The route plannings should be made
for each day of the year. The model should execute the route planning with an hour.

When planning a route, the vehicle capacity should be considered, together with the order size and
dimensions. A limitation is that some of the products are transported folded, thus, their dimensions
are different than the one within the system and have to be estimated. A further limitation is that

1This cost does not represent the actual costs of the business. The total costs are multiplied by a random non-integer
number to maintain the confidentiality of the business. All subsequent costs will also be multiplied by the same random
number.
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the products are not standard in size, which may not fit in the private fleet. In such situations, bigger
vehicles have to be sourced externally.

Lastly, the thesis should mainly focus only on Meilink Borculo, and the orders received there. The
demand received from other locations is out of the scope of this report.

2.6 Conclusion

This chapter seeked for an answer to the posed research question What is the current transportation
system offered by Meilink Borculo B.V.?. It became evident that the company’s transportation system
involves daily transportation services, Monday to Friday, with a complex process that lacks a dedicated
route planning system. Orders are processed and planned manually, with decisions influenced by factors
such as delivery date and time, product dimensions, and available vehicles. The private vehicles are
clustered to serve within a single region, with the idea to optimize routes, primarily based on employee
knowledge and experience. Meilink operates a fleet of vehicles, including four lorries, six trailers and
a box truck, and occasionally utilizes external carriers for transportation, primarily for international
deliveries.

The transportation planning decisions at Meilink Borculo B.V. are influenced by various criteria and
factors, including delivery time windows specified by clients, product dimensions, and the capacity of
Meilink’s fleet. Moreover, the company has to consider client preferences for specific delivery times and
the need to comply with overlapping time windows, which altogether add complexity to route planning.
Additionally, the type and size of orders, availability of vehicles, and driver working hours are critical
considerations in decision-making.

Meilink Borculo B.V. invests significantly in transportation services, with transportation costs amount-
ing to €683,200 for the year 2022. These costs include labor expenses, fuel, maintenance, and external
transport charges. Labor costs constitute approximately 40% of the total internal transportation ex-
penses, while private fleet expenses, including fuel and maintenance, amount to 66%. External service
providers account for 34% of the total transportation costs. Despite charging clients for transporta-
tion services, the company aims to reduce costs, considering them as substantially high and potentially
leading to a net loss.

Key Performance Indicators (KPIs) for Meilink’s logistics process include total transportation costs,
total distance traveled by trucks, and the number of trucks assigned to trips each day. These KPIs are
crucial for optimizing operations, reducing costs, and ensuring efficient resource allocation. Constraints
and requirements include adhering to client time windows, considering vehicle capacity and order dimen-
sions, and complying with driver working hours and vehicles’ availability. The route planning should
be executed within an hour, considering vehicle capacity and non-standardized product sizes. Addition-
ally, the focus should mainly be on Meilink Borculo and its orders, with demand from other locations
considered out of scope.
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3 Literature review

Meilink Borculo B.V. has a routing problem, which requires optimization of their current transportation
process by minimizing transportation costs. Therefore, the best model approach and solution methods for
routing problems with Meilink’s transportation process characteristics will be investigated in the following
sections. Namely, the research question Based on the literature, what are the applicable techniques and
methods for modelling and solving a vehicle routing problem? will be addressed. In Section 3.1 the
general VRP is introduced, followed by an extensive literature review on the vehicle routing problem
(VRP) variants, which align with the characteristics of Meilink’s transportation process (Sections 3.2-
3.7). The rest of the chapter provides an overview of the solution approaches, that best fit the described
VRP variants (Section 3.8).

3.1 Vehicle Routing Problem

The Vehicle Routing Problem (VRP) is a complex logistical challenge that involves determining the
most efficient routes for a fleet of vehicles to serve a set of customers. The VRP usually has the goal
to minimize costs or maximize efficiency. The VRP found its grounds back in 1959 when Dantzig
and Ramser introduced the “Truck Dispatching Problem”, which is a generalization of the “Traveling-
Salesman Problem”. The authors aimed to find the optimal routing of homogeneous gasoline delivery
trucks between the terminal and multiple service stations (Dantzig and Ramser, 1959). In the later years,
Clarke and Wright (1964) generalized the Truck Dispatching Problem by linearizing it and formulated
the first Vehicle Routing Problem, which includes heterogenous vehicles with varying capacities, leaving
from a central depot and serving geographically dispersed customers. The Vehicle Routing Problem
is a non-deterministic polynomial (NP)-hard problem, meaning, finding a solution for this problem is
exceptionally challenging and time-consuming (Alridha et al., 2021). For those problems, there is no one
quick way to find the solution, rather many possibilities exist especially when the problem gets bigger.
One such solution method is Clarke and Wright’s savings algorithm for solving VRP, which is a greedy
heuristic because it involves step-by-step decisions for achieving a local optimization without searching
for or guaranteeing a globally optimal solution (Clarke and Wright, 1964).

Figure 6. Taxonomy of the VRP literature (Ni and Tang, 2023). The characteristics which match the Meilink’s
transportation process are highlighted in blue.
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Since the development of the first Vehicle Routing Problem, its variations have been evolving and
currently, there are various types of models proposed in the literature. Ni and Tang (2023) created a
three-level classification of the VRP models. The overview of Ni and Tang (2023) VRP taxonomy is
provided in Figure 6. The VRPs usually combine several features from the ones presented in Figure 6
to match the problem they are trying to solve.

Within the deterministic VRPs, the delivery requests from customers are known and are only received
during the execution of the vehicle route (Ni and Tang, 2023). This also applies that the number of stops
on a route, which is the customer nodes in a VRP, is known. Moreover, the vehicle routing problem
with time windows (VRPTW) adds the additional constraint that customer nodes have time constraints,
within which they should be visited (Ni and Tang, 2023). A time window is associated with each customer
node, within which loading or unloading the goods has to be completed Ombuki (2006). Within the
VRPTW, the vehicles have to arrive at the customer node between the earliest and latest time specified
(Solomon, 1987). When these time windows are soft, the problem is relaxed to VRP with additional
penalty costs imposed (Miranda and Conceição, 2016).

The capacitated vehicle routing problem (CVRP) is one of the most researched and utilized variants of
the VRP. This revolves around the idea that all customers have a deterministic demand, which has to be
satisfied through deliveries with vehicles having limited capacity (Toth and Vigo, 2002). A generalization
of the ordinary capacitated VRP is the vehicle routing problem with backhauls (VRPB) where the goods
are both delivered to the customers, but also some goods are brought back to the depot. This problem
is also called the pickup and delivery problem, where the vehicles can travel from the depot to nodes,
which request either linehaul or backhaul service (Ropke and Pisinger, 2006).

The taxonomy in Figure 6, however, does not consider all variations of the backhaul, such as the
Vehicle Routing Problem with Divisible Delivery and Pickup (VRPDDP), where each customer can be
visited for both pickup and delivery operations by a single or separate visit (Parragh et al., 2008). Also,
goods can be partially picked up within the VRPDDP, allowing for order splitting.

The Split Delivery VRP is another variant of the CVRP, which allows the delivery of goods to a
customer to be divided between multiple vehicles (Wassan and Nagy, 2014). As a result, instead of
being visited once and receiving the entire demand at once, the client’s demand may be supplied across
multiple smaller deliveries by separate vehicles.

Although the VRP with private fleet and common carrier (VRPPFCC) is not mentioned in Ni and
Tang’s classification, it is relevant to the problem of Meilink discussed in Section 2. The VRPPFCC
addresses the issue that sometimes the capacity of inhouse vehicle may not be enough to serve all demand
nodes (Higino et al., 2018). Also, it may be that some vehicles cannot access certain locations. In both
cases, outsourcing vehicles externally is the solution companies utilize. However, the VRPPFCC looks
into the demand nodes, which have to be strictly satisfied by either private fleet or by common carriers
(Bolduc et al., 2008).

Another characteristic that is not present in the taxonomy of Ni and Tang is distinguishing between
single and multi-trip problems. Multi-Trip Vehicle Routing Problem’s (MTVRP) primary objective is
to optimize the routing of a fleet of vehicles to serve a set of customers over multiple trips (Brandão
and Mercer, 1998), compared to the single-trip VRP, where each vehicle completes only a single route.
Within the MTVRP, vehicles are allowed to return multiple times to the depot for loading and unloading
and continue servicing additional customer nodes until their capacity or time limits are reached (Brandão
and Mercer, 1998).

In the following subsection, the mathematical model of the general VRP is provided. In each of
the later models dealing with variants of the VRP, the specific changes and adaptations in this general
model are provided. This is done for the VRPDDP, VRPTW, MTVRP, VRPPFCC, and SDVRP. These
specific variants of a VRP have the characteristics of the problem described in Section 2.

3.1.1 Mathematical model

The general Vehicle Routing Problem is presented in its simplified version by Christofides et al. (1981).
The problem considers a case with geographically dispersed customers with known demand, who must
be served by a fleet of vehicles from a central depot with a cost minimization objective. This formulation
is presented below.

Parameters:

• N : Set of customers, indexed by i and j, including depot node 0.

• M : Set of vehicles, indexed by k.
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• Qk: Capacity of vehicle k.

• qi: Demand of customer i.

• cij : Cost of the least cost path from vertex xi to vertex xj .

Decision variables:

• xijk: Binary variable, where

xijk =

{
1, if vehicle k travels from customer i to customer j,

0, otherwise.

• yi: Sequence indicator variable, where

yi =

{
1, if customer i is visited in the route,

0, otherwise.

Model:

min z =

N∑
i=0

N∑
j=0

cij

M∑
k=1

xijk (3.1)

Subject to

N∑
i=0

M∑
k=1

xijk = 1 ∀j = 1, . . . , N (3.2)

N∑
i=0

xipk −
N∑
j=0

xpjk = 0 ∀k = 1, . . . ,M, p = 0, . . . , N (3.3)

N∑
i=1

qi

N∑
j=0

xijk ≤ Qk ∀k = 1, . . . ,M (3.4)

M∑
k=0

N∑
j=0

x0jk ≤ |M | (3.5)

N∑
j=1

x0jk = 1 ∀k = 1, . . . ,M (3.6)

yi − yj +N

M∑
k=1

xijk ≤ N − 1 ∀i ̸= j = 1, . . . , N (3.7)

xijk, yi ∈ {0, 1} ∀i, j, k (3.8)

The objective function (3.1) minimizes the total costs involved with this transportation problem.
Constraint (3.2) states that each customer should be visited once, and the flow conservation constraint
(3.3). Constraint (3.5) ensures that the maximum number of vehicles is not exceeded and (3.6) each
vehicle may be used exactly once. The sub-tour elimination constraint (3.7) also ensures that each route
passes through the depot. This model is also a Capacitated Vehicle Routing Problem (CVRP), as in
constraint (3.4), the total capacity of each vehicle (heterogenous) may not be exceeded. Constraint (3.8)
ensures the variables are binary.

3.2 VRP with backhauls

In the general pickup and delivery VRP, there are two main subclasses: VRP with backhauls (VRPB)
and VRP pickup and delivery, involving transportation to and from a depot and between customer nodes,
respectively (Parragh et al., 2008). The pickup and delivery VRP are outside the scope of the thesis, as
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Meilink does not distribute products between customers. Instead, the company operates from a depot
and focuses on transportation to and from it.

Figure 8 illustrates the four subclasses of the VRP with Backhauls: Vehicle Routing Problem with
Clustered Backhauls (VRPCB), VRP with Mixed Linehaul and Backhaul (VRPMB), VRP with Divisible
Delivery and Pickup (VRPDDP) and VRP with Simultaneous Delivery and Pickup (VRPSDP). Each
of these is shown with the same configuration, namely triangles representing the pickup goods, squares
denoting depots, and circles signifying delivery goods (Polat, 2017).

In both VRPCB and VRPMB, a customer requires either a delivery or a pickup but not both. The
VRPCB (Figure 7, a) is clustering the linehaul and backhaul customers, prioritizing delivery nodes
before pickups (Nagy et al., 2015). The VRPMB (Figure 7, b), on the other hand, does not require the
clustering constraint, rather it focuses on restricting the linehauls and backhauls based on the vehicle
capacity (Parragh et al., 2008).

In the other two classes, VRPDDP and VRPSDP, delivery customers can also require pickups. The
VRPDDP (Figure 7, d) follows the same logic as VRPMB, with the only difference being that all
customers are associated with both linehaul and backhaul quantities, allowing each customer to be
visited twice, once for delivery and once for pickup service (Polat, 2017). The VRPSDP (Figure 7,
c) does not allow each customer to be modelled as two separate entities, therefore, each client can be
visited only once for a simultaneous delivery and pickup (Nagy et al., 2015). In contrast, the VRPDDP
allows each client to be a delivery node, a pickup node, or both at the same time, allowing the deliveries
and pickups to be separated by visiting the customer twice or, if the capacity of the vehicle allows, the
deliveries and pickups to be executed simultaneously during the same visit.

In Meilink’s problem scenario, each customer serves as both a pickup and a delivery node, which
means that some customers may need to be visited twice. This unique classification aligns with the
VRP with Divisible Delivery and Pickup (VRPDDP). Unlike the other three classifications, VRPDDP
permits load splitting (Polat, 2017), which is a feature necessary for modelling the Meilink scenario.
Consequently, the mathematical model for VRPDDP will be presented in the following section.

Figure 7. VRP with Backhaul subclasses (Polat, 2017, p.2)

3.2.1 Mathematical model for VRPDDP

Nagy et al. (2015) developed an integer linear programming model for the Vehicle Routing Problem with
Divisible Delivery and Pickup(VRPDDP). This model allows more than one visit to be made to the
customer: one for pickup and one for delivery. It assumes that all of the delivery to a customer is made
in a single visit, and it is the same case with pickup. The parameters and decision variables that have
not yet been specified in Section 3.1 have been given below.

Parameters:

• D = {0}: the set of depots (consisting of a single depot)

• B = {n+ 1, n+ 2, . . . , 2n}: the set of backhaul customers (backhaul n+ i, is a copy of linehaul i)

• V = D ∪N ∪B: the set of all vertices

Decision variables:

• Rij = the amount of delivery goods on board on arc ij

• Pij = the amount of pickup goods on board on arc ij
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Model:

min z =

V∑
i=0

V∑
j=0

cij

M∑
k=1

xijk (3.1a)

Subject to:

V∑
i=0

M∑
k=1

xijk = 1 ∀j ∈ N ∪B (3.2a)

V∑
i=0

M∑
k=1

xjik = 1 ∀j ∈ N ∪B (3.9)

V∑
i=0

Rij − qj =

V∑
i=0

Rji ∀j ∈ N (3.10)

V∑
i=0

Rij =

V∑
i=0

Rji ∀j ∈ B (3.11)

V∑
i=0

Pij =

V∑
i=0

Pji ∀j ∈ N (3.12)

V∑
i=0

Pij + qj =

V∑
i=0

Pji ∀j ∈ B (3.13)∑
i∈L∪B

P0i = 0 (3.14)∑
i∈L∪B

Ri0 = 0 (3.15)

Rij + Pij ≤ Qkxijk ∀i ∈ V, j ∈ V, k ∈M (3.16)

M∑
k=0

V∑
j=1

x0jk ≤ |M | (3.5a)

Qk

V∑
i=1

x0ik ≥
N∑
i=1

qi ∀k ∈M (3.17)

xiik = 0 ∀i ∈ V, k ∈M (3.18)

x(n+i)ik = 0 ∀i ∈ N, k ∈M (3.19)

xijk + xjik ≤ 1 ∀i, j ∈ N ∪B, k ∈M (3.20)

Rij , Pij ≥ 0 ∀i ∈ V, j ∈ V (3.21)

In this model, the objective function (3.1a) is slightly changed, compared to (3.1), by including
also the backhaul nodes in the summation of costs. The same applies to constraints (3.2a) and (3.5a).
Equation (3.9) ensures that each customer is served once. Constraints (3.3) and (3.7) are replaced by
(3.10) -(3.13), which are flow conservation constraints, also ensuring that the subtours are eliminated.
Constraints (3.14) -(3.15) are ensuring that vehicles start with zero pickup load and finish with zero
delivery load. The vehicle capacity limit is enforced in (3.16). Constraint (3.4) is replaced by (3.17)
sets the minimum number of vehicles required, together with vehicle total capacity. Equation (3.18)
ensures there are no loops, and (3.19) that there is no arc from a backhaul to its corresponding linehaul.
Constraint (3.20) eliminates subtours for sets of two customers. Constraint (3.21) sets the variables as
non-negative.

3.3 VRP with time windows

The Vehicle Routing Problem with Time Windows (VRPTW) is a combination of routing and scheduling
problem in which vehicles must reach at their destination within the time window provided (Ni and Tang,
2023). These time frames might be classified as soft, hard, or mixed. The hard time window restriction
requires customers to refuse items if delivery exceeds their time window (Kallehauge et al., 2005). When
a vehicle arrives earlier than expected, it must wait until the earliest service time. With flexible time
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windows, the vehicle might arrive at a client location earlier or later, and a penalty for lateness is incurred
(Chen et al., 2007). Aside from the client nodes, there may be time window constraints for vehicle usage
as well as the depot’s opening and closing hours.

3.3.1 Mathematical model for VRPTW

The model for the VRP with time windows is adapted from the formulation of Kallehauge et al. (2005).
The model is adapted to the parameters and decision variables in the previous sections. Only parameters
and constraints different from those in Section 3.1 are presented.

Parameters:

• ai = start time of customer i’s time window

• bi = end time of customer i’s time window

• tij = travelling time from customer i to customer j (it may include the service time at customer i)

Decision variables:

• sik = the time vehicle k starts to service customer i

Constraints:

V∑
i=1

xi0k = 1 , k ∈M (3.22)

xijk(sik + tij − sjk) ≤ 0 ∀i, j ∈ V, k ∈M (3.23)

ai ≤ sik ≤ bi ∀i ∈ V, k ∈M (3.24)

sik + tij − BigMij(1− xijk) ≤ sjk ∀i, j ∈ V, k ∈M (3.23a)

First, this model adds a limitation that each route should end at the depot (3.22). Constraint (3.23)
establishes the relationship between the vehicle departure time from a customer and its immediate
successor, and (3.24) ensures the customer time windows are satisfied. Although constraint (3.23) is not
linear, it can be linearised through equation (3.23a).

3.4 Split delivery VRP

The Split Delivery (or Split-Load) Vehicle Routing Problem (SDVRP) divides the customer demand into
many shipments that may be delivered via different routes and vehicles (Ni and Tang, 2023). Instead of
one, several vehicles can visit a single consumer, or with the same vehicle in multiple trips. Dror and
Trudeau (1989) are the first to propose the Split Delivery VRP. In their paper it was shown that because
the SDVRP is a more flexible variant of the VRP, it can result in considerable savings in overall distance
and number of vehicles assigned. Later, a k-SDVRP model was formulated, in which each tour begins
at the depot, distributes k units to clients, and returns to the depot (Archetti et al., 2006).

The SDVRP and the VRPDDP (Section 3.2) are both based on the idea that a single visit to the
customer may not be enough to meet all of their demands (Wassan and Nagy, 2014). However, the
VRPDDP is limited to two trips per client, one for delivery and one for pickup. Furthermore, the
deliveries and pickups may not themselves be split (Wassan and Nagy, 2014). The SDVRP, on the other
hand, allows deliveries to be split among multiple tours and vehicles. Moreover, in the SDVRP the
optimal solution assures that each pair of routes has no more than a single customer in common, which
does not apply to the VRPDDP (Wassan and Nagy, 2014).

3.4.1 Mathematical model for SDVRP

The following mathematical formulation is based on the k-SDVRP model by Archetti et al. (2006). It
is modified by removing the restriction on the number of k-units supplied, making it a simple SDVRP.
The model is adapted to the parameters and decision variables discussed in the preceding sections.

Decision Variables:
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• dik = the quantity of demand i delivered by the kth vehicle

Constraints:

dik ≤ qi

V∑
j=0

xijk ∀i ∈ V, k ∈M (3.25)

M∑
k=1

dik = qi ∀i ∈ V \ {0} (3.26)

dik ≥ 0 ∀i ∈ V, k ∈M (3.27)

Constraint (3.25) assures that the quantity of demand provided to customer i does not exceed the
quantity ordered by this customer. Constraint (3.26) assures that the split orders for each demand node
satisfy the total quantity demanded by customer i. Finally, constraint (3.27) assures that the delivered
quantity is not negative.

3.5 VRP with private fleet and common carrier

The Vehicle Routing Problem with Private Fleet and Common Carrier (VRPPFCC) was first designed
to address the problem that enterprises faced when overall customer demand surpassed the total delivery
capacity of private vehicles (Chu, 2005). As a result, total customer demand could not to be satisfied,
necessitating the use of third-party carriers to resolve the problem. Although the costs of outsourcing
are typically higher than the costs of direct service, there are some instances where using a private fleet
may be more expensive, such as serving customers in difficult-to-reach areas or when vehicles must travel
half-empty and thus a less-than-truckload carrier can be used (Higino et al., 2018). The VRPPFCC is
about determining which customers to serve directly with private fleet and which through third-party
carriers. The goal of this model is to reduce total expenses.

3.5.1 Mathematical model for VRPPFCC

Bolduc et al. (2008) present an updated version of the VRPPFCC model for heterogeneous fleets of
cars. The concept ensures that each client is served precisely once by a private fleet vehicle or by a
common carrier, and that each private fleet vehicle performs just one route (Bolduc et al., 2008). The
new parameters, variables and constraints, which are unique for the VRPPFCC are shown and discussed
below.

Parameters:

• ei = the cost charged by the external carrier for serving customer i

Decision Variables:

• wik = 1 if customer i is served by the private fleet vehicle k, 0 otherwise

• zi = 1 if customer i is outsourced to a common carrier, 0 otherwise

Objective Function:

min z =

V∑
i=0

V∑
j=0

(cij ∗
M∑
k=1

xijk) +

V∑
i=0

eizi (3.1b)
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Constraints:

V∑
j=0,j ̸=h

xhjk =

V∑
i=0,i̸=h

xihk = whk ∀h ∈ V \ {0}, k ∈M (3.28)

zi +

M∑
k=1

wik = 1 ∀i ∈ V (3.29)

V∑
i=1

qiwik ≤ Qk ∀k ∈M (3.30)

wik ∈ {0, 1} ∀i ∈ V, k ∈M (3.31)

zi ∈ {0, 1} ∀i ∈ V (3.32)

The VRPPFCC adds two more factors related to the decision between a private fleet and an external
carrier. As a result, the objective function (3.1b) has been modified to reflect the total costs associated
with using the external carrier. Equation (3.28), on the other hand, illustrates the same vehicle k serving
and departing from customer h. Constraint (3.29), on the other hand, assigns each demand node to a
private fleet or an external carrier. Constraint (3.17) is replaced with (3.30), which ensures that the
private fleet’s capacity is not exceeded. Finally, constraints (3.31) -(3.32) make sure the variables are
binary.

3.6 Multi-trip VRP

The Multi-Trip Vehicle Routing Problem (MTVRP), also known as the VRP with multiple use of vehicles,
was first introduced by Fleischmann (1990). The MTVRP is created to address scenarios where vehicles
can undertake shorter tours and then, those vehicles can be used again for the second or third time
within the same working day. This enables the same vehicle to perform multiple routes during a single
day, a significant difference to the Single-Trip VRP, where each vehicle is restricted to making a single
tour to serve all of the assigned customers (Cattaruzza et al., 2016). In contrast to the Single-Trip VRP,
the MTVRP allows vehicles to return to the depot multiple times for loading, unloading, and serving
additional customers on subsequent trips.

3.6.1 Mathematical model for MTVRP

The model for the Multi-Trip VRP is based on the 4-index formulation presented in Cattaruzza et al.
(2016)’s work. This model has been modified and suited to the parameters and decision variables
described in the preceding sections. Furthermore, numerous constraints from previous models have been
adjusted, while new constraints have been added to account for the multi-trip situation.

Parameters:

• T = set of possible trips a vehicle can make.

• Tmax = maximum duration of trips.

Decision variables:

• xijkr = 1 if vehicle k travels from customer i to customer j during trip r, otherwise 0.

• Rijr is the amount of delivery goods on board on arc (i, j) during trip r.

• Pijr is the amount of pickup goods on board on arc (i, j) during trip r.

• tikr is the time vehicle k starts to service customer i in trip r.

Objective function:

min z =

V∑
i=0

V∑
j=0

(
cij ∗

M∑
k=1

∑
r∈T

xijkr

)
+

V∑
i=0

eizi (3.1c)
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Constraints:

∑
i,j∈V

xijkr ≥
∑
i,j∈V

xijk(r+1) ∀k ∈M,∀r ∈ T (3.33)

∑
i,j∈V

tijxijkr ≤ Tmax ∀k ∈M,∀r ∈ T (3.34)

tikr + tij − BigM(1− xijkr) ≤ tjkr ∀i ∈ V,∀j ∈ N, ∀k ∈M,∀r ∈ T (3.23b)

ai ≤ tikr ≤ bi ∀i ∈ V,∀k ∈M,∀r ∈ T (3.24a)

tikr ≥ 0 ∀i ∈ V,∀k ∈M,∀r ∈ T (3.35)

Within this model a new parameter is added related to the trips, and it has to be included in three of
the decision variables. This results in modifying the objective function accordingly (3.1c). All constraints
including the decision variables xijkr, Rijr, and Pijr in the previous models have to be modified to reflect
the new index for the trips r. Constraint (3.33) ensures that if a vehicle is making a trip r + 1, it must
have made trip r before that. Constraint (3.34) ensures the total duration of each trip r is not exceeded.
Constraint (3.23b) is modified to reflect the new variable tikr and it ensures customer j is served after
customer i by vehicle k in route r and that subtours are eliminated. The customer time windows are
considered in the modified constraint (3.24a). Finally, constraint (3.35) ensures the new variable is
non-negative.

3.7 Combining multiple features of the VRP

The Vehicle Routing Problem models and formulations described in Sections 3.1-3.6 investigate specific
aspects such as time-windows, capacity, load-splitting, multiple trips, simultaneous delivery and pickup,
and case with common carrier and private fleet. However, in real-life situations, businesses encounter a
mix of the features.

The multi-trip pickup and delivery problem with split loads and multiple time windows (VRPSDP-
SLTW) is one such combination developed by Wang et al. (2013) to handle a real-world construction
scenario. The situation consists of a single depot, a set of clients who may request both pickup and de-
livery services within a certain time frame, and a fleet of vehicles to serve clients. Because simultaneous
pickup and delivery may cause the vehicle capacity to be exceeded, the authors approach the problem as
a split delivery situation, in which each client can be visited many times by a single vehicle on a single
route or numerous vehicles along different routes. Wang et al. (2013) model the VRP with the goal of
minimizing both the number of vehicles used and overall travel expenses.

Suprayogi and Priyandari (2017) also discussed the VRP with multiple trips, time windows, and
simultaneous pickup and delivery with the weighted objective of minimizing the total tour duration time
and number of vehicles used. The model also uses capacity constraints, and time windows for both depot
and customer nodes.

A real-world instance requiring combining a number of VRP elements happened in the construction
industry, where building material delivery and construction garbage disposal were needed. Jaballah
and Cherif-Khettaf (2021) applied the multi-trip pickup and delivery problem with split loads, profits,
and multiple time windows characteristics to this construction company case. This problem investigates
various time frame specifications for some of the demand nodes, as well as a heterogeneous fleet of cars
and demand splitting. Because of the limited number of vehicles, this problem solution could not serve
all clients; therefore, customers were chosen based on the revenue contribution to the company (Jaballah
and Cherif-Khettaf, 2021).

Furthermore, Zhang et al. (2023) suggested a split-demand multi trip vehicle routing problem with
simultaneous pickup and delivery, which, while focused on scheduling luggage transit trains, may be
extended to truck routing. The tugs can visit a flight once every trip, however this can be done numerous
times with a set maximum number of trips (Zhang et al., 2023). During those trips, a pickup and delivery
service might be provided concurrently. They also include capacity limits and loading time, as well as
time windows for luggage release and return, making the scenario much more difficult. The goal is to
reduce the total cost of the route.

The heterogeneous fleet vehicle routing problem with split deliveries, multiple products, and multiple
trips with time window limitations was stated in a gasoline distribution instance (Nugroho et al., 2020).
The study was prompted by the increasing demand for gasoline distribution, which resulted in specific
demands not being met (Nugroho et al., 2020). Within the customer’s working hours, a fleet of trucks
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is required to visit and serve multiple gas stations with either a single cargo or several deliveries. The
study’s goal is to reduce overall distribution costs.

Some models, such as VRP with private fleet and common carrier, are new and have not yet been
integrated with many other model characteristics. However, Dang et al. (2022a) considered the vehicle
routing problem with common carriers and time constraints due to the recognition of its vast application
in real-life instances. They proposed a mixed integer linear programming formulation with customer
time frames and truck capacity as constraints. The goal was to keep total transportation costs as low as
possible. Dang et al. (2022a) applied the concept to a large-scale scenario and saved money by carefully
selecting outsourcing deliveries.

Table 3. Literature review of VRP variants and their solutions.

Article

VRP Features

Objective SolutionMT C SD TW DDP PFCC

Jaballah and
Cherif-
Khettaf
(2021)

✓ ✓ ✓ ✓

Minimize the
number of used
vehicles, total
duration time,
total distance,
and maximize
the number of
priority
customers

Score Based
Heuristic (SBH)

Wang et al.
(2013)

✓ ✓ ✓ ✓

Minimize the
number of
vehicles
required and
total travel
costs

Hybrid
Heuristic
Method
(HHM),
Construction
Heuristic
Algorithm
(CHA),
Reactive Tabu
Search (RTS)

Suprayogi
and

Priyandari
(2017)

✓ ✓ ✓ ✓

Minimize total
tour duration
time and
number of
vehicles used

Tabu Search
(TS), Local
Search (LS),
Genetic
Algorithm (GA)

Zhang et al.
(2023)

✓ ✓ ✓ ✓ ✓
Minimize total
costs

Adaptive Large
Neighbourhood
Search (ALNS)

Nugroho
et al. (2020)

✓ ✓ ✓
Minimize total
costs

Sequential
insertion

Dang et al.
(2022a)

✓ ✓ ✓
Minimize total
costs

Red-black Ant
Colony Search
(RB-ACS)

Table 3 contains an overview of the articles referred to in this section, and the solution approaches
presented in each of those. Despite the fact that multiple authors have merged four to five features,
no model in the literature covers all of this thesis’ problem aspects. Most articles concentrate on the
VRP with Simultaneous Pickup and Delivery, but not on the VRP with Divisible Delivery and Pickup.
Furthermore, no research has been conducted on the VRP with private fleet and common carrier in
combination with other elements such as simultaneous pickup and delivery or multi-trip case.
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3.8 Heuristics

The Vehicle Routing Problems are about finding the shortest tours visiting all nodes precisely once, also
known as a Hamiltonian cycle in graph theory. As the number of nodes to visit increases so does the
problem’s complexity, making it an NP-complete problem (Ni and Tang, 2023). Exact approaches, such
as direct tree search methods, dynamic programming, and integer linear programming, are used to solve
VRPs (Laporte and Nobert, 1987). However, in a real-world setting, the problem gets considerably more
complex because the VRP involves many different constraints, making exact techniques highly difficult
and time-consuming to solve. Heuristic and metaheuristic algorithms can be used to solve such large-scale
issues since they can deal with a large number of constraints and nodes while obtaining near-optimal
solutions in a reasonable amount of time.

Heuristics are categorized into constructive and improvement. The constructive heuristic seeks an
initial solution to the problem, whereas the improvement heuristic aims to improve the solution to the
greatest extent possible. Metaheuristics, on the other hand, can be divided into two types: local search
methods that explore the solution space by moving from one solution to the next in each iteration, and
population-based metaheuristics that evolve a collection of potential solutions (population) to explore
the solution space by mimicking biological evolution (Laporte et al., 2014).

The nearest-neighbour algorithm, savings algorithm, and two-stage heuristics are some of the oldest
and very widely used constructive heuristics for finding an initial solution to the VRP (Ni and Tang, 2023;
Laporte et al., 2014; Blocho, 2020). These are frequently used in conjunction with improvement heuristics
operators such as reinsertion, swap, and 2-opt (Laporte et al., 2014). The constructive heuristics are
discussed in Section 3.8.1.

The most common solution approaches for VRP with simultaneous pickup and delivery variations,
according to Wassan and Nagy (2014), include Tabu Search algorithms, Ant Colony Optimization, and
Adaptive Large Neighbourhood Search. In general, local search metaheuristics are used more than
population-based ones for most VRP variants. Simulated Annealing, Iterated Local Search, Large Neigh-
bourhood Search, and Greedy Randomized Adaptive Search Procedure are frequently used in VRPs with
multiple characteristics (Wang et al., 2013; Suprayogi and Priyandari, 2017; Zhang et al., 2023; Ni and
Tang, 2023). As a result, those are discussed in the sections that follow, along with the algorithm for
each (Sections 3.8.2-3.8.8).

3.8.1 Constructive heuristics

Constructive heuristics develop the routing solution from scratch by making empirical judgments (La-
porte et al., 2014). These heuristics are typically employed as the first step toward improvement and
metaheuristics. The Clarke and Wright savings algorithm is one such heuristic, in which initial routes
from the depot and back to the depot are constructed for each customer, savings are calculated, and
customers are merged based on the highest savings until the route is complete (Clarke and Wright, 1964).

Solomon suggested an insertion-based approach for solving VRPTW in 1987. Customers were re-
peatedly put into the initially empty list of routes based on factors such as trip cost savings, time frame
consideration, and a combination of the two until all customers were served (Solomon, 1987). Solomon
(1987) presented the Time-Oriented Nearest-Neighbor heuristic, where every route starts by discover-
ing the consumers which are not routed and are closest to the depot and the algorithm looks for the
unassigned client closest to the last customer added at each iteration. Many other parameters, such as
vehicle capacity limits, vehicle arrival and departure times, and client time frames, can be added to the
Nearest-Neighbor.

The cluster-first route-second heuristic is a two-stage heuristic that divides consumers into viable sets
before determining the optimal route inside each cluster (Fisher and Jaikumar, 1981). The algorithm
begins by selecting initial points (seed points) from the customer nodes and allocating each customer to
those seeds based on cost savings. A Generalised Assignment Problem must then be solved to assign
all customers into clusters while ensuring total vehicle capacity is met (Laporte et al., 1999). The final
step is to solve the problem for each acquired cluster. The method was then used to solve various VRP
variations, such as multi-trip VRP (Garside and Laili, 2019).

3.8.2 Simulated Annealing

The Simulated Annealing (SA) optimization was introduced in 1983 by drawing its roots from the
statistical mechanics (Kirkpatrick et al., 1983). The Simulated Annealing starts with an initial solution
and iteratively explores the solutions space by accepting both improving and non-improving solutions
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based on a temperature parameter to escape from the local optima. Osman (1993) was one of the first to
apply and evaluate the Simulated Annealing to the VRPs. The SA approach has proven to be producing
near-optimal solutions in a relatively short time (Osman, 1993). Since then, the Simulated Annealing
has begun to be widely applied for many variants of the VRPs. For example, a SA algorithm is proposed
with a mechanism of repeatedly cooling and raising the temperature to solve the CVRP (Wei et al.,
2018). The algorithm can also be used for VRPTW and is capable of solving big problems with up to
350 customers and 50 vehicles in a short time (Mohammadi et al., 2022). The algorithm for the simulated
annealing for capacitated VRP is presented in Algorithm 13 (see Appendix A.1), based on Wei et al.
(2018).

3.8.3 Tabu Search

Tabu Search (TS) is a metaheuristic algorithm developed in 1986 as an iterative procedure to guide
other heuristics to escape the local optima and explore the solution space (Glover, 1986). Osman (1993)
applied the Tabu Search algorithm to a CVRP and found out that it is more robust and outperforms
the Simulated Annealing algorithm in solution quality and computation time. In the later years, the
Tabu Search was applied to many VRP variations, including the VRPBTW presented in the study of
Duhamel et al. (1997). The TS starts with an initial solution and explores the neighbouring solutions by
applying local moves like 2-opt, swap, and Or-opt. The solutions are evaluated based on the importance
of the problem KPIs or objective function, such as distance travelled or costs. It then checks whether
the solution is in the Tabu List, which is a list of recent moves aiming to prevent revisiting them. If
the solution is in the Tabu List, then it is not accepted, unless it does not improve the best solution
found until this moment. The solution and Tabu List are updated, and the algorithm continues until a
stopping criterion is met (David J. Rader, 2010). The Tabu Search heuristic as presented in the book of
David J. Rader (2010) is given in Algorithm 14 (see Appendix A.2).

3.8.4 Iterated Local Search

An iterated local search algorithm (ILS) is a metaheuristic which focuses on a smaller subset of solutions,
instead of considering the entire solution space. The ILS algorithm, developed by Cuervo et al. (2014)
is shown on Algorithm 15 (see Appendix A.3). It begins with an initial solution, which is improved by
using a local search algorithm to find a local optimum. Following, the solution is perturbed by using
methods like removing randomly selected customer and inserting it back in a different randomly selected
position to escape from the local optima and explore the solution space (Cuervo et al., 2014). Then, a
decision is made whether to use the new solution found or the old one, or even a combination of both and
the process is repeated iteratively from perturbing a solution, until a stopping criterion is met. The ILS
has been used to solve the VRP with Backhauls and due to its simplicity, the algorithm usually has been
proven to be fast to execute (Cuervo et al., 2014). Moreover, a multi-start ILS has been developed for
the split delivery VRP with limited fleet, making use of perturbation mechanism called Multiple-k-split,
which removes randomly between 5 and 7 customers and reinserts them into other places (Silva et al.,
2015).

3.8.5 Variable Neighbourhood Search

Variable Neighbourhood Search (VNS) is a metaheuristic for solving optimization problems by exploiting
the idea of a neighbourhood change to escape from local optima. It explores distant neighbourhoods of the
current incumbent solution and changes to a new solution only if an improvement is made (Mladenovic
and Hansen, 1997). This ensures that most variables which are already at their optimal value will be
kept and only the ones which are not, will be updated through exploring neighbouring solutions. The
algorithm for the basic VNS based on Hansen and Mladenovic (2005) is given in Algorithm 1.
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Algorithm 1 Variable Neighborhood Search (VNS)

1: x← FindInitialSolution()
2: Define neighborhood structures Nk, k = 1, . . . , kmax

3: while stopping condition not met do
4: k ← 1
5: while k ≤ kmax do
6: x′ ← Shake(x,Nk)
7: x′′ ← LocalSearch(x′)
8: if Cost(x′′) < Cost(x) then
9: x← x′′

10: k ← 1
11: else
12: k ← k + 1
13: end if
14: end while
15: end while
16: return x

3.8.6 Variable Neighbourhood Descent

The variable neighbourhood descent (VND) is a specific type of local search methods, which can be used
within the VNS framework. VND is a deterministic local search method for exploring neighbourhoods
to escape from the local optima (Hansen et al., 2010). The VNS explores different neighbourhoods and
execute local search to find better solutions, whereas VND focuses on improving the current solution
without a further improvement of any of the neighbourhoods. In recent year, variations of the VND
algorithm have been applied to solve VRPs such as the random variable neighbourhood descent (RVND),
which does not follow a predefined order of the neighbourhood structures and randomly selects the order
in each execution (Higino et al., 2018). The RVND has been mainly applied to VRP with profits and
VRP with private fleet and common carrier (Doan et al., 2021; Higino et al., 2018). The algorithm for
the basic VND is presented on Algorithm 16 (see Appendix A.4).

3.8.7 Ant Colony Optimization

Ant colony optimization (ACO) is a population-based metaheuristic that mimics the behaviour of real
ants, who communicate with one another by leaving pheromone depots on the ground for other ants to
follow (Bell and McMullen, 2004). ACO builds a solution by probabilistically selecting pathways based on
pheromone levels. In VRP, an ACO is employed by building a complete tour for the initial routing while
adhering to restrictions such as vehicle capacity, split deliveries, and time windows (Çatay, 2009; Rizzoli
et al., 2007). Once an ant has completed its journey and returned to the depot, it may begin a new route
until all clients have been served. Once all of the ants have completed their routes, the pheromone levels
are updated, and the shortest or most cost-effective routes deposit more pheromones, encouraging future
ants to follow (Dang et al., 2022b; Bell and McMullen, 2004). Iteratively, the procedure is repeated until
a near-optimal solution is found for the VRP.

3.8.8 Greedy Randomized Adaptive Search Procedures

Greedy Randomized Adaptive Search Procedures (GRASP) are one of the most promising strategies for
tackling optimization problems. It is an iterative procedure with two phases: construction and local
search. The goal of the construction phase is to design a feasible solution by picking elements based
on a greedy function. A subset of the top solution candidates is then saved in a Restricted Candidate
List (RCL). The heuristic is adaptive since the benefits are changed in each iteration of the initial phase
to highlight the differences with the selected elements. The items are chosen at random from the list,
introducing variety and allowing for the exploration of alternative solutions at each iteration. When the
solution is constructed, a local search is applied to explore for improvements. The GRASP has been
applied widely to VRPB, CVRP, and VRPTW (Haddadene et al., 2016; Tütüncü et al., 2009; Marinakis,
2017). The generic GRASP algorithm is provided in Algorithm 17 (see Appendix A.5) and construction
phase in Algorithm 18 (see Appendix A.5), adapted from Feo and Resende (1995).
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3.9 Conclusion

This chapter answers the research question Based on the literature, what are the applicable techniques
and methods for modelling and solving a vehicle routing problem? Despite the extensive exploration of
VRP variants in the literature, a gap remains in addressing a model that precisely matches Meilink’s
combination of requirements, including split-load, multi-trip capabilities, divisible pickup and delivery,
the integration of a private fleet with common carriers, and adherence to time windows.

Among the VRP variants reviewed, the closest alignment was found with the works of Zhang et al.
(2023), which, while sharing several characteristics with Meilink’s scenario, does not incorporate the
private fleet and common carrier aspect. This highlights the novelty and complexity of Meilink’s routing
problem, showcasing the necessity for a tailored solution approach.

It became evident that a metaheuristic approach for solving Meilink’s Vehicle Routing Problem (VRP)
should be employed. This stems from the inherent complexity and scale of the transportation problem.
Traditional exact methods, while capable of finding optimal solutions, are impractical for large-scale
VRPs due to their computational intensity and the exponential growth of the solution space with the
addition of more variables and constraints. Meilink’s VRP, characterized by its combination of multiple
trips, split deliveries, simultaneous pickup and delivery, and the integration of private fleets and common
carriers, presents a highly complex problem that surpasses the capabilities of exact algorithms within rea-
sonable computational times. Metaheuristics offer a balance between solution quality and computational
efficiency, providing near-optimal solutions within a feasible timeframe. Notably, the Variable Neigh-
borhood Search (VNS) algorithm emerges as a particularly promising method for addressing Meilink’s
VRP.

The decision to employ VNS is motivated by several factors. While SA and TS are powerful in
exploring the solution space, they are generally constrained to a single or a limited set of neighborhood
structures. VNS, on the other hand, systematically explores multiple neighborhood structures, allowing
for a more comprehensive search of the solution space. This makes VNS particularly successful at
adapting to the complex nature of Meilink’s VRP, which combines multiple trips, split deliveries, and
the use of both private fleets and common carriers. VNS’s strategy of changing neighborhood structures
ensures a broader and more diverse exploration, increasing the likelihood of finding globally optimal
or near-optimal solutions when compared to ILS. ACO and GRASP are effective for specific problem
types, however, they may not always guarantee a thorough exploration of the solution space due to
their reliance on pheromone trails and greedy constructions, respectively. VNS’s sequential approach to
exploring different neighborhoods allows for a more thorough search, which is crucial for addressing the
complex constraints and objectives of Meilink’s VRP.

While existing literature provides valuable insights into various VRP variants and solution method-
ologies, the unique combination of requirements in Meilink’s transportation process necessitates a novel
approach. The choice of VNS as the solution method is justified by its adaptability, effectiveness in
large-scale scenarios, and capability to integrate complex VRP features, making it a suitable candidate
for developing an optimized routing strategy for Meilink Borculo B.V. This study aims to bridge the gap
in the literature by tailoring the VNS algorithm to Meilink’s specific needs, contributing to the body of
knowledge on VRPs and offering practical solutions to complex routing challenges.
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4 Solution Approach

After a thorough literature review, it has become evident that Meilink’s problem is complex and consists
of several characteristics found in literature research related to Vehicle Routing Problems (VRPs). This
chapter is dedicated to presenting the design of the solution to the core problem addressed in this
research. More specifically, this chapter aims to address the posed research question How should the
solution approach for Meilink’s transportation process be designed? Consequently, the chapter begins
by describing the transportation problem model of Meilink in Section 4.1, including a discussion of the
model’s requirements (4.1.1) and assumptions (4.1.2). The mathematical formulation of the model is
provided in Section 4.2. In Section 4.3 a toy illustration of the model and a solution to it is provided.
Section 4.4 introduces a metaheuristic solution through the Variable Neighbourhood Search algorithm
to tackle larger instances of the problem.

4.1 Model description

In the Meilink Borculo B.V. transportation problem can be described as a Multi-Trip Capacitated Vehicle
Routing Problem with Divisible Delivery and Pickup, Time Windows, Private Fleet, and Common
Carriers (MTCVRPDDPTWPFCC) and can be defined as follows. Let G = (V,A) be a directed graph,
where V = L ∪ B ∪ {0} is the node set that contains all customers and the depot nodes, and A is
the arc set. There is a set L = {1, 2, 3, . . . , n} of customers with delivery requests (linehaul) and a
set B = {n + 1, n + 2, n + 3, . . . , 2n} of customers with pickup requests (backhaul) where both sets
of customers are to be served by Meilink. Each customer can be either a linehaul, or backhaul, or
both at the same time. The Borculo location has only one depot, indicated by {0} and the depot has
working hours during which it can be visited by the vehicles, denoted by [a0, l0]. A distance Distij
is defined for each arc between each pair of vertices (i, j), i ̸= j, i, j ∈ V . It is assumed that travel
distances are symmetric and satisfy the triangle inequality. Each customer i ∈ L ∪ B has a demand
(either pickup or delivery) di and a time window with start time ai and end time li. A customer can
only be served within their time window [ai, li]. In Meilink, the number of private vehicles is limited,
and there is a set K containing the private fleet of the company. Each vehicle from the private fleet
has a corresponding volume capacity Qk and a unit cost uk for each kilometer travelled, which includes
the variable costs of each vehicle, such as fuel expenses. Moreover, each vehicle has a fixed cost ck,
including employee wages, maintenance, and depreciation, accumulated only if the vehicle is used. As
defined in the requirements, all private vehicles can be used for at most 9 hours (Tmax) a day. Meilink
also relies on the services of externally employed vehicles. Those usually charge a fixed cost ei for serving
a particular client location. The MTCVRPDDPTWPFCC aims to minimize the total transportation
costs while satisfying the requirements provided in Section 4.1.1 and considering the model assumptions
(4.1.2). These requirements include visiting the customer and depot nodes only within the time window,
allowing the vehicles to satisfy customer demand within multiple trips, and ensuring the vehicles’ volume
capacity is not exceeded.

4.1.1 Requirements

The solution to the VRP in the problem must adhere to several requirements. These requirements are
specified below and will be included as constraints to the model formulation.

• Each demand node can be visited more than once.

• A vehicle cannot transport more than its maximum volume per trip.

• Each customer can be a delivery, a pickup location or both.

• A vehicle must start and end each trip at the depot location.

• Each vehicle can travel at most 9 hours per day.

• The customers have expected delivery date and time, thus, the time windows have to be adhered
to. This includes also the depot working hours.

• Each client can be served by either a private fleet vehicle or by common carrier per trip.
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• Each vehicle starts with no pickup load and should return to the depot with no delivery load. This
is to ensure that all of the loaded items are delivered and that there are no items to unload upon
starting the trips.

• The total demand of the customers can be satisfied in multiple trips, however, ensuring that the
time windows are met.

These requirements will be considered in the mathematical model formulation as well as in the developed
solution approach.

4.1.2 Assumptions

In order to formulate the Vehicle Routing Problem (VRP) of Meilink Borculo, several assumptions have
been made. These crucial for the effective modelling assumptions are outlined below:

• The items to be transported vary in volume and weight. The volume of the objects is computed
based on their dimensions and used as input to the model. It is assumed the total weight of the
items is always within the allowable limit for each vehicle. Therefore, the weight of the items is
not considered a limitation and will not be formulated as a constraint.

• It is assumed 80% utilization of each vehicle’s volume capacity to reflect real-world loading con-
straints. This pragmatic approach accounts for the diverse type of cargo, including items that
cannot be stacked or require special handling, ensuring flexibility and safety in transport. The
20% buffer is strategically chosen to accommodate these variations, enabling a more accurate and
feasible routing solution that mirrors the real-world logistic challenge.

• Deliveries and pickups are scheduled on their last expected delivery day.

• Each driver is assigned to a single vehicle. The drivers do not form a limitation and their working
hours are considered by the maximum travel time of the vehicles.

• The service time for loading and unloading at each demand location is fixed at 30 minutes. However,
at the depot the service time is extended to an hour, considering the larger quantities of products
are being loaded or unloaded there.

• For customers without specified time windows, their working hours are considered as their available
time windows. Travel times are assumed to be deterministic, and waiting at a location is allowed.
However, starting service before the beginning of a time window is not allowed, meaning vehicles
may have to wait if they arrive early.

• All pickup and delivery requests are considered deterministic. The demand is assumed to remain
constant overtime.

• The travel time is a ratio between distance in kilometers and average speed of the vehicle.

• Outsourced vehicles are not a subject to capacity constraints, as various vehicles can be used for
transportation purposes. Costs associated with outsourced vehicles do not depend on the type of
vehicle used for and there are no constraint on the number of external vehicles available.

• Given that the depot is closed on Saturdays and Sundays, any delivery dates originally scheduled
for the weekend are adjusted to the preceding Friday.

• Split deliveries are no longer considered, as each item is formulated as a new demand node to
ensure the items are transported in their complete volume.

4.2 Mathematical formulation

The mathematical formulation of Meilink Borculo B.V’s transportation problem is based on the models
of Bolduc et al. (2008) and Wassan et al. (2017). Bolduc et al. (2008) focuses on formulating a VRP with
private fleet and common carriers, whereas Wassan et al. (2017)’s model is on the MT-VRPB. This for-
mulation below combines these two models and expands on those by adding the time-window constraints.
Moreover, some of the constraints and parameters of the literature mathematical formulations are mod-
ified to incorporate Meilink’s transportation problem aspects. Split deliveries are not considered in the
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model, as each item is formulated as a new demand node to ensure the items are transported in their
complete volume. This reduces the problem to a multi-trip capacitated VRP with divisible delivery and
pickup, time windows, private fleet and common carriers (MTCVRPDDPTWPFCC). The Mixed Integer
Linear Programming (MILP) formulation begins with setting the parameters of the model, based on the
transportation problem of Meilink Borculo B.V, followed by the decision variables, objective function
and the constraints, which were previously described under the model requirements.

4.2.1 Parameters

Meilink Borculo B.V.’s transportation problem has the following parameters:

L = {1, 2, 3, . . . , n}: set of linehaul customers (delivery requests), indexed by i and j

B = {n+ 1, n+ 2, n+ 3, . . . , 2n}: set of backhaul customers (pickup requests), indexed by i and j

V = L ∪B ∪ {0}: set of the depot and customers

K = set of private fleet vehicles indexed by k

Qk = volume capacity of vehicle k

di = demand (volume) of customer i such that i ∈ B for pickup demand and i ∈ L for delivery demand

Distij = distance (in km) from node i to node j

β = travel speed multiplier

ai = start time of customer i’s time window

li = end time of customer i’s time window

γ = time for serving customer i

ei = cost charged by external carrier for serving customer i

uk = unit cost per km travelled by vehicle k

ck = fixed cost for using vehicle k

Tmax = maximum travel time of vehicles

M = a large positive constant number

4.2.2 Decision variables

The decision variables of the model are the following:

xijk =

{
1 if vehicle k travels directly from customer i to customer j,

0 otherwise.

Rij = volume of pickup or delivery on board on arc ij

wik =

{
1 if private fleet vehicle k serves customer i,

0 otherwise.

zi =

{
1 if customer i is served by an outsourced carrier,

0 otherwise.

sik = the time when vehicle k starts serving customer i

yk =

{
1 if private fleet vehicle k is used,

0 otherwise.

4.2.3 Objective function

The total cost minimization objective can be given as:

min
∑
i∈V

∑
j∈V

∑
k∈K

ukDistijxijk +
∑
i∈V

eizi +
∑
k∈V

ckyk (4.1)
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The objective function is minimizing the total routing costs, which are composed of three distinct
types of expenses. The first component of the summation represents the costs incurred by the private
fleet vehicles. This includes the unit costs for the total distance travelled in kilometers, accounting for
all trips made to demand locations and the return to the depot. The second summation component
represents the charges imposed by common carriers for serving customers. The final element accounts
for the fixed costs associated with deploying any vehicle k from the private fleet.

4.2.4 Constraints

The constraints, aligned with the assumptions and requirements of Meilink Borculo B.V.’s transportation
problem are as follows:∑

j∈N

x0jk ≥ yk ∀k ∈ K (4.2)

∑
j∈N

xj0k ≥ yk ∀k ∈ K (4.3)

∑
j∈V

∑
k∈K

xjik = 1− zi ∀i ∈ N (4.4)

∑
j∈V

xjik =
∑
j∈V

xijk = 0 ∀i ∈ N, ∀k ∈ K (4.5)

∑
i∈M∪L

Rij − dj =
∑
i∈V

Rji ∀j ∈ L (4.6)∑
i∈L∪B

Rij + dj =
∑

i∈M∪B

Rji ∀j ∈ B (4.7)∑
i∈V

xijk ≤ wjk ∀j ∈ N, ∀k ∈ K (4.8)

Rij ≤ Qk · xijk ∀i ∈ N, ∀j ∈ N, ∀k ∈ K (4.9)∑
i∈V

∑
j∈V

β ·Distij · xijk +
∑
i∈V

∑
j∈V

γi · xijk ≤ Tmax ∀k ∈ K (4.10)

Rij = 0 ∀i ∈ L,∀j ∈ B ∪M (4.11)

xijk = 0 ∀i ∈ B, ∀j ∈ L,∀k ∈ K (4.12)

x0jk = 0 ∀j ∈ B, ∀k ∈ K (4.13)

M · yk ≥
∑
i∈N

wik ∀k ∈ K (4.14)

sik + (β ·Distij + γi)− sjk ≤ (1− xijk) ·M ∀i, j ∈ V, i ̸= j,∀k ∈ K (4.15)

ai ≤ sik ≤ li ∀i ∈ V,∀k ∈ K (4.16)∑
k∈K

wik + zi = 1 ∀i ∈ N (4.17)

xiik = 0 ∀i ∈ V,∀k ∈ K (4.18)

xijk + xjik ≤ 1 ∀i, j ∈ N, ∀k ∈ K (4.19)

xijk ∈ {0, 1} ∀i, j ∈ V,∀k ∈ K (4.20)

Rij ≥ 0 ∀i, j ∈ V,∀k ∈ K (4.21)

wik ∈ {0, 1} ∀i ∈ V,∀k ∈ K (4.22)

zi ∈ {0, 1} ∀i ∈ V (4.23)

sik ≥ 0 ∀i ∈ V,∀k ∈ K (4.24)

yk ∈ {0, 1} ∀k ∈ K (4.25)

Constraints (4.2) and (4.3) ensure that each vehicle’s tour begins and ends at the depot location,
provided the vehicle is used. Constraint (4.4) guarantees that each customer is served either by an internal
vehicle or by an outsourced carrier. In (4.5), the degree balance of each node is ensured. The delivery
flow conservation constraint (4.6) ensures that the total quantity of goods delivered to each linehaul

31



customer by vehicle k meets customer demand. Similarly, constraint (4.7) ensures flow conservation at
the backhaul nodes.

The number of vehicles from the private fleet responsible for the objective function is determined
through constraints (4.8) and (4.14). Constraint (4.9) ensures that the vehicle capacity on each arc is
less than the vehicle’s total capacity. The time spent on the road servicing customers across various
routes must not exceed the maximum permitted driving time per vehicle per day, as stated in (4.10).
Constraint (4.11) ensures that there is no load from a linehaul customer to either a backhaul customer
or to the depot. Constraints (4.12) and (4.13) prohibit a vehicle from traveling from a backhaul to a
linehaul customer and directly from the depot to a backhaul customer, respectively.

Time window constraints for both customer and depot nodes are established in (4.15)-(4.16). In
(4.17), each customer must be served either by a private vehicle or by a common carrier. Constraint
(4.18) prevents loops, and (4.19) ensures route continuity. Finally, the integrality constraints for the
decision variables are formulated in (4.20)-(4.25).

4.3 Toy problem illustration

An illustrative solution to the defined Vehicle Routing Problem (VRP) discussed in the preceding pages
is presented in Figure 8. This toy problem encompasses various constraints. It involves seven customer
nodes labeled A to G, with each node having either a linehaul (l) or/and a backhaul (b) demand denoted
by volume in cubic cm. Additionally, each customer node, including the depot, is assigned a time window
within which service can be provided.

Distances between the nodes are represented in hours. The vehicles utilized in this scenario consist
of two types: private vehicles (Vehicle 1 and 2) and an external vehicle, which functions as a common
carrier. The private fleet vehicles possess a loading capacity of 1000 cubic centimeters (cm³), while the
external vehicle is not constrained by capacity limitations in the model, as trucks with varying dimensions
can be outsourced.

Service time at each customer node is fixed at 30 minutes, and loading/unloading time at the depot
is set at 1 hour. Vehicles have the flexibility to make multiple trips. Private fleet vehicles always begin
and end their trips at the depot, ensuring route continuity. In contrast, external vehicles provide service
to the customers but may not necessarily return to the depot.

Figure 8. An illustration of a toy instance solution of a MTCVRPDDPTWPFCC.
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In this solution, Vehicle 2 departs from the depot at 8:00 AM, coinciding with the depot’s opening
hours. The closest nodes to the depot are A and C; however, since both require the same traveling time
of 0.6 hours, the time windows of the customer nodes need to be considered. Prioritizing the earliest
time window ensures that the vehicle does not have to wait until the client’s time window is open. In
this scenario, the earliest time window belongs to customer node A. Consequently, Vehicle 2 leaves the
depot and proceeds to node A. Node A is designated as a linehaul node, with a customer order volume
of l = 800 cm³. Given that each vehicle has a volume capacity of 1000 cm³, Vehicle 2 departs from the
depot carrying 800 cm³ to fulfill client A’s order volume. Only after serving customer A can it attend
to a backhaul customer, in this case, customer C. After arriving at customer A at 8:36 AM (due to the
0.6 hours traveling time), Vehicle 2 serves the customer for a fixed service time of 30 minutes, leaving
customer A with a capacity of 1000 cm³ at 9:06 AM. Subsequently, the vehicle proceeds to the nearest
node, which in this example is node C.

A backhaul demand totaling 500 cm³ needs to be serviced at node C, leaving vehicle 2 with a capacity
of 500 cm³. The travel time from node A to node C is 72 minutes, leading to Vehicle 2’s arrival at node
C at 10:18 AM. Consequently, the vehicle must wait for 42 minutes before it can serve customer C.
Upon serving customer C, the vehicle returns to the depot at 12:06 PM, accounting for both service and
travel time. Although the nearest customer from node C is node B, continuing the route at this point
is deemed suboptimal as customer B has both linehaul and backhaul demands that would exceed the
vehicle’s capacity on the initial tour from the depot. Thus, the vehicle returns to the depot to be loaded
for an hour with the loads of the next customers it can serve, namely, customer B and D, with a total
linehaul demand of 1000 cm³.

The vehicle embarks on a second tour to customer node B, the nearest customer. It services its
linehaul demand first within its time window, as there is no spare capacity for pickup. Even after
servicing customer B, the remaining capacity of the vehicle is 600 cm³, whereas the backhaul volume of
the customer is 700 cm³. Consequently, the vehicle cannot simultaneously fulfill both the pickup and
delivery demand of node B and must continue with its route. Vehicle 2 arrives at node D at 14:36, serves
the linehaul demand, and departs from the customer at 15:06 with a spare capacity of 1000 cm³.

Subsequently, the vehicle returns to customer B to service its backhaul demand within the time
window. It then returns to the depot, completing its second tour and the routing for the day. The depot
closes at 17:30, leaving no time to continue serving customers as the depot loading time is 1 hour.

Vehicle 1 also departs from the depot and serves customers G and E, both of whom are linehaul
customers. It starts from G and proceeds to E, as G shares the same opening time as the depot, thus
excluding the need for the vehicle to wait. Following this, it continues to node E and subsequently
returns to the depot. However, Vehicle 1 from the private fleet cannot serve customer F due to the
node’s distance from the depot and other nodes, which exceeds 3 hours, and its limited time window.
Moreover, customer F’s demand is 1200 cm², surpassing the capacity of the private fleet vehicles. Given
these constraints, outsourcing a common carrier with larger trucks capable of accommodating customer
F’s demand volume and servicing the customer within its time window is necessary.

The objective function of this toy instance solution can be computed by considering the variable costs
(per km traveled) of vehicle 1 and 2 from the private fleet, along with the fixed costs per day of utilizing
those vehicles. The external truck incurs a fixed cost for visiting a customer location.

For vehicle 1 and 2 from the private fleet, the variable cost is 0.38 cents per km, and they traveled
for 5.5 hours at a speed of 50 km/h, covering a total distance of 275 km. Additionally, there is a fixed
cost of 50 euros for using each of the private fleet vehicles (Vehicle 1 and 2). Moreover, the external
truck charges a fee of 240 euros for visiting customer node F. The total costs for this problem can be
calculated as follows:

0.38× 275 + 2× 50 + 240 = e 444.5

This includes the variable costs for the distance traveled by the private fleet vehicles, the fixed costs for
their utilization, and the fee charged by the external truck for visiting customer node F.

4.4 Solution Methodology

Finding a feasible solution for larger instances of the formulated Mixed Integer Linear Programming
(MILP) problem may be challenging, especially within a reasonable computation time. The MILP model
comprises 25 distinct types of constraints, five binary variables, and one integer variable. Consequently,
for a higher number of customer nodes, the complexity of the MILP model increases significantly. For
instance, with a setup of a single depot, 30 customer nodes, and 10 vehicles — 5 of which are part of a
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private fleet — the model includes 9,610 xijk variables (calculated as 31 × 31 × 10), 300 sik variables,
150 wik variables, 961 Rij variables, 30 zi variables, and 5 yk variables. This results in a total of 10,095
variables for this scenario. Due to the increased complexity in higher number of instances, the Variable
Neighborhood Search metaheuristic is considered more efficient. This choice is motivated by the novelty
of applying VNS to problems involving private fleets and common carriers, contributing to the academic
literature. Moreover, VNS is recognized for its flexibility and efficacy in managing Vehicle Routing
Problems with a large number of demand nodes.

4.4.1 Variable Neighbourhood Search

Algorithm 2 outlines the structure of the VNS algorithm employed in the solution approach. The main
difference with Algorithm 1 is the stopping criterion: while Algorithm 1 stops when a certain time
limit or specific target cost is reached, Algorithm 2 is instead setting maximum number of iterations
without including the time as a stopping criterion. The VNS below diversifies the search process by
systematically altering the neighborhood structure. This is achieved through the ”Shake” function, which
perturbs the current solution to explore new regions of the solution space, potentially uncovering better
solutions. Following this, a ”LocalSearch” procedure refines the new solution, seeking improvements
within a neighbourhood. The algorithm iterates through a predefined set of neighborhood structures,
dynamically adjusting based on the improvement observed in solution quality until the maximum number
of iterations is reached.

Algorithm 2 Variable Neighborhood Search (VNS)

1: Input: InitialSolution, maxIterations, K max
2: Output: bestCost, bestSolution
3: bestSolution← InitialSolution
4: bestCost← CalculateCost(InitialSolution)
5: currentSolution← InitialSolution
6: iteration← 0
7: while iteration < maxIterations do
8: k ← 1
9: while k ≤ K max do

10: newSolution← Shake(currentSolution, k)
11: newCost← LocalSearch(newSolution)
12: if newCost < bestCost then
13: bestSolution← newSolution
14: bestCost← newCost
15: k ← 1
16: else
17: k ← k + 1
18: end if
19: end while
20: iteration← iteration+ 1
21: end while
22: return bestCost, bestSolution

4.4.2 Initial solution

Initial solution is needed for the VNS algorithm to have a basis from which it can begin its exploration.
In this case, the initial solution is divided in three different functions, due to the complexity of the VRP
in case and the constraints involved with it.
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Algorithm 3 FindNextCustomerFunction()

1: Input: vehicle state, customer data, distance matrix, unvisited customers
2: Output: j prime (ID of the next customer to visit)
3: current location← vehicle state[′current location′]
4: min distance←∞
5: earliest start time←∞
6: j prime← None
7: for each customer j in unvisited customers do
8: distance to j ← distance matrix[current location][j]
9: start time j ← customer data[j][′start time′]

10: if distance to j < min distance or (distance to j == min distance and start time j <
earliest start time) then

11: min distance← distance to j
12: earliest start time← start time j
13: j prime← j
14: end if
15: end for
16: return j prime

Algorithm 3, the ”FindNextCustomerFunction”, is designed to identify the closest customer to a
vehicle’s current location by using a distance matrix that calculates Euclidean distances between customer
nodes. In scenarios where the distances between vehicle’s location and more than one customer are equal,
then the customer with the earliest start time of the time window is prioritized.

Algorithm 4 ServeCustomerFunction()

1: Input: vehicle state, customer id, customer data, time matrix, unvisited customers
2: Output: Boolean indicating if the customer was successfully served
3: current location← vehicle state[′current location′]
4: Determine is delivery or is pickup for customer id
5: Retrieve order volume from customer data
6: travel time← time matrix[current location][customer id]
7: arrival time← vehicle state[′time′] + travel time
8: if is delivery and remaining capacity + order volume > max capacity then
9: return False

10: end if
11: if is pickup and remaining capacity < order volume then
12: return False
13: end if
14: Adjust for waiting time if early
15: Calculate service time
16: Check total time against daily limit and time window constraints
17: if time constraints not met then
18: return False
19: end if
20: Update vehicle state based on is delivery or is pickup
21: Mark customer id as visited in unvisited customers
22: return True

The second function, ”ServeCustomerFunction”, is presented in Algorithm 4. Its primary purpose is
to assess whether a customer can be served by taking into account the vehicle’s capacity based on the
type of demand (pickup or delivery). Additional constraints, such as the early arrival time of a vehicle
to a customer node and waiting until the beginning of the customer time window, the depot opening
and closing hours, the service times at various locations, and maximum travel time of vehicles are all
taken into consideration. This function returns a boolean value indicating whether the customer can be
successfully served. If the customer cannot be served, the function proceeds to the next customer in the
list of unvisited customers.

Algorithm 5, the ”RouteVehiclesFunction”, plays a central role in creating the routes for vehicles. To
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include randomness in the initial solution routing, the function begins by shuffling the list of vehicles.
Although the common carriers are with the same capacity and cost characteristics, this list also includes
the private fleet vehicles, which are different in terms of both capacity and costs. This line with shuffling
the list of vehicles can be removed and then, the vehicles will be chosen sequentially in the order they
are stored in the dataframe. For each vehicle, the ”FindNextCustomerFunction” is employed to identify
a closest customer. The vehicle then attempts to serve the customers from the list of unserved ones
based on the constraints in ”ServeCustomerFunction”. In cases where a customer is cannot be served,
it is categorized as such and returned back to the list of unvisited customers. The function ends once all
customers are served either by private fleet or common carriers, or when the maximum iteration limit is
reached, indicating that routing constraints could not be met, resulting in incomplete routing. In case
scenarios have to be generated to include only either private vehicles or common carriers, this function
can easily be modified by removing the corresponding vehicles from the list of vehicles.

Algorithm 5 RouteVehiclesFunction

1: Input: vehicle states, unvisited customers
2: Output: Updated vehicle states with finalized routes
3: Initialize iteration count and set max iterations
4: Randomly shuffle vehicle states
5: while unvisited customers and iteration ≤ max iterations do
6: Initialize attempted customers
7: for each vehicle state in vehicle states do
8: Determine earliest start time for each vehicle based on customer time windows
9: while unvisited customers not empty do

10: j prime ← FindNextCustomer(vehicle state, all nodes expanded, time matrix, dis-
tance matrix expanded, unvisited customers − attempted customers)

11: if j prime is None then
12: Break from the loop; no viable next customer
13: end if
14: if ServeCustomer(vehicle state, j prime, all nodes expanded, time matrix, unvis-

ited customers) is False then
15: Add j prime to attempted customers for this vehicle
16: Continue to next iteration
17: end if
18: Remove j prime from unvisited customers
19: end while
20: end for
21: Increment iteration
22: end while
23: Finalize routes for each vehicle, including return to depot
24: if iteration > max iterations then
25: Print incomplete routing warning
26: end if
27: return vehicle states

4.4.3 Shaking

After the initial solution is generated, the VNS continues with the shaking phase (Algorithm 6), which is
crucial for exploring different regions of the solution space. The shaking phase within this implementation
considers five distinct operators, described in Section 4.4.5. One of the operators is randomly selected to
create a modified solution. This exploration allows for the subsequent local search to potentially discover
better solutions by escaping the local optima.
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Algorithm 6 Shake Function

1: Input: vehicle states, customer nodes
2: Output: new solution, new cost
3: new solution← copy of vehicle states
4: selected operator ← Randomly choose from list of operators
5: if success then
6: new solution← Updated solution from selected operator
7: new cost← Updated cost from selected operator
8: else
9: new cost← calculateCosts(new solution, private vehicles, all nodes expanded)

10: end if
11: Return new solution, new cost

4.4.4 Local Search

The Local Search outlined in Algorithm 7 starts with an initial solution and attempts to improve it by
applying a set of operators to the current solution iteratively. The best solution found until this point
is stored and the algorithm iterates through the different operators to check if applying the operator
results in a lower cost. If the costs are improved, then the best cost is updated and the improvement
process continues until no further improvements can be made.

Algorithm 7 Local Search Algorithm

1: Input: vehicle states, customer nodes
2: Output: best route, best cost
3: Initialisation best route, best cost
4: improvements← False
5: while improvements do
6: for operator in operators do
7: new solution← Updated solution from operator
8: new cost← Updated cost from operator
9: if success and new cost < best cost then

10: best cost← new cost
11: best route← new route
12: improvements← True
13: break
14: end if
15: end for
16: end while
17: Return best route, best cost

4.4.5 Operators

The operators play a crucial role in the formulation of the VNS algorithm, as they enable the meta-
heuristic to explore various neighbourhood structures and exploit the current solution space effectively.
In this solution approach five different operators are incorporated based on the research of Hansen and
Mladenovic (2005) and McNabb et al. (2015). The operators include Swap, Reinsertion, 2-Opt, Move
and Swap Vehicles, each of which is individually described in the following sections. Before making any
modifications of the routes and the overall solution, the feasibility of the solution after applying the
operator is ensured, along with evaluating the potential cost improvement. The solution is updated only
if there is a reduction in the best-found costs upon applying the operator. Additionally, solutions with
identical costs are not stored to prevent looping.

4.4.5.1 Swap customer

The Swap operator outlined in Algorithm 8 begins by checking if there are at least two vehicles available
for the swap and at least three customers per chosen vehicle. Without these condition the swap cannot
be performed. If these two conditions are met, the operator randomly chooses two vehicles, each with one
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customer randomly selected from them. The swap is executed through exchanging the selected customers
between the chosen vehicles. In case the newly generated routes are infeasible or the costs are not lower
than the best costs found, the swap is reverted, ensuring that only valid and cost-improving solutions
are considered.

Algorithm 8 Swap Customer Operator

1: Input: best cost, best route
2: Output: best route, best cost
3: if Number of vehicles > 2 then
4: Randomly select vehicle1 and vehicle2
5: if Both vehicles have at least 3 customers then
6: Randomly select customer1 from vehicle1 and customer2 from vehicle2
7: Swap customer1 and customer2
8: Calculate the new cost after the swap
9: end if

10: end if
11: if solution feasible and new cost < best cost then
12: Update best cost and best route
13: else
14: Revert the swap
15: end if
16: return best cost, best route

4.4.5.2 Reinsertion

The Reinsertion operator begins by ensuring there is at least one vehicle which has a route from the initial
solution with three or more customers (Algorithm 9). If this condition is met, the operator randomly
selects one of the vehicles which have a route and randomly chooses a customer from this vehicle’s route.
This customer is removed from its current position and a new position is selected, ensuring it is different
from the original position. The operator is not allowed to change the depot locations in the route. The
customer is then reinserted into the new position and feasibility and cost checks are performed.

Algorithm 9 Reinsertion Operator

1: Input: best cost, best route
2: Output: best route, best cost
3: if Number of customers ≥ 3 then
4: Randomly select vehicle and customer from its route
5: Store original position of customer
6: Remove customer from its current position in vehicle
7: Choose a new position for customer (not equal to original position )
8: Insert customer into the new position in vehicle
9: Calculate the new cost

10: end if
11: if solution feasible and new cost < best cost then
12: Update best cost and best route
13: else
14: Revert the reinsertion
15: end if
16: return best cost, best route

4.4.5.3 2-Opt

The 2-Opt operator begins by verifying whether at least one of vehicle’s route contains four or more
nodes (including the depot at the beginning and end of the route). The operator proceeds as described
in Algorithm 10 by randomly selecting one of the available vehicles and randomly choosing two edges
a and b within the vehicle’s route. The edges must be non-adjacent, and edge b should not follow a
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immediately in the route sequence. The order of nodes between those two edges is swapped within the
vehicle’s route and feasibility and costs are assessed.

Algorithm 10 2-Opt Operator

1: Input: best cost, best route
2: Output: best route, best cost
3: if Number of customers in a vehicle ≥ 4 then
4: Randomly select vehicle and two non-adjacent edges a and b in the route, ensuring b is not a+1
5: Reverse the order of the nodes between a and b in vehicle’s route
6: Calculate the new cost
7: end if
8: if solution feasible and new cost < best cost then
9: Update best cost and best route

10: else
11: Revert the 2-Opt
12: end if
13: return best cost, best route

4.4.5.4 Move

The Move operator begins with verifying that the number of vehicles with routes exceeds two (Algorithm
11). Then, two different vehicles are selected randomly.It is checked if the first vehicle selected has at
least three customers to perform the move operator. Based on random selection a customer is removed
from the first vehicle and inserted in a randomly determined position in the second vehicle. The new
position has to be between the two depot nodes.

Algorithm 11 Move Operator

1: Input: best cost, best route
2: Output: best route, best cost
3: if Number of vehicles ≥ 2 then
4: Randomly select vehicle from and vehicle to
5: Randomly select a customer customer from vehicle from’s route
6: Remove the customer’s position from vehicle from’s route
7: insert position to vehicle to’s route
8: Calculate the new cost
9: end if

10: if solution feasible and new cost < best cost then
11: Update best cost and best route
12: else
13: Revert the Move
14: end if
15: return best cost, best route

4.4.5.5 Swap Vehicles

The Swap Vehicle operator, outlined in Algorithm 12, begins by verifying that the available number
of vehicles exceeds two. Once the condition is met, two different vehicles are selected randomly from
the list of vehicles, including both private fleet and common carriers. The customer nodes are swapped
between the selected vehicles, creating two new routes for each of them. At the end, the feasibility and
cost improvement of the solution is assessed.
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Algorithm 12 Swap Vehicles Operator

1: Input: best cost, best route
2: Output: best route, best cost
3: if Number of vehicles ≥ 2 then
4: Randomly select vehicle1 and vehicle2
5: Swap the customer nodes between vehicle1 and vehicle2
6: Calculate the new cost
7: end if
8: if solution feasible and new cost < best cost then
9: Update best cost and best route

10: else
11: Revert the Swap
12: end if
13: return best cost, best route

4.5 Conclusion

This chapter provides a comprehensive overview of the solution methodologies applied to address the
transportation challenge faced by Meilink Borculo B.V. More specifically, this chapter provides an an-
swer to the research question How should the solution approach for Meilink’s transportation process be
designed? First, Meilink’s routing problem is formulated as a Multi-Trip Capacitated Vehicle Rout-
ing Problem with Divisible Delivery and Pickup, Time Windows, Private Fleet, and Common Carriers
(MTCVRPDDPTWPFCC). Following, the requirements and assumptions are defined.

The model must adhere to several requirements, including the ability for vehicles to make multiple
trips, vehicle capacity limits, servicing of customers as either delivery or pickup locations, and the
necessity for vehicles to start and end trips at the depot. Additionally, vehicles are constrained by a
maximum daily travel time, and customer service must occur within specified time windows. The model
also ensures that each customer can be served by either a private fleet vehicle or a common carrier per
trip, and vehicles must return to the depot without any remaining delivery load.

Moreover, several assumptions underpin the solution approach to ensure its practical applicability
and feasibility. These include the consideration of volume as the primary constraint over weight, an
80% utilization of vehicle capacity to account for loading constraints, and the deterministic nature of
customer demands and travel times. The model assumes fixed service times, allows for waiting at
locations if vehicles arrive early, and does not consider split deliveries. Additionally, it is assumed that
outsourced vehicles are not subject to capacity constraints, and adjustments are made for deliveries
initially scheduled on weekends.

Lastly, the solution approach for Meilink’s complex routing problem incorporates a Mixed Integer
Linear Programming (MILP) model for smaller instances and a Variable Neighborhood Search (VNS)
metaheuristic for larger instances, focusing on minimizing total transportation costs while adhering to
operational constraints. The MILP model is an exact method, which once solved generates the optimal
solution to the VRP. However, the disadvantage of the exact method is the computation time required.
The VNS, on the other hand, stands out for its adaptability and efficiency in handling extensive problem
sizes through a strategic combination of initial solution generation, a diversifying shaking phase, an
exploitative local search, and a set of operators (Swap Customers, Reinsertion, 2-Opt, Move, and Swap
Vehicles). These elements work together to navigate the solution space effectively, escaping local optima
and progressively refining solutions. This approach not only addresses Meilink’s routing problem but also
contributes to the broader field of vehicle routing problems by demonstrating the practical application
and benefits of metaheuristic algorithms in complex logistical scenarios.
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5 Evaluation

This chapter evaluates the two developed solution approaches, Mixed Integer Linear Programming
(MILP) and Variable Neighbourhood Search (VNS), aimed at addressing the transportation problem
of Meilink Borculo B.V. Thus, 10 real-world instances are developed and analyzed through a series of
experiments. The primary goal of this chapter is to assess the performance of the developed solutions
in optimizing Meilink’s transportation process relative to the current cost structure. This evaluation is
framed around the research question: ”How does the developed solution for optimizing Meilink’s trans-
portation process perform compared to the current situation?”. The chapter unfolds by outlining the
experimental design in Section 5.1, detailing the development of artificial and real-world data instances
in Section 5.2, tuning the parameters for MILP and VNS in Section 5.3, and presenting the results from
scenario tests in Section 5.4.

5.1 Experiment Design

The experimental framework contains five distinct experiments, labeled from E0 to E4, as provided in
Table 4. The initial experiment (E0 ) is dedicated to fine-tuning the parameter settings for both the VNS
algorithm and MILP model. Proper parameter configuration is crucial for enhancing the efficiency and
accuracy of the algorithms, thereby ensuring their capability to identify near-optimal solutions within
a feasible timeframe. This phase involves adjusting parameters for the initialization, shaking, and local
search stages of the VNS, in addition to setting the maximum computation time for both MILP and
VNS.

Table 4. Experimental design.

Experiment
ID

Title Goal

E0 Parameter tuning This experiment aims to identify the optimal settings for the VNS
algorithm and the MILP to enhance solving efficiency by using ar-
tificial experimental data. For the VNS algorithm, the initialization
method, the maximum number of iterations without improvement,
the sequence of local search operators, and the shaking phase oper-
ators are determined. For the MILP, the maximum execution time
is selected.

E1 Mixed fleet utiliza-
tion

This experiment evaluates the performance of both private fleet and
common carrier vehicles in the generated real-world data instances
using the two solution methods (VNS and MILP). Common carriers
are not routed, meaning external trucks can only serve customers
directly from the depot without continuing to other customers be-
fore returning. The objective is to assess key performance indica-
tors (KPIs)—cost, distance, running time, number of vehicles, and
the percentage of unserved customers—across various instances and
compare the efficacy of the two solution methods.

E2 Exclusively private
fleet

Here, only private fleet vehicles are subjected to real-world instances
tests using both solution methods. The goal is to analyze the KPIs in
different instances and compare the solution methods’ effectiveness.

E3 Common carriers
only

In this setup, only common carrier vehicles are tested in real-world
instances with both solution methods. Similar to Experiment E1,
common carriers are not routed; they serve from the depot and
do not continue their routes to serve other customers. The aim
is to evaluate and compare KPIs across instances, focusing on the
performance of the VNS and MILP methods.

E4 Routing common
carriers

This experiment allows common carriers to be routed, enabling them
to serve multiple customers per departure from the depot, similar to
private fleet vehicles, using both solution methods. The objective is
to assess and compare KPIs under various instances. Additionally,
this experiment facilitates a comparison with Experiments E1 and
E3, which do not route common carriers, offering insights into how
routing affects KPI improvements.
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To conduct these parameter tuning experiments, artificial data instances are created to ensure the
VNS and MILP’s general applicability, thus avoiding overfitting to the specific context of Meilink Borculo
B.V. These datasets include both fewer and more instances than those observed in real-world instances.
The instances are generated using data available from Meilink and are further detailed in Section 5.2.

Following the algorithms’ parameter tuning, several real-world instances are developed and evaluated
in Experiments E1 through E4. Utilizing Meilink Borculo B.V.’s customer data and the existing cost
structure, these instances are designed to examine the company’s actual situation. The instances aim
to evaluate the solution methods’ effectiveness in optimizing transportation processes to reduce costs.
Additionally, artificial data instances reflecting higher demand than the company’s current situation are
tested in Experiments E1 through E4 to assess the solution methods’ outcomes should the company face
increased demands.

The first three experiments (E1 through E3 ) do not allow routing for the common carriers, reflecting
a real-world constraint faced by the company. In Experiment E4, common carriers are routed, modifying
the MILP and VNS approaches from Experiments E1 and E3 to include this additional routing capability.
This experiment will determine the extent to which routing common carriers affects the solutions and
the KPIs.

5.1.1 Technical details

To perform the experiments and evaluate the data instances, a computer with Windows 10 Pro operating
system, 16GB RAM, Intel(R) Core(TM) i7-8750H and 2.20GHz is used. For both VNS algorithm and
the MILP model, Spyder 5.4.3 IDE is used integrating Python 3.11.5 64-bit. For the MILP, the MIP
package of Python is used and the model is solved with the optimization tool Gurobi version 11.0.0 with
an academic license.

5.2 Data Instances

Within this section, artificial data instances for parameter tuning (Section 5.2.1) are developed, together
with real-world instances (Section 5.2.2). The data instances for parameter tuning consist of artificial
scenarios that do not directly reflect the actual demand faced by Meilink Borculo B.V (Table 5). These
instances feature a varied number of customers, ranging from 5 to 100, to demonstrate the solution
methods’ applicability to both smaller and larger demand cases. The use of artificial instances creates
a controlled environment, facilitating the analysis of the VNS algorithm’s response to diverse problem
characteristics. This approach helps in identifying the algorithm’s strengths and weaknesses across
different instances, which may be hindered by the complexity and variability of real-world data. Moreover,
evaluating the VNS across a range of artificial instances ensures the algorithm’s robustness and its
ability to generalize across various problem types, a critical aspect for real-world applications where
problem characteristics can significantly differ. A well-tuned algorithm, based on artificial instances,
can contribute to its effective performance on real-world problems, avoiding overfitting to a particular
dataset. Hence, parameter tuning on artificial instances is crucial in optimizing algorithm performance
by identifying the optimal parameter settings for a good solution quality and computational efficiency.
This tuning process, detailed in Section 5.2.1, is exclusive to Experiment E0, focusing on the VNS model
tuning and MILP model computation time.

Conversely, real-world instances (Section 5.2.2) validate the algorithm’s practical applicability, ex-
amining the feasibility and efficiency of the proposed solutions within an operational context. These
real-world instances reflect the actual daily pickup and delivery demands encountered by the company,
incorporating actual time windows, locations, and vehicle specifications (Table 6). Additionally, four
artificial instances are included within the real-world context to showcase potential future demand in-
creases and their impact on company’s KPIs. The evaluation of real-world instances, as outlined in
Section 5.2.2, is used in Experiments E1 to E4.

Furthermore, Section 5.2.3 elaborates on the cost structure of Meilink Borculo B.V.’s transportation
challenge. These cost considerations are integral to both the parameter tuning phase and the evaluation
of real-world instances, thereby influencing Experiments E0 through E4.

5.2.1 Artificial data instances for parameter tuning

For the tuning of the Variable Neighbourhood Search (VNS) parameters, data instances ranging from
5 to 100 customer nodes are prepared, based on Meilink Borculo B.V.’s dataset for the years 2022-23.
These artificial data instances are used only for Experiment E0.
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The instances include randomly selected customer demand nodes, together with their linehaul and
backhaul requests. Those do not represent the actual daily demands of the company, however, they are
randomly chosen, and for larger number of customer nodes, demands from multiple days are merged to
test the VNS’s performance on more complex instances. The data contains client demands, their preferred
time windows, and specific delivery and pickup locations from Meilink Borculo’s records, although they
do not exactly mirror the company’s daily demands. The instances vary, with pickup nodes ranging from
0 to 47 and delivery nodes from 5 to 80. Client demands were randomly chosen from Meilink’s dataset,
and time windows were set according to the most commonly requested periods by clients.

The composition of the private fleet for each data instance reflects the actual fleet at Meilink, con-
sisting of one box truck and four larger trucks, with their dimensions provided in the problem context
analysis. Each instance ensures the combined capacity of the private fleet and common carriers meets
all delivery and pickup requirements. The number of common carriers is adjusted based on the increase
in customer nodes and demand levels.

Distances between demand nodes are determined utilizing the ‘geodesic‘ method from the ‘geopy‘
library within the Spyder environment. This method calculates the shortest path between two points
on an ellipsoid’s surface based on their latitude and longitude coordinates. The selection of this method
ensures consistency across both the Variable Neighborhood Search (VNS) and Mixed Integer Linear
Programming (MILP) models, where distances between nodes are computed similarly. Compared to the
Euclidean distance, the ‘geodesic‘ method offers enhanced accuracy by accounting for the Earth’s curva-
ture, a critical consideration for calculating longer distances. Nonetheless, it is important to acknowledge
that this method does not guarantee absolute precision in reflecting the actual road distances between
nodes.

Vehicle speed varies by instance, affecting the conversion of distances into travel time. For example,
a speed factor of 0.02 means travel time is calculated as 0.02 times the distance in kilometers or in other
words, it corresponds to a speed of 50 km/h. A comprehensive overview of the artificial data instances
used for parameter tuning is provided in Table 5.

Table 5. Overview of the 10 artificial datasets for parameter tuning. Each dataset represents a day with number of different
customer locations, number of backhaul customers, and the speed of the vehicles.

ID Number of Customers Number of Pickup Nodes Speed

D1 5 0 0.02

D2 10 4 0.05

D3 20 5 0.1

D4 30 18 0.02

D5 40 12 0.05

D6 50 7 0.1

D7 60 0 0.02

D8 70 27 0.05

D9 80 47 0.1

D10 100 20 0.02

5.2.2 Real-world instances

To assess the optimal transportation strategy for Meilink Borculo B.V., 10 real-world instances are used
from company’s 2022-23 data, which includes daily customer demands, pickup requests, time windows,
vehicle capacities, and associated costs (Section 5.2.2).

In this context, ”demand” refers to the number of distinct customers requiring service within a single
day. Demand varies both daily and seasonally, with certain days of the week and months of the year
experiencing peak or significantly lower demands. Given the daily execution of transportation, instances
are tailored to specific weekdays, reflecting anticipated customer delivery dates.

Three weekdays are selected for detailed evaluation: Monday, with typically the lowest demand;
Thursday, experiencing the highest demand; and Friday, showing moderate demand levels throughout
the year. To accurately represent variability, both a low-demand and a high-demand Monday are chosen
from the dataset, ensuring they reflect typical demand patterns without being extreme outliers. This
approach is similarly applied to Thursdays and Fridays.

As outlined in Section 2, there is considerable variation in both pickups and deliveries on any given
day. Consequently, the instances include diverse pickup and delivery nodes to accurately mirror actual
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demand. Each dataset’s total demand nodes, and whether they include pickup nodes, are detailed in
Table 6, noting that high customer numbers on certain days might not equate to a high total order
volume (and vice versa) due to product and packaging diversity.

Given the real-world instances involve only 7 to 46 customer nodes, four artificial instances are
developed and evaluated. These artificial instances, created from the Meilink datasets by merging the
customer demand over several days, help explore potential impacts on KPIs if the company experiences
growth and an increase in daily orders.

A comprehensive overview of all instances is provided in Table 6. The real-world instances which are
representative of the actual demand of the company are S1 -S6 and the artificial ones are AS7 -AS10.
Each instance undergoes analysis using both Mixed Integer Linear Programming (MILP) and Variable
Neighborhood Search (VNS) under Experiments E1 to E4.

Table 6. Overview of real-world daily data instances for Meilink Borculo B.V.’s transportation problem. Each instance is
a specific day of the week, where a certain level of demand is observed. The customer nodes vary per day and insome days
there are both linehaul and backhaul customers.

ID Day of the Week Demand Customer Nodes Pickup

S1 Thursday low 11 Yes

S2 Thursday high 46 Yes

S3 Friday low 10 Yes

S4 Friday high 37 No

S5 Monday low 7 No

S6 Monday high 34 Yes

AS7 - - 60 No

AS8 - - 70 Yes

AS9 - - 80 Yes

AS10 - - 100 Yes

5.2.3 Cost data for numerical experiments

The cost breakdown2 for each vehicle of Meilink Borculo B.V. is detailed in Table 7, with data sourced
from 2022. As described in Section 2.3, the fixed costs associated with using a vehicle include employee
wages, depreciation, maintenance, insurance, and taxes. It is assumed that each vehicle is driven by
one employee, so the average wage for an employee is incorporated into the fixed costs for each vehicle.
Notably, some vehicles have reached the end of their depreciation period, resulting in a depreciation
value of zero. Maintenance costs, which varied for each lorry in 2022, are summed up annually. The
maintenance costs for the six trailers are also aggregated and then evenly distributed across the four
lorries. The total maintenance costs per vehicle are presented in the fourth column of the table. The box
truck does not make use of the trailers and, therefore does not incur the maintenance costs associated
with them. After calculating the total annual fixed costs per vehicle, these costs are divided by 260 days
– the number of working days from Monday to Friday in a year – to determine the daily fixed costs per
vehicle, as shown in column six.

Fuel is considered a variable cost. To calculate fuel consumption for each vehicle, information from
the respective vehicle brand and model websites was utilized. The average between the minimum and
maximum fuel consumption per vehicle is computed and is presented in the table, since it is very hard
to estimate the exact consumption of a vehicle, as it changes based on many factors, including loading,
speed, traffic conditions, and the age of the vehicle. The fuel price per litre for Diesel cars within the
Netherlands is taken as 1.504 euros average for the year 2022-23. The cost per km travelled per vehicle
is found by the consumption rate of a vehicle times the price of fuel. Those are presented in column 7.

2These cost does not represent the actual costs of the business. All costs are multiplied by a random non-integer number
to maintain the confidentiality of the business. All costs in subsequent pages are also be multiplied by the same random
number.
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Table 7. Cost breakdown of company’s private vehicles.

ID Model Depreciation Maintenance Consumption FC VC

1 Mercedes Benz 13559.2 5330.34 20.42 210.68 0.307

2 Mercedes Benz 13559.2 5071.56 20.42 209.68 0.307

3 Volvo 6320 2455.03 16.69 170.49 0.251

4 Mercedes Benz 0 8633.86 20.42 171.99 0.307

5 Mercedes Benz 0 6948.66 20.42 165.51 0.307

The common carriers usually charge a fixed fee based on the customer node they are visiting. However,
in case there are more than two customers who can be served on the same trip by common carriers, the
cost for the furthest customer applies. However, the third-party logistics has not provided the fee for
all the possible destinations that can be visited by them. Since this is the case, a cost per kilometre
charged by the common carriers has to be estimated to make it feasible for the model and not restrict
the common carriers to visit only specific cities. Therefore, the distance between the Borculo location
and all the cities in the provided list by the common carrier is found by using the ‘geodesic’ method
from the ‘geopy’ library in Spyder. After finding the geodesic distance between the nodes in the common
carrier list, the fixed fee for each node is divided by the distance between the Borculo and that node.
Then the found costs per km are averaged and the approximate cost per km charged by common carriers
is approximated as €2.778.

5.3 Parameter Tuning

In this section the parameters of the VNS are tuned and MILP’s maximum computation time is set by
using the artificial data instances as described in Section 5.2.1. Firstly, the initialisation method used
for the VNS is determined, followed by the maximum number of iterations without an improvement of
the algorithm is set. Moreover, the order of the local search operators is chosen, as well as the strategy
to be used in the shaking phase. These parameters are tested against multiple predefined data instances.
Besides, the MILP’s maximum computational time is determined to find an optimal solution within
reasonable time.

5.3.1 Initialisation

As described in the solution methodology (Section 4.4) the initialisation can be performed in two ways.
The first method assigns vehicles based on their order in the vehicle list. The second method involves
randomizing the selection of vehicles from the list, enabling the solution to choose randomly the vehicle,
either a private or external, from the list of vehicles. The choice of initial solution is crucial for selecting
the vehicles used to transport goods to and from customers, as it influences the range of possible outcomes
when applying the Variable Neighborhood Search (VNS). Consequently, determining the most effective
initialization method between the two is essential and is achieved through experimentation:

Experiment I1 : Sequential Fleet Allocation. This initialization method consistently produces the
same result due to the ordered assignment of vehicles. It is conducted only once in the experiments.

Experiment I2 : Randomized Vehicle Selection. This method of initialization yields varying results
since it assigns vehicles randomly each time. Therefore, it is conducted 10 times to ensure the output
is not an extreme outlier, which is then compared to Experiment I1. The minimum, maximum, and
average values of the experiment for each data instance are reported, but only the minimum is compared
to I1.

The experiments test the solution on all possible ways of assigning the vehicles. The results from the
experiment are provided in Table 8. The first column provides the artificial data instances ID experi-
mented with, the second column is split into cost and time, where the costs generated from Experiment
I1 and the associated computation time are provided. The last columns provide the minimum, average
and maximum costs and time values from Experiment I2 with each data instance.
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Table 8. Comparison of initialization methods. The lowest cost objective value and lowest computation time compared
between I1 and I2 are given in bold.

ID
I1 I2

Cost Time Cost Time

Min Avg Max Min Avg Max

D1 252.42 0.008 207.25 252.42 377.53 0.008 0.014 0.039

D2 509.14 0.004 442.14 621.64 802.90 0.002 0.008 0.010

D3 1873.74 0.049 1927.80 2387.45 2622.41 0.02 0.023 0.031

D4 2635.28 0.09 2117.74 2532.86 2693.80 0.02 0.028 0.032

D5 6468.85 0.142 5291.71 5427.52 5977.94 0.092 0.111 0.142

D6 6358.44 0.085 4438.11 5799.69 6224.0 0.043 0.058 0.091

D7 7333.84 0.264 5819.73 6509.67 6740.73 0.167 0.188 0.202

D8 7061.73 0.678 5764.70 6622.28 6885.07 0.303 0.459 0.849

D9 8127.69 0.377 6428.92 6778.49 6944.47 0.213 0.256 0.313

D10 9421.88 0.811 7134.84 8611.49 9809.08 0.344 0.393 0.554

Average 5004.3 0.251 3957.29 4554.35 4907.79 0.121 0.154 0.226

Table 8 reveals a variable performance comparison between the two initialisation experiments across
the data instances. The Sequential Fleet Allocation (Experiment I1 ) and Randomized Vehicle Selection
(Experiment I2 ) methods offer distinct approaches to initializing the VNS algorithm, impacting the
solution’s quality and the time required to reach it.

The Randomized Vehicle Selection method (Experiment I2 ) consistently outperforms the Sequential
Fleet Allocation method (Experiment I1 ) in terms of achieving lower cost solutions across almost all data
instances, as evidenced by the minimum cost values being lower for Experiment I2 in the majority of
cases. This suggests that introducing randomness in vehicle selection allows the VNS algorithm to explore
a more diverse set of initial solutions, increasing the likelihood of finding more cost-effective routes. For
instance, in data instance D1, the minimum cost achieved through Experiment I2 is significantly lower
than the cost from Experiment I1, highlighting the potential benefits of a randomized approach to vehicle
assignment.

Furthermore, the Randomized Vehicle Selection method also shows advantages in computational
efficiency, with lower minimum computation times reported for several data instances. This indicates
that not only does the randomized approach potentially lead to better solutions, but it can also do so
in a more time-efficient manner. For example, in data instances D2 and D5, the minimum computation
times for Experiment I2 are notably lower than those for Experiment I1, suggesting randomized approach
offers quicker allocation of vehicles to demand nodes.

Lastly, the Randomized Vehicle Selection method (Experiment I2 ) appears to be a better initialization
strategy for the VNS algorithm in the context of this thesis. Its ability to consistently achieve lower
costs and, in many cases, do so more quickly than the Sequential Fleet Allocation method (Experiment
I1 ), makes it a more effective approach for initializing the VNS algorithm. This analysis suggests
that incorporating randomness into the initial vehicle selection process can significantly enhance the
performance of metaheuristic algorithms in solving Meilink’s problem.

5.3.2 Number of iterations without improvement

The number of iterations without an improvement is a crucial parameter in the Variable Neighborhood
Search (VNS) algorithm, significantly impacting the optimality of the result it produces. Higher number
of iterations does not necessarily guarantee better results; instead it could lead to increased computational
time, making the solution method inefficient. Thus, carefully selecting the number of iterations allows
for a balance between computation time and quality of the produced results.

To explore the optimal number of iterations, a series of experiments are conducted, as detailed below.
These experiments range from 10 to 100 iterations, with each experiment applied to the artificial data
instances outlined in Section 5.2.1. The initial solutions for these experiments are generated using the
Randomized Vehicle Selection method. From these, the best cost solution across 100 iterations of the
initial solution is identified and utilized for subsequent experimentation on iteration numbers. Given the
inherent randomness in the VNS’s shaking phase, each experiment-data instance combination is executed
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10 times. The maximum improvement, leading to the lowest cost objective value across these runs is
calculated and presented in Table 10.

Experiment I1 : This experiment limits the VNS to a maximum of 10 iterations without improvement.
Experiment I2 : The maximum number of iterations is set to 25 in this experiment without improve-

ment.
Experiment I3 : This setup increases the limit to 40 iterations without improvement.
Experiment I4 : In this experiment, the iteration cap is extended to 75 without improvement.
Experiment I5 : The final experiment allows up to 100 iterations without improvement.

Table 9. Best improvements and time for Experiments N. In bold is the best improvements, percentage wise, out of
the 10 runs per experiment. The times are in seconds and represent the computation time for the run with the highest
improvement.

ID Initial
I1 I2 I3 I4 I5

objective Improvement Time Improvement Time Improvement Time Improvement Time Improvement Time

(%) (s) (%) (s) (%) (s) (%) (s) (%) (s)

D1 204.6 5.10 1.67 5.10 4.21 5.10 6.47 5.16 12.16 6.70 16.19

D2 426.28 8.29 2.30 8.27 5.19 9.03 7.79 9.19 14.12 9.67 19.74

D3 1956.32 41.74 3.06 42.10 6.61 44.06 7.74 44.73 14.52 44.95 21.02

D4 1656.94 32.30 2.22 34.31 5.66 35.24 7.77 38.15 13.75 40.29 23.01

D5 5541.31 46.41 2.98 53.21 6.00 56.56 8.69 56.65 15.74 58.80 19.47

D6 5656.29 57.27 3.29 57.88 6.23 60.16 8.04 63.85 15.71 64.89 19.95

D7 6095.43 45.61 3.02 47.72 6.04 49.28 9.92 51.66 15.34 53.05 19.87

D8 5275.4 36.68 3.92 39.96 6.49 40.14 9.38 41.41 15.75 41.46 20.54

D9 6178.05 43.11 3.08 43.11 6.88 43.16 9.15 44.59 16.97 44.59 20.77

D10 9075.35 43.62 3.27 45.50 19.58 46.25 19.66 46.88 21.97 47.23 27.52

Average 4206.6 36.01 2.88 37.72 7.29 38.90 9.46 40.23 15.60 41.16 20.81

The data in Table 10 gives an overview of the initial solution generated for the VNS and the best
improvement percentage for each pair of experiment-data instance out of the 10 runs. It indicates that
increasing the number of iterations generally leads to better solution quality, as indicated by the higher
percentage of improvement in the objective value. This trend is consistent across all data instances, with
the highest average improvement observed in Experiment I5, where the maximum number of iterations
without improvement was set to 100. This suggests that allowing the algorithm more iterations to explore
the solution space can indeed yield better solutions.

However, this improvement in solution quality comes at the cost of increased computational time.
As the maximum number of iterations without improvement rises, so does the time required to complete
the experiment. This increase is substantial, moving from an average of approximately 2.88 seconds
in Experiment I1 (10 iterations) to 20.81 seconds in Experiment I5 (100 iterations). This highlights a
trade-off between solution quality and computational efficiency.

Given these observations, the choice of the maximum number of iterations without improvement
should be guided by this thesis problem requirements. Given that the priority is to achieve the best
possible solution within 30 minutes of computation time, it became evident that the VNS is quite robust
in that sense and the maximum computation time per run is not more than 30 seconds with 100 iterations
in Experiment I5. Although setting the number of iterations without improvement to 100 increases the
computation time of the algorithm with a third, it improves on average the objective only by 1%. It
is questionable whether setting the number of iterations of a VNS to 100 is reasonable, especially in
instances with high customer demand.

While higher iteration counts can yield improved solutions, the implications on computational time
must be weighed carefully. Setting the number of iterations around 40 as observed in Experiment
I3, could serve as an effective compromise between solution quality and computational efficiency for
various practical scenarios. This number seems to provide substantial improvements over the lower
iteration counts while keeping the increase in computational time within reasonable limits within high
demand instances. For this thesis, however, the VNS algorithm’s maximum number of iterations without
improvement is established at 100 (Experiment I5 ), since the computation time per run remains below
30 seconds, well within the required maximum of 30 minutes.
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5.3.3 Order of local search operators

Thought the previous experiments, the order of operators in the local search phase is ’Swap vehicles’→’2-
Opt’→’Swap customers’→’Move’→’Reinsertion’. However, the order in which the local search operators
are applied in the VNS can make a difference in terms of both quality of the solution and the compu-
tational time required. The choice of the operators order determines the sequence in which different
explorations and perturbations are performed on the initial and current solution during the search pro-
cess. Therefore, the arrangement of operators affects both the efficiency of the algorithm and the ability
to produce high-quality results.

In Section 4.4.5 five operators are provided and explained. Those include swap, reinsertion, 2-opt,
move, and swap vehicles. If all the possible ways to order those five operators are tested, this will result
in 5! or 120 unique experiments. This will require a very extensive time to be spent on evaluating the
experiments. To address this challenge, an alternative approach to determine the optimal operator order
is adopted. The strategy involves initially evaluating each operator independently, running 100 iterations
for each (in alignment with the chosen VNS iteration count). Based on the evaluations, the first operator
in the order is selected, based on its historical performance—specifically, the one exhibiting the highest
improvement in terms of cost.

This selection of an operator leverages past performance data to prioritize the most promising op-
erator as the initial step. Starting with the operator, which has shown the highest improvement on
its own, enhances the probability of generating a high-quality solution. This operator is expected to
make substantial improvements to the current solution early in the search, potentially leading to faster
convergence and shorter computation times. It acts as an efficient starting point for the search process.

The experiments for evaluating each operator individually are shown below. It is chosen to evaluate
those on only five of the data instances D2, D4, D6, D7, and D9 for better manageability purposes
and easier evaluation of the experiments. These instances are chosen due to their diversity in terms of
factors such as the demand, pickup and delivery nodes, distances, time windows, and vehicle speed. The
Randomized Vehicle Selection initial solution is ran five times and the solution with best costs from it
is chosen for testing the operators’ performance. Each of the operators is ran for 100 iterations. The
outcomes of these experiments are summarized in Table 10.

Experiment O1 : In this experiment the ’Swap’ operator is used.
Experiment O2 : In this experiment the ’Reinsertion’ operator is used.
Experiment O3 : In this experiment the ’2-Opt’ operator is used.
Experiment O4 : In this experiment the ’Move’ operator is used.
Experiment O5 : In this experiment the ’Swap vehicles’ operator is used.

Table 10. Improvements and time for Experiments O. In bold are the best improvements per data instance, percentage
wise.

ID
Initial

O1 O2 O3 O4 O5

objective Improvement Time Improvement Time Improvement Time Improvement Time Improvement Time

(%) (s) (%) (s) (%) (s) (%) (s) (%) (s)

D2 426.28 0.00 0.00 0.00 0.005 0.00 0.004 0.00 0.001 21.32 0.005

D4 1656.94 0.00 0.0002 0.00 0.003 0.00 0.002 0.00 0.001 10.54 0.006

D6 5656.29 0.00 0.0002 0.00 0.002 0.00 0.002 6.16 0.002 3.30 0.004

D7 6095.43 0.00 0.001 0.00 0.003 0.00 0.002 6.91 0.002 3.96 0.005

D9 6178.05 0.00 0.001 0.03 0.003 0.00 0.003 0.00 0.001 6.07 0.006

Average 4002.59 0.00 0.0004 0.01 0.003 0.00 0.003 2.61 0.001 9.04 0.005

The results in Table 10 show that Experiment O5, ’Swap vehicles’ operator, has the largest average
improvement for data instances D2, D4, and D9. For instances D6, and D7 Experiment O4 generates
the highest improvement. In order to determine which experiment shows the highest improvement, the
average over all data instances is computed and can be seen in the last row of Table 10. Judging by
the overall average, Experiment O5 has the highest average improvement percentage (9.04%) across the
selected data instances. Operator ’Swap vehicles’ appears to be an efficient starting point for quickly
enhancing the initial solution. Moreover, the computation times are very low, indicating efficiency of the
operator.

Since Experiment O5 generated the best average improvement over the selected instances, the ’Swap
vehicles’ operator is selected as initial operator. To select the order of the other four operators, 24
different experiments will be performed to test all possible orders and evaluate the improvements those
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generate. Once again, the Randomized Vehicle Selection initial solution is ran five times and the solution
with best costs from it is chosen for testing the operators’ performance. Each of the below-described
experiments is ran for 100 iterations to ensure consistency. The results of those are presented in Table
11.

Experiment L1 : Swap vehicles → Move → Swap → 2-opt → Reinsertion.
Experiment L2 : Swap vehicles → Move → Swap → Reinsertion → 2-opt.
Experiment L3 : Swap vehicles → Move → 2-opt → Swap → Reinsertion.
Experiment L4 : Swap vehicles → Move → 2-opt → Reinsertion → Swap.
Experiment L5 : Swap vehicles → Move → Reinsertion → Swap → 2-opt.
Experiment L6 : Swap vehicles → Move → Reinsertion → 2-opt → Swap.
Experiment L7 : Swap vehicles → Swap → Move → 2-opt → Reinsertion.
Experiment L8 : Swap vehicles → Swap → Move → Reinsertion → 2-opt.
Experiment L9 : Swap vehicles → Swap → 2-opt → Move → Reinsertion.
Experiment L10 : Swap vehicles → Swap → 2-opt → Reinsertion → Move.
Experiment L11 : Swap vehicles → Swap → Reinsertion → Move → 2-opt.
Experiment L12 : Swap vehicles → Swap → Reinsertion → 2-opt → Move.
Experiment L13 : Swap vehicles → 2-opt → Move → Swap → Reinsertion.
Experiment L14 : Swap vehicles → 2-opt → Move → Reinsertion → Swap.
Experiment L15 : Swap vehicles → 2-opt → Swap → Move → Reinsertion.
Experiment L16 : Swap vehicles → 2-opt → Swap → Reinsertion → Move.
Experiment L17 : Swap vehicles → 2-opt → Reinsertion → Move → Swap.
Experiment L18 : Swap vehicles → 2-opt → Reinsertion → Swap → Move.
Experiment L19 : Swap vehicles → Reinsertion → Move → Swap → 2-opt.
Experiment L20 : Swap vehicles → Reinsertion → Move → 2-opt → Swap.
Experiment L21 : Swap vehicles → Reinsertion → Swap → Move → 2-opt.
Experiment L22 : Swap vehicles → Reinsertion → Swap → 2-opt → Move.
Experiment L23 : Swap vehicles → Reinsertion → 2-opt → Move → Swap.
Experiment L24 : Swap vehicles → Reinsertion → 2-opt → Swap → Move.

Table 11. Improvements and time for Experiments L. In bold is the best improvement per data instance and over all
instances.

Experiment
D2 D4 D6 D7 D9 Average

Initial cost 461.13 Initial cost 1656.94 Initial cost 5656.29 Initial cost 6095.42 Initial cost 6178.05

Improvement Time Improvement Time Improvement Time Improvement Time Improvement Time

(%) (s) (%) (s) (%) (s) (%) (s) (%) (s)

L1 2.41 0.016 3.35 0.019 2.58 0.022 2.72 0.017 3.83 0.020 2.98

L2 2.34 0.015 6.02 0.021 2.59 0.017 2.80 0.019 2.09 0.018 3.17

L3 0.97 0.015 3.59 0.015 1.40 0.019 2.41 0.015 3.15 0.023 2.30

L4 2.29 0.015 3.92 0.016 2.26 0.019 2.72 0.018 3.91 0.021 3.02

L5 1.09 0.014 3.70 0.017 2.47 0.017 2.82 0.016 3.06 0.019 2.63

L6 3.40 0.015 1.89 0.018 1.99 0.019 3.64 0.016 3.70 0.019 2.92

L7 2.51 0.014 3.56 0.015 5.16 0.020 3.38 0.016 3.59 0.021 3.64

L8 1.67 0.014 3.67 0.016 3.52 0.017 2.81 0.017 3.18 0.023 2.97

L9 2.05 0.016 3.77 0.018 2.79 0.014 3.90 0.0199 3.08 0.018 3.12

L10 2.39 0.015 3.96 0.016 1.69 0.016 3.89 0.035 4.52 0.022 3.29

L11 2.31 0.022 3.41 0.019 3.62 0.021 2.54 0.034 3.94 0.021 3.16

L12 0.13 0.020 2.76 0.016 3.41 0.018 2.38 0.033 3.50 0.018 2.44

L13 3.47 0.022 5.94 0.015 2.81 0.016 3.25 0.040 4.07 0.020 3.91

L14 2.32 0.024 5.71 0.0159 2.05 0.017 3.23 0.034 2.16 0.022 3.09

L15 4.71 0.021 5.39 0.017 3.46 0.020 2.87 0.036 3.46 0.018 3.98

L16 1.34 0.020 4.00 0.018 3.19 0.018 2.95 0.034 3.93 0.017 3.08

L17 1.17 0.019 3.89 0.018 0.66 0.018 2.83 0.021 3.49 0.021 2.41

L18 2.18 0.019 0.83 0.016 3.21 0.017 2.29 0.020 2.60 0.019 2.22

L19 2.18 0.020 3.00 0.016 0.69 0.017 2.09 0.020 4.54 0.020 2.50

L20 3.62 0.019 2.42 0.015 2.22 0.019 3.06 0.030 2.73 0.018 2.81

L21 4.70 0.021 2.41 0.019 3.10 0.017 3.33 0.022 2.92 0.019 3.29

L22 2.31 0.024 3.42 0.019 3.41 0.022 1.56 0.031 1.33 0.017 2.41

L23 2.06 0.201 3.02 0.021 1.39 0.020 3.84 0.044 3.45 0.019 2.75

L24 1.80 0.023 3.82 0.020 2.32 0.017 1.61 0.040 4.03 0.021 2.72

Table 11 provides a comprehensive overview of the results for various combinations of experiments
and data instances. The cost improvements are presented as percentages, representing the average
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improvement observed over 25 iterations for each combination. Additionally, the reported time reflects
the average execution duration for a single iteration of each experiment.

In general, there isn’t a single experiment that consistently outperforms others across all data in-
stances. For instance, Experiment L2 yields the most remarkable results, demonstrating a significant
6.02% improvement in D4, establishing it as the optimal choice of operators for this particular dataset.
However, Experiments L13 and L14 also exhibit substantial improvements for D4.

For D6, the experiments L7 and L8 generate the most substantial improvements, while for data
instance D7 Experiments L9 and L10 have the best cost improvement. Moreover, Experiment L10
achieves a significant improvement for D9, while Experiment L15 performs best for data instance D2.
Due to the variability and inconsistency in experiment performance across data instances, the average
improvement for each experiment over all considered datasets is calculated, and these results are presented
in the last column of Table 11.

Based on the average, the highest improvement over all data instances is 3.98% and it is produced
by Experiment L15, followed by the second-best performer with 3.91% of Experiment L13.

5.3.4 Adaptive VNS

For all the previous experiments, a random operator is chosen within the shaking phase. However, in
certain cases, using Adaptive Variable Neighbourhood Search (AVNS) may improve the objective value
and lead to higher improvement. This method is a variation of the standard Variable Neighbourhood
Search in a sense that it adapts dynamically the search in the shaking phase in order to improve the
ability of the algorithm in finding high-quality solutions. In the shaking phase, AVNS selects a shaking
operator and applies it to the current solution to generate a new solution, which helps the algorithm
escape from the local optima. When an improvement is not found, it switches the operator every 25% of
the maximum iterations (100 iterations). The AVNS is tested with a predefined order of operators, which
showed to generate highest improvement in the LS phase of the algorithm, namely ’Swap vehicles’→’2-
Opt’→’Swap customers’→’Move’→’Reinsertion’.

To test the effectiveness of using AVNS in the solution generation, several experiments are defined,
where each experiment aims to modify the current solution in a search for better routes. The experiments
are listed below (Experiment A1-A6 ), where Experiment A1 uses the adaptive shaking phase that applies
the operators from Experiment L15. Experiments A2 through A6 are using a single shaking operator
through the search process. The experiments are tested on some of the artificial data instances (D2, D4,
D6, D7, D9 ) by generating an initial solution through running the Randomized Vehicles Selection for
100 iterations and storing the best solution. Then, each experiment is run 10 times with 100 iterations
without improvement to keep it consistent with the previously tuned parameters.

Experiment A1 : Adaptive shaking phase: ’Swap vehicles’ → ’2-Opt’ → ’Swap customers’ → ’Move’
→ ’Reinsertion’

Experiment A2 : Only the ’Swap vehicles’ operator is used.
Experiment A3 : Only the ’Move’ operator is used.
Experiment A4 : Only the ’Reinsertion’ operator is used.
Experiment A5 : Only the ’Swap customers’ operator is used.
Experiment A6 : Only the ’2-opt’ operator is used.

Table 12. Average improvement percentages from Experiments A over 10 runs with 100 iterations. The highest improvement
percentage per data instance is given in bold.

ID Initial A1 A2 A3 A4 A5 A6

objective

D2 423.44 9.43 7.87 7.87 9.04 7.85 9.41

D4 2121.69 47.78 36.22 37.49 44.98 37.90 45.79

D6 4669.66 60.81 51.36 46.79 55.03 49.60 54.35

D7 6984.54 52.80 44.72 45.01 51.52 43.87 46.29

D9 6912.25 49.17 39.24 40.21 42.32 41.11 42.95

Average 4222.32 44.00 35.88 35.47 40.58 36.07 39.76

The results from the experiments are summarized in Table 12 for each data instances and in the
last row the average over all artificial data instances is computed. Adaptive Shaking Phase (Experiment
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A1 ) consistently outperforms the single-operator experiments across all artificial data instances, with
the highest average improvement percentage of 44.00%. This indicates the effectiveness of dynamically
switching operators based on the stage of the iteration process, allowing the algorithm to escape local
optima more effectively.

Single-operator experiments show varying performance, with ’Swap vehicles’ (A2 ) generally perform-
ing the least effectively and ’2-opt’ (A6 ) being the most effective single operator, but still less effective
than the adaptive strategy.

The adaptive shaking phase (Experiment A1 ) demonstrates a clear advantage in leveraging multiple
neighborhood structures to enhance the search process’s exploratory capabilities, outperforming the
single operators with at least 5% higher improvement on average. By adapting the operator based
on the search’s progress, AVNS can more effectively navigate the solution space, leading to higher
quality solutions. Therefore, for Experiment E1 to E4, the adaptive shaking phase is utilized with a
predefined sequence of operators (’Swap vehicles’→’2-Opt’→’Swap customers’→’Move’→’Reinsertion’).
If no improvement is found within each 25% of the maximum iterations (100 iterations in this case),
AVNS switches to the next operator in the sequence.

5.3.5 Maximum running time of MILP

To identify a (near) optimal solution without requiring extensive computation time, it is crucial to
establish an appropriate maximum runtime for the MILP. The following experiments are designed to
explore the balance between solution optimality and computation time. Three distinct experiments—M1,
M2, and M3—with varying computation times from 3 minutes to 1 hour, are conducted.

Experiment M1 : considers a short computation time of 3 minutes (180 seconds).
Experiment M2 : allocates a moderate computation time of 30 minutes (1800 seconds).
Experiment M3 : allows for an extended computation time of 60 minutes (3600 seconds).

Table 13. Comparison of objective value, computation time, and optimality gap across models M1, M2, and M3. The
average best results are given in bold.

ID
M1 M2 M3

Result Time (s) Gap Result Time (s) Gap Result Time (s) Gap

D1 189.97 0.08 0.00% 189.97 0.08 0.00% 189.97 0.08 0.00%

D2 358.07 1.09 0.00% 358.07 1.09 0.00% 358.07 1.09 0.00%

D3 770.68 104.09 0.00% 770.68 104.09 0.00% 770.68 104.09 0.00%

D4 1203.17 1800 2.36% 1119.85 1800 0.66% 1119.85 3600 0.59%

D5 3091.95 1800 7.29% 3060.98 1800 1.30% 3060.98 3600 1.29%

D6 2085.18 1800 22.19% 2081.78 1800 2.72% 2081.78 3600 2.72%

D7 4672.9 1800 13.49% 4666.44 1800 0.12% 4666.45 3470.42 0.00%

D8 7546.95 1800 10.77% 7544.47 1800 5.98% 7539.86 3600 0.79%

D9 9086 1800 9.03% 9084.4 1800 0.98% 9084.4 3600 0.98%

D10 13179.28 1800 6.16% 13163.44 1800 4.19% 13161.68 3600 4.19%

Average 4218.42 1360.53 7.13% 4211.51 4210.87 1.60% 4210.87 2517.57 1.05%

The outcomes of these experiments are detailed in Table 13, which includes the cost results, perfor-
mance gaps, and computation times for each experiment-data instance combination. For data instances
D1, D2, and D3, the results are consistent across all experiments, showing no performance gap. Thus,
even the shortest computation time of 180 seconds (M1 ) suffices to achieve an optimal solution for these
instances. For data instances D4 through D10, the performance gap narrows as computation time in-
creases, indicating that longer computation times enable the MILP to approach the optimal solution
more closely, especially in instances with a larger number of customer nodes. In specific cases, like D7,
the extended computation time in Experiment M3 (3470.42 seconds) closes the performance gap (0.00%),
suggesting that the optimal solution has been attained. This demonstrates the model’s complexity and
indicates that for data instances with a significant number of pickups, a (nearly) optimal solution can
be achieved within a shorter computation time.
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In general, while a 3600 seconds computation time can improve the solution quality and even close
the optimality gap for certain data instances, the computation time is very high, given that it does not
close that gap for all instances. For a company like Meilink, it’s essential to perform routing within a
feasible time of 30 minutes. Given that the average costs of Experiment M2 is 4211.51 and the gap is
1.60% , it is more reasonable to set the maximum computation time to 1800s as the optimality gap in
Experiment M3 decreases with only 0.55% and the average computation time in the same experiment
doubles.

5.3.6 Final parameters

The experiments detailed in Section 5.3 are crucial for the final tuning of the VNS and determining
the maximum computation time of MILP. By sequentially fine-tuning the parameters, the most effective
settings are identified, which were then applied in subsequent experiments. For the initialization of
the VNS, the Randomized Vehicle Selection will be executed for 100 iterations, retaining the minimum
cost solution for further stages of the algorithm. It became clear that setting the maximum number of
iterations to 100 offers the best improvement, and since the computation time of the VNS is only up
to 30 seconds for the highest demand instances, the maximum number of iterations is set. The ’Swap
vehicles’ operator emerged as the most effective for the local search phase and, therefore, is prioritized
in the sequence of operators. After evaluating various sequences, the order that provided the highest
improvement was Swap vehicles → 2-opt → Swap → Move → Reinsertion. Consequently, this sequence
will be adopted. Furthermore, the Adaptive VNS approach will be utilized, as it demonstrated superior
improvement potential, reducing the need to rely on a single shaking operator. When no improvement
is found within each 25% of the maximum iterations (100 iterations in this case), AVNS switches to the
next operator in the sequence of operators, which is the same as the one for LS.

Regarding the MILP’s maximum runtime, 1800 seconds are allocated. While this duration does
not guarantee optimal solutions for all data instances, it produces promising outcomes, particularly for
instances with fewer customer nodes. An extended computation time of 3600 seconds did not significantly
enhance the solutions’ optimality across all instances, nor did it justify the doubled computational effort.
Therefore, the 1800-second timeframe is considered the most practical, given also the requirements of
the company.

5.4 Scenario Evaluation

This section presents the outcomes of applying MILP and VNS across the real-world data instances as
presented in Section 5.2.2 within Experiments E1 to E4. Initially, the mixed fleet utilization scenario
(E1 ) is explored, followed by scenarios focusing exclusively on the private fleet (E2 ) and on common
carriers (E3 ), where only private fleet vehicles are routed. Subsequently, the scenarios under E4 are
examined, where both vehicle types are routed in the MILP and VNS models. The section concludes by
comparing the two solution methods, highlighting their similarities, differences, and the implications of
their results.

5.4.1 Mixed Fleet Utilization

Experiment E1 assesses the performance of mixed fleet utilization, where both private fleet vehicles
and common carriers are available to meet demand nodes, but only private fleet vehicles are routed.
This setup mirrors Meilink Borculo B.V.’s current operational model, where internal vehicles are routed,
and external carriers are utilized in high-demand instances. The MILP and VNS are tested for the ten
instances outlined in Section 5.2.2 and their results are presented in Table 14 and 15. The parameter
settings as defined in the parameter tuning apply.

The results from Experiment E1 using MILP, detailed in Table 14 for each instance, include the
data instance IDs and labels, with labels indicating the day of the week and demand level (e.g., TH =
Thursday, high demand). The third column lists the number of demand nodes, while subsequent columns
present the model’s costs (’Objective’), computation time in seconds, gap to optimality in percentage,
and the total distance traveled by all vehicles. Additional columns provide insights into the number
of nodes served by private fleets versus common carriers, the IDs of private vehicles utilized, and the
percentage of unserved nodes.
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Table 14. Summary of MILP results for each data instance with mixed fleet utilization (Experiment E1 ).

ID Label Nodes Objective Time Gap Distance Nodes Nodes PF Unserved

(s) (%) (km) with CC with PF ID %

S1 TL 11 252.04 0.21 0.00 113.82 1 10 3 0

S2 TH 46 5277.41 1800.00 1.36 2143.11 18 28 all 0

S3 FL 10 375.56 0.05 0.00 329.02 2 8 3 0

S4 FH 37 1062.33 1800.00 1.98 826.16 1 36 all 0

S5 ML 7 385.07 0.10 0.00 364.42 4 3 3 0

S6 MH 34 3938.93 1800.00 32.53 1874.36 12 22 all 0

AS7 - 60 11867.24 1800.00 31.45 4411.21 36 24 all 0

AS8 - 70 13944.47 1800.00 34.68 5422.81 51 19 all 0

AS9 - 80 12284.40 1800.00 26.91 5480.72 44 36 all 0

AS10 - 100 22763.44 1800.00 34.27 8558.39 72 28 all 0

Average - - 7215.09 1260.04 16.28 2952.89 24 22 - 0

The MILP model demonstrated efficiency in solving low-demand instances within reasonable com-
putation times. However, as the data complexity increases — from S1, with 11 nodes, to AS10, with
100 nodes—a significant rise in the objective cost is observed, increasing from 252.04 to 22763.44. This
substantial cost increase primarily results from the larger distance traveled by all vehicles, which ranges
between 113.82 km and 8558.39 km. Such findings underscore the model’s scalability and its adeptness
at managing larger datasets and more complex instances.

In the MILP analysis, instances S1, S3, and S5 reached optimality. Conversely, for the remaining
instances, the MILP failed to identify the optimal solution within the allocated 1800 seconds, exhibiting
an average optimality gap of 16.28%. This indicates the MILP model’s limitations in achieving optimality
within constrained computation times, particularly for increased number of data instances.

For instances characterized by low demand, the MILP model predominantly selects vehicle ID 3
from the private fleet to fulfill most customer demands, and relies on common carriers for the unserved
nodes. An overview of the nodes, served predominantly by common carriers, is provided in Appendix
B.1. During high-demand instances, the model engages all five vehicles from the private fleet. Given the
capacity and time constraints coupled with a high number of customer nodes, these five vehicles prove
insufficient for servicing all nodes. Consequently, as the demand points increase, reliance on external
fleets by the MILP increases as well.

The Variable Neighbourhood Search (VNS) outcomes for Experiment E1 are detailed in Table 15
across the 10 data instances. Given the randomness in the VNS algorithm’s initial solution, the initial-
ization function is executed 100 times to capture the minimum cost solution. Thus, the initial solution
objective can be observed in the fourth column of the table, together with the improved objective value,
the VNS computation time, and the percentage improvement from the initial solution. It also specifies
the total distance traveled by all vehicles and the distribution of nodes served by common carriers ver-
sus the private fleet. Information on the IDs of private vehicles used and the percentage of unserved
customers is also included in the last columns.

Table 15. Summary of VNS results for each data instance with mixed fleet utilization (Experiment E1 ).

ID Label Nodes Initial Objective Time Improvement Distance Nodes Nodes PF Unserved

solution (s) (%) (km) with CC with PF ID %

S1 TL 11 664.81 442.12 18.22 33.50 376.14 0 11 3, 5 0

S2 TH 46 7789.83 6270.28 20.64 19.51 3015.12 22 24 all 0

S3 FL 10 420.24 375.56 13.82 10.63 329.02 2 8 3 0

S4 FH 37 1493.52 942.87 20.27 36.87 778.42 1 36 2,3,4,5 0

S5 ML 7 451.79 385.14 18.75 14.75 364.42 0 7 3, 5 0

S6 MH 34 6679.7 1913.74 19.04 71.35 1297.59 2 32 all 0

AS7 - 60 14066.93 9362.06 18.06 33.45 4153.87 36 24 all 0

AS8 - 70 14420.43 9362.06 18.25 19.40 4868.07 26 44 all 0

AS9 - 80 15584.78 11622.75 19.37 25.26 4932.43 47 33 all 0

AS10 - 100 23037.40 20397.65 18.86 11.46 8182.05 69 31 all 0

Average - - 8460.94 6336.09 18.53 27.62 2829.71 20 25 - 0
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The Variable Neighbourhood Search (VNS) algorithm consistently demonstrates low computation
times across all instances, efficiently improving solutions with an average of 18.53 seconds even as prob-
lem complexity increases. This performance demonstrates VNS’s efficacy in solving VRPs, and the
improvement percentages highlight significant enhancements from initial solutions, showcasing VNS’s
capability to optimize the objective function effectively. Scenarios such as S4 and S6 show the largest
improvement percentages.

In low-demand instances, VNS prioritizes the allocation of private-fleet vehicles, while high-demand
instances see the inclusion of external carriers. Across the mixed fleet experiment, VNS successfully serves
all customers, achieving an average improvement of 27.62% and maintaining an average computation time
of 18.53 seconds.

Results comparison mixed fleet utilization

In Experiment E1, the Meilink Borculo B.V. transportation problem is addressed using both MILP
and VNS methods, focusing on mixed fleet utilization. This setup allows private fleet vehicles to have
route continuity, while common carriers directly served a customer from the depot or not at all.

Given the VRP’s complexity, the MILP solution could not resolve high-demand instances to optimal-
ity within the 1800-second maximum runtime. Conversely, the VNS method identified solutions within
an average computation time of 18.53 seconds for these instances. Although the VNS, as a metaheuristic,
didn’t match the MILP in cost performance, it achieved nearly the same objective costs for instances S3
and S5, which are two out of the three instances solved to optimality by the MILP. However, for larger
data instances, there’s a significant cost discrepancy between VNS and MILP, particularly in artificial in-
stances AS7, AS8, AS9, AS10. The reasoning behind that could be that as the size of the solution space
grows, finding near-optimal solutions becomes challenging within a short computation time. Moreover,
the performance of the VNS depends on the quality of the initial solution and in high-demand instances
generating a good initial solution that can lead to a near-optimal final solution becomes more difficult.
Notably, in all high demand instances, the VNS outperformed the MILP, likely because the MILP didn’t
achieve optimality. These instances underscore the VNS’s capability to uncover (nearly) optimal solu-
tions and have an average cost over the 10 data instances amounting to 6336.09 compared to the costs
of the MILP equal to 7215.09.

To compare the cost outcomes of the MILP and VNS methods with the current operational costs at
Meilink Borculo B.V., the costs per instance were multiplied by the number of working days in a year
(=260 days). Since Meilink’s current transportation is performed with the accumulated orders, the daily
cost records of the company are non-comparable with the model costs.

Figure 9. Comparison of yearly costs between MILP, VNS and current company costs from Experiment E1 (assuming 260
working days).

The yearly costs under each instance with the MILP and VNS are plotted on Figure 9. In this figure,
the yellow line denotes the current yearly costs, the green line represents the MILP results, and the
blue line indicates the VNS outcomes. Assuming Meilink Borculo B.V. faces a high demand similar
to that on Fridays (data instance S4 ) throughout the whole year, both VNS and MILP project lower
operational costs than the current figures, suggesting a potential cost reduction of 27 to 64% if Meilink’s
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transportation process are optimized. However, this scenario represents an exaggerated demand model, as
Meilink’s actual demand fluctuates between low and high throughout the week, with seasonal variations
also affecting yearly demand. As demand increases, so do the associated costs, as demonstrated in all
artificial instances. In instances with very high demand, projected costs may surpass current expenses,
which aligns with expectations given that these artificial instances simulate demand levels at least double
those currently experienced by Meilink.

Overall, both the MILP and VNS methods present improvements over the current cost framework
for Experiment E1 at Meilink Borculo B.V. The MILP solution comes with the drawback of longer
computation times. Conversely, the VNS method significantly reduces computation time, offering a
more time-efficient solution approach. Moreover, the VNS outperforms the MILP for the high-demand
instances by generating a better objective value and reducing the overall costs for Meilink. For larger
or more complex instances, the computational time of the MILP method may become impractical,
positioning the VNS as a good alternative despite it not leading to the optimal solution.

5.4.2 Exclusively private fleet

In this section, Experiment E2 s explored, focusing solely on the use of Meilink Borculo B.V.’s private fleet
to meet customer demand. The company’s private fleet consists of five vehicles, with their specifications
detailed in Section 2.2.3. Initially, the MILP results, followed by the VNS outcomes are provided. The
results from both solution methods against the current cost situation of the company are compared.

The MILP results for Experiment E2 are detailed in Table 16 across the 10 instances. The instance
ID and label are provided in the first two columns, the number of demand nodes are provided in the
third column.The ’Objective’ column lists the model’s costs, followed by computation time in seconds,
the percentage gap to optimality, and the IDs of the private vehicles utilized. The final column reflects
the percentage of unserved nodes.

As it can be observed on the table, the MILP is not able to solve high-demand instances, including
S2, S4, S6, AS7, AS8, AS9, AS10. This challenge originates from the MILP model’s requirement that all
customers must be served, a condition unmet due to the limited number and capacity of the company’s
private fleet vehicles. Consequently, these high-demand instances are infeasible for the MILP. However,
in instances with lower demand, the MILP demonstrates a good performance, solving these cases to
optimality with a low computation time. In every instance, the model consistently utilizes the same
private fleet vehicles, favoring those with IDs 3 and 5 for their lower fixed costs.

Table 16. Summary of MILP results for each data instance with private fleet only (Experiment E2 ).

ID Label Nodes Objective Time Gap Distance PF Unserved

(s) (%) (km) ID %

S1 TL 11 365.48 0.15 0.00% 108.09 3 and 5 0

S2 TH 46 - - - - - -

S3 FL 10 422.45 0.05 0.00% 332.80 3 and 5 0

S4 FH 37 - - - - - -

S5 ML 7 422.01 0.14 0.00% 336.09 3 and 5 0

S6 MH 34 - - - - - -

AS7 - 60 - - - - - -

AS8 - 70 - - - - - -

AS9 - 80 - - - - - -

AS10 - 100 - - - - - -

Average - - 403.32 0.11 0.00% 259.00 - 0

The VNS method’s outcomes for Experiment E2 are detailed in Table 17 for each of the 10 instances.
Due to the randomness in the initial solution of the VNS algorithm and for consistency across all ex-
periments, the initialisation function was run 100 times and the minimum cost objective is stored for
applying the VNS. The table presents the initial costs, objective values, VNS computation times, and
the percentage improvements over initial solutions. Additionally, it records the total distance covered by
all vehicles and the number of nodes serviced by the private fleet. Information on the IDs of the private
vehicles used and the percentage of unserved customers is also provided in the concluding columns.
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The VNS algorithm in Experiment E2 demonstrates notable improvements on the initial solution
particularly in low-demand instances such as S1 with a 29.5% improvement. The computation times
remain low across all data instances. While the algorithm effectively optimizes objectives in low-demand
instances, it faces challenges in instances with an increased number of customer nodes. This difficulty
arises because the private fleet consists of only five vehicles, limiting the application of effective operators
like ’Swap vehicles’. Therefore, the high-demand instances have a very low improvement percentage
compared to the initial solution. Additionally, high-demand instances reveal a percentage of unserved
customers, increasing with the number of customer nodes. This shows the disadvantage of relying solely
on the private fleet, especially in high-demand instances.

In instances with lower demand, vehicles with IDs 3, and 5 are preferred, whereas the other internal
vehicles are utilized only in high-demand instances. When comparing the objective values of the three
low demand instances S1, S3 and S5 of VNS with a private fleet only ( Expriment E2 ) to those with
mixed fleet utilization ( Expriment E1 ), the VNS results for both experiments are very close.

Table 17. Summary of VNS results for each data instance with private fleet only (Experiment E2 ).

ID Label Nodes Initial Objective Time Improvement Distance PF Unserved

solution (s) (%) (km) ID %

S1 TL 11 627.12 442.12 5.79 29.50 376.14 3, 5 0

S2 TH 46 1099.27 873.17 11.41 20.57 780.09 all 34.5

S3 FL 10 441.54 422.45 5.63 4.32 332.80 3, 5 0

S4 FH 37 945.51 944.73 11.32 0.08 784.46 all 2.7

S5 ML 7 435.01 422.02 7.85 2.99 336.09 3, 5 0

S6 MH 34 1187.44 1176.59 9.92 0.91 860.75 all 6.25

AS7 - 60 1035.88 1035.60 9.04 0.03 363.57 all 48.63

AS8 - 70 1047.30 1044.77 28.50 0.24 395.57 all 52.32

AS9 - 80 1057.08 1051.73 11.95 0.51 424.44 all 40.11

AS10 - 100 1061.17 1060.71 10.62 0.04 444.35 all 49.53

Average - - 893.73 847.39 11.20 5.92 509.82 - 23.40

Results comparison on exclusively private fleet

The MILP method outperformed in terms of both computation time and objective value for the
instances it could solve. However, it failed to solve high-demand instances due to the private fleet’s
limited capacity. This limitation, requiring all customer demands to be met, is also restrictive for
the VNS. However, the metaheuristic is more advantageous, solving high-demand scenarios despite the
unserved customers, due to the way the metaheuristic is formulated. It stores a list of unserved customers
and iterates until a solution of those is found or the stopping criterion of maximum iterations is reached.
Since the internal vehicles are a low number, the VNS serves only the customers it could given the
constraints of the model, and offers routes for those that could be served with the available trucks.
Therefore, in instances with low number of customer nodes, the MILP is more advantageous in terms of
both computation time and finding the optimal routing. However, the VNS can also be used when it is
unknown if all the constraints can be met, such as instances with higher number of nodes, where it can
still provide a partial solution to the VRP.

Moreover, a comparison between the costs of the VNS and MILP in Experiments E1 and E2 reveals
insightful findings. Based on the MILP results, which optimally solved data instances S1, S3 and S5,
the mixed fleet utilization experiment E1 yielded better outcomes. This experiment allowed for the use
of both private vehicles and external trucks, with only the internal vehicles being routed. For the VNS,
data instances S3 and S5 showed better costs results under E1, whereas instance S1 generated the same
results in both experiments.

It is important to note that Meilink Borculo B.V. does not face only low-demand situations throughout
the year. The necessity for external trucks indicates that the conditions under Experiment E1, which
permits a mixed fleet approach, are more favorable for addressing the company’s transportation needs.
To understand why this is caused, the unserved nodes in high-demand instances by the VNS are plotted
in Figure 10. As it can be seen, those customers are mostly located at the furthest points from the
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depot. This suggests that to serve clients in distant locations such as Apeldoorn, Dedemsvaart, Oude
Meer, ’S-Hertogenbosch, Maassluis, and Dordrecht, the employment of external trucks is essential. This
experiment underscores the inefficiency of the private fleet’s capacity to meet all of Meilink’s daily demand
nodes, particularly on days with high demand levels.

Figure 10. Locations with unmet demand nodes by the VNS under Experiment E2.

5.4.3 Common carriers only

Within this section, Experiment E3 is performed, where only the common carrier vehicles can be used
to respond to customers’ demand. This setup requires adjustments to the MILP model to exclusively
incorporate external vehicles for serving demand nodes. Unlike private fleet vehicles, common carriers
operate without route continuity, meaning each vehicle serves a customer directly from the depot. The
VNS approach adheres to the same conditions, with an unlimited number of common carriers available
for deployment.

The MILP results from Experiment E3 are provided in Table 18 for each of the 10 instances. The
instance ID and label are provided in the first two column, the number of demand nodes are provided
in the third column, followed by the objective value, computation time, and distance. The last column
shows the percentage of unserved nodes.

Table 18. Summary of MILP results for each data instance with common carriers only (Experiment E3 ).

ID Label Nodes Objective Time Gap Distance Unserved

(s) (%) (km) %

S1 TL 11 2098.07 0.05 0 755.79 0

S2 TH 46 22700.32 2.92 0 8177.34 0

S3 FL 10 1026.33 0.02 0 369.71 0

S4 FH 37 9295.52 0.54 0 3348.54 0

S5 ML 7 651.70 0.05 0 234.64 0

S6 MH 34 13420.48 1.04 0 4834.47 0

AS7 - 60 21061.84 9.21 0 7587.13 0

AS8 - 70 23571.68 12.69 0 8491.24 0

AS9 - 80 24026.88 6.41 0 8655.20 0

AS10 - 100 32858.08 10.33 0 11836.48 0

Average - - 15071.09 4.33 0 5429.05 0
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The MILP solves relatively quickly the instances under the third experiment. The reason is that
there are no constraints involved with sending the external trucks to the demand nodes. This efficiency
originates from the absence of constraints related to the routing of external trucks to demand nodes.
The model disregards the capacity and customer time window constraints for common carriers, assum-
ing direct service from the depot to each node will inherently satisfy these conditions. Consequently,
while computation times are minimal, the model’s objective costs significantly escalate compared to E1.
Despite these higher costs, the experiment ensures no customer is left unserved, and there is no gap from
optimality.

For the VNS, solving the 10 instances under the common carriers only experiment, results are provided
in Table 19. The objective value, computation time, and distance travelled can be observed on the table.

In this experiment, where each customer is served directly from the depot without considering route
continuity or varying costs among common carriers, the solution space is very limited. This impacts the
VNS’s ability to find improvements after the initial solution, as the initial solution is the only possible
configuration under the given constraints. Since there is only one feasible solution, the algorithm could
not explore any neighbourhoods. The computation time of 6-7 seconds per instance is quite high, given
that the solution cannot be improved. The objective values from the VNS are very high across all
instances, which reflects the high distance travelled. This is again a consequence from the experiment
constraint that necessitate serving each customer directly from the depot.

Table 19. Summary of VNS results for each data instance with common carriers only (Experiment E3 ).

ID Label Nodes Objective Time Improvement Distance Unserved

(s) (%) (km) %

S1 TL 11 2098.07 7 0 755.79 0

S2.1 TH 46 22700.32 7.46 0 8177.34 0

S3.1 FL 10 1026.33 7.70 0 369.71 0

S4.1 FH 37 9295.52 6.59 0 3348.54 0

S5.1 ML 7 651.70 9.18 0 234.64 0

S6.1 MH 34 13420.48 7.08 0 4834.47 0

AS7.1 - 60 21061.84 6.70 0 7587.13 0

AS8.1 - 70 23571.68 6.23 0 8491.24 0

AS9.3 - 80 24026.88 6.52 0 8655.20 0

AS10.1 - 100 32858.08 5.94 0 11836.48 0

Average - - 15071.09 7.04 0 5429.05 0

Results comparison on common carriers only

In Experiment E3 only common carriers are utilized to fulfill all demand nodes, with external trucks
travelling directly from the depot to each customer, without adhering to a route continuity constraint.
Given the high per-kilometer cost associated with these trucks, the overall objective values, as determined
by both the VNS and MILP methods, are significantly high across all data instances. This experiment’s
constraints lead to a single feasible solution, resulting in identical cost outcomes for both the VNS and
MILP models. However, there is a notable difference in computation times between the two methods.
The MILP demonstrates overall a lower computation time compared to the VNS. This discrepancy
arises because the MILP method does not engage in optimizing or exploring neighboring solutions, thus
quickly identifying the only feasible solution. Furthermore, when comparing average computation times,
the MILP method significantly outperforms the VNS, averaging 4.33 seconds.

In comparing the outcomes of Experiment E3 with those of E1 and the current costs of the company,
it becomes evident that the costs associated with using only common carriers (as seen in Experiment E3 )
exceed both the current operational expenses and the results obtained from Experiment E1. Therefore,
it is preferable for the company to use its own vehicles, in combination with the non-routed common
carriers.

Experiment E3 serves as an illustration of the limitations imposed by specific operational constraints,
such as the requirement for common carriers to serve customers directly from the depot without route
optimization. The findings from this experiment suggest that in instances with a predetermined or highly
constrained solution space, simpler or more straightforward solution methods, like the MILP model, may
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offer greater efficiency than complex metaheuristic approaches in terms of computation time. This insight
is particularly relevant when the optimization problem is characterized by a single feasible solution.

5.4.4 Routing common carriers

In this section, Experiment E4 is conducted, which introduces the capability for common carriers to
be routed, enabling them to serve multiple customers sequentially after departing from the depot. This
adjustment necessitates modifications to both the MILP and VNS solution methods to ensure they
accommodate constraints related to customer time windows (TWs), vehicle capacity, and route continuity
for both internal and external vehicles. The experiment is divided into two parts:

Firstly, both private fleet and common carriers are utilized, with routing applied to all vehicles.
The outcomes of this approach are comparable with those from Experiment E1, where a mixed fleet is
similarly employed but without routing for common carriers.

Secondly, the focus shifts to exclusively utilizing and routing common carrier vehicles. The perfor-
mance of the MILP and VNS under these conditions is comparable against the results from Experiment
E3, which also exclusively uses external vehicles but does not apply route continuity.

5.4.4.1 Using both private fleet and common carriers

The VNS and MILP models are allowed to use mixed fleet, however, all vehicles in the fleet are routed.
This is achieved through having a merged list of vehicles (both internal and external) for the MILP
model and removing all constraints and variables related to the common carriers only.

The MILP results from Experiment E4 using mixed fleet vehicles are provided in Table 20 for each
of the 10 real-world data instances. The table outlines each instance by ID and label, the number of
demand nodes, objective value, computation time, optimality gap, and the total distance traveled.

For instances with lower demand (S1, S3, S4, and S5 ), as well as the high-demand Friday (S5 ), the
model achieves optimality within a reasonable time. Notably, in these instances, the model exclusively
utilizes the private fleet, avoiding the use of common carriers. This decision underscores the cost im-
plications of routing common carriers, especially in low-demand instances where the return trip to the
depot incurs additional expenses. The customer nodes to which common carriers are scheduled can be
observed in Appendix B.2.

In contrast, instances with a higher number of demand nodes (S2, S6, AS7, AS8, AS9, and AS10 )
rely on the outsourcing of common carriers. Despite achieving a solution in these more complex data
instances, the model exhibits a significant optimality gap, averaging 8.31% across all instances. This
gap highlights the challenges in finding optimal solutions within the constraints of higher demand and
the specified routing requirements.The experiment ensures all customers are served, with an average
computation time of 1214.68 seconds.

Table 20. Summary of MILP results using mixed fleet for each scenario with routing common carriers (Experiment E4 ).

ID Label Nodes Objective Time Gap Distance Nodes Nodes Number PF Unserved

MILP (s) (%) (km) with CC with PF of CC ID %

S1 TL 11 365.48 3.09 0.00 108.09 0 11 0 3, 5 0

S2 TH 46 4107.74 1800.00 16.72 2451.46 32 14 10 1,2, 3 0

S3 FL 10 422.45 2.43 0.00 332.80 0 10 0 3, 5 0

S4 FH 37 983.63 1340.26 0.00 319.59 0 37 0 all 0

S5 ML 7 422.01 1.05 0.00 336.09 0 7 0 3, 5 0

S6 MH 34 4446.93 1800.00 23.64 2330.35 18 16 13 1,3,4,5 0

AS7 - 60 4330.18 1800.00 5.07 2094.15 36 24 9 1,2,3,4 0

AS8 - 70 4516.86 1800.00 17.64 1946.78 47 23 11 all 0

AS9 - 80 6150.4 1800.00 18.51 2779.39 54 26 16 all 0

AS10 - 100 6788.08 1800.00 21.56 3474.51 65 35 12 all 0

Average - - 3253.38 1214.68 8.31 1617.32 25 20 7 - 0

For the VNS method, addressing the 10 real-world data instances under the mixed fleet experiment
with routing all vehicles, the results are summarized in Table 21. This table details the objective values,
computation times, distances traveled, and the utilization of vehicle types across instances, along with
the distribution of nodes served by each vehicle type.
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In this experiment, the initial solution for the VNS is executed 100 times for each instance to find
the lowest cost initial solution, which is later optimized through the VNS by taking the highest cost
improvement. The results showcase significant improvements across all instances, with optimization
percentages ranging from 24% to 56%. This range of improvement underscores the VNS’s capability
to enhance initial solutions effectively across diverse instances. Notably, the computation times vary,
with the more complex high-demand and artificial instances requiring the most time. Despite this
variation, the average computation time stands at 20.59 seconds, which is considerably lower than the
MILP model’s average. Additionally, the VNS method successfully served all customers in every instance,
further demonstrating its efficiency and effectiveness in optimizing Meilink Borculo B.V.’s transportation
planning under mixed fleet utilization with routing capabilities.

Table 21. Summary of VNS results for each instance with mixed fleet utilisation and routing all vehicles (Experiment E4 ).

ID Label Nodes Initial Objective Time Improvement Distance Nodes Nodes Number PF Unserved

solution VNS (s) (%) (km) with CC with PF of CC ID %

S1 TL 11 1081.07 472.56 19.16 56.29 294.77 8 3 2 5 0

S2 TH 46 4745.03 2106.21 23.78 55.61 1021.74 29 17 6 all 0

S3 FL 10 496.19 375.46 15.29 24.33 147.4 1 9 1 5 0

S4 FH 37 1601.05 782.107 19.76 51.15 430.56 9 28 1 3, 4, 5 0

S5 ML 7 533.87 321.82 26.77 39.72 205.52 5 2 2 3 0

S6 MH 34 2596.59 1327.15 20.08 48.89 744.1 18 16 3 2, 3, 4, 5 0

AS7 - 60 6654.4 2986.6 21.08 55.12 1417.73 49 11 11 all 0

AS8 - 70 5989.24 3099.24 19.58 48.25 1485.21 50 20 10 all 0

AS9 - 80 6848.46 3527.1 20.48 48.5 1632.13 64 16 10 all 0

AS10 - 100 9947.14 5357.98 19.95 46.14 2348.51 88 12 16 all 0

Average - - 4049.3 2035.62 20.59 47.4 972.77 32 13 6 - 0

In the results table, it is observed that the VNS consistently employs at least one common car-
rier across all instances, demonstrating the critical role of external carriers in fulfilling the demand.
Additionally, the VNS frequently selects vehicles with IDs 3, 4, and 5 for almost every instance, indi-
cating a preference for specific vehicles within the private fleet based on their operational efficiency or
cost-effectiveness. On average across all instances, there are 32 nodes served by the common carriers,
compared to 13 nodes from the private vehicles. This shows the importance of using the common carriers,
since otherwise, the demand could not be satisfied solely by the internal vehicles.

When comparing the Mixed Integer Linear Programming (MILP) objective and computation time
with the Variable Neighbourhood Search (VNS) under the mixed fleet utilization case with routing all
vehicles, it becomes evident that the VNS outperforms the MILP in both cost efficiency and computa-
tion speed. This difference arises because the MILP struggles to find optimal solutions for high-demand
instances, whereas the VNS demonstrates robustness in generating low cost objectives. The VNS effi-
ciently optimizes the initial solution, with an average computation time of just 20.59 seconds across the
10 data instances, showcasing its speed and effectiveness.

Conversely, the MILP, while achieving optimal solutions for low-demand instances, requires signifi-
cantly more computational resources, averaging 1214.68 seconds in computation time. This is notably
higher compared to the VNS. When comparing the average costs between the MILP and VNS, the latter
shows a highly optimized performance with costs of 2035.62 compared to the costs of MILP equal to
3235.28. Given this context, the extended computation time required by the MILP does not justify
over the VNS solutions, especially when considering the VNS’s efficiency and the quality of solutions it
provides under this experiment.

5.4.4.2 Using common carriers only

In this section, the MILP and VNS models are allowed to use common carriers only and the vehicles are
routed.

The Mixed Integer Linear Programming (MILP) results from Experiment E4, focusing on the routing
of common carriers only, are detailed in Table 22. This table outlines the objective value for each instance,
alongside computation time, optimality gap, and total distance travelled.

In this experiment, the MILP successfully solved only the instances with lower demand, specifically
S1, S3, and S5. A large contrast in computation times is evident between these low-demand instances
and the high-demand ones, including the artificial instances designed to test the system under very higher
demand conditions. For instances with increased demand, the optimality gap approaches 20%, with an
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average gap of 6.04% across all instances. This indicates a significant challenge in achieving optimal
solutions within the defined computational limits for these more demanding cases.

Computation times are notably high, averaging 1260.40 seconds across all instances. This extended
computation time underscores the complexity and computational demand of solving larger-scale problems
with the MILP approach. The number of common carriers utilized within the MILP model varies
significantly depending on the instance, ranging from 2 in instances with lower demand to as many as
18 in the highest demand instances.

Table 22. Summary of MILP results for each data instance with routing the common carriers (Experiment E4 ).

ID Label Nodes Objective Time Gap Distance Number Unserved

s (%) (km) (of CC) (%)

S1 TL 11 300.23 1.41 0.00% 108.09498 2 0

S2 TH 46 3405.09 1800.00 1.87% 1226.62 10 0

S3 FL 10 675.89 1.37 0.00% 243.35 2 0

S4 FH 37 905.4 1800.00 6.93% 325.98 6 0

S5 ML 7 933.49 1.23 0.00% 336.09 2 0

S6 MH 34 3479.06 1800.00 4.08% 1205.84 8 0

AS7 - 60 4479.37 1800.00 4.58% 1612.12 14 0

AS8 - 70 4464.88 1800.00 5.54% 1606.90 14 0

AS9 - 80 5486.02 1800.00 17.53% 1974.41 16 0

AS10 - 100 7099.88 1800.00 19.87% 2555.24 18 0

Average - - 3122.93 1260.40 6.04% 1119.46 9 0

The Variable Neighbourhood Search (VNS) results for Experiment E4, focusing solely on the use
of common carriers, are detailed in Table 23. This table presents the initial solution costs, objective
value for each instance, computation time, distance traveled, and the number of vehicles used. For this
experiment, the initial solution is executed 100 times for each instance, storing the minimum costs.

The VNS demonstrates its capability to serve all customers effectively, achieving significant improve-
ments from the initial solutions. Across all instances, the average improvement achieved by the VNS
is 42%. The computation times for the VNS are consistently lower than those observed for the MILP
model, with an average computation time of 8.64 seconds across all tested instances. This efficiency high-
lights the VNS’s ability to quickly refine solutions, making it a viable option for performing real-time
optimization.

The distance travelled by all vehicles in the VNS instances is generally lower compared to the MILP
model, with an average distance of 1043.64 km. This reduction in travel distance further underscores
the VNS’s optimization capabilities, potentially leading to lower transportation costs and increased
operational efficiency.

The number of common carriers deployed per instance varied, ranging between 2 and 17 vehicles,
similar to the range observed in the MILP model. On average, 9 vehicles are utilized across the instances,
indicating a consistent approach to meeting demand with the available common carrier vehicles.

Table 23. Summary of VNS results for each instance with common carriers only and routing of vehicles (Experiment E4 ).

ID Label Nodes Objective Time Improvement Distance Number Unserved

VNS (s) (%) (km) of CC (%)

S1 TL 11 400.11 7.86 73.24 144.12 2 0

S2 TH 46 3724.43 9.73 41.19 1340.95 10 0

S3 FL 10 675.89 6.57 37.72 243.35 2 0

S4 FH 37 1677.46 7.99 34.89 603.95 4 0

S5 ML 7 947.22 11.37 43.51 341.22 3 0

S6 MH 34 2375.68 8.14 36.62 855.34 7 0

AS7 - 60 4695.46 8.88 40.57 1690.55 17 0

AS8 - 70 4113.1 8.79 41.74 1480.88 15 0

AS9 - 80 4534.26 8.79 39.62 1632.51 16 0

AS10 - 100 5842.36 8.23 40.12 2103.48 17 0

Average - - 2898.6 8.64 42.92 1043.64 9 0
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Experiment E4 delves into the potential benefits of routing common carriers on the model’s solution,
contrasting with the results from Experiment E3, where common carriers are not routed. Both the
MILP and VNS costs for Experiment E4 are significantly lower than those observed in Experiment
E3, underscoring the significant impact of routing external vehicles on improving the transportation
problem’s objective value. Furthermore, should Meilink face high demand consistently throughout the
year, the exclusive use of common carriers—provided they are routed—could still lead to a reduction
in the company’s transportation costs. Thus, the findings from both solution methods suggest that
the VRP can be optimized, and costs can be minimized by employing either method, with the VNS
showcasing greater efficiency in terms of computation time and the ability to find near-optimal solutions.

5.4.5 Comparison across the experiments

Throughout the analysis, four distinct experiments (E1 - E4 ) are conducted to evaluate different con-
straints within the transportation problem faced by Meilink Borculo B.V. These experiments are ad-
dressed using two solution methods: Variable Neighbourhood Search (VNS) and Mixed Integer Linear
Programming (MILP). The experiments explore various operational strategies, including mixed fleet
utilization (E1 ), exclusive use of private fleet vehicles (E2 ), and instances where all vehicles, including
common carriers, are routed (E4 ). This comprehensive approach provides insights into the optimization
potential under varying constraints and operational strategies.

The mixed fleet utilization experiment (E1 ) assesses the effectiveness of employing both private fleet
and common carriers. The results, summarized in Figure 11, indicate that while the MILP is quicker and
produces optimal solutions for instances with low demand and lower number of nodes, it cannot cope with
the complexity of high-demand instances. The MILP is not able to find good enough solutions for those
instances, generating high costs, and high gaps to optimality with an average of 16.28%. VNS is faster
in optimizing solutions for this experiment with an average computation time of 18.53 seconds compared
to the MILP, which reached 1260 seconds on average. Moreover, the metaheuristic managed to produce
on average lower costs over the 10 real-world instances, outperforming the MILP model solutions.

Figure 11. Overview of the average computation time performance of the VNS and MILP solution approaches across
Experiments E1 -E4. Experiment E4 is divided into 4PFCC, corresponding to the private fleet and common carriers

routing situation and 4CC - the instances where only common carriers are routed.

Experiment E2, focusing solely on the use of private fleet vehicles, reveals that only low-demand
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instances could be fully serviced by the existing fleet, according to both VNS and MILP models. This
finding suggests that if Meilink Borculo B.V. aims to rely exclusively on its private fleet to accommodate
future growth, acquiring additional vehicles would be necessary to meet high-demand instances. There-
fore, both the computation times and the overall objective values in Experiment E2 for both solution
methods is very low, compared to the other experiments (Figure 12).

In Experiment E3, using only common carriers without routing the vehicles, the results for both
models MILP and VNS are consistent. Both solution methods have only one possible solution, due to
the straightforward allocation of trucks from the depot to each customer node. Therefore, the VNS could
not improve the initial solution within this experiment. Moreover, the experiment showed the highest
average costs over all experiments for both solution methods (Figure 12), suggesting that using external
carriers without routing them could potentially increase the overall transportation costs of the company.

Experiment E4 introduces routing for all vehicles, including common carriers, and demonstrates a
significant cost reduction across both solution methods when vehicles are routed. Experiment E4 once
again shows the good results in terms of computation time and objective value generated by the VNS
algorithm. The VNS method consistently generates lower average costs for both configurations with
and without private fleet compared to the results obtained from the MILP (Figure 12). The MILP,
on the other hand, is incapable of solving the high-demand instances to optimality, within reasonable
computation time. Notably, Experiment E4 reveals that utilizing only common carriers, especially
in high-demand instances, could lead to lower transportation costs, despite their higher per-kilometer
charges compared to the private fleet. This outcome suggests that the fixed costs associated with private
fleet vehicles contribute substantially to overall transportation expenses.

Figure 12. Overview of the average objective value (minimum costs) performance of the VNS and MILP solution
approaches across Experiments E1 -E4. Experiment E4 is divided into 4PFCC, corresponding to the private fleet and

common carriers routing situation and 4CC - the scenario where only common carriers are routed.

Comparing the experimental results to Meilink’s current transportation costs, both Experiments E1
and E4 showed potential for significant yearly cost savings under both the MILP and VNS approaches.
However, given the MILP’s longer computation times and challenges in achieving near-optimal solutions
within a reasonable timeframe, the VNS emerges as a more efficient solution method, generating better
objective values within reasonable computation time. The VNS’s ability to quickly find optimal or near-
optimal solutions, even in complex data instances involving up to 100 customer nodes, underscores its
suitability for operational implementation. Therefore, it is recommended that Meilink Borculo B.V. con-
sider adopting the VNS metaheuristic for optimizing its transportation processes, leveraging its efficiency
and effectiveness in reducing costs and improving operational performance.
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5.5 Conclusion

This chapter delves into the fine-tuning of parameters and the evaluation of various data instances across
five distinct experiments. More specifically, the research question How does the developed solution for
optimizing Meilink’s transportation process perform compared to the current situation? is addressed.

The preparation phase involves creating data sets for parameter tuning, including ten artificial in-
stances with a range of demand nodes—some with fewer, some equal to, and some exceeding those in
the real-world instances. Additionally, ten real-world data instances are developed to simulate different
challenges a company might encounter in their transportation logistics. A detailed analysis of Meilink
Borculo B.V.’s transportation costs ensures consistency throughout the evaluation of the experiments.

The initial experiment (E0 ) focuses on fine-tuning the Variable Neighborhood Search (VNS) al-
gorithm’s parameters and determining the maximum computation time for the Mixed Integer Linear
Programming (MILP) model. The Randomized Vehicle Selection method is found to yield better out-
comes, with the optimal number of iterations without improvement set at 100, given the VNS algorithm’s
speed. Moreover, the sequence of local search operators is established, and the experiment revealed that
the five operators should be in the order Swap vehicles → 2-opt → Swap customers → Move → Reinser-
tion. The adaptability of the VNS is highlighted, with its adaptive shaking mechanism selected for its
ability to enhance results. For the MILP, a balance between computation time and accuracy necessitated
setting the model’s maximum runtime to 1800 seconds.

Subsequent evaluations of Experiment E1 -E4 with the adjusted parameters for both MILP and VNS
on real-world instances shows that VNS consistently outperforms MILP in scenarios with high demand,
in terms of both computation time and objective value. However, MILP achieves better cost outcomes
in low-demand situations. The VNS solution significantly improves Meilink’s transportation process
efficiency, offering a more systematic approach to planning and execution, which leads to better resource
utilization and reduced operational costs. Compared to the existing transportation costs at Meilink, the
VNS solution shows a 64% improvement.

These experiments provide a comprehensive view of the cost efficiency of different vehicle types for
the company. It becomes clear that routing all vehicles is crucial for minimizing total transportation
costs. The analysis reveals minimal cost differences between using a routed mixed fleet and relying
solely on routed common carriers. One scenario, involving external vehicles without routing, results in
significantly higher costs. Sole reliance on the private fleet fails to meet high demand instances, indicating
that Meilink cannot depend only on its internal fleet to fulfill consumer demand.

As the company grows, using MILP for vehicle routing may become impractical due to long com-
putation times of the model, often exceeding 30 minutes. Therefore, the VNS stands out as the more
viable solution, given its good performance in handling large data instances.
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6 Conclusions, recommendations, and future research

In the concluding section of this master thesis, insights and recommendations are offered based on
the findings from addressing the transportation problem faced by Meilink Borculo B.V. This chapter
not only summarizes the outcomes but also advises the company on vehicle selection and strategies
for optimizing transportation costs effectively. Additionally, the chapter highlights the theoretical and
practical contributions of this research, acknowledges its limitations, and suggests directions for future
studies.

6.1 Conclusions

This study has thoroughly investigated Meilink Borculo B.V.’s transportation process, identifying its
reliance on manual planning and the absence of a dedicated route optimization system. Despite the
complexity of managing a fleet that includes lorries, trailers, and a box truck, alongside occasional
use of external carriers, the company’s approach is heavily dependent on employee expertise without
leveraging advanced routing algorithms. The analysis revealed that transportation costs are a significant
expenditure for Meilink, with efforts to minimize these costs being crucial due to their impact on the
company’s profitability.

This study embarked on addressing the high transportation costs encountered by Meilink Borculo
B.V., aiming to identify a solution method that effectively reduces the company’s overall transportation
expenses. An extensive review of existing literature laid the groundwork for developing a solution. Subse-
quently, a Mixed Integer Linear Program (MILP) for a Multi-Trip Capacitated Vehicle Routing Problem
with Divisible Delivery and Pickup Time Windows and Private Fleet and Common Carriers (MTCVR-
PDDPTWPFCC) and a Variable Neighbourhood Search (VNS) were developed. These solution methods
were tailored to fit the specific characteristics of Meilink’s transportation operations, including aspects
such as pickup and delivery demands, time windows for customers and the depot, vehicle capacities,
types of vehicles, item volumes, and both fixed and variable costs. Data and necessary assumptions were
provided by Meilink Borculo B.V. to support this process.

To fine-tune the VNS and MILP for broader applicability and ensure their effectiveness in scenarios
similar to those of Meilink, several data instances were created. This tuning process aimed to ensure
that both solution methods could efficiently handle demand nodes of varying sizes, reflective of Meilink’s
actual situation. The optimal settings identified were then applied to the real-world data instances of
the company. Extensive experimentation demonstrated the effectiveness of the developed VNS solution
in improving Meilink’s transportation process efficiency, significantly reducing transportation costs by
64% compared to the current situation. The experiments also highlighted the importance of routing all
vehicles to minimize costs and the challenges of relying solely on a private fleet to meet high demand
instances. The VNS emerged as a preferable solution for its adaptability and efficiency, especially as the
company continues to grow and faces the impracticality of using MILP due to excessive computation
times.

6.2 Contribution to theory

The literature review revealed an extensive research on VRP variations, yet existing models do not
encompass all aspects of the problem tackled in this study. A study conducted by Zhang et al. (2023)
incorporates five out od the six VRP characteristics this thesis dealt with, however, it does not look into
differentiating between vehicles as private fleet and common carriers. This showed the need to develop
a novel mathematical formulation by merging mathematical formulations from Bolduc et al. (2008) and
Wassan et al. (2017) and adding additional constraints, including time-window constraints. This MILP
formulation represents a MTCVRPDDPTWPFCC, a model of this specificity not previously found in
literature.

The VRP involving a private fleet and common carriers is relatively new in transportation and logistics
research, for which not many solution methods have been proposed. In the existing literature, mainly the
RB-ACS heuristics has been proposed as a solution method and its performance has been showed for the
VRPPFCC. This study undertook a different solution approach by employing a Variable Neighbourhood
Search Algorithm and showing its application to routing problems with private fleet and common carriers.
The detailed analysis of VNS, including parameter tuning and the strategic combination of local search
operators, provides valuable insights into the algorithm’s adaptability and efficiency in navigating large
and complex solution spaces.
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By comparing the performance of a Mixed Integer Linear Programming (MILP) model with the VNS
metaheuristic, this thesis contributes to the ongoing discourse on the practical applicability of exact
versus heuristic methods in solving VRPs. The findings highlight the limitations of MILP in terms
of computation time for large instances and underscore the advantages of metaheuristics in achieving
near-optimal solutions within reasonable computation time.

Lastly, the successful application of VNS in this context enriches the metaheuristic theory by providing
a case study on its adaptability and effectiveness in a complex, real-world problem. It adds to the evidence
supporting the use of VNS in logistics and transportation management, particularly for problems that
are not adequately addressed by traditional optimization methods.

6.3 Contribution to practice

Conducted at Meilink Borculo B.V., a company with a rich history in packaging solutions, this research
identified opportunities for enhancing the company’s transportation strategies. The development and
implementation of a tailored Variable Neighborhood Search (VNS) algorithm for Meilink Borculo B.V.
presents a practical solution for optimizing transportation processes. This strategy enables companies
to systematically plan and execute transportation tasks, leading to improved resource utilization and
reduced operational costs. The demonstrated success of the VNS algorithm in reducing transportation
costs by 64% offers a compelling case for its adoption in similar logistics operations.

Moreover, it illustrated how operational-level VRP solutions could inform tactical-level decisions,
offering guidance on the most cost-efficient and effective vehicle types (private or external) for the com-
pany. The comparative analysis of different vehicle routing scenarios, including the use of private fleets
versus common carriers and the impact of routing all vehicles, offers critical insights for decision-making
in fleet management. Companies can leverage these findings to make informed decisions about fleet
composition, vehicle utilization, and the use of external transportation services.

The identification of Variable Neighborhood Search (VNS) as a scalable solution for vehicle routing
problems addresses a critical need for logistics companies experiencing growth and increasing complexity
in their operations. The adaptability of VNS to different problem sizes and its efficiency in handling
extensive problem instances make it a suitable choice for companies at various stages of growth.

Finally, this research offers guidance for logistics and transportation companies on implementing
advanced optimization solutions. From problem formulation and algorithm selection to parameter tuning
and performance evaluation, the methodologies outlined in this thesis provide a roadmap for companies
seeking to enhance their logistics operations through optimization.

6.4 Recommendations

Based on the outcomes of the MILP and VNS analyses, it is advised that Meilink Borculo B.V. should
utilize either mixed fleet or solely common carriers, ensuring their routing to efficiently serve clients daily.
If the company opts to retain its private fleet, it is still recommended to use these vehicles alongside
common carriers. Specifically, common carriers should be deployed to transport to customers located
farthest from the depot. The current private fleet alone cannot meet the fluctuating demand. Should
the company decide solely to rely on its private fleet, an expansion of the fleet is necessary, which could
significantly increase transportation costs due to the high expense of acquiring new trucks. Vehicles with
IDs 3, 4, and 5 from the private fleet are recommended for frequent use, as they incur the lowest fixed
costs and are consistently selected in both MILP and VNS solutions.

Furthermore, the development of a routing tool is recommended for daily vehicle assignment to client
locations. Regardless of the vehicle types used, routing is crucial for reducing both travel distances and
transportation costs. The greatest cost reduction is achievable through servicing all demand nodes with
external vehicles, together with a routing tool. This tool could integrate either the MILP or VNS models,
considering computation time and the number of demand nodes. In data instances with lower number of
demand nodes, less than 30, the MILP model can find optimal solution within the computation limit of
30 minutes. For the high-demand scenarios, on the other hand, it is suggested using the VNS algorithm,
which offers near-optimal solutions, significantly lowering the company’s transportation expenses.

6.5 Limitations and future research

Several assumptions were integral to the mathematical model’s formulation, including the volume of
transported items (which are often folded for delivery), vehicle speeds, and loading/unloading times at
client locations. Additionally, despite the company experiencing variable demand throughout the year,
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this study focused only on days with the highest and lowest demands, avoiding extreme outliers. For
a more accurate yearly cost calculation, incorporating average demand across different weekdays could
enhance the solution.

The pickup requests in this study are treated as deterministic, however, this approach overlooks
their potential dynamic nature, where requests might emerge after vehicles have departed the depot.
The absence of data on such occurrences limits the ability to assess their frequency and impact. Thus,
systematic tracking of dynamic pickup requests by the company is recommended.

During parameter tuning, the initial configurations of the MILP and VNS were adjusted. Modifi-
cations required by the experiments were not extensively tuned, suggesting that further tuning could
optimize results. Additionally, the optimization of only the best cost solutions in the VNS lacked statisti-
cal analysis, leaving room for questioning whether the entire solution space was explored. Incorporating
statistical analysis could provide deeper insights into the efficacy of the solutions identified.

Future studies could extend this work by comparing multiple metaheuristics or variations of the
VNS to the current findings, potentially enhancing solution quality. Such research could also delve
into the operational, tactical, and strategic levels of transportation planning at Meilink, evaluating the
suitability of truck models and determining the most efficient vehicle types for serving specific clients.
Beyond cost considerations, strategic-level research could assess the service level requirements, customer
satisfaction and flexibility of using either type of transportation, which could offer a holistic view on the
transportation efficiency and effectiveness.
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Appendix

A Algorithms of the Metaheuristics Discussed in Literature Review

In this section, the algorithms for the metaheuristics reviewed in Section 3.8 are presented.

A.1 Simulated Annealing Algorithm

Algorithm 13 Simulated Annealing Algorithm

1: Construct the initial solution S0

2: S∗ ← S0, T ← T0, T
′ ← T0

3: while time limit is not exceeded do
4: for k = 1 to Lk do
5: Select a neighborhood structure NS randomly
6: Generate a feasible solution S′ from S with NS
7: if cost(S′) < cost(S) then
8: S ← S′

9: else
10: Set S = S′ with probability p, where p = exp

(
− cost(S′)−cost(S)

T

)
11: end if
12: if cost(S′) < cost(S∗) then
13: S∗ ← S′, T ′ ← T
14: end if
15: T ← α · T
16: if T < 0.01 then
17: T ′ ← T ′

2 , T ← min(T ′, L(T ))
18: end if
19: end for
20: end while
21: return S∗

A.2 Tabu Search Algorithm

Algorithm 14 Tabu Search Algorithm

1: x← FindInitialSolution()
2: TabuList← ∅
3: repeat
4: y ← BestMove(N(x))
5: if y /∈ TabuList then
6: x← y
7: else if y ∈ TabuList and Aspiration Criteria met then
8: x← y
9: else

10: Do not update x
11: end if
12: UpdateTabuList(x)
13: until Maximum Iterations Reached
14: return x
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A.3 Iterated Local Search

Algorithm 15 Iterated Local Search (ILS)

1: Sbest ← FindInitialSolution()
2: for i← 1 to numIterations do
3: Spert ← Perturb(Sbest)
4: Snext ← LocalSearch(Spert)
5: if Cost(Snext) < Cost(Sbest) then
6: Sbest ← Snext

7: end if
8: end for
9: return Sbest

A.4 Variable Neighborhood Descent

Algorithm 16 Basic Variable Neighborhood Descent (VND)

1: x← FindInitialSolution()
2: k ← 1
3: while k ≤ kmax do
4: x′ ← BestImprovement(x,Nk)
5: if Cost(x′) < Cost(x) then
6: x← x′

7: k ← 1
8: else
9: k ← k + 1

10: end if
11: end while
12: return x

A.5 Greedy Randomized Adaptive Search

Algorithm 17 Generic GRASP

1: procedure GRASP
2: InputInstance()
3: for GRASP stopping criterion not satisfied do
4: ConstructGreedyRandomizedSolution(Solution)
5: LocalSearch(Solution)
6: UpdateSolution(Solution, BestSolutionFound)
7: end for
8: return BestSolutionFound
9: end procedure

Algorithm 18 GRASP Construction Phase

1: procedure ConstructGreedyRandomizedSolution(Solution)
2: Solution = {}
3: for construction not done do
4: MakeRCL(RCL)
5: s← SelectElementAtRandom(RCL)
6: Solution = Solution ∪{s}
7: AdaptGreedyFunction(s)
8: end for
9: end procedure
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B Customer locations served predominantly by external vehicles (common
carriers)

B.1 Experiment E1

Figure 13. Locations served by common carriers according to the MILP results from Experiment E1.

Figure 13 illustrates the locations served by common carriers as determined by the MILP results
from Experiment E1. This map aggregates the demand nodes visited by external vehicles across all 10
real-world data instances. Notably, in instances with high demand, the MILP consistently selects specific
locations for service by common carriers. These locations include Winterswijk, Spankeren, Papendrecht,
Varsseveld, Denekamp, Delden, and Veldhoven, with additional locations depicted in Figure 13.

B.2 Experiment E4

In Figure 14, the locations served by common carriers are presented, as determined by the MILP model
across all ten scenarios. This map highlights the demand nodes that external carriers visit, showcasing
a strategic allocation of common carriers to the most distant locations from the depot, particularly in
the Noord Holland and Zuid Holland regions.
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Figure 14. Locations served by common carriers according to the MILP results from Experiment E4.
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