MSc Computer Science

3 (A3
5,{" v_ N p. Ir,’-,!:‘k

] ¥

»33;&%%?@5 ~_ FedNIP: A Statistical Heterogeneity
Za@("‘f%ﬁﬁg Aware Dynamic Ranking Algorithm for

i
S | 3%
XV g LS

i Federated Learning

Sjoerd Zagema

Supervisor: Dr.ir. Alex Chiumento
Committee member: Prof. dr. Paul Havinga
Committee member: Dr.ir. Andrea Continella

April, 2024

Department of Electrical Engineering,
Mathematics and Computer Science
Pervasive Systems Research Group

UNIVERSITY OF TWENTE.

FedNIP: A Statistical Heterogeneity Aware Dynamic
Ranking Algorithm for Federated Learning

ABSTRACT

Federated Learning (FL) is a cutting-edge approach to Ma-
chine Learning (ML) that allows for the decentralized train-
ing of models, without the need for centralizing the raw
data. This ensures the privacy of the client, as the actual data
never leaves the device. However, a major challenge in FL is
that clients often have significant differences in their local
data distributions, which leads to a suboptimal convergence
speed and decreased accuracy. To address this issue, a novel
FL algorithm called Federated Non-IID Performance (Fed-
NIP) is proposed.

FedNIP is a dynamic ranking-based exploration and algo-
rithm, prioritizing clients based on their impact on the global
model. Unlike other FL algorithms, FedNIP dynamically up-
dates client performance and ranks clients to prevent bias
in the training. Clustering is used to group clients based on
similar distribution, after which the clusters are passed to
the global model for training. A proxy model is used to rank
the clients based on performance. Only the weights of the
best performing clients are used for training of the global
model.

Experimental results, conducted using the CIFAR-10 dataset,
demonstrate that FedNIP outperforms FedAvg, the most es-
tablished FL algorithm, and matches FedProx, the most estab-
lished Non-IID FL algorithm, in highly heterogeneous envi-
ronments. Scaling the number of clients from 50 to 250 does
not change the results. Hereby, using the FedNIP strategy of
only using a subset of the clients (using top 10% performing
clients in a cluster and 10% of random clients in a cluster)
has similar performance compared to using FedNIP where
all the clients are utilized in a cluster. This outcome means
that examining a subset of clients within a cluster provides
a reliable indication of the overall performance of the en-
tire cluster. Which drastically reduces the number of needed
clients to be used. FedNIP’s runtime is four to eight times
faster than FedAvg and FedProx, dependent on number of
clients and level of statistical heterogeneity.

Future research should focus on integrating cluster perfor-
mance as a sampling criterion for each round, instead of
the current client proportion-based sampling strategy. More-
over, assessing FedNIP’s performance in real-time environ-
ments could provide valuable insights, given its capabil-
ity to dynamically rank clients based on performance. The
code for the implementation of FedNIP can be found here:
https://github.com/Chessmaster97/_FedNIP_

Training Training Training

Clients

Figure 1: FL Training cycle [39].

1 INTRODUCTION

1.1 Context

In 2020, 2.5 quintillion bytes of data were created every day
[24]. That is equivalent to 10 million Blu-ray discs, which
when stacked would be as tall as two Eiffel Towers com-
bined [6]. By 2025, the global data volume expands to 175
zettabytes. It is estimated that more than 50% of this data
comes from IoT devices [24]. Furthermore, it is predicted
that 150 trillion gigabytes of real-time data is analyzed [6].
The growth of this data over the last couple of years has
been exponential, and as the software and hardware for stor-
ing, processing and analyzing gets more accessible, more
organizations can benefit from this trend by incorporating
strategies to support their business models.

For the analysis of this data, Machine Learning (ML) methods
are more frequently used [5]. Especially, Deep Learning (DL)
models thrive on a large amount of data and are increasingly
used in modern data intensive applications. The use of ML
has propelled several developments in areas of Natural Lan-
guage Processing (ChatGPT), Computer Vision (Smart Cars)
and Speech Processing (Alexa & Siri).

The classical way of using ML is by centralizing the data
and executing the entire training process at a central server.
In this way, pre-processing and fine-tuning, two important
steps in ML, can perform extensively to enhance the model.
However, a major drawback of this approach is that the data

https://github.com/Chessmaster97/_FedNIP_

is not private. It is often the case that a third party does
the analysis of the data by the use of ML, and therefore all
the raw data has to be delivered to this party. Even though
contractual agreements prohibit the use of the data in any
other way then for the purpose of ML, risk is still involved.
Especially the healthcare sector, law enforcement and other
governmental related organizations are hesitant to share
this data [6]. Hence, potentially a lot of valuable insights
are missed by organizations unwilling to share the raw data.
Moreover, the new regulations, such as the GDPR, are also
getting more strict about sharing and processing (sensitive)
data [7].

Imagine a scenario where various hospitals across a region
are collectively working to develop a predictive model for
diabetes. Each hospital possesses its own set of patient data,
comprising medical records, lab results, and other statistics.
In a traditional centralized approach, all this sensitive patient
data would need to be aggregated and sent to a central server
for model training. With this, there is a major privacy and
security concern.

Aggregating patient data from multiple hospitals into a cen-
tral server increases the risk of privacy breaches. Patient data,
including medical records, lab results, and other statistics,
contains highly sensitive information that, if compromised,
could lead to privacy violations for the individuals involved.
Furthermore, centralizing sensitive data increases the risk of
cyberattacks. A single point of failure, such as a central server,
becomes a prime target for malicious attackers seeking to
gain unauthorized access to valuable medical information.
Without security measures in place, the data is vulnerable
to unauthorized access, potentially compromising patient
safety.

This is where FL steps in. Instead of sending the raw data to
a central location, the hospitals can keep their patient data
locally. The model is sent to the hospitals for local training,
instead of bringing the data to the model. Google was the
first to introduce the concept of FL as a possible solution
for the challenges described. In 2016 Google published a
paper titled Communication-Efficient Learning of Deep Net-
works from Decentralized Data [8]. Here, McMahan et al.
introduces the concept of FL and the design of the federated
averaging algorithm (FedAvg). FedAvg is the most commonly
used algorithm used in FL. The common FL process is dis-
played in figure 1 [39]. The first step in FL is to share a model
(composed at the server) with the available clients. Next, the
clients that received the model can train their local data on
this model (step 2). After the training is finished on the local
model, a client sends the weights back to the server (step
3). The final step is to aggregate the weights received by
the clients (step 4). Step 2 until step 4 are repeated until the
global model has converged. After the publication of the

mentioned paper, a lot of research has been conducted in a
lot of different areas to examine the applicability of FL.

1.2 Problem description

This paper primarily addresses improving performance in
case of Statistical Heterogeneity in data, also referred to as
Non-Identically Independent Distributed Data (Non-IDD).
In practical scenarios, clients possess diverse data distribu-
tions, and the data volume is often distributed in a scattered
manner both locally and globally.

At a local level, there tends to be class imbalance, where
certain classes may have more data compared to others. On
a global level, the data distributions and class samples vary
among different data clients.

In a study conducted by Jie Liu [11], a probability density
function was generated for three clients using the Dirichlet
distribution to show the suboptimal performance of the Fe-
dAVG algorithm. The visualization of this function can be
found in figure 2.

In the figure, the performance of the regularly employed Fe-
dAvg algorithm is represented by a black cross, while the best
performing region is indicated by a yellow star. It is apparent
that relying solely on the FedAvg algorithm’s performance
yields suboptimal results. Consequently, the proposed Fed-
NIP method strives to enhance performance by approaching
the yellow star more closely.

Several other FL methods aim to approach the yellow star.
In table 1 (page 10), the distinctions among FL algorithms
addressing Non-IID scenarios, including FedNIP, are high-

lighted.
0.700
I 0675

A: Client
B: Best
L 0.650

A

8 C: FedAvg

I 0.625
I 0.600
I 0.575

I 0.550

- 0.525

’ Ioson

Figure 2: Dirichlet distribution with three clients indi-
cating the sub-optimal performance of FedAvg [11].

.

1.3 Research Goal

The primary goal of FedNIP is to enhance both the global
model’s accuracy and speed, especially in scenarios involv-
ing statistical heterogeneity, surpassing the performance of
baseline classifiers like FedAvg and FedProx. Among Feder-
ated Learning algorithms, FedAvg holds the status of being
the most extensively utilized, whereas FedProx stands out
as the established benchmark for Non-IDD data. While Fed-
Prox and FedNIP share the common objective of improving
FL performance in heterogeneous environments, they have
different approaches to achieve this goal. This is highlighted
in table 1 on page 10.

The main research question is:

e How does the performance of FedNIP, in terms of global
accuracy and speed, compare to that of baseline clas-
sifiers FedAvg and FedProx for clients with statistical
heterogeneous data?

The following sub questions are answered:

e To what extent does FedNIP influence the accuracy of
the global model compared to baseline classifiers?

e What is the influence of scaling the number of clients on
the performance of FedNIP?

e What are the effects of FedNIP under different non-identically

distributed (Non-IDD) settings using the Dirichlet distri-
bution?

e To what extent does FedNIP affect the speed compared
to the baseline methods?

2 BACKGROUND
2.1 Deep Learning

As the amount of data increased exponentially and hard-
ware capabilities became more accessible to the wider public,
the utilization of Deep Learning (DL) models has witnessed
significant growth [18]. This increase in popularity can be
attributed to the superior performance of Deep Learning
models compared to traditional machine learning (ML) al-
gorithms such as Decision Trees, Support Vector Machines,
Naive Bayes, and Logistic Regression, particularly when deal-
ing with large datasets [16]. DL models excel in capturing
complex nonlinear relationships, surpassing the capabilities
of traditional algorithms and yielding higher performance

[3].

The effectiveness of DL has made it the state-of-the-art ap-
proach for various ML applications across different use cases
[16]. Neural networks, a class of models inspired by the
structure and functionality of the human brain, form the

foundation of DL. These networks consist of interconnected
neurons that process information and generate predictions
based on input data. Among the most prevalent types of neu-
ral networks used in deep learning is the feedforward neural
network, characterized by layers of neurons responsible for
processing input data and producing output predictions [21].
The input layer receives raw data, and each subsequent layer
performs nonlinear transformations on the outputs of the
previous layer. Finally, the output layer provides predictions
based on the given input [3].

Let x € R” be the input vector, and y € R™ be the output
vector. A feedforward neural network can be represented as
a function f(x;), where 0 denotes the parameters of the
network. The network computes its output by propagating
the input vector through the layers:

y=f(x0)=fil.. fo(fi(x:601);02)...50r) (1)

Here, fi, ..., fi denote the nonlinear activation functions of
the layers, and 04, .. ., 01, are the corresponding parameters.

To train a neural network, a loss function can be defined
that measures the discrepancy between the predicted output
and the true output. The most common loss function used
in deep learning is the cross-entropy loss [16]:

N m

LO) == D> yiylog fx:6);)
o1 =1

+ (1 —yij) log(1 - f(xi:0);) (3)

Here, N is the number of training examples, y;; is the j-
th component of the true output for the i-th example, and
f(xi;0); is the j-th component of the predicted output for
the i-th example.

To minimize the loss function, we use an optimization algo-
rithm, such as stochastic gradient descent (SGD), to update
the parameters of the network [3]:

0 — 0 —aVeL(0) 4)

Here, « is the learning rate, and Vg £(0) is the gradient of
the loss function with respect to the parameters 6.

Using back propagation it is possible to efficiently computes
the gradients by propagating the errors from the output layer
back to the input layer. The back propagation algorithm
works by computing the derivative of the loss function with
respect to the output of each layer, and then recursively

applying the chain rule to compute the derivative of the loss
function with respect to the parameters.

Let 51.(1) denote the error term for the i-th neuron in layer [,
which is defined as the derivative of the loss function with
respect to the output of that neuron. The backpropagation
algorithm computes the error terms for each layer as follows
[16]:

5(L) — VQL Qﬂ(g) 5([) — (W(l+1))T5(l+1> @ﬁ,(z(l))
©)

Here, i is the predicted output, © denotes element-wise mul-
tiplication, W is the weight matrix for layer I, fl’(z(l)) is
the derivative of the activation function for layer I, and z(D
is the weighted sum of the inputs to layer [.

Once the error terms are computed, the gradients of the loss
function with respect to the parameters can be computed
using the chain rule:

Vo L= vy L =560 ()

Here, a!) is the output of layer after applying the activation
function, and b(!) is the bias vector for layer .

Deep learning models are prone to overfitting, where the
model memorizes the training data instead of learning gener-
alizable patterns. To address this issue, various regularization
techniques can be applied to the model.

One common technique is weight decay, where a penalty
term is added to the loss function to discourage large weights:

£(6) = Ldata(6) +AZI =1L w®))2 @)

Here, Lgara(0) is the data loss, ||[W(®)||, is the L, norm of
the weight matrix for layer [, and A is the weight decay
coefficient.

Another technique is dropout, where a random subset of
neurons are temporarily removed from the network during
training to prevent co-adaptation:

ZD =D g g0 (®)

Here, r®D is a binary mask that randomly sets some of the
activations to zero.

2.2 Federated Learning

The objective of the Federated Learning (FL) framework in
this setup can be written as [30]:

N
min F(W) = ﬁ ; |Di| F; (W), ©)

where |D| is the size of the global dataset D and |D;| is the
size of the local dataset D; in client i. F(W) is the global cost
function on D and F;(W) is the local cost function on D;.
The loss function of data samples is denoted by L.

This paper considers the Federated Averaging (FedAvg) algo-
rithm [20], which executes the following three steps every
r-th iteration:

(i) Initialization: All clients receive the global model wr — 1, Sr — 1

in the last iteration from the server.

(i) Local model updating: Each client i € [N] updates its
local gradient parameters through E successive steps of local
gradient descent. Specifically, each client initializes the local
model by

wtd) Sr, 0P = wr — 1, Si_1, (10)

r,0°

and performs the following update for ¢t € [E]:

@ _ @)
Wr,t - Wr,t—l

- yVWFl-(wﬁ’it)_l; Sr, tPi, ASr, P, (11)
where y > 0 is the learning rate, E is the number of local
updating steps, Sr, tP# is the statistical parameters computed
via (2) with the local model wr, t — 19 and the local dataset
D;, and As_‘f ; is the difference between the local and global
statistical parameters. During this time, each client updates
local statistical parameters for model inference by moving
average as follows:

aD.

SrtPi = (1-p)Sr,t =17+ pS2i, te [E], (12)

r,t?

where p is the momentum of moving average.
(iii) Aggregation: The local model wr(fg,
i € [N] is uploaded to the server for aggregating a new
global model by

Si)fs in each client

wr, Sr = Z i= leiWV,E(i),Sf)f;, (13)

where p; = |D;|/|D| is the weight assigned to client i.

2.3 Flower

Flower is an upcoming Federated Learning Framework that
enables developers to create research projects that can be
transformed into production deployment [2]. The framework
is developed by the German Startup Adap. It is designed to
be agnostic, which means that it supports several ML frame-
works like TensorFlow and PyTorch, and it is programming
language independent (Python, Java, C++ ...). The design
makes the scaling of the number of clients manageable. Sup-
ported are execution on GPUs as well as containerization
using tools like Docker. Still, a lot of functionalities need to
be added to the Framework. Differential Privacy and Secure
Aggregation are not yet implemented in the Framework.

AWS Device Farm Client Compute
Deployer Deployer Simulator
Network Energy
DSL Simulator Monitor
Flower Tools

Flower Flower { Flower }
Examples Baselines Datasets

Flower Implementations
Fed Async
Avg FedAvg [TF][PyTorch M Keras J@
Fed Q-Fair
Prox FedAvg

Training Pipeline
Flower Strategy|

[Java M Python]{ CH+]@

Flower Client SDK

FL RPC
RPC
{ Server H Server] 9 >
Flower Server Client
Server Client

Figure 3: Flower Framework [2]

In figure 5 the Flower architecture is visualized. The flower
architecture can be deployed using several platforms. For ex-
ample, the AWS Deployer, Device Farm Deployer, the Client
Compute Simulator and the Network Simulator. The Flower
framework also provides several baselines of FL that can be
used. Flower supports multiple languages. For this research,
Pytorch is used as Al framework.

For this research, a new algorithm (FedNIP) is developed. The
Flower framework provides the option to create a custom
strategy for this purpose. The strategy abstraction enables
implementation of fully custom strategies !. A strategy is
the federated learning algorithm that runs on the server.
Strategies decide how to sample clients, how to configure
clients for training, how to aggregate updates, and how to
evaluate models.

Thttps://flower.ai/

2.4 FEvaluation Metrics

The global accuracy and convergence speed are used as
main metrics to compare algorithms. The global accuracy
for clients is defined as follows:

Let n be the total number of clients in the federated learning
system, and let m; be the number of samples in the local
dataset of client i, where i € [1,n]. Let y;; be the ground
truth label of the j-th sample in the local dataset of client i,
and let §;; be the predicted label for this sample.

Suppose that in previous rounds, we have selected a subset
Sk of clients to participate in training, where k € [0, 100],
and let ¢x be the best performing client among them. In
addition, we randomly select another subset Ry of k% clients
to participate in the training, and let . be the best performing
client among them. We merge the two subsets to obtain the
final set of clients for the round: Fi = S; U Ry.

In the current round, we simulate one round of training using
only the local models of the clients in F, and let wy be the
resulting global model.

We then update the global model by training it on the local
datasets of all clients, but using only the weights of ¢ as the
starting point. The resulting model is denoted by w.

If the best performing client among the Fy clients is signif-
icantly different with a threshold that is empirically deter-
mined from ci, then we swap the rankings of the clients in
the two subsets Sy and Ry, and repeat the training process
as described above.

With regard to the convergence speed, let’s assume we have a
sequence of accuracy values over successive training rounds,
denoted as A = {Ag, A1, Ay, ..., A}, where A, represents the
accuracy at training round ¢.

To determine convergence we can define a convergence crite-
rion using a threshold e. We observe the accuracy values and
check if the accuracy remains relatively stable over a certain
period of time. If the accuracy does not improve significantly
beyond ¢ for a predefined number of rounds, we can assume
convergence.

The convergence criterion can be defined as follows: If there
exists a positive integer n such that forallt > n, |A;—A;_p| <
&, where |A; — A;_,| represents the absolute difference be-
tween the accuracy at round t and the accuracy at round
t —n. The condition |A; — A;_p| < ¢ implies that the accuracy
values are within a small threshold ¢, indicating stability. In
this criterion, the parameter n determines the number of
rounds over which the accuracy must remain stable.

The Dirchlet distribution is used to control the degree of
Non-IDD in the used datasets. The Dirichlet distribution is a

multivariate probability distribution that assigns probabil-
ities to vectors of non-negative numbers that sum to one
[14]. It is commonly used as a prior distribution in Bayesian
statistics, particularly in problems that involve estimating
probabilities of events with a categorical or multinomial
structure.

More formally, let x = (x1,x2, ..., xk) be a vector of K non-
negative values that sum to one, and let & = (a1, 2y, - . ., oK)
be a vector of positive hyperparameters. Then the probability
density function of the Dirichlet distribution is given by:

1

fxa)=——

a;i—1
B(a)i x0T (14)

1

=

Il
—-

where B() is the multivariate Beta function, which serves
as a normalization constant to ensure that the probabilities
sum to one [32]. The Beta function is defined as:

H,K:1 1—‘(051‘)
B = — 15
(@) K, a) (15)

where I'(+) is the Gamma function.

The hyperparameters « determine the shape of the distri-
bution and can be used to encode prior beliefs about the
probabilities of events.

In this research, experiments are done with values of & = 0.6
,alpha = 0.3 and alpha of 0.05 as this is common in other
research as well [12][5][4]. The lower the level of alpha
the higher the degree of statistical heterogeneous data. By
experimenting with these three values (0.6,0.3 and 0.05) it is
possible to test different algorithms for low, moderate and
high degrees of statistical heterogeneous data.

The Earth Mover’s Distance (EMD) is used to compare local
data distributions [28]. It is a measure of the dissimilarity
between two probability distributions over a certain space.
Given two probability distributions P = py, p,, ..., p, and
0 =4q1,92 - --,qm, defined over a space X, the EMD is defined
as the minimum amount of work required to transform one
distribution into the other.

More formally, let d(x, y) be the distance between two points
x and y in X. Then the EMD between P and Q is defined as:

EMD(P, Q) = l’nfinZZfij -d(xi, yj), (16)

i=1 j=1

where f;; represents the amount of probability mass to be
moved from p; to g;, subject to the following constraints:

m

> fi<pn Vie[Ln],

Jj=1

n
Y fi<q. Viellm],
i=1

Vie [L,n],je[1,m].

(17)

3 RELATED WORK

There have been several studies addressing the issue of sta-
tistical heterogeneity in FL. Zhu [34] conducted a compre-
hensive survey to explore the strategies employed by re-
searchers in tackling this challenge. The survey revealed
that researchers primarily concentrate on four approaches:
algorithmic-based, model-based, data-based, and framework-
based approaches.

Data based Model based Algorithm based Framework based
Data sharing Aggregation Meta learning STy
clustering
Data Adaptive Multi-task Knowlegde
enhancement optimatization learning destillation
Br(a el Regglar_ L|fe-|9ng Personalization
optimatization learning layer

Figure 4: Strategies of reseachers in FL in case of Non-
IDD FL [34].

In this study, four components of the model (see figure 4)
are employed to handle statistical heterogeneous data: data
sharing, aggregation, adaptive optimization, and similarity
clustering. Building upon these components, several algo-
rithms that incorporate similar elements are explored and
discussed below.

FedAvg [8] averages the weights of the local models at the
server after each communication round. Hereby, clients are
selected randomly. Several studies prove that FedAvg suffers
from performance issues when the data is statistical hetero-
geneous in nature.

FedProx [27], a widely adopted FL algorithm, adds a proxi-
mal term (which can be tuned with parameter p) to limit the
distance between the local and global model. In practise, it is
difficult to find an optimal value for , if p is too small then
the proximal term has a negligible effect (same performance
as FedAvg) and if p is too large then convergence speed is
slowed down as the local updates are small. FedProx is tested
in highly heterogeneous settings, FedProx demonstrates sig-
nificantly more stable and accurate convergence behavior
relative to FedAvg—improving absolute test accuracy by 22%
on average.

FedAdam [23] uses a adaptive learning rate where clients
perform multiple epochs of training using a client optimizer
to minimize loss on their local data and the server updates

its global model by applying a gradient-based server opti-
mizer to the average of the clients’ model updates. Emprical
analysis shows that selection of client and server learning
rates can reduce the effect of client heterogeneity. However,
it does not completely remove it. In highly heterogeneous
settings, FedAdam is not performing stable.

FedCS [26] aggregates more updates by selecting more clients
with less resource constraints in one round, it offers robust-
ness against straggler devices by allowing the remaining
devices to continue local optimization without waiting for
the straggler devices to finish. They deal with the imbalance
of the data by using a compression technique, that could in-
crease the number of clients that can be selected in the same
communication round. The results indicate that the overall
performance were limited in case of Non-IDD environments.
They achieve a maximum accuracy of 70%.

Class-aware Client Selection (C2S) [17] clusters the clients
according to the classes of data they have. A cluster is se-
lected in every communication round to participate for the
training on the global model. Here, the clients in a cluster
are averaged in order to create a set of weights for the global
model. For fairness, the probability for each client getting
selected is equal. Furthermore, they take make sure that
clients that have participated less in training compared to
other clients by introducing a value set system. If a set has
the minimum value, the set gets selected for training. For
CIFAR-10, FedC2S has more obvious accuracy improvements
over FedAvg and FedCluster, which are 13.12% and 14.36%,
respectively. It also has significant reduction in number of
rounds to achieve accuracy of 73%.

FedCluster [4] allows clusters on devices on different type of
application scenario’s. Random uniform clustering groups de-
vices of equal size in a cluster at random. Moreover, timezone-
based clustering allows clustering based on timezone or GPS
location. Lastly, availability-based clustering is based on the
idea to divide each learning round into multiple time slots.
The available devices within a cluster can form a cluster.
With regard to Non-IDD data, FedCluster performs worse
than the FedAvg algorithm.

BalanceFL [35] addresses class imbalance by long tail FL.
They designed a novel local update scheme that adjusts the
class imbalance, forcing the local model to behave as if it
were trained on ideal uniform distributed data. Hereby, three
steps are used. Firstly, they used balanced sampling to in-
crease the probability of data from tail classes to be chosen
to balance the response of all classes during the training.
Secondly, feature-level data augmentation is used to increase
the samples for the minority classes. Lastly, the smooth regu-
larization penalizes the over-confident predictions for better
balancing and representation learning. Lastly, smooth regu-
larization penalizes the over-confident predictions for better

balancing and representation learning. They tested their ap-
proach a real-life IMU dataset for action recognition, we
collect a real-life IMU dataset for action recognition, which
includes over 10,000 data samples. For the evaluation, they
used three datasets from three different data modalities. The
results show that under all datasets, BalanceFL performs sig-
nificantly better than others. Specifically, on the long-tailed
version of CIFAR10, BalanceFL outperforms the FedAvg by
up to 56.7% in terms of accuracy, while incurring 75% less
communication overhead.

Auto-FedAvg [36] makes use of aggregation weights which
are dynamically adjusted, depending on data distributions
across data silos and the current training progress of the
models. Hereby, gradient descent is used with the Dirich-
let distribution in order to capture the underlying data and
learning process. Auto-FedAvg outperforms FedAvg in both
limiting the convergence speed as increasing the accuracy.
RepFL [31] is designed to measure the reputation of each of
the clients and based on this reputation, clients can partici-
pate in the training process. The reputation is determined
based on the local accuracy of each of the clients, by using a
copy of the global model and by using the performance of
the previous round. They make use of weighted aggregation
to give the better performing clients more weight. Hereby,
they make use of the normal distribution and divide regions
based on the standard deviation. The algorithm improves
both the accuracy (improvement of 17.175%) and the conver-
gence speed.

FedDC [13] makes minimal modifications to the local train-
ing phase, where each client uses a lightweight auxiliary
local drift variable to track the difference between its local
model parameters and the global model parameters. The aim
of FedDC is to leverage this learned local drift variable to
align the parameters, promoting consistency at the param-
eter level. Empirical results and analysis show that FedDC
achieves faster convergence and improved performance on
image classification tasks, and is robust to partial participa-
tion, non-i.i.d. data, and heterogeneous clients.

TiF1 [37] utilizes a tier-based approach to categorize clients
according to their training performance. This method selects
clients from the same tier during each training round, aim-
ing to address the straggler issue that arises due to resource
and data quantity heterogeneity. TiFL goes a step further
to tackle the non-IID data and resource heterogeneity by
adopting an adaptive tier selection technique. This approach
updates the tiering dynamically, based on the observed train-
ing performance and accuracy.

FedNova [10] is a technique that accurately normalizes the
updates made by local models during averaging. The cen-
tral concept of FedNova involves computing the average of

normalized local gradients.

x(t, 7;); — x(t,0)

Ti

Where x(t, 7;); represents the cumulative local gradient re-
turned by client i after performing 7; local updates in the ¢-th
training round. This approach replaces the method of aver-
aging the cumulative local gradient, which is represented
using the formula:

x(t, 7;); — x(t,0)

Scaffold [22] adds a control variate regularization term that
induces variance to correct for the client-drift in local up-
dates. Hereby, the federated training process is divided into
two phases: a scaffolding phase and a fine-tuning phase. In
the scaffolding phase, the algorithm first trains a shared
model on a representative subset of the data from a subset
of clients. This representative subset of data, also known as
scaffold data, is chosen such that it covers the diversity of
the data distributions among all clients. In the fine-tuning
phase, each client fine-tunes the shared model on its own
local data to further improve the performance.

ABAVG [9] incorporates a weighted averaging system that
relies on the accuracy achieved in the validation set. How-
ever, this necessitates sharing some data with the server
before the start of Federated Learning (FL). The validation
set is utilized to compare the accuracy’s attained by multiple
clients, and based on this assessment, appropriate weights
are assigned to each client. In addition, clustering based on
data distribution is implemented to ensure equitable compar-
isons between clients. They train each cluster on a seperate
global model. In various data distributions, the implemen-
tation of the ABAVG algorithm led to an average increase
in convergence speed of 47%in the Mnist dataset, 59% in the
Mnist dataset, and 33% in the CIFAR-10 dataset.

ACSFed [1] is an algorithm that uses a probabilistic ap-
proach to client selection. They also use the EMD to cluster
the clients and create a probability matrix where clients get
assigned a certain probability of selection. Hereby, they make
sure that clients that have a high degree of Non-IDD get sam-
pled more often in order to create fairness. Hereby, they
also assign a higher probability of clients that have not been
selected often. The algorithm is compared to the standard
FedAvg algorithm and obtains a higher performance then
FedAvg

FAug [7] uses generative adversarial networks to make the
local device datasets closer to an independently and identi-
cally distributed distribution. The clients perform data aug-
mentation on their local data and send the augmented data to

a central server for training a shared model. This process con-
tinues until a desired accuracy is achieved or a predetermined
stopping criterion is met. The use of data augmentation in
FAug enhances the diversity of the data seen by the shared
model, leading to improved performance. Moreover, by artifi-
cially expanding the size of local datasets, data augmentation
also addresses the challenge of limited data availability on
each client. Empirical studies have shown that FAug is effec-
tive in achieving high accuracy with reduced communication
overhead compared to traditional FL algorithms.

(tk) = Retrain(fk, E, L(t-1,median)) if L(t,k) > L(t-1,median),
and w(t,k) = w(t,0,k) otherwise.

FedCD [12] is a new framework for federated learning that
is based on knowledge distillation and collaborative learning.
This framework allows users to design models independently,
while also introducing a communication-efficient scheme for
sharing local model updates with the parameter server. This
scheme is based on online knowledge distillation. Overall,
the proposed approach aims to improve the efficiency and
effectiveness of federated learning.

CSFedAvg [33] uses the observation that clients with Non-
IID data exhibit varying weight divergence compared to
those with IID data. Based on this observation, weight di-
vergence is used to identify the Non-IID degree of clients.
Clients with lower Non-IID degrees are chosen more fre-
quently, resulting in a more efficient FL process.

Astrea [19] addresses data imbalance issues in federated
learning, using two methods: global data distribution based
data augmentation, and mediator based multi-client reschedul-
ing. Astraea reduces global imbalance through runtime data
augmentation and resolves local imbalance by creating a
mediator to reschedule client training based on Kullback-
Leibler divergence (KLD) of their data distribution. Com-
pared to FedAvg, Astraea shows significant improvement
of top-1 accuracy on the imbalanced EMNIST and CINIC-
10 datasets, with lower communication traffic. Specifically,
Astraea shows +5.59% and +5.89% improvement on these
datasets, respectively, while reducing communication traffic
by 82%.

AdaFed [38] can dynamically adjust the aggregation weight
of each device by considering its historical participation
records, thus addressing the bias caused by partial device
participation. Empirical results validate the theoretical anal-
ysis, demonstrating that AdaFed significantly enhances the
accuracy of the global model and achieves faster convergence
compared to existing FL methods by mitigating the negative
impact of biased device participation.

FedFa [25] aligns the feature mappings and calibrates classi-
fiers across clients by updating client models in a shared fea-
ture space with consistent classifiers. This leads to a virtuous
cycle between feature consistency and classifier similarity

across clients. Experiments demonstrate that FedFA outper-
forms federated learning algorithms to image classification
datasets with label and feature distribution skews.

FedBS [5] is a novel algorithm to handle global models hav-
ing batch normalization layers, in the presence of Non-IID
data. FedBS modifies FedAvg by introducing a new aggrega-
tion rule at the server-side, while also retaining full compati-
bility with Batch Normalization (BN).

ratioloss [15] is an algorithm that monitors the composition
of training data round by round. When detecting a similar
imbalanced composition continuously, the system acknowl-
edges the class imbalance and load the Ratio Loss. This holds
true for both local and global imbalances. It adjusts the loss
function accordingly.

HybridFL [20] is a new hybrid Federated Learning (FL)
strategy that can be customized to fit various FL settings.
This model addresses the key requirements of collaborative-
learning scenarios, where neither the subject nor feature
sets are complete at any client. The authors also develop a
convergent hybrid FL algorithm that allows for knowledge
transfer between clients, while maintaining data locality and
improving communication efficiency by removing the need
for sample synchronization. The performance of this new
model was evaluated on a real dataset, and the results showed
that the learned model achieved comparable accuracy to a
centrally trained model.

Table 1: Comparison of FL Algorithms dealing with Non-IDD

Reference FL Algorithm Client Priority =~ Cluster Based Dynamic Method Raw Data Exposure
[8] FedAvg X X X Select Clients Random X
[27] FedProx X X X Adding Proximal Term X
[23] FedAdam X X X Adaptive Learning Rate X
[26] FedCS v X X Compression Technique X
[17] Cc28 X v X Average of Clients in Same Cluster X
[4] FedCluster X v X Allows Different Types of Clustering X
[35] BalanceFL X v X Balanced Sampling and Smoothing X
[36] Auto-FedAvg v X v Dynamically Adjusted Weights X
[31] RepFL v X X Based on Reputation Client Assign Weight X
[13] FedDC X X X Lightweight Auxiliary Local Drift Variable X
[37] TiFL v v X Adaptive Tier Selection Algorithm X
[10] FedNova X X X A Normalized Averaging Method X
[22] Scaffold X X X Variance Reduction for Client-Drift X
[9] ABAVG v v X Weighted Accuracy System v
[1] ACSFed v v X Probability Matrix based on Client Importance X
[7] Faug X X X Using Generative Adversarial Networks X
[12] FedCD X v X Dynamically Group Devices with Similar Data X
[33] CSFedAvg X v X Non-IDD Clients are Sampled Less Often v
[19] Astraea X X X Global Data Augmentation and Rescheduling X
[38] AdaFed v X X Adaptively Tune the Aggregation Weight X
[25] FedFA X X X Feature Anchors to Align Feature Mappings X
[5] FedBS v X X Global Models Having Batch Normalization Layers X
[15] Ratio Loss X v X Designing New Loss Function X
[20] Hybrid-FL X X X Model-Matching-Based System X
This work FedNIP v v v Dynamic Ranking Based System X

Table 1 presents a comparison of the discussed algorithms.
It evaluates them based on whether they prioritize certain
clients, utilize clustering to address Non-IID data, their pri-
mary method, and whether they expose raw data to the
server, such as a validation set.

This table highlights Auto-FedAvg, TiFl, RepFL, ABAVG, and
ACSFed as the algorithms most closely resembling FedNIP.
FedNIP is different from other FL algorithms in the sense
that it dynamically updates training performance based on
ranking, where only the best clients get selected for training.
Most other FL algorithms either use a validation set or make
use of fixed weights.

Only Auto-FedAvg sets the weights dynamically based on
difference in data distribution and based on performance.
Weights are dynamically adjusted based on client perfor-
mance and distribution. FedNIP does not focus on weights
adjustments. It makes use of clustering and then uses a proxy
model to rank clients. In comparison to Auto-FedAvg, which
involves all the clients in the training process, FedNIP offers
the flexibility to utilize only a subset of clients. By focus-
ing the most influential clients, FedNIP potentially achieves
faster training times while maintaining model performance.

10

ABAVG uses a validation set to set the weights of the clients.
This leaks raw data to the server, which is not ideal. More-
over, fixed weights are used for the entire training process,
which are based on this validation. This could lead to long
term bias towards clients that happen to perform better in
the validation set. The validation set is a small portion of the
entire training set and might not present a representative
overview, causing the model to drift in the wrong direction.
FedNIP makes use of a warm-up period that does not ex-
pose the raw data and dynamically changes ranking since
performance of the clients might change over time.

RepFL uses several metrics to indicate the reputation of a
client. Based on this, they assign higher weights to better
performing clients. They do not cluster the clients based on
data distribution, hence it is likely that idd clients perform
better and therefore is weighted to heavenly. Neglecting the
inclusion of Non-IDD data for a better generalization of the
model. Furthermore, the authors state that the weights are
set empirically and are not dynamically updated during the
training, which could result in a long-term bias. ACSFed is an
algorithm that uses a probabilistic approach to client selec-
tion. While both ACSFed and FedNIP make use of the same
clustering technique and use an adaptive approach, there are

differences in the design of both algorithms. The key differ-
ence between both algorithms is that FedNIP aims to priori-
tize impactful clients, it does not explicitly focus on fairness
in the selection process. The selection is primarily driven by
the potential impact on the global model, rather than explic-
itly considering fairness or underrepresented clients. ACSFed
explicitly considers fairness by assigning higher probabilities
to clients that have not been selected often. This adaptive
probability assignment ensures that underrepresented clients
have a higher chance of participation, promoting fairness
in the selection process. FedNIP does not involve explicit
probability assignment to clients. The selection is based on
rankings, and only the weights of the best-performing model
are used for actual model training.

TiFL prioritizes clients based on speed and incorporates an
adaptive tier selection mechanism to consider accuracy as
well. By adjusting the probability, TiFL aims to achieve a
more optimal balance between speed and accuracy. How-
ever, unlike FedNIP, TiFL does not group clients based on
their data distribution. Instead, TiFL relies solely on past
performance metrics when selecting clients. It does not take
into account potential future contributions, as FedNIP does
through the use of a proxy model.

4 EXPERIMENTAL DESIGN

In section 6 Results and Analysis, the effectiveness of the
FedNIP algorithm is examined. Specifically, the global accu-
racy, runtime, scalability, performance on varying degrees
of statistical heterogeneous data and the time it takes to con-
vergence is investigated. This is compared with the baseline
algorithms FedAvg and FedProx. In this section 4, the design
of these experiments are described.

arpiane et [N 0 O - [O
automobile EEEEHHH*
bird Tml Ve FERE
« T
v T
o AR
frog

horse

ship

- iNeEBESman

Figure 5: CIFAR 10 Dataset [29]

11

4.1 Dataset and Baselines

The dataset CFIR-10 [29] is used for the application of the
FedNIP algorithm (see figure 5). As this dataset is commonly
used among researchers [27, 23, 26, 22, 10, 25, 5] to test
their developed FL algorithm. CIFAR-10 (Canadian Institute
For Advanced Research) contains 60,000 32x32 color images
in 10 different classes. The 10 different classes represent
airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships,
and trucks. There are 6,000 images of each class. This dataset
is split using the Dirchelet distribution depending on the
number of clients used in the experiment. In an idd setting,
training samples are randomly selected and equally assigned
to clients. All the clients have the same amount of training
data, and each client’s data points are evenly distributed in
all categories. In case of Non-IDD data, the label ratios follow
the Dirichlet distribution.

4.2 Hyper-parameter Settings

The standard Fl architecture is used as indicated in figure 1.
The local training epochs used is only 1 in each round, with
a learning rate of 0.1. For the FedProx algorithm, u = 10* is
used, as this is common in other works as well. Furthermore,
the values of p and r are set to 0.1, indicating that 10% of the
top-performing clients in a cluster are chosen (p), and 10%
of random clients are chosen (r). All these parameters can be
adjusted as explained in the README file that is published
on GitHub.

The CNN has six layers: two convolutional layers (conv1
and conv2), two fully connected layers (fc1 and fc2), and one
output layer (fc3). Initially, conv1 takes a 3x32x32 input (a
color image with 3 color channels of size 32x32) and applies 6
filters of size 5x5, resulting in a 6x28x28 output. This output
undergoes max pooling (pool) of size 2x2 with a stride of
2, yielding a 6x14x14 output. Subsequently, conv2 applies
16 filters of size 5x5 to this output, generating a 16x10x10
output. After flattening, the output passes through two fully
connected layers (fc1 and fc2) of sizes 120 and 84, respec-
tively, before reaching the final output layer (fc3) of size 10,
representing the 10 possible classes for classification.

4.3 Implementation

As mentioned in section 2.3, the Flower framework is used
for implementation®. Adjustments are made to certain meth-
ods within the Flower framework itself. Since Flower is still
evolving, it hasn’t reached a stage where every customiza-
tion can be instantly applied through the API. The details of
these changes can be found on GitHub.

Zhttps://flower.ai/docs/framework/how-to-use-strategies.html

Step 1: Step 2: Step 3: Step 4: exploration and exploitation Step 5:
select available cluster clients warm-up train
clients
= Group 1 Warmup model Proxy model l ‘

s

l

"

1
3 2

-0

i

Ranked Cluster

<

B

Ranked Cluster

Ranked Cluster

Ranked Cluster

Training model

Figure 6: Design of FedNIP

5 METHOD

The design of FedNIP is visualized in figure 6. The process
begins by selecting available clients for the next communi-
cation round (step 1). These clients are then clustered based
on their similar local data distribution, employing the Earth
Movers Distance (EMD) for a fair accuracy comparison. The
clusters are calculated using K-Means clustering, with the
EMD distances between client data distributions as the basis
for determining similarity. The optimal number of clusters
is determined using the Elbow Method, and then clients are
assigned to clusters based on their similarities in data distri-
bution. In round 1 the clients don’t train, but sent their data
distribution to the central server.

After which the server computes the EMD for the clients
and assigns the clients in a cluster (step 2). Once the clus-
tering is completed, the warm-up period is started (step 3).
During this phase, the goal is to establish an initial ranking
within each client cluster based on the warm-up period. Once
the warm-up period concludes, each cluster has its clients
ranked accordingly. The subsequent step involves initiating
the model training. The selection of a client for training is

12

based on their previous performance. Initially, this perfor-
mance is determined using information from the warm-up
period. As training progresses, the selection is based on the
actual training performance.

Sampling takes place based on proportion of clients in a clus-
ter. Hence, a cluster with more clients gets a higher chance
of getting selected in a given communication round. For each
training round, the top k% of clients, along with a randomly
selected r% of clients, are utilized to simulate the next round.
This simulation involves the use of a proxy model (step 4),
which is a temporary copy of the global model, with different
clients contributing. The performance of this round is stored,
and the ranking is dynamically updated if a random client
scores better than a current top performing client. This proxy
model can be configured for certain rounds and does not need
to be used every communication round. After this process,
only the best weights are selected for training of the actual
global model (step 5). In case a randomly selected client per-
forms significantly better than a higher-ranked client, they
swap positions in the ranking. This process continues until
convergence of the global model is achieved.

6 RESULTS AND ANALYSIS

A series of experiments have been conducted to assess the
effectiveness of FedNIP compared to FedAvg and FedProx.
The convergence curves under different alpha levels of the
Dirichlet distribution are studied. Hereby, we experiment
with two variations of FedNIP. One variation is the FedNIP
full, which means that every client in the cluster gets trained
on the proxy model and the best weights of the client in
the cluster is used for training. The FedNIP part variation
selects the best 10% of clients in the cluster and random 10%
of clients in the cluster. Then the best weights of a client in
a cluster is used, and the ranking is updated if appropriate.

Below in figure 7 the convergence rates of FedAvg (red),
FedNIP full (blue), FedNIP part (green) and FedProx (pur-
ple) have been plotted for 50 clients with an alpha level of
0.6. Both the performance of FedAvg and FedProx is increas-
ingly rapidly until round 40, after which the accuracy starts
increasing more slowly. Around round 200 rounds, conver-
gence seems to be reached at an accuracy of 0.63 for both
FedAvg and FedProx. FedNIP full and FedNIP part seems
to reach convergence after round 300. Where FedNIP full
reaches a maximum accuracy of 0.58 and FedNIP part reaches
a maximum accuracy of 0.54. Hereby, FedNIP full is 2 times
faster than FedAvg and 2.5 times faster than FedProx. FedNip
part is 3.45 times faster than FedAvg and 4.35 times faster
than FedProx. Both variations of FedNIP have more fluc-
tuation compared to FedAvg and Fedprox, which is to be
expected as different set of weights of the different clusters
get passed to the global model every round.

\O
= o s b M A i o T Y
; _
= <t
5 S
Q
< B = FEDAVG
A | = Feowpoto
= ‘ ‘ ‘ ‘ ‘— FEDPROX ‘
0 100 200 300 400 500

Communication rounds

Figure 7: 50 clients with « of 0.6

In figure 8 the convergence rates of FedAvg (red), FedNIP
full (blue), FedNIP part (green) and FedProx (purple) have
been plotted for 50 clients with an alpha level of 0.3. One
can observe that FedAvg and Fedprox are again similair in
performance, where FedAvg looks more stable. The max

13

accuracy of FedAvg is 0.6359. In this case, both FedNIP full
and FedNIP part perform better compared to the alpha level
of 0.6. FedNIP full has a max accuracy of 0.5995 and FedNIP
part has a max accuracy of 0.5831. Hereby, FedNIP full is
around 2 times faster than FedProx and FedAvg. Whereas,
FedNIP part is 1.4 times faster than the full FedNIP.

——

et WA A "W
- i vy TR
,M’;’m ' 1

Accuracy
03 04 0.5 0.6

= FEDAVG

== FEDNIP-full
FEDNIP-0.1,0.1

== FEDPROX

400 500

200 300

Communication rounds

Figure 8: 50 clients with «a of 0.3

In figure 9 the convergence rates of FedAvg (red), FedNIP full
(blue), FedNIP part (green) and FedProx (purple) have been
plotted for 50 clients with an alpha level of 0.05. This is the
setting with the highest degree of statistical heterogeneity
used in this research. Initially, Fedprox appears to be outper-
forming the other algorithms. However, both FedProx and
FedAvg are decreasing after some time before stabilizing at
around 500 communication round, the same level of FedNIP
full and FedNIP part. The accuracy is in this case around 0.58.
FedAvg and FedProx reach a higher maximum accuracy com-
pared to FedNIP with respectively 0.605 and 0.62. However,
they all convergence at the same level. Hereby, FedNIP full
is 5.5 times as fast as FedProx and 4.5 times as fast as FedAvg.
FedNIP part is more than 8 times faster than FedProx and
7 times faster than FedAvg. FedNIP part is 1.5 times faster
than FedNIP full.

0.5

Accuracy

0.3

== FEDAVG

=== FEDNIP-ul
FEDNIP-0.1,0.1

=== FEDPROX

0 100 200 300 400 500 600 700

Communication rounds

Figure 9: 50 clients with «a of 0.05

In figure 10 the convergence rates of FedAvg (red), FedNIP
full (blue), FedNIP part (green) and FedProx (purple) have
been plotted for 100 clients with an alpha level of 0.6. Fed-
Prox and FedAVG have an almost identical performance. At
around round 500 convergence seems to be reached with an
accuracy of 0.6022. FedNIP full convergences around round
440 with an accuracy of 0.57. For FedNIP part, the conver-
gence point is hard to determine as it fluctuates more heavily.
Here, FedNIP full is almost 5 times as fast as FedProx and
FedAvg.

\O i
fa e AN AN A B
L A Aaad a4 |
> _
(5]
o < |
=)
<
] — FEDAVG
—— FEDNIP-ul
N FEDNIP-0.1,0.1
=) = FEDPROX

300 400 500 600

200

Communication rounds

0 100

Figure 10: 100 clients with a of 0.6

In figure 11 the convergence rates of FedAvg (red), FedNIP
full (blue), FedNIP part (green) and FedProx (purple) have
been plotted for 100 clients with an alpha level of 0.3. FedProx
is performing slightly better than FedAvg. Both FedAvg and
FedProx, reach convergence at around round 500. FedNIP
part is performing well in this case and keeps up with the
FedNIP full algorithm. FedProx is reaching an accuracy of
0.62 when it reaches convergence. Both FedNIP full and Fed-
NIP part reach an accuracy around 0.5776 when convergence
is reached. Hereby, FedNIP full is 3 times faster compared
to FedProx and FedAvg. FedNIP part is 4.5 times as fast as
FedProx and FedAvg.

\O
O.] " B yo sk UL T
”_VM"MA,..T.","MW e

> i

(%]

g -

5 i

8 f]

< = FEDAVG

= FEDNIP-ful

R FEDNIP-0.1,0.1
o] == FEDPROX

200 300 400 500 600

Communication rounds

0 100

Figure 11: 100 clients with a of 0.3

14

In figure 12 the convergence rates of FedAvg (red), FedNIP
full (blue), FedNIP part (green) and FedProx (purple) have
been plotted for 100 clients with an alpha level of 0.3. FedProx
is performing slightly better than FedAvg. Both FedAvg and
FedProx, reach convergence at around round 500. FedNIP
part is performing well in this case and keeps up with the
FedNIP full algorithm. FedProx is reaching an accuracy of
0.62 when it reaches convergence. Both FedNIP full and Fed-
NIP part reach an accuracy around 0.5776 when convergence
is reached. Hereby, FedNIP full is 3 times faster compared
to FedProx and FedAvg. FedNIP part is 4.5 times as fast as
FedProx and FedAvg.

O |
(=

> —

8

h

5 ¥

8 (=

< - — FEDAVG

= FEDNIP-ful
FEDNIP-0.1,0.1

N = FEDPROX
(=

0 100 200 300 400 500 600 700

Communication rounds

Figure 12: 100 clients with a of 0.05

In figure 13 the convergence rates of FedAvg (red), FedNIP
full (blue), FedNIP part (green) and FedProx (purple) have
been plotted for 100 clients with an alpha level of 0.05. Fe-
dAvg and FedProx reaches convergences around 600 rounds.
FedNIP full and FedNIP part follow a similar pattern, where
convergence is reached after 550 rounds. After 600 rounds
they follow a similar trajectory where an accuracy is reached
around 0.59. Hereby, FedNIP full is 3.7 times faster compared
to FedProx. FedNIP part is even 7.4 times faster than FedProx.

v e PR st
- @
Q
-1 _
5
8 «@
ja]
< | — FEDAVG
=== FEDNIP-ful
FEDNIP-0.1,0.1
— — FEDPROX
(=] 1

0 200 400 600 800

Communication rounds

Figure 13: 250 clients with « of 0.6

In figure 14 the convergence rates of FedAvg (red), FedNIP
full (blue), FedNIP part (green) and FedProx (purple) have
been plotted for 250 clients with an alpha level of 0.6. FedAvg
and FedProx reaches convergences just before 600 rounds.
FedNIP full and FedNIP part follow a similar pattern, where
convergence is also reached just before 600 rounds. Hereby,
FedNIP full is 3.7 times faster compared to FedProx. FedNIP
part is 7.4 times faster than FedProx.

- ”\»wmwimmﬁmwh‘
P s tl'p“

0.5

o

0.3

Accuracy

= FEDAVG

== FEDNIP-full
FEDNIP-0.1,0.1

=== FEDPROX

1000 1200

0.1

0 200 400 600 800
Communication rounds

Figure 14: 250 clients with a of 0.3

In figure 14 the convergence rates of FedAvg (red), FedNIP
full (blue), FedNIP part (green) and FedProx (purple) have
been plotted for 250 clients with an alpha level of 0.3. FedAvg
reaches convergence around round 630 with an accuracy
of 0.57. FedProx reached convergence at round 800 at an
accuracy of 0.605. FedNIP part follows a similar trajectory
as FedNIP full, where convergence is reached around 600
at an accuracy of 0.53. Hereby, FedNIP full is 4 times faster
compared to FedProx. FedNIP part is 7 times faster than
FedProx.

0.5

0.3

Accuracy

= FEDAVG

s FEDNIP-full
FEDNIP-0.1,0.1

== FEDPROX

1000 1200

0.1

0 200 400 600 800
Communication rounds

Figure 15: 250 clients with « of 0.11

In figure 15 the convergence rates of FedAvg (red), FedNIP
full (blue), FedNIP part (green) and FedProx (purple) have

been plotted for 100 clients with an alpha level of 0.11. Un-
fortunately, the petitioner function takes too much time to
split on an alpha level of 0.05 with 250 clients. Therefore, the
alpha level is set to 0.11. FedProx is performing the best and
reached convergence at 1000 rounds at an accuracy of 0.58.
FedAvg reaches convergence after 900 rounds at an accuracy
of 0.56. FedNIP part is performing slightly worse compared
to FedNIP full. Slightly before 800 rounds, convergence is
reached of FedNIP full and FedNIP part. Hereby, FedNIP full
is 5 times faster compared to FedProx and 6 times faster than
FedAvg. FedNIP part is 8 times faster compared to FedProx
and 10 times faster than FedAvg.

7 DISCUSSION

FedNIP has suboptimal performance for various values of
a (0.6, 0.3, and 0.11) when compared to FedAvg and Fed-
Prox. This is likely due to the low degree of non-identically
independent distributed data in which the data is being rea-
sonably balanced. This means that there is increased bias in
the training process compared to FedProx and FedAvg, where
all clients participate, and weighted averaging is employed.
However, in scenarios with a high degree of statistical hetero-
geneity and « set to 0.05, both variations of FedNIP (FedNIP
full and FedNIP part) seem to achieve performance levels
similar to FedProx and FedAvg.

Notably, FedNIP full is six times faster with 50 clients and
three times faster with 100 clients compared to FedAvg, while
FedNIP part is at least five times as fast. The increase in accu-
racy of FedNIP is initially slower, which is logical as FedNIP
selects a cluster in a communication round and uses this for
training, as opposed to including all the clients in a commu-
nication round. The variation of FedNIP (part), especially in
highly statistically heterogeneous data scenarios where only
20% of clients in a cluster are selected each round, generally
has similar or slightly worse performance compared to the
full variant of FedNIP. This trend persists as the number of
clients increases from 50 to 100 to 250, suggesting that the
strategy of selecting a portion of top-performing and random
clients represents a fair cluster representation.

The variance in FedNIP part is higher compared to FedNIP
full, as expected, given that FedNIP part selects only a subset
of clients for training on the proxy model, leading to higher
variability in performance. In cases of high statistical hetero-
geneity, both FedAvg and FedProx experience a prolonged
decrease in performance after certain rounds, likely due to
model divergence caused by non-identically independent
distributed (Non-IID) data, which is inevitable in highly Non-
IID scenarios.

Unfortunately, the runtime of splitting on 250 clients accord-
ing to the Dirichlet distribution with an & of 0.05 was too
long, leaving uncertainties about FedNIP’s performance un-
der this condition. However, one can notice that FedNIP with
an of 0.11 reaches a higher performance compared to the
a set to 0.3. Possibly indicating that with lower levels of «
FedNIP also performs better also for 250 clients.

An important limitation of the Elbow method used in this
study is that determining the optimal number of clusters for
grouping based on similar data distribution becomes increas-
ingly challenging with large datasets. Calculating the EMD
becomes computationally expensive as it calculates all the
distances between all pair of clients. Hereby, it also makes
use of K-means clustering to determine the optimal value

16

for K. For complex datasets it might not be so obvious with
overlapping or irregularly shaped clusters. Leading to subop-
timal number of clusters. This could possibly be mitigated by
also integrating the Silhouette Score, which is an additional
criterion for determining the optimal number of clusters.
Moreover, the number of tested parameters is limited. More
parameters such as the number of hidden layers, local epochs,
learning rate, mu of FedProx, k (percentage of top perform-
ing clients) and r (percentage of random selected clients) can
be adjusted to further improve the performance.

There are also practical limitations of the current implemen-
tation of FedNIP. In practise, new clients can occur or the
underlying data distribution of a client could change. In or-
der to deal with this, a strategy could be implemented to
periodically reevaluate the clusters to account for potential
shifts in data distributions. This can be triggered based on
certain events, such as the addition of new clients or a sig-
nificant change in an existing client’s data.

While the FedNIP method addresses privacy concerns by not
sending raw data to the server and instead shares the data
distributions, there is still a risk involved with the transfer
of this information. If the server is comprised, a malicious
person might identify individual clients based on the data
distribution. This could be mitigated by adding noise to the
data distribution when it gets sent to the server. Making sure
that the statistical properties of the data distributions remain
intact, while removing specific details that could potentially
lead to the identification of individual clients.

Future research should focus on integrating cluster perfor-
mance as a sampling criterion for each round, instead of the
current client proportion-based sampling strategy. In order
to prevent overfitting, one could use a similar approach as
the core strategy of FedNIP: selecting top performing clus-
ters and random performing clusters and train them on the
proxy model and use the best results of a cluster.
Furthermore, FedNIP is now implemented as overall strat-
egy. Further research could focus more on the client level.
For example, creating heatmaps of the label distribution and
occurrences after X number of communication rounds to
study the effect on clients that do not have a lot of labels of
a certain class.

One could also integrate other algorithms within FedNIP. For
example, RepFL, could be used as selection criteria for the
ranking of a client within a cluster based on the reputation
that a client has built.

Lastly, it would also be interesting to assess FedNIP’s per-
formance in real-time environments, given its capability to
dynamically rank clients based on performance.

8 CONCLUSION

In this study, the effectiveness of FedNIP, a new introduced
algorithm, is examined in comparison to two widely used Fed-
erated Learning algorithms: FedAvg, extensively employed
in various contexts, and FedProx, the established benchmark
algorithm designed for Non-IDD data.

Hereby the following main question is investigated: how
does the performance of FedNIP, in terms of global accuracy
and speed, compare to that of baseline classifiers FedAvg and
FedProx for clients with statistical heterogeneous data?

Two variations of FedNIP were used for experimentation.
FedNIP full: meaning that all the clients in a cluster partici-
pate in training with the proxy model and FedNIP part where
only the top 10% clients and 10% random clients get selected
to train on the proxy model.

The performance of FedNIP is worse compared to FedAvg
and FedProx in low to moderate degree of statistical het-
erogeneous data. This is likely due to the low degree of
non-identically independent distributed data in which the
data is being reasonably balanced. This means that there is
increased bias in the training process compared to FedProx
and FedAvg, where all clients participate, and weighted av-
eraging is employed. Since, FedNIP uses only the weights
of one client in a cluster in a given communication round.
This observation holds true regardless of the scaling of the
number of clients.

In high statistical environments with an « of 0.05 FedNIP
outperforms FedAvg, the most established FL algorithm, and
matches FedProx, the most established Non-IID FL algorithm.
This observation also holds true regardless of the scaling of
the number of clients.

Using the FedNIP strategy of only using a subset of the
clients (using top 10% performing clients in a cluster and
10% of random clients in a cluster) has similar performance
compared to using FedNIP where all the clients are utilized
in a cluster.

This outcome means that examining a subset of clients within
a cluster provides a reliable indication of the overall perfor-
mance of the entire cluster. Which drastically reduces the
number of needed clients to be used. FedNIP’s runtime is four
to eight times faster than FedAvg and FedProx, dependent
on number of clients and level of statistical heterogeneity.

17

REFERENCES

(1]

[2

—

3

[t

[4

—

5

—

[6

—

[7

—

8

—

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

Zexin Sha Guoming Lu Aiguo Chen, Yang Fu. 2022. An EMD-
Based Adaptive Client Selection Algorithm for Federated Learning
in Heterogeneous Data Scenarios. Proceedings of the 29th Conference
on Neural Information Processing Systems (NeurIPS) (6 2022), 1-21.
https://doi.org/10.3389/1pls.2022.908814

Daniel Beutel. 2020. Flower FL. https://flower.dev/docs/tutorial/
Flower-0-What-is-FL.html. [Online; accessed 4-April-2023].

Ed Burns. 2018. Deep Learning. https://www.techtarget.com/
searchenterpriseai/definition/deep-learning-deep-neural-network.
[Online; accessed 4-April-2023].

Yi Zhou Bhavya Kailkhura Cheng Chen, Ziyi Chen. 2020. FedCluster:
Boosting the Convergence of Federated Learning via Cluster-Cycling.
Proceedings of the 29th Conference on Neural Information Processing
Systems (NeurIPS) (9 2020), 1-10. https://doi.org/10.48550/arXiv.2009.
10748

Francesco Malandrino; Carla Fabiana Chiasserini. 2021. FEDBS: Learn-
ing on Non-IID Data in Federated Learning using Batch Normalization.
Journals Magazines >IEEE Communications Magazine (7 2021), 1-38.
https://doi.org/10.1109/ICTAI52525.2021.00138

Dihuni. 2020. 2.5 Quintillion Bytes of Data Generated Everyday Top
Data Science Trends 2020. https://www.dihuni.com/2020/04/10/every-
day-big-data- statistics-2-5-quintillion-bytes- of-data-created- daily/,
Last accessed on 2023-02-12.

Hyesung Kim Jihong Park Mehdi Bennis Seong-Lyun Kim Eun-
jeong Jeong, Seungeun Oh. 2018. Communication-Efficient On-Device
Machine Learning: Federated Distillation and Augmentation under
Non-IID Private Data. IEEE International Conference on Communica-
tions (10 2018), 1-41. https://doi.org/10.48550/arXiv.1811.11479
Daniel Ramage Blaise Agiiera y Arcas H. Brendan McMahan, Ei-
der Moore and John Langford. 2017. Communication-Efficient Learn-
ing of Deep Networks from Decentralized Data. Proceedings of the
20th International Conference on Artificial Intelligence and Statistics
(AISTATS) 54 (4 2017), 1273-1282. https://doi.org/10.48550/arXiv.1602.
05629

Zijing Duan Wei Guo Jianhang Xiao, Chunhui Du. 2021. A Novel
Server-side Aggregation Strategy for Federated Learning in Non-IID
situations. Journals Magazines >IEEE Communications Magazine (4
2021), 1-38. https://doi.org/10.1109/ISPDC52870.2021.9521631

Hao Liang Gauri Joshi H. Vincent Poor Jianyu Wang, Qinghua Liu.
2021. Tackling the Objective Inconsistency Problem in Heterogeneous
Federated Optimization. Journals Magazines >IEEE Communications
Magazine (4 2021), 1-38. https://doi.org/10.48550/arXiv.2007.07481
Wei Chen Tie-Yan Liu Jie Liu, Bo Li. 2020. FedDistill: Making Bayesian
Model Ensemble Applicable to Federated Learning. Proceedings of the
29th Conference on Neural Information Processing Systems (NeurIPS) (10
2020), 1-21. https://doi.org/10.48550/arXiv.2009.01974

Jessica Zhao Kavya Kopparapu, Eric Lin. 2021. FedCD: Improving
Performance in non-IID Federated Learning. Journals Magazines
>IEEE Communications Magazine (7 2021), 1-38. https://doi.org/10.
48550/arXiv.2006.09637

Li Li Yingwen Chen Ming Xu Cheng-Zhong Xu Liang Gao, Huazhu Fu.
2022. FedDC: Federated Learning with Non-IID Data via Local Drift
Decoupling and Correction. IEEE International Conference on Commu-
nications (10 2022), 1-41. https://doi.org/10.48550/arXiv.2203.11751
Sue Liu. 2022. Dirchelet distribution. https://builtin.com/data-science/
dirichlet-distribution. [Online; accessed 4-April-2023].

Xiao Wang Qi Zhu Lixu Wang, Shichao Xu. 2020. Addressing Class
Imbalance in Federated Learning. Journals Magazines >IEEE Commu-
nications Magazine (4 2020), 1-38.

https://doi.org/10.3389/fpls.2022.908814
https://flower.dev/docs/tutorial/Flower-0-What-is-FL.html
https://flower.dev/docs/tutorial/Flower-0-What-is-FL.html
https://www.techtarget.com/searchenterpriseai/definition/deep-learning-deep-neural-network
https://www.techtarget.com/searchenterpriseai/definition/deep-learning-deep-neural-network
https://doi.org/10.48550/arXiv.2009.10748
https://doi.org/10.48550/arXiv.2009.10748
https://doi.org/10.1109/ICTAI52525.2021.00138
https://www.dihuni.com/2020/04/10/every-day-big-data-statistics-2-5-quintillion-bytes-of-data-created-daily/
https://www.dihuni.com/2020/04/10/every-day-big-data-statistics-2-5-quintillion-bytes-of-data-created-daily/
https://doi.org/10.48550/arXiv.1811.11479
https://doi.org/10.48550/arXiv.1602.05629
https://doi.org/10.48550/arXiv.1602.05629
https://doi.org/10.1109/ISPDC52870.2021.9521631
https://doi.org/10.48550/arXiv.2007.07481
https://doi.org/10.48550/arXiv.2009.01974
https://doi.org/10.48550/arXiv.2006.09637
https://doi.org/10.48550/arXiv.2006.09637
https://doi.org/10.48550/arXiv.2203.11751
https://builtin.com/data-science/dirichlet-distribution
https://builtin.com/data-science/dirichlet-distribution

16]

(17

—

(18]

[19

—

[20]

[21

—

[22

—

[23

=

[24

flan?

[25]

[26

=

[27

—

[28

=

[29

—

(30

[t

(31]

Sambit Mahapatra. 2018. Why Deep Learning over Traditional Ma-
chine Learning? https://towardsdatascience.com/why-deep-learning-
is-needed- over-traditional-machine-learning-1b6a99177063. [Online;
accessed 4-April-2023].

ZezhongMa MengyingZha MeiCao, YujieZhang. 2022. Class-aware
client selection for effective aggregation in federated learning. Proceed-
ings of the 29th Conference on Neural Information Processing Systems
(NeurIPS) (9 2022), 1-7. https://doi.org/10.1016/j.hcc.2022.100068
Roger Roberts Michael Chui and Lareina Yee. 2022. McKinsey Tech-
nology Trends Outlook 2022.

Xianzhang Chen Yujuan Tan Jinting Ren Lei Qiao Liang Liang Mom-
ing Duan, Duo Liu. 2019. Astraea: Self-balancing Federated Learning
for Improving Classification Accuracy of Mobile Deep Learning Appli-
cations. IEEE International Conference on Communications (10 2019),
1-41. https://doi.org/10.48550/arXiv.1907.01132

Masahiro Morikura Koji Yamamoto Ryo Yonetani Naoya Yoshida,
Takayuki Nishio. 2020. Hybrid-FL for Wireless Networks: Cooperative
Learning Mechanism Using Non-IID Data. Journals Magazines >IEEE
Communications Magazine (4 2020), 1-38. https://doi.org/10.48550/
arXiv.1905.07210

Gavril Ognjanovski. 2019. Everything you need to know about
Neural Networks and Backpropagation. https://towardsdatascience.
com/everything-you-need-to-know-about-neural-networks-and-
backpropagation-machine-learning-made-easy-e5285bc2be3a.
[Online; accessed 4-April-2023].

Mehryar Mohri Sashank J. Reddi Sebastian U. Stich Ananda
Theertha Suresh Sai Praneeth Karimireddy, Satyen Kale. 2019. SCAF-
FOLD: Stochastic Controlled Averaging for Federated Learning. IEEE
International Conference on Communications (10 2019), 1-41. https:
//doi.org/10.48550/arXiv.1910.06378

Manzil Zaheer Sashank J. Reddi, Zachary Charles. 2021. ADAPTIVE
FEDERATED OPTIMIZATION. journals Magazines >IEEE Communi-
cations Magazine (4 2021), 1-38.

SG Analytics. 2020. 2.5 Quintillion Bytes of Data Generated Everyday
Top Data Science Trends 2020. https://us.sganalytics.com/blog/2-
5-quintillion-bytes-of-data-generated-everyday-top-data-science-
trends-2020//, Last accessed on 2023-02-12.

Danny Tsang Tailin ZHOU, Jun Zhang. 2023. FedFA: Federated
Learning with Feature Alignment for Heterogeneous Data. Jour-
nals Magazines >IEEE Communications Magazine (4 2023), 11-16.
https://doi.org/10.48550/arXiv.2007.07481

Ryo Yonetani Takayuki Nishio. 2019. Client Selection for Federated
Learning with Heterogeneous Resources in Mobile Edge. Proceedings of
the 29th Conference on Neural Information Processing Systems (NeurIPS)
(10 2019), 1-7. https://doi.org/10.48550/arXiv.2003.00295

Manzil Zaheer Maziar Sanjabi Ameet Talwalkar Virginia Smith Tian Li,
Anit Kumar Sahu. 2018. FEDERATED OPTIMIZATION IN HET-
EROGENEOUS NETWORKS. Proceedings of the 29th Conference
on Neural Information Processing Systems (NeurIPS) (12 2018), 1-21.
https://doi.org/10.48550/arXiv.1812.06127

Standford University. 2022. Earth Movers Distance. http://infolab.
stanford.edu/pub/cstr/reports/cs/tr/99/1620/CS-TR-99-1620.ch4.pdf.
[Online; accessed 4-April-2023].

Toronto University. 2014. CIFAR-10 Dataset. https://www.cs.toronto.
edu/~kriz/cifarhtml. [Online; accessed 4-April-2023].

Péter Kiss Vukasin Felbab and Tomas Horvath. 2020. Optimazation in
Federated Learning. https://ceur-ws.org/Vol-2473/paper13.pdf. [On-
line; accessed 4-April-2023].

Yuwei Wang and Burak Kantarci. 2021. Reputation-enabled Federated
Learning Model Aggregation in Mobile Platforms. IEEE International
Conference on Communications (6 2021), 1-11. https://doi.org/10.1109/
1CC42927.2021.9500928

18

[32]

[33]

[34]

[35]

[36]

[37]

(38]
[39]

Kesper Welbers. 2021. alpha parameter in Dirchelet distribution. https:
//i.amcat.nl/lda/understanding_alpha.html. [Online; accessed 4-April-
2023].

Pan Zhou Wenyu Zhang, Xiumin Wang. 2021. Client Selection for
Federated Learning With Non-IID Data in Mobile Edge Computing.
Journals Magazines >IEEE Communications Magazine (6 2021), 24462 -
24474. https://doi.org/10.1109/ACCESS.2021.3056919

Zhihao Lin Shanxuan Chen Yangjie Qin Xiaodong Ma, Jia Zhu. 2020. A
state-of-the-art survey on solving non-IID data in Federated Learning.
Journals Magazines >IEEE Communications Magazine (4 2020), 1-38.
https://doi.org/10.1016/j.future.2022.05.003

Xian Shuai; Yulin Shen; Siyang Jiang; Zhihe Zhao; Zhenyu Yan; Guo-
liang Xing. 2022. BalanceFL: Addressing Class Imbalance in Long-Tail
Federated Learning. International Conference on Information Processing
in Sensor Networks (9 2022), 1-14. https://doi.org/10.48550/arXiv.2009.
10748

Wengi Li Yingda Xia, Dong Yang. 2021. Auto-FedAvg: Learnable Fed-
erated Averaging for Multi-Institutional Medical Image Segmentation.
International Conference on Information Processing in Sensor Networks
(4 2021), 1-11. https://doi.org/10.48550/arXiv.2009.10748

Syed Zawad Zheng Chai, Ahsan Ali. 2020. TiFL: A Tier-based Fed-
erated Learning System. Journals Magazines >IEEE Communications
Magazine (6 2020), 125-136.

Lei Tan; Xiaoxi Zhang; Yipeng Zhou. [n. d.]. ([n.d.]). https://doi.org/10
Weiming Zhuang and Lingjuan Lyu. 2023. Recent Breakthroughs
Tackle Challenges in Federated Learning. Privacy-Preserving Machine
Learning Blog Series (2023).

https://towardsdatascience.com/why-deep-learning-is-needed-over-traditional-machine-learning-1b6a99177063
https://towardsdatascience.com/why-deep-learning-is-needed-over-traditional-machine-learning-1b6a99177063
https://doi.org/10.1016/j.hcc.2022.100068
https://doi.org/10.48550/arXiv.1907.01132
https://doi.org/10.48550/arXiv.1905.07210
https://doi.org/10.48550/arXiv.1905.07210
https://towardsdatascience.com/everything-you-need-to-know-about-neural-networks-and-backpropagation-machine-learning-made-easy-e5285bc2be3a
https://towardsdatascience.com/everything-you-need-to-know-about-neural-networks-and-backpropagation-machine-learning-made-easy-e5285bc2be3a
https://towardsdatascience.com/everything-you-need-to-know-about-neural-networks-and-backpropagation-machine-learning-made-easy-e5285bc2be3a
https://doi.org/10.48550/arXiv.1910.06378
https://doi.org/10.48550/arXiv.1910.06378
https://us.sganalytics.com/blog/2-5-quintillion-bytes-of-data-generated-everyday-top-data-science-trends-2020//
https://us.sganalytics.com/blog/2-5-quintillion-bytes-of-data-generated-everyday-top-data-science-trends-2020//
https://us.sganalytics.com/blog/2-5-quintillion-bytes-of-data-generated-everyday-top-data-science-trends-2020//
https://doi.org/10.48550/arXiv.2007.07481
https://doi.org/10.48550/arXiv.2003.00295
https://doi.org/10.48550/arXiv.1812.06127
http://infolab.stanford.edu/pub/cstr/reports/cs/tr/99/1620/CS-TR-99-1620.ch4.pdf
http://infolab.stanford.edu/pub/cstr/reports/cs/tr/99/1620/CS-TR-99-1620.ch4.pdf
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://ceur-ws.org/Vol-2473/paper13.pdf
https://doi.org/10.1109/ICC42927.2021.9500928
https://doi.org/10.1109/ICC42927.2021.9500928
https://i.amcat.nl/lda/understanding_alpha.html
https://i.amcat.nl/lda/understanding_alpha.html
https://doi.org/10.1109/ACCESS.2021.3056919
https://doi.org/10.1016/j.future.2022.05.003
https://doi.org/10.48550/arXiv.2009.10748
https://doi.org/10.48550/arXiv.2009.10748
https://doi.org/10.48550/arXiv.2009.10748
https://doi.org/10

