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Abstract

The problem of solving a scheduling problem for a two-level industrial formulation plants is discussed.
An improved version of the mixed-integer program (MIP) introduced by Yfantis (Computer Aided
Chemical Engineering, Vol. 46, (2019)) is given. However, the integrality gap in existing MIPs is too
large. Hence, the goal is to strengthen the MIP formulation to reduce the integrality gap. The entire
model is too large and intricate to immediately improve. So a subproblem is set up that only includes
the filling part of the formulation plant. The linking of the indicator variable for the makespan plays
a big role in the integrality gap, that is why the focus is on the filling part that includes this indicator
variable. For this subproblem, facet-defining inequalities are found, as well as a separation algorithm
to implement these specific inequalities. The found inequalities strengthen the MIP formulation.
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Chapter 1

Introduction

The problem of developing methods for scheduling an industrial formulation plant and optimizing
production planning has existed for over 50 years (Kopanos et al., 2010) and is still of value in the
production industry. For manufacturers, being able to generate and implement optimal schedules can
save a lot of time and money. Unfortunately, there is not one model that can accurately describe all
plants. This is because every plant is unique, either in their setup and constraints or even in their
objective. The setup and constraints are for example precedence constraints on products, setup times,
order-dependent changeover times and restrictions for specific products on machines. The different
objectives can for example be to minimize the total cost, the lateness, the changeover and setup times,
the total completion time or a weighted combination of these objectives.

This introduces a problem that occurs when optimizing an industrial formulation plant. The more
complicated or precise its setup, constraints or objective are, the more difficult it is to accurately
model this and the more time consuming it is to solve. In most cases, this implies that a mathematical
optimization model can only be implemented on small test instances and not on instances of applicable
size. That is why it is interesting to look into strengthening mathematical optimization models.

Every mathematical optimization model is either a discrete-time model or a continuous-time model.
There are advantages and disadvantages for both types (Floudas & Lin, 2004). A discrete-time model
uses a discretized time horizon, so it is split up into periods of equal length and all scheduling is done
at those points in time. The advantage of this is that it is proven to be a reliable and straightforward
way of modelling a situation, by choosing if something starts or ends processing at a certain time
period. The disadvantage, however, is that the periods have to be sufficiently small to get an accurate
representation, which implies that the size of a model can blow up quickly when expanding the time
horizon. A continuous-time model on the other hand only includes the times at which an order is
planned to start or stop processing, hence creating a smaller model. However, in most instances, it is
a lot more difficult to describe a real-life instance with a continuous time model, since the timing of
events is variable, which results in difficult modelling structures. That is why we use a discrete-time
model over a continuous-time model in this thesis.

Specifically, a Mixed-Integer Program (MIP) is made to accurately model the process. A MIP uses
binary or integer variables and can also include some continuous variables, opposed to a Linear Program
(LP) which uses only continuous variables. Not only is there a difference between a MIP and an LP in
variable type, but there is also big difference in how well both models can be solved by existing software
and algorithms. There are multiple algorithms that are able to solve LPs within reasonable time, since
it is proven to be in P (Khachiyan, 1980). However, integer programming is NP-hard (Conforti et al.,
2014b), so one cannot expect to find a polynomial time algorithm to solve a MIP.

Page 3 of 30



CHAPTER 1. INTRODUCTION

In this thesis we focus on producing chemicals in an industrial formulation plant. This process consists
of mixing raw materials, processing them and then packaging them. For the mathematical model, it
does not matter what the orders or products look like, only the properties of the process are important.
This implies that our research can be translated to other industries with similar plant setups, such as
the food, beverage or pharmaceutics industry.

The industrial formulation plant studied in this research contains two main phases. First, there are
formulation lines, which process the raw material into unpackaged product. Next, the unpackaged
product is filled into packaging by filling stations. If needed, unpackaged product can be intermediately
stored in buffer tanks. These three parts are connected by a transfer panel. A schematic depiction of
the plant is given in Figure 1.1.

Figure 1.1: A schematic depiction of the industrial formulation plant. (Yfantis et al., 2019)

In this plant, there are sequence-dependent changeover times on both the formulation lines and filling
stations. The processing times differ per product and machine. There are no precedence constraints
and preemption is possible on the formulation lines.

As mentioned, a lot of time and money can be saved by optimizing the schedule in formulation plants.
That is why there has been a lot of research in this area, with different setups and applications. The
majority of this research makes use of MIP. Often, they use some kind of heuristic to obtain the final
schedule, since the MIP is not solvable for a realistic instance. For example, Schimidt et al. (2022)
and Oujana et al. (2023) both use sequence-dependent changeover times and use two different levels
of production, which is similar to our setup. They show that it is feasible to model these kinds of
processes in a MIP, but also make it clear that there is still more research to do with regards to
actually solving the MIPs. Ferreira et al. (2009) also describe this problem of being unable to solve
the MIP formulation, but mainly focus on improving or changing the solution methods to reduce the
computation time. They mention that one of the main problems that still remains is to close the
integrality gap. This is the gap between the optimal solution of the linear relaxation of the model
and an optimal integer solution. Finding methods to close this integrality gap is the goal of this
thesis.
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CHAPTER 1. INTRODUCTION

To be able to get into the strengthening of the model, a few definitions for MIPs and its solution space
have to be given. A polyhedron P ⊆ Rn is the set of all points x ∈ Rn that satisfy a finite set of linear
inequalities. For an LP, the set of feasible solutions is a polyhedron. For a MIP, we use an integer
hull, which denotes the convex hull of all integer points. A cutting plane for a MIP is an inequality
that cuts of part of the polyhedron of the linear relaxation of the MIP, without cutting of part of the
integer hull. A face F of a polyhedron P is a set of points x ∈ P that satisfy a certain valid inequality
of the system with equality. A face of P is said to be proper if it is nonempty and properly contained in
P. Inclusionwise maximal proper faces of P are called facets. For further used definitions from integer
programming and polyhedral theory, we refer to the definitions in Chapters 2 and 3 of Conforti et al.
(2014a).

Early works that introduce finding facets in the context of MIP to strengthen its formulation are by
Grötschel and Padberg (1979a, 1979b). Here, facet-defining inequalities are applied to the Traveling
Salesman Problem. They mention that facets are the strongest cutting planes that can be found in
integer programming. Hence, in this thesis we focus on finding facet-defining inequalities.

This thesis is based on the formulation plant as seen in Yfantis et al. (2019), where a MIP is set up to
model the plant. He later used an integer program (IP) (Yfantis et al., 2022) where all variables are
integers or binary and include a predetermined route. This implies that there are way more variables
in this model, since every possible route for all orders gets its own variable. However, both of Yfantis’
models are not scalable to an example instance, so instead he used heuristics to solve the problem and
plan every order one by one. This implies that the schedule depends on the sequence of orders and
it is not certain that the found solution is the optimal solution for the system. So we will take the
model as described in Yfantis et al. (2019) and strengthen it such that larger instances can be solved.
For this, we use facet-defining inequalities and implement a separation algorithm to find these specific
inequalities.

The goal of this thesis is to strengthen the MIP given by Yfantis et al. (2019) for an industrial
formulation plant. First, in Chapter 2, we give the detailed setup of the industrial formulation plant
with its constraints and objectives. Also, the mathematical model by Yfantis and a new proposed
model are given and explained, as well as a performance comparison between the two models. In
Chapter 3, a subproblem is set up including only the filling side of the plant. We then look into
finding and proving facet-defining inequalities. We also create and implement a separation algorithm
for this problem that is used to include specific facet-defining inequalities. After that, in Chapter 4,
we check perfectness of the formulation and give an improved version of the facet-defining inequalities,
as well as a separation algorithm. Finally, we give some conclusions and discuss the found results and
methods.
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Chapter 2

Problem description

In this chapter, we go into the exact problem that is the focus of this thesis. We discuss the setup
of the plant and the constraints that are present. We also discuss some assumptions that we make,
either about the setup of the plant or about the mathematical model. Next to that, we give the model
made by Yfantis (Yfantis et al., 2019), with its variables, parameters and discuss its correctness. A
new proposed model is given with an explanation of its constraints and then this model is compared
to Yfantis’ model.

2.1 Constraints and assumptions

There are some constraints and assumptions made for the industrial formulation plant that we study
(Figure 1.1). We assume that the raw material going into the plant is available without restriction
on time and amount. Since the materials are widely available, we can assume that there always is
enough for production. Next to that, we assume that there is no loss of material during the process, so
everything that goes in has to go out of the system or still be in storage within the system. An order
is the name of both the packaged products and the raw material, as we do not differentiate between
those two on the machines. We just follow an order from raw material to packaged product. We also
assume that the formulation lines are used to their full capacity, so it is never the case that less than
the capacity is inserted. The filling station does not have a tank to intermediately store materials, so
(some of) the material will remain in either the formulation line or the buffer tank until the entire
filling process is completed. For the transfer from a formulation line to a buffer tank, the amount
of time it takes is negligible and thus we take this transfer to be instantaneous. Between orders, we
need to take a changeover time into account. For the formulation lines, this is only the case when
switching between different materials, while for the filling station, there is always some changeover
time between orders. For the buffer tanks, there is no changeover time. The processing times depend
on the material and the machine it is processed on, since it is possible that there are different types of
machines installed over different years with different speeds. For the buffer tanks, it is only possible
to fill and empty the tank from or to one station at a time. There are no precedence constraints on
the orders and preemption is possible, so we are allowed to fill a bit of the product and then empty
it into a buffer tank before the entire batch is done filling or to stop filling at any time when filling
from the buffer. The demand per order is assumed to be known before scheduling, hence we have a
deterministic model. The makespan is the amount of time that is needed to satisfy the demand. The
objective is to minimize the makespan. The preferred time horizon for scheduling is one month.

As mentioned, we use a discrete-time model. It is stated in Floudas and Lin (2004) that for discretiza-
tion, the greatest common divisor is a good measure to indicate the time intervals. That is why we
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CHAPTER 2. PROBLEM DESCRIPTION

use time blocks of 1 hour, as most of the processing times in a real-life instance are multiple hours,
so 1 hour is at least a common divisor. This is a sufficiently large interval that the advantages of a
discrete-time model outweigh those of a continuous-time model as explained in Chapter 1.

2.1.1 Definition of sets, parameters and variables

Given the setup of the plant and the mentioned assumptions, some variables and parameters are
defined. Here, we will give the general ones, while in the next subsection we will focus on Yfantis’
model.

First, the sets of instances need to be defined. The orders are given by the set I. For the machines,
they are given by the set of formulation lines JFL, the buffers JST , and filling stations JFS . Together,
the sets of machines denote all machines in the system

J = JFL ∪ JST ∪ JFS .

The time slots are given by the set T = {0, 1, . . . , T}.

There are both continuous and binary variables used in the model, these are explained below.

Bijt ∈ R denotes the amount of order i going into buffer or filling station j at time t.

BR
ijt ∈ R denotes the amount of order i being released from formulation line, buffer or filling station j

at time t.

BST
ijt ∈ R denotes the amount of order i inside buffer j at time t.

Wijt =

{
1 if formulation line or buffer j receives order i at time t,

0 otherwise.

WR
ijt =

{
1 if formulation line or buffer j releases order i at time t,

0 otherwise.

Sijt =

{
1 if buffer j is storing order i at time t,

0 otherwise.

There are also some parameters, of which the notation is given as follows:
Di: demand for order i.
Bj : capacity of formulation line or buffer j.
Fij : flow rate of order i on machine j, amount of material per time unit.
coisj : changeover time going from order i to order s on machine j.
pij : processing time of a tank of order i on formulation line j.

2.2 Initial model

The model made by Yfantis (Yfantis et al., 2019) states most of the variables and some of the constraints
that are used. In order to get some basic performance measure, we added the missing constraints and
variables to Yfantis’ model, such that the solution obtained satisfies all constraints of the plant. The
entire model is too elaborate to explain here and can be found in Appendix A.1. In this subsection we
will focus on the variables and sets that are specific for this model.

The set of possible processing lengths on a filling machine is denoted by K = {1, 2, . . . , 2 · ps + 1},
where ps denotes the shift length.
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CHAPTER 2. PROBLEM DESCRIPTION

Finally, the variables that are specific for Yfantis’ model are:

Xijkt =


1 if filling station j starts processing order i at time t that

takes pk time units to complete processing,
0 otherwise.

Here, the parameter pk ∈ {0, . . . , 2 · ps} denotes the processing length.
Yijt ∈ R denotes the units of time that order i processes at filling station j starting at time t.

All constraints (1b) to (1y) of this model are presented in Appendix A.1.

2.2.1 Incorrectness of the model

In Figure 2.1a an example of a schedule for Yfantis’ model is given. There are some gaps in the schedule
that do not seem necessary. This implies that some of the constraints used in Yfantis’ model are not
correct. The incorrect constraints are Inequalities (1o), (1p), (1q) and (1r). Inequality (1o) is also
given here:

Xijkt +
∑
r∈I

∑
s∈K

t+pk+coirj−1∑
u=t

Xrjsu ≤ 1, ∀i ∈ I, ∀j ∈ JFS ,∀k ∈ K,∀t ∈ T . (1o)

This constraint is supposed to model that if an order i starts processing on filling station j at time t,
another order cannot start processing on that filling station within the time that order i is processing
plus the changeover time from i to the new order. However, if for some i ∈ I, j ∈ JFS , k ∈ K, t ∈ T

this first part Xijkt = 0, we still enforce that the entire sum
∑
r∈I

∑
s∈K

t+pk+coirj−1∑
u=t

Xrjsu can be at most 1.

Say we have pk = 9, coii′j = 3 and for order i′, say it starts at time t with pk′ = 1. Then we have that
another order of i′ cannot start for the next 9 + 3 − 1 = 11 time units because of this constraint. So
the constraint induces several variables to have a joint sum of 1 or less, while in fact only if Xijkt = 1,
we should have that this set of variables is at most 1, since then indeed the machine will be occupied
for this time interval. That is why we need to replace these constraints by other constraints.

Consequently, we developed a new model, given in Appendix A.2, that does not use the aforementioned
constraints. The changes that are made are as follows. Since the constraints use large groups of
variables, we divide it into smaller groups that do not conflict each other, regardless of which variable
is 1. This is done by splitting up the sum in the constraint, so instead of summing over times and
orders, we create a constraint for every one of these times and orders. This ensures that if Xijkt = 1,
still all other combinations have to be zero, while if it is 0, all separate variables are not constrained.
This way, we create extra constraints, as instead of one large constraint, we now have a constraint for
every time and order included. The new constraints are:

Xijkt +
∑
k′∈K

Xi′jk′t′ ≤ 1,

∀i, i′ ∈ I, ∀j ∈ JFS ,∀k ∈ K,∀t ∈ T , ∀t′ ∈ {t + 1, t+ pk + coii′j − 1}. (2o)

The other mentioned constraints have been altered in the same way and can be seen in Inequalities
(2p), (2q) and (2r).

Next to this, the objective is also changed, since only the maximum completion time was used in
Yfantis’ model, but that causes the model to schedule jobs later than they could be scheduled as they
do not influence the objective. That is why the sum over processing times on the filling machines is
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CHAPTER 2. PROBLEM DESCRIPTION

(a) Schedule with incorrect constraints (b) Schedule with adjusted constraints

Figure 2.1: Schedule (a) without possibility to have multiple processes shortly after each other on
filling stations (machines 6, 7, 9) versus schedule (b) where it is possible to have consecutive processes

on filling stations.

added, multiplied with a small factor ϵ > 0, to ensure jobs are finished as soon as possible, while still
achieving the optimal makespan.

In Figure 2.1b the result of the new model for the same input is given. It is clear that the new model
gives a better schedule with a makespan of 8 versus the old makespan of 13.

2.3 New proposed model

The number of variables in both formulations of Yfantis (Appendices A.1 and A.2) increases quickly
when extending the application instance. This is mainly due to the X-variables, which have four indices,
so when increasing the instance, these variables will blow up. If the precision of the discretization is
increased by n, the amount of X-variables grows with n · m, where m is given by the number of
orders times the number of machines times twice the time units of a shift, which is then also increased
by n as the time units in a shift depends on the time discretization. So the number of variables
grows quadratically if we increase the time discretization. To improve the performance of this model,
another model that contains fewer variables is created. This new proposed model is broken down in the
coming sections and the complete model can be found in Appendix A.3. The improved Yfantis model
(Appendix A.2) and new proposed model are then implemented and solved with Gurobi Optimizer
version 10.0.3 (Gurobi Optimization, LLC, 2023) for some small instances. A comparison between
these models can be found in Section 2.4.

2.3.1 Explanation of variables

In this new model, we get rid of the index k that is used in Yfantis’ model. Instead of using Yijt as a
continuous variable that indicates the filling time, we introduce a variable Zijt that indicates if a filling
machine j is occupied at time t with order i, with Xijt denoting the start of that filling process and
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CHAPTER 2. PROBLEM DESCRIPTION

Yijt denoting the end. All of these variables are binary variables. To implement this, some constraints
are added, while the ones containing the continuous Yijt are removed. The new and adjusted variables
are given below:

Xijt =

{
1 if filling station j starts processing order i at time t,

0 else.

Zijt =

{
1 if filling station j is processing order i at time t,

0 else.

Yijt =

{
1 if filling station j finishes processing order i at time t,

0 else.

2.3.2 Explanation of the constraints

There are several constraints in this model, to give an overview of what every constraint does we will
explain each one. To enhance clarity, the constraints are split up into groups with different focus.

Objective and demand constraint

min Cmax + ε ·
∑
i∈I

∑
j∈JFS

∑
t∈T

Zijt · t. (3a)

The objective is to minimize the makespan and have every order finished as early as possible within
this makespan. To ensure that the makespan will not be compromised by the second part, ϵ > 0 is a
very small value.∑

j∈JFS

∑
t∈T

Bijt ≥ Di, ∀i ∈ I. (3b)

Constraint (3b) ensures that the demand for every order is satisfied.

Capacity constraints

BST
ijt ≤ Bj , ∀i ∈ I, ∀j ∈ JST ,∀t ∈ T . (3d)

BR
ijt ≤ BST

ijt , ∀i ∈ I, ∀j ∈ JST , ∀t ∈ T . (3e)

Constraints (3d) and (3e) ensure that the buffer does not overflow and that the amount released from
the buffer does not exceed the amount inside the buffer at that moment.

Flow constraints

∑
j∈JFL

BR
ijt +

∑
l∈JST

BR
ilt =

∑
m∈JFS∪JST

Bimt, ∀i ∈ I, ∀t ∈ T . (3c)

Constraint (3c) ensures that everything that is released from the formulation lines and buffers goes
into a filling station or buffer, so no material is lost in the process.
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CHAPTER 2. PROBLEM DESCRIPTION

T∑
u=t

Bijt ≤
T∑

u=t

Ziju · Fij , ∀i ∈ I, ∀j ∈ JFS ,∀t ∈ T . (3g)

Constraint (3g) makes sure that at every time, everything that will still enter the filling station will
be processed.

BST
ijt+1 = BST

ijt +Bijt −BR
ijt, ∀i ∈ I, ∀j ∈ JST ,∀t ∈ T \ {T}. (3x)

Constraint (3x) ensures that the amount of material in the buffer equals the old amount, plus everything
that went in at that time, minus everything that went out at that time.

Timing constraints

t∑
u=t−g

Biju −
t−1∑

u=t−g

Ziju · Fij ≤ M · (1− Yijt),

∀i ∈ I, ∀j ∈ JFS ,∀t ∈ T ∀g ∈ {0, . . . ,
⌈
maxk∈JST (Bk)

Fij

⌉
}. (3i)

Constraint (3i) ensures that a filling process can only finish if all material that went in the filling
station is processed. We sum over different time spans, as we know that at most the capacity of the
largest buffer can go in, which takes

⌈
max

k∈JST (Bk)

Fij

⌉
time units of processing for filling.

Zijt +Xsju ≤ 1, ∀i, s ̸= i ∈ I, ∀j ∈ JFS ,∀t ∈ T ,∀u ∈ {t, . . . , t+ coisj}. (3j)

Constraint (3j) makes sure that a new filling process cannot start on a machine before the previous
one is finished plus the changeover time.

WR
ilt +Xijt +

u+coisj∑
v=u

Wslv ≤ 2 + Yiju,

∀i, s ∈ I, ∀j ∈ JFS ,∀l ∈ JST ∪ JFL,∀t ∈ T ,∀u ∈ {t, . . . , t+
⌈
Bl

Fij

⌉
− 1}. (3k)

Constraint (3k) ensures that another process on the formulation line cannot start before it has finished
processing on the filling station plus the changeover time.

Wijt +

t+pij−1∑
u=t

WR
iju ≤ 1, ∀i ∈ I, ∀j ∈ JFL,∀t ∈ T . (3p)

Constraint (3p) ensures that the formulation line does not finish before it is done processing.

WR
ijt +Wilt +Wsju ≤ 2,

∀i, s ̸= i ∈ I, ∀j ∈ JFL,∀l ∈ JST , ∀t ∈ T ,∀u ∈ {t, . . . , t + coisj}. (3s)

Constraint (3s) makes sure that the changeover time is applied when emptying the formulation line
into a buffer.
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Coupling constraints

BST
ijt ≤ M · Sijt, ∀i ∈ I, ∀j ∈ JST ,∀t ∈ T . (3f)

Constraint (3f) ensures that when order i is in the buffer, the indicator for that is 1.

t−1∑
u=1

Yiju ≤
t−1∑
u=1

Xiju, ∀i ∈ I, ∀j ∈ JFS ,∀t ∈ T . (3h)

Constraint (3h) ensures that at every time, at least as many filling processes have to have been started
as finished.

Zijt · (t+ 1) ≤ Cmax, ∀i ∈ I, ∀j ∈ JFS ,∀t ∈ T . (3l)

Constraint (3l) ensures that the makespan is at least as big as the time that a filling station is still
occupied.

Xijt ≤ Zijt, ∀i ∈ I, ∀j ∈ JFS ,∀t ∈ T . (3m)

Constraint (3m) ensures that if a filling process starts, the machine also has to be occupied.

WR
ijt · t ≤ Cmax, ∀i ∈ I, ∀j ∈ JFL,∀t ∈ T . (3n)

Constraint (3n) ensures that the makespan is at least as big as the time that a formulation line is still
occupied.

t−1∑
s=1

WR
ijs ≤

t−1∑
u=1

Wiju ≤
t−1∑
v=1

WR
ijv + 1, ∀i ∈ I, ∀j ∈ JFL, ∀t ∈ T . (3o)

Constraint (3o) ensures that for all formulation lines, at all times, the amount of times a process has
started is the amount of times a process has finished or one more than the amount of times a process
has finished.

∑
r∈I

t−1∑
u=1

Wrju −
∑
r∈I

t−1∑
u=1

WR
rju ≤ 1−Wijt, ∀i ∈ I, ∀j ∈ JFL, ∀t ∈ T . (3q)

Constraint (3q) ensures that a new process on a formulation line can only start when no other process
is busy on that line.

t−1∑
u=1

BR
iju +WR

ijt ·Bj =
t∑

u=1

BR
iju ∀i ∈ I, ∀j ∈ JFL,∀t ∈ T . (3r)

Constraint (3r) ensures that at every moment in time, the total amount of material released from a
formulation line is equal to the previous amount, with possibly the capacity of the machine added.

Bijt ≤ M ·Wijt, ∀i ∈ I, ∀j ∈ JST ,∀t ∈ T . (3t)

Constraint (3t) ensures that the indicator variable becomes 1 if something goes into the buffer.
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BR
ijt ≤ M ·WR

ijt, ∀i ∈ I, ∀j ∈ JST ,∀t ∈ T . (3u)

Constraint (3u) ensures that if something gets released, the indicator variable for that becomes 1.

Bijt ≤ M ·Xijt, ∀i ∈ I, ∀j ∈ JFS ,∀t ∈ T . (3v)

Constraint (3v) ensures that if something goes into a filling station, a filling process on that station
has to start.

Xijt ≤ M ·Bijt, ∀i ∈ I, ∀j ∈ JFS , ∀t ∈ T . (3w)

Constraint (3w) ensures that some amount of material has gone into the filling station if a filling
process starts.

Zijt+1 ≤ Xijt+1 + Zijt, ∀i ∈ I, ∀j ∈ JFS ,∀t ∈ T \ {T}. (3y)

Constraint (3y) ensures that if a filling station is occupied at some time, that means it either has to
start at that time or it was occupied the time before.

Zijt − Zijt+1 +Xijt+1 ≤ Yijt+1, ∀i ∈ I, ∀j ∈ JFS , ∀t ∈ T \ {T}. (3z)

Constraint (3z) ensures that a filling process finishes at time t + 1 either if it was occupied at time t
and not time t+ 1, or if it was occupied at time t and started another process at time t+ 1.∑

t∈T
Wijt =

∑
t∈T

WR
ijt, ∀i ∈ I, ∀j ∈ JFL. (3aa)

Constraint (3aa) ensures that material has to be released from a formulation line as often as it starts
processing.∑

u∈T
Xiju =

∑
u∈T

Yiju, ∀i ∈ I, ∀j ∈ JFS . (3ab)

Constraint (3ab) ensures that total the amount of times that a filling process starts has to be equal to
the total amount of times that it ends.∑

i∈I
Sijt ≤ 1, ∀j ∈ JST ,∀t ∈ T . (3ac)

Constraint (3ac) ensures that at most one order can be in a buffer at any given time.∑
i∈I

Zijt ≤ 1, ∀j ∈ JFS ,∀t ∈ T . (3ad)

Constraint (3ad) ensures that at most one order can be in a filling station at any given time.

Initialization and termination

The following constraints are not included in the model in Appendix A.3. This is because they are
only the initialization and termination constraints, hence they make sure the modelling is correct and
the solver will not cheat this.

BST
ij0 = 0, ∀i ∈ I, ∀j ∈ JST .

At the start the buffers are empty.

Zij0 = Xij0, ∀i ∈ I, ∀j ∈ JFS .

The filling process cannot start at time 0.

XijT = 0, ∀i ∈ I, ∀j ∈ JFS .

The filling process cannot start at the final time point in the time horizon.
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2.4 Comparison of both models

To show that the new proposed model (Appendix A.3) is indeed smaller and faster than the fixed
Yfantis model (Appendix A.2) we run multiple instances on both models and compare their number
of variables, number of constraints and solution time.

Table 2.1: Comparison between Yfantis’ and new proposed model for an example instance with 6
orders, 13 machines (5 formulation lines, 3 buffer tanks and 5 filling stations) and 15 time slots.

Yfantis’ model New proposed model Ratio
# Variables 7471 5671 1.32

# Constraints 222426 50692 4.39
Solution time [s] 341.87 126 2.71

An example for one instance with 6 orders, 13 machines and 15 time slots is given in Table 2.1. Here,
the results of both models are given, as well as the ratio between the two. To compare multiple
instances for both models, eight different instances are given in Table 2.2. For every instance, the
number of orders, machines and time slots is given, as well as the random seed. The random seed
determines the numerical values of the instance, so for example the processing times or changeover
times. The ratios for both models are also given in this table. In Appendix A.4 the complete tables
are given for all eight instances.

Table 2.2: Ratio between number of variables and constraints and the solution time for Yfantis’ and
new proposed model for different instances with their number of orders, machines and time slots and

random seed.

Instance 1 2 3 4 5 6 7 8
# Orders 3 3 6 3 3 3 6 6

# Machines 10 10 13 10 10 10 10 13
# Time slots 15 15 15 40 40 40 40 40
Random seed 3 74 74 74 999 3 74 74
# Variables 1.33 1.33 1.32 1.50 1.50 1.50 1.50 1.48

# Constraints 5.06 5.38 4.39 8.53 7.48 8.43 7.28 6.92
Solution time 2.11 3.87 2.71 8.17 2.51 6.54 1.39 1.42

It is clear that the new model is smaller in terms of variables and constraints and faster in solution
time for every given instance. We do see that the ratio is not necessarily increasing when the instance
is increased. This is not very surprising, as the randomness of the input data can cause the model
to be solved slower or quicker. That is apparent if we compare the solution time of instances of the
same size, but with different random seeds. These are quite different from each other. That also shows
that it is hard to predict how long some input will take to solve, as there is no predictable behaviour
occurring.
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Chapter 3

Model strengthening

The proposed model performs better than the original one, but still cannot be scaled to an instance that
covers a month of production. That is where mathematical techniques to decrease the model complexity
come in. We use some different techniques, of which the idea behind the method, the outcome, its
proof of correctness and, if possible, the results of implementing these methods are discussed in this
chapter.

3.1 Facet-defining inequalities

As mentioned, Grötschel and Padberg (1979a, 1979b) describe that finding facet-defining inequalities
and using these inequalities as cutting planes strengthens a MIP. So a useful tool in reducing the
solution space of a MIP is to find facet-defining inequalities for the MIP. If we find these facet-defining
inequalities, we can reduce the solution space of the LP relaxation, without cutting off feasible solutions
of the MIP.

3.1.1 Setting up a subproblem

We use SCIP software (Bestuzheva et al., 2022) with IPO (Walter, 2015) to find facet-defining inequal-
ities for the model. Walter (2016) gives a description of the algorithms used in the software. We are
interested in applying this software, in particular its property to compute facets of a polyhedron. The
software is suitable for up to 300 variables, which is a very small instance for our model. This means
only a few different instances can be used to calculate the facet-defining inequalities and most of the
time these inequalities only work for that specific instance. To extract some useful information that
can be applied to all instances, we need to use a smaller model that uses fewer variables. This will
also ensure that the intricacy of the obtained inequalities is lower, hence easier to grasp. That is why
we look at a subproblem extracted from the entire model.

To keep the complexity of the subproblem low, we assume in this case that we have one general
production rate for all machines and orders: p. Then, we do not use Di, but di =

⌈
Di
p

⌉
, which then

denotes the number of time periods order i needs to be processed. This subproblem is given by:
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Cmax ≥ (t+ 1) · Zijt ∀i ∈ I, ∀j ∈ JFS ,∀t ∈ T (3.1a)∑
j∈JFS

∑
t∈T

Zijt ≥ di ∀i ∈ I (3.1b)

∑
i∈I

Zijt ≤ 1 ∀j ∈ JFS ,∀t ∈ T (3.1c)

Zijt ∈ {0, 1} ∀i ∈ I, ∀j ∈ JFS ,∀t ∈ T . (3.1d)

We denote the integer hull of this system to be the polyhedron P .

It is especially interesting to look at the variable that links Cmax. This is because it can be shown that
a convex combination of two possible schedules in the LP relaxation of this subproblem can strongly
decrease the value of Cmax, hence this linking is not as strong as desired. To show this, take some
system with one machine where all processing times are 1 and take two possible schedules for the
starting time of the orders with corresponding index sequence 0, 1, . . . , n − 1 and n − 1, n − 2, . . . , 0.
Both these schedules have Cmax = n − 1 + 1 = n. If we then take a convex combination of these
two schedules, which is by definition in the convex hull of the LP relaxation of the problem, in this
instance we take a half for both. Then the schedule is given by the sequence n−1

2 , n−1
2 , . . . , n−1

2 , which
has a makespan of: Cmax = n−1

2 + 1 < n
2 + 1 < n for large n. So we have that a solution of the LP

relaxation can have a makespan that is roughly twice as small as the makespan of the optimal solution
of the MIP, hence creating a large optimality gap that has to be solved. That is why we want to
find facet-defining inequalities for this subproblem, in order to strengthen the coupling of Cmax and
decrease the optimality gap between the LP relaxation and the MIP.

3.1.2 Finding facet-defining inequalities

The LP relaxation of this problem has been implemented using SCIP software with IPO. The software
finds facet-defining inequalities that are then added to the original problem and can improve the LP
bound. This process is repeated until it finds no more inequalities that cut off the optimal solution, so
we do not know if it gives all possible facet-defining inequalities. Several instances of the subproblem
are generated and put in the software. Next, we analyse these solutions to generate some general
formulation given below.

Let T denote the number of time periods. A lower bound L for Cmax is calculated by taking the total
demand in time periods and dividing that over the number of filling stations f : L :=

⌈∑
i∈I di
f

⌉
.

We take some tuple (t0, t1, . . . , tK) of times with K ≥ 1 and corresponding machine indices j1, j2, . . . , jK ∈
JFS such that

L− 1 = t0 < t1 < · · · < tK = T.

Then we get as general new constraints these slot-jumping inequalities:

Cmax ≥ L+
∑
i∈I

K∑
s=1

(ts − ts−1)Zijsts , (3.2)

that have corresponding (t0, . . . , tK) with L − 1 = t0 < · · · < tK = T , K ≥ 1 and j1, . . . , jK ∈ jFS .
We refer to these inequalities with their corresponding requirements as slot-jumping inequalities for
(t, j).
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We can make a general observation about these inequalities. The nonnegativity of the Z-variables
implies that adding just one inequality to a system already ensures Cmax ≥ L. In the theoretical
instances, we assume that all possible subsets of times are used and included as constraints. We will
now prove that these inequalities are valid and that they are facet-defining inequalities. An inequality
is valid for a set if every point in the set satisfies that inequality (Conforti et al., 2014a).

Theorem 1. Given di ∈ R for all i ∈ I, the slot-jumping inequalities are valid for polyhedron P.

Proof. Say we have some subset S = {t1, . . . , tK} of times, t1 < t2 < · · · < tK , that lie in P. Then the
slot-jumping inequality is:

Cmax ≥ L+
∑
i∈I

K∑
s=1

(ts − ts−1)Zijsts . (3.3)

Say the last used order is some i∗, so Zi∗ji∗ ti∗ = 1 for some j ∈ JFS , t ∈ T and we have Zijt = 0 for
all i ∈ I, j ∈ JFS , t > ti∗ . Then we know by (3.1a): Cmax ≥ ti∗ + 1. We also know

L+
∑
i∈I

K∑
s=1

(ts − ts−1)Zijsts ≤ L+ t1 − t0 + t2 − t1 + . . .+ ti∗ − ti∗−1 (3.4a)

≤ L+ ti∗ − t0 (3.4b)
≤ L+ ti∗ − L+ 1 (3.4c)
≤ ti∗ + 1. (3.4d)

So we have that Cmax ≥ ti∗ + 1 ≥ L +
∑
i∈I

K∑
s=1

(ts − ts−1)Zijsts , hence we can conclude that the

slot-jumping inequalities (3.2) have to hold for all schedules.

Now that we know the slot-jumping inequalities are valid for P, we want to know if they are facet-
defining. If this is the case, we get closer to having a perfect formulation, as a facet is always part of the
perfect formulation. In order to prove that the slot-jumping inequalities are facet-defining inequalities,
we first need to give a lemma.

Lemma 2. Given di > 0 for some i ∈ I and given some L ≤ T . A schedule S that satisfies the
subproblem (3.1) can always be created such that Zijt = 1 for some t ∈ T , t < Cmax, i ∈ I, j ∈ JFS

with L ≤ Cmax ≤ T .

Proof. Because t < Cmax, we know that setting some Z-variable to 1 at time t does not violate the
constraint on the makespan (3.1a). Since di > 0, we know that at least one Z-variable has to be 1 for
order i ∈ I to satisfy (3.1b), so we can just choose that Zijt = 1 without violating any constraints of
the subproblem (3.1).

Theorem 3. Given di ∈ R and di > 0 for all i ∈ I, the slot-jumping inequalities are facet-defining
inequalities for polyhedron P.

Proof. Let F be the face where (3.2) is satisfied with equality. Let F̂ be a facet of polyhedron P,
containing F, so we have F ⊆ F̂ . Let F̂ be described by∑

i∈I

∑
j∈JFS

∑
t∈T

aijtZijt + β ≤ γCmax (3.5)
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for some a, β, γ.
The idea is to take some solutions Z0 and Z1 that satisfy F and are very similar, but differ on some
points. If we take enough of these situations, we can obtain an expression for our F̂ to show that
F = F̂ and thus that F is a facet.

Take some Z0 to be greedily filled, so everything is filled densely, leaving no gaps in the schedule if
possible, with C0

max = L. We have that (Z0, C0
max) ∈ F ⊆ F̂ . Say Z0

ijt = 1 and Z0
i′j′t = 1 for some

i, i′ ∈ I, j, j′ ∈ JFS and t ∈ T (without loss of generality by Lemma 2). Now take Z1 to be the same
as Z0, but with Z1

ijt = 0, Z1
i′j′t = 0,Z1

i′jt = 1 and Z1
ij′t = 1, so we have two orders swapped at some

time t. We have that C1
max = L and (Z1, C1

max) ∈ F ⊆ F̂ . Since they are both in F̂ , we can fill in the
Z and Cmax values for both Z0 and Z1 in (3.5) and subtract them from each other. This gives:∑

u∈I

∑
v∈JFS

∑
w∈T

auvwZ
0
uvw + β−

∑
u∈I

∑
v∈JFS

∑
w∈T

auvwZ
1
uvw − β = γC0

max− γC1
max (3.6a)

aijt + ai′j′t− ai′jt − aij′t = γL− γL (3.6b)
aijt + ai′j′t− ai′jt − aij′t = 0, (3.6c)

which holds for all i, i′, j, j′, t < L.

Consider (w.l.o.g. by Lemma 2) that we have a feasible Z0 with Z0
ijt = 1, C0

max = L. Take Z1 to be
the same, but with Z1

ijt = 0 and Z1
ijt1

= 1, so we move that order to a later time t1, after C0
max. We

then have C1
max = t1 + 1 and again (Z1, C1

max) ∈ F ⊆ F̂ . Subtracting the equations for F̂ we obtain:

aijt − aijt1 = (t1 + 1− L)γ, (3.7)

which holds for all i, j, t < L, t1 ≥ L.

Consider (w.l.o.g. by Lemma 2) that we have a feasible Z0 with Z0
ijt = 1, C0

max = L. If L >
∑

i∈I di
f ,

there is at least one Z0
i′j′t′ = 0, for some i′ ∈ I, j′ ∈ JFS , t′ < L. Now take Z1 the same as Z0, but

with Z1
i′j′t′ = 1. We have C1

max = L and (3.1b) is satisfied, so (Z1, C1
max) ∈ F ⊆ F̂ . Subtracting the

equations gives:

−ai′j′t′ = 0, (3.8)

which holds for all i′, j′, t′ < L.
If L =

∑
i∈I di
f we have Z0

ijt = 1 for all i, j, t < L. Take Z1 the same as Z0 but with Z1
i′j′t1

= 1 (t1 ≥ L),
then C1

max = t1 + 1 and (Z1, C1
max) ∈ F ⊆ F̂ . Subtracting gives:

−ai′j′t1 = Lγ − (t1 + 1)γ =⇒ ai′j′t1 = (t1 − L+ 1)γ, (3.9)

which holds for all i′, j′, t1 ≥ L.

Consider some feasible Z0 with C0
max = L and we take Z1 the same, but with some Z1

ijt1
= 1, Z1

i′j′t2
= 1

where L− 1 < t1 < t2 ≤ T . Then C1
max = t2 + 1 and (Z1, C1

max) ∈ F ⊆ F̂ . Subtracting gives:

−aijt1 − ai′j′t2 = Lγ − (t2 + 1)γ (3.10a)
ai′j′t2 = (t2 + 1− L)γ − aijt1 (3.10b)
ai′j′t2 = (t2 + 1− L− t1 − 1 + L)γ (3.10c)
ai′j′t2 = (t2 − t1)γ, (3.10d)

which holds for all i, i′, j, j′, L− 1 < t1 < t2 ≤ T .
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Consider some feasible Z0 with C0
max = L and take Z1 the same, but with some Z1

ijt1
= 1, Z1

i′j′t2
=

1, Z1
i′′j′′t3

= 1 where L − 1 < t1 < t2 < t3 ≤ T . Then C1
max = t3 + 1 and (Z1, C1

max) ∈ F ⊆ F̂ .
Subtracting (3.5) at equality for both gives:

−aijt1 − ai′j′t2 − ai′′j′′t3 = Lγ − (t3 + 1)γ (3.11a)
ai′′j′′t3 = (t3 + 1− L)γ − ai′j′t2 − aijt1 (3.11b)
ai′′j′′t3 = (t3 + 1− L)γ − (t2 − t1)γ − (t1 + 1− L)γ (3.11c)
ai′′j′′t3 = (t3 − t2)γ, (3.11d)

which holds for all i, i′, i′′, j, j′, j′′, L− 1 < t1 < t2 < t3 ≤ T .

So for some subset {1, . . . , R} of times at which some machine gets used, we have aijtr = (tr − tr−1)γ
for r ∈ {1, . . . , R} where we take t0 < t1 < . . . < tR < T and if we take t0 = L − 1 it also holds for
R = 1 because it satisfies (3.9).

Take Z0 with C0
max = L and Z1 is the same, but with C1

max = L+ b, so it is not satisfied with equality.
It then has to hold that

∑
i∈I

∑
j∈JFS

∑
t∈T

aijtZijt + β < γCmax. So we have to have γ > 0 as the left hand

side is always non-negative. Hence, we can scale the instance, which ensures γ = 1.

Now we have

aijt = 0 ∀i, j, t < L (3.12)
aijtr = (tr − tr−1) ∀i, j, 1 ≤ r ≤ R, L− 1 = t0 < t1 < . . . < tR ≤ T. (3.13)

We then have to have β = L, as that is the lower bound on Cmax and (3.12) ensures the first part is
zero if t < L. So we have β ≤ Cmax.
The inequality we have for F̂ is then

Cmax ≥ L+
∑
i∈I

∑
j∈JFS

∑
t∈T

aijtZijt (3.14a)

≥ L+
∑
i∈I

∑
j∈JFS

L−1∑
t=1

aijtZijt +
∑
i∈I

∑
j∈JFS

R∑
r=1

aijtrZijtr (3.14b)

≥ L+
∑
i∈I

∑
j∈JFS

R∑
r=1

(tr − tr−1)Zijtr (3.14c)

≥ L+
∑
i∈I

R∑
r=1

(tr − tr−1)Zijrtr . (3.14d)

The last step holds as there needs to be some machine jr that is used at time tr, but it does not matter
if there are multiple machines used or just one, so we can replace the sum over the machines by a
specific machine jr that is occupied at tr.

So we have found that F = F̂ , hence F is a facet and the slot-jumping inequalities are facet-defining
inequalities for our polyhedron P.
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3.2 LP bounds

We have found facet-defining inequalities for the subproblem. The number of slot-jumping inequalities
that exists is quite large for larger instances, since it includes all subsets of times larger than the lower
bound. So if there are T time slots and the lower bound is L, we have 2T−1−L slot-jumping inequalities.
That is why we want to create an algorithm that tells us which inequality to add to the system. So to
check if there is an inequality that is violated by the LP relaxation solution. If there are multiple, we
want to know which inequality is the strongest, so which one gives the largest violation. In other words,
given an LP solution for Cmax, L and Zijt for all i ∈ I, j ∈ JFS , t ∈ T , find some subset t1, t2, . . . , tn

of times that maximizes
∑
i∈I

n∑
s=1

(ts − ts−1)Zijsts to check if Cmax ≥ L+
∑
i∈I

n∑
s=1

(ts − ts−1)Zijsts can be

violated. Before we propose an algorithm, we will project the current problem onto a problem with
only one machine, as our Cmax is not influenced by which machine is used, only the fact that some
machine is used, so instead of using all j ∈ JFS , we now only take one machine j into account. For
the Z variable in the LP solution, we can then take the value

∑
i∈I

Zijt =
∑
i∈I

max
j′∈JFS

Zij′t for all t ∈ T ,

as our goal is to maximize
∑
i∈I

n∑
s=1

(ts− ts−1)Zijsts . The algorithm that we propose is as follows:

Algorithm 1 Separation algorithm

Input: Cmax ∈ R, L ∈ {0, . . . , T},
∑
i∈I

Zijt =
∑
i∈I

max
j′∈JFS

Zij′t for all t ∈ T

Initialize: U = [ ],Zmax = 0 t = T + 1, t0 = L− 1
while t > L do

t = t− 1
if

∑
i∈I Zijt > Zmax then

Zmax =
∑

i∈I Zijt

add time t to the front of U
end if

end while
n = len(U)
add t0 to the front of U

if Cmax ≥
∑
i∈I

n∑
s=1

(U [s]− U [s− 1])ZijsU [s] then

return ‘(Z,Cmax) satisfies all slot-jumping inequalities’
else

return ‘(Z,Cmax) violates inequality: Cmax ≥
∑
i∈I

n∑
s=1

(U [s]− U [s− 1])ZijsU [s]’

end if

So the idea is to go through the time horizon from back to front, remembering all times that increase the
current maximum value of Z. Then, using these times, we check if Inequality (3.2) is violated.

Theorem 4. Given is an LP solution for Subproblem (3.1) with a Cmax, L and Zijt for all i ∈ I, j ∈
JFS , t ∈ T . Given is t0 = L− 1. Algorithm 1 gives the largest violation for Inequality (3.2) in linear
time.
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Proof. The proof is pretty intuitive. The main idea of
∑
i∈I

n∑
s=1

(ts − ts−1)Zijsts is that every time slot

will contribute something to the total value. So the question is, how can we ensure that every time slot
t′ contributes the largest amount? That is by choosing the largest value of some

∑
i∈I

Zijt that is still

to come, so picking the largest value for
∑
i∈I

Zijt where t ≥ t′. This already shows that our algorithm

will always obtain the maximum, as it does exactly this. The added value of going backwards is to
find this maximum in linear time O(T-L).

This is the fastest algorithm for this problem, as faster than linear is not possible, since we will always
need to inspect all Z-values.

3.2.1 Implementation of the separation algorithm

We have implemented the separation algorithm, where we use the LP solution obtained by Gurobi as
input for the algorithm and add the inequality with the largest violation to the model. This process
is repeated, so multiple cutting planes are added, until the solver eventually finds an optimal solution.
We have implemented the algorithm on the entire improved model (Appendix A.3), which includes
formulation lines and has different processing times per order and machine. These factors influence
the lower bound on Cmax. To account for this, the calculation of the parameter L must be adapted in
the implementation of the algorithm. A lower bound for both the filling stations and formulation lines
is calculated, using the fastest flow rate for every order. We divide the demand for every order by its
fastest flow rate, then divide by the number of machines and round up. This way, we obtain the fastest
time in which all orders can be processed on the formulation lines and on the filling stations. We then
take the largest of these two lower bounds and add 1. This is because the other set of machines will
need at least one time unit to start or finish processing. This is not a very strong lower bound, but it
does guarantee that we do not cut off any feasible solutions.

To test how well the algorithm works and to check if it makes the implementation of the improved
model faster, we have solved different instances. In Table 3.1, the number of orders, machines and
time slots is given for each instance, including its solution time with the algorithm (A3+) and without
the algorithm (A3).

Table 3.1: Different instances with their number of orders, machines and time slots and their solution
times for both the improved model (A3) and the improved model with the separation algorithm (A3+).

Instance 1 2 3 4 5 6 7 8 9 10
# Orders 3 3 3 3 3 3 3 3 3 3

# Machines 7 7 7 7 10 10 10 13 13 13
# Time slots 12 18 27 36 12 18 27 12 18 27

Solution time A3 [s] 1.27 2.20 19.36 35.64 1.37 28.40 29.08 8.22 15.07 50.78
Solution time A3+ [s] 2.12 4.65 24.68 45.17 1.59 4.60 21.44 2.43 8.97 56.12

Instance 11 12 13 14 15 16 17 18 19
# Orders 3 3 3 4 4 4 5 5 5

# Machines 16 16 16 7 7 7 7 13 13
# Time slots 12 18 27 12 18 27 27 27 36

Solution time A3 [s] 5.41 8.62 17.88 8.69 4.71 11.33 71.50 45.81 2861.61
Solution time A3+ [s] 2.40 6.25 16.89 4.23 3.81 23.08 69.78 46.75 511.12
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CHAPTER 3. MODEL STRENGTHENING

For all instances, the same optimal objective value was obtained with and without the algorithm. This is
expected and desired, as otherwise it would imply that the algorithm does cut of some feasible (optimal)
solution. The results for the solution time fluctuate a lot, so the algorithm does not necessarily make
the model faster. One reason for this may be because of the symmetry that is present in the slot-
jumping inequalities. There are multiple inequalities that use the same time slots, but with different
machines. Adding only one cutting plane at a time takes too long and thus it might be worthwhile
to look into immediately including these different combinations of machines. Another reason might
be that after adding a few cutting planes, adding more does not influence the model that much
anymore and the problem is actually weaker somewhere else in the system. Something else about the
implementation that may not be optimal is the determination of the lower bound. It is quite possible
that we underestimate this lower bound, which is good because it does not cut off any feasible MIP
solutions, but can also imply that the inequalities we add are weaker than desired. Because of time
limitations, the exact reason and solutions were not explored for this thesis.

Something else that implies how well our cutting planes work are the LP bounds. Gurobi uses branch-
and-cut methods to solve the MIP. We look at the LP bounds obtained in the root node, so before
it starts branching, but after cutting planes are added. This way, we can compare the LP bounds
for A3 and A3+. For some instances, we obtained LP bounds, while for others Gurobi was able to
solve the instance without needing branching at all. There were also four instances where A3 did start
branching, while A3+ was able to find an optimal solution without branching. The LP bounds for the
instances in which branching was used for both implementations are given in Table 3.2.

Table 3.2: Different instances with their number of orders, machines and time slots and their LP
bounds in the root node for both the improved model (A3) and the improved model with the

separation algorithm (A3+).

Instance 4 10 13 17 18 19
# Orders 3 3 3 5 5 5

# Machines 7 13 16 7 13 13
# Time slots 36 27 27 27 27 36
LP bound A3 5.00983 3.10151 4.00859 4.00991 3.01039 2.001
LP bound A3+ 5.01031 4.00774 4.009 4.00919 4.00875 3.32335

It is apparent that A3+ has a higher LP bound in every instance. In some cases they are very close,
while in others there is a larger difference. The fact that the LP bound is always higher for A3+ implies
that the cutting planes that are added do strengthen the formulation. However, the solution time is
not necessarily lower for A3+ in these instances, as we can see in Table 3.1. Again, this implies that
more research into the implementation has to be done.
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Chapter 4

Extended strengthening

We have found facet-defining inequalities for the given subproblem (3.1). Now, it is interesting to
check if the LP relaxation of the problem is the same as the integer hull of the MIP. If this is the case,
then the formulation is called perfect and every extreme point solution to the LP relaxation is also a
solution for the MIP. Hence, known methods for finding an LP solution can be applied. In this chapter
we will discuss the completeness of the subproblem including the slot-jumping inequalities and find
new facet-defining inequalities as well as a corresponding separation algorithm.

Implementing the subproblem (3.1) with the added slot-jumping inequalities as constraints for small
instances with 1 or 2 machines, shows that the integrality gap is significantly reduced. In this sub-
problem with one general production rate and without changeover times, the minimum makespan is
always equal to the lower bound. We know from Section 3.1.2 that adding slot-jumping inequalities
will ensure that the makespan is at least the lower bound, hence it is expected that the integrality
gap is reduced or even closed after adding slot-jumping inequalities. However, the LP relaxation does
show that that the formulation is not yet perfect, as its optimal solution contains non-binary values
for Z-variables.

4.1 Disjunctive programming

We now know that our current formulation is not perfect. This implies that there are more facet-
defining inequalities to be found, to further reduce the LP convex hull. Since the previously used
methods mentioned in Section 3.1.2 only gave us the slot-jumping inequalities, we need to try another
approach. The method we use for this is based on disjunctive programming (Balas, 1998). In Conforti
et al. (2014c), the authors describe that if disjunctive programming is done for enough steps, a perfect
formulation for the problem is found. We want to take multiple steps, increasing the time horizon
in every step, to eventually get general inequalities that will improve the formulation. This method
creates many inequalities, so to make it more computationally feasible, a simplification is done. We
assume to have only one order and one machine. So the variables only depend on the time. We started
with a time horizon for which we know the perfect formulation, so T = d and then used this to extend
the formulation by one time unit to T = d + 1. Here, there are two options, either a solution has
ZT = 0 or ZT = 1. If it is 0, it belongs to the previous system (where T = d), while if it is 1, we know
our new Cmax, since it is defined by this Z-variable. In that case, we can use this relation between ZT

and Cmax in the formulation. This way, we obtained two perfect formulations whose feasible solutions
together constitute all solutions of the formulation with T = d+ 1. This idea will hold every step and
hence, by induction, we can find the two perfect formulations for any time horizon.
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CHAPTER 4. EXTENDED STRENGTHENING

This is the part where disjunctive programming comes in, since we have two disjunctive perfect for-
mulations for some time horizon. So we want to describe the convex hull of these disjunctive perfect
formulations to find the inequalities that describe the one perfect formulation for the entire system with
some time horizon T . This convex hull is given by using Z1 as variable in the first perfect formulation,
with the right hand side multiplied by λ and the second perfect formulation using Z2, where the right
hand side is multiplied with (1 − λ), where 0 ≤ λ ≤ 1. To obtain one formulation with only a Z
variable, we used Zt = Z1

t + Z2
t . After rewriting, this gave us a system of inequalities that depends

on Zt and Z2
t . Then, we projected out the Z2

t variables one by one, using Fourier-Motzkin elimination
(Dantzig, 1991). This ensured that variables are projected out, but did create many additional inequal-
ities. Finally, we obtained a new system of inequalities, where we removed all redundant inequalities
to obtain only the important inequalities for this instance. We analysed these inequalities to find more
general ones that hold for any time horizon. Unfortunately, after doing three steps of this method
(up to T = d + 3), some of the obtained inequalities have an intricate structure. It includes some
inequalities that have coefficients larger than 1 for Cmax or L. That is why we stopped investigating
this method and only use it as a base to find new facet-defining inequalities.

4.2 Extended facet-defining inequality

We use the insights obtained by disjunctive programming as parameters for IPO to obtain more facet-
defining inequalities. Just like in Section 3.1.2, we want to obtain a general expression out of those
obtained by the software. After analysing, we group these inequalities together into one new general
expression.

We take some S ⊆ {0, . . . , L− 1} with |S| ≤ T − L. We then take some tuple (t0, t1, . . . , tK) of times
with K ≥ 1 with corresponding machine indices j1, j2, . . . , jK ∈ JFS such that

L+ |S| − 1 = t0 < t1 < · · · < tK = T.

Then we get as a general new constraint the extended slot-jumping inequalities:

Cmax ≥ L+
∑
t∈S

(1−
∑
i∈I

Zijtt) +
∑
i∈I

K∑
s=1

(ts − ts−1)Zijsts . (4.1)

This is an extension of the previously found slot-jumping inequalities (3.2). If the set S is empty, it is
the same inequality. We call these inequalities with their corresponding requirements the extended slot-
jumping inequalities for (t, j, S). First, we want to prove that the extended slot-jumping inequalities
are indeed valid for the subproblem.

Theorem 5. Given di ∈ R for all i ∈ I, the extended slot-jumping inequalities are valid for polyhedron
P.

Proof. We want to show that it holds for some subset of times S, with |S| = m, where m ≤ T−L. So we
have t0 = L+m−1 Next to that, say we have some subset U = {t1, . . . , tn} of times, t1 < t2 < · · · < tn,
that lie in P. Then the extended slot-jumping inequality is:

Cmax ≥ L+
∑
t∈S

(1−
∑
i∈I

Zijtt) +
∑
i∈I

K∑
s=1

(ts − ts−1)Zijsts . (4.2)
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CHAPTER 4. EXTENDED STRENGTHENING

Say the last used order is some i∗, so Zi∗ji∗ ti∗ = 1 for some j ∈ JFS , t ∈ T and we have Zijt = 0 for
all i ∈ I, j ∈ JFS , t > ti∗ . Then we know by (3.1a) that Cmax ≥ ti∗ + 1. We also know

∑
i∈I

K∑
s=1

(ts − ts−1)Zijs,ts ≤ t1 − t0 + t2 − t1 + . . .+ ti∗ − ti∗−1 (4.3a)

≤ ti∗ − t0 (4.3b)
≤ ti∗ − L−m+ 1 (4.3c)

and ∑
t∈S

(1−
∑
i∈I

Zijtt) ≤ m. (4.4)

So

L+
∑
t∈S

(1−
∑
i∈I

Zijtt) +
∑
i∈I

K∑
s=1

(ts − ts−1)Zijs,ts ≤ L+ ti∗ − L−m+ 1 +m (4.5a)

≤ ti∗ + 1 (4.5b)

So we have that Cmax ≥ ti∗+1 ≥ L+
∑
t∈S

(1−
∑
i∈I

Zijtt)+
∑
i∈I

K∑
s=1

(ts−ts−1)Zijsts , hence we can conclude

that the extended slot-jumping inequalities (4.1) have to hold for all schedules.

We will not prove that the extended slot-jumping inequalities are facet-defining in this thesis, but we
believe this can be done in the same way as Theorem 3. Since we obtained it by software that finds
facet-defining inequalities, we can assume it is indeed facet-defining.

4.3 Separation algorithm

Just like with the previously found inequalities, we want to check if we can define a separation algorithm
that finds the cutting planes with the largest violation. We want to find a subset S and subset of times

t1, t2, . . . , tK that maximize
∑
t∈S

(1 −
∑
i∈I

Zijtt) +
∑
i∈I

K∑
s=1

(ts − ts−1)Zijsts , given a solution for Cmax

and Zijt for all i ∈ I, j ∈ JFS , t ∈ T . That way, we can check if Inequality (4.1) can be violated.
Just like in Section 3.2, we project the problem onto one machine, choosing the maximum value:∑
i∈I

Zijt =
∑
i∈I

max
j′∈JFS

Zij′t for all t ∈ T . Since it is an extension of Inequality (3.2), we can use the

previously defined Algorithm 1 for all times t ≥ L. For the times t < L, we sort the entries on their∑
i∈I

Zijt values, such that
∑
i∈I

Zij0 ≤
∑
i∈I

Zij1 ≤ · · · ≤
∑
i∈I

ZijL−1. This can be done since it does not

matter for the extended slot-jumping inequality which time index we use in S, it only depends on
the size of S. So we iterate over the size of the set S, adding the items from smallest to largest, so
S = ∅, S = {0}, S = {0, 1}, . . . , S = {0, 1, . . . , L− 1}.

This algorithm uses sorting on the first L entries, which has complexity O(L logL) and then iterates
over all possible sizes of S, which happens in linear time. Hence, the complexity of this algorithm is
O(L logL).
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CHAPTER 4. EXTENDED STRENGTHENING

Algorithm 2 Extended separation algorithm

Input: Cmax ∈ R, L ∈ {0, . . . , T},
∑
i∈I

Zijt =
∑
i∈I

max
j′∈JFS

Zij′t for all t ∈ T

Initialize: U = [ ], S = [ ], Vmax = 0, E = 0

Sort
∑
i∈I

Zijt for t < L from small to large

while |S| < T − L do
Extend S with smallest t /∈ S, t < L
t0 = L+ |S| − 1
Execute Algorithm 1 with input t0 to obtain U
n=len(U)

if L+
∑
t∈S

(1−
∑
i∈I

Zijtt) +
∑
i∈I

n∑
s=1

(U [s]− U [s− 1])ZijsU [s] > Vmax then

Vmax = L+
∑
t∈S

(1−
∑
i∈I

Zijtt) +
∑
i∈I

n∑
s=1

(U [s]− U [s− 1])ZijsU [s]

E := S
V := U

end if
end while
k = len(V )

if Cmax ≥ L+
∑
t∈E

(1−
∑
i∈I

Zijtt) +
∑
i∈I

k∑
s=1

(V [s]− V [s− 1])ZijsV [s] then

return ‘(Z,Cmax) satisfies all extended slot-jumping inequalities’
else

return ‘(Z,Cmax) violates: Cmax ≥ L+
∑
t∈E

(1−
∑
i∈I

Zijtt) +
∑
i∈I

k∑
s=1

(V [s]− V [s− 1])ZijsV [s]’

end if

We have shown that Algorithm 1 maximizes
∑
i∈I

K∑
s=1

(ts− ts−1)Zijsts , so we know this part is maximized

in Algorithm 2. We iterate over all possible sizes for subset S, where the algorithm ensures we will
always first choose the index with the largest value of (1−

∑
i∈I

Zijtt). So we know that Algorithm 2 will

always maximize
∑
t∈S

(1 −
∑
i∈I

Zijtt) +
∑
i∈I

K∑
s=1

(ts − ts−1)Zijsts , hence will solve the separation problem

for Inequality (4.1).
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Chapter 5

Conclusion and discussion

In this thesis, we created an improved version of the MIP created by Yfantis. Next, we set up a
subproblem and showed that the linking of the makespan variable is not as strong as desired. We then
found facet-defining inequalities for the subproblem only involving the filling lines. This is done by
using IPO for finding facet-defining inequalities. This method works well to find these inequalities,
but requires some manual analysis of the inequalities to find general expressions. So for more intricate
models this method is not really feasible, but for a small model it is a good method to use. That being
said, it is also the case that IPO can only compute facet-defining inequalities for systems with up to
about 300 variables, so that would already create a problem for larger instances or models.

A linear time separation algorithm is created and proven to be correct. This algorithm finds the slot-
jumping inequalities that have the largest violation of the LP relaxation and inserts those inequalities as
cutting planes for the MIP. The implementation of the improved model with the separation algorithm
increased the LP bound for all instances that were investigated. However, the implementation with
the algorithm is still slower than we would like. This may be because it takes too long to add all
cutting planes one by one and we should make use of the symmetry of machines in the slot-jumping
inequalities to add multiple cutting planes at once. Next to this, it is possible that after adding a few
cutting planes, the linking of the makespan is already strengthened, but there is weakness somewhere
else in the model. Finally, the determination of the lower bound is something to look into. If the
lower bound used in the implementation can be increased without cutting off feasible MIP solutions,
the cutting planes will further strengthen the MIP. In this thesis, we round up after summing over the
orders, but it would be interesting to look into first rounding the minimum processing time for each
order up and then summing over them. This should hold because we cannot process multiple orders
within one time slot, so rounding up per order should not create a lower bound that is too high and
thus should not cut off feasible MIP solutions. More research into the implementation is needed to
find out why it is not faster than the model without the algorithm and to find out if the speed can still
be improved.

The improved model including the slot-jumping inequalities we found is not a perfect formulation for
the problem. It is also not guaranteed that it is feasible to find a perfect formulation, since the three
steps of disjunctive programming we performed already turned out to be quite intricate. The number of
computations required was very large and some of the resulting inequalities contain coefficients larger
than 1, so they are hard to analyse. The disjunctive program, however, was helpful when used to
change the input parameters for the IPO software. This way, we were able to obtain some new facet-
defining inequalities. While we have not proven facetness of the extended slot-jumping inequalities in
this thesis, we believe the techniques used in the proof of Theorem 1 will work for this proof as well.
The separation algorithm proposed for the extended slot-jumping inequalities is not implemented, but
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CHAPTER 5. CONCLUSION AND DISCUSSION

will be similar to the implementation of Algorithm 1. This would be interesting to do, to see if this
will improve the computation time. Especially since the algorithm runs in O(T log T ) time, where T
is the length of the time horizon, it can be that it does not increase the total computation time, only
the LP bounds.
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Appendices

A.1 Yfantis’ original model

minimize
Cmax (1a)
subject to∑
j∈JFS

∑
t∈T

Bijt ≥ Di, ∀i ∈ I (1b)

∑
j∈JFL

Wijt ·Bj +
∑

l∈JST

BR
ilt =

∑
m∈JFS∪JST

Bimt, ∀i ∈ I, ∀t ∈ T (1c)

BST
ijt ≤ Bj , ∀i ∈ I, ∀j ∈ JST ,∀t ∈ T (1d)

BR
ijt ≤ BST

ijt , ∀i ∈ I, ∀j ∈ JST ,∀t ∈ T (1e)

BST
ijt ≤ M · Sijt, ∀i ∈ I, ∀j ∈ JST ,∀t ∈ T (1f)

Bijt

Fij
≤ Yijt <

Bijt

Fij
+ 1 ∀i ∈ I, ∀j ∈ JFS ,∀t ∈ T (1g)∑

k∈K

Xijkt · pk = Yijt ∀i ∈ I, ∀j ∈ JFS ,∀t ∈ T (1h)∑
k∈K

Xijkt ≤ 1 ∀i ∈ I, ∀j ∈ JFS ,∀t ∈ T (1i)

Xijkt · (t+ pk) ≤ Cmax ∀i ∈ I, ∀j ∈ JFS ,∀k ∈ K, ∀t ∈ T (1j)

WR
ijt · t ≤ Cmax ∀i ∈ I, ∀j ∈ JFL,∀t ∈ T (1k)
t∑

s=1

WR
ijs ≤

t∑
u=1

Wiju ≤
t∑

v=1

WR
ijv + 1 ∀i ∈ I, ∀j ∈ JFL,∀t ∈ T (1l)

Wijt +

t+pij−1∑
u=t

WR
iju ≤ 1 ∀i ∈ I, ∀j ∈ JFL,∀t ∈ T (1m)

∑
r∈I

t∑
u=1

Wrju −
∑
r∈I

t∑
u=1

WR
rju ≤ 1−Wijt ∀i ∈ I, ∀j ∈ JFL,∀t ∈ T (1n)

Xijkt +
∑
r∈I

∑
s∈K

t+pk+coirj−1∑
u=t

Xrjsu ≤ 1 ∀i ∈ I,∀j ∈ JFS ,∀t ∈ T (1o)

WR
ilt +Xijkt +

∑
s∈I

t+pk+coisl−1∑
u=t

Wslu ≤ 2 ∀i ∈ I, ∀j ∈ JFS ,∀l ∈ JFL ∪ JST , (1p)

∀k ∈ K,∀t ∈ T
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WR
ilt +Xijkt +

t+pk−1∑
u=t+1

WR
ilu ≤ 2 ∀i ∈ I, ∀j ∈ JFS ,∀l ∈ JST , (1q)

∀k ∈ K,∀t ∈ T

WR
ijt +Wilt +

∑
r∈I

t+coirj−1∑
u=t

Wrju ≤ 2 ∀i ∈ I, ∀j ∈ JFL,∀l ∈ JST ,∀t ∈ T (1r)

WR
ijt · t ≤ Cmax ∀i ∈ I, ∀j ∈ JFL,∀t ∈ T (1s)

Bijt ≤ M ·Wijt ∀i ∈ I, ∀j ∈ JFL ∪ JST ,∀t ∈ T (1t)

BR
ijt ≤ M ·WR

ijt ∀i ∈ I, ∀j ∈ JFL ∪ JST ,∀t ∈ T (1u)

Bijt ≤ M ·
∑
k∈K

Xijkt ∀i ∈ I, ∀j ∈ JFS ,∀t ∈ T (1v)

BST
ijt+1 = BST

ijt +Bijt −BR
ijt ∀i ∈ I, ∀j ∈ JST ,∀t ∈ T \ {T} (1w)∑

t∈T
Wijt =

∑
t∈T

WR
ijt ∀i ∈ I, ∀j ∈ JFL (1x)∑

i∈I

Sijt ≤ 1 ∀j ∈ JST ,∀t ∈ T (1y)
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A.2 Yfantis’ fixed model

minimize

Cmax + ϵ ·
∑
t∈T

Xijkt · (t+ pk) (2a)

subject to∑
j∈JFS

∑
t∈T

Bijt ≥ Di, ∀i ∈ I (2b)

∑
j∈JFL

Wijt ·Bj +
∑

l∈JST

BR
ilt =

∑
m∈JFS∪JST

Bimt, ∀i ∈ I, ∀t ∈ T (2c)

BST
ijt ≤ Bj , ∀i ∈ I, ∀j ∈ JST ,∀t ∈ T (2d)

BR
ijt ≤ BST

ijt , ∀i ∈ I, ∀j ∈ JST ,∀t ∈ T (2e)

BST
ijt ≤ M · Sijt, ∀i ∈ I, ∀j ∈ JST ,∀t ∈ T (2f)

Bijt

Fij
≤ Yijt <

Bijt

Fij
+ 1 ∀i ∈ I, ∀j ∈ JFS ,∀t ∈ T (2g)∑

k∈K

Xijkt · pk = Yijt ∀i ∈ I, ∀j ∈ JFS ,∀t ∈ T (2h)

∑
i∈I

∑
k∈K

Xijkt ≤ 1 ∀j ∈ JFS ,∀t ∈ T (2i)

Xijkt · (t+ pk) ≤ Cmax ∀i ∈ I, ∀j ∈ JFS ,∀k ∈ K,∀t ∈ T (2j)

WR
ijt · t ≤ Cmax ∀i ∈ I, ∀j ∈ JFL,∀t ∈ T (2k)
t∑

s=1

WR
ijs ≤

t∑
u=1

Wiju ≤
t∑

v=1

WR
ijv + 1 ∀i ∈ I, ∀j ∈ JFL,∀t ∈ T (2l)

Wijt +

t+pij−1∑
u=t

WR
iju ≤ 1 ∀i ∈ I,∀j ∈ JFL,∀t ∈ T (2m)

∑
r∈I

t∑
u=1

Wrju −
∑
r∈I

t∑
u=1

WR
rju ≤ 1−Wijt ∀i ∈ I, ∀j ∈ JFL,∀t ∈ T (2n)

Xijkt +
∑
s∈K

Xrjsu ≤ 1 ∀i, r ∈ I,∀j ∈ JFS ,∀t ∈ T , (2o)

∀u ∈ {t+ 1, . . . , t+ pk + coirj − 1}

WR
ilt +Xijkt +Wslu ≤ 2 ∀i, s ∈ I, ∀j ∈ JFS ,∀l ∈ JFL ∪ JST ,∀k ∈ K, (2p)

∀t ∈ T ,∀u ∈ {t+ 1, . . . , t+ pk + coisl − 1}

WR
ilt +Xijkt +WR

ilu ≤ 2 ∀i ∈ I, ∀j ∈ JFS ,∀l ∈ JST ,∀k ∈ K, (2q)

∀t ∈ T ,∀u ∈ {t+ 1, . . . , t+ pk − 1}

WR
ijt +Wilt +Wrju ≤ 2 ∀i, r ∈ I, ∀j ∈ JFL,∀l ∈ JST , (2r)

∀t ∈ T ,∀u ∈ {t, . . . , t+ coirj − 1}

Bijt ≤ M ·Wijt ∀i ∈ I, ∀j ∈ JFL ∪ JST ,∀t ∈ T (2s)

BR
ijt ≤ M ·WR

ijt ∀i ∈ I, ∀j ∈ JFL ∪ JST ,∀t ∈ T (2t)

Bijt ≤ M ·
∑
k∈K

Xijkt ∀i ∈ I, ∀j ∈ JFS ,∀t ∈ T (2u)
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BST
ijt+1 = BST

ijt +Bijt −BR
ijt ∀i ∈ I, ∀j ∈ JST ,∀t ∈ T \ {T} (2v)∑

t∈T
Wijt =

∑
t∈T

WR
ijt ∀i ∈ I,∀j ∈ JFL (2w)

∑
i∈I

Sijt ≤ 1 ∀j ∈ JST ,∀t ∈ T (2x)
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A.3 New proposed model

minimize

Cmax + ϵ ·
∑
i∈I

∑
j∈JFS

∑
t∈T

Zijt · t (3a)

subject to∑
j∈JFS

∑
t∈T

Bijt ≥ Di, ∀i ∈ I (3b)

∑
j∈JFL

BR
ijt +

∑
l∈JST

BR
ilt =

∑
m∈JFS∪JST

Bimt, ∀i ∈ I, ∀t ∈ T (3c)

BST
ijt ≤ Bj , ∀i ∈ I, ∀j ∈ JST ,∀t ∈ T (3d)

BR
ijt ≤ BST

ijt , ∀i ∈ I, ∀j ∈ JST ,∀t ∈ T (3e)

BST
ijt ≤ M · Sijt, ∀i ∈ I, ∀j ∈ JST ,∀t ∈ T (3f)
T∑

u=t

Biju ≤
T∑

u=t

Ziju · Fij ∀i ∈ I, ∀j ∈ JFS ,∀t ∈ T (3g)

t−1∑
u=1

Yiju ≤
t−1∑
u=1

Xiju ∀i ∈ I, ∀j ∈ JFS ,∀t ∈ T (3h)

t∑
u=t−g

Biju −
t−1∑

u=t−g

Ziju · Fij ≤ M · (1− Yijt) ∀i ∈ I, ∀j ∈ JFS ,∀t ∈ T (3i)

∀g ∈
{
0, . . . ,

⌈
maxk∈JST (Bk)

Fij

⌉}
Zijt +Xsju ≤ 1 ∀i, s ̸= i ∈ I, ∀j ∈ JFS ,∀t ∈ T , (3j)

∀u ∈ {t, . . . , t+ coisj}

WR
ilt +Xijt +

u+coisl∑
v=u

Wslv ≤ 2 + Yiju ∀i, s ∈ I, ∀j ∈ JFS ,∀l ∈ JST ∪ JFL, (3k)

∀t ∈ T ,∀u ∈
{
t, . . . ,

⌈
Bl

Fij

⌉}
Zijt · (t+ 1) ≤ Cmax ∀i ∈ I, ∀j ∈ JFS ,∀t ∈ T (3l)

Xijt ≤ Zijt ∀i ∈ I, ∀j ∈ JFS ,∀t ∈ T (3m)

WR
ijt · t ≤ Cmax ∀i ∈ I, ∀j ∈ JFL,∀t ∈ T (3n)

t−1∑
s=1

WR
ijs ≤

t−1∑
u=1

Wiju ≤
t−1∑
v=1

WR
ijv + 1 ∀i ∈ I, ∀j ∈ JFL,∀t ∈ T (3o)

Wijt +

t+pij−1∑
u=t

WR
iju ≤ 1 ∀i ∈ I, ∀j ∈ JFL,∀t ∈ T (3p)

∑
r∈I

t−1∑
u=1

Wrju −
∑
r∈I

t−1∑
u=1

WR
rju ≤ 1−Wijt ∀i ∈ I, ∀j ∈ JFL,∀t ∈ T (3q)

t−1∑
u=1

BR
iju +WR

ijt ·Bj =

t∑
u=1

BR
iju ∀i ∈ I, ∀j ∈ JFL,∀t ∈ T (3r)

WR
ijt +Wilt +Wsju ≤ 2 ∀i, s ̸= i ∈ I, ∀j ∈ JFL,∀l ∈ JST , (3s)

∀t ∈ T ,∀u ∈ {t, . . . , t+ coisj}
Bijt ≤ M ·Wijt ∀i ∈ I, ∀j ∈ JST ,∀t ∈ T (3t)
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BR
ijt ≤ M ·WR

ijt ∀i ∈ I, ∀j ∈ JST ,∀t ∈ T (3u)

Bijt ≤ M ·Xijt ∀i ∈ I, ∀j ∈ JFS ,∀t ∈ T (3v)

Xijt ≤ M ·Bijt ∀i ∈ I, ∀j ∈ JFS ,∀t ∈ T (3w)

BST
ijt+1 = BST

ijt +Bijt −BR
ijt ∀i ∈ I, ∀j ∈ JST ,∀t ∈ T \ {T} (3x)

Zijt+1 ≤ Xijt+1 + Zijt ∀i ∈ I, ∀j ∈ JFS ,∀t ∈ T \ {T} (3y)

Zijt − Zijt+1 +Xijt+1 ≤ Yijt+1 ∀i ∈ I, ∀j ∈ JFS ,∀t ∈ T \ {T} (3z)∑
t∈T

Wijt =
∑
t∈T

WR
ijt ∀i ∈ I, ∀j ∈ JFL (3aa)∑

u∈T
Xiju =

∑
u∈T

Yiju ∀i ∈ I, ∀j ∈ JFS (3ab)∑
i∈I

Sijt ≤ 1 ∀j ∈ JST ,∀t ∈ T (3ac)∑
i∈I

Zijt ≤ 1 ∀j ∈ JFS ,∀t ∈ T (3ad)
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A.4 Model comparison

Table A.1

Instance 1 2 3 4 5 6 7 8
# Orders 3 3 6 3 3 3 6 6

# Machines 10 10 13 10 10 10 10 13
# Time slots 15 15 15 40 40 40 40 40
Random seed 3 74 74 74 999 3 74 74

Table A.2: Instance 1

Yfantis Proposed Ratio
# Variables 5881 2161 1.33

# Constraints 48115 9509 5.06
Solution time [s] 4.41 2.09 2.11

Table A.3: Instance 2

Yfantis Proposed Ratio
# Variables 2881 2161 1.33

# Constraints 45910 8530 5.38
Solution time [s] 3.25 0.84 3.87

Table A.4: Instance 3

Yfantis Proposed Ratio
# Variables 7471 5671 1.32

# Constraints 222426 50692 4.39
Solution time [s] 341.87 126 2.71

Table A.5: Instance 4

Yfantis Proposed Ratio
# Variables 8641 5761 1.50

# Constraints 212011 24855 8.53
Solution time [s] 93.31 11.42 8.17

Table A.6: Instance 5

Yfantis Proposed Ratio
# Variables 8641 5761 1.50

# Constraints 217745 29102 7.48
Solution time [s] 102.23 40.79 2.51

Table A.7: Instance 6

Yfantis Proposed Ratio
# Variables 8641 5761 1.50

# Constraints 225073 26693 8.43
Solution time [s] 271.19 41.45 6.54

Table A.8: Instance 7

Yfantis Proposed Ratio
# Variables 17281 11521 1.50

# Constraints 804926 110591 7.28
Solution time [s] 3.536.7 2538.76 1.39

Table A.9: Instance 8

Yfantis Proposed Ratio
# Variables 22321 15121 1.48

# Constraints 1051922 152067 6.92
Solution time [s] 1497.19 1050.82 1.42
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