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Abstract

The export operations of Jacobs Douwe Egberts (JDE) faced inefficiencies in partner
order profiles characterized by high order frequency but relatively low volumes, re-
sulting in non-full pallet orders, underutilized transport, and elevated warehouse and
distribution costs. This study seeks to optimize these costs by improving partner order
frequency and volume through the design of an effective order strategy. Employing
a single vendor, single retailer, multi item VMI model, this research aims to minimize
total warehouse and distribution expenses while accounting for stochastic demand
using chance constraint programming. The model offers insight into optimal order
frequency, volume for each item, and transportation modes. Results indicate that im-
plementing VMI can indeed reduce overall costs; however, success heavily relies on
effective information sharing between the vendor and the retailer.
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Management Summary

This management summary provides an overview of the MSc thesis, which addresses
Vendor Management Inventory specific to the supply chain of the export department
of Jacobs Douwe Egberts. The research question is formulated as: ”How can GBD opti-
mize the order profile of the partners to minimize the total distribution and warehouse
costs while maintaining service levels?”.

Objective

The main goal of this study is to develop an effective inventory management strategy
aimed at minimizing the warehouse and distribution costs of GBD. This is achieved by
refining the order profiles of its partners, focusing on order frequency and volume op-
timization. The aim is to streamline transport utilization by consolidating shipments
into fewer, yet larger deliveries.

Problem Statement

1. Order Volume: Partners frequently place orders for individual items or boxes,
resulting in additional warehousing expenses due to the need for repackaging
goods. Additionally, the order volumes often do not match full transport quan-
tities.

2. Order Frequency: Numerous orders are placed within short timeframes, with-
out consolidation.

3. Transport Utilization: The combination of frequent order placement and low
order volume leads to an average transport utilization of 53%.

4. Total Costs: These factors collectively contribute to high overall warehouse and
distribution costs, impacting the profitability and competitiveness of the busi-
ness. By addressing these inefficiencies, organizations can enhance cost effec-
tiveness, streamline operations, and improve overall financial performance.

Proposed Solution

We propose the implementation of a VMI strategy with a single retailer and vendor,
managing multiple items while considering static lead time and uncertain demand. To
address this, we develop a MILP model aimed at minimizing the total costs incurred in
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warehousing and distribution for both the retailer and the vendor. Uncertain demand
is managed through a chance constraint, ensuring a maximum 5% probability of stock-
out occurrences. The model incorporates forecast errors by modeling actual demand
as a normal distribution. At each period, decisions are made regarding whether to
place orders, the volume of each item, and the corresponding transportation mode.
The suggested strategy involves consolidating orders leading to fewer but larger or-
ders to enhance transport utilization efficiency and reduce overall warehouse and dis-
tribution expenses. We validate the model using data from a specific partner, referred
to as Partner X.

Results

The results of the experiments are evaluated on four metrics: objective function, trans-
port utilization, run time, and optimality gap.

• Cost Reduction: The model significantly cuts down on total costs related to
warehousing and distribution by consolidating orders, leading to fewer but larger
shipments and increased transport utilization. Adaption of the VMI model to
2023 data shows potential expense reduction by up to 16.5%.

• Transport Utilization: Transport utilization increases to approximately 98%, a
significant improvement compared to the current average utilization rate of only
53%.

• 40-foot Container Preferred: Opting for 40-foot containers proves to be more
cost-effective than 20-foot containers in the majority of cases.

• Storage Capacity: The agreed storage capacity with Partner X was already suffi-
cient; increasing it does not impact the model’s performance.

• Forecast Accuracy: Improving forecast accuracy could enhance the model’s per-
formance and reduce warehouse and distribution expenses by up to 4.3%, from
€33,255 with a medium forecast accuracy to €31,826 with a perfect forecast.

• Lead Time. Reducing the lead time does not immediately impact total costs, as
the same orders are simply placed later in the new model.

• JIT vs. VMI: The VMI model outperforms the JIT model, with reductions of
4.5%, 4.1%, and 3.0% observed in medium, low, and perfect forecast accuracy
scenarios, respectively.

Conclusion & Recommendation

• Partial VMI: Implement partial VMI for all partners, ensuring mutual agreement
on comprehensive information sharing between both parties.

• Forecast Accuracy: Enhance the forecasting capabilities of partners to improve
the model’s performance.

• Make-to-order: Upon successful implementation of VMI, prioritize reducing
lead times by transitioning from a make-to-order to a make-to-stock paradigm.
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Chapter 1

Introduction

1.1 Company Description and Context

Jacobs Douwe Egberts (JDE) is the world’s leading coffee and tea company, headquar-
tered in The Netherlands, with a portfolio of over fifty brands including L’Or, Jacobs,
Senseo, Douwe Egberts, and Pickwick. For more than 265 years, JDE has been inspired
by the belief that it is amazing what can happen over a cup of coffee (17). This project
is conducted within the Global Business Development (GBD) supply chain team. This
team is responsible for overseeing the domain of Export business and the order-to-cash
process with customers in North and South America, Europe, Africa, and Asia.

1.2 Research Motivation

A new initiative, denoted as the Supply Chain Operating System (SCOS), has been im-
plemented on a comprehensive scale throughout JDE. The fundamental aim of SCOS
is multifaceted; to rediscover growth, attain and sustain a leadership position in costs
& cash, and create a culture of pride and performance. Among other things, for GBD
the introduction of SCOS entails that they need to obtain, monitor, evaluate, and im-
prove significant Key Performance Indicators (KPIs) about its warehousing and dis-
tribution costs. Specifically, the SCOS program prescribes to focus on two high level
KPIs, namely:

• EUR/Pal: Warehousing and distribution costs in respect of full pallet equivalents
delivered to the customer.

• W&D % NOS: Warehousing and distribution costs expressed as a percentage of
the net outside sales.

Figure 1.1 visualizes the factors that have an immediate impact on the performance of
the EUR/pal and W&D % NOS, namely: inbound, storage, order profile, and delivery
profile. In the current situation, the order and delivery profile are important factors
where GBD underperforms. Customers frequently place orders that do not consist
of full pallets, but of a pallet layer, or even a small amount of items. In addition,
customers frequently do not order for a full container or truckload, resulting in higher
relative distribution costs of an order. Acquiring an order and delivery strategy is
of great importance to GBD, as it serves as a foundational step towards recognizing
potential improvements for distribution cost optimization.

1



1.3. Problem Statement

Figure 1.1: The KPI tree of the GBD export department of JDE, with the EUR/pal and
W&D % NOS as the high level KPIs. The factors inbound, storage, order profile, and
delivery profile have an important influence on the performance of these high-level
KPIs. For each factor, several low-level KPIs are determined.

1.3 Problem Statement

1.3.1 Problem Identification

The primary objective of this research is to design an efficient solution to reduce the
distribution expenses of GBD by optimizing the order of the partners. The main prob-
lem that this study addresses is as follows:
In the present situation, the order and delivery profile of the customers is an impor-
tant shortcoming. Customers frequently order partial pallets and Less Than Truckload
(LTL) quantities. The distribution expenditures associated with export are documenta-
tion, labeling, transportation, and administrative tasks. Importantly, it is worth noting
that a portion of these distribution costs assumes a fixed nature, meaning that they
do not fluctuate in proportion to the order size. Consequently, when partners do not
place orders constituting full pallets or complete truck or container loads, the relative
cost per unit of goods transported increases. This phenomenon hurts the performance
of the high level KPIs: EUR/pal and W&D % NOS.

1.3.2 Significance of the Study

This study can have a significant impact on the operation of GBD by reducing distri-
bution costs and exploring the possibilities of order and delivery profile optimization.
Additionally, this research contributes to the broader field of optimization methods in
order and delivery profiles by addressing a real-world problem with practical impli-
cations.
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1.3.3 Research Objectives

In the ideal situation, customers order less frequently but always order full pallets
and full transportation utilization quantities. Acquiring such an order and delivery
profiles is of great importance to GBD, as it serves as a foundational step towards the
reduction of the warehouse and distribution costs.
The research objectives of this thesis are as follows:

1. To conduct comprehensive literature research on existing optimization methods
and inventory management strategies, with a focus on improving customers’
order and delivery profiles.

2. To analyze and model the current order and delivery profile of GBD customers,
taking into account the capacity constraints and the forecast.

3. To develop a model that optimizes the order and delivery profile, aiming to re-
duce warehouse and distribution costs.

4. To test and evaluate the performance of the proposed solution, using historical
data of one partner.

5. To provide practical recommendations and insights to GBD based on the results
obtained, to minimize the warehouse and distribution expenses by improving
the order and delivery profiles.

1.4 Research Questions

To guide this research, the following research questions are formulated:

1.4.1 Main Research Question

RQ1: How can GBD optimize the order profile of the partners to minimize the total
warehouse and distribution costs while maintaining service levels?

1.4.2 Sub-Research Questions

Each chapter of this thesis corresponds to a sub-research question addressing specific
aspects of the main research question. These sub-research questions are as follows:

1. Chapter 2: Problem Context

• RQ2: What are the key components and steps in the current order-to-cash
process of GBD as part of its supply chain operations?

2. Chapter 3: Literature Review

• RQ3: What inventory management strategies can address cost minimiza-
tion challenges associated with improving the order profile via order con-
solidation, resulting in fewer but larger shipments?

3. Chapter 4: Solution Methodology
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• RQ4: How can we apply the modeling techniques outlined in the previous
chapter to the specific GBD case and modify them to enhance its operational
performance?

4. Chapter 5: Experimental Evaluation

• RQ5: How does the new proposed solution perform, reviewed on total costs
and transport utilization, compared to the current approach of GBD?

5. Chapter 6: Discussion and Recommendations

• RQ6: What are the practical implications of the results obtained, and what
other recommendations can be made to GBD for optimizing the order and
delivery profiles?

1.5 Scope and Limitations

GBD engages with a diverse range of partners, but this study specifically concentrates
on those aligned with a particular distribution channel, excluding partners using an al-
ternative warehouse flow. Given that the majority of products are distributed through
this warehouse, the focus is on optimizing improvements in that specific area. Ad-
ditionally, the sale of spare parts and pre-used machines is outside the scope of this
study. In this study, the emphasis is on inventory management strategies applicable to
the partner, rather than focusing solely on our internal inventory management prac-
tices.

1.6 Problem Solving Approach

This thesis is structured as follows:

• Chapter 2: Problem Context - In this chapter, we elaborate on the supply chain
of GBD and the shortcomings in the order and delivery profile.

• Chapter 3: Literature Review - This chapter provides a review of the existing
literature related to inventory management strategies.

• Chapter 4: Solution Methodology - This chapter presents the algorithm or method-
ology developed to address the problem, including a mathematical model and
implementation details.

• Chapter 5: Experimental Evaluation - Here, we discuss the data collection, the
experimental setup, and the results obtained from testing the model on historical
data of one partner of GBD.

• Chapter 6: Conclusion & Recommendations - This chapter summarizes the key
findings, discusses the implications, and provides practical recommendations to
the GBD team and future research topics.
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1.7 Summary

This research is conducted within the export department of JDE. The primary objec-
tive is to optimize the order and delivery profile of the GBD’s partners, focusing on
aspects such as order frequency and quantity, to minimize the warehouse and dis-
tribution costs. Currently, GBD is facing challenges with underperformance in these
KPIs, leading to elevated warehouse and distribution expenses. The research question
of this study is then formulated as; ”What inventory management strategies can be
employed to address cost minimization challenges associated with enhancing the or-
der profile?”. The next chapter elaborates on the relevant operation characteristics of
GBD and its supply chain.
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Chapter 2

Problem Context

This chapter focuses on describing the relevant operation characteristics of GBD to an-
swer the first research question ”What are the key components and steps in the current
order-to-cash process of GBD as part of its supply chain operations?”. In Section 2.1,
we elaborate on the whole supply chain and separate into four main stages: raw ma-
terials & factory, warehouse, transportation, and partners & end consumers. We then
dive deeper into the order-to-cash process in Section 2.2. In Section 2.3 we elaborate
on the current order and delivery profile of the partners, explained by a simplified
visualization. We finish by outlining the key characteristics that must be considered in
an optimization model in Section 2.4.

2.1 The Supply Chain

JDE maintains a portfolio comprising over fifty coffee and tea brands including L’Or,
Jacobs, Senseo, Douwe Egberts, and Pickwick, yielding a total of approximately four
hundred distinct Stock Keeping Unit (SKU). Additionally, the department engages in
the trade of pre-owned machines and spare parts, but this is not considered in this
research. Many products JDE sells have an expiry date to consider. Partners prefer
products that are ’fresh’ and have a shelf life extending into the distant future. This is
especially crucial for customers with longer shipping times.
Figure 2.1 shows how the GBD products move through the supply chain. This section
elaborates on each distinct step in the supply chain.

Figure 2.1: A schematic representation showing how GBD products move through the
entire supply chain. It starts with raw materials from plantations and goes through
factories and the GBD warehouse. From there, the goods are transported to the ware-
houses, and finally, end consumers receive the products. The steps delineated in grey
within the supply chain lie under JDE responsibility.
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2.1. The Supply Chain

2.1.1 Raw Material & Factory

The tea leaves and coffee beans originate from South America and Asia. Factories are
situated across the globe, with a significant portion located in Europe. Each factory
specializes in producing its range of products. Subsequently, the products are dis-
tributed from the factories to the warehouses of all JDE teams. Figure 2.2 provides an
overview of the factory and warehouse locations, with factories represented in red.

Figure 2.2: An overview of the locations of the two owned GBD warehouses PAX
and ALCA (depicted in yellow), other JDE warehouses that supply the GBD partners
(depicted in green) and the supplying factories (depicted in red).

2.1.2 GBD Warehouse

The stock gets collected from all production sites in Europe and is consolidated to the
designated GBD warehouse. GBD assumes ownership of two warehouses, PAX (lo-
cated in Joure, The Netherlands) and Alca (located in Croatia), from which 100% of
the professional and 55% of the retail volume is distributed. The other 45% of retail
volume is distributed from different JDE warehouses. GBD assumes three warehous-
ing flows:

1. PAX Flow: the first flow considers a make-to-order paradigm and goes through
the GBD warehouse PAX, located in The Netherlands, with a corresponding lead
time of approximately six weeks. Currently, 100% of the professional volume
and 15% of the retail volume follow this flow. The PAX warehouse is depicted in
yellow in Figure 2.2.

2. ALCA Flow: the second flow considers a make-to-stock production strategy. The
goods are stored in the GBD warehouse ALCA, located in Croatia, and are dis-
tributed to the partner in the Eastern Adriatic Markets. It corresponds with a
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lead time of one week and approximately 40% of the retail volume follows this
flow. The ALCA warehouse is also depicted in yellow in Figure 2.2.

3. Sharing stock Flow: the last flow considers sharing stock of other JDE ware-
houses, which are depicted in green in Figure 2.2. The lead time of this flow
equals four weeks and currently, approximately 45% of the retail volume follows
this flow.

The GBD warehouses are of type manufacturer storage with direct shipping and in-
transit merge, which means that they combine pieces of the order coming from differ-
ent locations so that the customer gets a single delivery (7). The following costs are
associated with the warehousing and are invoiced either directly or indirectly to GBD:

• An indirect flat fee per pallet is charged for warehouse services, encompassing
general inbound handling and storage costs. Annually, the specific flat fee for
each warehouse is determined, taking into account the performance of the pre-
ceding year.

• The specific order-related costs to warehousing and distribution are billed di-
rectly to GBD. These actual distribution costs cover various aspects such as ex-
port documentation, labeling, order processing, and equipment required for trans-
portation.

Due to the high volume and the great improvement possibilities, this research zooms
in on the partners that follow the flow through PAX. The close collaboration between
GBD and the logistic service provider (LSP) PAX makes it manageable to retrieve in-
sight into the operations and costs of warehouse and distribution, giving a solid foun-
dation for the analysis.

2.1.3 Transportation

The goods are transported by either land, sea, or air shipment. Each customer op-
erates with a specific incoterm, which clarifies the rules and terms for international
trade. The determination of the invoice date depends on the specific incoterm agreed
between GBD and the partner. Figure 2.3 provides an overview of the existing in-
coterms. 75% of the partners adopted the incoterm Free Carrier (FCA), meaning that
the responsibility of goods transportation lies by the partner. Following this incoterm,
GBD is responsible for delivering the goods to the GBD warehouse, and from that
point the responsibility shifts to the partner. The partner arranges the transportation
of the goods or outsources the task to a third party.
The transportation of the goods involves either twenty or forty-foot containers or
trucks. Loading of these containers or trucks is executed using either euro or block
pallets, contingent upon the SKU specifications. Additionally, certain SKUs have the
characteristic of being stackable, allowing the accommodation of two pallets within a
singular pallet space. The capacity of both containers and trucks is shown in Figure
2.4, demonstrating its dependency on the attributes of the specific SKU. Economical
efficiency is attained through the delivery of full pallets and the optimization of con-
tainer and truck capacities.
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Figure 2.3: An overview of existing incoterm introduced by the International Chamber
of Commerce, where each incoterm specifies different points at which responsibility
and risk transfer from the seller to the buyer. In this overview, the color orange sig-
nifies that the responsibility lies with GBD, while blue indicates responsibility held
by the partner. The exclamation mark ’!’ signifies the point in transportation where
responsibility shifts from GBD to the partner. Notably, the incoterm ”Free Carrier” is
contracted by 75% of the partners (SFAA).

2.1.4 Partners & End Consumer

The partners are located in North and South America, Europe, Africa, and Asia. JDE
makes a distinction between retail and professional partners, where retail focuses on
the sales to wholesalers and supermarket chains, while the professional domain caters
to entities such as hotels, hospitals, and corporations. Presently, GBD serves over
fifty customers supplying a comprehensive range of products under fourteen distinct
brands. The GBD team collaborates closely with regional distributors, called partner,
ensuring the supply of relevant brands on each specific market. Each partner owns a
warehouse in their corresponding area and introduces the JDE products in the market
of that country. The partner is responsible for the distribution of the goods to the end
consumer. In collaboration with the account manager from GBD, the partner makes
decisions regarding the SKUs within their portfolio.

2.2 Order-to-cash process

This research is conducted within the supply chain department of GBD. As explained
in Section 2.1.2, GBD operates via three distinct warehouses. The majority of the part-
ner of GBD operates through the GBD owned warehouse PAX. This particular flow
adheres to a make-to-order model, resulting in an average lead time of six weeks.
GBD adopts a distinctive definition for the customer service level. Typically it denotes
the probability of having enough stock to meet demand. GBD upholds a customer
service level of 95%, which indicates their goal to deliver a minimum of 95% of orders
within the specified lead time. For clarity, in this report, we refer to this as GBD CSL.
The timeline of the order-to-cash process is illustrated in Figure 2.6 and encompasses
the following stages:
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(a) Capacity of a 20 feet container

(b) Capacity of a 40 feet container

(c) Capacity of a truck

Figure 2.4: The capacities of the various shipping methods, are defined by the type
of pallet and stackability of the items. A euro pallet measures 80 x 120 cm, while a
block pallet measures 100 x 120 cm. The table illustrates the capacity of Euro pallets
and block pallets in various transportation modes, including 20-feet containers, 40-feet
containers, and trucks.
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2.3. Order and Delivery Profile

Figure 2.5: An overview of the sales volume of GBD partners in the year 2023. The
size of each pie chart corresponds to the sales volume, with larger charts indicating
higher volumes. For partners categorized as both retail and professional, the pie chart
is divided into two colors, representing the respective shares of volume for retail and
professional segments.

• Week 0: The partner places an order based on their forecast and current stock
level.

• Week 5: The order should be in stock at the warehouse PAX.

• Week 6: Orders with incoterm FCA and without extra export labeling should be
ready for pickup.

• Week 7-8-9: For orders where the transportation is arranged by GBD some ex-
port time is included. The exact time depends on the partner requirements and
location. It includes arranging export documentation, special export labeling,
and transportation.

The partner assumes responsibility for introducing and distributing items throughout
the country’s market. Partners typically operate under a 95% CSL, striving to maintain
sufficient stock to fulfill demand in 95% of cases.

2.3 Order and Delivery Profile

As explained in Section 1.2, the order and delivery profile are interesting factors, where
GBD underperforms. In the current situation often partners order pallet layers or small
quantities of items, instead of ordering full pallet quantities. The goods are delivered
to the warehouse in full pallets, ordering smaller quantities leads to additional ware-
housing costs since the pallets need to be repacked. The probability of obsolescence
also increases by ordering smaller quantities. Additionally, partners frequently order
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Figure 2.6: The general order-to-cash-process of GBD.

less than full truck or container quantities. Approximately, only 25% of the orders in
the year 2023 correspond to a full truck or container load.

2.3.1 Demand Forecast

A challenge confronting the export department lies in the fluctuations in the partner
demand, which has prompted the company to operate within the framework of make-
to-order paradigm. Under such a strategy, the production is initiated exclusively upon
placement of a customer order, resulting in a relatively high lead time for the delivery
of the products. The transition from this make-to-order paradigm to a make-to-stock
strategy depends significantly upon the establishment of a precise and accurate vol-
ume forecast. Currently, a significant majority of the GBD partners submit a monthly
demand forecast of the upcoming month at SKU level. However, GBD lacks assurance
regarding the accuracy and reliability of this forecast.

2.3.2 Full Truck Load

Full Truck Load (FTL) represents a type of shipping mode whereby a truck carries one
dedicated shipment (10), whereas Less Than Truckload (LTL) is a transport method
whereby a truck is available to carry more than one shipment (11). Typically, FTL is
usually employed in cases where the shipment is large enough to fill an entire truck
or container load, while LTL is suitable for smaller quantities. FTL offers numerous
advantages, including cost efficiency, faster transit times, enhanced security, and im-
proved inventory management.
GBD currently adopts the principle of LTL instead of the alternative FTL approach.
The LTL principle is incompatible with the operations of GBD, particularly in the con-
text of an export business where order consolidation poses challenges. Firstly, trans-
portation responsibility lies with 75% of the partners, who either manage it internally
or outsource it to third parties. Secondly, the transportation of food commodities in-
volves export documentation and compliance with customs regulations. Introducing
order consolidation across partners in different countries would complicate documen-
tation processes. Lastly, the diverse geographic locations of partners would result in
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longer shipment duration, which, when added to the already six-week lead time for
products, is undesirable. Therefore, in this research, the focus is on the FTL principle
and improving transport utilization.

2.3.3 Example Order Profile

Figure 2.7 presents a simplified visualization of the current order profile observed
among partners and an example of an improved order profile, yielding a reduction
in total warehouse and distribution costs. It is important to recognize that certain sim-
plifications employed in this illustrative model may not adequately reflect real-world
situations but are used for simplification. The model relies on the following assump-
tions and simplifications

• The partner orders only one item, which has a corresponding shelf life of 365
days

• The net price of one pallet equals €1, 000

• We consider only one pallet type, euro pallet, and the item is not stackable

• The partner uses a truck for transport; the truck has a capacity of 25 pallets

• The truck transportation cost equals €1, 000

• The fixed order cost equals €150

• The variable costs equal €13.36 per pallet

In the current situation, as shown in Figure 2.7a, a partner places approximately once
per month an order, which corresponds to LTL. Due to the fixed order and distribution
costs, the total costs of such an order profile equals approximately €7, 900, resulting in
a euro per pallet (EUR/pal) of €171.47. In an improved situation, as illustrated in Fig-
ure 2.7b, the partner adopts a less frequent ordering strategy, consolidating multiple
orders into Full Truck Load (FTL) quantities. Given the product’s one-year shelf life,
it is feasible to bundle the orders, that are placed in the current situation in January,
February, and March, into a single order placed in February. This transition results in a
shift from the previous operation, where five trucks were dispatched to deliver 45 pal-
lets, to a new and more efficient approach where only two trucks suffice to transport
50 pallets. In this improved situation, the total warehouse and distribution costs equal
€4800, resulting in a cost per pallet of €96. This reduction in costs signifies a notewor-
thy 39% decrease in warehouse and distribution expenses and a 44% reduction in the
EUR/pal KPI.

2.4 Summary

This chapter focuses on the features of GBD business’s supply chain. In the current
scenario, partners commonly place orders for pallet layers or smaller quantities of
items, deviating from ordering full pallet and truck/container quantities. To explore
optimization models in the literature, the following key characteristics must be con-
sidered:
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(a) An example of how partners currently place orders, exemplified by one
partner ordering one particular item. The figure shows that the partner
orders five times in six months. They order non-full pallet quantities and
the transport utilization is between 28% and 65%. Such an order pattern
results in total warehouse and distribution costs of approximately €8, 000
and a EUR/pal of €171.

(b) An example of an order pattern a partner can implement, which reduces
the total warehouse and distribution costs. In this situation, the partner
orders twice a FTL in six months a total of 50 pallets, resulting in a total cost
of approximately €5, 000 and a EUR/pal of €96.

Figure 2.7: A simplified example of the current order pattern and an improved order
pattern, which results in a reduction of total warehouse and distribution costs and the
KPI EUR/pal. The example is based on the assumptions made in Section 2.3.3.

• GBD is the export department of JDE and collaborates closely with geographi-
cally dispersed partners.

• The research focal point is the flow through PAX, Section 2.1.2, characterized by
a corresponding lead time of six weeks.

• Production through PAX adheres to a make-to-order paradigm, eliminating the
necessity for inventory holding. Fixed lead times are presumed for each distinct
item category, without accounting for stochastic variability.

• The focus is on finished SKU’s, encompassing coffee, tea, and various other com-
modities. Production and the warehousing facility operates under the condition
of unlimited capacity.
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• Each partner is associated with a predetermined transportation method; either
via land, sea, or air shipment.

• Each partner operates under a predetermined incoterm, with Free Carrier (FCA)
adopted by 75% of them.

• The distribution costs are billed directly to GBD and highly depend on the in-
coterm and export prerequisites of the partner. Each partner has a predeter-
mined fixed transportation tariff that remains unaffected by price fluctuations.

• Warehousing costs associated with inbound handling and storage are billed in-
directly to GBD and therefore a warehouse tariff per pallet is predetermined each
year, Section 2.1.2.

• Shipping mode Full Truck Load (FTL) is considered, without consolidation of
partners orders, Section 2.3.2.

• Each partner provides a monthly demand forecast on SKU level and it is essential
to consider the accuracy of these forecasts.

The next chapter focuses on exploring inventory management models and methods,
presented in literature, that minimize the overall warehouse and distribution costs.
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Chapter 3

Literature Study

In this chapter, we explore research that employs optimization models with a pri-
mary emphasis on enhancing the partner’s order profile to answer the second research
question ”What inventory management strategies can address cost minimization chal-
lenges associated with improving the order profile via order consolidation, resulting
in fewer but larger shipments?”. The objective is to boost transport utilization, ulti-
mately leading to a reduction in overall warehouse and distribution costs. Focusing
on inventory policies can be crucial when aiming to increase transport utilization and
reduce overall warehouse and distribution costs. By adopting an efficient inventory
policy, businesses can consolidate orders more effectively, enhance load planning, and
minimize stockouts and overstock, which ultimately leads to a reduction in warehouse
and distribution costs. This is why our literature study centers on the examination of
inventory policies. As the vehicle routing is presumed to be optimal and production
is assumed to be unlimited, we will omit these aspects from our study.
Section 3.1 provides an in-depth analysis of inventory strategies proposed in the lit-
erature. Subsequently, Section 3.2 explores the characteristics of VMI. In Section 3.3
we present potential solution methodologies for the identified optimization problems,
featuring two mathematical models presented in the literature with similar features as
our model requirements.

3.1 Inventory Management Strategy

Effective inventory management is critical to any business, influencing its overall op-
erational performance. Inventory management strategies aim to enhance productivity,
reduce costs, and improve customer satisfaction by minimizing stockouts and prevent-
ing overstock. The selected inventory management must satisfy the following criteria:

• Demand of Finished Products: The main emphasis is on optimizing finished prod-
uct distribution to partners rather than production concerns, which entail plan-
ning and inventory management of semi-finished products. Furthermore, the
SKUs sold to customers are neither substitutes nor complements. The primary
criterion for the inventory management policy is its capacity to handle indepen-
dent demand, particularly focusing on finished product inventory rather than
the dependent demand associated with semi-finished products.

• Push approach: As explained in Section 2.2, partners uphold inventory levels for
all items to mitigate stockout risks and ensure timely fulfillment of end consumer
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demand. Typically, partners maintain a CSL of no less than 95%. A push in-
ventory approach allows companies to have more control over the distribution
process, as it involves delivering goods from pre-existing inventory. The chosen
inventory policy should align with this objective and assist GBD in attaining the
specified target.

• Single facility approach: As outlined in Section 2.3.2, it is not compelling for GBD to
consider the consolidation of orders from various partners. The focus is specifi-
cally on one partner intending to minimize the warehouse and distribution costs
for that partner. This criterion ensures that the inventory management policy
exclusively centers on a single facility, rather than considering multi-facility ap-
proaches.

• Stochastic demand: As explained in Section 2.3.1, every partner submits a monthly
forecast for the upcoming year. It is essential to note that this forecast is an es-
timate and may not accurately reflect the actual demand, as sales can deviate
from the forecast due to its inherent inaccuracies. The challenge lies in manag-
ing inventory when the actual demand is uncertain and the forecast, provided by
the partner, still has room for improvement in terms of accuracy. The inventory
management policy should effectively handle stochastic demand and support to
mitigate the risk of stockouts while concurrently minimizing overall warehouse
and distribution expenses.

• Transport utilization: An important aim of this study is to enhance transporta-
tion utilization, as explained in Section 1.3. The selected policy should optimize
truck or container utilization through proactive planning and the consolidation
of orders from a partner.

Mentzer et al. (26) describe two interesting inventory management policies that cen-
ter around enhancing distribution, namely Distribution requirements planning (DRP)
and Vendor Management Inventory (VMI). These policies are elaborated upon and
assessed based on the aforementioned criteria.

Distribution Requirements Planning. DRP is an inventory management approach
focusing on optimizing the distribution and allocation of finished goods to meet cus-
tomer demand efficiently while minimizing overstocking. Ho (15) argue that the most
successful implementation of DRP occurs in a multi-facility supply chain, leveraging
trans-shipment possibilities. Additionally, DRP tackles uncertainty in demand by rely-
ing on demand forecasts and maintaining appropriate safety stock levels to anticipate
and buffer against fluctuations. Notably, DRP enhances transportation efficiency by
optimizing the distribution network and planning efficient transportation routes, em-
phasizing improvements in logistics rather than focusing solely on order quantity and
frequency enhancements.

Vendor Management Inventory. VMI is a collaborative inventory strategy where
the supplier is responsible for monitoring and replenishing the customer’s inventory
to minimize costs and optimize stock levels. VMI is particularly effective in manag-
ing the demand for finished goods that are uncertain and influenced by various fac-
tors. The continuous communication and information sharing between the supplier
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and the buyer enable a more responsive approach to changes in market conditions
or unexpected demand variations. Besides, VMI contributes to enhancing transport
utilization by allowing the supplier to optimize shipment quantities and frequencies
based on the actual demand and inventory levels (31).

While DRP primarily emphasizes optimizing the distribution network and effi-
cient transportation routes, VMI centers on customer inventory management. For this
study, VMI meets all the criteria. It allows for a push approach and can be tailored
for a single facility approach. VMI effectively handles both independent and stochas-
tic demand while also improving transport utilization. Consequently, we delve into a
detailed exploration of the VMI approach in the Section 3.2.

3.2 Vendor Management Inventory

Vendor Management Inventory (VMI) is a supply chain management strategy, where
the supplier or vendor takes responsibility for managing the inventory levels of their
products at their customer in the next echelon of the supply. In a traditional inven-
tory management system, the customer is responsible for ordering and maintaining
the inventory levels. However, in a VMI system, the vendor monitors the customer’s
inventory and replenishes it as needed. Various companies already adopted either a
full-fledged implementation or a partial VMI implementation, which differs in terms
of ICT support and agreed functions of the vendor. Vigtil and Dreyer (43) identified
current inventory level and sales forecasts as the most valuable information for sup-
pliers to improve their planning of replenishment processes in situations where VMI
is considered. Figure 3.1 visualizes the information and material flow in a two-stage
VMI supply chain.
Van der Plas (41) presents a case study where an improved VMI framework is imple-
mented inside the Dutch supply chain of Heineken. This study carries out a simu-
lation study that models the VMI process and evaluates the performance of the VMI
based on three KPIs: transport utilization, stocks levels, and out-of-stock performance.
This study concluded that there is a substantial increase in transport utilization and
a decrease in out-of-stock levels obtained through VMI collaboration. Borade and
Sweeney (5) presents another successful example of the implementation of VMI in a
bread-manufacturing company, where the retailers are geographically dispersed and
have different demands each day. This study considers the distribution of one single
product to multiple retailers, where vehicles are assumed identical and unsatisfied de-
mand is assumed a stock out. The results show that the VMI decisions help to improve
profit, vehicle utilization, and service levels. Table 3.1 explains the potential strengths
and weaknesses of VMI implementation.
The objective of this research is to reduce the total warehouse and distribution costs
of a partner by modifying its order profile, such that the transport utilization is opti-
mized. Implementing a full or partial VMI collaboration sounds promising to achieve
this goal.
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Figure 3.1: Information and material flow in a two-stage VMI supply chain presented
by Gronalt and Rauch (13)

Table 3.1: Strengths and weaknesses of Vendor Management Inventory-collaboration

Strength Weakness

• Prevents ’bull-whip’ effect (22)

• Unite vendor and retail as a team
for logistical planning (5)

• Establish trust among supply chain
partners (21)

• Increased flexibility in the manu-
facturer’s operations (34)

• Reduce demand variations (21)

• Forecasting ability of the retailers
(31)

• Insufficient visibility of the whole
supply chain (41)

• ERP-applications necessary for
data sharing (31)
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3.2.1 Inventory Policy Components

Various inventory policies exist that are distinct in terms of periodic versus continu-
ous review and fixed versus variable lot size. Typically, continuous review systems re-
quire less safety stock, whereas periodic review systems facilitate coordination across
multiple items. Weißhuhn and Hoberg (44) proposes a reorder corridor policy, where
besides an order quantity a maximum order level is introduced. This corridor policy
provides the opportunity to enhance transport utilization.

Safety Stock (ss)

According to Axsater (2), inventory control is among other things performed by the
calculation of the safety stock, which maintains the availability of the goods. Safety
stock refers to the additional quantity of a product or inventory that a company holds
to mitigate the risk of stockouts or shortages caused by uncertainties in demand, sup-
ply chain delays, or other unexpected factors. In essence, safety stock acts as a buffer
to ensure that there is sufficient inventory available to meet customer demand even
when there are fluctuations or uncertainties in the supply and demand patterns. One
of the rules for calculating safety stock which is frequently referred to as the standard
formula, makes the common assumption that the demand per cycle is normally dis-
tributed (35). The formula for calculating the safety stock is as follows:

ss = z × σd ×
√

L (3.1)

where σd is the standard deviation of the demand during the lead time and z is the
safety factor which depends on the target customer service level, such that

P[demand during lead time ≤ z] = target customer service level (3.2)

The target customer service level is often set by business policy, for example, 95%.

Reorder Point, r

The reorder point is another factor that needs to be determined for inventory control.
A reorder point is the inventory level at which a new order should be placed to re-
plenish stock before running out. It can be determined by the following formula (24):

ri(t) =
t+L

∑
t

Fi(t) + ss (3.3)

where ri(t) stands for the dynamic reorder point of item i. The reorder point is the
sum of the safety stock plus the expected demand during the lead time. The lead time
is considered static. When the stock level drops below the value of the reorder point,
a new order is placed that will be delivered after the given lead time.

Initial Order Quantity, q

Under normal circumstances, the initial order quantity for an item is based on the Eco-
nomic Order Quantity (EOQ), assuming that the demand for the product is constant
over time (1).

q =

√
2Dc

h
(3.4)
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where D is the expected demand during the lead time and equals ∑t+L
t Fi(t). h and

c represent the inventory holding costs per unit and the ordering cost of the buyer,
respectively. Yao et al. (45) assumes that the buyer’s order quantity (Q) and the sup-
plier’s order quantity (q) are chosen under VMI such that k = Q/q equals a natural
number. This means there are k replenishments of quantity q during each supplier’s
inventory cycle. This leads to the following buyer’s order quantity:

q =

√
2cD

H + h
(3.5)

where H represents the inventory holding cost of the supplier. In his study, Van der
Plas (41) proposes a method where the order quantity is based on the demand forecast
of the next period.

Upper Stock Level, USL

Another important choice concerns the maximum stock level, which must be deter-
mined to prevent overstocking, avoid obsolescence, and control holding costs. Van der
Plas (41) suggests that a range between the safety inventory level and the maximum
stock level provides the opportunity to enhance transport utilization. The literature
describes two situations: the target is expressed in pieces or days of stock (25). Van der
Plas (41) proposes the following formula to calculate the maximum stock level in
pieces:

USLi =
t+L+x

∑
t

Fi(t) (3.6)

where USLi stands for the maximum stock level of item i and x is a predetermined
factor agreed between the vendor and retailer to determine the maximum stock level.
In general, the literature assumes the upper limit of stock has already been decided
based on negotiations between the vendor and the buyer, considering the demand for
the item and the warehouse capacity of the buyer (14). Chakraborty et al. (6) imposes a
penalty cost for overloading the buyer with inventory, which is charged for every unit
that exceeds the upper limit. This technique is different from setting the maximum
storage limit since it now allows the inventory level to be higher than the upper stock
level.

3.2.2 Replenishment Strategies

The integration of VMI systems facilitates the vendor’s capacity to refine the ordering
profile of the retailer. When the inventory of a specific item falls below a predefined
reorder point, an automated purchase order is promptly initiated. However, to derive
an optimal order, a systematic method for order optimization must be considered.
Van der Plas (41) elaborates on the VMI design implemented in the Dutch supply
chain of Heineken. This study introduced three different replenishment methods for
optimizing transport utilization, they are as follows:

• In the first method, the decision is not to fill up the initial partly loaded truck.

• The second method adds not more than one pallet extra of a product. The pallets
are selected based on the demand forecast of the item in descending order.
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• The third fill-up method selects the product with the highest demand and adds
the maximum allowed pallets from an item. Van der Plas (41) states that this
method is preferred less when the turnover of inventory is relatively slow since
it can lead to overstocking.

Weißhuhn and Hoberg (44) suggests a comparable replenishment approach for situa-
tions where the order does not utilize the full capacity. In such instances, the reorder
points for items are incrementally raised by one unit of inventory. This process ensures
the generation of a new order that fully utilizes the available capacity.
There are two other inventory policies that can be adopted within the VMI, namely
Just-in-time (JIT) and Economic Order Quantity (EOQ).

Just-In-Time. JIT is an inventory management approach aiming to minimize over-
stocking by receiving goods and producing items only when they are needed in the
production process. JIT can be applied to handle independent demand, but it may
require more sophisticated forecasting compared to situations with more predictable
demand patterns. It is considered a pull approach, which means that the amount and
time of material flow are determined by the rate and time of the actual stock con-
sumption (27). According to Bon and Garai (4), implementing JIT involves the direct
delivery of finished goods to buyers, leading to numerous small deliveries that do not
align with our criteria for optimizing full truck loads. Additionally, they emphasize
that JIT advocates for maintaining small inventories and minimizing buffer stock. The
performance of JIT approach relies heavily on the higher echelons, and any delays or
disruptions in production or supply chain can result in stock outs. Consequently, this
strategy does not contribute to maintaining the cycle service level in the presence of
stochastic demand.

Economic Order Quantity. EOQ is an inventory management approach that calcu-
lates the optimal order quantity of independent demand to minimize total inventory
holding and ordering costs, balancing the probability of understocking and overstock-
ing. It is generally considered a push approach and it can be applied to both central-
ized and decentralized inventory management. EOQ is more suitable in situations
with stable demand, since it assumes a constant demand rate and known order and
holding cost (19).

3.3 Solution Methods for Mathematical Models

Knowing that we will be introducing a VMI-collaboration, we can now explore the
methods presented in the literature for solving the optimization problem. Broadly
speaking, the literature suggests two options for tackling the issue: either solving the
mathematical model to achieve optimality or employing meta-heuristics to find a near-
optimal solution.
A mathematical programming approach provides advantages in optimization prob-
lems due to its ability to handle both continuous and discrete variables, allowing for
more optimal solutions. It also allows the expression of many types of constraints.
However, solving optimally risks high runtime, even in linear systems with few con-
straints but large solution spaces. The prediction of the runtime of a MILP model is
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difficult and can vary wildly with different inputs (16). The greatest challenge of using
a MIP model with a large scale is dealing with long runtime and sometimes even the
inability to find a feasible solution (18).
Meta heuristics are widely applied to address NP-hard problems, offering approaches
to tackle computational challenges. According to Glover and Kochenberger (12), meta-
heuristics are a type of algorithm that is used to find approximate solutions to solve
mathematical models. They are often used when the exact solution is too computation-
ally expensive to find. Meta heuristics function by iterative improving on a solution
until it reaches a point where the solution is considered good enough as a final solu-
tion. Balancing exploration and exploitation is crucial in heuristics, as it enables the
algorithm to effectively search for promising solutions while also refining its focus on
areas likely to yield optimal results. Exploration diversifies the search space, uncover-
ing new potential solutions, while exploitation intensifies efforts in promising regions,
refining and maximizing the chances of finding the global optimum in optimization
problems (32). The ability of meta-heuristics to provide near-optimal solutions, within
a reasonable time frame, makes them suitable for a wide range of applications. How-
ever, the reliance on heuristics may result in solutions that are not guaranteed to be
globally optimal.
In their study, Borade and Sweeney (5) examine a multi-retailer, single-vendor, single-
item VMI model that optimizes the inventory levels of the retailer, vehicle routes, and
vehicle utilization to maximize profits for both the retailer and the vendor. The objec-
tive is to determine, for each discrete period, the quantity to be shipped to each retailer
and the vehicle route. The first part of the problem is formulated as a MILP model and
solved to optimally, while a GA meta heuristic is employed for vehicle routing. This
study highlights the suitability of the GA-approach in addressing maximization prob-
lems. Kaasgari et al. (20) formulate the VMI model as a nonlinear program, where
they consider a two-level multi-retailer, single vendor, single-item supply chain with
perishable products. An GA and Particle Swarm Optimization (PSO) algorithm were
developed for solving it appropriately. It was presented that the PSO algorithm has
better performance for solving the problem in this paper than the GA. Najafnejhad
et al. (28) propose a study where a multi-retailer, single-vendor, single-item VMI is
modeled through a nonlinear programming model, and is solved by the meta-heuristic
Imperialist Competitive Algorithm (ICA). They employed this new algorithm since it
shows an accurate and fast solution compared with PSO and GA.
In the subsequent two sections, we provide detailed elaboration on two VMI models
outlined in the literature and discuss their respective solution methods. These models
offer intriguing features that complement our research.

3.3.1 Single-retailer, Single-vendor, Multi-item Model

Pasandideh et al. (30) presents a nonlinear programming model, as shown in Table 3.2,
designed specifically for a system that partly resembles our research focus: a single-
vendor, single-retailer, multi-item scenario. The primary goal of this model is to min-
imize overall distribution and inventory costs, with the research taking into account
the following assumptions:

1. Single-vendor, single-retailer supply chain

2. There are n products
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3. The planning horizon is infinite

4. For each product shortage is allowed and back-ordered (ϕ ̸= 0 and π = 0)

5. The order deliveries are assumed instantaneous, so the lead time is zero

6. The prices for all products are fixed in the planning period

7. The production rate for all products is infinite (EOQ model)

8. The customer’s demand rate for all products is deterministic

9. The vendor’s storage capacity for all products is limited

10. The total number of orders for all products is limited

This model diverges from our research in several aspects: it assumes zero lead time,
lacks consideration of transportation modes, and assumes a deterministic demand.
Because of its nonlinear nature, the authors propose solving the model using meta-
heuristics, particularly the GA approach (29; 9; 33; 30). Cárdenas-Barrón et al. (9)
stated in their study that in some cases, the GA can be computationally expensive,
and therefore proposed a new algorithm, called the golden algorithm. This algorithm
does not require tedious computational effort and obtains the solution in a very short
time.

3.3.2 Stochastic Demand Model

In many real-world situations, the values of some parameters might be uncertain,
whereas, in traditional optimization models, the objective is to find an optimal solu-
tion assuming the exact values of all input parameters. Verderame et al. (42) presents
an overview of methods that have been applied in the literature to address uncertainty
in input parameters. They identify robust programming, chance constraint program-
ming, and fuzzy programming as promising approaches.
Robust programming is an optimization approach that seeks to find a solution that
performs well under the worst-case scenario within the predefined value range of the
parameter. The goal is to ensure that the solution remains acceptable across all possi-
ble values. A benefit of robust programming is that it does not require any distribution
for the uncertain parameter. A drawback, however, is that it uses the worst-case sce-
nario, which means that the output of the model can deviate significantly from the
optimal solution (38).
Chance Constraint Programming (CCP) provides a framework for handling uncertain-
ties by incorporating probabilistic constraints into the optimization model (23). An
assumption made in the CCP model is that the distribution of the uncertain parameter
demand is known. Zhang et al. (46) shows how the original soft constraint 3.7 is then
formulated as a chance constraint 3.8 by including the distribution function with mean
µ and standard deviation σ and the predefined probability Kα. This method is partic-
ularly applicable in scenarios like the cycle service level, where GBD aims to meet all
demand in at least 95% of the cases.

n

∑
j=1

ajxj ≥ b (3.7)
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Table 3.2: A nonlinear programming model for a system involving a single vendor,
single retailer, and multiple items, taking deterministic demand into account, was ini-
tially introduced by Pasandideh et al. (29) and subsequently applied in the studies of
both Cárdenas-Barrón et al. (9) and Sadeghi et al. (33)

Parameters

AS
j The vendor’s fixed ordering costs per order of the jth product

AR
j The retailer’s fixed ordering cost per order of the jth product

Dj The buyer’s demand rate of product j in a period
Pj The production rate of product j in each period
π The fixed backorder cost per unit (not depending on the time)
ϕ The fixed backorder cost per unit per time unit hjR The holding cost of product j
per unit held in the retailer’s store in a period (hbj = iCj)
f j Space occupied by each unit of product j
F The vendor’s available storage capacity for all products

ρJ Level of inventory depletion relative to the quantity ordered (ρj = 1 − Dj
Qj

)

M The total number of orders for all products in each cycle
n The number of products

Decision Variables

Qj The order quantity of product j in a cycle
bj The maximum backorder level of product j in a cycle

Objective Function

min TC = ∑n
j=1(

Dj
Qj
(AS

j + AR
j ) +

hBj
2Qj

(Qj − bj)
2 +

ϕb2
j

2Qj
+

πbjDj
Qj

Constraints

∑n
j=1 ρj f jQj ≤ F

∑n
j=1

Dj
Qj

≤ M

Qj, bj ≥ 0; j = 1, . . . , n
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n

∑
j=1

ajxj ≥ µ + Kασ (3.8)

In many cases, however, it may be difficult to determine the probability distribution of
the underlying random parameter, in most cases the demand, due to insufficient data.
Fuzzy programming is another method alternative to using probability functions. In
fuzzy programming, constraints and objectives can be expressed in fuzzy terms allow-
ing for partial membership within fuzzy sets. Instead of using Boolean variables, the
binary variables are turned into continuous variables (3).

Choudhary (8) present a single-retailer, single-vendor, single-item system where
stochastic demand is incorporated using a chance constraint. The model is presented
in Table 3.3 and makes the following assumptions:

1. Two-echelon serial supply chain considering single-retailer, single-vendor

2. The planning horizon is fixed. Each discrete time period t = 1, . . . , T is of same
duration

3. The customer’s demand rate for the product is stochastic, incorporating the static-
dynamic uncertainty strategy. The demand in each period is normally distributed
with a known probability density function.

4. Different periods have mutually independent demands, which vary over time

5. For each product shortage is allowed and backordered. The maximum amount
of backorders is restricted by a cycle service-level requirement.

6. The production rate for all products is infinite (EOQ model)

7. Lead time is not incorporated

8. The retailer’s storage capacity is unlimited

This MILP model is optimally solved within a reasonable time frame. To streamline
the model and prevent lengthy computation times, the authors limit it to twelve time
periods, each corresponding to one month. They defend this simplification by point-
ing out that the orders are typically received on a weekly or monthly basis, rather than
daily.
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Table 3.3: A Mixed Integer Linear Program (MILP) model of a single-vendor, single-
buyer, single-item system considering stochastic demand presented by Choudhary (8)

Parameters

dt the demand in period t (a normally distributed random variable)
ot fixed cost incurred by the retailer per order issued in period t
hr

t Inventory carrying cost per item per period at the retailer in period t
αc Target cycle service-level requirement at the retailer
St Fixed cost incurred by the supplier per setup in period t
hs

t Inventory carrying cost per item per period at the supplier in period t
β Supplier’s efficiency factor in issuing an order on behalf of the retailer under VMI
(1− β)ot Supplier’s cost of issuing an order on behalf of the retailer in period t under
VMI
M A large number
Ir
t Inventory level of the retailer at the end of period t

Is
t Inventory level of the supplier at the end of period t

Ir
0 The stock on hand of the retailer at the beginning of period 1

Decision Variables

Xtr Replenishment quantity at the retailer from the supplier in period t
Xts Quantity that the supplier produces at the end-of-period t
zr

t Binary variable indicating whether the replenishment order is placed and deliv-
ered or not in period t
zs

t Binary variable indicating whether the supplier produces or not in period t

Objective Function

min TC = ∑T
t=1(StZs

t + (1 − β)otzr
t + hs

t Is
t ) + ∑T

t=1 hr
t E[Ir

t ]

Constraints

Is
t−1 + xs

t − xr
t = Is

t
xs

t ≤ (∑T
k=t dk)zs

t
E[Ir

t−1] + xr
t − dt = E[Ir

t ]

P(E[Ir
t ] ≥ 0) ≥ αc

xr
t ≤ Mzr

t
xs

t , xr
t , Is

t ≥ 0
zs

t , zr
tϵ{0, 1}
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3.4 Summary

Overall, our study presents optimization models focusing specifically on order quan-
tity and frequency. Our main aim is to minimize overall warehouse and distribution
expenses by adjusting the order quantity and frequency for each partner, thereby im-
proving transport utilization. Extensive literature illustrates successful VMI imple-
mentations, making the adoption of a partial VMI approach in the context of GBD’s
business deemed adequate. This research explores a VMI collaboration within a single
vendor, single supplier, multi-item supply chain, considering stochastic demand and
a constant lead time. Table 3.4 summarizes noteworthy VMI models found in the lit-
erature. Our study addresses the gap in the literature by considering a single retailer,
single vendor, multi-item supply chain with stochastic demand, constant lead time,
and multiple transportation modes. While various characteristics have been individ-
ually introduced in prior literature, they have not been integrated into a single model.
Given the linear nature of our model, we anticipate it can be solved within a reason-
able time frame. Therefore, we plan to address the VMI collaboration by optimally
solving the MILP. In Chapter 4, we propose and implement this model.
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Table 3.4: Classification of VMI models based on supply chain system, objective function, decision variables, demand type, and so-
lution approach. While each model shares similarities with our research, none encompasses all aspects. Consequently, our study
integrates components from various sources. These papers are interesting as they each contribute aspects implemented in our re-
search.

Literature Supply Chain System Objective Function Decision Variables Type of Demand Solution Method

Borade and Sweeney (5) MSS MAX OA, I, R S MILP, GA

Choudhary (8) SSS MIN OA, PQ S MILP

Kaasgari et al. (20) MSS MIN OA S GA, PSO

Najafnejhad et al. (28) MSS MIN OA, I, RF D ICA

Pasandideh et al. (30) SSM MIN OA, BO D GA

Cárdenas-Barrón et al. (9) SSM MIN OA, BO D Golden Algorithm

Sadeghi et al. (33) SSM MIN OA, BO D GA

Pasandideh et al. (29) SSM MIN OA,BO D GA

This research SSM MIN OA, T S MILP

Supply Chain: SSS (Single-retailer, single-vendor, single item),
MSS (multiple-retailer, single-vendor, single-item),
SSM (Single-retailer, single-vendor, multi-item),

Objective: MIN (Minimize total inventory and distribution costs),
MAX (Maximise retailer and supplier profit ),

Decision Variables: OA (Order Quantity), BO (Max. Backorder level),
PQ (Production Quantity), RF (Replenishment Frequency),
T (Transport Type), R (Routing), I (Inventory Level)

Demand Type: S (Stochastic), D (Deterministic)
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Model Design

The goal is to minimize the distribution and inventory expenses for each individual
partner, all while respecting capacity, inventory, and demand limitations. This chapter
formulates the model and we answer the third research question ”How can we apply
the modeling techniques outlined in the previous chapter to the specific GBD case and
modify them to enhance its operational performance?”. We assume that each partner
agrees to share complete information regarding performance, including sales forecasts
and inventory levels. In this section, we will elaborate on the model formulation of the
VMI, discuss how we handle stochastic demand, and ultimately present the complete
model. We will test the model using input values specific to one particular partner,
hereafter referred to as Partner X.

4.1 Model Formulation

4.1.1 Sets & Indices

In this study, we examine a supply chain characterized by a single-vendor, single re-
tailer, and multiple items. As detailed in Section 2.1.4, each partner possesses a dis-
tinctive portfolio of SKUs introduced to their market. The total number of SKUs is
denoted by J. The schedule is established at the beginning and holds for one year.
Adopting a finite horizon approach is well-suited for this problem, allowing us to ex-
amine each year separately, especially since GBD closes all orders at the end of the
year. The planning horizon spans 365 days and is denoted by T.

• T = number of simulation days

• J = number of items

• Item j ∈ {1, 2, 3, . . . , J} = set of all items

• Day t ∈ {0, 1, 2, . . . , T} = set of all days

4.1.2 Parameters

In Section 2.3.1, we clarify that every partner associated with GBD submits a monthly
forecast. It is crucial to acknowledge the uncertainty inherent in actual sales. To ad-
dress this uncertainty, three variables are introduced. The first variable captures the
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forecast provided by the partner for item j on day t and is denoted by Fjt. FEjt is a
stochastic variable representing the forecast error. The derivation of the distribution
for this error variable is explained in detail in Section 4.2. The actual demand rate
for each item on each day is then determined by multiplying the forecast with the
corresponding forecast error.

• Fjt = forecast of item j for day t

• FEjt = forecast error for item j at day t, normally distributed

• djt = actual demand of item j on day t, equals
Fjt

1+FEjt

To address the inventory constraint, we incorporate certain parameters. The initial
stock of item j at the start of the planning period must be sufficient to meet the antic-
ipated demand during the lead time. Failure to meet this requirement would result
in an immediate backorder. Additionally, GBD has reached an agreement with the
partner regarding the maximum allowable inventory level for each product, which
enables GBD to change the order quantity to enhance transport utilization. Moreover,
GBD aims to deliver items to Partner X within an 8-week lead time. This lead time
encompasses production time, warehouse picking at GBD, and transportation to the
customer. Historical data provides a strong foundation for assuming a fixed lead time
of 8 weeks for Partner X. The data indicates that in approximately 90% of cases, the
lead time aligns with the 8-week estimate.

• Ij0 = inventory level of item j at the beginning of day 1

• IMAX
j = maximum inventory level for product j

• L = lead time of every item in days

To optimize the model, we must take into account the capacity of various transporta-
tion modes. Partner X utilizes both 20-foot and 40-foot containers for sea shipments,
depending on the order quantity. As detailed in Section 2.1.3, items may also be dou-
ble stackable. In such cases, the space occupied by the item is 1; otherwise, it is 2. GBD
strives to ship containers with a minimum utilization of 90%. We understand that
lowering costs will likely automatically lead to increased transport utilization, but for
GBD, it is crucial that the 90% is met to prioritize cost efficiency and the C02 reduction.
To achieve this, we introduce two variables specifying the minimum number of pallets
required for a container load.

• KMAX
20 = total capacity of a single 20 feet container

• KMAX
40 = total capacity of a single 40 feet container

• k j = space occupied by one unit of item j

• KMIN
20 = minimum number of pallets for a single 20 feet container load

• KMIN
40 = minimum amount of pallets for a single 40 feet container load
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In Section 2.1.2, we elaborate on how warehouse and distribution costs are assessed.
Firstly, there is a warehouse tariff applied per pallet, determined annually by Finance
based on the preceding year’s performance. For the year 2024, the warehouse tariff
for PAX stands at 13.36 per pallet. Additionally, we take into account order place-
ment costs, which are directly invoiced to GBD. Moreover, Partner X has predefined
transportation costs for 20-foot and 40-foot containers, as outlined in Section 2.4.

• T20 = fixed transportation cost of a 20 feet container

• T40 = fixed transportation cost of a 40 feet container

• O = fixed order cost

• V = warehouse tariff charged per pallet shipped

• h = holding cost per item per day

4.1.3 Auxiliary Variables

Auxiliary variables refer to extra variables incorporated into a model to aid in the
analysis or estimation of other variables. While these variables may not be the main
focus, they serve a supportive role in the modeling process. To incorporate lead time
into the model, we introduce a variable that tracks the number of items in transit each
day. Furthermore, a dynamic variable is introduced to monitor the daily inventory
levels of each item. The parameters for the forecast error are also modeled as auxiliary
variables.

• yjt = number of pallets of item j in transit at day t

• Ijt = inventory level of item j at the end of day t

• FEjt = forecast error for item j at day t, normally distributed with mean µ and
standard deviation σ

4.1.4 Decision Variables

The objective of this model is to establish the daily order quantity for each product.
GBD strives to provide only full pallet equivalents; thus, treating a single item j as
equivalent to one pallet of item j. In our model, we assume that ordering pallet layers,
individual boxes, or pieces separately is not feasible, although it is currently possible.
We assess the need to place an order daily. Furthermore, when choosing to proceed
with an order, it is necessary to determine the number of transportation modes needed.
Concerning Partner X, the option is available to select either a 20-foot or a 40-foot
container. To accomplish this, we introduce four decision variables.

• Qjt = order quantity of product j on day t

• zt = binary variable indicating whether a replenishment order is placed on the
day t

• N20
t = number of 20 feet containers needed for the order on day t (integer)

• N40
t = number of 40 feet containers needed for the order on the day t (integer)
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4.2 Modeling Demand Uncertainty

A crucial element in the optimization process involves accounting for the uncertainty
in the demand. To properly implement this in the model, it is necessary to mathemat-
ically define the demand and its associated uncertainty. GBD receives a forecast on
monthly basis for each SKU of Partner X. In our model, we emphasize capturing the
uncertainty between these forecasts and the actual sales. This section aims to iden-
tify a suitable probability distribution that aligns with the data and explains how the
stochastic demand is incorporated into the model.

4.2.1 Demand Distribution

Every month, the partner provides a forecast for the demand of the upcoming month
on SKU level. Given the dynamic nature of the demand, which is influenced signifi-
cantly by market conditions, finding a probability distribution that accommodates all
demands throughout the year is challenging. In our model, our focus lies in under-
standing the actual demand patterns relative to the respective monthly forecasts. GBD
has archived the 2023 forecasts of Partner X, enabling us to assess forecast errors. If
we successfully model a distribution for these forecast errors, it can serve as an input
for the demand variable. This distribution essentially characterizes the forecasting ac-
curacy of Partner X.
For the year 2023, Partner X provided forecasts for 20 SKUs, yielding a total of 240 fore-
cast errors. We operate under the assumption that the forecasting proficiency of the
partner remains consistent with that of 2023, and the market conditions exhibit compa-
rable behavior. Therefore, we can use this data for our model. Shcherbakov et al. (37)
examines various forecast error calculation methods and advocates for the adoption of
the Mean Absolute Percentage Error (MAPE) in some situations. This recommenda-
tion is based on the method’s attributes: it is a straightforward and easily interpretable
measure, it is scale-independent, and it accounts for the absolute percentage difference
for each observation. A notable shortcoming of this method is the appearance of di-
vision by zero when the actual sales equal zero. In our specific scenario, it becomes
evident that when actual sales register as zero, the forecast also equals zero. There-
fore, a potential solution is to manually adjust the forecast error for these data points
to zero. The MAPE formula is as follows:

Mean Absolute Percentage Error =
Forecast − Actual Sales

Actual Sales
(4.1)

We test whether these data points follow any distribution using hypothesis testing.
Figure 4.1 shows a histogram of the forecast error for Partner X. Given the observable
similarities between the plot and the normal distribution distribution, we start with
assessing this distribution. Our null hypothesis is that the data fits a normal distribu-
tion, and we evaluate this using the Chi-Square Test. At a 95% significance level, we
cannot reject the null hypothesis. Consequently, we assume a normal distribution with
mean (µ) 0,094 and standard deviation (σ) 0,297. The forecast is on a monthly level,
while our model is daily. Following the discussion with the partner on how demand
is spread across the month, we can assume that sales are uniformly distributed over
the entire month.
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Figure 4.1: Histogram of the forecast error of 2023 of partner X.

4.2.2 Chance Constraint

Tarim and Kingsman (39) evaluate the static uncertainty model, which refers to a mod-
eling approach in which uncertainty is considered constant over time. In the context
of uncertainty modeling, a static model may be appropriate when the factors influenc-
ing the system are deemed to be stable or when the time dimension is not a significant
consideration. In our model, we can assume that the forecasting capability of the part-
ner remains constant over time, and the input parameters of the distribution remain
consistent throughout the planning horizon. The model is designed for a relatively
brief period, during which the partner has had limited opportunities to enhance their
forecasting ability. We retain the following assumptions, as introduced by Tarim and
Kingsman (39):

• At the beginning of the planning period, the exact demand is not known with
certainty. The actual demand is uncertain and can be calculated by dividing the
forecast of item j on day t Fjt by the stochastic forecast error parameter FEt plus

one, resulting in this formula:
Fjt

1+FEjt
. The actual sales are represented by the

stochastic parameter djt. In our research, the forecast error FEt follows a normal
distribution with a mean of 0,094 and a standard deviation of 0,297 as explained
in previous section.

• In the event of a stockout, all demand is backordered and fulfilled as soon as the
stock becomes available. A target service level of α has been established between
GBD and Partner X. This signifies that the probability of a product’s inventory
level being non-negative is set to α. According to Tarim and Kingsman (39),
we can assume that α incorporates the cost of backorders, thus allowing us to
disregard shortage costs in the model.

As detailed in Section 3.3.2, employing the Chance Constraint Programming (CCP) is
an effective approach for incorporating uncertainty into the model, especially when
the probability distribution of the uncertain demand is known. This method is well-
suited for scenarios involving cycle service levels. Our model satisfies both of these
criteria. Consequently, we introduce a constraint that ensures the probability of ex-
periencing stockouts does not exceed 1 − α. The general form of this equation is as
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follows:
P(Ijt > 0) ≥ α ∀j, t (4.2)

The inventory level for day t is determined by adding the inventory from the previous
day to the number of items received on that day and subtracting the demand for that
day. In essence, the inventory on day t is the sum of the initial inventory on day 0 and
the difference between the order quantity and the cumulative sales up to day t. When
applied to the context of GBD, this formulation leads to the following constraint.

P(Ij0 +
t−L

∑
i=1

Qjt >
t

∑
i=1

Djt) ≥ α ∀j, t (4.3)

As we know that the forecast error is normally distributed, we can transform this
chance constraint into its deterministic counterpart based on the probability density
function in a similar fashion to Tarim and Kingsman (39). If you have a sum of nor-
mally distributed random variables, the sum follows a normal distribution as well.
The mean of the sum is the sum of the means, and the variance of the sum is the sum
of the variances, assuming independent demand. Therefore, we can replace constraint
4.3 with constraint 4.4:

Ij,0 + ∑t−L
i=1 Qjt − ∑t

i=1 µDjt√
∑t

i=1 σ2
Djt

≥ ϕ−1(1 − α) ∀j, t (4.4)

, where √√√√ t

∑
i=1

σ2
Djt

=

√√√√ t

∑
i=1

F2
jt ∗ σ2

FEj,t
(4.5)

t

∑
i=1

µDjt =
t

∑
i=1

Fj,t ∗ µFEj,t (4.6)

4.3 Full Model

4.3.1 Objective Function

The primary aim of this research is to decrease warehouse and distribution costs. Con-
sequently, the objective function in the model is a minimization function encompass-
ing overall costs, which consist of transportation, order, variable warehouse, and in-
ventory holding costs. The combined expenses for warehouse and distribution occur
at two distinct locations, either under the responsibility of the partner or the GBD
team. Inventory costs are managed by the partner, while the responsibility for trans-
portation costs varies based on the agreed incoterm. However, distribution and ware-
house costs fall under the purview of the GBD team.

• Transportation costs: ∑T
t=1 zt(N20

t T20 + N40
t T40)

• Order costs: ∑T
t=1 ztO

• Inbound warehouse costs: ∑T
t=1 ∑J

j=1 ztQjtV
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• Inventory costs: ∑T
t=1 ∑J

j=1 hE[Ijt]

The transportation costs are calculated by multiplying the quantity of each container
type ordered by the predetermined tariff. Order costs comprise administration and
documentation charges assessed per order. Inbound warehouse costs are determined
by a flat fee per pallet, computed by multiplying the total number of ordered pallets
with the specified fee. Finally, inventory costs are derived by multiplying the antici-
pated inventory level by the daily holding cost per item. Combining these expressions
yields the following objective function:

min TC =
T

∑
t=1

(zt(N20
t T20 + N40

t T40) + ztO +
J

∑
j=1

(ztQjtV + hE[Ijt])) (4.7)

4.3.2 Constraints

Capacity Constraints
Constraint A.2 guarantees that an order must not surpass the maximum load of a con-
tainer. Each container type is characterized by its specific maximum capacity, denoted
as KMAX

20 and KMAX
40 . The aggregate order quantity for a particular order must align

with the prescribed number of containers ordered.

J

∑
j=1

Qjtk j ≤ N20
t KMAX

20 + N40
t KMAX

40 ∀t (4.8)

Constraint A.3 guarantees that the containers meet a minimum load requirement,
identified as KMIN

20 and KMIN
40 . GBD strives to fulfill orders with a minimum container

utilization of 90%. The values of KMIN
20 and KMIN

40 are determined in accordance with
this 90% utilization criterion.

J

∑
j=1

Qjtk j ≥ N20
t KMIN

20 + N40
t KMIN

40 ∀t (4.9)

Inventory Constraints
The inventory level on day t should be equivalent to the inventory level on the pre-
vious day, increased by the quantity of items received on that day and reduced by
the demand on that day. Given the lead time, items ordered today will be received
only L days later. Additionally, the demand at day t is treated as a stochastic variable.
Constraint A.4 guarantees this principle.

Ijt = Ijt−1 + Qj,t−L − Djt ∀j, t (4.10)

GBD establishes an agreement with the customer specifying the maximum storage
capacity for each product at the customer’s warehouse, represented by IMAX

j . The
inventory level must consistently remain below the predetermined maximum stock
level for each item, as ensured by constraint A.5.

Ijt ≤ IMAX
j ∀j, t (4.11)
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In Section 4.2, we already introduced a constraint that handles the uncertainty in the
demand.

Ij,0 + ∑t−L
i=1 Qjt − ∑t

i=1 µDjt√
∑t

i=1 σ2
Djt

≥ ϕ−1(1 − α) ∀j, t (4.12)

When determining the new order quantity, it is essential to consider the quantity of
goods already in transit. The goods in transit on day t correspond to the item orders
placed from L days ago up to day t. The order quantity should exceed the anticipated
demand during the lead time, subtracting the current inventory level and the quantity
of goods already in transit.

yjt =
t

∑
i=t−L

Qjt ∀j, t (4.13)

Additionally, it’s necessary to incorporate a constraint that guarantees the binary vari-
able z[t] takes the value of one when an order is placed and zero otherwise. To achieve
this, we introduce a variable M, representing a sufficiently large number.

J

∑
j=1

Qjt ≤ M ∗ zt ∀t (4.14)

Qjt, Ijt, yjt ≥ 0 ∀j, t (4.15)

N20
t , N40

t ≥ 0 ∀t (4.16)

zt ∈ {0, 1} ∀t (4.17)

4.4 Summary

This chapter presents the formulation of the VMI model. We introduce a single-retailer,
single-vendor, multi-item VMI model considering stochastic demand and static lead
time. Our objective is to optimize overall warehouse and distribution costs by deter-
mining order volume and transportation mode at each time step. Stochastic demand
is captured through a chance constraint ensuring that orders can be directly deliv-
ered from stock 95% of the time (referred to as cycle service level), with forecast error
assumed to follow a normal distribution with mean µ and standard deviation σ. In
Chapter 5, we delve into the experimental setup, model validation, and results.
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Chapter 5

Validation and Performance

In the previous chapter, we formulated our VMI model. This chapter focuses on vali-
dating and evaluating the model’s performance to answer the fourth research question
”How does the new proposed solution perform, reviewed on total distribution costs
and transport utilization, compared to the current approach of GBD?”. Section 5.1 pro-
vides details on the experimental setup, including the performance metrics employed.
Section 5.2 assesses the model’s output to determine its alignment with real-world,
while Section 5.3 presents the findings and outcomes of the conducted experiments.

5.1 Experimental Setup

Throughout this report, we use the following definitions:

• Experiment: A single set of input configurations.

• Replication: Repeating the experiment under the same input conditions, but with
different random variables. The average of these replications represents the ex-
pected performance of the experiment.

• Scenario: Each outcome of a replication is referred to as a scenario. The total
number of scenarios is determined by multiplying the number of experiments
by the number of replications.

As explained in Section 3.4, we decided to solve the model optimally due to the lin-
earity of the mathematical model. To find the optimal solution for this mathematical
model, it must be translated into software equipped with an integrated solver capable
of managing large-scale MILP models. Two primary options presented in the litera-
ture are Gurobi and CPLEX, which both are compatible with a variety of programming
languages. Given our prior experience with employing Gurobi within Python, we de-
cide to use this to solve our mathematical model. We use Gurobi to solve the model
optimally on an HP ZBook Studio G5 with specifications Intel(R) Core(TM) i7-8750H
CPU @ 2.20GHz 2.21 GHz.

5.1.1 Performance Metrics

We conduct various experiments to assess performance under different conditions.
Our focus lies on four performance metrics:
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• Objective Value: The optimal value for warehouse and distribution costs under
the constraints and decision values defined in the model.

• Transport Utilization: Measures how effectively transportation resources are
employed to transport goods. This metric is determined by dividing the total
space occupied by an order by the capacity of the truck or container used for
transportation.

Transport Utilization =
Total Space Occupied

Total Capacity

=
∑J

j=1 Qjtk j

N20
t KMAX

20 + N40
t KMAX

40
× 100% ∀t

• Run Time: Refers to the time needed for the solver to find a solution, limited to
10 minutes per model.

• Optimality Gap: Indicates the solver’s proximity to an optimal solution, offering
valuable insights into model performance when computational times become
excessive.

Objective value and transport utilization are crucial as they reflect solution quality; in
our context, lower objective values indicate higher quality solutions, while also greater
transport utilization signifies better solutions. The runtime is influenced by various
external factors, meaning that running identical models with the same input values
and a deterministic solving approach can yield different computational times. This
variability complicates the comparison of this metric using actual runtime. To address
this challenge, Gurobi introduces a measure called ”work,” which is deterministic and
produces consistent results when running the same model multiple times. Therefore,
we utilize ”work” as an indicator of the model’s runtime. Figure 5.1 shows how the
computational time differs when solving the identical model, with a mean of 123.33
seconds and a standard deviation of 20.73. The number of work equals 228,839 and
remains constant for each replication. The peak in runtime observed at replication
26 could potentially be attributed to variances in concurrent background processes or
differences in memory allocation during that specific run.

5.1.2 Replications where no solution is found

In certain scenarios, our model encounters instances where it cannot find a feasible
solution within the allocated time frame of ten minutes. In such cases, we categorize
these runs as ’Time Limit Exceeded’. This categorization enables us to differentiate
between situations where the model is genuinely infeasible and cases where it simply
exceeds the specified work time. Particularly in models with more frequent checkups,
the occurrence of ’Time Limit Exceeded’ instances tends to rise. Consequently, we
introduce a new metric to quantify the number of replications unable to produce a
feasible solution. It is imperative to take this metric into account when analyzing the
results of the experiments.
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Chapter 5. Validation and Performance

Figure 5.1: Computational time when running the identical model 50 times. The run-
time has a mean of 123.33 (seconds) and a standard deviation of 20.73.

5.1.3 Experiments

To avoid immediate backorders, we established the initial stock level at Partner X’s
warehouse to ensure the inventory can meet demand during the lead time. Since or-
ders are only placed on day one and then take the lead time to arrive, it is crucial to
maintain adequate stock levels. These stock level ranges are determined through ini-
tial experiments; straying outside them would result in Gurobi flagging the model as
infeasible as it is a requirement that at least 95% of orders must be fulfilled directly
from the stock. Additionally, the transportation costs for both 20-foot and 40-foot con-
tainers are derived from 2023 data supplied by the logistic service provider. These
parameters remain static and unchanged throughout the experiments.
The variables under experimentation will be the number of time steps (T), the max-
imum storage capacity of each item in the warehouse of the partner(IMAX

j ), and the
forecast error denoted as FEjt.

Time Steps. In Section 4.1, our initial design of the VMI model focused on daily in-
ventory level checks. However, due to the relatively low daily demand from Partner
X, we intend to conduct experiments to determine the optimal time intervals for bal-
ancing performance metrics. We plan to assess inventory levels on a daily, weekly,
bimonthly, and monthly basis. Henceforth, we will denote this as checkup. The hy-
pothesis is that transitioning to less frequent checks will better suit the relatively low
daily demand and align with the lead time associated with GBD. Given this lead time,
daily fluctuations in inventory levels are unlikely to significantly impact our ordering
strategy. By adjusting the evaluation frequency, we anticipate maintaining sufficient
oversight while accommodating longer lead times. Furthermore, reducing the eval-
uation frequency from daily to less frequent intervals will minimize administrative
burdens.

Maximum Storage Capacity. In alignment with our Partner X, we adhere to a max-
imum storage capacity per item. Nonetheless, it is valuable to test the model’s per-
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formance under varying capacities per item. Hence, we introduce two scenarios:
medium, and high capacity. The medium capacity aligns with discussions with Part-
ner X, while the high scenario represents a capacity 20% more. Using the results, we
can provide recommendations to the partner to possibly increase their warehouse ca-
pacity.

1. Medium Storage Capacity: Corresponding to the storage capacity standards of
Partner X.

2. High Storage Capacity: Providing a 20% increase in capacity for each item.

Forecast Error. Furthermore, we explore the impact of forecast error. Forecast error
captures the variability in actual demand. To provide insight into the importance of
an accurate forecast, we conduct experiments with the following forecast accuracy’s:

• Medium Forecast Error: This error follows a normal distribution with a mean (µ)
of 0.094 and a standard deviation (σ) of 0.297.

• Low Forecast Error: This error is normally distributed with a mean (µ) of 0.094
and a standard deviation (σ) of 0.149.

• Perfect Forecast: This represents a completely accurate forecast, where the fore-
casted value matches the actual demand precisely.

To determine the expected values while preventing excessive runtimes, each simula-
tion model is replicated 50 times. Each replication is capped at a time limit of ten
minutes. Table 5.1 summarizes the experimental settings.

Lead Time. Currently, GBD operates on a make-to-order paradigm where lead times
typically span around two months, varying based on the partner involved. Many part-
ners have expressed interest in shortening these lead times. Hence, we are conducting
experiments with two lead time settings: two months and one month.

5.2 Output Validation

It is important to validate the output of the simulation to ensure that the model ac-
curately represents the real-world system, so it can be used as a predictive tool for in
our case the ordering schedule. Our validation process involves closely examining the
detailed order schedule and metrics of specific models. To simplify illustration, we
concentrate on validating a monthly-based model. Collaborating with a supply chain
specialist from the GBD team, we analyze the model’s results under various conditions
to determine their realism. We assess the performance by analyzing three categories
of input values: extreme initial stock levels, extreme holding cost, and the standard
settings, as summarized in Table 5.1.
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Table 5.1: Experimental settings summary: A total of 14 experiments were conducted,
each comprising 50 replications, resulting in a total of 700 scenarios. For detailed defi-
nitions, refer to Section 5.1.

Parameter Value

Supply Chain System

Items (J) 20
Lead Time (L) 2 months

1 month
CSL (α) 0.95

Costs

Transport Cost 20ft container (T20) €1, 435,−
Transport Cost 40ft container T40 €2, 175,−
Holding Cost (h) €1.40 per item per half a month

Warehouse Tariff (V ) €13.36 per unit

Order Cost (O) €100,− per order

Forecast Error
Forecast Error (FEjt) Perfect: µ = 0.094, σ = 0

Low: µ = 0.094, σ = 0.149
Medium: µ = 0.094, σ = 0.297

Forecast (Fjt) see Chapter B

Capacity

Max. 20ft-container load (KMAX
20 ) 22 pallet places

Max. 40ft-container load (KMAX
40 ) 50 pallet places

Min. 20ft-container load (KMIN
20 ) 20 pallet places

Min. 40ft-container load (KMIN
40 ) 45 pallet places

Space occupied (k j) 1 or 2 (depending on item characteristic)
Max. Inventory Level (IMAX

j ) Medium
High (+20%)

Simulation

Simulation horizon 12 months
Time step interval Monthly

Bimonthly
Weekly
Daily

Extreme Initial Stock Level. To evaluate the model’s performance, we focused on
a scenario where the initial stock level was exceptionally high, enabling it to meet
demand directly from stock with a high probability. We anticipated that under such
conditions, the total costs would primarily comprise holding costs, with negligible
transportation and ordering expenses due to the lack of necessity for placing orders.
The initial stock for each item was set at 400 pallets, while the maximum storage ca-
pacity was elevated to 500 pallets. The model indicated a total cost of €261, 392 , with
the entirety of this cost attributed to holding costs. Notably, no orders were initiated
as the initial inventory proved sufficient to satisfy demand without replenishment.
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Table 5.2: Example of an order schedule accompanied by the performance metrics
of a scenario considering monthly checkups, with moderate forecast error and stor-
age capacity (scenario = 1). The total cost equal €35, 176, transport utilization 99.08%,
number of work 32, 582 and optimality gap 3.1 ∗ 10−5.

Month
1 2 3 4 5 6 7 8 9 10 11 12 Total

Ordering Schedule
Order placed zt 0 1 1 1 0 1 1 1 0 0 0 0 6
No. 20-foot Container N20

t 0 0 0 0 0 0 0 0 0 0 0 0 0
No. 40-foot Container N40

t 0 1 2 3 0 2 2 3 0 0 0 0 13

Extreme Holding Cost. Exploring the model’s behavior under significantly high hold-
ing costs provides valuable insights for the validation process. When holding costs
surpass transportation costs, we anticipate an increase in order placements to meet
demand promptly. Adhering to the just-in-time principle, orders are triggered only
when needed, as holding excessive inventory incurs substantial expenses. To examine
this, we set the holding cost for each item at €500 per month. As anticipated, the model
results indicate an increase in the order frequency. Each month, an order is generated
to fulfill demand during the lead time with additional pallets included as necessary,
adhering to the minimum 95% transport utilization rule. Additionally, in this model,
the 20-foot containers are utilized more, as the cost of ordering such containers is lower
than holding the excess inventory.

Standard Settings. We also assess the model’s order schedule using standard input
settings. Upon examining the forecast, we observe a rise in expected total demand
from April to October, with approximately 50 pallets required each month. Conse-
quently, given the two-month lead time, we anticipate a higher order frequency in
February to June. We also project that no orders will be initiated in November and
December, as they would only arrive after our planning period due to the two-month
lead time. Table 5.2 illustrates an example order schedule for this model, along with
its performance metrics. This schedule confirms our hypothesis, where many contain-
ers were shipped in February till August, and no orders were placed in the last four
months. We can verify that we maintain a 95% cycle service level by observing in Ta-
ble 5.3 that the inventory level for all items consistently remains above zero.
Based on these experiments, we confirm the model’s performance and believe it ac-
curately reflects real-world scenarios. The following section expands on the model’s
performance under various realistic situations.

5.3 Results

This section delves into the findings of the experiments. Initially, experiments were
conducted to determine the optimal checkup frequency: daily, weekly, bimonthly,
monthly. Subsequently, we performed additional experiments to evaluate the effects
of varying storage capacities and forecast accuracy on the overall performance of the
model.
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Table 5.3: Illustration of the inventory levels, expressed in pallets, for the coffee and tea
SKU’s, corresponding to the model outlined in Table 5.2. The data indicates consistent
inventory levels above zero for all items, thereby ensuring a 95% cycle service level.
A scenario considering monthly checkups, with moderate forecast error and storage
capacity (scenario = 1).

Coffee & Tea SKU

Month 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 17.1 3.7 6.8 14.5 5.0 1.8 0.9 1.9 13.8 4.9 1.8 1.0 2.6 2.7 2.7 2.6 2.3 2.5 2.7 2.6
2 11.7 3.4 5.8 9.1 4.2 1.6 0.8 1.8 11.3 4.7 1.7 0.9 2.2 2.4 2.4 2.2 1.7 1.9 2.4 2.2
3 5.4 2.8 4.5 3.6 2.4 1.1 0.6 1.6 3.5 4.2 1.4 0.8 1.9 2.2 2.1 1.8 1.0 1.4 2.2 1.8
4 0.8 2.4 2.3 0.6 0.4 0.4 0.5 1.3 0.7 2.3 1.1 0.7 1.8 3.1 1.9 1.5 0.5 1.0 2.0 1.4
5 7.3 1.8 0.3 0.2 0.0 0.8 0.3 1.1 0.2 1.2 0.8 0.5 1.7 2.7 1.8 1.5 0.3 1.6 1.9 1.2
6 11.5 1.2 2.5 10.2 3.0 1.4 0.2 0.6 18.5 1.4 1.3 0.4 1.4 2.2 1.4 0.7 1.1 1.0 1.5 0.8
7 0.8 0.6 0.7 0.2 0.5 0.8 0.0 0.3 0.6 0.8 0.9 0.3 0.3 0.8 1.0 0.0 0.1 0.5 1.2 0.4
8 3.6 0.8 0.1 0.2 0.8 0.0 0.8 0.0 0.9 1.0 0.6 0.1 0.2 0.5 0.8 0.5 1.2 0.1 0.9 0.2
9 0.5 0.0 4.0 0.6 0.2 0.4 0.7 0.8 5.1 0.2 0.4 0.9 0.2 0.4 0.6 0.1 1.6 0.7 0.7 0.0

10 13.6 1.3 3.2 8.9 2.1 0.7 0.5 0.5 12.1 1.3 1.1 0.8 1.4 1.5 0.4 0.8 1.7 1.4 0.5 1.0
11 6.0 0.9 1.7 4.8 0.9 0.4 0.5 0.4 5.4 0.8 0.9 0.8 0.8 0.7 0.4 0.7 0.9 1.2 0.4 0.9
12 0.3 0.6 0.3 0.3 0.4 0.2 0.4 0.4 0.2 0.3 0.7 0.7 0.2 0.1 0.4 0.6 0.3 1.0 0.4 0.9

Table 5.4: The table presents the outcomes of four experiments with various time steps
- monthly, bimonthly, weekly, and daily - intervals, with medium forecast error and
medium storage capacity. Notably, due to significant runtime constraints, data for
the daily checkup are unavailable. Based on medium forecast accuracy and medium
storage capacity, 4 experiments and 50 replications conducted, resulting in a total of
200 scenarios.

Objective Transport Optimality No. No. rep.
Experiment Time Step (t) Function (€) Utilization (%) Gap (10−5) Work no solution

1 daily n/a n/a n/a n/a n/a
2 weekly 36,584 99.88 8.4 748,910 35
3 bimonthly 35,397 98.74 8.3 564,945 15
4 monthly 33,241 98.04 7.5 374,540 8

5.3.1 Experiments: Time Steps

We conducted four experiments to assess the model’s performance with inputs vary-
ing between daily, weekly, bimonthly, and monthly checkups. The results of these
experiments are summarized in Table 5.4. Each experiment is replicated 50 times,
maintaining consistent seed values for result comparison. Replication time was lim-
ited to 10 minutes per run. The daily check did not yield an optimal solution within
this time frame, resulting in no available data. The following paragraphs elaborate on
the outcomes of the performance metrics for the models.

Run Time. Reviewing Table 5.4, it becomes evident that increasing the frequency
of checkups also increases the average workload. While the monthly model exhibits
an average workload of 374,540, this metric rises to 564,945 for the bimonthly model
and 748,910 for the weekly model. This trend can be attributed to the larger solution
space associated with more frequent checkups. With additional time steps, there are
more variable options, resulting in a broader solution space, which in turn leads to
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a higher workload and consequently longer runtime. As previously mentioned, each
model is constrained to a ten-minute runtime to prevent excessive processing times.
The number of experiments without a solution, as shown in Table 5.4, substantially
increases with more frequent checkups. This indicates greater difficulty in finding a
feasible solution within the given timeframe, particularly for the weekly model. This
challenge is also why there is no available data for daily checks.

Objective Function / Transport Utilization. Comparing the results in terms of ob-
jective function and transport utilization across these experiments proves challenging
due to significant variations in the number of replications where no solution is ob-
tained. As the number of checkups increases, so does the frequency of replications
failing to produce a feasible solution within the allotted time frame. Consequently,
the objective function values presented in Table 5.4 for each model are derived from
different numbers of replications, thereby complicating direct comparisons.

Optimality Gap. Upon examining Table 5.4, it is evident that the optimality gap
widens with a more frequent checkup model. In the monthly model, the expected
gap is 7.5 × 10−5 %, whereas in the weekly model, it increases to 8.4 × 10−5 %. This
increase indicates the challenge that models face when addressing problems with a
larger solution space. The lower optimality gap in the monthly model suggests that the
best-known feasible solution for the monthly model is nearer to the optimal solution
compared to the bimonthly and weekly models, yielding greater confidence in the
solution’s quality.
Because the more frequent checkup models lead to extended run times, we exclude
the weekly and daily checkup models from subsequent experiments. We believe this
is feasible due to the relatively low demand and extended lead time. It is not deemed
optimal to place orders at such high frequencies.

5.3.2 Experiments: Storage Capacity, Forecast Accuracy & Lead Time

We conduct experiments to examine the influence of the storage capacity and the fore-
cast accuracy on the model’s performance. As previously discussed, we only consider
the bimonthly and monthly checkup models for these experiments. We aim to un-
derstand how increasing storage capacity affects model performance, testing it under
two settings: medium and high storage capacity. Furthermore, we explore the effect
of enhancing forecast ability on performance, considering three scenarios: medium,
low, and perfect forecast. We also investigate the interplay between these these vari-
ables, conducting a total of twelve experiments. The outcomes of these experiments
are summarized in Table 5.5.

Run Time. As discussed in Section 5.1.2, we include an extra column to depict the
frequency of replications where the model failed to find an optimal solution within the
given time frame. Table 5.5 illustrates the reduction in frequency with a lower forecast
error and lower storage capacities. Particularly, scenarios featuring medium forecast
errors and high storage capacities exhibit the highest average workload and, conse-
quently, the longest runtime. This explains why the number of runs where no replica-
tions are found is also significantly higher in these scenarios. It is noteworthy that the
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Table 5.5: Results of the experiments varying maximum storage capacity and forecast
accuracy for a monthly and bimonthly model. Two storage capacity scenarios are
introduced: medium (M) and high (H), along with three forecast accuracy scenarios:
medium (M), low (L), and perfect forecast (P). Based on a monthly and bimonthly
checkup model, with 12 experiments and 50 replications conducted, resulting in a
total of 600 scenarios.

Forecast Storage Objective Transport Optimality No. No. rep.
Experiment Error (FEjt) Capacity (IMAX

j ) Function (€) Utilization (%) Gap (10−5) Work no solution

Monthly Model
1 M M 33,241 98.04 7.5 374,540 8
2 M H 33,255 98.05 7.7 666,410 11
3 L M 32,621 97.49 6.5 304,225 2
4 L H 32,603 97.56 7.6 252,970 3
5 P M 31,826 99.83 8.8 467,823 0
6 P H 31,826 99.83 8.8 737,734 0

Bimonthly Model
7 M M 35,397 98.74 8.3 564,945 15
8 M H 35,475 98.65 7.3 534,846 17
9 L M 34,973 98.87 6.0 381,987 6
10 L H 34,973 98.78 5.5 341,392 6
11 P M 34,857 98.71 7.0 276,418 0
12 P H 34,857 98.71 6.0 246,566 0

averages in these scenarios are derived from a smaller number of replications. Subse-
quently, in the next paragraph, we delve into the implications of comparing these ob-
servations on the objective function and utilization. In summary, introducing greater
storage capacities leads to increased runtime owing to the expanded solution space, a
phenomenon similarly observed with less accurate forecasts.

Objective Function / Utilization. Figure 5.2 shows the results in terms of total cost
from six experiments varying in medium, low, perfect forecast accuracy. The figure
illustrates the superior performance of the perfect forecast accuracy. Upon examining
Table 5.5, several key findings emerge:

• Forecast Accuracy: The experiments conducted assuming perfect forecast accu-
racy (experiments 5, 6, 11, 12) consistently demonstrate superior performance in
terms of both total cost and transport utilization metrics. Conversely, the model
assuming medium forecast accuracy and high storage capacity performs rela-
tively poorly in these metrics.

• Conclusion Forecast Accuracy: The experiments underscore the significant impact
of enhanced forecast accuracy on both overall costs and transport utilization. For
example, the expected costs decrease from approximately €33, 255 with medium
forecast accuracy to around €31, 826 with perfect forecast accuracy, representing
a notable reduction of approximately 4.30%. Even with an improved but not
perfect forecast accuracy, a cost reduction of 1.96% is observed, highlighting the
importance of accurate forecasting in minimizing costs and optimizing opera-
tional efficiency.

• Impact Storage Capacity: Contrary to expectations, when forecast accuracy re-
mains constant, a minor increase in expected cost is observed with high storage
capacity compared to medium capacity. This unexpected result challenges the
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Figure 5.2: Comparison of the expected total warehouse and distribution costcheckup
model across medium, low, and perfect forecast accuracy. It is based on six experi-
ments, each replicated 50 times, resulting in a total of 600 scenarios.

assumption that increased total capacity would lead to cost minimization or at
least consistent costs. Upon closer examination, it becomes apparent that the
number of experiments failing to solve within the given time frame increases
with higher storage capacity, directly influencing the expected total costs of the
model.

• Conclusion Storage Capacity: The performance comparison per replication indi-
cates equivalent performance between experiments 1 and 2, as well as between
experiments 3 and 4, 7 and 8, 9 and 10. Consequently, it can be inferred that in-
creasing total storage capacity does not necessarily enhance model performance
under the current settings.

Optimality Gap. The highest optimality gap is noted in scenarios featuring a per-
fect forecast error, whereas the lowest optimality gap is observed in instances char-
acterized by medium storage capacities and low forecast errors. Although there is a
discrepancy between the two extremes, the variation is not substantial; the highest
observed gap stands at 8.8 × 10−5 %, while the lowest is recorded at 6.0 × 10−5 %.

Influence Lead Time Reduction. When reducing the lead time from two to one
month, we observe no changes in the objective function and transport utilization com-
pared to the results presented in Table 5.5. Notably, the number of work, which indi-
cates computational time, decreases by an average of 82%. Although there is a small
change in the optimality gap, it is negligible. These findings suggest that reducing
the lead time does not immediately impact total costs, as the same orders are simply
placed later in the new model. The costs and constraints thus overshadow the lead
time reduction in this specific model.

5.4 Comparative Analysis to Current Situation Partner X

To assess the performance of our proposed VMI model, we employ two benchmarks.
Firstly, we compare the actual schedule and metrics for 2023 with a model where we
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input the actual demand for 2023. Additionally, we simulate the current ordering
method, which closely resembles the just-in-time principle.

5.4.1 Actual Performance 2023

Calculation of the Actual. We aim to contrast the actual ordering schedule and the
associated performance in 2023 with the outcomes of our model proposal. We input
the actual sales figures for each item into the model and manually compute the total
costs of the actual ordering strategy in 2023. Actual costs are determined retrospec-
tively. However, GBD lacks documentation regarding the transportation mode for
each order placed in 2023. Consequently, we presume they utilized the most suitable
mode for each shipment. For instance, if an order could fit in a 20-foot container, we as-
sume they did not use a 40-foot container unnecessarily. Additionally, in cases where
multiple orders were picked up on the same day, we assume they were consolidated.
Partner X provided an overview of the inventory levels throughout the year, making
it possible to determine the total holding costs. It is important to note that the supply
planners at Partner X review the need for placing an order on a more frequent basis,
often leading to multiple order placements within a single month.

Results. Table 5.6 presents the comparison between the model’s performance and
the actual performance of the partner in 2023. The most significant difference lies in
the number of orders placed. Throughout the year, the partner placed a total of 27 or-
ders, accompanied by the utilization of 17 20-foot containers and 7 40-foot containers.
Although determining the exact utilization retrospectively is challenging, given these
figures and the relatively modest order quantities, it can be inferred that the trans-
portation utilization is approximately 53%. Moreover, in the existing scenario, only
87% of the total order volume is comprised of full pallets, with the remaining 13%
consisting of single pallet layers and broken layers. However, in the VMI system, we
assume ordering only whole pallets to mitigate any packing errors in the warehouse.
By utilizing the VMI approach, there exists an opportunity to reduce the overall ware-
house and distribution costs of this partner by 34.78%.

Acquiring Initial Stock Level: Moreover, as detailed in Section 5.2, the VMI model
avoids placing any orders in the final months, as the planning horizon is limited to a
year. In our input data, we accounted for an initial stock level adequate to fulfill de-
mand for the succeeding two months. However, it is important to note that acquiring
this initial stock incurs costs in real-world scenarios. We assumed a planning hori-
zon of one year, where orders for the upcoming year would typically be placed at the
year’s end, constituting the initial stock level for the model. Notably, our model did
not generate any orders in the final months, which diverges from reality, where orders
for the following year are commonly initiated during this period. Consequently, the
costs associated with obtaining this initial stock are not factored into the total cost in
our model, potentially leading to an underestimation of costs compared to actual sce-
narios. Hence, for a more comprehensive comparison, it is imperative to factor in the
estimation for obtaining the initial stock levels. Initially, 96 pallets were introduced,
equivalent to €1, 283 for warehouse expenses. These pallets can be transported using
three 40-feet and one 20-feet container, incurring transportation costs of €7, 960. Thus,
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the total expenditure for acquiring the initial stock stands at €9, 243. Consequently, the
overall cost for the model amounts to €42, 232, still representing a reduction of 16.5%.

Table 5.6: Comparison between the actual performance of Partner X in 2023 and the
model’s performance with the actual sales as input. Based on the monthly checkup
model and medium forecast accuracy, with 1 experiment and 50 replications con-
ducted, resulting in a total of 50 scenarios. Note that the costs for acquiring the initial
stock level are not included.

VMI Model Actual

Cost
Total Cost (€) 32,989 50,581
Holding Cost (€) 1,687 2,845
Transportation Cost (€) 26,100 39,620
Order Cost (€) 500 2,700
Warehouse Cost (€) 4,702 5,416

Order Schedule
Total no. orders 5 27
Total no. 20ft 0 17
Total no. 40ft 12 7
Total Order Quantity 352 375

5.4.2 Just-in-Time Model

We also simulate a similar ordering strategy to that of Partner X to compare the perfor-
mance of our model against it. This ordering strategy bears some resemblance to the
JIT principle. Examining their 2023 ordering schedule, we observe a high frequency
of orders, often for non-full containers and pallets. Given the frequent urgent orders
and the associated risk of stockouts, it is evident that they do not maintain extremely
high inventory levels. Consequently, we opt to model a more JIT-oriented approach
for comparison with the VMI model. In this model, we remove the constraint of a
minimum transport utilization of 95% and introduce lower maximum stock levels per
item. As a result, the partner is unable to maintain inventory levels as high as those
in the VMI model. Table 5.7 summarizes the outcomes of the experiments. We evalu-
ate the JIT model under three scenarios; medium forecast accuracy, low accuracy and
perfect forecast. 297

VMI vs. JIT performance. The VMI model demonstrates reductions of 4.5%, 4.1%,
and 3.0% in overall warehouse and distribution costs compared to the JIT model with
medium, low, and perfect forecasts, respectively. Figure 5.3 shows the difference in
total cost for the six experiments. In terms of average utilization, VMI achieves 98.45%,
while JIT reaches 98.39%, with the difference being negligible. The JIT models exhibit
a higher number of tasks, leading to longer runtimes. However, the disparity in the
number of experiments failing to produce a solution is not significant.

Order Schedule. Upon examining the order schedules of a single replication for both
models, we can evaluate differences in ordering patterns at a more detailed level.
Table 5.8 presents the outcomes of both models when tested with identical inputs,
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Table 5.7: Comparison of VMI and JIT performance under different forecast accuracy
levels, denoted as FEjt: medium (M), low (L), and perfect (P). Based on the monthly
checkup model, with 6 experiments and 50 replications conducted, resulting in a total
of 300 scenarios. The final line illustrates the 2023 actual costs for comparative analy-
sis.

Forecast Objective Transport Optimality No. No. rep.
Experiment Model Error (FEjt) Function (€) Utilization (%) Gap (10−5) Work no solution

1 VMI M 33,241 98.04 7.5 374,540 8
2 VMI L 32,621 97.49 6.5 304,225 2
3 VMI P 31,826 99.83 8.8 467,823 0
4 JIT M 34,718 98.11 8.3 903,581 9
5 JIT L 33,974 98.05 7.1 687,764 3
6 JIT P 32,791 99.00 0 916 0

Actual M 42,232 53.00 n/a n/a n/a

Figure 5.3: Comparison of the expected total warehouse and distribution cost between
the VMI and JIT model across medium, low, and perfect forecast accuracy, demon-
strating the superior performance of the VMI model. Based on the monthly checkup
model, with 6 experiments and 50 replications conducted, resulting in a total of 300
scenarios.
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achieved by introducing identical seed values. It shows that the VMI model places
five orders, whereas the JIT model places nine orders on average. As anticipated, the
holding costs in the JIT model are lower compared to the VMI model. However, this
reduction in holding costs does not offset the other costs where the VMI model out-
performs the JIT model.

Table 5.8: Comparison between an order schedule based on the VMI model and the
JIT-based model. Based on the monthly checkup model and medium forecast accu-
racy, with 2 experiments and 50 replications conducted, resulting in a total of 100 sce-
narios.

VMI JIT

Cost
Total Cost (€) 34,364 36,662
Holding Cost (€) 1,640 962
Transportation Cost (€) 27,535 29,710
Order Cost (€) 500 900
Warehouse Cost (€) 4,689 5,090

Order Schedule
Total no. orders 5 9
Total no. 20ft 1 1
Total no. 40ft 12 13
Total Order Quantity 351 381

5.5 Summary

In this chapter, we established the experimental setup, where experiments were con-
ducted varying time steps, forecast accuracy, and storage capacity as variables. Ini-
tially, we successfully tested the model’s output and validated it to ensure it accurately
reflects real-life scenarios. Here are the key findings from the results section:

• Increasing the monthly checkup frequency raised workload and processing times,
some exceeding ten minutes. Comparing models across various intervals be-
comes challenging. Daily and weekly intervals are dismissed from further ex-
perimentation because of their considerable processing times. This choice seems
feasible due to low demand and ample lead time. Ordering at higher frequencies
isn’t deemed optimal.

• The storage capacity agreed upon with Partner X was found to be adequate, and
increasing it did not significantly impact performance.

• Improving forecast accuracy has the potential to reduce costs by up to 4.3%.

• Adapting the VMI model to 2023 data could potentially result in expense reduc-
tion of up to 16.5%.

• In all experiments, covering medium, low, and perfect forecast accuracy, the
VMI model consistently outperformed the JIT model, achieving improvements
of 4.5%, 4.1%, and 3.0% respectively.
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Chapter 6

Conclusion & Recommendation

We formulated the main research question of this study as ”How can GBD optimize
the order profile of the partners to minimize the total distribution and warehouse costs
while maintaining service levels?”. In Section 6.1 we draw our conclusion and discuss
these in Section 6.2. Then, we make some recommendations to the company in Sec-
tion 6.3 and propose areas for future research in Section 6.4.

6.1 Conclusion

The primary aim of this study was to develop an effective strategy for minimizing the
distribution costs of GBD by refining the ordering practices of their partners, specifi-
cally in terms of frequency and volume. In this section, we address the sub-research
questions outlined in Chapter 1.

How does the current situation of the JDE export process look like? The current
practices among the partners involve frequent orders, often comprising incomplete
pallets and failing to utilize full container capacities. This leads to inefficiencies in
distribution and increases overall warehouse and distribution costs.

What inventory management strategies can be employed to address cost minimiza-
tion challenges associated with enhancing the order profile? Existing literature high-
lights the successful implementation of Vendor Management Inventory (VMI) across
various contexts. VMI grants the company greater control over its partner’s inventory
management, thereby streamlining the ordering process and enhancing supply chain
collaboration.

How can we apply these modeling techniques to the GBD case and adjust it to im-
prove its performance? In this research, we developed a model for VMI involving
a single retailer and vendor, managing multiple items. This model considers both
constant lead time and variable demand, aiming to optimize total warehouse and dis-
tribution costs. At each time step, decisions are made regarding whether to place an
order and, if so, which transportation mode offers the most cost-efficient solution.

How does the newly proposed solution perform, reviewed on total distribution
costs and transport utilization, compared to the current way of GBD? We applied
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the model to a case study with Partner X, demonstrating its effectiveness in refining
both the timing and size of orders. The key findings regarding the implementation of
the VMI model at Partner X include:

• Cost Reduction: The model significantly cuts down on total costs related to ware-
housing and distribution by consolidating orders, leading to fewer but larger
shipments and increased transport utilization.

• Potential Savings: Adoption of the VMI model to 2023 data shows potential ex-
pense reduction by up to 16.5%.

• Transport Utilization: Transport utilization increases to approximately 98%, a sig-
nificant improvement compared to the current average utilization rate of only
53%.

It is worth noting that while higher transport utilization is generally desirable, it does
not necessarily guarantee lower overall costs. Across all experiments, transport uti-
lization remains above 95%; however, beyond this threshold, increased transport uti-
lization does not necessarily correlate with decreased overall costs. Relying solely on
transport utilization as a metric is therefore not adequate.
Additionally, notable findings emerged concerning the optimal container size and the
frequency of checkups. Various intervals (monthly, bimonthly, weekly, daily) were ex-
plored to evaluate performance based on the objective function, optimality gap, and
runtime:

• 40-foot Containers Preferred: The model suggests predominantly using 40-foot
containers over 20-foot containers due to cost-effectiveness.

• Monthly and Bimonthy Checkup Model: Increasing the monthly checkup frequency
raised workload and processing times, some exceeding ten minutes. Comparing
models across various intervals becomes challenging. Daily and weekly inter-
vals are dismissed because of their considerable processing times. This choice
seems feasible due to low demand and ample lead time. Ordering at higher fre-
quencies isn’t deemed optimal.

We also conducted experiments to examine how the total warehouse capacity and
forecast accuracy influence the model’s performance:

• Warehouse Capacity: Increasing capacity did not improve the objective function,
suggesting existing capacity was sufficient.

• Forecast Accuracy: Enhanced forecast accuracy could reduce overall costs by 4.3%
with a perfect forecast and 1.9% with halved standard deviation.

• Lead Time. Reducing the lead time does not immediately impact total costs, as
the same orders are simply placed later in the new model.

Lastly, we compared the performance of our VMI model with that of a JIT-based
model, given its similarity to the current ordering method.
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• Superiority of VMI: The performance of the VMI model was compared with the
JIT model across various forecast inputs, including medium, low, and perfect
forecasts. The VMI model consistently outperforms the JIT model in terms of
objective function, showcasing reductions in overall costs across all scenarios:
4.5%, 4.1%, and 3.0%, respectively.

• Neglible Transport Utilization: Minimal disparities were observed in transport uti-
lization between the VMI and the JIT models.

6.2 Discussion

The implementation of the VMI model offer valuable insights into an optimal order
frequency and volume. However, certain considerations need to be addressed to reas-
sure the realism and effectiveness of the model.

Static Lead Time: Assuming a static lead time may not align with real-world dynam-
ics. Unforeseen events, like the ongoing disruptions in the Red Sea, can significantly
impact lead times. Therefore, it would be beneficial to consider introducing a variable
lead time to better reflect real-life scenarios. Additionally, transportation costs are of-
ten influenced by such events. Thus, incorporating monthly variable transportation
costs could provide a more accurate representation of the dynamic nature of supply
chain operations.

Exceptional High Demand: Events characterized by exceptionally high demand,
such as supply chain disruptions or unforeseen market trends, might not be ade-
quately accounted for in the existing model. Currently, our model assumes that ac-
tual demand follows the forecast via a forecast error, where the occurrence of such
events is highly unlikely. This distribution is derived solely from historical data where
such events did not manifest. In reality, there exists the possibility of encountering a
significant outlier in demand. Therefore, it is imperative to enhance the model’s flex-
ibility to accommodate such scenarios and better capture the variability inherent in
real-world demand patterns. Additionally, the forecast error in our model relies on
the forecast accuracy from the previous year, without distinguishing between errors
stemming from human oversight or unforeseen market shifts. Consequently, signifi-
cant efforts to enhance forecast accuracy may not be promptly reflected in the model’s
performance. It is essential that improvements in forecast accuracy are integrated into
the model’s inputs, ensuring that the model accurately reflects the evolving forecast-
ing capabilities.

Information Sharing: The effectiveness of VMI depends significantly on informa-
tion sharing encompassing inventory levels, actual demand, and forecasts. Typically,
computer programs facilitate the exchange of updates on these aspects. However,
since we recommend GBD to adopt only a partial VMI approach initially, immediate
access to such programs, for sharing information via EDI messages, may not be avail-
able. Nevertheless, as long as GBD and the partner agree on an alternative method
for complete information sharing, the functionality of the model would remain unaf-
fected.
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6.3 Recommendations

Implementation Partial VMI: Based on the favorable outcomes of the model, we
recommend that GBD considers implementing a partial VMI approach in their oper-
ations. This approach ensures that not all responsibilities are shifted to GBD; rather,
they can collaborate with their partners on order frequency and volume suggestions.
The initial step involves creating awareness among partners regarding their current
ordering practices, highlighting the costs incurred and how they can be minimized
through the new approach. This awareness alone can significantly impact overall
costs, as many partners may not fully realize the effect of their order profiles. Fol-
lowing this, we advise GBD to closely collaborate with partners on order timing and
quantities, emphasizing the importance of information sharing on stock levels, actual
demand, and forecasts for successful VMI implementation.

Improving Forecast Accuracy: Furthermore, our experiments demonstrate that im-
proving forecast accuracy greatly enhances the model’s performance. Therefore, we
suggest GBD focuses on enhancing the forecasting capabilities of their partners, pro-
viding support where necessary and evaluating forecasts at an early stage. Storing
and analyzing this data allows for continuous improvement and learning from past
mistakes.

Minimum Order Quantity to Pallet: An assumption in this model is that partners
can only place orders in full pallets rather than in individual boxes or pieces. However,
in the current system, partners have the flexibility to order single pieces or boxes of an
item. This practice incurs additional warehousing costs as goods need to be repack-
aged, leading to increased error rates. We recommend that GBD raise the minimum
order quantity of each item to one pallet to streamline operations and mitigate these
challenges.

More Partners: To achieve a substantial reduction in warehouse and distribution
costs, it is beneficial to expand the VMI approach to more partners. While implement-
ing it with one partner impacts costs, scaling it to all partners significantly amplifies
its effect.

Reduction of Lead Time: Moreover, once VMI is successfully implemented with a
partner, attention can be directed towards reducing lead times. Currently, GBD op-
erates on a make-to-order paradigm with lead times typically around eight weeks,
depending on the partner. Many partners express a desire to shorten these lead times.
By gaining insight into partner order schedules through VMI, GBD can make more
accurate forecasts. This insight presents opportunities for GBD to transition from a
make-to-order to a make-to-stock process, thereby improving efficiency further. While
our model indicates that reducing the lead time does not have an immediate impact
on performance, in reality, prioritizing lead time reduction is of considerable signifi-
cance. It enhances the responsiveness of the company, improves customer satisfaction,
and increases flexibility. Moreover, it supports lean practices by enhancing efficiency,
eliminating waste, and reducing bottlenecks. Therefore, despite its minimal impact in
the model, reducing lead time remains a valuable strategic initiative.
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6.4 Future Research

For further research, exploring the transition from a make-to-order to a make-to-stock
paradigm could offer insights into reducing lead times. An integrated production and
distribution model would be valuable to ascertain how production can be optimally
planned in alignment with the expected demand by our VMI model. Thus, research
into methods for aligning GBD’s production with expected demand by introducing
inventory to reduce lead time would also be beneficial.
Furthermore, partners encountering heightened demand rates and increased stochas-
ticity may necessitate more frequent check-ups. Hence, the introduction of a meta-
heuristic capable of addressing such large-scale problem instances could yield signifi-
cant benefits.
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Appendix A

Full Model

A.1 Sets & Indices

T = number of simulation days
J = number of items
Item j ∈ {1, 2, 3, . . . , J} = set of all items
Day t ∈ {0, 1, 2, . . . , T} = set of all days

A.2 Parameters

Fjt = forecast of item j for day t
FEjt = forecast error for item j at day t, normally distributed with mean and standard
deviation
djt = demand rate of item j on day t, equals Fjt ∗ (1 − FEjt)
Ij0 = inventory level of item j at the beginning of day 1
IMAX
j = maximum inventory level for product j

KMAX
20 = total capacity of a single 20 feet container

KMAX
40 = total capacity of a single 40 feet container

k j = space occupied by one unit of item j
KMIN

20 = minimum number of pallets for a single 20 feet container load
KMIN

40 = minimum amount of pallets for a single 40 feet container load
T20 = fixed transportation cost of a 20 feet container
T40 = fixed transportation cost of a 40 feet container
O = fixed order cost
V = warehouse tariff charged per pallet shipped
h = holding cost per item per day
yjt = number of pallets of item j in transit at day t
Ijt = inventory level of item j at the end of day t
FEjt = forecast error for item j at day t, normally distributed with mean µ and standard
deviation σ
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A.3 Decision Variables

Qjt = order quantity of product j on day t
zt = binary variable indicating whether a replenishment order is placed on the day t
N20

t = number of 20 feet containers needed for the order on day t (integer)
N40

t = number of 40 feet containers needed for the order on the day t (integer)

A.4 Objective Function

min TC =
T

∑
t=1

(zt(N20
t T20 + N40

t T40) + ztO +
J

∑
j=1

(ztQjtV + hE[Ijt])) (A.1)

A.5 Constraints
J

∑
j=1

Qjtk j ≤ N20
t KMAX

20 + N40
t KMAX

40 ∀t (A.2)

J

∑
j=1

Qjtk j ≥ N20
t KMIN

20 + N40
t KMIN

40 ∀t (A.3)

Ijt = Ijt−1 + Qj,t−L − Djt ∀j, t (A.4)

Ijt ≤ IMAX
j ∀j, t (A.5)

Ij,0 + ∑t−L
i=1 Qjt − ∑t

i=1 µDjt√
∑t

i=1 σ2
Djt

≥ ϕ−1(1 − α) ∀j, t (A.6)

yjt =
t

∑
i=t−L

Qjt ∀j, t (A.7)

J

∑
j=1

Qjt ≤ M ∗ zt ∀t (A.8)

Qjt, Ijt, yjt ≥ 0 ∀j, t (A.9)

N20
t , N40

t ≥ 0 ∀t (A.10)

zt ∈ {0, 1} ∀t (A.11)
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Table B.1: The forecast of 2023 of Partner X for each SKU on a monthly basis.

Month
Item Description Jan Feb Mrt Apr Mei Jun Jul Aug Sep Okt Nov Dec
0 PDO FORZA 1KG 5,9 5,5 6,3 7,5 13,5 11,8 10,7 10,2 10,0 12,0 7,6 5,7
1 PDO INTENSO 1KG 0,3 0,3 0,6 0,4 0,6 0,7 0,6 0,8 0,8 0,7 0,4 0,4
2 DE DARK ROAST 1KG 1,2 1,0 1,3 2,2 1,9 1,8 1,9 1,6 2,1 1,8 1,4 1,4
3 JACOBS ROYAL EL.1KG 5,5 5,5 5,5 12,0 11,4 10,0 10,0 12,0 11,6 8,8 4,1 4,5
4 JACOBS BANKETT 1KG 0,0 0,7 1,9 5,0 1,4 2,0 2,5 2,7 1,6 2,2 1,2 0,5
5 L’OR CAPS FORZA 0,2 0,2 0,5 0,7 0,6 0,4 0,5 0,8 0,6 0,8 0,3 0,2
6 L’OR CAPS DECAF 0,1 0,1 0,2 0,2 0,2 0,1 0,2 0,2 0,1 0,2 0,1 0,1
7 L’OR CAPS RISTRETTO 0,1 0,1 0,1 0,3 0,3 0,5 0,3 0,3 0,2 0,3 0,1 0,1
8 CAFÉ MILK 2L 1,2 2,5 7,8 17,9 22,5 17,6 18,0 18,6 19,9 18,0 6,7 5,3
9 CAFÉ MILK 0.75L 0,1 0,2 0,5 2,0 1,1 0,7 0,6 0,9 0,8 0,9 0,5 0,5
10 PROMESSO MILK 1.4L 0,2 0,2 0,2 0,3 0,3 0,4 0,4 0,4 0,2 0,3 0,2 0,2
11 J INSTANT MILK 1000G 0,0 0,0 0,1 0,1 0,2 0,1 0,1 0,1 0,2 0,2 0,0 0,1
12 PW ENGLISH 0,4 0,4 0,3 0,2 0,0 1,3 1,2 1,1 0,9 0,8 0,7 0,6
13 PW GREEN TEA PURE 0,3 0,3 0,2 0,1 0,4 1,5 1,4 1,3 1,1 0,9 0,8 0,6
14 PW EARL GREY 0,3 0,3 0,3 0,2 0,1 0,4 0,3 0,3 0,2 0,1 0,0 0,0
15 PW MINT 0,4 0,4 0,4 0,3 0,1 0,8 0,7 0,6 0,4 0,2 0,1 0,1
16 PW CHAMOMILE 0,7 0,7 0,6 0,5 0,2 1,1 1,0 0,9 0,7 0,9 0,8 0,6
17 PW LEMON 0,5 0,5 0,5 0,5 0,4 0,6 0,5 0,4 0,4 0,3 0,2 0,2
18 PW FOREST FRUIT 0,3 0,3 0,2 0,2 0,1 0,4 0,3 0,3 0,2 0,1 0,1 0,0
19 PW STRAWBERRY 0,4 0,4 0,4 0,3 0,2 0,5 0,3 0,3 0,2 0,1 0,0 0,0

64



Bibliography

[1] Amran, T., Dwi, S., and Haribowo (2018). Inventory model design of raw ma-
terial with economic order quantity-vendor management inventory-consignment
approach.

[2] Axsater, S. (2015). Inventory control. Springer International Publishing.

[3] Balasubramanian, J. and Grossmann, I. (2003). Scheduling optimization under
uncertainty—an alternative approach. Computers Chemical Engineering, 27(4):469–
490.

[4] Bon, A. T. and Garai, A. (2011). Just In Time Approach In Inventory Manage-
ment. 2nd International Conference on Business and Economic Research (2nd
ICBER 2011) Proceeding 2011-503, Conference Master Resources.

[5] Borade, A. and Sweeney, E. (2014). Decision support system for vendor managed
inventory supply chain: A case study. International Journal of Production Research,
53:1–30.

[6] Chakraborty, A., Chatterjee, A. K., and Mateen, A. (2015). A vendor-managed
inventory scheme as a supply chain coordination mechanism. International Journal
of Production Research, 53:13 – 24.

[7] Chopra, S. (2023). Designing the distribution nework in a supply chain. Transporta-
tion Research Part E: Logistics and Transportation Review, 39.

[8] Choudhary, D. (2014). The value of vmi beyond information sharing under time-
varying stochastic demand. International Journal of Production Research, 53.

[9] Cárdenas-Barrón, L. E., Treviño-Garza, G., and Wee, H. M. (2012). A simple and
better algorithm to solve the vendor managed inventory control system of multi-
product multi-constraint economic order quantity model. Expert Systems with Ap-
plications, 39(3):3888–3895.

[10] Freightos (2023a). Full truck load (ftl). https://www.freightos.com/glossary/full-
truck-load-ftl/.

[11] Freightos (2023b). Less than truckload (ltl).
https://www.freightos.com/glossary/less-than-truckload-ltl/.

[12] Glover, F. and Kochenberger, G. (2003). Handbook of metaheuristics. Kluwer Aca-
demic Publishers.

65



Bibliography

[13] Gronalt, M. and Rauch, P. (2008). Vendor managed inventory in wood processing
industries - a case study. Silva Fennica, 42:101–114.

[14] Hariga, M., Gumus, M., Daghfous, A., and Goyal, S. (2013). A vendor managed
inventory model under contractual storage agreement. Computers Operations Re-
search, 40(8):2138–2144.

[15] Ho, C. (1990). Distribution requirements planning: A generalised system for de-
livery scheduling in a multi-sourcing logistics system. International Journal of Physi-
cal Distribution Logistics Management, 20.

[16] Hutter, F., Xu, L., Hoos, H. H., and Leyton-Brown, K. (2014). Algorithm runtime
prediction: Methods evaluation. Artificial Intelligence, 206:79–111.

[17] Jacobs Douwe Egberts (2023). Jde about us. https://www.jacobsdouweegberts.
com/about-us/.

[18] James, R. J. and Almada-Lobo, B. (2011). Single and parallel machine capacitated
lotsizing and scheduling: New iterative mip-based neighborhood search heuristics.
Computers Operations Research, 38(12):1816–1825.

[19] Jung, H. and Klein, C. M. (2005). Optimal inventory policies for an economic
order quantity model with decreasing cost functions. European Journal of Operational
Research, 165(1):108–126.

[20] Kaasgari, M. A., Imani, D. M., and Mahmoodjanlooz, M. (2017). Optimizing a
vendor managed inventory (vmi) supply chain for perishable products by consid-
ering discount: Two calibrated meta-heuristic algorithms.

[21] Kuk, G. (2004). Effectiveness of vendor-managed inventory in the electronics
industry: Determinants and outcomes. Information Management, 41:645–654.

[22] Lee, H., Padmanabhan, V., and Whang, S. (2004). Information distortion in a
supply chain: The bullwhip effect. Management Science, 43:546–558.

[23] Lim, G., Rungta, M., and Davishan, A. (2019). A robust chance constraint pro-
gramming approach for evacuation planning under uncertain demand distribution.
Taylor Francis Journals.

[24] Lin, J., Wang, F., and Wu, C. (2014). A comparison study of replenishment strate-
gies in vendor-managed inventory.

[25] Marques, G., Thierry, C., Lamothe, J., and Gourc, D. (2010). A review of vendor
managed inventory (vmi): from concept to processes. Production Planning Control,
21:547–561.

[26] Mentzer, J. T., Myers, M. B., and Stank, T. P. (2007). Handbook of Global Supply
Chain Management. SAGE.

[27] moon Kim, T. (1985). Just-in-time manufacturing system: a periodic pull system.
International Journal of Production Research, 23.

66

https://www.jacobsdouweegberts.com/about-us/
https://www.jacobsdouweegberts.com/about-us/


Bibliography

[28] Najafnejhad, E., Tavassoli, M., Sepahrom, S., and Jenabzadeh, M. (2021). A math-
ematical inventory model for a single-vendor multi-retailer supply chain based on
the vendor management inventory policy. International Journal of System Assurance
Engineering and Management, 12:1–8.

[29] Pasandideh, S., Niaki, S., and Far, M. (2014). Optimization of vendor managed
inventory of multiproduct epq model with multiple constraints using genetic algo-
rithm. International Journal of Advanced Manufacturing Technology, 71:356–376.

[30] Pasandideh, S. H. R., Niaki, S. T. A., and Nia, A. R. (2011). A genetic algorithm for
vendor managed inventory control system of multi-product multi-constraint eco-
nomic order quantity model. Expert Systems with Applications, 38(3):2708–2716.

[31] Post, R. M. (2020). Vendor-managed inventory in fresh-food supply chains. PhD thesis,
University of Groningen.

[32] Roger, M. (2021). Balancing exploration and exploitation.
https://rogermartin.medium.com/balancing-exploration-and-exploitation-
adb82146837.

[33] Sadeghi, K., Sadeghi, A., and Saidi-Mehrabad, M. (2011). A parameter-tuned
genetic algorithm for vendor managed inventory model for a case single-vendor
single-retailer with multi-product and multi-constraint. Journal of Optimization in
Industrial Engineering, 9:57–67.
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