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Summary

In this thesis, a novel emulation-based fault injection (FI) tool is introduced to assess
the reliability of new space hardware.

Higher autonomy in outer space hardware, with the help of artificial intelligence
(AI) accelerators, is a significant change expected in the coming century. This is
necessitated by an increased number of satellites, more deep space missions, and
bandwidth scarcity. Simultaneously, RISC-V based processors will become more
prominent in the same industry, which presents the opportunity for new RISC-V
based AI accelerators. However, electronic components are vulnerable to radiation,
which can induce soft errors. Therefore, new space hardware requires mitigation
techniques to reduce vulnerability.

It is crucial to verify the effectiveness of these techniques, which can be ac-
complished with the help of FI. Emulation-based FI offers a cost-effective and di-
rect insight into hardening strategies with minimal campaign time, while ensuring
translatable results to physical implementations. The presented FI tool eliminates
time-area tradeoffs contained in traditional emulation-based FI and minimizes cus-
tomization efforts. It consists of essential elements, including an automatic fault list
generator, injector, and results analyser. The tool enables precise fault injection at
specific instructions and specific hardware locations.

The effectiveness of the FI tool is demonstrated with a series of experiments. An
AI accelerator named SPARROW, implemented in a RISC-V processor, served as
a target in these experiments. During the experiments, some benchmark programs
are executed by utilizing SPARROW to assess its behaviour under FI. This way,
insights are gained regarding SPARROW’s architectural vulnerability factor (AVF).
There is minimal deviation observed between calculated and experimentally de-
termined AVF. Additionally, the influence of the executed benchmark program on
the system’s vulnerability is highlighted, emphasizing the importance of considering
software characteristics in AVF evaluations.

It is found that while the located FI tool offers precise fault injection capabilities,
it may present an optimistic view of vulnerability due to program influence. Fur-
ther research is needed to distinguish vulnerabilities stemming from either system
architecture or software, directing hardening efforts effectively. Exploring the tool’s
capabilities for other fault models and memory cells, alongside potential optimiza-
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tions, is crucial. Verification through irradiation experiments is essential to justify its
abstraction from physical sources. Overall, the thesis contributes to gaining insight
into hardware vulnerability through FI.
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Section 2.2)
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Chapter 1

Introduction

This thesis presents a new fault injection environment for hardness assurance. Hard-

ness assurance is a requirement for new space hardware. This chapter introduced the

need for new space hardware and the concept of radiation hardness assurance. Fur-

thermore, a brief introduction into fault injection will be provided. At last, an outline

for the rest of the thesis is given.

1.1 New hardware in space

Higher autonomy in outer space hardware, in the form of artificial intelligence (AI), is
a big change foreseen in the coming century [1]–[3]. This will be driven by multiple
developments in the space industry. First, with the introduction of more complex
satellites and larger constellations, ground operations will face challenges in main-
taining spacecraft control and processing telemetries. On-board detection of anoma-
lies will be a requirement for future satellites, such that failures can be predicted, and
ground operations can be warned before the error can propagate through the satel-
lite. Furthermore, challenges are expected for satellite telecommunication [1], [4],
with an increasing amount of satellites in orbit, bandwidth becomes scarce. And,
with deep space missions, the distance between the transmitter and the receiver
becomes extremely large. This is not only challenging because of the relative visi-
bility geometry and the additional attenuation of the signal power, but also because
long delays prevent real-time operations. Requirements for satellite and deep-space
communication can be lowered with increased autonomy. However, this autonomy
can only be achieved with the introduction of new and more complex hardware in
the space industry.

Another prospect is the introduction of the RISC-V ISA in the space industry [5].
Due to the open and modular design of RISC-V, the architecture can be extended to
best suit the new space hardware needs, ranging from low-power microcontrollers
to high-performance CPUs, and dependable processors capable of managing nu-
merous tasks simultaneously. This includes the ability to extend processors with AI
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CHAPTER 1. INTRODUCTION

accelerators, of which already multiple exist [6]. With these opportunities to utilize
RISC-V hardware-based accelerators for space applications, questions are raised
about how well this new hardware will behave in the harshness of the space envi-
ronment.

1.2 Space environment and hardware resilience

New hardware, as introduced in the previous section, can not reliably be used in
outer space as is. Electronic components are susceptible to radiation from both
space and Earth’s atmosphere, which can induce failures in unprotected systems [7],
[8]. As further explored in Section 2.7, radiation can trigger soft errors, leading to
incorrect computations or system failure. Therefore, strategies are employed to mit-
igate the impact of soft errors on the system. Yet, it is crucial to verify the effective-
ness of mitigation techniques and the hardening of systems to suppress radiation-
induced faults. It is best to utilize diverse tools for designing and assessing the effec-
tiveness of various radiation-hardening techniques already during the system design
stage. Among these, radiation hardness assurance (RHA) stands out as the most
trustworthy measure. RHA entails conducting physical tests using radiation sources
to determine whether a system can function properly in a radiation-harsh environ-
ment. This environment is simulated through the use of external sources such as
natural or accelerated particle radiation tests, laser beams, or pin forcing [9].

However, RHA impose significant development costs [10]. Besides, it may be
helpful to obtain feedback on selected techniques early in the design cycle for guid-
ance. To evaluate the effectiveness of a chosen radiation protection, developers
can resort to other hardness verification techniques, including fault injection (FI) [9],
[10]. This includes emulation-based FI, where a hardware design is emulated and
injected on a field-programmable gate array (FPGA). There are a couple of ad-
vantages to using this technique. Foremost, studying faults at architecture levels
gives direct insight into ways to target hardening and selective node hardening ap-
proaches, and, the probability relation between a soft error and a software error is
maintained [11]. Added to that, studying the actual behaviour of a circuit in an ap-
plication environment allows for considering real-time interactions [12]. Lastly, no
special facility is required for emulation based FI, making them more cost-effective
besides making it feasible to validate the circuit early with no restrictions on selecting
fault locations [11].
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1.3 Exact fault injection

This work presents a new emulation-based fault injection environment. As outlined
in Chapter 3, two variations on emulation-based tools exist [13]. In the first, static
fault injection, each fault is separately injected into a net list and programmed to a
FPGA, or similarly, a bitstream gets modified. The second approach is the replacing
of flip-flops in a design with a saboteur circuit, allowing to alter its content. There
is a tradeoff between these approaches. The reconfiguration-based approaches
suffer from reconfiguration overheads and the latter is fast but has a huge area
overhead [14].

This work does not make this trade-off between time and area, as it operates
directly on the target FPGA for fault injection. This has an additional advantage
as campaigns take considerably less time, with a recorded injection rate of about
700 ms. Moreover, the software running on the host PC is developed in Python.
This facilitates users to customize and expand the provided setup according to their
requirements effortlessly. Finally, no logical changes to the device under test (DUT)
are required, ensuring that the results obtained can be extrapolated to setups be-
yond the fault injection environment.

1.4 Target hardware

To provide insight into the effectiveness of the proposed tool, an example campaign
will be provided. As the target, and in line with the observations made in the earlier
sections, SPARROW has been selected. SPARROW is intended for AI acceleration,
and has been presented by Bolnet and Kosmidis [15]. It was originally designed
for the space-qualified LEON3 processor but has been ported to a RISC-V core for
this project. SPARROW makes use of a single instruction, multiple data (SIMD)
architecture. In this architecture, the integer pipeline is extended with additional
short vector operations, by placing a SIMD unit parallel to the arithmetic logic unit
(ALU). As outlined in Section 2.3, SIMD does not add performance cost to the
operations of the base processor.

1.5 Thesis outline

The rest of this thesis is organized as follows. Chapter 2 will introduce the basic
concepts as used throughout the thesis. Chapter 3 provides an overview of RHA
and alternatives including FI, together with a list of existing emulation based FI tools.

3



CHAPTER 1. INTRODUCTION

Then, Chapter 4 introduces the developed toolset, which gets tested in Chapter 5.
Finally, in Chapter 6 a conclusion and discussion is formulated.
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Chapter 2

Background

This chapter gives an overview of concepts used throughout the rest of this thesis. The

first sections cover the RISC-V instruction set architecture and one of its implemen-

tations, followed by additional hardware for CPUs researched in this thesis. Then the

JTAG standard is discussed. Finally, the focus is shifted towards hardware reliability

and soft errors.

2.1 RISC-V

RISC-V is an open ISA [16]. It is a RISC-style load-store instruction set architecture
(ISA) [17]. A reduced instruction set computer (RISC) is designed to minimize and
simplify the individual instructions. As opposed to complex instruction set computer
(CISC), more instructions are required to fulfil a particular task. However, the speed
of each instruction can be optimized because of their simplicity. Development of
RISC-V started in 2010 at the UC Berkely [18], but is now being guided by the
RISC-V International Association.

A key feature of RISC-V is its open standard, which allows anyone to use, mod-
ify and contribute to the ISA besides the freedom to develop their own hardware.
This sparked the rise of a great community of researchers, developers, and compa-
nies contributing to its development. Numerous compatible processors have been
developed in the last few years.

RISC-V exhibits a modular architectural design, comprising alternative founda-
tional components complemented by optional extensions. The ISA base prescribes
the structure of instructions, encodings, control flow, register specifications, integer
manipulation logic, and auxiliary components. Popular extensions include Integer,
Multiplication and Division, Floating-Point and Vector Operations.

5



CHAPTER 2. BACKGROUND

Figure 2.1: NEORV32 CPU overview [19].

2.2 NEORV32

The NEORV32 processor is an open-source RISC-V compatible processor system,
which includes a central processing unit (CPU) and an system on a chip (SoC) im-
plementation [19]. The NEORV32 project aims to provide a simple-to-understand,
easy-to-use yet powerful and flexible RISC-V implementation. Besides, special care
is taken to ensure execution safety using full virtualization. The NEORV32 CPU
uses a 2-stage pipelined multi-cycle architecture, an instruction fetch (front-end) and
instruction execution (back-end) are de-coupled to operate independently of each
other. An overview of the CPU is shown in Figure 2.1 The system’s full customiz-
ability includes optional common peripherals like embedded memories, timers, serial
interfaces, general purpose IO ports and an external bus interface to connect cus-
tom IP like memories, network on a-chip sets and other peripherals. By the RISC-V
standard, the CPU can be extended with standard and custom ISA extensions.

The latter includes a custom functions unit (CFU), which allows implementing
custom RISC-V instructions. Since the CFU has direct access to the core’s register
file, it allows for the implementation of small logic accelerators. These operations
should be able to be completed in a few clock cycles since the pipeline is stalled
till completion. The CFU is implemented as a coprocessor to the arithmetic logic
unit (ALU), see Figure 2.1.

Böhmer et al. [20] has performed a first-time characterization of the NEORV32
core.

6



INVESTIGATING RISC-V HARDWARE FOR AUTONOMY IN SPACE

2.3 SIMD

Flynn [21] classifies high-speed computers into four categories: single instruction
stream, single data stream; single instruction, multiple data (SIMD) streams; multiple
instruction streams, single data stream; multiple instruction streams, multiple data
streams. A computing process is in essence performing a sequence of instructions
on a set of data, where each instruction performs a combinational manipulation on
one or two elements of data. A program is an ordered set of instructions, which
is executed by the computer. This execution sequence is the instruction stream.
Similarly, the data stream is the sequence of data called for by the instruction stream.
Parallelism can be achieved by multiplying one or both of these streams.

SIMD does not add any performance cost to the operation of the base processor.
As shown by Lai et al. [22] it can contribute to a performance improvement besides
a memory footprint reduction. In their work, SIMD 16-bit multiply–accumulate (MAC)
instructions, are used to optimize matrix multiplication and convolution kernels. The
latter archives 4.6 times faster throughput while being 4.9 times more energy effi-
cient. Similarly, ReLU activation layers are optimized, providing a 4 times speed-up.

As outlined by Lee [23], in subword parallelism a word is partitioned into smaller
units. The same operation can be performed on each subword in parallel, creating
a form of SIMD. As pointed out by Lee, subword parallelism is a low-cost solution
for SIMD parallelism within a word-oriented processor. The implementation requires
no additional register file and very little hardware overhead. For example, the same
data path can be used for word and subword operations. In other texts, subword
parallelism is referred to as packed parallelism or SIMD within a register (SWAR).
Furthermore, the subwords are called lanes.

2.4 SPARROW

SPARROW is a low-cost SIMD accelerator for artificial intelligence (AI) operations,
as introduced by Bonet et al. [15]. The low-cost SIMD accelerator for AI operations
(SPARROW) reuses the integer register file, and is fixed with four lanes of 8-bit
integers. The process involves two stages, which are specialized for AI applications.
The first stage performs parallel computations and the second reduction operations.
SPARROW extends the integer pipeline, without any performance cost in the rest
of the operations of the base processor. SPARROW has been written in VHDL,
and support for it has been added to a set of compiler and tool chain technologies
(LLVM) [24].

The design has been guided by its intended machine learning (ML) applications.
Primarily, as Bonet [25] observed, matrix multiplications serve as the foundation for

7



CHAPTER 2. BACKGROUND

Figure 2.2: Outline of the SPARROW module. Data travels from the top to the bot-
tom [15].
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the majority of ML operations, whose computation is based on the dot product. Fur-
thermore, it has been pointed out that the precision of arithmetic operations involved
in ML inference operations has been reduced to 8-bit integers. This latter obser-
vation accommodates the reuse of the integer register file, by dividing one 32-bit
register into four lanes.

The full two-stage design is shown in Figure 2.2. The first stage executes four
operations in parallel, adding swizzling and masking vector modifiers. The resulting
four lanes of the initial stage can be forwarded to the module output without any
supplementary modifications. Or, the four can be combined in reduction operations
to yield a 32-bit outcome or subsequently transmitted. A saturation option is included
in both stages to mitigate possible overflow of 8-bit values.

Data can be signed or unsigned and available first-stage operations include add,
sub, mul, max, min, shift, move b, and, or, xor, nand, nor and xnor. The second
stage supports sum, max, min and xor operands.

Table 2.1 shows the signals, registers, and their interactions contained in SPARROW.
Signal names are a clock-latched copy of the signal in the column before. Further-
more, Figure 2.3 shows how a wave illustrates this signal propagation through the
different stages. Irrelevant values are greyed out. Also, the setting of the control
register is shown upfront.

2.5 Implementation of SPARROW in NEORV32

For this thesis, SPARROW has been implemented in the NEORV32 as a CFU co-
processor. Because no instruction operated in SPARROW requires memory access,
and the SPARROW does not generate any exception, the pipeline could be kept as
is. Figure 2.4 shows the interconnections between of the NEORV32 to the CFU
and SPARROW. Besides the rewiring of the shown signals as outlined below, an
additional control and status register (CSR) has been added to NEORV32. This
CSR holds the contents of the control register as outlined in Table 2.1, and was
put at address 0x800 as suggested by the RISC-V standard [26]. This CSR can
be set using the default RISC-V CSR instructions. Also, this CSR was added to
NEORV32’s software environment, together with a library for setting different control
signals with ease. In Appendix D the applied changes in software and hardware are
shown.

As can be observed from Figure 2.4, there is a mismatch between the NEORV32’s
bus to the CFU and SPARROW. Therefore, some translation needs to be made be-
tween them. The signals contained in the sdi and sdo (SPARROW data in/out)
are listed in Table 2.1. Starting with the former, sdi, which is a combination of the
operands and partially the control signal. From the control signal, both stage oper-

9



CHAPTER 2. BACKGROUND

Table 2.1: List of SPARROWs internal register. Subsequential column cells show
the copying of register values from one stage to the next.

In Registers Out

Description Width (bits) sdi s1 s2 s3 sdo

Operand 1 data 32 ra ra
Operand 2 data 32 rb rb rb
Stage 1 operation 5 op1 op1
Stage 2 operation 3 op2 op2 op2
Stage 2 skipping 1 rc we en en
Control register: 22a ctrl ctrl ctrl ctrl ctrl
Masking register 4 mk
Masking enable 1 ms
Swizzling operand 1 8 sa
Swizzling operand 2 8 sb
Output typeb (2) ol
Output duplicationb (4) od
Use rhd 1 hp

Stage 1 operand overwrite 32 bpv bpv
bpv overwrite setting 2 bp bp
Shift register intermediate result 32 (ra)c rdh
Stage 1 result 64 ra — s1bpd

Setting for saturation of result 1 (op1)c sat
Stage 2 result 32 rc result
Stage 2 result 32 (rc)c s2bp

Total bits (per cycle) 338e 129 123 86
a total of registers listed below excluding unimplemented registers, b not implemented in used design,
c next stage register is (partial) copy of enclosed value, d s1bp is a 32 reduced version of ra and only
valid during the stage 2 cycle, e total of register bits present in the SPARROW architecture (e.g. rb is
counted twice since being present in both stage 1 and 2)

10
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clk

pc 0x03DC 0x03E4

sprw/ctrl
{E} 0 {0 1 2 3} {0 1 2 3} {2} {2} 0 {F} 0 {0 1 2 3} {0 1 2 3} {2} {2} 0

sdi/ra
0x0000000F 0x0A151A11

sdi/rb
0x00000000 0x070E1309

sdi/op1
0x29

sdi/op2
0x5

r/s1/ra
{0x11} {0x1A} {0x15} {0x0A}

r/s1/rb
{0x09} {0x13} {0x0E} {0x07}

r/s1/op1
0x29

r/s1/op2
0x5

r/s2/ra
{0x001A} {0x002D} {0x0023} {0x0011}

r/s2/op2
0x5

r/s2/sat

r/s3/rc
0x0000007B

sdo/result
0x0000007B

Figure 2.3: A timing diagram showing data propagating through the stages of
SPARROW. The instruction issued at program counter 0x03DC shows
the setting of the SPARROW CSR. The next instruction is the the sum-
ming of all input lanes. Notice the date travelling through the two stages.

CFU

clk

rstn

rs1

rs2

ctrl

start

valid

res

SPARROW
clk

rstn

sdi

sdo

shift
register

Figure 2.4: CFU and SPARROW interfaces within the NEORV32.
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ations are taken out, and the aforementioned CSR is extracted. From sdo, only the
final result is selected and connected to the result signal.

The start signal indicates the other input signals are valid and the CFU can start
a new operation. As soon as the computation is completed, the valid signal is set to
indicate completion. This will complete CFU instruction operation and will also write
the processing result back to the register file. Since SPARROW is guaranteed to be
finished in three cycles, the start signal is fed into a shift register, setting the valid
signal after these cycles. No specific exceptions can be raised by the SPARROW
CFU.

Instructions are issued using the RISC-V custom-0 opcode (see [26, Table 24.1]).
An R-type instruction is used, where the stage one and two opcodes are encoded
in the func3 and func7 fields.

2.6 JTAG

JTAG (named after the Joint Test Action Group) is a debug and test access port,
defined in IEEE standard 1149. The original standard defines instructions that can
be used to perform functional and interconnect tests, as well as built-in self-test
procedures. Later expansions of the standard allow for a variety of new applications,
including the use of an FPGA programming and debugging interface.

The original IEEE 1149.1 standard [27] describes JTAG as a boundary-scan de-
vice, containing a test access port (TAP), instruction register and data registers. On
the periphery of an integrated circuit (IC) device, boundary scan registers are added
and connected to each external device pin to drive stimuli and capture responses.
The registers are concatenated in a scan chain, which can be accessed via the test
data input (TDI) and output (TDO) pins on the TAP. A single boundary-scan allows
performing a full interconnect test to check its integrity. As this test is extremely thor-
ough, it can provide an extremely high percentage of structural fault coverage [28].

2.7 Soft Errors

Radiation-induced soft errors have become a key challenge in modern computer
system designs. Soft errors, also referred to as single-event upsets (SEUs), are
data corruption events, but where the device itself is not permanently damaged.
This is contrary to cumulative effects, where a fault can become permanent. The re-
liability of ICs is threatened by radiation-induced soft errors [29], [30]. Soft errors can
result in data (detectable and undetectable) corruption on the system level, circuit
malfunction or system crash.
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2.7.1 Effects of radiation on hardware

Soft errors in microelectronics are caused by highly energetic particles present in the
natural space environment striking sensitive regions of a microelectronic circuit [31].
Heavy ions include protons, neutrons, and alpha particles. When a heavy ion strikes,
some of its charge is released in a semiconductor device. Either direct ionization by
the incident particle itself or ionization via secondary particles created by nuclear
reactions between the incident particle and the struck device.

Direct ionization occurs via two principles. A particle passing through a semi-
conductor material loses energy through freeing electron-hole pairs along its path.
When all energy is lost, the particle comes to rest in the semiconductor. Direct ion-
ization is the main mechanism for memory circuit upsets, and is primarily induced
by heavy ions with atomic numbers greater than two. Lighter particles like protons
and neutrons typically cause insufficient charge deposition. However, these par-
ticles can both produce significant upset rates due to indirect mechanisms. As a
high-energy proton or neutron enters the semiconductor lattice, it can collide with a
target nucleus in several ways. Firstly, due to an elastic collision, a silicon atom can
recoil, causing the nucleus to be displaced from its normal position in the crystal lat-
tice. Or a target nucleus emits alpha or gamma particles and decays into a daughter
particle, which in turn recoils. Or lastly, the particle induces nuclear fission, split-
ting a nucleus into two fragments, each of which can recoil. Each of these recoils
has the potential to release energy along their trajectories through direct ionization.
Because these particles are much heavier than the original proton or neutron, they
deposit higher charge densities as they travel.

Ionization can generate currents through charge collection. The reverse-biased
p-n junctions are the most vulnerable area for particle strikes. The strong electric
field within the depletion region of a reverse-biased junction can effectively collect
charge induced by the particle via drift processes, causing a transient current at the
junction contact. Strikes close to a depletion region can lead to notable transient cur-
rents as diffusion toward the depletion region. Similarly, for direct impacts, carriers
generated beyond the depletion region can diffuse back toward the junction. When
this, for example, happens at a source-drain junction of a transistor, the electron
potential immediately following the strike leads to a significant source-drain conduc-
tance mimicking the transistor’s open state. In the same line of reasoning, storage
elements such as DRAM and SRAM can be particularly vulnerable. This text will,
however, not go into the specifics.

A particle strike resulting in a soft error in a logic circuit is not guaranteed. The
presence of active pathways from the struck node to latches, the arrival time of the
erroneous signal at the latches, and the erroneous pulse time profile at the latch
input determine if an erroneous data signal resulting from a strike is captured by
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a latch or other storage element. Even then, the erroneous information may be
blocked by other logic during the following clock cycles.

2.7.2 Effects of radiation

A particle strike may result in unnoticeable effects, a brief interruption of circuit func-
tion, a shift in the logic state, or possibly irreversible harm to the device or IC [31],
[32]. Single-event interactions are localized effects that can result in a seemingly
spontaneous transient within a circuit. This is contrary to total dose radiation that
causes a gradual global degradation of device parameters and dose-rate radiation
that causes photocurrents in every circuit junction. A single event that affects a node
that is storing information can lead to an upset, which is the corruption of the data to
an unrecognized, unreadable, or unstable state. If the valid information stored in or
travelling through the circuit is altered by this damaged state, it might cause an upset
that ultimately results in a circuit error. That is, an upset turns into an error when
it latches or when another circuitry misinterprets it as legitimate data. Because of
their destructive, uncorrectable origins, permanent faults also get referred to as hard
errors. Contrary to hard errors, SEU and multipel-bit upsets (MBUs) are static, but
can be corrected. The circuit’s stored information is overwritten by these soft errors,
but a rewrite or power cycle restores or resets the component to normal operation
without causing irreversible harm.

Once a soft error is identified or its probability is calculated (as shown in Sec-
tion 2.8), insight is gained into a circuit’s vulnerability to single events and critical
paths that could weaken its single-event tolerance. However, knowing about single
events does not provide actual upset metrics that correspond to how a circuit oper-
ates in orbit or during beam experiments. Internal single events might not be visible
at a circuit’s interface pins or output of a subcircuit (see Section 2.8). Nevertheless,
if the soft error eventually reaches an output, an externally observable error occurs,
which is defined as an error event. One soft error could lead to incorrect information
across multiple output ports, over several clock cycles.

SEUs can cause localized information mistakes that are either temporary, persis-
tent, or static. Singel-event transients (SETs) are spurious impulses that can travel
through the circuit routes in a single clock cycle. These asynchronous signals may
either overpower the circuit’s valid synchronous signals or travel to a latch and be-
come static. One important factor influencing the likelihood of mistakes is the timing
of the radiation-induced signals in relation to the synchronous signals. The most
significant applications for these kinds of faults are analog subsystems and combi-
national circuits.

Soft errors are a result of single-bit upset (SBU) or MBU, which are types of
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single-event effects (SEE). Other SEE categories include multiple-cell upset (MCU),
SET, single-event functional interrupt (SEFI) and single-event latchup (SEL) [29]
(see Glossary).

2.7.3 Mitigation techniques

Soft error mitigation techniques can be applied at different levels in a hardware de-
sign, at the system architecture level, circuit level and by technology- or device-
level hardening [31]. The latter aims to reduce the charging collection at sensitive
nodes by changing the design of semiconductor devices in the silicon. This can be
challenging since fundamental changes in the manufacturing process are required.
Appling hardening at the circuit-level, overcomes this, by removing the radiation tol-
erance requirements from the technology level and moving them to the design level.
Then any silicon technology, including state-of-the-art low die shrinks, can be used.
Generally, hardening is accomplished by the addition of some capacitance to sensi-
tive nodes, which is very effective against ionization events triggered by protons and
neutrons [33].

System-level hardening is accomplished by detecting and correcting errors us-
ing redundancy. A processor without redundancy cannot detect errors [34]. Re-
dundancy can be created in three dimensions: spatial, temporal and information.
With spatial, or physical, redundancy, hardware is replicated and results from each
replica are compared. To illustrate, with triple modular redundancy (TMR), the out-
put of the majority of three replicas is chosen by a voter to be the output of the
system. Physical redundancy can be implemented at various levels of granularity,
ranging from replicating entire processors or cores to finer replication of ALUs or
registers. Being a tradeoff between finer diagnosis and the relative overhead of the
voter. Additionally, redundancy does not necessitate identical hardware, allowing
for design diversity. However, the primary costs of redundancy, including hardware,
power, and energy consumption, can be considerable.

Temporal redundancy involves performing an operation twice and comparing the
results, doubling the total execution time and halving performance. Unlike phys-
ical redundancy, no extra hardware or power cost is incurred, but active energy
consumption doubles. Pipelining can mitigate latency, reducing the penalty, but
throughput still suffers. This method does not address the energy penalty, main-
taining double the active energy usage.

Lastly, information redundancy involves adding extra bits to detect errors in data.
Error-correction code (ECC) can detect and sometimes correct errors. Parity, the
simplest ECC, adds a bit to ensure even or odd total bits in the codeword, detecting
single-bit errors. Parity is favoured for its simplicity, affordability, and decent error-
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detection capabilities.

2.7.4 Metrics

As outlined, a SBU can, on a functional level, result in an error. Undiscovered errors
are referred to as silent data corruption (SDC), and discovered errors are known as
detected unrecoverable error (DUE) [30]. Given that a bit is influencing the ultimate
outcome of the system, a defective bit that remains unread is not deemed an error.
In cases where a defective bit is read and error detection and correction mechanisms
are accessible, the bit can be rectified, and the defect is not considered an error. If
the defective bit is only detectable, an assessment is required to ascertain whether
it impacts the program’s outcome. It will be designated as a genuine DUE if it does,
and as a false DUE when not. When there is no error detection and the defective
bit is not affecting the program’s output, it is categorized as error-free since the fault
remains undiscovered. The classification of SDC is assigned when the defective bit
alters the program’s outcome without detection.

Generally, SDC and DUE rates are quantified in terms of FIT. One failure in
time (FIT) signifies a single failure occurrence every 109 hours, or one billion hours.
Since FIT rates accumulate, determining a system’s FIT rate involves adding the
rates of its components. The collective term often used to describe this is the soft
error rate (SER). While not additive, mean time between failures (MTBF) is often a
more intuitive measure. MTBF represents the average time until a system fails and
is inversely proportional to FIT.

2.8 Architectural Vulnerability Factor

As outlined in previous section, introducing soft error mitigation techniques comes
with significant costs in performance, power or size. Furthermore, not all soft errors
will affect the final outcome of a program. Therefore, having a metric to give insight
into the vulnerability of the micro-architectural structure can be insightful. The proba-
bility that a fault in a processor structure will result in a visible error in the final output
of a program is called the structure’s architectural vulnerability factor (AVF) [35]. For
example, a branch predictor’s AVF is 0 % and the program counter’s is 100 %. Fur-
thermore, the total error rate of micro-architectural components is the product of its
raw fault rate and its AVF. By summing up these rates across all system compo-
nents, it can be evaluated whether the design meets its error rate objectives. This
analysis helps in identifying cost-effective strategies for fault protection.

Estimating AVF is done by identifying bits required for architecturally correct ex-
ecution (ACE). Soft errors in any of the ACE bits will cause a visible error in the final
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output of a program. The remaining bits are un-ACE bits. The AVF of a single-bit
storage cell is the fraction of time it holds ACE bits. Assuming the same raw error
rate for each bit, the AVF of a system is the average AVF of its storage cells, or the
average fraction of its cells that hold ACE bits at any point in time.

For computing AVFs, identifying ACE and un-ACE bits is key. Makherjee et
al. [35] defines the final output as the program’s generated value that is sent to
an I/O device. Given a specific programme execution, only the correctness of this
output matters. Thus, the ACE-ness of a bit does not necessarily correspond to
the precise semantics of the architecture. Furthermore, Makherjee et al. provides
some pointers for estimating a conservative AVF, which starts by assuming all bits
are ACE and then removing any identifiable un-ACE bit. This includes processor
states which cannot influence the instruction path, such as data or status bits which
are idle or don’t contain valid data, predictor structures and dead bits. Bits become
dead after their last use, for example, a value in a register is dead after it is stored
in memory. Likewise, some processor states do not influence the system output.
Such as, NOP, performance-enhancing and dynamically dead instructions. The lat-
ter refers to instructions whose result is not used. This can be either because the
result is not read by any other instruction, or because the result is read-only by an-
other dynamically dead instruction. Lastly, logical masking via bitwise operations
can create un-ACE bits.

As discussed, the AVF of a storage cell is the fraction of time an upset in that cell
will cause a visible error in the final output of a program. For a hardware structure,
the AVF is the average AVF of all bits in the structure, assuming the same raw FIT
rate.

AVF =
r̄

B

=

∑
i∈B ri

BC

(2.1)

The AVF can be calculated with Equation 2.1, where B are the bits in the hard-
ware structure, r a bit’s ACE cycles count, r̄ the average number of ACE bits per
cycle, and C the total execution cycles.

It is important to note, as Biswas et al. [36] points out, that a performance model’s
ACE analysis is only as good as the model. It may take more information for AVF
computation to project performance than it might for a performance model. Thus, an
ACE analysis might require much effort, or end up with a pessimistic AVF estimation.

AVFFI =
1

n

n∑
i=1

f(Xi) (2.2)
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With fault injections, as outlined in the next chapter, the AVF of a system can
be approximated [37]. With Equation 2.2, the approximated AVF is calculated. An
evaluation function f(X), returns 0 when a campaign output is correct, else 1. Fur-
thermore, n faults are evaluated using a fault injection technique.
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Chapter 3

Related Work

The concept of radiation hardness assurance and fault injection was introduced in

Chapter 1, and will be broadened in this chapter. Furthermore, existing tools and

environments for emulation-based fault injection will be listed.

3.1 Radiation hardness assurance

Physical irradiation campaigns (radiation hardness assurance) are considered to
resemble closely what one would expect the system to perform in a radiation-harsh
environment [9]. However, this procedure is complicated and expensive. Besides,
radiation hardness assurance (RHA) always targets a device under test (DUT) in
its totality and does not give insight into the vulnerability of sub-structures of the
DUT and therefore no feedback on the chosen techniques in the design cycle or
evaluation of the effectiveness of a chosen radiation protection. This can be provided
by using modelling and computer simulations. RHA possibilities and alternatives are
shown in Figure 3.1

As summed up by Huang and Jinang [9], many modelling and simulation tools
exist. Such as ones using the Monto Carlo method, closely mimicking RHA, and
ones predicting cumulative effects. Besides, modelling and simulation techniques
for simulating single event effects exist.

3.2 Simulating single event effects

The simulation and modelling of SEE focuses on a variety of levels in the analysis
of interactions between ionizing particles and the matter, from semiconductor up
to system level target [9], [31]. These include physical-based device models, mul-
tidimensional device simulations, circuit simulations, and mixed devices. Physical
device simulations primarily aim to forecast how devices respond to incoming radi-
ation. In contrast, circuit simulations try to model how circuits react to SEE, while
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Figure 3.1: Options for performing hardness assurance.

analysis codes are utilized for predicting error rates.
Stepping up in a hierarchical view, effects of SEE can be investigated from a

system’s perspective, in particular analytical modelling or experimental measuring
the effect of SEEs on the system’s functioning [38]. The former includes traditional
dependability analysis techniques, which try to associate various faults and their
causes. The latter, experimental measurement techniques, can be done by record-
ing errors and failures in a large set of systems during operation. However, to speed
up this process, faults can be injected into a running system.

3.3 Fault injection

Fault injection (FI) is a method used to quantify the reliability and resilience of a
system against soft errors, via assessing the system’s ability to detect, locate, and/or
mitigate fault occurrences [11], [38], [39]. A FI campaign can be characterized by
the used fault model and fault injection locations, and categorized by the technique
used for injection.

Fault models describe the type of real-world error being simulated, either tran-
sient or persistent faults. Furthermore, the fault model describes the temporal and
spatial characteristics of the campaign, which allows the modelling of SBU and MBU.
A common model is the bit-flip model, where SEU are simulated. Alternatively, in
the set and reset fault models, bits are set to a fixed value regardless of their initial
value. Finally, a stuck-at model fixes a bit’s value permanently, simulating persistent
faults. Furthermore, as faults occur in components that make up systems, a cam-
paign can target specific parts of the system. This includes data registers, address
registers, data-fetching units, control registers, and ALUs in a CPU or a memory’s
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controller and stored bits. In the latter particularly, a particle strike in a memory cell
can result in both SBUs and MBUs, especially with the ever-decreasing silicon die
sizes [8], [38].

FI techniques can be categorized into hardware FI, emulation-based FI, soft-
ware FI and simulation-based FI [11], [38], [40]. The first, hardware FI, can be
performed by either disrupting an IC with faults via input pins or irradiation cam-
paigns. Alternatively, advantage can be taken of built-in hardware debugging facili-
ties [41]. FI at a software level reproduces the errors that would have been produced
when faults occur in the hardware, many tools for this exist [42]. Machine code is
changed during compile time or run time such that the contents of registers and
memory elements are changed, emulating the effect of real-world hardware faults.
Contrary, simulation-based FI the DUT hardware is simulated using its hardware
description, wherein fault gets injected. Different tools, including Quick EMUlator
(QEMU) based, exist [11], [43]. Lastly, with emulation-based FI, faults are injected
in high-level models [38]. These models can run on reconfigurable hardware or via
an instrumentation-based approach. When using the former, using for example an
FPGA, faults are injected by partially reconfiguring the hardware with the DUT. In
the latter, the DUT is altered such that errors can be introduced during program ex-
ecution. Emulation at this architecture level, introducing soft errors at specific times
and locations, shows the response of a running application to unwanted changes.
Kooli and Di Natale [40] list a variety of fault injection tools and environments.

Aponte-Moreno et al. [43] did a comparison between two simulation-based, an
emulation-based FI and irradiation campaigns. Results show that simulation tools
give about 10 % optimistic estimates of the reliability when compared to results ob-
tained by emulation. They note that “ISA-level simulation models should be used for
a preliminary assessment of the reliability of the system during development” [43, p.
8]. However, fault coverage is very similar in both simulation and emulation and thus
can both be used to pre-evaluate different versions of a given hardening technique.
Furthermore, it was found that reasonable consistency was preserved between sim-
ulation and irradiation experiments with neutrons when evaluating the effectiveness
of the mitigation techniques.

3.4 Emulation-based fault injection tools

Various tools and environments for emulation-based fault injection tools exist. Most
are based on any of the following techniques: logic modification or reprogramming
after netlist modification or bitstream modification [12], [13], [44]. The techniques all
have a different campaign time and area tradeoff [44].

The first is static fault injection by reconfiguration. This starts with a list of fault
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injection locations, and a fault-free netlist is compiled and programmed into an field-
programmable gate array (FPGA). Then, selecting one fault after the other from the
FI locations list, it gets injected into the fault-free implementation, recompiled and
reprogrammed. Once completed, a test sequence can be applied. Campaigns are
sped up by partial reconfiguration of FPGAs [12]. This method only allows emulating
stuck-at faults, and a full campaign is a lengthy process [13].

A technique that omits recompilation relies on bitstream modification [12], [45].
For this, the bitstream is changed such that the contents of look up tables (LUTs)
related to the FI targets are altered, so the output is flipped or fixed. An extension
to the bitstream alteration technique, using read-modify-write operations, provides
temporal freedom [46]. In general, the proposed techniques follow these steps. First,
a FPGA is programmed with a bitstream and execution is started. At an injection
cycle, execution is stopped. Then, the current state of all flip-flops is captured, faults
get injected, and the result is programmed back to the FPGA. Execution can then
be continued.

Secondly, the instrumented circuit technique allows for more dynamic FI, allow-
ing the injections of faults in a single FPGA configuration by replacing flip-flops in
the design with saboteur circuitry. In this technique, faults are injected using specific
instrumentation hardware located in the flip-flops of the circuit. This allows transient
and stuck-at faults to be injected via an external signal. Fault injection is coordi-
nated by a controller. Different, but similar implementations of this setup exist [47].
Time synchronization between the DUT and the controller can be introduced by uti-
lizing shift registers connected to a scan-path chain, named fault-mask, through all
instrumentation hardware.

Different tools exist which are based on the aforementioned techniques.

FIDYCO [48] is a hardware/software fault injection environment where both the
fault injector and DUT are running on a FPGA. The tool adds extra supporting hard-
ware to the DUT design to allow FI. A separate host interface running in software
on a computer instructs the fault injector. Furthermore, it allows implementing the
DUT hardware a second time on the FPGA, which output is used for comparison to
that of the injected DUT. Temporal FI flexibility is provided by having the DUT send
a trigger to the fault injector.

Autonomous emulation [44] replicates all flip-flops of the DUT circuit, to be able
to store the correct and faulty state. This is besides additional saboteur flip-flops
added for fault injection through instrumented circuit technique. This way, the golden
standard can be compared to the injected DUT during execution. Emulation could
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then be stopped for silent faults, whose effects disappear after a couple of clock
cycles. This technique minimizes campaign execution time. This technique can also
be extended to monitor memory [49].

FT-UNSHADES [50] acts on the basis of the read-modify-write with bitstream al-
teration and partial reconfiguration. The tool allows limiting a fault campaign to only
a part of the DUT, by utilizing back-annotation information generated by the Xilinx
design flow. Besides, injection of MBU is possible. Temporal synchronization is ac-
complished by counting clock cycles. The tool has been simpler to operate in a new
version [51].

FITVS [52] extends the concept of instrumented circuit techniques by inserting
the saboteurs in the library modules and modifying the DUT automatically. On a
FPGA, besides the DUT, an emulation controller is added, which connects to all the
saboteur circuitry. FITO [53] follows the same approach as FITVS, but for hardware
designs described in Verilog.

Automated FI [54] reuses the concept of autonomous emulation, but optimizes
the saboteur circuitry. This included replacing formerly added flip-flops with LUT,
and introducing an additional flip-flop for storing the DUT’s pre-injection state. This
latter improvement reduces campaign time and guarantees coherency between suc-
cessive experiments. Furthermore, part of the FI environment is implemented in the
processing system (PS) of a SoC, besides the DUT in the programmable logic (PL).

FIFA [55] is a platform-independent implementation of the instrumented circuit
technique, with the extension of autonomous emulation. The tool is fully parametriz-
able, which allows designers to establish trade-offs between the complexity and
completeness of the analysis. It handles SBUs and MBUs, both transient and per-
manent FI.

AMUSE [56] adds the implementation of arbitrary circuit delays to the instrumented
circuit technique. This is done by modelling a circuit’s gate-level characteristics in
a register-transfer level design. In the design, gates are replaced by a saboteur,
which also includes a shift register to delay signals similar to delays in an application-
specific integrated circuit (ASIC) implementation. This way, SET effects can be stud-
ied with circuit emulation on a register transfer level, speeding up SET assessment
campaigns.
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SCFIT [57] is an instrumentation-based fault injection technique which completely
relies on commercial tools for the placement of saboteurs. It combines two tech-
niques for FI, the In-System Memory Content Editor available in Altera FPGAs for
observing and altering memory elements, through JTAG from Quartus. And, for tar-
geting individual registers, a variant of the instrumented circuit technique with a scan
chain is used. This scan chain is controlled from Quartus as well, utilizing In-System
Sources and Probes available on Aletra FPGAs. A campaign is executed with the
help of tool command language (Tcl) scripts. The tool was extended to be able to
inject multiport memories as well [58].

DFI [59] applies the FI technique of using a saboteur to both single registers and
full register files. In the latter, a multiplexer is added to the write input for intercept-
ing a write operation or introducing one to inject a fault in a memory slot. Only a
little hardware is added, thus having a low area overhead. NETFI from the same
authors [60] expands on this concept, by changing the built-in library of Xilinx.

Fault-aware LUT mapper [14] alters the contents of LUTs to inject stuck at faults
which get activated using Xilinx ICAP interface.

EFIC-ME [61] is a fault injection environment which parses a netlist and inserts
saboteur circuitry in the DUT. It allows for stuck-at-fault and bit-flips. Faults can be
injected at specific clock cycles. However, only simple DUTs are presented.
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Fault Injection Tool

As briefly introduced in Chapter 1, this thesis presents a new FI environment. This

chapter will outline the tool in detail.

4.1 A fault injection system

An FI environment is generally composed of the same elements [47], [55], [62], see
Figure 4.1. A fault list or campaign generator defines a fault model based on user
parameters. This list is provided to a fault injector and stimuli generator. The latter
controls the execution of a DUT, while the former injects a specific type of fault at
the location and moment according to the fault model. A result analyser checks the
execution and output of the DUT, and discriminates between a crash, timeout or
SDC. For this, a golden standard is required, which can be either a clean copy of
the DUT being instructed by the stimuli generator as well, or a recorded execution
run. Lastly, a results database saves for all campaigns the corresponding result, for
later or direct analysis.

The following sections will discuss these elements as used in the proposed tool
in more detail. A hardware overview is presented in Figure 4.1. The campaign
generator, results analyser and creation of the results database is done on the host
PC, all implemented in the Python programming language. This implementation can
be found in Appendix A. The fault injector is implemented on an external FPGA
board, and the DUT and stimuli generator on the target FPGA.

4.2 Device Under Test

The device under test (DUT) is programmed on the target FPGA. This DUT can be
any hardware. However, the discussed tool setup is aimed to inject faults into CPUs.
Contrary to tools presented in the previous chapter, no drastic changes are made to
the DUT hardware, which guarantees operation is representative to that outside the
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Figure 4.1: Tools components, hardware and their relations, the grey parts are ex-
isting components from the FREtZ environment.

FI environment. Furthermore, the target board needs to be programmed only once,
which reduces campaign run-time compared to reprogramming-based FI tools.

Nonetheless, one change to the DUT needs to be made. To allow for temporal
synchronisation between the stimuli generator and DUT, various machine counters
from the CPU need to be wired to the outside. Since this does not add any new
functionality, this should be trivial. Any CPU as DUT should do, but for extracting
the counters the source needs to be open. Having to make these changes might
be considered a disadvantage. Though, temporal synchronisation is required for
exact FI, and the alternative is to have the DUT CPU manage this synchronisation
by setting a pin, for example. However, this will inevitably disrupt the state of the
CPU, deviating from its execution. The stimuli generator as described in the next
section is adaptable to allow for such an implementation as well.

4.3 Stimuli generator

To allow fault injection at specific instructions, execution of the DUT needs to be
paused. This is accomplished by interrupting the clock signal going to the target.
Therefore, to be in close connection with each other, parts of the stimuli generator
are implemented on the same FPGA as the DUT. This extra hardware is shown in
Figure 4.2. The stimulation generator sets a handful of registers via universal asyn-
chronous receiver/transmitter (UART) on the target FPGA. From the DUT processor,
the program counter, cycle counter, and instructions-retired counter are wired to the
hardware wrapper, which is compared against the said register. When a value is
matched, the clock is disabled. Which counter to compare against can be set via
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Figure 4.2: Simplified overview of additional hardware included on the target FPGA
interacting with the DUT.

Table 4.1: Hardware utilization of extra introduced hardware for FI tool, as obtained
from Vivado after implementation.

Utilization

LUT 208
FF 88
IO 16
BUFG 2

an additional register. Multiple counters can be compared simultaneously, killing the
clock whenever one matches first. Furthermore, via the same UART connection, the
current value of each counter and board status, including the clock enable, can be
retrieved. Using a combination of the counter allows targeting specific clock cycles
after an instruction fetch. Lastly, the DUT can be reset via the UART interface. The
introduced area overhead as a result of this added hardware is shown in Table 4.1.

4.4 Campaign generator

The presented tool provides an easily extendable and user-friendly campaign gener-
ator, implemented using the Python programming language. For this, a logic location
file associated with an DUT implementation needs to be provided. The logic loca-
tion file is an ASCII file that contains information on each of the nodes in the design
that can be captured for reading back. It can be exported from Xilinx Vivado using
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its BitGen utility or by executing a write bitstream Tcl command. The file contains
the absolute bit position in the read back stream, frame address, frame offset, logic
resource used, and name of the component in the design.

The campaign generator parses this file and creates a data set of all injectable
memory elements and latches. To the latter, the associated nets and their hierarchy
from the DUT design are associated as well. The user can provide a net or hierar-
chical component to which the campaign generator can filter and include in the final
fault model. For filtering memory locations, no specific implementation is provided,
and also not included in experiments. However, the campaign generator can be
extended with ease. Allowing researchers to define injection locations programmat-
ically is a big advantage of this tool because it gives great adaptability to different
DUTs.

The campaign generator also allows for fixing temporal injection points in the
fault model. Because of the versatile stimuli generator, an endless combination of
options for this is available. For example, after examining the compiled assembly of
a benchmark program, the user can provide a list of target instructions. With the help
of the stimuli generator, the campaign generator records all instances when these
instructions are executed, utilizing the DUT’s instruction counter. These specific
instructions can then be included in the fault model. Alternatively, a list of clock
cycles to which injections need to be performed can be provided. Again, injection
points can be defined programmatically, providing users freedom.

4.5 Fault injector

For injecting faults into the DUT, the FREtZ framework has been utilized. The
FPGA Reliability Evaluation through JTAG (FREtZ) framework is developed by Sari
et al. [63]. FREtZ provides access to the FPGA configuration memory and circuit
logic via the JTAG protocol, intending to provide FPGA design engineers with a
tool to improve fault detection isolation and repair strategies. As the authors point
out, JTAG is a good option for FPGA configuration tools due to its universality, low
overhead and small radiation-sensitive cross-section. Furthermore, besides inject-
ing faults, JTAG can be used for memory scrubbing and debugging purposes. The
FREtZ framework provides a Python application programming interface (API) to a
Tcl interface handler communicating with a JTAG communication engine to read
and write configuration memory and configuration registers. This JTAG communica-
tion engine is running on the external FPGA board, communicating to the host PC
via a transmission control protocol (TCP) connection.

Injecting faults such as described above, omits the need to either resynthesize
and reprogram the DUT for every campaign or having to introduce new hardware in
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the DUT. These two alternatives, as thoroughly described in the previous chapter,
are a time-area tradeoff. The presented tool introduces only a little extra hardware.
Campaign durations will be examined in the next chapter.

4.6 Results analyser and database

The job of the results analyser is to categorize the outcome of each campaign as
correct, silent data corruption (SDC) or a timeout. The output of the DUT is cap-
tured by the results analyser. Output recording is currently limited to UART output.
The output is compared against a golden standard, which is a saved output after a
campaign run without any fault injected.

Besides comparing the DUT output to the golden standard and identifying SDC,
the analyser also has a timer. The execution time of each campaign run is recorded,
excluding the time required for injecting a fault. Furthermore, a limit is defined as
a user parameter. When execution takes longer than this limit, the campaign is
marked as a timeout whereafter the next can be run.

During the execution of the fault model, the number of campaigns and the amount
of SDCs and timeouts are recorded and presented to the user in real-time. Besides,
results, as judged by the analyser, are stored in the results database, combined
with the campaigns from the fault model as generated by the campaign generator.
Each entry includes the injection location, injection moment, campaign run time,
recorded output and classification. Results are gathered and saved in batches to
reduce memory overhead. Afterwards, with the help of a simple utility, all results
can be combined into one complete dataset for further analysis.

4.7 User parameters

As mentioned above, the creation of a fault model is guided by a couple of user
parameters. Furthermore, the results analyser requires a couple of parameters to
be set. All parameters, as taken from the program running on the host PC, are
shown in Listing 4.1.

4.8 Tool novelties

As already mentioned throughout this chapter, the presented tool has some benefits
over those discussed in the previous chapter. This is added to the advantages
regarding emulation-based FI as mentioned in the same chapter. To reiterate, this
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120 ADDR_LIST = [0x2bc , 0x30c , 0x334 , 0x350 ,

121 0x4c0 , 0x4c8 , 0x538 , 0x540]

122 CLK_OFFSETS = [2, 3, 4]

123 INSTRUCTION_END = 0x7fc

124 LATCH_NAME = "/sprw/"

125 TIMEOUT_TIME = .8e9 #ns (1e9 ns = 1 second)

126 GOLDEN_STANDARD = [b’#0$’]
127 LOGIC_FILENAME = "fault_injection.ll"

Listing 4.1: User parameters, as part of the application shown in Appendix A.

tool omits time-area tradeoff between logic modification and reprogramming based
FI tools, because it works with fault injection on the target FPGA. Furthermore,
the software implemented on the host PC is written in Python, a language already
established in academia, and with a wide variety of libraries available [64]. This
allows users to modify and extend the presented setup to their own needs with ease.
Lastly, no logical hardware needs to be added to the DUT, which ensures results are
translatable to a setup outside the FI environment.

4.9 Hardware

For the setup, two Digilent Zedboards, containing a Zynq-7000 SoC are used. One
as the target FPGA running the DUT and additional UART and comparator hard-
ware, and one as the external FPGA for the fault injector. Two Digilent PmodUS-
BUART modules are utilized for connecting the target to the host PC. The external
board is connected to the target via JTAG and to the host PC via an Ethernet con-
nection. The host PC runs Windows 11, and creates a local network via network
sharing. The software runs with Python 3.10.
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Experiments and Results

The tool presented in the previous chapter is evaluated in experiments, which are

presented and analysed in this chapter. Two experiments are presented. Firstly, the

AVF of the SPARROW unit is calculated and thereafter verified with an injection

campaign. Secondly, registers in the same hardware are identified with high and low

ACE.

5.1 Experimental setup

For all experiments presented in this chapter, the same setup is used, revolving
around the environment as presented in the previous chapter. However, as dis-
cussed, the FI environment can handle other types of DUT as well. The hardware
used is as described in Section 4.9.

5.1.1 Target CPU and DUT

In the experiments, SPARROW is used as DUT, implemented in the NEORV32 CPU
(see Section 2.4). From this CPU, the machine counters are wired to the outside for
temporal synchronization. Besides, the NEORV32 has a flexible memory configura-
tion, providing the processor with several boot scenarios. This allows the instruction
memory to be pre-initialized with a benchmark program and have the NEORV32
directly boot this on startup.

5.1.2 Benchmark

When choosing a benchmark, it is important to make heavy use of the specific DUT.
Suggested algorithms include a bubble sort and matrix multiplication [60]. Further-
more, when one wants to have temporal synchronization using the clock counter, the
program’s execution must be deterministic. This also requires that program inputs
are always the same.
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268 210: 37 25 15 0a lui a0 , 41298

269 214: 13 05 15 a1 addi a0 , a0 , -1519

270 218: b7 15 0e 07 lui a1 , 28897

271 21c: 93 85 95 30 addi a1 , a1 , 777

272 ; asm volatile (" add_usum %0, %1, %2":"=r"(c):"r"(a), "r"(b));

273 220: 0b 54 b5 04 add_usum s0 , a0 , a1

Listing 5.1: Machine code for summing eight values using SPARROW.

In the experiments described later in this chapter, two different programs are run
on the DUT. In the first, the values of the eight SIMD registers from SPARROW are
summed, see Equation 5.1. The values in register A are 10, 21, 26, 17 (0x0A151A11)
and for B 7, 14, 19, 9 (0x070E1309), yielding a sum of 123. The assembly for calcu-
lating this sum is shown in Listing 5.1, and the second half of Figure 2.3 shows
SPARROW’s internal signals for this calculation.

c = (a0 + b0) + (a1 + b1) + (a2 + b2) + (a3 + b3) (5.1)

C = AB

D = C ∗ ω
with ω =

1 0 1

0 2 0

0 0 0

 (5.2)

A second program aims to utilize SPARROW with its intended ML capabilities.
Therefore, it contains a matrix operation and convolutional kernel operation, see
Equation 5.2. The function implementations are shown in Appendix B. The matrix
multiplication is visualized in Figure 5.1 and its implementation follows the colloquial
shown in Equation 5.3. Within one instruction, the dot product of two 4D vectors gets
calculated. This is repeated a couple of times (the matrix A column size, or matrix
B row size, divided by four), where the results of these dot products are summed to
find one element of the result matrix. When the column or row size is not dividable
by four, SPARROW’s masking capabilities get utilized. When this is done, the last
four values of a row get loaded into the A and B registers, to ensure memory safety.
A final remark, in the presented implantation, both matrices are indexed by rows,
effectively doing a matrix product with one transposed matrix, i.e. C = ATB.

C = AB

cij =
n∑

k=1

aikbkj

=
∑

k∈{0,4,8,...}

4∑
o=0

a(i+o)kb(k+o)j

(5.3)
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











a11 a12 a13 a14 a15 a16 a17

a21 a22 a23 a24 a25 a26 a27

a31 a32 a33 a34 a35 a36 a37

a41 a42 a43 a44 a45 a46 a47

a51 a52 a53 a54 a55 a56 a57

a61 a62 a63 a64 a65 a66 a67

a71 a72 a73 a74 a75 a76 a77

b11 b12 b13 b14 b15 b16 b17

b21 b22 b23 b24 b25 b26 b27

b31 b32 b33 b34 b35 b36 b37

b41 b42 b43 b44 b45 b46 b47

b51 b52 b53 b54 b55 b56 b57

b61 b62 b63 b64 b65 b66 b67

b71 b72 b73 b74 b75 b76 b77

c11 c12 c13 c14 c15 c16 c17

c21 c22 c23 c24 c25 c26 c27

c31 c32 c33 c34 c35 c36 c37

c41 c42 c43 c44 c45 c46 c47

c51 c52 c53 c54 c55 c56 c57

c61 c62 c63 c64 c65 c66 c67

c71 c72 c73 c74 c75 c76 c77

× =

Figure 5.1: Matrix multiplication as implemented in SPARROW.












0 0 0 0 0 0 0 0 0

0 a11 a12 a13 a14 a15 a16 a17 0

0 a21 a22 a23 a24 a25 a26 a27 0

0 a31 a32 a33 a34 a35 a36 a37 0

0 a41 a42 a43 a44 a45 a46 a47 0

0 a51 a52 a53 a54 a55 a56 a57 0

0 a61 a62 a63 a64 a65 a66 a67 0

0 a71 a72 a73 a74 a75 a76 a77 0

0 0 0 0 0 0 0 0 0

ω11 ω12 ω13 -

ω21 ω22 ω23

ω31 ω32 ω33

c11 c12 c13 c14 c15 c16 c17

c21 c22 c23 c24 c25 c26 c27

c31 c32 c33 c34 c35 c36 c37

c41 c42 c43 c44 c45 c46 c47

c51 c52 c53 c54 c55 c56 c57

c61 c62 c63 c64 c65 c66 c67

c71 c72 c73 c74 c75 c76 c77

∗ =

Figure 5.2: A 3x3 kernel convolution calculation as implemented in SPARROW.

The SPARROW implementation for doing a convolution is illustrated in Figure 5.2,
with the underlying colloquial shown in Equation 5.4. Before calculating the convo-
lution, the input matrix is padded with zeros. Then, each convolution is calculated
in three steps, one row of the kernel separately by doing 3D dot products. Again,
SPARROW’s masking capabilities are utilized, while taking care of memory safety.

C = A ∗ ω

cij =
k∑

u=−k

k∑
v=−k

a(i+u)(j+v)ωuv

(5.4)

Matrices A and B, as presented in Equation 5.2, are initiated with pseudorandom
values between one and five. As kernel, the one shown in Equation 5.2 is used.
Small values are used to prevent the whole final matrix from being fully saturated.
From the values of matrix D (see Equation 5.2) a 32-bit cyclic redundancy code
(CRC) is calculated, with polynomial 0xF8C9140A as selected using the work from
Koopman [65]. This CRC value is printed to a UART output using a simple printing
function. To limit computational overhead, the use of printf functionality is avoided.
The implementation of this printing function can be found in Appendix B.
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5.2 Experiment results

This section will firstly discuss the theoretical AVF of SPARROW, and will then
verify this with an experiment. A last experiment will look into the vulnerability of
SPARROW when executing the benchmark of the previous section.

5.2.1 Theoretical AVF

As described in Section 2.8, the AVF of a hardware structure can be calculated
using Equation 2.1. Table 2.1 provides a list with all registers in SPARROW and
its sizes. From this, the number of registers per cycle can be counted, from which
the theoretical AVF can be calculated as shown in Equation 5.5. However, only the
operands, operations, and saturation signals are targeted. These account for 109

bits in total, see Equation 5.6. For the expected AVF, this difference does not matter.
Because of the multi-stage design, with no registers shared between these stages,
SPARROWs partial AVF will always be 1/3.

AVFsparrow =

∑
i∈B ri

BC

=
129 + 123 + 86

338 · 3
=

1

3

(5.5)

AVF’sparrow =
109

109 · 3
=

1

3
(5.6)

5.2.2 AVF from fault injection

A fault injection campaign has been performed on SPARROW as DUT while running
a program performing the calculation from Equation 5.1. Injections were done at
clock offsets 2, 3 and 4 from the start of instruction 0x220 (see Listing 5.1). Latches
to inject were automatically selected using the method outlined in Chapter 4.

This campaign resulted in 516 injections. However, this also included the injec-
tions on the input and output signals of SPARROW. Filtering these out leaves 324

injections, of which 105 suffered SDC. This yields, using Equation 2.2, an AVF of
105
321

= 0.327, about 1.9 % off from 1/3. Analysing the results further shows that the
last bit of the second stage operation is not vulnerable. A bit flip in this bit changes
this stage operation from an unsigned sum to a signed sum. With the small values
chosen as inputs, this does not make a difference for the output. Hence, the found
AVF differs slightly from the calculated AVF.
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5.2.3 Experiment statistics

The experiment, as described above, was extended to inject with clock offsets 0− 7.
It was then run twice, such that outputs could be compared. In these two campaigns,
in total 2752 injections were performed. Between the two runs, the results of 5 injec-
tions did not match, i.e. results were in one campaign labelled as correct and in the
second one as SDC.

Running the campaign with these 2752 took in total 33 minutes, yielding 720 ms
per injection. Of this, about 35 ms is spent on the execution of the benchmark on
the DUT CPU. This big overhead is partially because some experiments needed to
be rerun sometimes. Results communicated from the DUT to the host PC via UART
sometimes suffer errors, where some characters are not being received, (e.q. #13$
instead of #123$). In these cases, the received output of the benchmark program
is classified as incorrect. To prevent false negatives, a campaign is redone up to
four times when a result is received incorrectly. This happens for about 16 % of the
campaigns.

5.2.4 AVF per register

A second FI campaign has run with the second benchmark program, as outlined
earlier in this chapter, being executed on the DUT. Faults were injected on program
counters where SPARROW instructions are executed, with clock offsets 2 - 4. The
addresses can be found in Appendix C, and are 0x2BC, 0x30C, 0x334 and 0x350 from
the convolution part, and 0x4C0, 0x4C8, 0x538, and 0x540 from the matrix product
part. The same registers as in the previous experiment were selected for injection.
This resulted in 106596 injections, of which 21179 were marked as incorrect and 113

as a timeout. This gives an AVF of (21179 + 113)/106596 = 0.20. This is off by about
0.13 from the above calculated AVF, and it is fair to say this is all due to masking
effects. Interestingly, however, is the appearance of time-out errors. As outlined in
Section 2.4, with the CFU implementation with a shift register, timeouts as a result
of an injection in SPARROW can not stall the pipeline or processor in any way. This
could be an artefact of the 16 % retries of campaigns, but further research should
unveil what causes this effect.

In Figure 5.3, the vulnerabilities of individual registers are shown, and only the
four least and most vulnerable registers are displayed. These are all centred around
the 20 % AVF as found as average AVF. There does not appear to be a clear
pattern within these results. On the other hand, the vulnerability for injections at
different instructions, as shown in Figure 5.4, does show clear differences between
them. This provides more evidence that the benchmark running on a DUT has a
high influence on its AVF.
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0 0.2 0.4 0.6 0.8 1

r reg[s1][rb][2] 39[6]

r reg[s1][rb][3] 38[0]

r reg[s2][ra][0] 49[13]

r reg[s1][rb][1] 40[3]

...

r reg[s1][rb][1] 40[6]

r reg[s2][ra][2] 51[10]

r reg[s2][ra][1] 50[8]

r reg[s2][ra][0] 49[8]

Vulnerability

Correct
Timeout

SDC

Figure 5.3: AVF of least (top) and most vulnerable registers.
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0x4c8
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Vulnerability
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Timeout
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Figure 5.4: Vulnerability when of the SPARROW system when injecting at different
instructions.
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5.3 Analysis

Both experiments illustrate that FI can be utilized to give insight into the AVF of a sys-
tem. Moreover, the presented tool provides a way to do this for a subsystem. It also
illustrates that a calculated AVF, as presented in Section 2.8, yields a pessimistic
vulnerability. This is also pointed out by Mukherjee et al. [35].

However, the last experiment illustrates that the software running on the DUT
highly influences the found AVF through FI. Masking is the reason a different AVF
is found in this experiment. A metric which can capture this information is program
vulnerability vector (PVF). The PVF is a systematic method to efficiently evaluate
the error resilience of software under hardware faults, and is a subset of a systems
AVF [66], [67].
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Chapter 6

Conclusion and Discussion

Artificial Intelligence is expected to be integrated into space hardware development
for enhanced autonomy. However, robust resilience measures are necessary be-
cause radiation-induced soft errors can cause problems for electronic components.
RHA involves rigorous tests to assess system functionality in harsh environments,
albeit incurring significant costs. Alternative verification techniques such as FI offer
cost-effective ways to evaluate radiation protection. Emulation-based FI provides
insights into targeted hardening and real-time interactions without specialized facili-
ties, enabling early circuit validation. This thesis has presented a new located FI tool.
It is novel in allowing the specification of fault injection locations in a design. As well
as injecting at specified moments, for example, synchronized with the execution of
a program on a CPU. Besides creating a FI tool by extending the FREtZ framework,
a contribution is made by implementing SPARROW in the NEORV32 CPU.

Experiments have illustrated these capabilities by showing that the tool can be
used to find the AVF of a (sub)system, up to individual latches and registers. It also
showed the influence a benchmark program has on the found AVF. Therefore, fur-
ther research should examine the distinction between vulnerabilities stemming from
the system architecture or hardware and those arising from software. This investi-
gation will provide deeper insight into where hardening efforts should be directed.

Similarly, further work should examine the tools’ ability to inject with other fault
models, including stuck-at faults and MBUs, as the thesis did not show this. Besides,
FREtZ allows for injecting memory cells besides latches. Likewise, the presented
tool is useful for comparing vulnerability before and after applying hardening tech-
niques. This capability is not explored in this thesis, but would be valuable to the
field of radiation hardening engineering.

Another limitation of the tool is the required additional hardware on the target
FPGA, and the DUT needs to be altered for temporal synchronization. It might be
possible for CPUs as targets to utilize (JTAG) on-chip debuggers, when present, for
this. This will reduce, besides the complexity of the design, the development time
and effort for setting up campaigns. Besides, the required hardware, as listed in
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Section 4.9, can pose limitations. That is, being limited to specific FPGA boards
and requiring multiple of these. Perhaps the use of all programmable SoCs such as
Xilinx’s Zynq boards, gives opportunities for simplifying the setup.

Besides the hardware overhead, the presented tool suffers from some ineffi-
ciencies. For example, to reduce false negatives as a result of erroneous UART
communication, campaigns are rerun multiple times, introducing additional time per
injection campaign. Other optimizations include storing the parsed result of logic
location files for later reuse; programming the FPGA with a DUT CPU in which the
benchmark is already advanced to the first injection point; using the FREtZ frame-
work without its graphical user interface; or extracting the FI capabilities from FREtZ;
alternatively, utilize FREtZ’s memory scraping functionality to inspect effects of in-
jections before finalizing a benchmark, shortening campaign times; having the DUT
CPU’s instruction memory in an external memory, such that no new bitstream needs
to be generated for new benchmarks.

Lastly, the effectiveness of the presented tool should be verified with irradiation
experiments. Since FI abstracts effects in hardware from its physical sources. A
comparison between the results of a FI campaign and irradiation test can justify this
abstraction.

In conclusion, this thesis has shown that with the help of FI, insight into the vulner-
ability of hardware designs can be gained. By emulating the hardware, as opposed
to simulating, this is achieved with a minimal setup, and with little setup time.

40



Bibliography

[1] M. Ghiglione and V. Serra, “Opportunities and challenges of AI on satellite
processing units”, en, in Proceedings of the 19th ACM International Confer-
ence on Computing Frontiers, Turin Italy: ACM, May 2022, pp. 221–224, ISBN:
978-1-4503-9338-6. DOI: 10.1145/3528416.3530985.

[2] Z. Pengcheng, W. Wenbo, L. Qiang, and C. Chenghua, “Software-Hardware
Cooperative Lightweight Research of Remote Sensing Target Detection Al-
gorithms for Space-Borne Edge Computing”, en, in Proceedings of the 7th
International Symposium of Space Optical Instruments and Applications, H. P.
Urbach and H. Jiang, Eds., vol. 295, Series Title: Springer Proceedings in
Physics, Singapore: Springer Nature Singapore, 2023, pp. 668–679, ISBN:
978-981-9940-97-4. DOI: 10.1007/978-981-99-4098-1_55.

[3] G. Trinh, O. Formoso, C. Gregg, et al., “Hardware Autonomy for Space Infras-
tructure”, in 2023 IEEE Aerospace Conference, Big Sky, MT, USA: IEEE, Mar.
2023, pp. 1–6, ISBN: 978-1-66549-032-0. DOI: 10.1109/AERO55745.2023.
10115601.

[4] P. Tortora, D. Modenini, M. Zannoni, et al., “Ground and Space Hardware for
Interplanetary Communication Networks”, en, in A Roadmap to Future Space
Connectivity, C. Sacchi, F. Granelli, R. Bassoli, F. H. P. Fitzek, and M. Ruggieri,
Eds., Series Title: Signals and Communication Technology, Cham: Springer
International Publishing, 2023, pp. 107–138, ISBN: 978-3-031-30761-4. DOI:
10.1007/978-3-031-30762-1_5.

[5] S. Di Mascio, A. Menicucci, G. Furano, C. Monteleone, and M. Ottavi, “The
Case for RISC-V in Space”, en, in Applications in Electronics Pervading Indus-
try, Environment and Society, S. Saponara and A. De Gloria, Eds., vol. 573,
Series Title: Lecture Notes in Electrical Engineering, Cham: Springer Inter-
national Publishing, 2019, pp. 319–325, ISBN: 978-3-030-11972-0. DOI: 10.
1007/978-3-030-11973-7_37.

[6] S. Kalapothas, M. Galetakis, G. Flamis, F. Plessas, and P. Kitsos, “A Survey on
RISC-V-Based Machine Learning Ecosystem”, en, Information, vol. 14, no. 2,
p. 64, Jan. 2023, ISSN: 2078-2489. DOI: 10.3390/info14020064.

41

https://doi.org/10.1145/3528416.3530985
https://doi.org/10.1007/978-981-99-4098-1_55
https://doi.org/10.1109/AERO55745.2023.10115601
https://doi.org/10.1109/AERO55745.2023.10115601
https://doi.org/10.1007/978-3-031-30762-1_5
https://doi.org/10.1007/978-3-030-11973-7_37
https://doi.org/10.1007/978-3-030-11973-7_37
https://doi.org/10.3390/info14020064


BIBLIOGRAPHY

[7] M. Nicolaidis, Ed., Soft Errors in Modern Electronic Systems (Frontiers in Elec-
tronic Testing), en. Boston, MA: Springer US, 2011, vol. 41, ISBN: 978-1-4419-
6992-7. DOI: 10.1007/978-1-4419-6993-4.

[8] H. M. Quinn, D. A. Black, W. H. Robinson, and S. P. Buchner, “Fault Simula-
tion and Emulation Tools to Augment Radiation-Hardness Assurance Testing”,
IEEE Transactions on Nuclear Science, vol. 60, no. 3, pp. 2119–2142, Jun.
2013, ISSN: 0018-9499, 1558-1578. DOI: 10.1109/TNS.2013.2259503.

[9] Q. Huang and J. Jiang, “An overview of radiation effects on electronic devices
under severe accident conditions in NPPs, rad-hardened design techniques
and simulation tools”, en, Progress in Nuclear Energy, vol. 114, pp. 105–120,
Jul. 2019, ISSN: 01491970. DOI: 10.1016/j.pnucene.2019.02.008.

[10] M. Eslami, B. Ghavami, M. Raji, and A. Mahani, “A survey on fault injection
methods of digital integrated circuits”, en, Integration, vol. 71, pp. 154–163,
Mar. 2020, ISSN: 01679260. DOI: 10.1016/j.vlsi.2019.11.006.

[11] Y. B. Bekele, D. B. Limbrick, and J. C. Kelly, “A Survey of QEMU-Based Fault
Injection Tools & Techniques for Emulating Physical Faults”, IEEE Access,
vol. 11, pp. 62 662–62 673, 2023, ISSN: 2169-3536. DOI: 10.1109/ACCESS.
2023.3287503.

[12] L. Antoni, R. Leveugle, and B. Feher, “Using run-time reconfiguration for fault
injection applications”, in IMTC 2001. Proceedings of the 18th IEEE Instru-
mentation and Measurement Technology Conference. Rediscovering Mea-
surement in the Age of Informatics (Cat. No.01CH 37188), vol. 3, Budapest,
Hungary: IEEE, 2001, pp. 1773–1777, ISBN: 978-0-7803-6646-6. DOI: 10 .

1109/IMTC.2001.929505.

[13] Kwang-Ting Cheng, Shi-Yu Huang, and Wei-Jin Dai, “Fault emulation: A new
methodology for fault grading”, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 18, no. 10, pp. 1487–1495, Oct. 1999,
ISSN: 02780070. DOI: 10.1109/43.790625.

[14] A. Ullah, E. Sanchez, L. Sterpone, L. Cardona, and C. Ferrer, “An FPGA-
based dynamically reconfigurable platform for emulation of permanent faults
in ASICs”, en, Microelectronics Reliability, vol. 75, pp. 110–120, Aug. 2017,
ISSN: 00262714. DOI: 10.1016/j.microrel.2017.06.032.

[15] M. S. Bonet and L. Kosmidis, “SPARROW: A Low-Cost Hardware/Software
Co-designed SIMD Microarchitecture for AI Operations in Space Processors”,
in 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE),
ISSN: 1558-1101, Mar. 2022, pp. 1139–1142. DOI: 10.23919/DATE54114.
2022.9774730.

42

https://doi.org/10.1007/978-1-4419-6993-4
https://doi.org/10.1109/TNS.2013.2259503
https://doi.org/10.1016/j.pnucene.2019.02.008
https://doi.org/10.1016/j.vlsi.2019.11.006
https://doi.org/10.1109/ACCESS.2023.3287503
https://doi.org/10.1109/ACCESS.2023.3287503
https://doi.org/10.1109/IMTC.2001.929505
https://doi.org/10.1109/IMTC.2001.929505
https://doi.org/10.1109/43.790625
https://doi.org/10.1016/j.microrel.2017.06.032
https://doi.org/10.23919/DATE54114.2022.9774730
https://doi.org/10.23919/DATE54114.2022.9774730


INVESTIGATING RISC-V HARDWARE FOR AUTONOMY IN SPACE

[16] “About RISC-V – RISC-V International”. en-US. (), [Online]. Available: https:
//riscv.org/about/ (visited on 10/10/2023).

[17] “RISC-V: An Open Standard for SoCs”. (Aug. 2014), [Online]. Available: https:
//www.eetimes.com/risc- v- an- open- standard- for- socs/ (visited on
10/10/2023).

[18] “History – RISC-V International”. en-US. (), [Online]. Available: https : / /

riscv.org/about/history/ (visited on 10/10/2023).

[19] S. Nolting and A. t. A. Contributors. “The NEORV32 RISC-V Processor”. (Aug.
2023), [Online]. Available: https://github.com/stnolting/neorv32.
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Appendix A

User Application code listing

UserApplication.py

1 from __future__ import annotations

2 from typing import List

3 import sys , time , pydevd

4 from PySide2.QtCore import Qt , QObject , QThread , Signal , Slot

5 from Project.ProjectSettings import ProjectSettings

6 from Frames.FrameParser import FrameParser

7 from Frames.Frame import Frame

8 from Frames.EbdFrame import EbdFrame

9 from Frames.FrameAddress import FrameAddress

10 from Utilities.Constants import Constants

11 from Utilities.Log import Log

12 from UI.UISignals import UISignals

13 from Communication.CommandManager import CommandManager

14 # from Communication.SerialPort import SerialPort

15 from Data.ExecutionStatus import ExecutionStatus

16

17 from Controller.controller import Controller

18 from Log.logicdata import LogicData

19 from Log.ficampaign import FiCampaign

20 import serial

21 import pandas as pd

22

23 class UserApplicationSignals(QObject):

24 """ This class holds the signals user application

25 """

26 #: Signal to be called to stop the user application

27 ApplicationStopped = Signal(bool)

28

29 class UserApplication(QThread):

30 """ This class can be used as user application placeholder which ←↩
could be able to be loaded and executed dynamically

31 """

49
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32 def __init__(self , project : ProjectSettings , frameParser : ←↩
FrameParser , remoteDeviceSwIdReceived : QObject , parent=None ←↩
):

33 """ Class constructor

34

35 :param project: The project settings

36 :type project: ProjectSettings

37 :param frameParser: The :class:FrameParser as created by ←↩
the caller

38 :type frameParser: FrameParser

39 :param remoteDeviceSwIdReceived: Callbacl function to be ←↩
called when a SW version and ID are received

40 :type remoteDeviceSwIdReceived: QObject

41 :param parent: The parent object , defaults to None

42 :type parent: [type], optional

43 """

44 super().__init__(parent)

45 self._execute = False

46 self._project = project

47 self._frameParser = frameParser

48 self._commandManager = None

49 self._uiSignals = UISignals ()

50 self._uiSignals.RemoteDeviceSwIdReceived.connect( ←↩
remoteDeviceSwIdReceived)

51

52 def Exit(self):

53 """ Exits the user application

54 This method terminates the thread and the closes the :class ←↩
:CommandManager

55 """

56 self.StopClicked ()

57 try:

58 if self._commandManager:

59 self._commandManager.Close()

60 except Exception as e:

61 Log.PrintException(f’UserApplication.Exit: {str(e)}’)

62

63 @Slot(bool)

64 def StopClicked(self , value : bool = True):

65 """ Stops the thread

66

67 :param value: User provided value (from the parent object), ←↩
defaults to True

68 :type value: bool , optional

69 """

70 self._execute = False

71 if self.isRunning ():
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72 self.terminate ()

73

74 def waitAndRecored(self , timeout_time , contr , uart_dut = None):

75 timer_start = time.time_ns ()

76 outp = b’’

77 while not contr.getReady ():

78 # Gather ouput text

79 if uart_dut != None:

80 size = uart_dut.in_waiting

81 outp += uart_dut.read(size)

82 # Check for timeout

83 if (time.time_ns () - timer_start) > timeout_time:

84 return (-1, outp)

85 timer_end = time.time_ns ()

86 if uart_dut != None:

87 size = uart_dut.in_waiting

88 outp += uart_dut.read(size)

89 return (timer_end - timer_start , outp)

90

91 def gatherInjectionPoints(self , contr , instructions , ←↩
INSTRUCTION_END):

92 ip = pd.DataFrame(columns =[’pc’, ’instr’])

93 for pc in instructions:

94 contr.setCycleStop (0)

95 contr.setEnable(glbl = True , cycle = True)

96 contr.reset()

97

98 end = False

99 while not end:

100 contr.setPrgmStop(pc)

101 contr.setEnable(glbl = True , prgm = True)

102 (time , _ ) = self.waitAndRecored (2e9, contr , None)

103 if time == -1:

104 end = True

105 continue

106 instr = contr.read(contr.INSTR_COUNTER)

107 ip = pd.concat(

108 [pd.DataFrame ([[pc, instr]], columns=ip. ←↩
columns), ip],

109 ignore_index=True)

110 contr.setCycleStopRelative (8)

111 contr.setEnable(glbl=True , cycle=True)

112 return ip

113

114

115 def run(self):

116 global_timer = time.time()
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117 """ This method holds the user implementation executed by ←↩
this thread

118 """

119

120 ADDR_LIST = [0x2bc , 0x30c , 0x334 , 0x350 ,

121 0x4c0 , 0x4c8 , 0x538 , 0x540]

122 CLK_OFFSETS = [2, 3, 4]

123 INSTRUCTION_END = 0x7fc

124 LATCH_NAME = "/sprw/"

125 TIMEOUT_TIME = .8e9 #ns (1e9 ns = 1 second)

126 GOLDEN_STANDARD = [b’#0$’]
127 LOGIC_FILENAME = "fault_injection.ll"

128

129 UART_CONTROLLER = "COM7"

130 UART_DUT = "COM6"

131 RETRIES = 5

132

133 # Counters

134 c_run = 0

135 c_tries = 0

136 c_true = 0

137 c_fales = 0

138 c_timeout = 0

139

140 try:

141 self._commandManager = CommandManager(self._project. ←↩
FpgaDevice , self._project.IpAddress , self._project. ←↩
TcpPort)

142 self._execute = True

143

144 # Read S/N ans SW version

145 Log.Print("Reading ID")

146 boardInfo = self._commandManager.ReadId ()

147 serialNumberHex = ’{0:0{1}X}’.format(boardInfo. ←↩
SerialNumber , 8)

148 self._uiSignals.RemoteDeviceSwIdReceived.emit(f’{ ←↩
serialNumberHex} : {boardInfo.Version}’)

149

150 # Connect via UART to controller and DUT

151 Log.Print("Connecting to controller and DUT")

152 contr = Controller(UART_CONTROLLER)

153 uart_dut = serial.Serial(UART_DUT , 19200 , timeout =2)

154 # uart_dut = None

155

156 if False:

157 # Load and filter data

158 Log.Print("Importing and filtering Data")
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159 data = LogicData(LOGIC_FILENAME)

160 dut = data.getLatchName(LATCH_NAME)

161 dut[’net_short ’] = dut[’Net’]. replace(r’^.*/ sprw/’, ←↩
"", regex=True)

162 dut.to_csv("logs/injection_points.csv")

163

164 Log.Print("Selecting injection insructionts")

165 it = self.gatherInjectionPoints(contr , ADDR_LIST , ←↩
INSTRUCTION_END)

166 it.to_csv("logs/injction_instrucions.csv")

167

168 Log.Print("Creating full injection datasheet")

169 clkoffset = pd.DataFrame ({’clk_offset ’: CLK_OFFSETS ←↩
})

170 INJECTION_CAMPAIGN = dut.join(it, how=’cross ’).join ←↩
(clkoffset , how=’cross ’)

171 INJECTION_CAMPAIGN.to_csv("logs/injection_campaign. ←↩
csv")

172 else:

173 INJECTION_CAMPAIGN = pd.read_csv("logs/ ←↩
injection_campaign.csv")

174

175 result = INJECTION_CAMPAIGN

176 result[’output ’] = b’’

177 result[’correct ’] = None

178 result[’runtime ’] = 0

179 result[’timeout ’] = False

180 result[’retries ’] = 0

181 result[’time_ns ’] = 0

182

183

184 contr.setCycleStop (0)

185 contr.setEnable(glbl=True , cycle=True)

186 contr.reset ()

187

188 TOTAL_INJECTIONS = len(INJECTION_CAMPAIGN.index)

189

190 prev_offset = 0

191 for index , row in result.iterrows ():

192 c_run += 1

193

194 pc = row[’pc’]

195 instr = row[’instr ’]

196 clk_offset = row[’clk_offset ’]

197 Log.Print(f"[{ index/TOTAL_INJECTIONS :2.2%}] Running ←↩
campaign at offset {row[’offset ’]}, pc 0x{pc:x ←↩

}, instr 0x{instr:x}, skip {clk_offset}")
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198

199 result.at[index , ’time_ns ’] = time.time_ns ()

200

201 tries = RETRIES

202 while tries > 0:

203 c_tries += 1

204 result.at[index , ’output ’] = b’’

205 result.at[index , ’timeout ’] = False

206

207 if uart_dut != None:

208 uart_dut.reset_input_buffer ()

209

210 # Set stopping position to instruction

211 contr.setInstrStop(instr)

212 contr.setPrgmStop(pc)

213 # contr.setPrgmStop(INSTRUCTION_END)

214 contr.reset (); time.sleep (0.1)

215 contr.setEnable(glbl = True , instr = True)

216 # contr.setEnable(glbl = True , prgm = True)

217

218 # Wait for DUT to be ready and time execution

219 (timer_first , outp) = self.waitAndRecored( ←↩
TIMEOUT_TIME , contr , uart_dut)

220

221 # Save output

222 result.at[index , ’output ’] += outp

223 # Continue if timeout

224 if timer_first == -1:

225 Log.Print("Timeout 1")

226 result.at[index , ’timeout ’] = True

227 c_timeout +=1

228 tries -=1

229 contr.reset (); time.sleep (0.1)

230 continue

231

232 contr.setCycleStopRelative(clk_offset)

233 contr.setEnable(glbl = True , cycle = True)

234

235 time.sleep (0.1)

236

237 # Preform Fault injection

238 frameaddress = int(row[’frameaddress ’], 16)

239 frameoffset = int(row[’frameoffset ’])

240 # status = self._commandManager.InjectFault( ←↩
frameaddress , frameoffset , True)

241 # Log.Print(status)

242
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243 # Resume execution

244 contr.setPrgmStop(INSTRUCTION_END)

245 contr.setEnable(glbl = True , prgm=True)

246 (timer_second , outp) = self.waitAndRecored( ←↩
TIMEOUT_TIME - timer_first ,

247 contr , ←↩
uart_dut ←↩
)

248

249 # Save output

250 result.at[index , ’output ’] += outp

251 # Continue if timeout

252 if timer_second == -1:

253 Log.Print(f"Timeout 2 at PC 0x{contr.read( ←↩
contr.PRGM_COUNTER):x}\n{outp=}")

254 result.at[index , ’timeout ’] = True

255 c_timeout +=1

256 tries -=1

257 contr.reset (); time.sleep (0.1)

258 continue

259

260 # Save timing info

261 result.at[index , ’runtime ’] = timer_first + ←↩
timer_second

262 result.at[index , ’retries ’] = RETRIES -tries

263

264 if fi.get_output(id).find(b’$’) == -1:

265 Log.Print(f"Output not complete\n{outp=}")

266 c_fales +=1

267 tries -=1

268 elif fi.get_output(id).find(b’#0’) == -1:

269 Log.Print(f"Output not corect\n{outp=}")

270 c_fales +=1

271 tries = -1

272 else:

273 c_true +=1

274 result.at[index , ’correct ’] = True

275 Log.Print(f"{correct:}, Done in { ←↩
timer_first + timer_second} ns in { ←↩
RETRIES -tries} retries (r{c_run}/f{ ←↩
c_fales }/t{c_timeout })")

276 tries = -1

277

278 result.to_csv("logs/injection_results.csv")

279 # Closing UART devices

280 Log.Print("End of campaign , closing UART devices")

281 contr.close ()
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282 if uart_dut != None:

283 uart_dut.close ()

284 Log.Print(f"Total campaign took {time.time() - ←↩
global_timer}s\nRan {c_run} campaigns with {c_tries} ←↩
tries , {c_true} correct , {c_fales} fails and { ←↩

c_timeout} timeouts.")

285

286 except Exception as e:

287 contr.close()

288 if uart_dut != None:

289 uart_dut.close ()

290 Log.PrintException(f’UserApplication.run: {str(e)}’)
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Benchmark code listing

main.c

60 int main() {

61 // Setup

62 neorv32_uart0_setup(BAUD_RATE , 0);

63

64 if (neorv32_crc_available () == 0) {

65 neorv32_uart0_putc(’X’);

66 return 1;

67 }

68

69 if (! get_implementation ()) {

70 neorv32_uart0_putc(’Y’);

71 }

72

73 // Variable Setup

74 unsigned char A[N][N], B[N][N], C[N][N], D[N][N];

75 unsigned int previous = 134775813U;

76 previous = init(( unsigned char*) A, sizeof(A[0]), previous);

77 previous = init(( unsigned char*) B, sizeof(B[0]), previous);

78 char f_1 [3][3] = { {1, 0, 1},

79 {0, 2, 0},

80 {0, 0, 0}};

81

82 // Benchmark

83 product (( unsigned char*) A, (unsigned char*) B, sizeof(A[0]), ( ←↩
unsigned char*) C);

84 conv_filter (( unsigned char*) C, (unsigned char*) D, sizeof(C ←↩
[0]), (unsigned char*) f_1);

85

86 // Print Result

87 neorv32_crc_setup(CRC_MODE32 , 0xf8c9140a , 0);

88 int result = neorv32_crc_block (( uint8_t *)D, sizeof(D));

89 uint8_t crc [4] = {0xb4 , 0x9f , 0x6a , 0x70};
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90 result = neorv32_crc_block (( uint8_t *)crc , sizeof(crc));

91 neorv32_uart0_putc(’#’);

92 print_uint(result);

93 neorv32_uart0_putc(’$’);
94

95 while (( NEORV32_UART0 ->CTRL & (1<< UART_CTRL_TX_BUSY)));

96

97 return 0;

98 }

39 unsigned int init(unsigned char* matrix , size_t edge_size , unsigned ←↩
int previous){

40 for(int i =0; i < edge_size*edge_size; i++){

41 previous = previous *48271U;

42 *matrix ++ = previous %5;

43 }

44 return previous;

45 }

54

55 void print_uint(uint32_t num){

56 if (num > 9) print_uint(num /10);

57 neorv32_uart0_putc(’0’ + (num %10));

58 }

functions.c (Convolution filter)

81 void conv_filter(unsigned char* src , unsigned char* dst , const ←↩
size_t edge_size , const unsigned char* filter) {

82 memset(dst , 0, edge_size*edge_size*sizeof(char));

83 union mask_t mk;

84 sprw_ctrl_ms_clear ();

85 // Limits change for every row of kernel

86 const int limit [3][3] = {{0,-1,1}, {0,0,0}, {1 ,0 ,0}};

87

88 int kern , value , dot;

89 for(int k = 0; k < 3; k++){ // Loop through every row of kernel

90 // kern = *(int *) (filter + k*3);

91 memcpy (&kern , filter + k*3, sizeof(int));

92 const int max = edge_size * (edge_size + limit[k][1]);

93 unsigned char *dst_p = dst + limit[k][2]* edge_size;

94 for(int j = limit[k][0]* edge_size; j < max; j+= edge_size){ ←↩
// Row index of src

95 // first

96 mk.elem = (struct mask_lane_t) {0, 1, 1, 0}; ←↩
sprw_ctrl_mk_set(mk);

97 // value = *(int *) (src+j);

98 memcpy (&value , src + j, sizeof(int));
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99 value = value << 8;

100 asm volatile ("usdot %0, %1, %2" : "=r"(dot) : "r"( ←↩
value), "r"(kern));

101 *dst_p ++ += dot;

102 // neorv32_uart0_printf ("%d, k: %x, v: %x, d: %x %x ( ←↩
first)\n",dst_p - dst , kern , value , dot , *(dst_p -1)) ←↩
;

103

104

105 mk.elem = (struct mask_lane_t) {1, 1, 1, 0}; ←↩
sprw_ctrl_mk_set(mk);

106 for(int i = 1; i < edge_size - 2; i++) { // Column ←↩
index of src (3 at the time)

107 // value = *(int *) (src+j+i-1);

108 memcpy (&value , src + j + i-1, sizeof(int));

109 asm volatile ("usdot %0, %1, %2" : "=r"(dot) : "r"( ←↩
value), "r"(kern));

110 *dst_p++ += dot;

111 // neorv32_uart0_printf ("%d, k: %x, v: %x, d: %x %x ←↩
\n",dst_p - dst , kern , value , dot , *(dst_p -1));

112 }

113

114

115 // second laste

116 value = value >> 8;

117 asm volatile ("usdot %0, %1, %2" : "=r"(dot) : "r"( ←↩
value), "r"(kern));

118 *dst_p ++ += dot;

119 // neorv32_uart0_printf ("%d, k: %x, v: %x, d: %x %x ( ←↩
last 1)\n",dst_p - dst , kern , value , dot , *(dst_p -1) ←↩
);

120 // second laste

121 mk.elem = (struct mask_lane_t) {1, 1, 0, 0}; ←↩
sprw_ctrl_mk_set(mk);

122 value = value >> 8;

123 asm volatile ("usdot %0, %1, %2" : "=r"(dot) : "r"( ←↩
value), "r"(kern));

124 *dst_p ++ += dot;

125 // neorv32_uart0_printf ("%d, k: %x, v: %x, d: %x %x ( ←↩
last 2)\n",dst_p - dst , kern , value , dot , *(dst_p -1) ←↩
);

126 }

127

128 }

129 sprw_ctrl_reset ();

130

131 }
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functions.c (Matrix product)

176 void product(const unsigned char* A, const unsigned char* B, const ←↩
size_t edge_size , unsigned char* C) {

177 memset(C, 0, edge_size*edge_size*sizeof(char));

178

179 // Some administration to handle resting part of calculation ←↩
not fitting

180 // in width 4 sparrow ALU

181 int mod = edge_size %4;

182 const int max = edge_size - mod;

183 union mask_t mk;

184 mk.vector = 0xf0 >> mod & 0x0f;

185 sprw_ctrl_ms_clear (); // Set ms to 0 such that masking vector ←↩
masks to 0

186

187 int* matA = malloc(sizeof(int));

188 int* matB = malloc(sizeof(int));

189

190 for (size_t i = 0; i < edge_size; i++) {

191 for (size_t j = 0; j < edge_size; j++) {

192 int dot;

193 int sum = 0;

194 for (size_t k = 0; k < max; k += 4) {

195 memcpy(matA , A+i*edge_size+k, sizeof(int));

196 memcpy(matB , B+j*edge_size+k, sizeof(int));

197 asm("usdot %0, %1, %2" : "=r"(dot) : "r"(*matA), "r ←↩
"(*matB));

198 // asm("nop");

199 asm("usadd_ %0, %1, %2" : "=r"(sum) : "r"(sum), "r" ←↩
(dot));

200 }

201 if (mod != 0) {

202 sprw_ctrl_mk_set(mk);

203 memcpy(matA , A+i*edge_size+edge_size -4, sizeof(int) ←↩
);

204 memcpy(matB , B+j*edge_size+edge_size -4, sizeof(int) ←↩
);

205 asm volatile ("usdot %0, %1, %2" : "=r"(dot) : "r" ←↩
(*matA), "r"(*matB));

206 sprw_ctrl_mk_clear ();

207 asm volatile ("usadd_ %0, %1, %2" : "=r"(sum) : "r" ←↩
(sum), "r"(dot));

208 }

209 C[i * edge_size + j] = sum;

210 }

211 }
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212 sprw_ctrl_reset ();

213 }
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Compiled benchmark

main.asm (convolutional filter)

232 00000194 <conv_filter >:

233 ; void conv_filter(unsigned char* src , unsigned char* dst , const ←↩
size_t edge_size , const unsigned char* filter) {

234 194: 13 01 01 fb addi sp, sp, -80

235 198: 23 26 11 04 sw ra, 76(sp)

236 19c: 23 24 81 04 sw s0, 72(sp)

237 1a0: 23 22 91 04 sw s1, 68(sp)

238 1a4: 23 20 21 05 sw s2, 64(sp)

239 1a8: 23 2e 31 03 sw s3, 60(sp)

240 1ac: 23 2c 41 03 sw s4, 56(sp)

241 1b0: 23 2a 51 03 sw s5, 52(sp)

242 1b4: 23 28 61 03 sw s6, 48(sp)

243 1b8: 23 26 71 03 sw s7, 44(sp)

244 1bc: 23 24 81 03 sw s8, 40(sp)

245 1c0: 13 89 06 00 mv s2, a3

246 1c4: 13 0b 06 00 mv s6, a2

247 1c8: 93 89 05 00 mv s3, a1

248 1cc: 93 0a 05 00 mv s5, a0

249 ; memset(dst , 0, edge_size*edge_size*sizeof(char));

250 1d0: 33 06 c6 02 mul a2, a2, a2

251 1d4: 13 85 05 00 mv a0, a1

252 1d8: 93 05 00 00 mv a1, zero

253 1dc: ef 00 40 6f jal 0x8d0 <memset >

254 1e0: 13 05 00 01 addi a0, zero , 16

255 ; asm volatile ("csrc %[reg], %[val ]":: [reg] "i" (CSR_SPRW), [ ←↩
val] "r" (SPRW_MS_MSK) );

256 1e4: 73 30 05 80 csrc 2048, a0

257 ; const int limit [3][3] = {{0,-1,1}, {0,0,0}, {1 ,0 ,0}};

258 1e8: 13 05 41 00 addi a0, sp, 4

259 1ec: 13 06 40 02 addi a2, zero , 36

260 1f0: 13 0a 41 00 addi s4, sp, 4

261 1f4: 93 05 00 00 mv a1, zero
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262 1f8: ef 00 80 6d jal 0x8d0 <memset >

263 1fc: 93 03 00 00 mv t2, zero

264 200: 13 05 f0 ff addi a0, zero , -1

265 ; const int limit [3][3] = {{0,-1,1}, {0,0,0}, {1 ,0 ,0}};

266 204: 23 24 a1 00 sw a0, 8(sp)

267 208: 93 05 10 00 addi a1, zero , 1

268 20c: 23 26 b1 00 sw a1, 12(sp)

269 210: 23 2e b1 00 sw a1, 28(sp)

270 214: 13 06 eb ff addi a2, s6, -2

271 218: 33 be c5 00 sltu t3, a1, a2

272 ; for(int k = 0; k < 3; k++){ // Loop through every row of ←↩
kernel

273 21c: 93 0e db ff addi t4, s6, -3

274 220: 13 08 c0 00 addi a6, zero , 12

275 224: 93 0f f0 00 addi t6, zero , 15

276 228: 93 08 60 00 addi a7, zero , 6

277 22c: 93 02 70 00 addi t0, zero , 7

278 230: 13 03 30 00 addi t1, zero , 3

279 ; for(int j = limit[k][0]* edge_size; j < max; j+= edge_size ←↩
){ // Row index of src

280 234: 33 86 03 03 mul a2, t2, a6

281 238: 33 06 ca 00 add a2, s4, a2

282 23c: 03 26 06 00 lw a2, 0(a2)

283 ; const int max = edge_size * (edge_size + limit[k][1]);

284 240: 33 05 65 01 add a0, a0, s6

285 244: 33 0f 65 03 mul t5, a0, s6

286 ; for(int j = limit[k][0]* edge_size; j < max; j+= edge_size ←↩
){ // Row index of src

287 248: b3 0b 66 03 mul s7, a2, s6

288 24c: 63 d2 eb 13 bge s7, t5, 0x370 <conv_filter +0x1dc>

289 250: 13 95 13 00 slli a0, t2, 1

290 254: 33 05 75 00 add a0, a0, t2

291 258: 33 05 a9 00 add a0, s2, a0

292 25c: 03 46 15 00 lbu a2, 1(a0)

293 260: 83 46 05 00 lbu a3, 0(a0)

294 264: 03 47 35 00 lbu a4, 3(a0)

295 268: 03 45 25 00 lbu a0, 2(a0)

296 26c: 13 16 86 00 slli a2, a2, 8

297 270: 33 66 d6 00 or a2, a2, a3

298 274: 93 16 87 00 slli a3, a4, 8

299 278: 33 e5 a6 00 or a0, a3, a0

300 27c: 13 15 05 01 slli a0, a0, 16

301 280: 33 65 c5 00 or a0, a0, a2

302 ; unsigned char *dst_p = dst + limit[k][2]* edge_size;

303 284: b3 85 65 03 mul a1, a1, s6

304 288: b3 85 b9 00 add a1, s3, a1

305 ; for(int j = limit[k][0]* edge_size; j < max; j+= edge_size ←↩
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){ // Row index of src

306 28c: 33 8c 7a 01 add s8, s5, s7

307 ; asm volatile ("csrc %[reg], %[val ]":: [reg] "i" (CSR_SPRW), [ ←↩
val] "r" (SPRW_MK_MSK) );

308 290: 73 b0 0f 80 csrc 2048, t6

309 ; asm volatile ("csrs %[reg], %[val ]":: [reg] "i" (CSR_SPRW), [ ←↩
val] "r" (mask) );

310 294: 73 a0 08 80 csrs 2048, a7

311 ; memcpy (&value , src + j, sizeof(int));

312 298: 33 86 7a 01 add a2, s5, s7

313 29c: 83 46 16 00 lbu a3, 1(a2)

314 2a0: 03 44 06 00 lbu s0, 0(a2)

315 2a4: 03 46 26 00 lbu a2, 2(a2)

316 2a8: 93 96 86 00 slli a3, a3, 8

317 2ac: b3 e6 86 00 or a3, a3, s0

318 2b0: 13 16 06 01 slli a2, a2, 16

319 2b4: 33 66 d6 00 or a2, a2, a3

320 ; value = value << 8;

321 2b8: 93 16 86 00 slli a3, a2, 8

322 ; asm volatile (" usdot %0, %1, %2" : "=r"(dot) : "r"( ←↩
value), "r"(kern));

323 2bc: 0b d6 a6 7c usmul_usum a2 , a3 , a0

324 ; *dst_p++ += dot;

325 2c0: 03 84 05 00 lb s0, 0(a1)

326 2c4: 33 06 c4 00 add a2, s0, a2

327 2c8: 23 80 c5 00 sb a2, 0(a1)

328 ; asm volatile ("csrc %[reg], %[val ]":: [reg] "i" (CSR_SPRW), [ ←↩
val] "r" (SPRW_MK_MSK) );

329 2cc: 73 b0 0f 80 csrc 2048, t6

330 ; asm volatile ("csrs %[reg], %[val ]":: [reg] "i" (CSR_SPRW), [ ←↩
val] "r" (mask) );

331 2d0: 73 a0 02 80 csrs 2048, t0

332 2d4: 13 86 15 00 addi a2, a1, 1

333 2d8: 13 04 0c 00 mv s0, s8

334 2dc: 93 84 0e 00 mv s1, t4

335 ; for(int i = 1; i < edge_size - 2; i++) { // Column ←↩
index of src (3 at the time)

336 2e0: 63 08 0e 04 beqz t3, 0x330 <conv_filter +0x19c>

337 ; memcpy (&value , src + j + i-1, sizeof(int));

338 2e4: 83 45 14 00 lbu a1, 1(s0)

339 2e8: 83 46 04 00 lbu a3, 0(s0)

340 2ec: 83 47 34 00 lbu a5, 3(s0)

341 2f0: 03 47 24 00 lbu a4, 2(s0)

342 2f4: 93 95 85 00 slli a1, a1, 8

343 2f8: b3 e5 d5 00 or a1, a1, a3

344 2fc: 93 96 87 00 slli a3, a5, 8

345 300: b3 e6 e6 00 or a3, a3, a4
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346 304: 93 96 06 01 slli a3, a3, 16

347 308: b3 e6 b6 00 or a3, a3, a1

348 ; asm volatile (" usdot %0, %1, %2" : "=r"(dot) : "r ←↩
"( value), "r"(kern));

349 30c: 8b d5 a6 7c usmul_usum a1 , a3 , a0

350 ; *dst_p++ += dot;

351 310: 03 07 06 00 lb a4, 0(a2)

352 314: b3 05 b7 00 add a1, a4, a1

353 318: 23 00 b6 00 sb a1, 0(a2)

354 31c: 13 06 16 00 addi a2, a2, 1

355 ; for(int i = 1; i < edge_size - 2; i++) { // Column ←↩
index of src (3 at the time)

356 320: 93 84 f4 ff addi s1, s1, -1

357 ; memcpy (&value , src + j + i-1, sizeof(int));

358 324: 13 04 14 00 addi s0, s0, 1

359 ; for(int i = 1; i < edge_size - 2; i++) { // Column ←↩
index of src (3 at the time)

360 328: e3 9e 04 fa bnez s1, 0x2e4 <conv_filter +0x150 >

361 ; value = value >> 8;

362 32c: 93 05 f6 ff addi a1, a2, -1

363 330: 13 d4 86 40 srai s0, a3, 8

364 ; asm volatile (" usdot %0, %1, %2" : "=r"(dot) : "r"( ←↩
value), "r"(kern));

365 334: 0b 54 a4 7c usmul_usum s0 , s0 , a0

366 ; *dst_p++ += dot;

367 338: 83 04 06 00 lb s1, 0(a2)

368 33c: 33 84 84 00 add s0, s1, s0

369 340: 23 00 86 00 sb s0, 0(a2)

370 ; asm volatile ("csrc %[reg], %[val ]":: [reg] "i" (CSR_SPRW), [ ←↩
val] "r" (SPRW_MK_MSK) );

371 344: 73 b0 0f 80 csrc 2048, t6

372 ; asm volatile ("csrs %[reg], %[val ]":: [reg] "i" (CSR_SPRW), [ ←↩
val] "r" (mask) );

373 348: 73 20 03 80 csrs 2048, t1

374 ; value = value >> 8;

375 34c: 13 d6 06 41 srai a2, a3, 16

376 ; asm volatile (" usdot %0, %1, %2" : "=r"(dot) : "r"( ←↩
value), "r"(kern));

377 350: 0b 56 a6 7c usmul_usum a2 , a2 , a0

378 ; *dst_p++ += dot;

379 354: 83 86 25 00 lb a3, 2(a1)

380 358: 33 86 c6 00 add a2, a3, a2

381 35c: 23 81 c5 00 sb a2, 2(a1)

382 360: 93 85 35 00 addi a1, a1, 3

383 ; for(int j = limit[k][0]* edge_size; j < max; j+= edge_size ←↩
){ // Row index of src

384 364: b3 8b 6b 01 add s7, s7, s6
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385 368: 33 0c 6c 01 add s8, s8, s6

386 36c: e3 c2 eb f3 blt s7, t5, 0x290 <conv_filter +0xfc>

387 ; for(int k = 0; k < 3; k++){ // Loop through every row of ←↩
kernel

388 370: 93 83 13 00 addi t2, t2, 1

389 374: 63 8c 63 00 beq t2, t1, 0x38c <conv_filter +0x1f8>

390 378: 33 85 03 03 mul a0, t2, a6

391 37c: b3 05 aa 00 add a1, s4, a0

392 ; const int max = edge_size * (edge_size + limit[k][1]);

393 380: 03 a5 45 00 lw a0, 4(a1)

394 ; unsigned char *dst_p = dst + limit[k][2]* edge_size;

395 384: 83 a5 85 00 lw a1, 8(a1)

396 388: 6f f0 df ea j 0x234 <conv_filter +0xa0>

397 38c: 37 a5 5c 00 lui a0, 1482

398 390: 13 05 f5 c9 addi a0, a0, -865

399 ; asm volatile ("csrw %[reg], %[val ]":: [reg] "i" (CSR_SPRW), [ ←↩
val] "r" (SPRW_DEFAULT) );

400 394: 73 10 05 80 csrw 2048, a0

401 ; }

402 398: 03 2c 81 02 lw s8, 40(sp)

403 39c: 83 2b c1 02 lw s7, 44(sp)

404 3a0: 03 2b 01 03 lw s6, 48(sp)

405 3a4: 83 2a 41 03 lw s5, 52(sp)

406 3a8: 03 2a 81 03 lw s4, 56(sp)

407 3ac: 83 29 c1 03 lw s3, 60(sp)

408 3b0: 03 29 01 04 lw s2, 64(sp)

409 3b4: 83 24 41 04 lw s1, 68(sp)

410 3b8: 03 24 81 04 lw s0, 72(sp)

411 3bc: 83 20 c1 04 lw ra, 76(sp)

412 3c0: 13 01 01 05 addi sp, sp, 80

413 3c4: 67 80 00 00 ret

main.asm (Matrix product)

415 000003 c8 <product >:

416 ; void product(const unsigned char* A, const unsigned char* B, ←↩
const size_t edge_size , unsigned char* C) {

417 3c8: 13 01 01 fd addi sp, sp, -48

418 3cc: 23 26 11 02 sw ra, 44(sp)

419 3d0: 23 24 81 02 sw s0, 40(sp)

420 3d4: 23 22 91 02 sw s1, 36(sp)

421 3d8: 23 20 21 03 sw s2, 32(sp)

422 3dc: 23 2e 31 01 sw s3, 28(sp)

423 3e0: 23 2c 41 01 sw s4, 24(sp)

424 3e4: 23 2a 51 01 sw s5, 20(sp)

425 3e8: 23 28 61 01 sw s6, 16(sp)

426 3ec: 23 26 71 01 sw s7, 12(sp)
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427 3f0: 13 8a 06 00 mv s4, a3

428 3f4: 93 0a 06 00 mv s5, a2

429 3f8: 13 89 05 00 mv s2, a1

430 3fc: 93 09 05 00 mv s3, a0

431 ; memset(C, 0, edge_size*edge_size*sizeof(char));

432 400: 33 06 c6 02 mul a2, a2, a2

433 404: 13 85 06 00 mv a0, a3

434 408: 93 05 00 00 mv a1, zero

435 40c: ef 00 40 4c jal 0x8d0 <memset >

436 410: 13 05 00 01 addi a0, zero , 16

437 ; asm volatile ("csrc %[reg], %[val ]":: [reg] "i" (CSR_SPRW), [ ←↩
val] "r" (SPRW_MS_MSK) );

438 414: 73 30 05 80 csrc 2048, a0

439 ; for (size_t i = 0; i < edge_size; i++) {

440 418: 63 80 0a 16 beqz s5, 0x578 <product +0x1b0>

441 41c: 13 08 00 00 mv a6, zero

442 420: 13 f5 3a 00 andi a0, s5, 3

443 424: 13 fb ca ff andi s6, s5, -4

444 428: 13 06 00 0f addi a2, zero , 240

445 42c: 33 56 a6 00 srl a2, a2, a0

446 430: 93 78 e6 00 andi a7, a2, 14

447 434: 93 33 1b 00 seqz t2, s6

448 438: 13 3e 15 00 seqz t3, a0

449 43c: 13 83 ca ff addi t1, s5, -4

450 440: 93 02 f0 00 addi t0, zero , 15

451 444: 93 8b 09 00 mv s7, s3

452 448: 93 0f 00 00 mv t6, zero

453 44c: b3 0e 58 03 mul t4, a6, s5

454 450: b3 06 d3 01 add a3, t1, t4

455 454: 33 8f d9 00 add t5, s3, a3

456 458: 93 06 09 00 mv a3, s2

457 ; for (size_t k = 0; k < max; k += 4) {

458 45c: 63 92 03 10 bnez t2, 0x560 <product +0x198 >

459 460: 93 07 00 00 mv a5, zero

460 464: 13 07 00 00 mv a4, zero

461 ; memcpy(matA , A+i*edge_size+k, sizeof(int));

462 468: b3 84 fb 00 add s1, s7, a5

463 46c: 03 c4 14 00 lbu s0, 1(s1)

464 470: 03 c5 04 00 lbu a0, 0(s1)

465 474: 83 c5 34 00 lbu a1, 3(s1)

466 478: 83 c4 24 00 lbu s1, 2(s1)

467 47c: 13 14 84 00 slli s0, s0, 8

468 480: 33 65 a4 00 or a0, s0, a0

469 484: 93 95 85 00 slli a1, a1, 8

470 488: b3 e5 95 00 or a1, a1, s1

471 48c: 93 95 05 01 slli a1, a1, 16

472 490: 33 e5 a5 00 or a0, a1, a0
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473 ; memcpy(matB , B+j*edge_size+k, sizeof(int));

474 494: b3 85 f6 00 add a1, a3, a5

475 498: 03 c4 15 00 lbu s0, 1(a1)

476 49c: 83 c4 05 00 lbu s1, 0(a1)

477 4a0: 03 c6 35 00 lbu a2, 3(a1)

478 4a4: 83 c5 25 00 lbu a1, 2(a1)

479 4a8: 13 14 84 00 slli s0, s0, 8

480 4ac: 33 64 94 00 or s0, s0, s1

481 4b0: 13 16 86 00 slli a2, a2, 8

482 4b4: b3 65 b6 00 or a1, a2, a1

483 4b8: 93 95 05 01 slli a1, a1, 16

484 4bc: b3 e5 85 00 or a1, a1, s0

485 ; asm(" usdot %0, %1, %2" : "=r"(dot) : "r"(* matA), ←↩
"r"(* matB));

486 4c0: 0b 55 b5 7c usmul_usum a0 , a0 , a1

487 ; for (size_t k = 0; k < max; k += 4) {

488 4c4: 93 87 47 00 addi a5, a5, 4

489 ; asm(" usadd_ %0, %1, %2" : "=r"(sum) : "r"(sum), " ←↩
r"(dot));

490 4c8: 0b 07 a7 74 usadd_ a4 , a4, a0

491 ; for (size_t k = 0; k < max; k += 4) {

492 4cc: e3 ee 67 f9 bltu a5, s6, 0x468 <product +0xa0>

493 4d0: 63 1a 0e 06 bnez t3, 0x544 <product +0x17c>

494 4d4: 33 85 5f 03 mul a0, t6, s5

495 ; asm volatile ("csrc %[reg], %[val ]":: [reg] "i" (CSR_SPRW), [ ←↩
val] "r" (SPRW_MK_MSK) );

496 4d8: 73 b0 02 80 csrc 2048, t0

497 ; asm volatile ("csrs %[reg], %[val ]":: [reg] "i" (CSR_SPRW), [ ←↩
val] "r" (mask) );

498 4dc: 73 a0 08 80 csrs 2048, a7

499 ; memcpy(matA , A+i*edge_size+edge_size -4, sizeof( ←↩
int));

500 4e0: 83 45 1f 00 lbu a1, 1(t5)

501 4e4: 03 46 0f 00 lbu a2, 0(t5)

502 4e8: 83 47 3f 00 lbu a5, 3(t5)

503 4ec: 03 44 2f 00 lbu s0, 2(t5)

504 4f0: 93 95 85 00 slli a1, a1, 8

505 4f4: b3 e5 c5 00 or a1, a1, a2

506 4f8: 13 96 87 00 slli a2, a5, 8

507 4fc: 33 66 86 00 or a2, a2, s0

508 500: 13 16 06 01 slli a2, a2, 16

509 504: b3 65 b6 00 or a1, a2, a1

510 ; memcpy(matB , B+j*edge_size+edge_size -4, sizeof( ←↩
int));

511 508: 33 05 a3 00 add a0, t1, a0

512 50c: 33 05 a9 00 add a0, s2, a0

513 510: 03 46 15 00 lbu a2, 1(a0)
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514 514: 83 47 05 00 lbu a5, 0(a0)

515 518: 03 44 35 00 lbu s0, 3(a0)

516 51c: 03 45 25 00 lbu a0, 2(a0)

517 520: 13 16 86 00 slli a2, a2, 8

518 524: 33 66 f6 00 or a2, a2, a5

519 528: 93 17 84 00 slli a5, s0, 8

520 52c: 33 e5 a7 00 or a0, a5, a0

521 530: 13 15 05 01 slli a0, a0, 16

522 534: 33 65 c5 00 or a0, a0, a2

523 ; asm volatile (" usdot %0, %1, %2" : "=r"(dot) : "r ←↩
"(* matA), "r"(* matB));

524 538: 0b d5 a5 7c usmul_usum a0 , a1 , a0

525 ; asm volatile ("csrs %[reg], %[val ]":: [reg] "i" (CSR_SPRW), [ ←↩
val] "r" (SPRW_MK_MSK) );

526 53c: 73 a0 02 80 csrs 2048, t0

527 ; asm volatile (" usadd_ %0, %1, %2" : "=r"(sum) : " ←↩
r"(sum), "r"(dot));

528 540: 0b 07 a7 74 usadd_ a4, a4, a0

529 ; C[i * edge_size + j] = sum;

530 544: 33 85 df 01 add a0, t6, t4

531 548: 33 05 aa 00 add a0, s4, a0

532 54c: 23 00 e5 00 sb a4, 0(a0)

533 ; for (size_t j = 0; j < edge_size; j++) {

534 550: 93 8f 1f 00 addi t6, t6, 1

535 554: b3 86 56 01 add a3, a3, s5

536 558: e3 92 5f f1 bne t6, s5, 0x45c <product +0x94 >

537 55c: 6f 00 00 01 j 0x56c <product +0x1a4 >

538 560: 13 07 00 00 mv a4, zero

539 564: e3 08 0e f6 beqz t3, 0x4d4 <product +0x10c>

540 568: 6f f0 df fd j 0x544 <product +0x17c>

541 ; for (size_t i = 0; i < edge_size; i++) {

542 56c: 13 08 18 00 addi a6, a6, 1

543 570: b3 8b 5b 01 add s7, s7, s5

544 574: e3 1a 58 ed bne a6, s5, 0x448 <product +0x80 >

545 578: 37 a5 5c 00 lui a0, 1482

546 57c: 13 05 f5 c9 addi a0, a0, -865

547 ; asm volatile ("csrw %[reg], %[val ]":: [reg] "i" (CSR_SPRW), [ ←↩
val] "r" (SPRW_DEFAULT) );

548 580: 73 10 05 80 csrw 2048, a0

549 ; }

550 584: 83 2b c1 00 lw s7, 12(sp)

551 588: 03 2b 01 01 lw s6, 16(sp)

552 58c: 83 2a 41 01 lw s5, 20(sp)

553 590: 03 2a 81 01 lw s4, 24(sp)

554 594: 83 29 c1 01 lw s3, 28(sp)

555 598: 03 29 01 02 lw s2, 32(sp)

556 59c: 83 24 41 02 lw s1, 36(sp)
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557 5a0: 03 24 81 02 lw s0, 40(sp)

558 5a4: 83 20 c1 02 lw ra, 44(sp)

559 5a8: 13 01 01 03 addi sp, sp, 48

560 5ac: 67 80 00 00 ret
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Appendix D

SPARROW implementation in
NEORV32

This chapter outlines the added hardware and software to the NEORV32 project [19]
for implementing SPARROW [15], [68] as a CFU. First hardware additions are
shown, starting with the CFU to SPARROW interface. Also, changes to NEORV32s
control bus are included. Then, a small addition to the CSR library file is listed,
whereafter a new library for interfacing with the SPARROW CSR is provided.

neorv32 cpu cp cfu sparrow.vhd

40 library ieee;

41 use ieee.std_logic_1164.all;

42 use ieee.numeric_std.all;

43

44 library neorv32;

45 use neorv32.neorv32_package.all;

46

47 library sparrow;

48 use sparrow.sparrow.all;

49

50 entity neorv32_cpu_cp_cfu is

51 port (

52 -- global control --

53 clk_i : in std_ulogic; -- global clock , rising edge

54 rstn_i : in std_ulogic; -- global reset , low -active , async

55 ctrl_i : in ctrl_bus_t; -- main control bus

56 start_i : in std_ulogic; -- trigger operation

57 -- data input --

58 rs1_i : in std_ulogic_vector(XLEN -1 downto 0); -- rf source ←↩
1

59 rs2_i : in std_ulogic_vector(XLEN -1 downto 0); -- rf source ←↩
2
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60 rs3_i : in std_ulogic_vector(XLEN -1 downto 0); -- rf source ←↩
3

61 rs4_i : in std_ulogic_vector(XLEN -1 downto 0); -- rf source ←↩
4

62 -- result and status --

63 res_o : out std_ulogic_vector(XLEN -1 downto 0); -- operation ←↩
result

64 valid_o : out std_ulogic -- data output valid

65 );

66 end neorv32_cpu_cp_cfu;

67

68 architecture neorv32_cpu_cp_cfu_rtl of neorv32_cpu_cp_cfu is

69

70 -- CFU Control - do not modify! ----------------------------

71 -- ------------------------------------------------------------

72

73 type control_t is record

74 busy : std_ulogic; -- CFU is busy

75 done : std_ulogic; -- set to ’1’ when processing is done

76 result : std_ulogic_vector(XLEN -1 downto 0); -- user ’s ←↩
processing result (for write -back to register file)

77 rtype : std_ulogic_vector (1 downto 0); -- instruction type , ←↩
see constants below

78 funct3 : std_ulogic_vector (2 downto 0); -- "funct3" bit -field ←↩
from custom instruction

79 funct7 : std_ulogic_vector (6 downto 0); -- "funct7" bit -field ←↩
from custom instruction

80 end record;

81 signal control : control_t;

82

83 -- instruction format types --

84 constant r3type_c : std_ulogic_vector (1 downto 0) := "00"; -- R3 ←↩
-type instructions (custom -0 opcode)

85 constant r4type_c : std_ulogic_vector (1 downto 0) := "01"; -- R4 ←↩
-type instructions (custom -1 opcode)

86 constant r5typeA_c : std_ulogic_vector (1 downto 0) := "10"; -- R5 ←↩
-type instruction A (custom -2 opcode)

87 constant r5typeB_c : std_ulogic_vector (1 downto 0) := "11"; -- R5 ←↩
-type instruction B (custom -3 opcode)

88

89 -- User Logic ----------------------------------------------

90 -- ------------------------------------------------------------

91

92 -- multiply -add unit (r4 -type instruction example) --

93 type sprwctl_t is record

94 sreg : std_ulogic_vector (2 downto 0); -- 3 cycles latency in ←↩
arbitration shift register
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95 done : std_ulogic;

96 end record;

97 signal sprwctl : sprwctl_t;

98

99

100 signal sdi: sprw_in_type;

101 signal sdo: sprw_out_type;

102 signal holdn: std_ulogic := ’1’;

103 signal sprw_reg: sprw_ctrl_reg_type;

104

105 for all : sprw_module use entity sparrow.sprw_module(rtl);

106

107 function swizzling_set(sz_i : std_ulogic_vector(VSIZE*LOGSZ -1 ←↩
downto 0)) return swizzling_reg_type is

108 variable res_val : swizzling_reg_type;

109 begin

110 for i in 0 to (XLEN/VLEN)-1 loop

111 res_val(i) := to_integer(unsigned(sz_i(i*LOGSZ+LOGSZ -1 ←↩
downto i*LOGSZ)));

112 end loop;

113 return res_val;

114 end function swizzling_set;

115

116 function to_scr(data : std_ulogic_vector) return ←↩
sprw_ctrl_reg_type is

117 variable reg : sprw_ctrl_reg_type;

118 begin

119 reg.mk := to_stdlogicvector(data(3 downto 0));

120 reg.ms := data (4);

121 reg.sa := swizzling_set(data (12 downto 5));

122 reg.sb := swizzling_set(data (20 downto 13));

123 reg.ol := to_stdlogicvector(data (22 downto 21));

124 reg.od := to_stdlogicvector(data (26 downto 23));

125 reg.hp := data (27);

126 return reg;

127 end to_scr;

128

129 begin

130

131 -- ←↩
**************************************************************************************************************************** ←↩

132 -- This controller is required to handle the CPU/pipeline interface ←↩
. Do not modify!

133 -- ←↩
**************************************************************************************************************************** ←↩
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134

135 -- CFU Controller ←↩
------------------------------------------------------------------------- ←↩

136 -- ←↩
------------------------------------------------------------------------------------------- ←↩

137 cfu_control: process(rstn_i , clk_i)

138 begin

139 if (rstn_i = ’0’) then

140 res_o <= (others => ’0’);

141 control.busy <= ’0’;

142 elsif rising_edge(clk_i) then

143 res_o <= (others => ’0’); -- default; all CPU co-processor ←↩
outputs are logically OR -ed

144 if (control.busy = ’0’) then -- idle

145 if (start_i = ’1’) then

146 control.busy <= ’1’;

147 end if;

148 else -- busy

149 if (control.done = ’1’) or (ctrl_i.cpu_trap = ’1’) then -- ←↩
processing done? abort if trap (exception)

150 res_o <= control.result; -- output result for just ←↩
one cycle , CFU output has to be all -zero otherwise

151 control.busy <= ’0’;

152 end if;

153 end if;

154 end if;

155 end process cfu_control;

156

157 -- CPU feedback --

158 valid_o <= control.busy and control.done; -- set one cycle before ←↩
result data

159

160 -- pack user -defined instruction type/function bits --

161 control.rtype <= ctrl_i.ir_opcode (6 downto 5);

162 control.funct3 <= ctrl_i.ir_funct3;

163 control.funct7 <= ctrl_i.ir_funct12 (11 downto 5);

263

264 sprw: sprw_module port map(clk => clk_i ,

265 rstn => rstn_i ,

266 holdn => holdn ,

267 sdi => sdi ,

268 sdo => sdo);

269

270

271 sprw_reg <= ( mk => (others => ’1’),
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272 ms => ’0’,

273 sa => (0, 1, 2, 3),

274 sb => (0, 1, 2, 3),

275 ol => "10",

276 od => (others => ’0’),

277 hp => ’0’);

278

279 sdi.ra <= to_stdlogicvector(rs1_i);

280 sdi.rb <= to_stdlogicvector(rs2_i);

281 sdi.op1 <= to_stdlogicvector(control.funct7 (5 downto 1));

282 sdi.op2 <= to_stdlogicvector(control.funct3);

283 sdi.rc_we <= ’1’;

284 sdi.ctrl <= to_scr(ctrl_i.alu_sprw);

285 -- sdi.ctrl <= sprw_reg;

286 sdi.bpv <= (others => ’0’);

287 sdi.bp <= "00";

288

289 sprw_control: process(rstn_i , clk_i)

290 begin

291 if (rstn_i = ’0’) then

292 sprwctl.sreg <= (others => ’0’);

293 elsif rising_edge(clk_i) then

294 if (control.busy = ’0’) and

295 (start_i = ’1’) and

296 (control.rtype = r3type_c) then

297 sprwctl.sreg (0) <= ’1’;

298 else

299 sprwctl.sreg (0) <= ’0’;

300 end if;

301 sprwctl.sreg(sprwctl.sreg ’left downto 1) <= sprwctl.sreg( ←↩
sprwctl.sreg ’left - 1 downto 0);

302 end if;

303 end process sprw_control;

304

305 sprwctl.done <= sprwctl.sreg(sprwctl.sreg ’left);

306

307

308 -- Output select ←↩
-------------------------------------------------------------------------- ←↩

309 -- ←↩
---------------------------------------------------------------------------------------- ←↩

310 out_select: process(control , sprwctl , sdo)

311 begin

312 case control.rtype is

313
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314 -- --------------------------------------------------------

315 when r3type_c => -- R3 -type instructions

316 -- --------------------------------------------------------

317 control.result <= to_stdulogicvector(sdo.result);

318 control.done <= sprwctl.done; -- iterative , wait for unit ←↩
to finish

319

320 -- --------------------------------------------------------

321 when others => -- undefined

322 -- --------------------------------------------------------

323

324 control.result <= (others => ’0’);

325 control.done <= ’0’;

326

327 end case;

328 end process out_select;

329

330

331 end neorv32_cpu_cp_cfu_rtl;

neorv32 package.vhd

497 -- sparrow CSR --

498 constant csr_sprw_c : std_ulogic_vector (11 downto 0) := ←↩
x"800";

796

797 -- Main CPU Control Bus ←↩
------------------------------------------------------------------- ←↩

798 -- ←↩
------------------------------------------------------------------------------------------- ←↩

799 type ctrl_bus_t is record

800 -- register file --

801 rf_wb_en : std_ulogic; -- write back enable

802 rf_rs1 : std_ulogic_vector (04 downto 0); -- source ←↩
register 1 address

803 rf_rs2 : std_ulogic_vector (04 downto 0); -- source ←↩
register 2 address

804 rf_rs3 : std_ulogic_vector (04 downto 0); -- source ←↩
register 3 address

805 rf_rd : std_ulogic_vector (04 downto 0); -- destination ←↩
register address

806 rf_mux : std_ulogic_vector (01 downto 0); -- input source ←↩
select

807 rf_zero_we : std_ulogic; -- allow/force ←↩
write access to x0
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808 -- alu --

809 alu_op : std_ulogic_vector (02 downto 0); -- ALU ←↩
operation select

810 alu_opa_mux : std_ulogic; -- operand A ←↩
select (0=rs1 , 1=PC)

811 alu_opb_mux : std_ulogic; -- operand B ←↩
select (0=rs2 , 1=IMM)

812 alu_unsigned : std_ulogic; -- is unsigned ←↩
ALU operation

813 alu_frm : std_ulogic_vector (02 downto 0); -- FPU rounding ←↩
mode

814 alu_cp_trig : std_ulogic_vector (05 downto 0); -- co-processor ←↩
trigger (one -hot)

815 alu_sprw : std_ulogic_vector(XLEN -1 downto 0);

816 -- bus interface --

817 bus_req_rd : std_ulogic; -- trigger ←↩
memory read request

818 bus_req_wr : std_ulogic; -- trigger ←↩
memory write request

819 bus_mo_we : std_ulogic; -- memory ←↩
address and data output register write enable

820 bus_fence : std_ulogic; -- fence ←↩
operation

821 bus_fencei : std_ulogic; -- fence.i ←↩
operation

822 bus_priv : std_ulogic; -- effective ←↩
privilege level for load/store

823 -- instruction word --

824 ir_funct3 : std_ulogic_vector (02 downto 0); -- funct3 bit ←↩
field

825 ir_funct12 : std_ulogic_vector (11 downto 0); -- funct12 bit ←↩
field

826 ir_opcode : std_ulogic_vector (06 downto 0); -- opcode bit ←↩
field

827 -- cpu status --

828 cpu_priv : std_ulogic; -- effective ←↩
privilege mode

829 cpu_sleep : std_ulogic; -- set when CPU ←↩
is in sleep mode

830 cpu_trap : std_ulogic; -- set when CPU ←↩
is entering trap exec

831 cpu_debug : std_ulogic; -- set when CPU ←↩
is in debug mode

832 end record;

neorv32 cpu csr.h
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58 /* sparrow unit control */

59 CSR_SPRW = 0x800 , /**< 0x800 - sprw: Sparrow control ←↩
register */

neorv32 sparrow.h

1 #ifndef neorv32_sprw_h

2 #define neorv32_sprw_h

3

4 #ifdef __cplusplus

5 extern "C" {

6 #endif

7

8 #define SPRW_DEFAULT (0 x005C9C9F)

9 #define SPRW_HP_MSK (0 x08000000)

10 #define SPRW_OD_MSK (0 x07800000)

11 #define SPRW_OL_MSK (0 x00600000)

12 #define SPRW_SB_MSK (0 x001FE000)

13 #define SPRW_SA_MSK (0 x00001FE0)

14 #define SPRW_MS_MSK (0 x00000010)

15 #define SPRW_MK_MSK (0 x0000000F)

16

17 struct swizz_lane_t {

18 uint8_t a : 2;

19 uint8_t b : 2;

20 uint8_t c : 2;

21 uint8_t d : 2;

22 };

23

24 union swizz_t {

25 struct swizz_lane_t elem;

26 uint8_t vector;

27 };

28

29 struct mask_lane_t {

30 uint8_t a : 1;

31 uint8_t b : 1;

32 uint8_t c : 1;

33 uint8_t d : 1;

34 };

35

36 union mask_t {

37 struct mask_lane_t elem;

38 uint8_t vector : 4;

39 };

40

41 /********************************************************************//* ←↩
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42 * Reset the SPARROW control register to default settings.

43 *

44 * Default: no swilling , mask with masking vector 1111, ol 10 and

45 * no other settings enabled.

46 *

47 **********************************************************************/ ←↩

48 inline void __attribute__ (( always_inline)) sprw_ctrl_reset () {

49 asm volatile ("csrw %[reg], %[val ]":: [reg] "i" (CSR_SPRW), [val] ←↩
"r" (SPRW_DEFAULT) );

50 }

51

52 /********************************************************************//* ←↩

53 * Set ms to 1.

54 *

55 **********************************************************************/ ←↩

56 inline void __attribute__ (( always_inline)) sprw_ctrl_ms_set () {

57 asm volatile ("csrs %[reg], %[val ]":: [reg] "i" (CSR_SPRW), [val] ←↩
"r" (SPRW_MS_MSK) );

58 }

59

60 /********************************************************************//* ←↩

61 * Clear ms to 0.

62 *

63 **********************************************************************/ ←↩

64 inline void __attribute__ (( always_inline)) sprw_ctrl_ms_clear () {

65 asm volatile ("csrc %[reg], %[val ]":: [reg] "i" (CSR_SPRW), [val] ←↩
"r" (SPRW_MS_MSK) );

66 }

67

68 /********************************************************************//* ←↩

69 * Set mk.

70 *

71 * @param[in] mk Masking vector for mk (union mask_t).

72 **********************************************************************/ ←↩

73 inline void __attribute__ (( always_inline)) sprw_ctrl_mk_set(union ←↩
mask_t mk) {

74 uint32_t mask = mk.vector;

75 asm volatile ("csrc %[reg], %[val ]":: [reg] "i" (CSR_SPRW), [val] ←↩
"r" (SPRW_MK_MSK) );
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76 asm volatile ("csrs %[reg], %[val ]":: [reg] "i" (CSR_SPRW), [val] ←↩
"r" (mask) );

77 }

78

79 /********************************************************************//* ←↩

80 * Set mk.

81 *

82 * @param[in] mask Masking vecotor for mk (uint32_t , 4 LSB).

83 **********************************************************************/ ←↩

84 /*

85 inline void __attribute__ (( always_inline)) sprw_ctrl_mk_set( ←↩
uint32_t mask) {

86 asm volatile ("csrc %[reg], %[val ]":: [reg] "i" (CSR_SPRW), [val] ←↩
"r" (SPRW_MK_MSK) );

87 asm volatile ("csrs %[reg], %[val ]":: [reg] "i" (CSR_SPRW), [val] ←↩
"r" (mask) );

88 }

89 */

90 /********************************************************************//* ←↩

91 * Clear mk to 1111.

92 *

93 **********************************************************************/ ←↩

94 inline void __attribute__ (( always_inline)) sprw_ctrl_mk_clear () {

95 asm volatile ("csrs %[reg], %[val ]":: [reg] "i" (CSR_SPRW), [val] ←↩
"r" (SPRW_MK_MSK) );

96 }

97

98

99 /********************************************************************//* ←↩

100 * Set sa.

101 *

102 * @param[in] sa Masking vector for sa (union swizz_t).

103 **********************************************************************/ ←↩

104 inline void __attribute__ (( always_inline)) sprw_ctrl_sa_set(union ←↩
swizz_t sa) {

105 uint32_t mask = sa.vector << 5;

106 asm volatile ("csrc %[reg], %[val ]":: [reg] "i" (CSR_SPRW), [val] ←↩
"r" (SPRW_SA_MSK) );

107 asm volatile ("csrs %[reg], %[val ]":: [reg] "i" (CSR_SPRW), [val] ←↩
"r" (mask) );

108 }
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109

110 /********************************************************************//* ←↩

111 * Set sa.

112 *

113 * @param[in] mask Masking vecotor for sa (uint32_t , 8 LSB).

114 **********************************************************************/ ←↩

115 /*

116 inline void __attribute__ (( always_inline)) sprw_ctrl_sa_set( ←↩
uint32_t mask) {

117 mask = mask << 5;

118 asm volatile ("csrc %[reg], %[val ]":: [reg] "i" (CSR_SPRW), [val] ←↩
"r" (SPRW_SA_MSK) );

119 asm volatile ("csrs %[reg], %[val ]":: [reg] "i" (CSR_SPRW), [val] ←↩
"r" (mask) );

120 }

121 */

122

123 /********************************************************************//* ←↩

124 * Clear sa to (0, 1, 2, 3).

125 *

126 **********************************************************************/ ←↩

127 inline void __attribute__ (( always_inline)) sprw_ctrl_sa_clear () {

128 uint32_t mask = 0b11100100 << 5;

129 asm volatile ("csrc %[reg], %[val ]":: [reg] "i" (CSR_SPRW), [val] ←↩
"r" (SPRW_SA_MSK) );

130 asm volatile ("csrs %[reg], %[val ]":: [reg] "i" (CSR_SPRW), [val] ←↩
"r" (mask) );

131 }

132

133 /********************************************************************//* ←↩

134 * Set sb.

135 *

136 * @param[in] sa Masking vector for sb (union swizz_t).

137 **********************************************************************/ ←↩

138 inline void __attribute__ (( always_inline)) sprw_ctrl_sb_set(union ←↩
swizz_t sb) {

139 uint32_t mask = sb.vector << 13;

140 asm volatile ("csrc %[reg], %[val ]":: [reg] "i" (CSR_SPRW), [val] ←↩
"r" (SPRW_SB_MSK) );

141 asm volatile ("csrs %[reg], %[val ]":: [reg] "i" (CSR_SPRW), [val] ←↩
"r" (mask) );
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142 }

143

144 /********************************************************************//* ←↩

145 * Set sb.

146 *

147 * @param[in] mask Masking vecotor for sb (uint32_t , 8 LSB).

148 **********************************************************************/ ←↩

149 /*

150 inline void __attribute__ (( always_inline)) sprw_ctrl_sb_set( ←↩
uint32_t mask) {

151 mask = mask << 13;

152 asm volatile ("csrc %[reg], %[val ]":: [reg] "i" (CSR_SPRW), [val] ←↩
"r" (SPRW_SB_MSK) );

153 asm volatile ("csrs %[reg], %[val ]":: [reg] "i" (CSR_SPRW), [val] ←↩
"r" (mask) );

154 }

155 */

156

157 /********************************************************************//* ←↩

158 * Clear sb to (0, 1, 2, 3).

159 *

160 **********************************************************************/ ←↩

161 inline void __attribute__ (( always_inline)) sprw_ctrl_sb_clear () {

162 uint32_t mask = 0b11100100 << 13;

163 asm volatile ("csrc %[reg], %[val ]":: [reg] "i" (CSR_SPRW), [val] ←↩
"r" (SPRW_SB_MSK) );

164 asm volatile ("csrs %[reg], %[val ]":: [reg] "i" (CSR_SPRW), [val] ←↩
"r" (mask) );

165 }

166

167

168 #ifdef __cplusplus

169 }

170 #endif

171 #endif // neorv32_sprw_h
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