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Summary

Unicycle robots, distinguished by their single-wheel design, offer a significant advantage
in manoeuvrability due to their compact footprint. Maintaining stability for these robots
presents a unique challenge. While the driving wheel directly controls longitudinal stabil-
ity, achieving lateral stability requires a more intricate approach. The Moment Exchange
Unicycle Robot (MEUR) addresses this challenge with an innovative design. It utilises a
motor-powered reaction wheel to generate a counteracting force, ensuring lateral stability.

This thesis delves into the application of reinforcement learning for achieving self-balancing
control in the MEUR. Unlike traditional methods that rely on pre-defined models or
hand-crafted rules, RL agents learn autonomously through repeated interactions with
their environment. This "trial-and-error" learning process allows them to tackle complex
and unpredictable control challenges. The ability to learn from experience and adapt to
changing environments makes RL a compelling choice for various robotics applications,
and the MEUR serves as a compelling case study in this regard.

Through this research, the effectiveness of two prominent algorithms, namely Deep Q-
learning (DQN) and Advantage Actor-Critic (A2C), is showcased in attaining stability
across both roll and pitch angles of the MEUR. Building upon this foundation, the re-
search further investigates the ability of these algorithms to control the MEUR’s move-
ment in the longitudinal direction (forward and backward) while maintaining stability.
Finally, the ability of these RL-based controllers to deal with noise and uncertainties is
discussed.
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Chapter 1

Introduction

Unicycles, characterised by a single wheel demanding delicate balance, have long fasci-
nated riders for their unique blend of simplicity and challenge (Figure 1.1a). As tech-
nology advances, unicycle design has evolved, giving rise to unicycle robots that mimic
the agility and balance of human riders (Figure 1.1b). These machines utilise sensors,
complex algorithms, and intricate control systems to maintain balance and navigate en-
vironments. Compared to two-wheeled robots, unicycle robots require more intricate
control due to the need for stabilisation in both lateral and longitudinal directions. How-
ever, their advantage lies in a smaller footprint, which offers superior manoeuvrability,
especially in narrow environments. Their lightweight construction enhances nimbleness,
enabling fast and precise movement. Such characteristics are practical in various sectors,
such as food delivery, maintenance of machines in factory halls, or inspection of pipelines.

(a) Pedal powered unicy-
cle [1]

(b) Unicycle robots [2]

Figure 1.1: Examples of unicycles

Unicycle robots have to be designed carefully in order to optimally perform the previously
described tasks. For example, they should proficiently track trajectories while maintain-
ing stability. Furthermore, the unicycle should adapt to varying payloads that could be
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imposed during its use or to the changes in both the lateral and longitudinal slopes of
the road during navigation.

Among unicycle robots that meet the aforementioned requirements, the Moment Ex-
change Unicycle Robot (MEUR) stands out with its unique design (Figure 1.2). It
comprises a body, a reaction wheel powered by a motor to maintain lateral stability
by generating a counteracting force, and a wheel driven by a separate motor to move the
body and ensure longitudinal stability. Equipped with only two motors, the robot lacks
a direct force to alter its yaw direction. Although the mechanical design of this robot is
promising, the challenging task is to maintain and precisely control the robot’s balance
and movement.

Figure 1.2: The Moment Exchange Unicycle Robot (MEUR) [3]

Various approaches can be employed in designing controllers for the MEUR, typically
falling into three main categories: traditional linear control techniques, nonlinear control
strategies, and more recently, reinforcement learning-based approaches.

Linear control techniques offer a simplified approach by linearizing the MEUR’s dynamic
equations around its upright configuration. This essentially treats the system as a col-
lection of independent subsystems, making it easier to derive the dynamic equations and
design the controller. This linearized system modeling approach has been successfully
employed in various studies. Specifically, in [4], sliding mode control and feedback lin-
earization are used to preserve balance during forward movement over a predetermined
distance. In [5], the same method is used for the roll to minimize switching-function
chattering. Yet, for pitch control, a Linear Quadratic Regulator (LQR) controller is im-
plemented, steering the unicycle robot toward following the desired velocity trajectory.
In [6], a fuzzy-sliding mode controller is adopted to uphold balance during forward mo-
tion across ramp and ladder displacement profiles. This study considers the impact of
coupled terms within the pitch and roll axes as disturbances. Furthermore, in pursuit of
real-time speed control, a strategy employing both sliding-mode control and a nonzero
set-point linear quadratic regulator (LQR) is introduced in [7]. This hybrid approach
is designed to ensure stability and sustain the desired speed tracking performance. The
validation process encompasses more intricate speed profiles, including step velocity and
trapezoidal velocity. In [8], a PID controller is employed to regulate the rotation motors
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situated on the reaction wheel and wheel. This control scheme is informed by pitch and
roll feedback from IMU sensors and rotary encoders. This research demonstrates the uni-
cycle’s ability to regain stability when starting from an initially unstable state or when
encountering external disturbances. The outcomes illustrate the robot’s capability to re-
cover, displaying a recuperation span of ±23 degrees in the pitch angle and ±3.5 degrees
in the roll angle. Additionally, both pitch and roll exhibit a steady-state error of merely
0.1 degrees, affirming the effectiveness of the control mechanism. Conclusively, in [9], a
control method is presented that utilizes the interconnectedness of motions in the yaw,
pitch, and roll directions to achieve yaw angle control. The paper demonstrates that yaw
angle manipulation can be achieved by modulating pitch and roll postures. The proposed
control strategy effectively guides the unicycle robot’s yaw angle towards zero from any
initial orientation. However, it does not delve into the trajectory tracking problem.

Taking into account the interdependence of nonlinear system dynamics introduces an
added layer of complexity to controller design. In this context, [10] tackles the challenge
by deriving nonlinear equations and subsequently implementing integral LQR and integral
sliding mode controllers.

The aforementioned studies have predominantly employed classical control techniques to
address unicycle balancing. Nonetheless, in recent times, the adoption of reinforcement
learning (RL) for learning control policies has gained momentum. Compared to tradi-
tional control techniques that rely on meticulously crafted mathematical models of the
environment, RL offers a refreshing alternative for complex control problems. This is par-
ticularly valuable in real-world scenarios where creating a perfect model can be difficult or
even impossible. Instead of relying on pre-defined models, RL agents learn through a pro-
cess of interacting with their environment. By exploring and exploiting different actions,
they discover effective control strategies without needing a complete understanding of the
system’s underlying dynamics [11]. This data-driven approach allows RL to be highly
adaptable in dynamic environments. Unlike traditional methods that require re-training
for every change, RL agents continuously update their control policies based on new ex-
periences. This adaptability extends to unforeseen situations, as RL agents can learn
from unexpected consequences and adjust their behaviour to maintain stability. These
strengths, coupled with the ability to optimise complex behaviours in high-dimensional
state spaces, make RL a compelling choice for a wide range of robotics applications in
the ever-changing world around us.

In [12], the policy gradient method is explored to achieve balance in MEUR, substanti-
ating its outcomes through simulation. According to the paper findings, the controller
demonstrates satisfactory performance in the lateral balancing of the MEUR. However,
oscillatory behavior is observed in longitudinal balancing. Notably, the controller’s per-
formance under conditions where the MEUR is in motion on sloped terrain or when
carrying additional loads is not investigated.

Similar to unicycle robots, bicycle robots are inherently unstable in the lateral direction,
necessitating sophisticated control mechanisms to maintain balance and navigate effi-
ciently. The conventional approaches to balancing bicycle robots can be divided into two
primary categories. The first category solely utilizes steering and velocity as inputs, while
the second category employs auxiliary balancing mechanisms, such as reaction wheels, to
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achieve lateral balance. This approach is analogous to the balancing strategy employed in
MEUR. In [13] and [14], a controller for bicycles utilizing the DDPG (Deep Deterministic
Policy Gradient) algorithm is introduced. In these papers, it is demonstrated that the
bicycle can achieve stable balance and navigate to designated locations. In addition, in
[15], an innovative approach is presented integrating online serial-parallel RL with con-
ventional control techniques. This unique strategy enables path tracking and balance
control for a reaction wheel bicycle robot on curved pavements.

While existing research has demonstrated promising advancements in enhancing MEUR
maneuverability, balancing, and trajectory tracking, the full potential of RL in trans-
forming the MEUR into an efficient delivery drone remains largely unexplored, calling
for further investigation. Specifically, several critical aspects warrant further exploration.
For instance, ensuring stability in both lateral and longitudinal directions while tracking
trajectories and effectively handling noise and external disturbances has not been ade-
quately investigated. To address these limitations and fully explore the potential of RL in
developing a controller for the MEUR across diverse scenarios, this study aims to answer
the following research questions:

• Can the MEUR be effectively controlled with RL methods to maintain both lateral
and longitudinal stability across a range of initial conditions?

• Can the MEUR navigate a specific distance in either forward or backward directions
while consistently maintaining stability?

• Can the RL-based controller effectively handle measurement noise, load distur-
bances, or external disturbances without compromising the MEUR’s stability and
maneuverability?

• Does controlling the MEUR with RL methods make it suitable for performing
delivery tasks in real-world scenarios?

Guided by research questions, this research evaluates the performance of RL as a control
strategy for unicycle robots. The practicality of this approach is tested in a simulated en-
vironment. This study aims to provide valuable insights into controlling unicycle robots,
especially through the innovative use of RL techniques.

This thesis delves into a detailed investigation through five chapters. The theoretical
foundation is established in Chapter 2, which details the mathematical model of the
MEUR and provides an overview of RL-based control strategies. Chapter 3 delves into
the methodology, specifically focusing on the implementation of two prominent RL al-
gorithms: Deep Q-network and Advantage Actor-Critic. This chapter also details the
design of the reward functions used for training the RL agents and implementation meth-
ods. Chapter 4 presents the results obtained from applying these algorithms to control
the MEUR, showcasing their effectiveness in achieving stability. Finally, Chapter 5 con-
cludes the thesis with a summary of the findings, along with recommendations for future
research directions.
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Chapter 2

Theoretical Background

The subject of this thesis delves into the application of RL to design an effective controller
for the MEUR, building upon a previous student project at the University of Twente
[16, 17]. The primary objective is to stabilize the MEUR around its upright position and
prevent it from falling while in motion. The robot employs its drive wheel for longitudinal
stabilization and a substantial reaction wheel for lateral stabilization, following the axis
definitions presented in Figure 1.2. Accurately controlling the unicycle requires real-
time measurements of its motion parameters. The rotations of the reaction wheel and
drive wheel are readily determined using the encoders integrated with the motors, while
three analog gyroscopes and a triaxial accelerometer provide precise measurements of the
unicycle’s pitch, roll, and yaw angles with adequate processing. In [3], the sensor setup
and the algorithms used to extract these vital parameters from the raw sensor data are
detailed, ensuring accurate and reliable information for controller operation.

In the context of RL control for a unicycle robot, the mathematical model plays a dual
role. Firstly, it provides a simulated environment for the RL agent to interact with.
Secondly, the model’s state variables and control inputs become the core elements of the
RL agent’s learning process. The next section details the mathematical model of the
MEUR, focusing on its state variables, which represent the system’s current state, and
the control inputs, which the RL agent can manipulate.

2.1 Mathematical Model
To simplify the dynamic analysis, the unicycle robot is modeled as a compound object
consisting of two sub-systems: the reaction wheel pendulum and the inverted pendulum.
The reaction wheel pendulum comprises the reaction wheel and the robot body (Figure
2.1), while the inverted pendulum consists of the robot body and the driving wheel
(Figure 2.2). The terms and parameter values depicted in Figures 2.1 and 2.2 are further
elucidated in Table 2.1.

Given the assumption that the unicycle remains in proximity to its upright position and
experiences only minor angles, the unicycle’s lateral and longitudinal dynamics can be
treated as decoupled systems [3, 7, 10]. By further assuming rigid bodies, no slippage, and
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frictionless operation, the mathematical models become simpler. The non-ideal behavior
resulting from these assumptions can be treated as perturbations to the system and
addressed in an appropriate manner.

Figure 2.1: Reaction wheel pendulum: The lateral model [3]

Figure 2.2: Inverted pendulum: The longitudinal model [3]

Symbol Description Value

m1 Drive wheel mass 5.5 kg
m2 Reaction wheel mass 1.5 kg
m3 Frame mass 0.115 kg
J1 Lateral frame inertia 0.086 kgm2

J2 Reaction wheel inertia 0.017 kgm2

J3 Drive wheel inertia 0.0001 kgm2

J4 Longitudinal frame inertia 0.122 kgm2

L1 Height of the center of mass (without reaction wheel) 0.18 m
L2 Reaction wheel height 0.316 m
L4 Height of the center of mass(with reaction wheel) 0.21 m
r Drive wheel radius 0.05 m

Table 2.1: Values and descriptions of parameters [3]
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2.1.1 Dynamic model for roll axis

In this section, the dynamic equations governing the unicycle robot’s motion are derived
using the Lagrange formulation written as:

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= Qi, (2.1)

where L is the Lagrangian, which is the difference between the kinetic energy T and the
potential energy V of the system. qi are the generalized coordinates, which are variables
that describe the configuration of the system. q̇i are the generalized velocities, which are
derivatives of qi with respect to time, and Qi are the generalized forces, which are the
forces acting on the system. By substituting T − V instead of L, the equation can be
written in the following form:

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
− d

dt

(
∂V

∂q̇i

)
+

∂V

∂qi
= Qi. (2.2)

Considering Figure 2.1, the independent coordinates can be written as:

qi = {θr, ϕrw}, (2.3)

where θr is the absolute roll angle and ϕrw is the relative reaction wheel angle. Moreover,
the generalized force is as follows:

Qi = {0, τlat}. (2.4)

The kinetic energy of the unicycle robot consists of two components: translational kinetic
energy and rotational kinetic energy. As a result, the total kinetic energy T of the robot
is expressed as:

T =
1

2
(m1L

2
1 + J1)θ̇r

2
+

1

2
m2L

2
2θ̇r

2
+

1

2
J2(θ̇r

2
+ ϕ̇2

rw + 2θ̇rϕ̇rw), (2.5)

where θ̇r and ϕ̇rw are roll angular velocity and reaction wheel angular velocity, respec-
tively. The potential energy V of the unicycle robot is associated with the gravitational
force acting on the robot’s center of mass. It is given by:

V = m1gL1 cos(θr) +m2gL2 cos(θr). (2.6)

The independent coordinates can be written as:

qi = {θr, ϕrw}. (2.7)

And the generalized force is as follows:

Qi = {0, τlat}. (2.8)
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By calculating the partial derivatives and performing substitutions, the Lagrange equa-
tion can be rewritten to derive the equations of motion as follows:

[
m1L

2
1 + J1 +m2L

2
2 + J2 J2

J2 J2

][
θ̈r
ϕ̈rw

]
+

[
−(m1L1 +m2L2)g sin(θr)

0

]
=

[
0
τlat

]
. (2.9)

To eliminate coupling in the equations of motion, one can rewrite the bottom line of
equation 2.9 and then substitute it into the equations of motion.

J2θ̈r + J2ϕ̈rw = τlat → ϕ̈rw =
τlat − J2θ̈r

J2
=

1

J2
τlat − θ̈r (2.10)

(m1L
2
1 + J1 +m2L

2
2 + J2)θ̈r + J2(

τlat
J2
− θ̈r)− (m1L1 +m2L2)g sin(θr) = 0 (2.11)

By neglecting higher-order terms and considering that sin(θr) ≈ θr for small angels, the
linearized dynamic equation around the upright position is given by:

θ̈r = −
1

m1L2
1 + J1 +m2L2

2

τlat +
(m1L1 +m2L2)g

m1L2
1 + J1 +m2L2

2

θr, (2.12)

ϕ̈rw = (
1

m1L2
1 + J1 +m2L2

2

+
1

J2
)τlat −

(m1L1 +m2L2)g

m1L2
1 + J1 +m2L2

2

θr. (2.13)

Finally, the state space equation for roll axis dynamics is given by:


θ̇r
θ̈r
ϕ̇rw

ϕ̈rw

 =


0 1 0 0

(m1L1+m2L2)g

m1L2
1+J1+m2L2

2
0 0 0

0 0 0 1

− (m1L1+m2L2)g

m1L2
1+J1+m2L2

2
0 0 0



θr
θ̇r
ϕrw

ϕ̇rw

+


0

− 1
m1L2

1+J1+m2L2
2

0
1

m1L2
1+J1+m2L2

2
+ 1

J2

 τlat (2.14)

y =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



θr
θ̇r
ϕrw

ϕ̇rw

 . (2.15)

The specific goals of the unicycle robot’s lateral control system are as follows:

• Maintain stability: The roll angle (θr) should be maintained within a range of
[−θr,max, θr,max], where θr,max is a predefined threshold value.
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• Minimize roll angular velocity: The roll angular velocity (θ̇r) should be kept as
low as possible to prevent excessive rotational motion and enhance stability, ideally
within a range of [−θ̇r,max, θ̇r,max], where θ̇r,max is a predefined threshold value.

• Constrain reaction wheel velocity: The absolute value of reaction wheel velocity
(|ϕ̇rw|) should not exceed a specified threshold value of ϕ̇rw,max, which is determined
by safety considerations.

It is also worth mentioning that the motor torque (τlat) is the input to the system and is
constrained to a specific range due to motor limitations and specifications.

2.1.2 Dynamic model for pitch axis

The same approach is used to write equations of motion for pitch angle. Considering
Figure 2.2, the independent coordinates can be written as:

qi = {θp, ϕdw}, (2.16)

where θp is the absolute angle while ϕdw is the relative angle. Also, the generalized force
is as follows:

Qi = {0, τlon}. (2.17)

The total kinetic energy T of the robot is expressed as:

T =
1

2
(m3r

2 + J3)(ϕ̇dw + θ̇p)
2

+
1

2
m4(r

2(ϕ̇dw + θ̇p)
2 + L2

4θ̇
2
p + 2rL4(ϕ̇dw + θ̇p)θ̇p cos(θp)) +

1

2
J4θ̇

2
p.

(2.18)

And the potential energy V is given by:

V = m3gr +m4gr +m4gL4 cos(θp). (2.19)

By calculating the partial derivatives and performing substitutions, the Lagrange equa-
tion can be reformulated to derive the equations of motion as follows:

[
Jeq,lon (Jeq,lon +m4rL4 cos(θp))

(Jeq,lon +m4rL4 cos(θp)) (Jeq,lon +m4L
2
4 + J4 + 2m4rL4 cos(θp))

][
ϕ̈dw

θ̈p

]

+

[
−m4rL4θ̇

2
p sin(θp)

−m4rL4θ̇
2
p sin(θp)−m4gL4 sin(θp)

]
=

[
τlon
0

]
.

(2.20)

where:
Jeq,lon = m3r

2 +m4r
2 + J3. (2.21)

To eliminate coupling in the equations of motion, one can rewrite the top line of equation
2.20 and then substitute it into the equations of motion.

9



ϕ̈dw =
1

Jeq,lon
τlon −

Jeq,lon +m4rL4 cos(θp)

Jeq,lon
θ̈p +

m4rL4θ̇
2
p sin(θp)

Jeq,lon
. (2.22)

Jeq,lon +m4rL4 cos(θp)

Jeq,lon
τlon −

(Jeq,lon +m4rL4 cos(θp))
2

Jeq,lon
θ̈p +

Jeq,lon + (m4rL4θ̇p)
2 cos(θp) sin(θp)

Jeq,lon

+ (Jeq,lon +m4L
2
4 + J4 + 2m4rL4 cos(θp))θ̈p −m4L4(rθ̇

2
p sin(θp) + g sin(θp)) = 0.

(2.23)

The linearized dynamic equation around the upright position for pitch axis dynamics, in
state space equation form, is derived by neglecting higher-order terms and approximating
cos(θp) ≈ 1 and sin(θp) ≈ θ for small angels.


θ̇p
θ̈p
ϕ̇dw

ϕ̈dw

 =


0 1 0 0

m4gL4

Jeq,lon2
0 0 0

0 0 0 1

− (Jeq,lon+m4rL4)m4gL4

Jeq,lonJeq,lon2
0 0 0



θp
θ̇p
ϕdw

ϕ̇dw

+


0

−Jeq,lon+m4rL4

Jeq,lonJeq,lon2

0
(Jeq,lon+m4rL4)2

J2
eq,lonJeq,lon2

+ 1
Jeq,lon

 τlon (2.24)

y =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



θp
θ̇p
ϕdw

ϕ̇dw

 (2.25)

The primary objective of the longitudinal control system is to maintain the stability and
maneuverability of the unicycle robot by achieving the following goals:

• Maintain Pitch Stability: The pitch angle should be maintained within a specified
range of [−θp,max, θp,max], where θp,max is a predefined threshold value. This ensures
that the unicycle robot remains upright and stable during its operation.

• Minimize Pitch Angular Velocity: The pitch angular velocity (θ̇p) should be kept
as low as possible, ideally within a range of [−θ̇p,max, θ̇p,max], where θ̇p,max is a pre-
defined threshold value. This minimizes unnecessary pitching motion and enhances
stability.

• Control Driving Wheel Angle: The driving wheel angle (ϕdw), which is related to
the unicycle displacement, should be maintained at a specified value to keep the
unicycle robot following a specific trajectory.

• Constrain Driving Wheel Angular Velocity: The driving wheel angular velocity
(ϕ̇dw) should be maintained within a specified range of [−ϕ̇dw,max, ϕ̇dw,max] where
ϕ̇dw,max is a predefined threshold value.

It is also worth mentioning that the motor torque (τlon) is the input to the system and is
constrained to a specific range due to motor limitations and specifications.
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2.2 RL-based control
The previous section provided a detailed insight into the mathematical model of the
MEUR, elucidating its dynamics and control parameters. While traditional control meth-
ods can be effective under controlled conditions, real-world robotics applications often
encounter uncertainties and disturbances. Balancing a unicycle robot using pre-defined
control strategies becomes particularly challenging in such scenarios. Furthermore, tra-
ditional control techniques rely heavily on meticulously crafted mathematical models of
the environment. However, for complex control problems, developing a perfect model can
be difficult or even impossible. Additionally, traditional methods necessitate re-training
for every environmental change.

The emergence of RL has revolutionized traditional control methods in robotics. Unlike
conventional approaches that rely on pre-defined models or hand-crafted rules, RL agents
autonomously acquire knowledge from repeated trial-and-error interactions with an envi-
ronment, enabling them to tackle complex and unpredictable challenges [18]. This ability
to learn from experience and adapt to changing environments makes RL a compelling
choice for robotics applications, where environments can be dynamic and unpredictable.
In this part, the theoretical foundation is established by providing a short introduction
to RL and its fundamental concepts.

In RL-based control (Figure 2.3), an agent, acting as a decision-maker or controller,
interacts with an environment, which in the context of balancing the MEUR, is not a
physical environment but the mathematical model established in the previous section.
At each time step, the agent perceives the current state of the environment (st), which
serves as input to a policy function. This function is a mapping from states to actions
(at) that the agent should take in those states.

Figure 2.3: Reinforcement learning-based control [19]

For the lateral model, the states include the roll angle, roll angular velocity, reaction
wheel angle, and reaction wheel angular velocity, with the lateral torque serving as the
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corresponding action. Similarly, in the longitudinal model, the states encompass the pitch
angle, pitch angular velocity, driving wheel angle, and driving wheel angular velocity, with
the action being the longitudinal torque.

s⃗longitudinal = (θp, θ̇p, ϕdw, ϕ̇dw) (2.26)

s⃗lateral = (θr, θ̇r, ϕrw, ϕ̇rw) (2.27)

alongiitudinal = τlon (2.28)

alateral = τlat (2.29)

There are two main types of policy functions: deterministic and stochastic. A determin-
istic policy function always maps a particular action to a given state:

at = π(st). (2.30)

A stochastic policy function, on the other hand, maps the current state to a probability
distribution over actions:

π(a|s) = P (at = a|st = s), (2.31)

where P is the probability of taking that action in that state. The agent then selects
an action according to the policy function and performs it in the environment, whether
the policy function is stochastic or deterministic. The action causes the environment
to transition to a new state (st+1) and deliver a numerical reward (Rt+1) to the agent.
The reward is a scalar signal that reflects the desirability of the agent’s chosen action.
Designing an effective reward function is no easy feat. It needs to be informative, guiding
the agent towards the ultimate goal without getting lost in the immediate consequences
of each action. Reward functions need to strike a balance, considering both immediate
rewards and long-term objectives, to avoid suboptimal strategies. For example, in this
study, the unicycle receives rewards for keeping the pitch and roll angles within a specific
range and incurs penalties for deviating. This process shapes agent decision-making
towards stabilisation.

The objective of the agent is to maximize the cumulative reward it receives throughout
its interactions with the environment. This objective is formalized through the concept
of the expected discounted return function, represented as J :

J =
∞∑
t=0

γtRt. (2.32)

where t is the time step, Rt is the reward received at time step t, and γ is the discount
factor,a value between 0 and 1 that determines how much weight is given to future
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rewards. A higher γ value places a greater emphasis on future rewards, encouraging
the agent to consider long-term goals. Conversely, a lower γ value prioritizes immediate
rewards, potentially leading to suboptimal behavior.

Apart from agent, environment, reward, and the policy function, additional sub-elements
of reinforcement learning can be defined as:

• State Value Function: The state value function, denoted as Vπ(s), represents the
expected cumulative reward obtained from starting in state s and following a par-
ticular policy. It captures the desirability of a particular state regardless of the
agent’s subsequent actions:

Vπ(s) = Eπ

 ∞∑
k=0

γkRt+k+1|St = s

 . (2.33)

• Action Value Function: The action value function, denoted as Qπ(s, a), represents
the expected cumulative reward obtained from starting in state s and taking action
a, following a particular policy. It captures the desirability of a particular state-
action pair, considering the potential for future rewards:

Qπ(s, a) = Eπ

 ∞∑
k=0

γkRt+k+1|St = s, At = a

 . (2.34)

The total reward earned from any state can be understood as the sum of two compo-
nents: the immediate reward received after taking an action and the discounted reward
expected from the resulting state, assuming the same policy is followed thereafter. This
fundamental relationship underpins reinforcement learning and is captured by the Bell-
man Equation. As a result, the state value function and action value function can be
rewritten as follows:

Vπ(s) = Eπ

[
Rt+1 + γVπ(st+1)

]
, (2.35)

Qπ(s, a) = E[Rt+1 + γQπ(st+1, at+1)]. (2.36)

RL-based control algorithms can be broadly categorized into two main approaches: model-
based and model-free. Model-based RL agents use the environment’s dynamics, enabling
them to calculate future states and plan actions accordingly. While this approach offers
greater foresight, it requires significant computational resources and may not be feasible
for complex environments when even writing a parametric model is difficult or if the
model changes over time. In contrast, model-free RL agents directly learn from interac-
tions with the environment. They develop policies that map states to actions based on
observed rewards and penalties. This approach is more scalable and can handle complex
or unknown environments that make it suitable for controlling the MEUR.
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Model-free RL algorithms are further categorized into three main sub-methods (Figure
2.4): policy-based, value-based, and actor-critic methods. These methods differ in their
approach to learning the optimal policy, each offering unique advantages and trade-offs.

Figure 2.4: Reinforcement learning-based control methods [20]

Policy-based methods focus on directly optimizing the policy function, aiming to improve
the agent’s overall behavior without explicitly representing value functions. They learn
to map states to actions, gradually adjusting the policy based on the observed rewards
and penalties. This approach is relatively straightforward and computationally efficient,
making it suitable for real-time control applications. However, policy-based methods can
be sensitive to local optima, requiring careful exploration of the policy space to find the
optimal policy [21].

Value-based methods focus on estimating the value functions, representing the desirability
of states or actions. They learn the state value function (V (s)) or the action value
function (Q(s, a)), which indicate the expected cumulative reward obtained from starting
in a particular state or taking a specific action. These value functions guide the agent
in making informed decisions, enabling it to select actions that lead to higher expected
rewards.

Actor-critic methods combine the strengths of policy-based and value-based approaches,
leveraging the advantages of both [22]. They employ two separate estimators: an actor
that learns the policy function and a critic that estimates the value functions. The critic
provides feedback to the actor, guiding it towards better policies that lead to higher
expected rewards. This interplay between the actor and critic enables actor-critic methods
to learn both optimal policies and value functions, making them more versatile and robust
than either approach alone.

After explaining the core principles of policy-based, value-based, and actor-critic methods,
this project endeavors to utilize two distinct reinforcement learning techniques to control
the maneuverability and stability of the MEUR. Specifically, the Deep Q-Network (DQN)
method, which falls under the value-based paradigm, and the Advantage Actor-Critic
(A2C) method, belonging to the actor-critic framework, are selected.
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Chapter 3

Methods

Building upon the theoretical foundation and mathematical model of the unicycle in
Chapter 2, this chapter delves into the specific RL methods chosen to control this dynamic
system. The reward functions designed to guide the unicycle to maintain stability in an
upright position are dissected as well. Lastly, the implementation strategies to utilise the
employed RL methods are discussed.

3.1 Deep Q- Networks
DQN is a reinforcement learning algorithm that combines Q-learning with deep neural
networks to learn optimal policies in complex environments [23]. Q-learning is a value-
based RL algorithm that estimates the expected cumulative reward for each state-action
pair (Equations 2.34 and 2.36). Deep neural networks provide a powerful function ap-
proximation mechanism for learning these Q-values in high-dimensional state spaces. To
elucidate this algorithm, it is imperative to explore the Q-learning method and deep
neural networks in depth.

Q-learning is a value-based, model-free RL algorithm that has been successfully applied
to a wide range of RL problems, including game playing, robotics, and control systems
[24]. The Q-learning algorithm updates the Q-value of a state-action pair based on the
Bellman equation and an observed transition. The update rule is as follows:

Q(s, a)← Q(s, a) + α[R + γmax
a′

Q(s′, a′)−Q(s, a)]. (3.1)

where s′ is the next state, maxa′Q(s′, a′) is the maximum Q-value over all possible actions
in state s′, and α is the learning rate, which determines how much to update the Q-value
based on the observed transition. The Q-learning algorithm maintains a table containing
all Q-values, which is updated at each time step according to the Q-learning updating
rule. Through iterative interaction with the environment and subsequent feedback, the
algorithm refines these Q-values until they converge to their optimal values.

At each step, the agent employs the ϵ-greedy policy to select the current action based
on the current state, striking a balance between exploration and exploitation. Initially,
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lacking experience, exploration dominates as the agent prioritizes discovering the envi-
ronment’s dynamics. This proactive phase gradually transitions towards exploitation as
the agent accumulates knowledge, enabling it to confidently leverage the learned Q-values
for optimal action selection. This dynamic balance prevents premature convergence to
suboptimal solutions (local minima) that could arise from solely exploiting limited initial
knowledge.

To achieve this adaptive exploration-exploitation trade-off, a decaying threshold (ϵ) is
employed. With each episode, the probability of exploration gradually decreases, pro-
moting exploitation over time. In this study, exponential decay is used to decrease the
threshold. At each step, a uniformly distributed random number is generated between 0
and 1. If this value falls below the current threshold, the agent ventures into exploration
by selecting a random action. Otherwise, it prioritizes exploitation, selecting the action
associated with the highest known Q-value and maximizing immediate reward based on
its acquired knowledge. In algorithm 1, the Q-learning is represented in pseudocode [21].

Algorithm 1 Q learning algorithm
1: Initialize the Q table
2: for each episode do
3: Initialze s0
4: for every time step do
5: Choose an action a using the ϵ-greedy policy
6: Obtain the reward R and the next state s′ from the environment
7: Choose an action a′ from s′ by maximizing Q(s′, a′) over argument a′

8: Update Q(s, a) based on Equation 3.1.
9: s← s′ ; a← a′

10: end for
11: end for

The Q-learning algorithm excels in scenarios with finite state and action spaces. How-
ever, it faces significant limitations in high-dimensional state spaces, where storing and
manipulating the entire state space becomes impractical due to the sheer number of possi-
ble states. Additionally, in continuous environments, where states can vary continuously
rather than being discrete, it is even more challenging to visit all states [21]. To overcome
this constraint, function approximation techniques are employed to replace the Q-table
with a Q-function. Function approximation techniques allow RL agents to approximate
high-dimensional continuous Q-value functions using analytical, parameterized functions.
A common function approximation techniques used in RL is Linear Function Approxima-
tion (LFA). This approach involves representing value functions as linear combinations
of basis functions, such as basis vectors or radial basis functions. This simplified repre-
sentation facilitates efficient learning and reduces the computational burden associated
with fully representing the value function [21].

Despite the simplicity and effectiveness of LFA, it often falls short in handling the com-
plex, nonlinear relationships inherent in many RL environments. In these scenarios,
neural networks (NN), particularly deep neural networks, have emerged as powerful func-
tion approximators capable of modeling intricate nonlinear relationships between states
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and actions [25]. Their ability to capture complex dependencies has led to remarkable
performance in various RL applications. These advantages made NNs a better choice for
function approximation in this project.

NNs are a class of machine learning algorithms inspired by the structure and function of
the human brain. They are composed of interconnected nodes called neurons, which pro-
cess and transmit information through a network of connections. NNs learn by adjusting
the weights and biases of their connections, which control the flow of information through
the network. This process is known as training. During training, NNs are presented with
a set of training data, which consists of input-output pairs. The NN’s goal is to learn a
mapping from inputs to outputs, such that it can accurately predict the output for new,
unseen inputs.

NNs are composed of interconnected nodes called neurons (Figure 3.1), which process
and transmit information through a network of connections. Each neuron receives inputs
from its connected neurons, applies an activation function to the weighted sum of these
inputs, and produces an output.

Figure 3.1: Neuron in NN [26]

The bias is a constant value that is added to the weighted sum of inputs before applying
the activation function. The bias helps to shift the neuron’s output, allowing it to model
a wider range of relationships. Activation functions are mathematical operations that
are applied to the outputs of neurons. They introduce non-linearity into the network,
which is essential for learning complex patterns. There are various types of activation
functions, each with its own characteristics. Some common activation functions include
sigmoid, tanh, and ReLU (rectified linear unit) [27]. The neuron can be described in
mathematical terms as:

yk = φ

 m∑
i=1

wkixki + bk

 . (3.2)

The basic structure of an NN can be represented as a sequence of layers (Figure 3.2),
where each layer consists of a set of interconnected neurons. The first layer is called the
input layer, and it receives the input data. The last layer is called the output layer, and
it produces the predicted output. In between the input and output layers are hidden
layers, which perform intermediate computations.
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Figure 3.2: Multi-layer NN

The specific mathematical representation of each layer will depend on the type of activa-
tion function used and the number of neurons in each layer.

Training a NN involves adjusting its weights and biases to minimize the error between
its predicted outputs and the desired outputs for training samples. The goal of training
is to find a set of weights and biases that allow the network to accurately map inputs
to outputs for unseen data. To quantify the performance of the network and guide the
update of its weights and biases, a loss function is utilized. The loss function measures
the difference between the predicted outputs of the network and the desired outputs.
A common loss function is the mean squared error (MSE) [28], which is defined as the
average squared difference between the predicted outputs and the desired outputs:

Lk =
1

n

n∑
i=1

(yki − ŷki)
2 (3.3)

where yki represents the desired output of the kth output neuron for the ith sample, ŷki
denotes the predicted output of the kth output neuron for the ith sample, and n indicates
the number of samples.

In DQN method, the agent uses a NN to approximate Q-values. The NN receives a state
and an action as input and calculates the corresponding Q-values for that state-action
pair as output. The input layer of the NN is dimensioned identically to the combined
size of the state and action spaces, while the output layer is of size one. At time step
t, the agent stores an experience that includes the current state of the environment, the
selected action, the received reward, and the subsequent state of the environment in a
memory buffer called replayed buffer. Once the memory buffer reaches its capacity, the
agent selects a random minibatch of experiences from the replay memory and utilizes
them to train the NN. It is important to note that training the NN with single samples
would result in high variance for each sample and its corresponding gradients. This vari-
ance would prevent the network weights from converging effectively. Moreover, uniform
random sampling is preferred over selecting consecutive experiences because consecutive
experiences tend to be highly correlated, potentially leading to overfitting situations [29].
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Finally, the desired Q-value for each experience is calculated based on the Q-learning
updating rule (Eq 3.1).

To update the weights and biases of an NN during training, a backpropagation algorithm
is used. It works by propagating the error from the output layer back to the input layer,
adjusting the weights and biases along the way. Backpropagation is an iterative process,
and it is repeated until the NN converges to a satisfactory solution. The backpropagation
algorithm involves the following steps [30]:

• Calculate the error at the output layer: The error at the output layer is the difference
between the desired outputs and the predicted outputs. This error is calculated
using the loss function.

• Propagate the error backward: The error is propagated backward through the net-
work, layer by layer.

• Update the weights and biases: At each layer, the error is utilized to adjust the
weights and biases of the neurons in that layer to minimize the error. The specific
update rule depends on the type of activation function used.

The process of backpropagation involves calculating the gradients of the loss function with
respect to the weights and biases of the NN. These gradients are then used to update
the weights and biases in the direction that minimizes the loss function. The gradient
for a weight or bias can be calculated using the chain rule. Once the gradients have been
calculated, the weights and biases can be updated using the gradient descent rule [31]:

wki ← wki − α · ∂L

∂wki

, (3.4)

bk ← bk − α · ∂L
∂bk

. (3.5)

where α is the learning rate, which controls the size of the updates to the weights and
biases. The process of backpropagation is repeated until the network converges to a
satisfactory solution, meaning the loss function is minimized.

An additional issue with this approach arises from the frequent updates to the Q network’s
weights during each training time step. While this enhances the prediction accuracy of the
Q values, it also alters the direction of the predicted Target Q values, causing fluctuations
after each update. This scenario resembles pursuing a moving target.

To mitigate this challenge, a second network, known as the target network, can be in-
troduced. Unlike the primary network, the target network remains unchanged during
training time steps, ensuring stability in the target Q values. After a predetermined
number of training time steps, the learned weights from the Q network are transferred
to the target network. Utilizing a target network has been demonstrated to yield more
stable training outcomes [29].

To sum up, the pseudocode of the DQN algorithm can be explained as algorithm 2 [32].
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Algorithm 2 DQN algorithm
1: Initialize the Q network (Qθ) and the target network (Qθ′) with the same random

weights (θ′ = θ).
2: Initialize replayed memory D
3: for each episode do
4: Initialze s0
5: for every time step do
6: Choose an action a using the ϵ-greedy policy
7: Obtain the reward R and the next state s′ from the environment
8: Store (s, a, R, s′) in replayed memory D
9: s← s′ ; a← a′

10: end for
11: for every training step do
12: Sample a minibatch Ds randomly from D
13: Choose an action a′ from s′ by maximizing Qθ′(s′, a′) over argument a′ for each

experience (s, a, R, s′)
14: Update Qθ′(s, a) based on Equation 3.1
15: Train the Q network (Qθ) to minimize (Qθ′(s, a)−Qθ(s, a))
16: end for
17: for predetermined number of training time steps do
18: Update the target network with the trained value network: θ′ ← θ
19: end for
20: end for

In the longitudinal model, the input layer consists of five neurons, incorporating states
and longitudinal torque. The lateral model employs four neurons in its input layer,
encompassing states (excluding reaction wheel angle) and lateral torque.

Longitudinal model inputs = (θp, θ̇p, ϕdw, ϕ̇dw, τlon). (3.6)

Lateral model inputs = (θr, θ̇r, ϕ̇rw, τlat). (3.7)

It is important to note a key distinction between the longitudinal and lateral models.
While the angle of the rotation wheel isn’t crucial for controlling the lateral model, the
driving wheel angle plays a vital role in positioning the unicycle in a predetermined stance
in the longitudinal model and should be considered as an input feature.

The specific configuration of hidden layers and neurons in each layer may vary between the
two models, as detailed in the results chapter on hyperparameter optimization. However,
in both models, the output layer consists of a single neuron representing the Q value.
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3.2 Actor-Critic
Policy learning forms the cornerstone of reinforcement learning algorithms, where an
agent aims to maximize its long-term reward by learning a policy to select actions in dif-
ferent states. Policy-based methods offer unique advantages compared to other reinforce-
ment learning approaches. Firstly, they directly learn the probability of choosing each
action in any state, granting fine-grained control over the agent’s behavior. This ability
also allows them to naturally manage the exploration-exploitation trade-off by adjusting
action probabilities. Additionally, policy-based methods seamlessly handle continuous
action spaces, unlike greedy methods and value-based methods which often struggle in
such scenarios [21]. The policy function is typically represented by a set of parameters
denoted by θ. In this study, these parameters govern a NN that maps states to actions
probability. The ultimate goal is to adjust these parameters to maximize the expected
discounted reward accumulated over an entire trajectory (R(τ)). Mathematically, this
translates to:

Maximize: J(θ) = Eπ[R(τ)]. (3.8)

In essence, finding the optimal parameters (θ∗) that maximize the objective function (J)
solves the reinforcement learning problem. Similar to many optimization tasks in machine
learning, a prominent approach for tackling this challenge is gradient ascent (or descent,
depending on the objective) [31]. This iterative method is called policy gradient, which
guides towards better parameters by taking small steps in the direction with the steepest
increase (ascent) or decrease (descent) in J . The updating rule in policy gradient method
can be written as follows:

θt+1 = θt + α∇J(θt). (3.9)

A crucial hurdle arises in computing the gradient of the objective function. To handle
that, the gradient of the objective function can be reformulated as follows [21]:

∇Eπ[R(τ)] =∇
∫

π(τ)R(τ)dτ =

∫
∇π(τ)R(τ)dτ

=

∫
π(τ)∇ log π(τ)R(τ)dτ = Eπ[R(τ)∇ log π(τ)].

(3.10)

Also, the policy function can be expanded to [21]:

πθ(τ) = P (s0)Π
T
t=1πθ(at|st)P (st+1, Rt+1|st, at). (3.11)

Understanding the computation requires a closer look at its components.

• Initial Distribution (P (s0)): This term represents the starting point of the agent,
captured by the probability distribution P over the initial state s0.
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• Action Product (Product Rule): We leverage the Markov property, which assumes
each action’s probability depends only on the current state, not the entire history.
This allows us to use the product rule of probability. Essentially, we multiply
the probabilities of taking each action over the trajectory length T , reflecting the
sequence of actions chosen based on the policy (πθ) and the environment’s dynamics.

By taking the log, the expected reward can be written as follows:

log πθ(τ) = logP (s0) + ΣT
t=1 log πθ(at|st) + ΣT

t=1 logP (st+1, Rt+1|st, at)
⇒ ∇ log πθ(τ) = ΣT

t=1∇ log πθ(at|st)

⇒ ∇Eπθ
[R(τ)] = Eπθ

[
R(τ)

(
ΣT

t=1∇ log πθ(at|st)
)]

.

(3.12)

This outcome is known as the policy gradient theorem [21]. It establishes a key rela-
tionship: the derivative of the expected reward with respect to the policy parameters
aligns with the expected product of individual rewards and the gradient of the policy’s
log-probability.

The total reward obtained throughout a trajectory (R(τ)) can be replaced by the Q value.
So equation 3.12 can be written as follows:

∇θJ(θ) = ∇Eπθ
[R(τ)] = Eπθ

[
Q(st, at)

(
ΣT

t=1∇ log πθ(at|st)
)]

. (3.13)

To further enhance the algorithm’s performance, additional refinements can be made.
Consider an action-value function Q, whose scalar value is assumed to have an offset
and operate within a specific range. Subtracting this average offset would reduce the
variance while keeping the estimated gradient unchanged [33]. This can be achieved by
subtracting the state-value function V from Q, resulting in the advantage function A:

A(st, at) = Q(st, at)− V (st) = Rt+1 + γV (st+1)− V (st). (3.14)

Substituting A(s, a) into equation 3.12 instead of r(τ):

∇θJ(θ) = Eπθ

[
A(st, at)

(
ΣT

t=1∇ log πθ(at|st)
)]

(3.15)

results in a method known as Advantage Actor-Critic (A2C) [33]. A2C represents a
hybrid architecture that combines both value-based and policy-based methods, thereby
aiding in stabilizing training by minimizing variance. Within A2C, an actor dictates the
behavior of our agent, employing a policy-based approach, while a critic evaluates the
efficacy of the action undertaken, employing a value-based method.

Moreover, to deal with uncertainties, disturbances, and noises, a stochastic policy func-
tion is implemented. In contrast with deterministic policy functions, where a single action
is always prescribed for each state, in stochastic policy functions, the probability distri-
bution of taking action a in state s is calculated. Since the action space is continuous
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in this study, the probability becomes a probability density function. To represent this
stochastic policy function, a Gaussian probability distribution [34] is used.

π(a|µ, σ) ≡ N (a|µ, σ) (3.16)

where, µ represents the mean and σ represents the standard deviation, defining the
action’s central tendency and dispersion, respectively.

To sum up, the Advantage Actor-Critic algorithm can be explained using the following
steps:

Algorithm 3 Advantage actor-critic algorithm
1: Initialize critic networks (value network V (s) and target network V ′(s)) and actor

network π(s)
2: Initialize replayed memory D
3: for each episode do
4: Initialze s0
5: for every time step do
6: Choose an action a using the current policy π(s)
7: Obtain the reward R and the next state s′ from the environment
8: Store (s, a, R, s′) in replayed memory D
9: s← s′ ; a← a′

10: end for
11: for every training step do
12: Sample a minibatch Ds randomly from D
13: Calculate the V ∗(s) = R + γV ′(s′)
14: Train the critic network (value network V (s)) to minimize δt = V ∗(s)− V (s)
15: Train the actor network to minimize L = −log(π(a|µ(st), σ(st))).δt
16: end for
17: for predetermined number of training time steps do
18: Update the target network with the trained value network
19: end for
20: end for

This study employs the advantage actor-critic algorithm separately for both the lateral
and longitudinal models. Neural networks are used to approximate both the value and
policy functions. The value neural network has only one output, denoted as V, whereas
the policy neural network has two outputs: the mean (µ) and standard deviation (σ).
The probability of selecting an action is subsequently calculated with

π(a|µ, σ) = 1

constant
e(a−µ)2/σ2

. (3.17)

The choice of input parameters for the policy and value neural networks differs slightly
between the longitudinal and lateral models. Both models rely on the state vector as

23



input. However, the lateral model can disregard the angle of the rotation wheel, as it is
non-essential for controlling the roll angle. As a result, this distinction results in a slightly
different set of inputs for each neural network, as detailed in the following equations:

Longitudinal model inputs = (θp, θ̇p, ϕdw, ϕ̇dw), (3.18)

Lateral model inputs = (θr, θ̇r, ϕ̇rw). (3.19)

It is worth mentioning that the actual number of hidden layers and neurons in each
layer may differ. This is discussed in detail in the chapter 4 through hyperparameter
optimization.

3.3 Reward function
At the core of successful reinforcement learning, the reward function serves as the guiding
force for the agent amid numerous potential actions. For the unicycle, maintaining its
balance in both lateral and longitudinal directions and navigating towards a target loca-
tion require meticulously crafted reward mechanisms for both the lateral and longitudinal
models.

In the longitudinal model, the reward function is designed to incentivize actions that en-
sure the pitch angle and velocity remain within safe bounds, thus preventing the unicycle
from toppling over. The ultimate goal is to guide the unicycle towards a destination
point while maintaining longitudinal stability. Rewards are structured to encourage for-
ward or backward movements that steer the unicycle closer to the target, while any
deviations from the destination point or signs of impending falls result in corresponding
penalties. This delicate balance between maintaining balance and progressing towards
the goal shapes the agent’s learning process. To achieve this, the longitudinal model’s re-
ward function is composed of three distinct components, each contributing to the overall
learning objective.

• Pitch angle penalty (Ppa): This component penalizes the absolute value of the pitch
angle, compelling the unicycle to maintain a near-zero pitch for stability.

• Velocity Penalty (Ppv): The squared values of both pitch and wheel angular veloci-
ties are penalized in this component. By discouraging sudden changes in pitch and
wheel angles, this term fosters smoother control actions by the agent.

• Distance Reward (Rd): Incentivizing the agent’s proximity to the destination point
(ϕdp), this component calculates the remaining distance from the target. As the
agent approaches the target, the reward escalates, fostering convergence.


Ppa = −|θp|
Ppv = −(θ̇2p + ϕ̇2

dw)
Rd = 1− |ϕdp − ϕdw|

24



The state variables are normalized before calculating the reward components. The nor-
malization factors are adjusted based on the provided ranges for each variable. The final
reward (RT ) combines these individual components.

RT = wpaPpa + wpvPpv + wdRd (3.20)

For the lateral model, the agent strives to maintain the roll angle (θr) within a specific
range while minimising the roll angular velocity (θ̇r) and the reaction wheel velocity
(ϕ̇rw). Actions that keep the unicycle gracefully upright and minimise unnecessary energy
expenditure should be rewarded. However, deviations from the desired state should
be penalised, reminding the agent to adjust its actions to regain balance. Unlike the
longitudinal model, there is no component for distance reward in the lateral model.

{
Pra = −|θr|
Prv = −(θ̇2r + ϕ̇2

rw)

Once more, the state variables are normalized before calculating the reward components,
and then the final reward function combines these individual components. The reward
function corresponding to the lateral model is represented by:

RT = wraPra + wrvPrv. (3.21)

3.4 Implementation
Following the exploration of theoretical underpinnings and reward function design, this
section now transitions into the implementation of chosen RL methods to control the
unicycle’s lateral and longitudinal dynamics.

Python is chosen as the preferred programming language due to its versatility and rich
ecosystem of libraries tailored for scientific computing and machine learning tasks [35].
The construction and training of NNs responsible for approximating Q-values and policy
functions are accomplished using the TensorFlow library [36].

The Adam optimizer is employed for training NNs. This algorithm facilitates first-order
gradient-based optimization of stochastic objective functions by employing adaptive es-
timates of lower-order moments. It is easy to implement, computationally efficient, and
requires minimal memory [37]. Additionally, the MAE loss function is employed to mea-
sure the discrepancy between the network’s predictions and the actual values, providing
feedback for the optimizer to fine-tune the network weights.

To discern optimal hyperparameters such as learning rates and network architectures
that significantly influence RL algorithm performance, GridSearchCV from the scikit-
learn library is employed [38]. This tool systematically evaluates various hyperparameter
combinations, facilitating the selection of configurations yielding the best results.
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The Runge-Kutta 4th order (RK4) method was utilized to solve the core mathematical
model governing the unicycle’s lateral and longitudinal movements. This numerical in-
tegration technique is known for its high accuracy and stability, minimising errors that
can accumulate during integration and ensuring reliable results [39]. This is crucial for
simulation purposes, as inaccurate state information can impact controller performance.
In this study, the RK4 implementation utilises a time step of 0.1 seconds. This selection
balances computational efficiency with the need to capture the dynamics of the system
with sufficient detail.

Finally, the golden section optimization method is employed for the ϵ-greedy policy.
This optimization technique is efficient and requires only a few function evaluations to
converge to the optimal solution [40]. This is crucial for real-time applications, where
computational efficiency is paramount. In this implementation, the golden section method
utilizes a stopping criterion of 0.05 for the difference between the upper and lower bounds.
This stopping criteria ensures a balance between efficient computation and achieving a
sufficiently accurate solution.

By meticulously implementing these elements and leveraging Python libraries, successful
translation of theoretical concepts into practical solutions is achieved.
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Chapter 4

Results

In this chapter, the results are presented, and the outcomes derived from the application
of two distinct reinforcement learning methods—DQN and A2C—on both the lateral
and longitudinal dynamics models of the unicycle are discussed. The analysis extends
beyond simply presenting the outcomes. An exploration of initial conditions and various
neural network hyperparameters is undertaken to elucidate their impact on the efficacy
and stability of the learned policies, offering insights into the strengths and limitations
of the employed methods.

4.1 DQN for the longitudinal model
In this section, results for implementing the DQN algorithm for controlling the unicycle’s
longitudinal dynamics are provided. However, the success of RL algorithms and the
performance of the resulting agent heavily depend on carefully chosen hyperparameters.
These parameters, unlike the model’s learnable weights, are set manually before training
begins. To enhance the DQN’s performance, hyperparameter optimization is conducted
to understand their influence on the agent’s ability to achieve the control objective. To
ensure comparability of results, all networks are trained under similar conditions, with
only the parameter of interest varied. Following 100 training steps, the trained agents are
deployed to control the unicycle under the same initial conditions, enabling the calculation
of the cumulative reward for this specific scenario.

The number of hidden layers and the number of neurons in each layer in the neural net-
work play a crucial role in its ability to learn complex relationships between the unicycle’s
state and the optimal control actions. With more hidden layers and more neurons, the
network possesses greater representational power and can potentially capture more in-
tricate features within the state space. This leads to improved performance in complex
control tasks where numerous factors influence the optimal action selection. A very low
number of hidden layers leads to underfitting, where the network is incapable of cap-
turing the necessary complexity within the state space. Table 4.1 indicates that two
hidden layers with 100 neurons each effectively learn the Q values. Decreasing the num-
ber of neurons to 50 results in an unstable agent, whereas increasing it yields comparable
performance. Implementing only one hidden layer with 100 neurons fails to produce a
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stable controller. Furthermore, increasing the number of hidden layers does not improve
performance.

NN structure [50,50] [100,100] [200,200] [100,100,100] [200,200,200]
Cumulative reward 957 3478 3416 3213 3146

Table 4.1: Cumulative rewards for different NN structures

Since the problem is a regression-like task and the output layer should predict the de-
sired Q value of the state-action pair, choosing a linear activation function is inevitable.
Otherwise, using non-linear activation functions such as sigmoid or tanh would distort
the output range and limit the representational capacity of the network. For the hid-
den layers, three different activation functions are employed, as illustrated in Table 4.2.
The agent’s overall performance remains consistent across all activation functions, with
cumulative rewards falling within a similar range.

Hidden layer activation function relu elu selu
Cumulative reward 3479 3468 3477

Table 4.2: Cumulative rewards for different activation functions

Decreasing the exploration decay rate emphasizes exploitation and accelerates conver-
gence toward previously learned policies, resulting in premature convergence on subopti-
mal solutions, as observed in Figure 4.1. Increasing the exploration decay rate prolongs
the exploration phase, but, as depicted in Table 4.3, it does not enhance the training
performance.

(a) Cumulative rewards (b) Pitch angle (θp) and velocity (θ̇p)

Figure 4.1: Cumulative rewards and pitch angle for exploration decay rate equal
to 0.95
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Exploration decay rate 0.95 0.96 0.97 0.98 0.99
Cumulative reward 2139 2771 3470 3240 3367

Table 4.3: Cumulative reward for different values of the exploration decay rate

Table 4.4 shows cumulative rewards for different values of the learning rate. Increasing
the learning rate induces instability and oscillations during training. The network con-
stantly bounces back and forth between suboptimal policies. Decreasing the learning rate
significantly slows down the learning process, requiring a longer training period to reach
a desirable level of performance.

Learning rate 0.1 0.3 0.5 0.7 0.9
Cumulative reward 3480 3488 3325 2553 2974

Table 4.4: Cumulative reward for different values of the learning rate

Higher discount factors emphasise the importance of future rewards, encouraging the
agent to plan for long-term goals. Lower discount factors place greater weight on im-
mediate rewards, prompting the agent to focus on short-term gains. As it can be seen
in Table 4.5, excessively low discount factors lead to myopic behaviour, where the agent
only considers the immediate consequences of its actions and fails to plan for the long
term.

Discount factor 0.6 0.7 0.8 0.9 0.95
Cumulative reward 2006 2395 3073 3449 3344

Table 4.5: Cumulative reward for different values of the discount factor

The initial values assigned to a neural network’s weights significantly impact the training
process. Improper initialization can lead to vanishing or exploding gradients, hindering
the network’s ability to learn effectively [41]. Selecting the right initialization method
is crucial for efficient learning and achieving optimal performance. During the hyper-
parameter optimization process, various initialization methods were explored, including
’uniform’, ’lecun uniform’, ’normal’, ’zero’, ’glorot normal’, ’glorot uniform’, ’he normal’,
and ’he uniform’ [42]. Notably, ’lecun uniform’, ’glorot uniform’, and ’he uniform’ consis-
tently yielded the highest cumulative rewards, with all three performing very similarly.

Training with larger batches can lead to faster updates due to the efficient use of com-
putational resources. This can be beneficial for reducing overall training time, especially
when dealing with large datasets. However, larger batches also introduce higher variance
in the gradient estimates used for weight updates. This can lead to unstable training
and potentially hinder convergence to the optimal policy. Smaller batches result in more
frequent but smaller updates, leading to slower convergence compared to larger batches.
In this study, the agent undergoes training for various batch sizes, including 32, 64, 128,
and 256. Despite variations in training duration, the controller’s performance remains
nearly consistent across all batch sizes.
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Increasing the number of epochs provides the network with more opportunities to learn
from the entire dataset, potentially enhancing performance, particularly for complex tasks
requiring extensive training to capture underlying dynamics. However, excessive epochs
can lead to overfitting, where the network memorizes specific training data patterns
instead of generalizing well to unseen scenarios. Conversely, lower epoch numbers offer
quicker training, especially for simpler tasks where the network can swiftly grasp essential
control strategies. Yet, too few epochs may result in underfitting, where the network fails
to effectively learn from the data, leading to suboptimal performance. In this study, the
agent undergoes training with varying epoch numbers: 50, 100, 200, and 300. The training
results remain consistent across all epochs, with no evidence of overfitting observed.
During training, a validation split rate of 0.3 is employed, utilizing 2000 training data
points for each training step. As illustrated in Figure 4.2, the Mean Absolute Error
(MAE) exhibits minimal reduction beyond 200 epochs.

(a) 50 epochs (b) 100 epochs

(c) 200 epochs (d) 300 epochs

Figure 4.2: Training results for different epoch numbers

To ensure optimal performance of the RL agent, a thorough exploration of hyperparame-
ters was conducted. Building on the insights gained from this analysis, the most effective
hyperparameters were selected to guide the subsequent implementation phase. Detailed
specifications regarding these network parameters can be found in Table 4.6.
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Number of hidden layers 2 Exploration rate 1
Number of neurons in each layer 100 Exploration decay rate 0.97

The hidden layer’s activation function relu Minimum exploration rate 0.01
Learning rate 0.3 Discount factor 0.9

Number of experiences to train NN 2000 Batch size 128
NN’s weight initialization method Xavier [43] Epoch number 100

Table 4.6: Parameters values for the DQN algorithm implemented on the longi-
tudinal model

Figure 4.3 depicts cumulative rewards over training steps and represents the performance
of the training process for the agent trained according to the specifications detailed in
Table 4.6. The graph showcases how the cumulative reward obtained by the reinforcement
learning agent evolves over successive episodes of training. A rising averaged trend (red
dotted line) in cumulative reward indicates that the agent is learning and improving its
performance over time.

Figure 4.3: Cumulative rewards of the DQN algorithm for the longitudinal model

The performance of the trained agent in controlling the unicycle after 100 training steps
is depicted in Figures 4.4 to 4.6. The initial condition of the unicycle is outlianed below:

(θp, θ̇p, ϕdw, ϕ̇dw) = (0.2, 0, 5, 0).

The setpoint for ϕdw is zero.
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Figure 4.4: Pitch angle (θp) and pitch angular velocity (θ̇p)

Figure 4.5: Driving wheel angle (ϕdw) and driving wheel angular velocity (ϕ̇dw)

Figure 4.6: Longitudinal torque
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The pitch angle initially deviates from zero and gradually approaches zero over time, in-
dicating effective regulation by the DQN controller towards the desired setpoint. Despite
some fluctuations around zero, the overall trend suggests successful control. Concurrently,
the pitch angular velocity demonstrates a decreasing trend, converging towards zero, fur-
ther affirming the controller’s effectiveness in stabilizing the pitch angle, as a stable pitch
angle necessitates a zero pitch angular velocity. Observations show a transition period
of approximately 7 seconds, during which the pitch angle oscillations occur, but dampen
quickly.

The agent possesses the ability to control the unicycle’s driving wheel as well. Initially,
the driving wheel angle increases owing to the application of high positive torque. This
action is intended to alter the sign of the pitch angle, facilitating backward movement
toward the destination while keeping the pitch angle within a safe range. Following this
initial transition phase, characterized by fluctuations and oscillations in both the driving
wheel angle and angular velocity, the agent successfully stabilizes the unicycle around the
destination point.

While the provided figures indicate the DQN algorithm’s ability to control the unicycle’s
driving wheel and achieve a degree of stability, it is important to acknowledge the po-
tential for reaching suboptimal policies. This means the agent might not always find the
action sequence leading to the perfect "zero" driving wheel angle, but instead converge on
a policy that stabilizes the unicycle at a fixed, non-zero offset from the desired setpoint.
Figure 4.7 shows the driving wheel angle and velocity for the same controller only with
different initial conditions.

Figure 4.7: Suboptimal condition for the driving wheel angle (ϕdw)

This suboptimal convergence can be attributed to several factors inherent to the con-
trol task and the learning process. The unicycle control environment exhibits complex
dynamics. Exploring the full state space exhaustively is almost impossible, even with
a very low decay rate for the exploration rate. This means there is always a chance of
missing the optimal policy and converging to a suboptimal one that still achieves some
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level of control. Moreover, the use of randomly sampled experiences to train the neural
network introduces stochasticity. While crucial for exploration, it can also lead the agent
to prioritize trajectories that achieve "good enough" performance rather than consistently
leading towards the optimal solution.

The trend observed in Figure 4.3 also illustrates a notable aspect of the agent’s behavior
during training. At times, the agent appears to converge to the global maximum or a
higher local maximum of the reward function. However, despite reaching these optimal or
near-optimal states, the agent’s exploration strategy introduces variability into its actions.
As a result, the agent may deviate from these promising states and explore alternative
actions or trajectories. While exploration is crucial for discovering new strategies and
refining the agent’s policy, it also introduces the possibility of converging to suboptimal
states or exploring less favourable regions of the state space.

One approach to addressing the suboptimal convergence is to train a large population
of agents. By evaluating their performance after training, the agent that achieves the
best results, potentially the one with the highest cumlative reward can be selected for
deployment. This approach leverages the inherent exploration aspect of DQN by training
a diverse set of controllers and then selecting the "best" one based on a pre-defined
performance metric.

Another effective strategy involves implementing a memory system to store the agent
with the highest cumulative reward observed during the training process. Following
the completion of training, this top-performing agent is preserved and can be deployed
in place of the most recent version. During training, there is a risk that the agent’s
performance may decline compared to earlier stages due to exploration. Additionally, the
exploration decay rate may cause the agent to become trapped in a suboptimal situation.
By saving the best-performing agent, a fallback option is provided, ensuring that the
agent demonstrating the best control performance during training is utilized.

4.2 DQN for the lateral model
Building upon the successful application of DQN to the unicycle’s longitudinal dynam-
ics, this section explores its effectiveness in controlling the lateral dynamics. Similar
to the previous part, hyperparameter optimization is conducted to enhance the DQN’s
performance and understand its influence on the agent’s ability to achieve the control
objective. To ensure fair and comparable results, all neural networks are trained under
identical conditions except for the specific hyperparameter being investigated. Following
100 training steps, the trained agents are then deployed to control the unicycle under the
exact same initial conditions.

Table 4.7 illustrates cumulative rewards across varying numbers of hidden layers and
neurons per layer. Like the longitudinal model, it demonstrates that two hidden layers
with 100 neurons each effectively capture Q values. Reducing the neuron count to 50 leads
to underfitting, while increasing it shows similar performance. Singularly employing one
hidden layer with 100 neurons fails to stabilize the controller. Moreover, augmenting the
number of hidden layers does not enhance performance.
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NN structure [50,50] [100,100] [200,200] [100,100,100] [100]]
Cumulative reward 1596 2943 2811 2909 774

Table 4.7: Cumulative rewards for different NN structures

Table 4.8 displays the utilization of three distinct activation functions for the hidden
layers. The agent’s performance marginally improves with the relu activation function.

Hidden layer activation function relu elu selu
Cumulative reward 2930 2794 2756

Table 4.8: Cumulative rewards for different activation functions

As depicted in Table 4.9, reducing the exploration decay rate results in suboptimal agent
performance, while increasing it does not improve training outcomes.

Exploration decay rate 0.95 0.96 0.97 0.98 0.99
Cumulative reward 2581 2706 2967 2993 2982

Table 4.9: Cumulative reward for different values of the exploration decay rate

Analysis of the learning rate reveals that higher values result in oscillations between
suboptimal policies during the initial learning phase. However, after 100 training steps,
there is no notable difference in agent performance (see Table 4.10), with the average
cumulative rewards for the last ten episodes falling within the same range.

Learning rate 0.1 0.2 0.3 0.4 0.5
Cumulative reward 3207 3499 3331 3156 3245

Table 4.10: Cumulative reward for different values of the learning rate

A higher discount factor generally yields better performance overall (see Table 4.11). This
improvement may stem from the reward function’s design. Conversely, a lower discount
factor results in underperformance and, in some cases, instability, particularly with low
learning rates.

Discount factor 0.25 0.5 0.8 0.9 0.95
Cumulative reward Unstable 2761 2960 3012 2974

Table 4.11: Cumulative reward for different values of the discount factor

Like the longitudinal model, the agent is trained across different batch sizes, ranging
from 32 to 256. The controller’s performance remains relatively consistent across all
batch sizes, with no significant impact observed on either controller performance or the
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training process. Moreover, the agent is trained across different epoch numbers, ranging
from 50 to 300. The training results remain consistent across all epochs, with no evidence
of overfitting observed (Figure 4.8). Notably, the validation and training trends exhibit
remarkable similarity, attributed to the ample training data where 70% is allocated for
training and 30% for validation.

(a) 50 epochs (b) 100 epochs

(c) 200 epochs (d) 300 epochs

Figure 4.8: Training results for different epoch numbers

Hyperparameter optimisation analysis yielded valuable insights into how different hy-
perparameter configurations influenced the agent’s effectiveness. Drawing upon these
findings, the selection process for hyperparameters was meticulously guided to ensure the
chosen configuration achieved the most effective control performance for the unicycle.
Detailed specifications for these optimized network parameters are presented in 4.12.

Figure 4.9 illustrates the cumulative rewards obtained over training steps for the agent
trained according to the specifications detailed in Table 4.12., offering insights into the
performance of the training process. A rising trend, as indicated by the red dotted line,
signifies that the agent is progressively learning and enhancing its performance throughout
the training period.
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Number of hidden layers 2 Exploration rate 1
Number of neurons in each layer 100 Exploration decay rate 0.98

The hidden layer’s activation function relu Minimum exploration rate 0.01
Learning rate 0.2 Discount factor 0.9

Number of experiences to train NN 2000 Batch size 128
NN’s weight initialization method Xavier Epoch number 200

Table 4.12: Parameters values for the DQN algorithm implemented on the lateral
model

Figure 4.9: Cumulative rewards of the DQN algorithm for the lateral model

Figures 4.10 to 4.12 illustrate the effectiveness of the trained agent in controlling the
unicycle following 100 training steps. The unicycle’s initial condition is outlined as follows:

(θr, θ̇r, ϕrw, ϕ̇rw) = (0.2, 0, 0, 0).
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Figure 4.10: Roll angle (θr) and velocity (θ̇r)

Figure 4.11: Reaction wheel velocity (ϕ̇rw)

Figure 4.12: Lateral torque (τlat)
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The roll angle initially exhibits a deviation from zero, followed by a correction towards
the desired setpoint (zero) over time. This indicates the DQN controller’s ability to regu-
late the roll angle and stabilize the unicycle. The roll angular velocity plot complements
the roll angle observations. It demonstrates a decreasing trend converging towards zero,
mirroring the roll angle’s approach to the setpoint. This reinforces the controller’s effec-
tiveness. A stable roll angle with minimal angular velocity signifies a balanced unicycle
with minimal roll axis rotations.

Figure 4.11 initially depicts a notable increase in the reaction wheel velocity, indicating
active correction of the unicycle’s roll angle. Subsequently, a decrease in reaction wheel
velocity follows, signifying successful roll angle correction by the controller, resulting in
a reduction of the reaction wheel’s angular velocity. However, unlike a perfect scenario
where the velocity converges to zero, the plot shows a convergence to a non-zero steady-
state value of approximately 5 rad/s. This is because in a complex environment, there are
several suboptimal policies, and the agent might converge on one of them. This means
the controller might not discover the absolute best course of action to achieve a perfectly
zero roll angle and zero reaction wheel speed. Instead, it finds a policy that achieves
a stable state with a slight residual roll angle and non-zero steady-state reaction wheel
speed.

Overall, the observed behavior underscores the controller’s agility in utilizing the reaction
wheel to promptly address roll angle deviations.

4.3 A2C for the longitudinal model
In this section, the outcomes of applying the A2C algorithm to control the unicycle’s
longitudinal dynamics are delineated. Similar to the previous part, a meticulous hyper-
parameter optimisation process is undertaken to maximise the A2C agent’s effectiveness.
Tables 4.13 to 4.16 provide the comprehensive results obtained from this optimisation
effort. A crucial aspect of this analysis involves ensuring fair and comparable results.
To achieve this, all neural networks are trained under identical conditions, except for
the specific hyperparameter being optimized. Following a consistent number of training
steps, the trained agents are then deployed to control the unicycle under the exact same
initial conditions.

NN structure [50,50] [100,100] [200,200] [100,100,100] [100]]
Cumulative reward 521 3018 2867 2799 832

Table 4.13: Cumulative rewards for different NN structures

Hidden layer activation function relu elu selu
Cumulative reward 2886 2804 2971

Table 4.14: Cumulative rewards for different activation functions
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Learning rate 0.01 0.05 0.1 0.2 0.3
Cumulative reward 3123 3201 3078 3045 2996

Table 4.15: Cumulative reward for different values of the learning rate

Discount factor 0.5 0.6 0.7 0.8 0.9
Cumulative reward 1407 2439 2685 2832 2916

Table 4.16: Cumulative reward for different values of the discount factor

It is noteworthy that both the actor and critic neural networks within the A2C algorithm
leverage a consistent network structure and activation function for hidden layers. Based
on hyperparameter optimization, the neural networks employed for estimating both the
policy function and value function consist of two hidden layers, each housing 100 neurons.
Selu serves as the activation function for the hidden layers, whereas a linear activation
function is used for the output layer. Notably, the policy neural network’s output is
bound to a maximum torque of 1.25 Nm for the longitudinal model.

The Adam Optimizer is employed to train neural networks, utilizing a learning rate of
0.05. With each training step, 1000 experiences are selected, and NNs undergo training
with a batch size of 100 and an epoch number of 100. Additionally, the network weight
initialization method adheres to the Glorot uniform methodology. The discount factor
utilised is 0.9.

The figures 4.13 to 4.15 illustrate the performance of the trained agent in controlling the
unicycle following 1000 training steps. The initial condition for the unicycle is

(θp, θ̇p, ϕdw, ϕ̇dw) = (−0.2, 0, 0, 0), (4.1)

while the setpoint for the driving wheel is angle remains at zero.

Figure 4.13: Pitch angle (θp) and velocity (θ̇p)
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Figure 4.14: Driving wheel angle (ϕdw) and velocity (ϕ̇dw)

Figure 4.15: Longitudinal torque (τlon)

The implemented A2C algorithm demonstrates promising results in controlling the uni-
cycle’s longitudinal dynamics, particularly in maintaining the pitch angle. The analysis
reveals successful regulation of the pitch angle. Initial fluctuations are observed during
the transition period as the controller establishes control. However, these fluctuations
quickly dampen, and both the pitch angle and its velocity settle around zero. This
signifies the controller’s ability to effectively stabilize the unicycle’s pitch angle.

The driving wheel angle also converges around zero. Notably, some minor oscillations
persist around this equilibrium point. This behavior can potentially be attributed to
the stochastic nature of the A2C algorithm. In A2C, the policy function, which dictates
the controller’s actions, has a certain level of inherent randomness. Even with a very
small standard deviation, this stochasticity can introduce slight variations in the chosen
actions, leading to the observed oscillations. While this stochasticity might cause slight
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oscillations during normal operation, it plays a crucial role in the A2C algorithm’s ability
to handle unexpected disturbances and noise. By constantly exploring different actions
due to stochasticity, the agent is better equipped to adapt to unforeseen changes in the
environment, enhancing their overall resilience against external influences.

It is important to acknowledge the potential for suboptimal policy convergence in the
A2C. This means that some agents within the training process might not discover the
absolute best strategy for achieving a perfectly zero driving wheel angle. Due to the
inherent randomness in the starting positions of each training episode (random initial
conditions) and the use of randomly sampled past experiences for training the neural
networks, the controller might sometimes converge on policies that achieve stability with
a slight non-zero driving wheel angle offset.

Addressing suboptimal convergence during training can be mitigated through two com-
plementary strategies. Similar to previous sections, training a large population of agents
and evaluating their post-training performance allows for selecting the one with the high-
est cumulative reward, increasing the odds of finding a superior controller. Additionally, a
memory mechanism can be implemented to track the agent achieving the peak cumulative
reward observed throughout training. This "agent replay" approach ensures deployment
of the agent that demonstrably showcased the best control capabilities during the training
process, even if the final trained agent exhibits suboptimal performance.

4.4 A2C for the lateral model
Building upon the success of A2C in controlling longitudinal dynamics, this section ex-
plores its effectiveness in managing the unicycle’s lateral dynamics. Tables 4.17 to 4.20
provide the comprehensive results obtained from the optimization effort.

NN structure [50,50] [100,100] [200,200] [100,100,100] [100]]
Cumulative reward 1782 2819 2848 2833 936

Table 4.17: Cumulative rewards for different NN structures

Hidden layer activation function relu elu selu
Cumulative reward 2897 2955 3014

Table 4.18: Cumulative rewards for different activation functions

Learning rate 0.01 0.05 0.1 0.2 0.3
Cumulative reward 2453 3191 3188 3160 2940

Table 4.19: Cumulative reward for different values of the learning rate
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Discount factor 0.5 0.6 0.7 0.8 0.9
Cumulative reward 1758 1941 2665 2900 2922

Table 4.20: Cumulative reward for different values of the discount factor

The outcomes derived from employing the A2C algorithm to govern the lateral dynamics
of the unicycle are presented through figures 4.16 to 4.18. The policy neural network’s
output is capped at a maximum torque of 8 Nm for the lateral model. The initial condition
is the same as Equation 4.1, but with the roll angle replacing the pitch angle.

Figure 4.16: Roll angle (θr) and velocity (θ̇r)

Figure 4.17: Reaction wheel velocity (ϕ̇rw)

43



Figure 4.18: Lateral torque (τlat)

The A2C algorithm demonstrates encouraging capabilities in managing the unicycle’s
lateral dynamics. Similar to the longitudinal control, the implemented A2C controller
maintains the unicycle’s lateral stability. As it is reflected in minimal deviations from the
desired lateral position throughout the operation, the overall behavior suggests successful
convergence. As observed in the longitudinal control, the stochastic nature of the A2C
algorithm might introduce slight variations in the controller’s actions. This can manifest
in the form of minor fluctuations around the desired equilibrium point. The previously
discussed potential for suboptimal convergence in A2C also applies to the lateral control
task. During training, some agents might converge on policies that achieve stability, but
with a slight offset from the ideal setpoint.
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Chapter 5

Conclusion and recommendations

In pursuit of answering the research questions posed at the outset of this study, this
chapter summarizes the key findings, limitations, and potential future directions of this
thesis, which investigated the effectiveness of using RL methods for controlling a MEUR.

In addressing the effectiveness of RL-based methods to control the MEUR and maintain
both lateral and longitudinal stability, this research demonstrates that both the DQN and
the A2C algorithms can achieve stability in both roll and pitch angles in the simulated
environment using a MEUR dynamic model. The analysis of the pitch and roll angle
responses revealed successful regulation towards the desired setpoints of zero, indicating
the controller’s ability to maintain a stable upright position for the MEUR. For the
driving wheel angle and reaction wheel velocity, while they converge to their setpoints, it
is important to note the potential for suboptimal convergence, where the controller may
not achieve perfect setpoints but stabilize the system at a slight offset from the desired
setpoint. One approach to potentially mitigating suboptimal convergence is to train a
large population of agents in parallel. By evaluating their performance after training, the
agent that achieves the best results, such as the one with the most stable behavior and
minimal deviations from desired setpoints, can be selected for deployment. Additionally, a
memory mechanism can be implemented to track the agent achieving the peak cumulative
reward observed throughout training. This approach ensures the deployment of the agent
that demonstrably showcases the best control capabilities during the training process,
even if the final trained agent exhibits suboptimal performance.

One of the key strengths of RL-based control methods lies in their adaptability. Unlike
classical control methods, which hinge on pre-defined, system-specific equations, RL ap-
proaches can deal with different systems without extensive modifications. This is evident
in the successful implementation of both DQN and A2C algorithms for controlling the uni-
cycle’s lateral and longitudinal dynamics. The adaptability stems from RL’s core principle
of learning through interaction with the environment. Moreover, this flexibility enables
RL-based agents to seamlessly accommodate changes in dynamic environments. This
continuous learning capability presents a notable contrast to classical methods, which
often require extensive redesign when faced with significant alterations to the system.

Furthermore, investigation into the resilience of RL-based controllers to measurement
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noise, load disturbances, and external perturbations provided valuable insights into their
adaptive capabilities. The A2C method, with its stochastic nature, exhibits promising
abilities to handle noises and disturbances. However, it is important to note that this
study primarily focused on a simulated environment with minimal external influences.
Future research endeavors should consider incorporating these factors into the simulation
environment or conducting experiments with a physical MEUR prototype to gain a deeper
understanding of the controller’s resilience and potentially identify the need for additional
adaptation mechanisms.

While this research demonstrates the initial promise of RL for MEUR control, signifi-
cant challenges remain before widespread adoption in real-world delivery tasks. Unlike
the controlled environment of simulations, real-world scenarios demand a more sophis-
ticated MEUR capable of navigating dynamic environments and interacting safely with
its surroundings. Successful navigation of a delivery MEUR hinges on its ability to per-
ceive and respond to its surroundings. This necessitates the integration of additional
sensors beyond those explored in this study. For example, LiDAR sensors combined with
the camera would enable the MEUR to identify obstacles, locate delivery points, and
interpret signage for proper navigation.

This study focuses primarily on maintaining longitudinal and lateral stability. Real-world
deliveries often involve maneuvering through narrow corridors or navigating around ob-
stacles. To achieve this level of agility, a yaw control mechanism and corresponding
actuator are necessary. This would allow the MEUR to turn corners, adapt to changing
delivery routes, and even perform more complex maneuvers. However, the possibility of
falls or tip-overs during operation cannot be entirely eliminated. To ensure robust deliv-
ery capabilities, the MEUR would require a self-recovery mechanism. This could involve
a combination of sensors to detect falls and actuators to right themselves autonomously,
minimizing downtime and ensuring delivery completion. Last but not least, safety re-
mains paramount when considering the real-world deployment of RL-controlled MEURs.
Robust safety protocols are essential, including restricting operations to designated ar-
eas, emergency shut-off mechanisms, etc. Addressing these challenges presents promising
avenues for future research, with the potential to advance the capabilities and reliability
of RL-controlled MEURs for efficient and safe delivery operations.

In conclusion, this study represents a pivotal step towards unlocking the transformative
potential of RL in the future of unicycle robots. While the challenges identified necessitate
further research and development, the findings presented in this thesis lay the ground-
work for the advancement of RL-based unicycle robots. By continuously improving RL
algorithms, addressing limitations through innovative techniques, and ensuring the safe
integration of such systems, a future where unicycle robots seamlessly integrate into our
lives can be unlocked, performing complex tasks with efficiency.
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