
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

ReScan: High performance
mass scan responder

Niels Overkamp
M.Sc. Thesis

April 2024

Examiners:
dr. R. Holz

dr.ing. F.W. Hahn

Design and Analysis of
Communication Systems Group

Faculty of Electrical Engineering,
Mathematics and Computer Science

University of Twente
P.O. Box 217

7500 AE Enschede
The Netherlands

Summary

It is currently challenging to let students run internet-wide scans using real tools
such as ZMap or MASSCAN. If they were to perform these scans on the real in-
ternet they will not all obtain the same results, making assessment hard and not
scalable for larger groups of students. Furthermore, we believe it to be beneficial
to provide a virtual environment for students to experiment in before interacting with
real-world networks, machines, network operators and internet service providers
and cause real-world consequences. No such simulated environment exists for the
internet-wide scale these tools operate on. Therefore we propose an approach to
create a virtual internet that can intercept and respond to probes at the scale and
the speed of these mass scan tools. We create a working version of this approach
and experimentally verify that this approach sufficiently reaches its goals.

iii

IV SUMMARY

Contents

Summary iii

List of acronyms vii

1 Introduction 1
1.1 Research Questions . 1

1.2 Outline . 2

1.3 Availability of code . 2

2 Background 3
2.1 Mass scan tools . 3

2.2 I/O Frameworks . 4

2.3 IP Filters . 5

2.3.1 Unstructured Filters . 6

2.3.2 Structured Filters using LPM 6

3 Design & Evaluation Methodology 11
3.1 Design . 11

3.1.1 Requirements . 11

3.1.2 Prototype using libpcap . 12

3.1.3 Approach with XDP . 12

3.2 Evaluation Methodology . 16

3.2.1 Measurement parameters . 16

3.2.2 Measurement setup . 17

4 Results 21
4.1 Send Rate . 21

4.2 Processing Time . 23

4.3 Correctness . 24

4.4 Filter creation time . 27

v

VI CONTENTS

5 Discussion 29
5.1 Send Rate . 29

5.1.1 Performance goal . 29
5.1.2 ZMap Bottleneck . 30

5.2 Correctness . 30
5.2.1 False positive rate . 30
5.2.2 False negative rate . 31

5.3 Filter . 32
5.4 Usability . 32
5.5 Future Work . 32

5.5.1 Better performance . 32
5.5.2 Investigate droprate . 33

6 Conclusion 35

References 37

Appendices

A Variance Graphs 39

B Code listings 43

List of acronyms

NIC Network Interface Card

LPM Longest Prefix Matching

Mpps Mega (million) packets per second

ACK TCP Acknowledgement packet

BPF Berkley Packet Filter

eBPF extended Berkley Packet Filter

cBPF classic Berkley Packet Filter

NFV Network Function Virtualization

XDP eXpress Data Path

AF XDP Address Family: XDP

DPDK Data Plane Development Kit

vii

VIII LIST OF ACRONYMS

Chapter 1

Introduction

ZMap [1], MASSCAN [2], scanrand [3] and unicornscan [4] are a few examples of
tools used to scan large amounts of endpoints on the internet. In this research, we
will call them mass scan tools. These mass scan tools are used for research: to find
vulnerabilities, measure protocol adoption, measure application usage and more.
However, due to their high performance, they can also be used for more dynamic
research such as analyzing how reachability changes over a day.

To prepare students for such research and investigation of the internet and to
help increase understanding of the internet itself it is desirable to teach the use
of these tools in an educational environment. This however provides us with two
problems. Firstly mass scan tools are powerful tools and a misconfiguration can
flood a host, subnet or link with a significant amount of traffic, but checking students’
configuration is not a scalable solution. Secondly, checking for the correctness of
the results from a large group of students is not feasible since performing the scans
at different times or from different locations can render different results.

Therefore we propose a sandbox environment which can act as the internet from
the perspective of the mass scan tools. Using this environment one can run scans
without interacting with the internet at all and with a static set of responsive end-
points. This can also be a useful tool to test configurations for anyone using mass
scan tools. This document outlines the design of our approach to achieve this sand-
box, as well as an evaluation of its performance and functioning.

1.1 Research Questions

A program that can reply to mass scan tools needs to perform the following actions.
It needs to intercept the probes sent out by the mass scan tool. Then it needs to
filter out the probes that should be responded to and finally it should construct a
reply packet and send it back. These components together would appear to the tool

1

2 CHAPTER 1. INTRODUCTION

as the behaviour of the internet and thus the goal of this research is to answer the
question:

How to make a virtual responder that can intercept, filter and respond to
probes at the scale and speed of mass scan tools?

1.2 Outline

First, in Chapter 2 we give an explanation for the options and working of the compo-
nents our approach is built on top of, which we then use in Chapter 3 to describe the
requirements and goals, and how we then got to the final design of our approach.
This chapter also describes the methodology of the evaluation of this final design, of
which the results can be found in Chapter 4. We discuss these results and how they
match the previously established requirements and goals and where improvements
can be made. We finally conclude this research in Chapter 6.

1.3 Availability of code

We have made the code available to inspect and use on the git server of the Uni-
versity of Twente.1 This repository contains the Rust based XDP code, as well as
the Rust code used to create filters, compile the XDP programs and load them into
the kernel. As well as the code used to automate the evaluation. In the README the
requirements are listed and the important commands are explained. The code is
provided with a BSD 3-Clause License.

1https://gitlab.utwente.nl/dacs/rescan

https://gitlab.utwente.nl/dacs/rescan

Chapter 2

Background

2.1 Mass scan tools

We define a mass scan tool as a tool that performs scans on networks, typically the
internet. These scans send probes to a range of IP addresses and possibly UDP or
TCP ports. These probes are network packets that could incur a response from a
host, such as a TCP SYN packet, or an ICMP Echo request or a different protocol
over UDP with a response mechanism. A critical part of these tools is that they
perform these scans at very high rates, reaching in the order of a million packets per
second on commodity hardware. This allows these scans to cover the entire IPv4
address space within an hour on a consumer desktop.

The by us known examples of these tools are ZMap [1], [5], MASSCAN [2],
scanrand [3] and unicornscan [4]. Providing a comprehensive overview of the
workings of multiple mass scan tools is outside of the scope of this paper, but the
concept of these tools is the same. We will focus on the working of ZMap as a
case study to understand how these tools achieve their high rate and what other
properties and considerations they have.

ZMap does not keep track of which probes it has sent, but only from which hosts
it has gotten a reply. This makes it faster than the more conventional NMap which
keeps a connection state for each host it contacts and thus requires more resources
per destination and this makes it slower. A different mechanic is that ZMap attempts
to not oversaturate a network by sending the probes in a randomized order. This de-
creases the likelihood of probes being dropped by an oversaturated link or affecting
a network’s reachability by overwhelming a piece of hardware.

3

4 CHAPTER 2. BACKGROUND

2.2 I/O Frameworks

In the requirements section 3.1.1 later in this document we will establish the need
to receive or intercept packets and to send a reply back. For this we need the ability
to receive and construct custom IP packets to act as a remote host without the OS
interfering. However, to obtain high performance we need to do these actions with
as little overhead as possible. There are several existing frameworks, tools and
approaches that give low-level networking access. In this review, we have studied
the libpcap, DPDK, netmap and XDP frameworks. These are the only works we
found that are receiving active support. We will summarize how these work and how
they compare to each other on performance and portability, but also extensibility,
maintainability and security.

According to their GitHub page [6] libpcap is ”a system-independent interface
for user-level packet capture”. It is used by default by the mass scan tools ZMap
and MASSCAN for their probe I/O. It has a high portability because of the system-
independent interface allowing it to run with the same code on Windows, Linux and
other systems. For the mass scan tools, libpcap is sufficiently performant for receiv-
ing probe responses on commodity hardware [5]. However, it is important to note
that this does not symmetrically imply that it is sufficiently performant for intercepting
all outgoing probes. The scanners receive responses for only a fraction of the traffic
they generate, while this would need to process every probe. Therefore we expect
that it will not perform well enough for our purposes, and since the goal of the re-
search is not to create a comprehensive test of all possible approaches we decided
not to use libpcap in the interest of time.

High-performance custom network I/O is a problem that can be found in Network
Function Virtualization (NFV). This is the field of research attempting to replace ded-
icated networking equipment with commodity hardware running dedicated software.
Zhang et al. studied state-of-the-art software switches that are used for NFV. [7] All
of these switches achieve their high performance by bypassing the kernel network-
ing stack using one of two frameworks called DPDK and netmap.

Data Plane Development Kit (DPDK) [8] is a highly performant framework, as
shown by the high performance of the switches running on top of it as found by
Zhang et al. [7] It directly interfaces with the network cards and performs all packet
processing in user space. This bypasses the kernel and thereby eliminates all kernel
overhead and packet copying. However, it does also eliminate the advantages of
a kernel, namely security and compatibility. A Network Interface Card (NIC) can
access all memory locations and thus a misbehaving DPDK user application can
have security implications. Furthermore, custom drivers are required for every NIC
and thus DPDK might not be compatible with all systems that a typical kernel would

2.3. IP FILTERS 5

be and therefore we chose to not use DPDK.
netmap [9] solves some of the problems DPDK has by employing a hybrid ap-

proach of bypassing the kernel for per-packet processing but using the kernel to
perform security-sensitive tasks such as allocating the packet buffers. netmap is not
as performant as DPDK because of this interplay of kernel and userspace but does
provide transmission rates of over 10 Mega (million) packets per second (Mpps).
Furthermore the kernel module is not in Linux kernels and requires a recompilation
of the kernel to be used.

The last approach that we are aware of is called eXpress Data Path (XDP) [10].
This is a feature of Linux which allows custom packet processing code to be run
inside of the kernel. It does not quite achieve the same performance as DPDK.
In their single-core tests DPDK reaches ∼45Mpps and XDP ∼25Mpps, but it does
significantly outperform the default kernel networking stack which reaches ∼5Mpps.
This means that we can achieve fast processing while retaining all of the kernel
security and compatibility advantages. The downside is that the kernel needs to be
able to verify that the packet processing program is safe and unable to interfere with
other kernel memory areas. This means that an XDP program is limited in what it
can do compared to a user space program working with netmap or DPDK.

A potential solution to this is another Linux feature called Address Family: XDP
(AF XDP) [11]. This adds the possibility to directly receive packets in user space
from XDP, with the possibility of doing so with zero copying overhead. The receiving
performance reached with this on server hardware ranges from 15 Mpps to 40 Mpps,
depending on which optimizations are used. This is on par with the performance
of DPDK and sufficient for our use case. Furthermore, similar to XDP itself, it is
available in mainline Linux kernels since version 4.18. [12]

2.3 IP Filters

The second critical component of ReScan is determining which probes the tool
should respond to. Doing this filtering efficiently is not a trivial task since mass scan
tools can run on very large IP spaces, such as the entire IPv4 space. However, it
seems achievable to do this in relatively low space and time since it is expected that
the data has structure. For instance, certain subnets will be entirely reachable or
unreachable on a certain port due to a firewall around that subnet, or due to multiple
IPs pointing to the same machine. This makes the data compressible which could
aid in lower space requirements and faster lookup times.

We have studied multiple such options, but decided to only employ the Bloom
filter and the bitmap in our final approach. A more detailed explanation for this is
given in subsection 3.1.3. We decided to include the literature research into options

6 CHAPTER 2. BACKGROUND

for filter data structures to be used for future work. To this end we will first discuss
two unstructured options and how they could be applicable, followed by an overview
of some structured options.

2.3.1 Unstructured Filters

The fastest option in complexity is using a bitmap or array, where a key is directly
mapped to a memory address storing a boolean value. However, this causes the
memory required to be O(2n) with the n being the width of the key, making it not
practical for scans of bigger subnets.

A hashset computes the hash of the key and maps that to a memory address.
This address contains an additional data structure to resolve hash conflicts. This
then contains the boolean values indicating membership of the set. A hashset also
does not take into account the structure of the scan data but allows for a tradeoff
between time and space complexity by changing the hash length. Furthermore,
the space required to achieve a good time complexity in a hashset scales with the
number of elements in the set. This already makes it more space efficient than
a bitmap since the data is sparse. Experimentation will have to show whether a
hashset can achieve the speeds desired.

2.3.2 Structured Filters using LPM

For a structured solution we first establish that our IP filter problem shares properties
with IP Longest Prefix Matching (LPM) routing. Routing requires a fast algorithm that
can determine which port to route packets to based on its IP-address and a routing
table. These algorithms can be directly applied to filter the probe packets from the
mass scan tools by ’routing’ them to be dropped or passed on based on the dataset.
We also expect the mass scan data to structure itself based on subnets and thus
longest prefix rules are an effective structure for this data.

First, we give a brief background on longest prefix matching. Then we have a
look at the options from a work by Ruiz-Sánchez et al. [13] surveying various existing
lookup algorithms. Finally we take a look at the shape-shifting trie by Song et al. [14]
and at using Bloom filters by Dharmapurikar et al. [15]. We will not discuss how the
updating works with these algorithms since our filters are static.

Longest Prefix Matching

An IP address can be represented as a series of bits, 32 bits for IPv4 and 128 for
IPv6. A subnet is a collection of IP addresses sharing some amount of initial bits,
called the prefix. An IPv4 subnet can be written using 4 octets and a ’mask’, for

2.3. IP FILTERS 7

A

0 1

E

0 0

G

0 1 0 1

B C D F

0 1 0 1

0000/1:A

0000/4:B

0001/4:C

0010/4:D

1000/2:E

1001/4:F

1010/3:G

Figure 2.1: An example of a trie encoding forwarding information for prefixes of ad-
dresses of length 4

instance, 192.168.0.0/16 or 10.128.0.0/9. The mask, the number after the slash,
indicates the length of the prefix that the IPs in the subnet share.

IP routing is based on subnets since typically IPs that share a prefix are located
near each other in the network graph. A router might have the routing rule that
192.168.0.0/16 should be sent from port 1 and that 192.168.5.0/24 should be
routed to port 2. However, now two rules match the IP 192.168.5.2. To resolve this
ambiguity routers follow the rules of LPM and will choose the matching rule with the
longest prefix, routing this IP to port 2.

Tries

The most straightforward way to perform LPM is using a binary trie. A trie is a tree
where the branches represent a choice of bits in, for instance, an IP address. You
can see an example in figure 2.1, for a few binary addresses of length 4. To find
the longest matching prefix for a given address, the tree is traversed using the bits
of the address and the value at the matching leaf is taken as the resulting value.
If however, while traversing, a branch matching the current bit does not exist the
algorithm terminates early and returns the last value it encountered in a node.

For example, the address 0011/4 does not have a matching leaf. While traversing
the trie the last value it encounters is A and thus that is the resulting value. The
address 1011/4 encounters both E and G.G is encountered last and therefore has the
longest matching prefix.

8 CHAPTER 2. BACKGROUND

In routing, tries are typically used to determine over which port a packet heading
to a certain IP should be sent. However, if we use the trie to store boolean values,
we can use it to define a set. If in our example the value of A is True and the values
of B-D are False, then this efficiently defines the set of all IPs in the subnet 0000/1
except for the IPs 0000, 0001 and 0010.

Optimizing tries

Ruiz-Sánchez et al. [13] present several methods to optimize the basic binary trie.
Path compression collapses all nodes with a single child. Since they have only one
child, their parents node could have pointed towards their child node. This does
mean that nodes need to store which bit they are deciding on since this is no longer
equal to the depth of the node.

The multibit trie has each branch decide on multiple bits at the same time. This
reduces the depth of the trie and therefore the number of memory lookups that
need to happen. The number of bits that are decided on each branch is called the
stride of the multibit trie. The prefixes may need to be expanded to fit in a multibit
trie. For instance, a stride of 4 means that each prefix needs to be a multiple of 4
and therefore a prefix of length 9 needs to be expanded to 8 prefixes of length 12.
Choosing a stride creates a tradeoff between lookup time and memory usage.

This paper presents a few more solutions using tries, combining path compres-
sion and multibit techniques. However, these do not provide an improvement in the
worst-case lookup or memory usage while adding significant implementation com-
plexity and therefore we will focus on the binary search techniques.

Faster lookup in address width

The basic and optimized versions of tries all have a lookup complexity linear to
the width of the address. The tries using multibit strides reduce the complexity by
a factor equal to the size of the stride, but this is still linear with the width of the
address. Furthermore, the memory complexity increases exponentially with the size
of the stride. The main consequence of this is that an algorithm that performs well
for IPv4 might not perform well for IPv6 since it quadruples the address width. Even
though IPv6 support is not a main goal we do include some algorithms that scale
better to keep the option to add IPv6 open. The first two are from the survey paper
by Ruiz-Sánchez et al. [13], and the latter are two from individual studies.

The first solution considers that an LPM algorithm performs two lookup opera-
tions: one to find the matching prefixes and a second to find the longest one. The
binary search on length method performs a binary search to determine the longest
prefix that matches. It achieves this by splitting the different prefix lengths into hash

2.3. IP FILTERS 9

tables and performing a binary search over these hash tables. If it finds a match
in a hash table it continues the search in the longer prefixes, and otherwise in the
shorter prefixes. This does require the computation of so-called markers to guide
the search in the case where a longer prefix exists, but no match does. It obtains a
worst-case lookup speed of O(log2(W)) where W is the width of the address used.
This is because of the binary search on the address width.

The second solution considers the ordered list of IP to value mappings, and
that the prefixes shorter than the full length create long continuous ranges of the
same value. The solution is called binary range search and it takes these ranges
of continuous values and creates a binary tree to match an IP to the range it falls
in. Note that a prefix does not correspond one-to-one to a range. For instance,
two 4 bit IP prefixes of 1000/2 and 1001/4 correspond to three ranges: [1000,

1000]:1000/2, [1001,1001]:1001/4 and [1010, 1011]:1000/2. This solution does
not depend directly on the address width and as such has a worst-case lookup
speed of O(log2(N)) where N is the number of prefixes.

The third solution [14] uses the sparse nature of IPv6 tries to encode the data
more efficiently and has the tries ’shape-shift’ to reduce the number of nodes that
need to be traversed. The last [15] uses multiple parallel Bloom filter lookups for
different address lengths to find the LPM, and then a hashmap lookup for the longest
prefix match found. Best case this would mean 2 lookups, but Bloom filters can give
false positives, and as such the amount of lookups depends problematically on the
size of the Bloom filters.

10 CHAPTER 2. BACKGROUND

Chapter 3

Design & Evaluation Methodology

In this chapter we describe how we arrived at our final approach to respond locally
to the probes of mass scan tools. We created a prototype, then the final tool, and
finally evaluated it. This chapter describes this process.

3.1 Design

3.1.1 Requirements

To be able to respond to scans as performed by the tools expanded upon in 2.1
ReScan needs to be able to do four operations. It needs to intercept or receive the
probes sent out by the scan tool, then filter out the ones that require a reply. These
filtered probes then need a reply to be constructed which finally needs to be sent
back to the scan tool.

Furthermore, as the focus of this research is to present the viability of the ap-
proach taken by ReScan, and to provide a working tool, it should support at least a
minimum use case. The use case we have chosen is a TCP ACK scan on IPv4, as
this is a very common scan to perform. However, it should not be limited to either
TCP scans or IPv4 and should be designed with extensibility in mind.

With these considerations we can construct the following list of requirements:

1. Receive or intercept packets from mass scan tools

2. Filter probes based on a given dataset of destinations

3. Construct a reply with a message appropriate to the protocol(s) used

4. Send reply back to the mass scan tool

5. Support TCP SYN scans

6. Support full IPv4 scans

11

12 CHAPTER 3. DESIGN & EVALUATION METHODOLOGY

7. Be extendable to other types of scans

Besides these requirements we also constructed a few goals:

1. ReScan should be performant; it should be able to run close to the speeds that
the mass scan tools run on the internet

2. ReScan should be easy to run on different hardware; e.g. consumer hardware
or servers

3.1.2 Prototype using libpcap

We first created a prototype to assert that running mass scans locally without probes
ever leaving the machine would be feasible. This approach uses libpcap to capture
the packets and to send the replies. A Rust program is used to parse, filter the
probes and to construct a reply.

The Rust pcap library is able to receive all packets sent out on the loopback
interface. TCP packets received this way then have their destination IP matched
against a HashSet. If the IP is present in this HashSet a spoof reply is constructed
and sent back out onto the loopback interface. If the reply is well-formed it is received
and interpreted by the scan tool as a reply from the destination host and thus this
approach would result in the scan tool reporting all the hosts in the HashSet as
online and reachable.

Creating a spoof reply requires creating a reply as the destination host could
create it. This means swapping the source and destination address and port, and
furthermore making it a valid TCP SYN ACK response.

This approach fulfilled all of the functional requirements and also is easy to run
on many different machines as libpcap is available on many operating systems and
hardware. But from the literature and from empirical tests it became clear that it
would not reach the performance desired.

3.1.3 Approach with XDP

To reach higher packet processing speeds we researched multiple frameworks for
efficient network I/O. The more detailed findings and analysis can be found in 2.2.
libpcap is expected to not be able to process the probes at the speed at which
the mass scan tools send them. In the introductory paper of ZMap [5], the use of
libpcap is also mentioned as a potential bottleneck and only used because it only
needs to receive a fraction of the probes it sends out. DPDK has a high performance
but potential security concerns, by bypassing the kernel it also bypasses the kernel
security features regarding its network infrastructure. Because of these reasons we

3.1. DESIGN 13

decided to make a prototype with XDP and with netmap, for the reported packet
processing speeds without needing to bypass the kernel.

However, working with both it became clear that using netmap was significantly
more of a challenge than XDP. Where for XDP there is adequate documentation
and we got a simple program up and running within a day, netmap proved to be hard
to implement and would require a large amount of expertise in Linux kernels which
reduces possibility of extension by others in the future. Furthermore the requirement
to modify the kernel to be able to run on Linux machines makes it much less usable.
Therefore we chose to follow through with XDP.

XDP, for eXpress Data Path, is a method of running custom extended Berkley
Packet Filter (eBPF) code at the head of the kernel networking stack. Incoming
packets can be dropped, rerouted or passed on to the networking stack. Since XDP
only captures incoming packets we are again making use of the loopback interface
to route the outgoing probes of the mass scan tool into XDP. To filter the probes
we initially used the hash map Berkley Packet Filter (BPF) map. BPF maps are the
main way to share data from user space to the XDP program, allowing both user
space and the XDP program to read and write to this hash map. We use it to map
IP addresses to boolean values to indicate whether a given host is online.

To clarify, the acronym BPF, is used in this text interchangeably with eBPF. This
is because eBPF still refers to its data structures as ’BPF maps’ in the documentation
and code. We do not use what used to be referred to with BPF and is nowadays
called classic Berkley Packet Filter (cBPF), as this is no longer being used in current
Linux Kernels.

Contrary to the libpcap approach we do not construct a reply from scratch at
this point. Instead we modify the following header fields of the probe to morph it
into a valid reply, since many fields can simply stay the same. We swap the IP ad-
dresses, TCP ports and acknowledgement and sequence number. We do then need
to increment the acknowledgement number by one and set the TCP Acknowledge-
ment packet (ACK) flag. Besides saving time constructing a full packet this approach
makes the checksum computation very fast. The exact algorithms for packet altering
can be found in Listing B.2 - Listing B.4.

TCP over IPv4 uses a checksum that is the ”16-bit ones’ complement of the ones’
complement sum of all 16-bit words in the header and text” (from RFC 9293) [16].
Since these 16-bit words are aligned with all the values we swapped, the swapping
does not change the value of the checksum. The incremented acknowledgement
number and the added ACK flag do, but we can directly compute the new checksum.
We can invert the old checksum to obtain the sum of the 16-bit words of the old
header and text, add 1 for the incremented acknowledgement number and add the
value of the ACK flag (16). If we then invert this value we get the new checksum.

14 CHAPTER 3. DESIGN & EVALUATION METHODOLOGY

Mass scan
tool

ReScan
XDP

BPF
Map

loopback
interface

TCP Packet
from: 127.0.0.1:8888
to: 130.89.3.249:80
seq: 15 ack: 0

TCP Packet
from: 130.89.3.249:80
to: 127.0.0.1:8888
seq: 0 ack: 16

Filter
130.89.3.249
130.89.3.250
....

1

2 3

User SpaceKernel

Figure 3.1: Diagram showing the flow of an example probe through ReScan. Only
part of the TCP header is shown as an example. 1) The packet is sent
by the mass scan tool. 2) The packet triggers an XDP execution, filtering
and creating the reply. 3) The reply is passed through the network stack
back to the mass scan tool

With add we mean a 16-bit ones’ complement addition. Further, in case of an
overflow of the least significant 16 bits of the acknowledgement number the ones’
complement sum of the acknowledgement number does not change. In this case
we only add the value of the ACK flag.

After having created the reply from the probe we can simply pass it on to the
networking stack which will deliver it to the mass scan tool. We paired this XDP
program with a user space program that loads the XDP into the kernel and then fills
the BPF map with IPs from a dataset given by the user. This makes this approach
fulfill requirements 1-5, and since we have split out the the handling of the Ethernet
and IP layer, it is relatively easy to create a BPF program for a different kind of scan,
fulfilling requirement 7.

However, we found through initial testing that when we would try to create a filter
from an IP dataset from a typical full IPv4 TCP scan with the tens of millions IPs, it
takes multiple minutes on commodity hardware to fill the BPF map. Although this is
not a long time in comparison to the duration of a full IPv4 scan, this process needs
to complete before the scan can be started. For instance when mistakenly selecting
the wrong dataset or running a small scan against a large dataset this would cause
unnecessary delay. Especially since we expected that filling the map with tens of
millions of IPs could be much faster, since it is essentially writing just a few hundred

3.1. DESIGN 15

Kernel

User Space

BPF
Map

Filter
File

List
of

IPs

create
filter

load
filter

192.0.2.1
192.0.2.7
192.0.2.12
192.0.2.15

bitmap
01000001
00001001

BPF_MAP_ARRAY
0: 01000001
1: 00001001

Figure 3.2: Diagram showing the creation and loading of an example dataset, in
subnet 192.0.2.0/28. In the create filter step the list of IPs is con-
verted to a binary representation. The 1s in the bitmap directly corre-
spond to the IPs in the list, and these two bytes correspond to the full
/28 subnet. 192.0.2.1 corresponds to the 1 in the second position and
192.0.2.15 to the 1 in the last. In the load filter step the data from
the filter file is loaded into the BPF Map. For the sake of this example it
uses a chunk size of 8 bits instead of 32KB.

megabytes, which should not need to take minutes. Therefore we decided to look
into speeding up this process.

Batch Insertion

The long insertion times are most likely caused by every insertion triggering a con-
text switch from user space to kernel space. The logical solution to this would be
to batch the insertions to reduce the amount of context switches. BPF maps do
support batch insertions, however, it is not enabled by default and would require a
recompilation of the kernel. This is undesirable since it would make this approach
less portable and not fulfill our second goal.

The alternative we found was to encode multiple IP addresses in a single inserted
value. Since a single element in a BPF map can be as large as 32KB, this would
significantly improve the time it takes to create the filter. To further improve filter
loading times we added a preprocessing step where we convert the plain text list of
IPs into a binary representation of our dataset. Upon loading the filter into the BPF
map we can simply read this binary data from the file, in chunks of 32KB and insert
these chunks into a BPF array map.

16 CHAPTER 3. DESIGN & EVALUATION METHODOLOGY

Filter data structure

We implemented two data structures to be encoded in this way. The first is a bitmap,
a bit array with each index in the array representing the IP address encoded by that
index, and the bit at that index represents whether the IP is in the set or not. This
takes up a considerable amount of space but lookup is O(1). The second is a Bloom
filter to reduce the amount of data we would need to send to the kernel and keep
in memory. A Bloom filter is a statistical data structure to represent a set. It uses
multiple hashes to ensure that it will not report false negatives, but there is a chance
that it will report false positives.

We decided to not implement any of the structured filters that are discussed in
subsection 2.3.2, but to perform the evaluation with the abovementioned unstruc-
tured data structures. This choice was made because implementing these more
complex filters is not required for the requirements or the goals of ReScan, and
because of time constraints.

3.2 Evaluation Methodology

To show the correct working and to evaluate the performance goal we ran a series
of test on two different machines, with different parameters and datasets.

3.2.1 Measurement parameters

The main measurements we are taking are:

• the transmission rate as reported by the mass scan tool

• the amount of IP addresses received that should not have been received,
which we call the false positives

• the amount of IP addresses that were not received but should have been,
which we call the false negatives or drops

The transmission rate informs us about the performance of our approach when
run together with the mass scan tool, while the false positives and drops inform us
about the correctness.

Additionally to these measurements we are also measuring the runtime of the
XDP program. Lastly we collect the filter creation time to evaluate whether this is
within an acceptable range.

3.2. EVALUATION METHODOLOGY 17

Server
AMD EPYC 7F72 24-Core Processor

256GB RAM (4x64GB) DDR4 3200MT/s
Kernel: 5.10.0-18-amd64 OS: Debian 5.10.140-1

VM

Host
Intel(R) Xeon(R) CPU E5-2695 v3 @ 2.30GHz

188GB RAM (12x16GB, dual channel 6x2) DDR4 2133 MHz
Kernel: 4.15.0-58-generic Hypervisor: KVM OS: Ubuntu 18.04

Virtual
8 Virtual CPU’s

16GB RAM
Kernel: 5.10.0-9-cloud-amd64 OS: Debian 5.10.70-1

Table 3.1: Hardware specification

3.2.2 Measurement setup

First we will describe the parameters we chose or varied and explain our choices.

Machines We are using two machines as hosts to perform the tests, each running
both ZMap and the XDP program, as is the intended use. The first machine was
chosen to represent a typical use case of running the program on a VM, for instance
assigned to students. This is a fairly standard machine with 8 virtual CPU’s and
16GB of RAM, and we will call it the ’VM’ from here on. The second machine was
chosen to test the limits of the program with a root server machine with 24 cores, 48
threads and 256GB of RAM. This one will be called ’server’. The relevant information
on the machine hardware can be found in table 3.1.

Threads To make use of hyperthreading we need to assign a number of threads
to be sender threads for ZMap. Since ZMap uses 1 thread for receiving and 1 thread
for monitoring we chose to allow ZMap to use all remaining threads for sending. For
the VM this is 6 and for the server 46. This might seem unbalanced, however as we
explain in the ’datasets’ paragraph, only about 1 in 70 sent probes receive a reply.
Therefore a 46 to 1 ratio of sending and receiving threads is reasonable.

A second seeming issue with this division is that it leaves no threads for running
the XDP code. However, experimentation showed that there was no discernible
performance increase when using fewer send threads for ZMap.

Datasets We selected two datasets, both from a ZMap TCP SYN scan on a single
port. The first was performed specifically for this research and is a full IPv4 scan
on port 80, this has a hitrate of 1.43%. We will call this the ’dense dataset’ or the
’port 80 dataset’ in this research. The second is from a different ongoing research
project, which did a full IPv4 scan on port 389, which is the default port on which

18 CHAPTER 3. DESIGN & EVALUATION METHODOLOGY

LDAP is hosted. This has a hitrate of 0.11% and will be refered to as the ’sparse
dataset’ or the ’port 389 dataset’.

A higher hitrate in the dataset will correspond to a higher number of probes pass-
ing through the filter, and thus would need more time to be processed by XDP. It also
means a higher number of probes that need to be processed by the kernel network
stack and then by the mass scan tool. Using two different datasets might give us
insight in how this might affect our performance goal.

Subnet size Ideally we would run all tests on the full IPv4 range, but this causes
the tests to be significantly longer. We decided to do all tests on the server on the
full /0 range, and the tests on the VM on a random /8 range to keep the runtime of
the testsuite within doable ranges. This was because we found that the test on the
VM on a /8 subnet for a single dataset took about 19 minutes, which would mean
that it would take about 82 hours to complete the test on a /0 range, and even more
for both datasets. Running this test multiple times would mean that it would take
weeks to complete.

This did present the additional problem of choosing a subnet from the dataset to
run the VM on. We wanted to keep the hitrate of the dataset used for the VM similar
enough to the one used for the server to be able to compare the results. To solve
this we choose a random subnet, and then if the hitrate of chosen subnet is off by
more than 25% we try again with a different random subnet.

It is also worth noting that in the full IPv4 range we exclude the 127.0.0.0/8

subnet as to not have the scan traffic mix with the normal traffic on the loopback
interface.

Filter type As described in section 3.1.3 we want to evaluate both filter options we
created. These are the Bloom filter and the bitmap. The size and amount of hash
functions of the Bloom filter are chosen such that it would theoretically produce
a false positive rate of 0.001. For this we use the following formulas, where k is
the number of hash function, p the false positive rate, n the amount of IPs to be
filtered and m the size of the Bloom filter in bits. Equation 3.2 describes the optimal
value for the Bloom filter size given the size of the set of IPs and number of hash
functions. Equation 3.1 describes the approximate relation between the number of
hash functions and the false positive rate. These two formulas are from the work of
Kirsch and Mitzenmacher [17].

To use these values for k and m we need to round them to be integers, and fur-
thermore we need to round m to a power of 2. We assumed this at the construction
of the Bloom filter to simply its construction and lookup. For the round to a power of
2 we are using 3.3.

3.2. EVALUATION METHODOLOGY 19

k = −log2 p (3.1)

m = n
k

ln 2
(3.2)

round∗(x) = 2round(log2(x)) (3.3)

Mass scan tool We chose to use ZMap to perform our performance evaluation
because it is the primary target for ReScan. We run ZMap with multiple transmission
threads, 46 for the server and 6 for the VM. To obtain a baseline performance of
ZMap on the specific machine with a specific subnet size we have it run against a
dummy interface first. The dummy interface is a software network device that drops
all packets given.

Transmission rate Finally, to study how a higher transmission rate might affect
drop rates we run the tests with giving ZMap different transmission rate limits. ZMap
will attempt to not exceed this limit and allows us to find the trade off of bandwidth
and drops.

Seed For the random subnet selection as explained in the ’Subnet Size’ paragraph
above we use a fixed seed. This is to be able to compare the various tests. The value
of this was arbitrarily chosen to be 322376503.

Now we list the different measurements we will be taking and how we will do so.

Transmission rate ZMap reports the average rate at which it conducted the scan,
we read this from the standard error output of ZMap and record it.

Runtime We can set the kernel flag bpf stats enabled to collect the total runtime
of the XDP program and the amount of times it has run. We can then estimate the
average runtime of a single call by division. We can also use the run count as an
additional measure to determine whether all probes sent by the mass scan tool is
also received by XDP. Enabling BPF stats causes the runtime of the XDP program
to be longer, and as such we will perform tests with it enabled and tests without to
evaluate whether the other measures are affected by it.

20 CHAPTER 3. DESIGN & EVALUATION METHODOLOGY

Correctness We collect the list of IPs that ZMap reports as being online. These
are the all the packets that ReScan responded to, and as such can be used to
assess the correctness. We compare it to the dataset and count false positives and
false negatives.

Chapter 4

Results

To assess completion of the requirements and performance of the goals as set out
in 3.1.1 we set up a set of experiments as detailed in 3.2. After running these experi-
ments we collected the data into the graphs and tables presented below. The graphs
with caps display the symmetric standard deviation of the data over the multiple test
that were run. This variance data can also be found in Appendix A.

4.1 Send Rate

One of the main measurements we have taken is of the transmission rate to give
insight into the performance of our approach. Plotted below is the rate that ZMap
reports to be be sending probes at. This is plotted against the transmission rate limit
that ZMap was set at for a certain test. In figure 4.1 the test cases with both datasets
is shown for the VM testbed. The test case with the dense dataset from a scan on
port 80 is shown as well as the test case with the sparse dataset from a scan on
port 389.

The measurements were taken from ZMap as packets per second but are dis-
played in the graphs as megabits per second using the fact that all probes sent have
the same minimal length of a TCP packet: 58 bytes.

In all the send rate graphs the blue line shows the baseline measurement. This is
the maximum ZMap can reach when all packets are dropped immediately and thus
require no additional computation. The other four are specified to be either a test
with bpf-stats turned on (’bpf-stats’) or not (’normal’). Furthermore they are labelled
to be using the bitmap filter or the Bloom filter.

All graphs show the reported send rate be equal to the set send rate up to a
certain point. At this point the graphs ’flatten out’ and ZMap reports approximately
the same send rate for all set send rates bigger than this point.

For the VM this point lies between 550 Mb/s and 570 Mb/s for the baseline and

21

22 CHAPTER 4. RESULTS

0 500 1000 1500 2000
0

200

400

600
port 80

500 1000 1500 2000
400

450

500

550

600
port 80 (zoomed)

0 500 1000 1500 2000
0

200

400

600
port 389

baseline
bpf-stats
bitmap
bpf-stats
bloom
normal
bitmap
normal
bloom

500 1000 1500 2000
400

450

500

550

600
port 389 (zoomed)

ZM
ap

 re
po

rte
d

se
nd

 ra
te

 (M
b/

s)

ZMap maximum send rate (Mb/s)

Measured ZMap send rate on VM

0 500 1000 1500 2000
0

250

500

750

1000

1250
port 80

1000 1500 2000
1000

1050

1100

1150

1200

1250
port 80 (zoomed)

0 500 1000 1500 2000
0

250

500

750

1000

1250
port 389

baseline
bpf-stats
bitmap
bpf-stats
bloom
normal
bitmap
normal
bloom

1000 1500 2000
1100

1150

1200

1250
port 389 (zoomed)

ZM
ap

 re
po

rte
d

se
nd

 ra
te

 (M
b/

s)

ZMap maximum send rate (Mb/s)

Measured ZMap send rate on Server

Figure 4.1: The rate at which ZMap reports to have sent out packets on the two
testbeds, plotted against what rate it was set to not exceed. Plotted is
the baseline test with packets being dropped immediately, a test with
bpf-stats enabled and a test without bpf-stats. The latter two are run
with a Bloom filter and a bitmap filter and labelled as such.

4.2. PROCESSING TIME 23

between 430 Mb/s and 480 Mb/s for the cases with XDP enabled. The tests with
bpf-stats enabled perform slightly worse than the tests without bpf-stats, with the
mean differing by 20 Mb/s. The bitmap filter has a send rate mean higher than the
Bloom filter, but the difference is slight: about 10 Mb/s at peak.

Looking at only the test using the bitmap filter and with bpf-stats disabled, we
can see that it consistently has the highest send rate for the VM, but the difference
between the bitmap filter and the Bloom filter is smaller than a single standard de-
viation. The mean values of the flattened out part of the this test lies between 470
Mb/s and 480 Mb/s and are the maximum send rates our approach stably achieved
on the VM.

For the server the flattened out part lies between 1190 Mb/s and 1200 Mb/s
for the baseline and between 1150 Mb/s and 1170 Mb/s for the cases with XDP
enabled. The last data point of the test with the port 80 dataset, the bitmap filter
and with bpf-stats disabled, and the data point at x = 1450Mb/s of the same case
but with bpf-stats enabled both have a very high variation, and are likely outliers.
Therefore we choose to ignore these.

The results of the server case with XDP running have closer means and higher
variation than the VM case. Not one test case is clearly performing better than the
others. However, ignoring the outlier, the test case that performed best on the VM,
achieves a mean value at the flattened out part of 1170 Mb/s.

4.2 Processing Time

Another measurement to gain insight into the more isolated performance of our ap-
proach uses the built-in statistics module of BPF, bpf-stats. This reports the total run
time of the loaded XDP program, and the amount of times it was called. We can use
these to calculate the average run time of a single XDP execution. It is important
to note that bpf-stats does add some overhead, which can be seen in figure 4.1.
With bpf-stats enabled, the throughput is slightly lower. The only source we could
find on this overhead states that it adds about 20ns of overhead per execution [18].
However, nothing further could be found to substantiate this claim.

The bitmap filter approach seems to result in a lower runtime, and also a more
consistent runtime. It performs roughly the same for the sparse and dense dataset,
whereas the Bloom filter performs significantly worse with the dense dataset com-
pared to the sparse dataset, in both the server and the VM scenario.

24 CHAPTER 4. RESULTS

0 500 1000 1500 2000 2500
ZMap maximum send rate (Mpps)

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Av

er
ag

e
BP

F
re

po
rte

d
ru

nt
im

e
(µ

s)
Estimated average processing time per XDP execution

Server /0; bitmap :389
Server /0; bitmap :80
Server /0; bloom :389
Server /0; bloom :80

VM /8; bitmap :389
VM /8; bitmap :80
VM /8; bloom :389
VM /8; bloom :80

Figure 4.2: The estimated average time it took ReScan to process a single probe
plotted against the send rate ZMap was set to not exceed. This uses
the bpf-stats and thus only the bpf-stats tests are plotted.

4.3 Correctness

We have split up the correctness measures into a false positive and a false neg-
ative rate. These show the mismatch between the original dataset, and thus the
responses that ZMap should receive, and the responses that ZMap receives. A re-
sponse being received by ZMap that was not in the original dataset is called a false
positive. A response not being received by ZMap that was in the original dataset is
called a false negative.

Both correctness counts are shown as a ratio. The false positive rate is the ratio
of the count of false positive responses divided by the amount of addresses in the
subnet. A subnet of /24, consisting of 256 addresses, and a false positive count
of 64 would result in a false positive rate of 0.25. The false negative rate is similar
but divides the count of false negative responses by the amount of addresses in the
dataset.

4.3. CORRECTNESS 25

Mean False Positive Rate SD
VM /8 bloom; dense 0.0002098 3.311 · 10−6

VM /8 bloom; sparse 0.004638 8.696 · 10−5

Server /0 bloom; dense 2.10369334501379 · 10−9 0

Server /0 bloom; sparse 0 0

All bitmap 0 0

Table 4.1: The average amount of responses received that should not have been
received, as a ratio of the total subnet size

The mean false positive rate is shown in table 4.1, with the results of multiple
runs combined and the mean and standard deviation shown. False positives only
occurred when using the Bloom filter, and orders of magnitude more so for the VM
than for the server. The dense VM test case on port 80 reports 1.05 ·106 times larger
false positive rate, and the sparse VM test case on port 389 an additional 22 times.
Furthermore all server cases report the same number of false positives regardless
of which run or the maximum transmission rate. This can be seen in the standard
deviation of 0.

The mean false negative rate for the different test cases, plotted against the
maximum send rate is shown in figure 4.3. For the VM test case the false negatives
seem to be strongly dependent on the send rate, rising steeply as the maximum
send rate rises and plateauing and the same point as the reported send rate does.
At this plateaus the mean ratios lie around 0.07. This means that at higher send
rates 7 out of every 100 expected probe responses are not received. The variation
also rises as the false negative ratio rises, and in all cases the differences between
the test cases are smaller than a single standard deviation.

The false negative rate of the server case lies close to zero, with the highest
mean at 8 · 10−6 with the sparse bloom case and for some tests all runs having
resulted in all probes arriving and thus a false negative rate of zero. For the cases
with a non-zero false negative rate, the standard deviation is relatively high, often
bigger than the mean. This indicates that for almost all the cases there were no false
negatives, but that for a small number of cases the false negative rate lies higher.
This seems to occur more often and more severely for the Bloom filter cases.

We also looked at the run count that BPF reports and we used in section 4.2.
This can give us insight as to whether these errors occur more before or after the
XDP code. The conclusion from the run count is that the amount of times that XDP
is run is equal to the amount of probes sent out by ZMap, with only small differences.
XDP was over all runs called at most 26 times more than expected, and at most 2
times less than expected. This is a negligible amount compared to the millions of
probes being sent, more than 16 million for the VM and more than 4 billion for the

26 CHAPTER 4. RESULTS

0 500 1000 1500 2000 2500
ZMap maximum send rate (Mpps)

0.0

0.2

0.4

0.6

0.8

1.0

Fa
lse

 n
eg

at
iv

e
ra

tio

×10 1 False negative rate of subnet on VM

bitmap :389
bitmap :80

bloom :389
bloom :80

0 500 1000 1500 2000 2500
ZMap Maximum send rate (Mpps)

0.0

0.5

1.0

1.5

2.0

2.5

Fa
lse

 n
eg

at
iv

e
ra

tio

×10 5 False negative rate of subnet on Server

bitmap :389
bitmap :80

bloom :389
bloom :80

Figure 4.3: The amount of responses not received that should have been received,
as a ratio of the amount that should have been received, on the VM and
server testbed respectively

4.4. FILTER CREATION TIME 27

Se
rv

er
 /0

 b
itm

ap
 :3

89

Se
rv

er
 /0

 b
itm

ap
 :8

0

Se
rv

er
 /0

 b
lo

om
 :3

89

Se
rv

er
 /0

 b
lo

om
 :8

0

VM
 /8

 b
itm

ap
 :3

89

VM
 /8

 b
itm

ap
 :8

0

VM
 /8

 b
lo

om
 :3

89

VM
 /8

 b
lo

om
 :8

0

10 1

100

101

102

Ti
m

e
pe

r i
ns

er
tio

n
(µ

s)

Filter creation time

Figure 4.4: The time in microseconds it took on average to insert a single IP into
the filter

server.
Because we did not expect the results from the false negative rate on the VM to

be as high as it is, more on this in section 5.2.2, we performed an informal test on
a personal laptop. Due to time constraints we did not fully analyze the results from
this however it is relevant to mention that in these tests we saw only a handful of
false negatives, similar to the behaviour of the root server.

4.4 Filter creation time

A bar graph showing the time it took to create the filter before running the test is
shown in figure 4.4. The bars show the amount of microseconds it took on average
to insert an IP into the filter, so the total time it took to create a filter can be calculated
by multiplying this number by the number of IPs in the filter. We chose to normalize
this measure like this to be able to compare the different filters with different sizes.

The worst performing filter is the Bloom filter on the server with the http scan
dataset. It takes 29 microseconds to insert a single IP, corresponding to 28 hours to
construct the total filter. Compared this to the 0.13 microseconds insertion time for
the same case with the bitmap filter, corresponding to 8.1 seconds for the complete

28 CHAPTER 4. RESULTS

filter. Overall the Bloom filters perform about an order of magnitude worse than their
bitmap filter counterparts. The ”VM /8 bitmap :389” case and the ”Server /0 bloom
:80” seems to be outliers, both having longer insertion times than the other cases
with the same filter type.

The bitmap filter’s worst performance is on the VM with the sparse dataset, with
0.65µs per insertion. If we would apply this speed to the creation of the full /0
:80 dataset with 61 million entries, it would take 36.7s in total. This is of course
not entirely accurate since the size of the bitmap is dependent on the size of the
subnet and this might affect the insertion speed. However, it does give a scale when
compared to the worst bloom performance which took 29 hours and 6 minutes.

Chapter 5

Discussion

Here we reflect on the results as described in 4, how those results fulfill the goals
and requirements as set out in 3.1.1 and we suggest the next steps for research in
this tool.

5.1 Send Rate

5.1.1 Performance goal

In section 4.1 of the results we showed the difference between running ZMap with
our approach enabled and if we drop all packets instead. Choosing the bitmap filter
and the dense dataset allows our approach to complete a TCP scan at 460 Mb/s on
our VM machine and at 1160 Mb/s on the root server. At 58 bytes per probe this
results in 1.0 Mpps and 2.5 Mpps respectively. To scan the full IPv4 space it would
take 1 hour and 12 minutes on the VM and 28.6 minutes on the server. If we would
instead use the sparse dataset it would instead take 1 hour 9 minutes on the VM,
and 28.4 minutes on the server.

Since the baseline case is only running ZMap and packets are dropped as soon
as they get written to the interface we can take its final ’flattened’ value as the max-
imum send rate this implementation of ZMap can achieve on this machine. For the
VM this maximum would be 570 Mb/s and for the server 1190 Mb/s, or 58 minutes
and 27.7 minutes respectively to complete a full IPv4 scan. We assume that running
ZMap on the dummy interface is faster than running it on a network card because the
dummy interface drops every packet. Therefore, with at most a 11 minute penalty
on a baseline of 58 minutes we can conclude that our approach is able to run close
to the speeds that mass scan tools run on the internet, as our first goal stipulates.

29

30 CHAPTER 5. DISCUSSION

5.1.2 ZMap Bottleneck

In this section we will show what we believe to be a likely bottleneck for ReScan to
reach higher throughputs.

From the previous subsection we can see that the server completes a TCP scan
about 2.4 times faster than the VM. This is lower than one might expect due to the
specifications of these machines. The VM has 8 threads available, and the server
48. In theory we might expect a 6 fold speed up. In practice this increase would be
lower due to multi-threading overhead such as scheduling. However, in the baseline
cases the server only performs 2.2 times faster than the VM, and here we are only
sending. Scheduling alone is not enough to explain this discrepancy.

In addition to this the server CPU’s are also more powerful, from section 4.2 we
can see that the XDP code on the server executes 3 to 7 times faster than on the
VM, however this clearly does not translate linearly to the scan speed.

This both points to a bottleneck somewhere in our approach, specifically in the
packet generation and sending step. This is because the lower-than-expected speed
increase on the server occurs both for the baseline and the loaded tests. In the
baseline we are almost exclusively generating and sending probes using ZMap, but
with more than 6 times the cores, which are also more powerful, ZMap is only able
to do this at 2.2 times the speed it is on the VM.

In theory the bottleneck in the baseline tests could also be occurring in the drop-
ping of the packets on the dummy interface, or some intermediate network handling
that might occur. However, in the literature [19] we can find that ZMap, when used
as is, is capable of running at gigabit Ethernet speed which is limited at 1.44 Mpps.
This is in ZMap’s normal operation, running over a physical NIC to an Ethernet line,
whereas in the baseline approach we are dropping the packets in the kernel. How-
ever, no data on the limitation of ZMap when using the loopback or dummy network
interface is available. In fact, we find that in this setup ZMap is able to achieve 2.59
Mpps on the dummy interface and at least 2.50 Mpps on the loopback interface.
Thus, given that ZMap as is was intended to be used at gigabit Ethernet line speed,
it is highly likely that it causes a bottleneck when attempts are made to run it far
above this limit. This makes ZMap being the bottleneck highly likely.

5.2 Correctness

5.2.1 False positive rate

Some false positives are expected for the cases using the Bloom filter, this is simply
how the Bloom filter works. However, we designed the Bloom filters to have a false

5.2. CORRECTNESS 31

positive rate of 0.001, as described in subsection 3.2.2, choosing the Bloom filter
parameters using the formulas described. None of the tests result in a false positive
rate of 0.001, with the VM sparse case having a higher rate and the others a lower,
with the server sparse case even having no false positive. This might be due to
the hash-functions not being independent enough although we would expect this to
result in only a higher false positive rate. We do not have a further explanation for this
behaviour. The bitmap performs better or equally to the Bloom filter in throughput
and thus it is not relevant to investigate this further.

5.2.2 False negative rate

The most surprising result from this benchmarking is the high false negative rate on
the VM. We stated in section 4.3 that for every 100 expected probe responses about
7 do not arrive at ZMap when the send rate is high enough. First we suspected
that this is likely due to congestion between the point where the reply is constructed
and where it is received. If this was the case we would expect to see a much lower
drop rate for the sparse dataset because this has a lower response rate and thus
the congestion should be lower. We also stated that the send rate is strongly related
to the drop rate. This made us suspect that the drops are due to congestion before
the XDP code receives the probe, for instance in the outgoing traffic buffer of the
loopback interface. However, we also mentioned in section 4.3 that only a negligible
amount of packets are dropped before our XDP code is executed.

With data indicating that the drops are not occurring before or after our XDP
code, we might conclude that it must be occurring during the XDP code execution,
either due to a coding bug or because the execution is terminated before finishing.
However, because this drop behaviour is not observed on the server, a coding bug
seems unlikely. Furthermore terminating a running XDP process does not seem to
be a logical action to take in case of congestion, we would expect skipping of some
executions to not waste already performed computation.

Concluding from these seemingly contradictory indications it seems most likely
to us that there is drops occurring in the incoming response traffic because of con-
gestion in the outgoing probe traffic. Although we do not have a hypothesis as to
what mechanism could be possibly causing this behaviour, the evidence against it
occurring before or during XDP execution is stronger. The brief experiment we per-
formed on a personal laptop points to this being VM specific behaviour. To use our
approach on a virtual machine we suggest further research into how it performs on
different virtualization implementations.

32 CHAPTER 5. DISCUSSION

5.3 Filter

We have stated before that both the throughput and droprate statistics are not sig-
nificantly impacted by the choice of IP filter. The overall result from these being
that the bitmap filter slightly outperforms the Bloom filter or that no difference can
be observed. However, in section 4.4 we observed that the Bloom filter takes about
an order of magnitude longer than the bitmap filter to be constructed. From these
results we see no advantage of using the Bloom filter over the bitmap filter.

5.4 Usability

The components of our approach are ZMap, XDP, the loopback interface and a
rust executable to load the XDP code and create the filters. XDP is included by
default in kernel version 4.8 and newer. Thus it is possible to run it on any Linux
machine, including virtual machines, with a kernel 4.8+ and a rust compiler and
ZMap installed, or any other mass scan tool. This means that it is also possible to
run it on a VM on top of, for instance, a windows operating system.

In practice we have verified our approach to function on Debian with kernel ver-
sion 5.10, with at least 16GB of RAM, including a virtual machine running on KVM.
However, the droprate on our VM test case increases with the send rate and might
make it less suitable to be run at high send rates on virtual machines. Tests with
different hypervisors will have to definitively show this.

5.5 Future Work

5.5.1 Better performance

Any attempt to speed up our approach that would not address speeding up ZMap will
be limited by the baseline throughput measured. Since we measured the maximal
speed that ZMap is able to achieve on our test machines, going beyond this with our
approach would require the sending of the packets to be faster. Significant speed
up would thus not come from modifying the XDP part of our approach but from
modifying the packet generation part. For instance tests could be performed with
different mass scan tools to see if these are able to reach a higher send rate. It
might also be worthwhile to investigate the possibility of keeping the full execution
is user space. ZMap runs in user space and XDP in kernel space, requiring context
switches to process the probes. If a different approach would intercept the probes
before being handed to the kernel then these context switches could be prevented.

5.5. FUTURE WORK 33

Furthermore a mass scan tool with zero-copy to prevent the copying of the packets to
kernel space could provide speed up. For instance, investigating the use of AF XDP
with a mass scan tool would be appropriate.

5.5.2 Investigate droprate

The high droprate observed in the VM tests significantly affects the usability of this
tool on the VM we have tested. An informal test points towards the VM environ-
ment being the cause of this behaviour, however further investigation has to show
whether this is the case. Investigation into whether this behaviour also occurs on
other test machines with different kernels, hypervisors or virtualization approaches
is important to further evaluate the usability of our approach on virtual environments.
Furthermore attempting to reproduce this behaviour on different kernels, hypervisors
or hardware could point towards the source of this problem. Besides this, an inves-
tigation into the networking of the KVM virtual machine, would be useful to finding
out why this behaviour is occurring.

34 CHAPTER 5. DISCUSSION

Chapter 6

Conclusion

In this research we acknowledged and argued the need for a sandbox environment
for mass scan tools in an educational and research context. To contribute towards
fulfilling this need we designed and created a number of prototypes. Of these we
selected the final one to be benchmarked and evaluated. We presented the results
of this evaluation and discussed their implications on the requirements and goals set
out. In this chapter we will conclude what this means for the research question.

In the introduction we asked the research question ”How to make a virtual responder
that can intercept, filter and respond to probes at the scale and speed of mass scan
tools?”

We can formulate an answer to this question using this research: using the ap-
proach described in section 3.1 a virtual responder can be made which intercepts
filters and responds to probes at the scale and speed of mass scan tools. As we
have shown this can be achieved with a relatively small amount of XDP code. The
XDP hook can be installed on the loopback interface to intercept the traffic and send
responses back to the mass scan tool. The Bloom filter and the bitmap implemented
in XDP both fulfill the function of filtering the incoming traffic, however the bitmap im-
plementation outperforms the Bloom filter on all accounts except for filter size. The
use of the loopback interface means that this approach is entirely virtual and no
traffic leaves the machine that is used. Our results show that our approach works
at the scale of a full IPv4 scan, and we do not expect a technical limitation to use
it at the scale of partial IPv6 scans. The bitmap filter, however, does not scale be-
yond the full IPv4 scan, but the Bloom filter does. Furthermore our results show
that our approach is able to run at close to the speed of the mass scan tools. The
biggest slowdown being a 12 minute penalty on an unburdened speed of 1 hour
for a full IPv4 scan, and the smallest being 0.7 minutes on an unburdened speed
of 27.7 minutes. Regretfully we can not conclude whether the approach performs
sufficiently in a VM setting. The setting we used for testing had a yet unexplained

35

36 CHAPTER 6. CONCLUSION

high percentage of responses being dropped before reaching the mass scan tool
receiver. Further research will have to show whether this result is inherent to this
approach in a virtualized environment or whether it is an issue with the specific
testbed. Regardless we can conclude that ReScan functions as a virtual responder
at the scale and speed of mass scan tools.

Bibliography

[1] “ZMap: The Internet Scanner,” Dec. 2022, original-date: 2013-01-
23T01:30:09Z. [Online]. Available: https://github.com/zmap/zmap

[2] R. D. Graham, “MASSCAN: Mass IP port scanner,” Dec. 2022,
original-date: 2013-07-28T05:35:33Z. [Online]. Available: https:
//github.com/robertdavidgraham/masscan

[3] “VulnerabilityAssessment.co.uk.” [Online]. Available: http://www.
vulnerabilityassessment.co.uk/scanrand.htm

[4] “unicornscan | Kali Linux Tools.” [Online]. Available: https://www.kali.org/tools/
unicornscan/

[5] Z. Durumeric, E. Wustrow, and J. Halderman, “ZMap: Fast internet-wide scan-
ning and its security applications,” 2013, pp. 605–619.

[6] “LIBPCAP 1.x.y by The Tcpdump Group,” Dec. 2022, original-date: 2013-
04-14T21:46:36Z. [Online]. Available: https://github.com/the-tcpdump-group/
libpcap

[7] T. Zhang, L. Linguaglossa, M. Gallo, P. Giaccone, L. Iannone, and J. Roberts,
“Comparing the performance of state-of-the-art software switches for NFV,”
2019, pp. 68–81.

[8] “DPDK.” [Online]. Available: https://www.dpdk.org/

[9] L. Rizzo, “NetMap: A novel framework for fast packet I/O,” 2019, pp. 101–112.

[10] T. Høiland-Jørgensen, J. Brouer, D. Borkmann, J. Fastabend, T. Herbert, D. Ah-
ern, and D. Miller, “The eXpress data path: Fast programmable packet process-
ing in the operating system kernel,” 2018, pp. 54–66.

[11] M. Karlsson and B. Töpel, “The path to DPDK speeds for AF XDP,” in Linux
Plumbers Conference, 2018.

37

https://github.com/zmap/zmap
https://github.com/robertdavidgraham/masscan
https://github.com/robertdavidgraham/masscan
http://www.vulnerabilityassessment.co.uk/scanrand.htm
http://www.vulnerabilityassessment.co.uk/scanrand.htm
https://www.kali.org/tools/unicornscan/
https://www.kali.org/tools/unicornscan/
https://github.com/the-tcpdump-group/libpcap
https://github.com/the-tcpdump-group/libpcap
https://www.dpdk.org/

38 BIBLIOGRAPHY

[12] “Source code of include/linux/socket.h of torvalds’ linux kernel 4.18.” [Online].
Available: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/
include/linux/socket.h?h=v4.18#n210

[13] M. Ruiz-Sánchez, E. Biersack, and W. Dabbous, “Survey and taxonomy of IP
address lookup algorithms,” IEEE Network, vol. 15, no. 2, pp. 8–23, 2001.

[14] H. Song, J. Turner, and J. Lockwood, “Shape shifting tries for faster IP route
lookup,” vol. 2005, 2005, pp. 358–367, iSSN: 1092-1648.

[15] S. Dharmapurikar, P. Krishnamurthy, and D. Taylor, “Longest prefix matching
using bloom filters,” IEEE/ACM Transactions on Networking, vol. 14, no. 2, pp.
397–409, 2006.

[16] W. Eddy, “Transmission Control Protocol (TCP),” Internet Engineering Task
Force, Request for Comments RFC 9293, Aug. 2022, num Pages: 98. [Online].
Available: https://datatracker.ietf.org/doc/rfc9293

[17] A. Kirsch and M. Mitzenmacher, “Less hashing, same performance: Building a
better Bloom filter,” Random Structures & Algorithms, vol. 33, no. 2, pp. 187–
218, 2008, eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/rsa.20208.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.20208

[18] Bryce Kahle, “How and When You Should Measure CPU Overhead of eBPF
Programs.” [Online]. Available: https://ebpf.io/summit-2020

[19] D. Adrian, Z. Durumeric, G. Singh, and J. A. Halderman, “Zippier ZMap:
Internet-Wide Scanning at 10 Gbps,” 2014. [Online]. Available: https:
//www.usenix.org/conference/woot14/workshop-program/presentation/adrian

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/socket.h?h=v4.18#n210
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/socket.h?h=v4.18#n210
https://datatracker.ietf.org/doc/rfc9293
https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.20208
https://ebpf.io/summit-2020
https://www.usenix.org/conference/woot14/workshop-program/presentation/adrian
https://www.usenix.org/conference/woot14/workshop-program/presentation/adrian

Appendix A

Variance Graphs

In this appendix we collected the standard deviations of the mean from the experi-
ments we conducted. These are also shown in the results as error bars, however,
we also included it in this graph form for ease of reading.

0 500 1000 1500 2000
0

5

10

15

20

VM port 80

0 500 1000 1500 2000
0

10

20

VM port 389

0 500 1000 1500 2000
0

20

40

Server port 80

baseline
bpf-stats
bitmap
bpf-stats
bloom
normal
bitmap
normal
bloom

0 500 1000 1500 2000
0

10

20

Server port 389

Va
ria

nc
e

of
 Z

M
ap

 re
po

rte
d

se
nd

 ra
te

 (M
b/

s)

ZMap maximum send rate (Mb/s)

Variance of Measured ZMap send rate

Figure A.1: Standard deviation of the rate at which ZMap reports to have sent out
packets, plotted against what rate it was set to not exceed. Mean data
can be found in figure 4.1

39

40 APPENDIX A. VARIANCE GRAPHS

0 500 1000 1500 2000 2500
ZMap maximum send rate (Mpps)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Va
ria

nc
e

of
 a

ve
ra

ge
 B

PF
 re

po
rte

d
ru

nt
im

e
(µ

s)

Variance of estimated average processing time per XDP execution

Server /0; bitmap :389
Server /0; bitmap :80
Server /0; bloom :389
Server /0; bloom :80

VM /8; bitmap :389
VM /8; bitmap :80
VM /8; bloom :389
VM /8; bloom :80

Figure A.2: Standard deviation of the estimated average time it took ReScan to
process a single probe plotted against the send rate ZMap was set to
not exceed. Mean data can be found in figure 4.2

41

0 500 1000 1500 2000 2500
ZMap maximum send rate (Mpps)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Va
ria

nc
e

of
 fa

lse
 n

eg
at

iv
e

ra
tio

×10 2
Variance of the false negative rate of subnet on VM

bitmap :389
bitmap :80

bloom :389
bloom :80

0 500 1000 1500 2000 2500
ZMap maximum send rate (Mpps)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Va
ria

nc
e

of
 fa

lse
 n

eg
at

iv
e

ra
tio

×10 5
Variance of the false negative rate of subnet on Server

bitmap :389
bitmap :80

bloom :389
bloom :80

Figure A.3: Standard deviation of the amount of responses not received that should
have been received,as a ratio of the amount that should have been
received, on the VM and server testbed respectively. Mean data can be
found in figure A.3

42 APPENDIX A. VARIANCE GRAPHS

Appendix B

Code listings

In this appendix we provide code snippets of the essential parts of ReScan. For
brevity we marginally simplified some parts of the code. e.g. replacing function calls
with the function body, or removing the code supporting a potential expansion to
IPv6 in the future. All logic and control flow is equivalent.

43

44 APPENDIX B. CODE LISTINGS

1 fn try_responder(ctx: XdpContext)

2 -> Result<xdp_action::Type, xdp_action::Type>

3 {

4 let mut hdr_cursor = 0usize;

5 let (eth, ip) = unsafe {

6 parse_routing(&ctx, &mut hdr_cursor)

7 .ok_or(xdp_action::XDP_PASS)?

8 };

9 let protocol = unsafe { (*ip).protocol };

10 let daddr = unsafe { (*ip).daddr };

11

12 // Pass packet if it is locally addressed

13 // to not disturb normal loopback traffic

14 if (daddr & 0xFF000000) == 0x7F000000 {

15 return Ok(xdp_action::XDP_PASS);

16 }

17 // Drop packet if it does not match the filter

18 if unsafe { !matches_filter(&ctx, daddr) } {

19 return Ok(xdp_action::XDP_DROP);

20 }

21 // Pass packet if it is not a TCP packet,

22 // and thus not sent by mass scan tool

23 if protocol != IPPROTO_TCP { return Ok(xdp_action::XDP_PASS); }

24

25 let tcp = parse_tcphdr(&ctx, &mut hdr_cursor)

26 .ok_or(xdp_action::XDP_PASS)?;

27 let tcp_syn = unsafe { (*tcp).syn() };

28 let tcp_ack = unsafe { (*tcp).ack() };

29 // Pass packet unless it is a SYN packet but not an ACK packet

30 if tcp_syn == 0 || tcp_ack != 0 { return Ok(xdp_action::XDP_PASS); }

31

32 // Otherwise ’bounce’ packet: rewrite the ETH,IP and TCP

33 // headers to be a valid response

34 unsafe {

35 bounce_eth(&ctx,eth);

36 bounce_ip(&ct,ip);

37 bounce_tcp(&ctx, tcp);

38 }

39 return Ok(xdp_action::XDP_PASS)

40 }

Listing B.1: The main packet-processing code

45

1 const SPOOF_SOURCE_MAC: [u8; 6] = [0xFE, 0, 0, 0, 0, 0];

2 #[inline(always)]

3 unsafe fn bounce_eth(_ctx: &XdpContext, eth: *mut ethhdr) {

4 (*eth).h_dest = (*eth).h_source;

5 // Use a MAC from the Locally Administered Address Ranges

6 // to prevent mass scan tool believing it sent the reply

7 // itself

8 (*eth).h_source = SPOOF_SOURCE_MAC;

9 }

Listing B.2: ’Bounce ethernet’: rewriting ethernet header to be a response

1 #[inline(always)]

2 unsafe fn bounce_ip(_ctx: &XdpContext, ip: *mut iphdr) {

3 // IP checksum not changed because of swap

4 mem::swap(&mut (*ip).daddr, &mut (*ip).saddr);

5 }

Listing B.3: ’Bounce IP’: rewriting IP header to be a response

1 #[inline(always)]

2 unsafe fn bounce_tcp(_ctx: &XdpContext, tcp: *mut tcphdr) {

3 // Swap source/destination port and ack/seq number

4 // to keep checksum the same as much as possible

5 mem::swap(&mut (*tcp).source, &mut (*tcp).dest);

6 mem::swap(&mut (*tcp).ack_seq, &mut (*tcp).seq);

7

8 // If overflow: 1’s complement sum is unchanged

9 let (ack_seq, o) = u32::from_be((*tcp).ack_seq)

10 .overflowing_add(1);

11 (*tcp).ack_seq = u32::to_be(ack_seq);

12 (*tcp).set_ack(1);

13

14 // Add delta of acknowlegment number (if no overflow)

15 // and the ack flag to the checksum

16 (*tcp).check = !(ones_complement_add_u16(

17 !(*tcp).check,

18 (!o as u16) + (1 << 4))

19);

20 }

Listing B.4: ’Bounce TCP’: rewriting TCP header to be a response

46 APPENDIX B. CODE LISTINGS

1 // The filter consists of a BPF_ARRAY_MAP,

2 // with entries being ’chunks’ of type filter::ChunkType,

3 // which is a rust array of words of type filter::WordType,

4 // which is by default a byte, encoding 8 boolean values

5 // This word is indexed most significant -> least signifant

6 #[map(name = "FILTER_MAP")]

7 static FILTER_MAP: Array<filter::ChunkType> =

8 Array::<filter::ChunkType>

9 ::with_max_entries(filter::MAP_SIZE as u32, 0);

10

11 #[inline(always)]

12 unsafe fn matches_filter(_ctx: &XdpContext, daddr: IpAddr)

13 -> bool

14 {

15 // apply the ADDRESS_MASK: only keep offset from subnet

16 // of this filter

17 let key = daddr & filter::ADDRESS_MASK as u32;

18

19 // Split the key into a map index pointing to a chunk

20 let map_i = key >> (filter::ADDRESS_BITS_CHUNK as u32);

21 // and split the key into a chunk index pointing to a bit

22 let chunk_i = key & (filter::ADDRESS_MASK_CHUNK as u32);

23

24 // Retrieve chunk from the filter map

25 if let Some(chunk) = FILTER_MAP.get(map_i as u32) {

26 // Split chunk index into index pointing to a word

27 let chunk_i = (chunk_i as usize)

28 >> filter::ADDRESS_BITS_WORD;

29 // and split chunk index into a word index pointing to the bit

30 let word_i = chunk_i & (filter::ADDRESS_MASK_WORD as u32);

31

32 // Retrieve word from chunk

33 let word = chunk[chunk_i];

34 // Retrieve bit from word(byte)

35 return (word >> (filter::ADDRESS_MASK_WORD as u32 - word_i))

36 & 1 == 1

37 } else {

38 // Should never happen

39 return false

40 };

41 }

Listing B.5: Bitmap filter matching

47

1 // The filter consists of a BPF_ARRAY_MAP,

2 // with entries being ’chunks’ of type filter::ChunkType,

3 // which is a rust array of words of type filter::WordType,

4 // which is by default a byte, encoding 8 boolean values

5 // This word is indexed most significant -> least signifant

6 #[map(name = "FILTER_MAP")]

7 static FILTER_MAP: Array<filter::ChunkType> =

8 Array::<filter::ChunkType>

9 ::with_max_entries(filter::MAP_SIZE as u32, 0);

10

11 #[inline(always)]

12 unsafe fn matches_filter(_ctx: &XdpContext, daddr: IpAddr) -> bool {

13 // If test is true for all k hash values, assume daddr is in set

14 for hash_offset in 0..bloom_filter::HASH_COUNT {

15 // Compute hash value

16 let hash = bloom_filter::hash(daddr, hash_offset);

17 // Split the hash key into a map index pointing to a chunk

18 let map_i = hash >> (filter::ADDRESS_BITS_CHUNK as u32);

19 // and split the key into a chunk index pointing to a bit

20 let chunk_i = hash & (filter::ADDRESS_MASK_CHUNK as u32);

21 // Retrieve chunk from the filter map

22 let test = if let Some(b) = FILTER_MAP.get(map_i as u32) {

23 // Split chunk index into index pointing to a word

24 let word_i = chunk_i & (filter::ADDRESS_MASK_WORD as u32);

25 // and split chunk index into

26 // a word index pointing to the bit

27 let chunk_i = (chunk_i as usize)

28 >> filter::ADDRESS_BITS_WORD;

29 // Retrieve word from chunk and bit from word(byte);

30 // interpret as boolean value

31 (b[chunk_i] >> (filter::ADDRESS_MASK_WORD as u32 - word_i))

32 & 1 == 1

33 } else {

34 // Should never happen

35 false

36 };

37 // If test is false for 1 hash value,

38 // we know daddr is not in set

39 if !test {

40 return false

41 }

42 }

43 return true

44 }

Listing B.6: Bloom filter matching

48 APPENDIX B. CODE LISTINGS

1 // Hashing function based on jhash.h from the linux kernel,

2 // by Bob Jenkins and Jozsef Kadlecsik in Public Domain

3 const HASH_INITVAL: u32 = 0xdeadbeef;

4

5 #[inline(always)]

6 pub fn hash(key: u32, initial_value: u32) -> u32 {

7 let mut b = HASH_INITVAL.wrapping_add(initial_value);

8 let mut c = b;

9 let mut a = key.wrapping_add(b);

10 c ˆ= b;

11 c = c.wrapping_sub(b.rotate_left(14));

12 a ˆ= c;

13 a = a.wrapping_sub(c.rotate_left(11));

14 b ˆ= a;

15 b = b.wrapping_sub(a.rotate_left(25));

16 c ˆ= b;

17 c = c.wrapping_sub(b.rotate_left(16));

18 a ˆ= c;

19 a = a.wrapping_sub(c.rotate_left(4));

20 b ˆ= a;

21 b = b.wrapping_sub(a.rotate_left(14));

22 c ˆ= b;

23 c = c.wrapping_sub(b.rotate_left(24));

24

25 return c & filter::ADDRESS_MASK as u32;

26 }

Listing B.7: Hashing function

49

1 pub mod filter {

2 // Full address bit-width

3 // retrieved from envvar FILTER_ADDRESS_BITS

4 // default = 32

5 pub const ADDRESS_BITS: usize = [...]

6 // Amount of bit-entries in filter

7 // default = 0x100_000_000 = 512MB

8 pub const BITS: usize = 1 << ADDRESS_BITS;

9 // default = 0xff_fff_fff

10 pub const ADDRESS_MASK: usize = BITS - 1;

11

12 // Word address bit-width

13 pub const ADDRESS_BITS_WORD: usize = 0x3;

14 pub type WordType = u8;

15 // Amount of bit-entries in a word = 1 << ADRESS_BITS_WORD

16 pub const WORD_BITS: usize = 0x8;

17 pub const ADDRESS_MASK_WORD: usize = WORD_BITS - 1;

18

19

20 // Chunk address bit-width

21 // retrieve from envvar FILTER_ADDRESS_BITS_CHUNKS

22 // default = 18 = log_2(32KB)

23 pub const ADDRESS_BITS_CHUNK: usize = [...]

24 // Amount of bit-entries in a chunk

25 // default = 0x40000 = 32KB (per-cpu map value size limit)

26 pub const CHUNK_BITS: usize = 1 << ADDRESS_BITS_CHUNK;

27 pub const CHUNK_BYTES: usize = CHUNK_BITS >> 0x3;

28 // Amount of bytes in a chunk

29 // WORD_SIZE * CHUNK_SIZE = 32KB

30 pub const CHUNK_SIZE: usize = CHUNK_BITS >> ADDRESS_BITS_WORD;

31 pub type ChunkType = [WordType; CHUNK_SIZE];

32 pub const ADDRESS_MASK_CHUNK: usize = CHUNK_BITS - 1;

33

34 // Amount of chunks

35 pub const MAP_SIZE: usize = BITS >> ADDRESS_BITS_CHUNK;

36 }

Listing B.8: Filter constants

	Summary
	List of acronyms
	Introduction
	Research Questions
	Outline
	Availability of code

	Background
	Mass scan tools
	I/O Frameworks
	IP Filters
	Unstructured Filters
	Structured Filters using LPM

	Design & Evaluation Methodology
	Design
	Requirements
	Prototype using libpcap
	Approach with XDP

	Evaluation Methodology
	Measurement parameters
	Measurement setup

	Results
	Send Rate
	Processing Time
	Correctness
	Filter creation time

	Discussion
	Send Rate
	Performance goal
	ZMap Bottleneck

	Correctness
	False positive rate
	False negative rate

	Filter
	Usability
	Future Work
	Better performance
	Investigate droprate

	Conclusion
	References
	Variance Graphs
	Code listings

