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Abstract—Intersections are critical areas where a substantial
number of traffic accidents occur. Detecting and analyzing near-
miss events is key to signaling a high risk of accidents early
and taking appropriate measures. Currently, the acquisition of
near-miss event data is limited by time and resources. Edge-
based cameras offer a new, powerful method for continuously
monitoring these events.

This study introduces a multi-camera system for near-miss
detection. It is designed to operate on a configuration of Tech-
nolution’s Flowcubes in real-time and on edge. The system
leverages rudimentary bounding-box information as input to
maintain computational efficiency. It uses a stepwise approach,
consisting of middle-point estimation, image-to-world projection,
cross-camera association, and trajectory and size estimation.
Finally, the resulting shared world-view facilitates the detection
and classification of near-miss events.

The system has been tested in both synthetic and real-world
scenarios, demonstrating robust performance in deriving a
cohesive world model, and promising results for near-miss event
detection. It presents a scaleable solution for city-wide traffic
safety monitoring with minimal infrastructure investment and
reduced reliance on human supervision.

Keywords: Traffic Safety Monitoring, Near-Miss Detection,
Tracking-By-Detection, MCMOT, Time To Collision, Post
Encroachment Time

I. INTRODUCTION

Monitoring road safety is key to being able to decrease ac-
cident risks. Especially at intersections, due to the confluence
of traffic modalities and travel directions. However, obtaining
data for an accurate risk estimation is often limited or resource-
intensive.

Earlier safety estimation is usually based on accident count.
Therefore, data collection relies on accurate and complete
reporting of accidents, and requires multiple accidents to occur
before insight into methods of risk mitigation can be achieved.

Many methods aim to use surrogate information, to get
a course measure of safety. Examples are the intersection
layout, travel directions, and traffic participant counts. Often,
this yields a probabilistic risk assessment [1]–[7]. These
probabilistic methods have a coarse time resolution of days
to months. These analyses lack situation-specific information
and therefore are of limited use.

In contrast, near-miss events, which occur when traffic
participants come dangerously close to an accident, provide a
more accurate indication of safety. As such an event is much
closer to an actual accident, it is a far better predictor for safety
analysis and less sparse than accidents. However, obtaining
this information requires analysis of every traffic participant’s

trajectory individually. Requiring a different data acquisition
method.

Works aiming to accurately track traffic participants have
been proposed leveraging aerial, i.e. drone, footage to easily
obtain an accurate Birds Eye View (BEV) [8]–[10]. Or BEV is
obtained using a fisheye camera positioned above the intersec-
tion [11]. These approaches use retrospectively analyzed cam-
era footage, which allows for powerful segmentation and 3d
object orientation models to obtain an accurate world model.
These methods have proven robust for vehicle positioning.
Some of these methods have successfully analyzed safety
with time-based metrics [8], [9]. However, both approaches
are restrained by the high-effort and drone-battery-constrained
data collection, further limiting analysis duration and general
scalability to multiple intersections at longer timeframes. Of-
ten the hardware costs, required infrastructure, and need for
human supervision have posed a continuous safety evaluator
infeasible.

Using edge devices, there is a new opportunity to deploy
continuous monitoring systems. Technolution’s FlowCube is
such a device. A FlowCube is a small device equipped with
a camera capable of object detection and further processing
directly on edge. Multiple devices are combined to obtain
increased accuracy and a large coverage area. These devices
can be wirelessly connected and mounted on existing infras-
tructure, significantly reducing both setup and operating costs.

This study introduces a system designed specifically
for near-miss event detection at traffic intersections with
FlowCubes. Utilizing combined information from these well-
positioned cameras, our approach can achieve the needed
accuracy online and largely on edge. By focusing on aspects
such as traffic participant size estimation in combination
with refined trajectory information, this system is engineered
to provide accurate safety assessments of intersections by
kinematic metrics.

The system leverages the increasing performance of object
detection models, such as the model of the YOLO-family [12]
in this study. The model facilitates the detection of traffic
participants by outputting bounding boxes. Our subsequent
system continuously combines a substantial amount of detec-
tion data collected across multiple cameras. This information
is distilled into the near-miss event count for safety evaluation.
To achieve this, a comprehensive method is developed via a
modular step-wise approach. A cohesive BEV world model
is created by combining the view of multiple cameras. Traffic
participant trajectories and sizes are estimated based on the in-



formation of multi-angle detections. The calculated kinematic
metrics Time To Collision (TTC) and Post Encroachment Time
(PET) form the basis of near-miss detection. Finally, this
information is combined in the temporal domain to categorize
the near-miss events.

This system distinguishes itself by employing a low com-
putational cost approach to multi-camera, multi-object asso-
ciation, which does not depend on the visual resemblance of
objects but on spatiotemporal information. The input single-
camera tracklets of the system fall under the Tracking-By-
Detection paradigm. At high frame-rate and camera over-
lap this proves to be a powerful approach to single-camera
tracking. However, at zones with low overlap or occlusion
compromising the detection rate, the system often fails to
correctly assign identities. Cross-camera matching steps are
structured to be able to filter out such single-camera mistakes,
by leveraging the high-confidence information of other view
angles. Our work proves by performance comparison the
multi-camera system can ”repair” single camera mistakes such
as identity switches or identity splits, and improve overall
positioning accuracy and robustness.

This research uses a setup of anywhere from 1 up to 6
asynchronous cameras, time synchronization allows for tem-
poral alignment despite varying frame rates (typically between
5 to 10 fps) and frame release times. The system uses known
camera parameters, a calibrated extrinsic matrix, and a generic
intrinsic matrix without individual camera calibration. The
cameras are assumed to have partially overlapping fields of
view.

The system is designed to be able to run near real-time,
using only limited edge computing processing power. While
the aim of our system is to run online at the edge, a delay of 30
seconds is imposed to gain increased accuracy in the tracking
and positioning and ultimately near-miss detection. Which is
justifiable by the system’s monitoring nature, as opposed to a
safety-critical system.

Single-camera object detection and tracking is out of the
scope of the research, bounding boxes linked via a shared id
per camera view are used as the input of this system. All
camera views are projected onto a shared worldview. For
simplicity in camera-to-world conversion, a flat road surface
is assumed. The final goal of the system is to operate in the
field continuously, without needed human supervision. The
system is designed to be able to trigger a video capture for
near-miss events to obtain data for a long-term analysis of the
number, severity, and type of incidents in an intersection. To
keep the number of fragments to analyze low, an aim of high
precision is favorable over higher recall. This paper discusses
the system’s methodology and its performance evaluation
based on tests conducted with both synthetic and real-world
data.

In summary, our contributions are:

1) A computationally low-cost method of associating traffic
participants cross-camera based on combining single-

frame bounding box information.
2) A computationally low-cost method of estimating traffic

participant sizes for various modalities solely based on
tracking information and multiple projected bounding
boxes.

3) A method for automatic detection and rough classifica-
tion of near-miss events by kinematic metrics based on
a unified 2d Birds’ Eye View world model.

II. LITERATURE REVIEW

This research addresses multiple sub-problems: tracking,
pose and size estimation, and near-miss detection while aiming
for edge computing. Often related work overlaps with a part
of the method and aim only, seldom with the whole chain
and goals. Initially, an overview of mostly similar pipelines is
given, in the following sections individual sub-problems are
addressed in more detail.

A. Pipelines

In recent years the rise of object detection models has
sparked research in object tracking in traffic. Due to the
available infrastructure and high safety risk, many works focus
on intersection zones. Often the aim of the work is vehicle
tracking and city-wide path estimation. Challenges such as
the AI City Challenge with a recurrent city-wide tracking
assignment [13], [14], have given rise to multiple contributions
on the sub-problem of vehicle tracking on intersections.

In approach and setup closest to the tracking method of this
research, is a multi-camera tracking-by-detection framework
[15], [16], without the near-miss detection step and goal of
edge computing. This research also uses a modular approach,
with substeps single camera tracking with a YOLO model,
and cross-camera association using a world position and Re-
ID vector.

A subset of works aim at systems capable of running online
or on edge. A system combining radar and a single camera
system uses Joint Detection and Tracking, [17], instead of
the more popular tracking-by-detection for tracking. The main
goal is achieving real-time edge-capable tracking. Compared
to DEEPSORT [18] frame rates of up to about 450% higher
are achieved, running at 20 fps on a 6-core i5-9600K CPU.

A small selection of work extends the focus of vehicle
tracking and localization for safety analysis, [8], [9], [11].
Works closest to this research include a single-camera ap-
proach [9], where a 2d BEV bounding box for vehicles
is estimated. The BEV rectangular vehicle representation is
used for calculating PET, additionally, a conversion from a
sporadic conflict count to a statistically induced intersection
safety heatmap is proposed. This approach is available at 20
fps using 2 heavy 2080 ti GPUs, mainly needed because of
the costly segmentation model, and therefore not suitable for
edge computing. An approach using aerial footage of a drone,
Automated Roadway Conflict Identification System, ARCIS
[8], has been used successfully for near-miss detection using
a PET metric. But is very limited in operating time and has
no real-time or edge constraints. A well-positioned fisheye
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camera can also be used instead of multiple cameras [11].
Using a deep learning method, near-miss events are detected
coarsely, by distance in image space or sudden deceleration.
The system works in real-time, but runs only at 40fps with a
powerful Titan V GPU, therefore not being suitable for edge
systems.

While several studies have concentrated on vehicle tracking,
there remains a gap in implementing an edge-based system
precise enough for near-miss detection. Only a handful of
studies target near-miss event detection directly, yielding sig-
nificant insights. Yet, the transition to real-time, edge-capable
systems still has to be made.

B. Near Miss Detection Approaches

Although near miss detection is the final step of the system
pipeline, understanding how near misses can be detected is
vital for the initial steps of the methodology to provide a
logical flow for the reader. Near-miss detection aims to detect
and classify scenarios in which a collision between two road
users could have occurred. Without an actual collision to
pinpoint, the detection criteria remain somewhat ambiguous.
This ambiguity allows for a variety of detection and estimation
methods [19], [20]. Often surrogate measures are used for risk
estimation as near-miss detection, these aim to provide risk
assessment in addition to data about actual collisions, which
is limited.

1) Behavioral Based: Often road users react to an imminent
collision, e.g. by changing the speed or performing a lateral
movement [21]. If these behaviors are detected, they can be
used as a near-miss indicator. The deceleration rate is a used
indicator of a near-miss event[11]. Based on the assumption
that a large part of vehicle-vehicle accidents occur from
a vehicle violating priority rules [22], scenario-based rules
can detect a violating vehicle [23], and employ a real-time
violation detector, which can be classified as a type of near-
miss scenario.

2) Probability Based: Extracted trajectories can be com-
bined with incident and severity rates for vehicle-pedestrian
collisions [2], or for vehicle-vehicle collisions [1] to obtain
a probability risk assessment. Newer methods use simulation
techniques [5], [6], [24], to obtain a probabilistic safety evalu-
ation. Machine learning models [3] or the simpler naive Bayes
[4] can also be used to provide statistical risk assessment
based on flow statistics. Although probability-based methods
are powerful and generalizable and can benefit from accurate
real-time tracks, the time frame is always larger than analyzing
individual traffic participants.

3) Kinematic Based: Kinematic-based methods use the spa-
tial position and orientation of objects over time to calculate
safety metrics. Time To Collision (TTC) is the most common
metric for risk assessment [25]–[27], is the time between a
predicted collision at current speed and position, also widely
used from vehicle perspective automatic braking. In more
complex definitions acceleration and steering angle can also
be taken into account[27].

Post Encroachment Time (PET), defined as the time dif-
ference between two road users overlapping at any point, is
another widely used metric. For intersections, where road users
regularly cross trajectories, PET is a well-established method
for safety evaluation [8]. Similar to the kinematic PET, each
cell of an intersection grid can be checked for PET[8], [7].
Typically risk indicator thresholds are in the range of 0 to 2−5
seconds.[21], [26]. Where below 0.5s is classified as severe
risk, and above 2.0s is low risk. PET and TTC are often used
complementary, or even combined into a single metric [28].

Near-miss classification can be roughly compared to acci-
dent classification. Often accident analysis focuses on predict-
ing injury. A widely used method uses each vehicle’s velocity
and the difference in angle to simplify comparison to the
single metric ∆v [29]. Often general classification relies on
scenario description based on trajectories [30], [31]. Both these
methods rely on modality and trajectory information.

Our approach uses a kinematic approach, as TTC and PET
metrics are best to quantify near-miss events and are a proven
established way of predicting collisions and therefore near-
miss events. Object properties such as velocity and heading
angle required for calculation have the added benefit of being
usable for classification and filtering of near-miss events. As
accurate positioning and size is vital for the calculation of
these metrics, this will be the focus of the following sections.

C. Traffic Participants Tracking

1) Single Camera Tracking: The most popular method in
object tracking is the Tracking-By-Detection paradigm [8], [9],
[32], [33]. Some research uses a Joint Detection and Tracking
method [17], [34] , which can allow a more efficient system by
combining detection and tracking networks, but is generally
regarded as less modular, more complex, and can decrease
performance for complex tracks.

Tracking by detection assumes a known bounding box by
a frame-based detection algorithm and focuses on using this
bounding box information. A simple approach is proposed
in [35], where an intersection over union approach is used
for image frame camera tracking. Based on the important
assumption of a high frame rate, an intersection over a union
tracker proves to be reliable, cheap, and accurate. Further
improvements can be achieved by combining with a variable
YOLO classification threshold based on position as proposed
in [36] at low computational costs.

The starting point of this research is the YOLO detection al-
gorithm, where detections in single-camera domain are linked
through an image Kalman filter and IoU combination. This
Tracking-By-Detection method is given, and it is not in the
scope of the research to be altered.

2) Multi Camera Tracking: Single Camera Tracking (SCT)
methods provide some tracking and localization. A multi-
camera setup can leverage the benefits of the different camera
perspectives. The different angles can greatly increase the
localization accuracy. Additionally, errors due to misdetection,
image edge bounding boxes, and occlusion can be recognized
and filtered out.
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Knowing which information or objects from SCT to com-
bine, is nontrivial due to differences in distance, asynchronous
cameras, multiple perspectives, and dynamic objects.

a) Matching: Literature often speaks of MCMOT, Multi-
Camera Multi-Object Tracking [37]. A common approach
is finding an optimal assignment between high-confidence
single-camera trajectory pieces, called tracklets. Tracklets con-
sist of multiple detections and span through time, therefore
they are often matched over a timeframe. A simpler online
approach can be to assign these detections sequentially.

As the system is designed for continuous operation, our
approach uses a sequential assignment. Tracklet-based batch
processing is possible continuously by dividing in smaller time
frames, but adds more complexity and requires more process-
ing power. We still use the available SCT match information
in our sequential assignment, but match each measurement
instead of each SCT tracklet.

To find matches, a similarity metric is used. Generally, two
methods for calculating measurement or tracklet similarity
are differentiated between. Spatial-temporal-based matching
[33], [38] or additionally matching on appearance information
[8], [9], [15], [18], [39].Appearance-based matching aims to
recognize learned features and project them into a multi-
dimensional space, in which distances between samples can
be evaluated. As this is already implemented in SCT and
explicitly not a focus of this research, we will focus on Spatial-
Temporal based tracking techniques.

Often appearance-based matching is used in addition to
spatiotemporal matching, e.g. DEEPSORT [18] and Tracklet-
Net [40]. These methods prove more robust against tracking
errors[41]. An alternative to using appearance vectors for oc-
clusions is to use the lighter-weight future trajectory prediction
[42]. This prediction can be made by a Kalman filter, or by
applying a reinforcement-trained model that assigns B-splines
to tracklets as prediction [43].

Some techniques in pedestrian tracking use an occupation
map instead of single camera tracklets[44], [45]. By adapting
keypoint detection to find the ground point of pedestrians, a
BEV centralized occupancy map is generated. This occupancy
map is then used to match corresponding pedestrians cross-
camera.

The approach of pairwise matching evaluates the similarity
between each tracklet or measurement and tries to find a
globally optimal match. Similarity metrics include Euclidean
distance, angle cosine similarity, or Mahalanobis distance [46].
These similarities are often followed by a matching algorithm,
such as the Hungarian method [38].

Often some heuristics are added to improve the performance
at various stages in the matching and association.

A partly visible object often leads to reduced accuracy. This
can happen to occlusion by other objects, or by the sensor
detection boundaries. A common problem arising from vehi-
cles entering and leaving from the camera edge is an identity
switch, where a vehicle wrongfully takes over an identity.
Turn splitting removes improbable vehicle paths by splitting
a tracklet if object orientation suddenly changes significantly

[16]. General matching can be boosted, by subdividing lower
confidence points of tracklets and reattaching again in the
matching step [47]. Other general approaches are to interpolate
tracklets for better accuracy before matching [10], or fitting a
B-spline as an alternative to interpolation [43]

In single-frame detection, a confidence threshold for bound-
ing boxes is often relatively high to avoid ghost detec-
tions, omitting low-confidence detections. However, these low-
confidence bounding boxes can be leveraged in combination
with a motion predictor, to still assign these bounding boxes
in e.g. an occlusion situation [48].

In object direction tracking, systems leveraging situational
knowledge often make use of road topology information by
creating track completion zones. Tracks should start and end
at certain indicated zones or will be removed [16]. While this
allows higher performance, at larger intersections often many
zone definitions are needed, leading to loss of generalizability.
A logical layer of queuing can be added, with the assumption
that road users, e.g. for a traffic light, will remain in the same
order. Similarly, the number of objects in specific zones can
be counted and evaluated. A simple and logical approach for
camera clustering is the assumption that any object will not
be observed multiple times in one image frame, and set the
distance between camera detections to infinite [45].

Our approach does not specify the specific entering and
leaving zones, as in [16], to sustain a generally and eas-
ily applicable system without complex intersection-dependent
annotation. To not interfere with the existing single-camera
tracking method, low-confidence bounding boxes are omitted,
unlike in [48]. We do use the assumption each object is
detected at maximum only once in each frame [45].

D. Pose and Size Estimation

Pose estimation aims to correctly distill vehicle orientation
and or size from the available data, which can be leveraged
as input in vehicle tracking and be used for more accurate
near-miss detection. Frame- and temporal-based methods are
differentiated between.

Recent methods use a CNN to estimate the vehicle orien-
tation, often from a single-camera [8], [49]–[51] , or multi-
camera [33], [52] A network can be used for keypoint detec-
tion and/or segmentation masks. The input for such systems
can be a bounding box with multiple extracted keypoints or
key regions. The 3D pose is retrieved by the orientation of
these keypoints or after combining information from multiple
cameras. An often-used combination of networks is Mask-
RCNN [53] with occlusion net [49]. Occlusion net aims to
localize occluded keypoints. Another method of a rectangular
bounding box reconstruction from keypoints to bounding
box, can be done based on the assumption that three on-
occluded key points can always be detected [8]. Similarly, a
segmentation-based 3d shape estimation is carved via a voxel
shape-from-silhouette method [33]. By using multi-angles and
multi-frames, higher accuracy is achieved.

By leveraging the modality and known size averages of
the road user, the orientation and geometrical size constraints

4



Fig. 1: Method schematic: Detections are initially tracked by each camera, Detections are assigned to objects using a globally
optimal assignment across pairwise distances. Objects size and trajectory are updated using these new detections, These are
finally used in the near-miss detection and classification step.

within a 2D bounding box can yield a 3D bounding box [51].
Although this popular method uses a CNN for 3d, it could
also be implemented in a lower-cost fitting method.

Temporal methods can combine the information of consec-
utive frames, which is a less computationally costly approach
[54], [55]. Common single-frame problems such as an unstable
direction through time can be eliminated by filtering [54].
Increased positional and orientation information can be gained
by using a fusion of positioning methods [10].

Our approach aims to leverage the computationally cheap
spatiotemporal angle determination. Geometrical constraints
such as in [51] are then used to determine size. By using the
predetermined heading angle, no CNN estimation is needed,
reducing complexity. As in [8], we assume three corner points
can always be detected. By using detections from multi-
cameras and multi-frames accuracy is increased, similarly to
[33].

III. METHODOLOGY

The methodology is discussed in a step-wise fashion, to
reflect the modular approach. An overview of the system is
shown in Fig. 1. Initially, setup and configuration is required
for the specific intersection, discussed in section ”A Priori
Definitions”. The system updates for every single camera
frame. Single camera tracking links the detections through
time. Via Cross camera association detections of this frame
are assigned to the existing objects. Kalman filters combine
the detections into a smooth trajectory. Size estimation using
all bounding boxes through time of an object completes the
world model. This 2D world model is consequently used
for near-miss detection using PET and TTC metrics. Finally,
the classification step, further filters and labels the near-miss
events.

A. A Priori Definitions

The system is developed to be generalizable for various
intersections and work in an ad-hoc fashion. However, the

system greatly benefits in performance from a number of
predefined configurations, which are incorporated into the
system. These definitions are therefore chosen to be required
as the setup for each intersection.

1) Camera Calibration: The existing system has coarse
information (about ±0.5m for location,±0.05rad for orienta-
tion) on the camera position and orientation. At long distances,
especially the height and orientation errors result in significant
positional errors in projected world positions. To optimize the
system performance, about 10 corresponding points in camera
and world domain are used to further calibrate the camera.
Because of road marks at the intersection distinct points can be
assumed to always be available. A flat road surface is assumed
for image-to-world projection. This has a clear limitation at a
larger distance from the camera for uneven roads. A projected
camera image shows differences with an offset up to 1 m, see
Fig. 2.

Fig. 2: Influence of the assumption of a flat road surface on
positional accuracy, where the green line is the straight line in
world domain

2) Zone Definition: In Fig. 3 an example overview of an
intersection is shown. The area of interest for near-miss events
predominantly lies between pedestrian crosswalks and vehicle
stop bars. In principle, the system works for any detection at
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any range. In practice, accuracy in localization and detection
decreases at long distances. Partly this is caused by limited
object size in detection of the YOLO model. Additionally, the
cameras only have a limited FOV and a limited overlap outside
of the intersection area.

The system uses zone definitions to filter out unwanted
inaccurate detections and limit the scope of the system to the
near-miss area of interest. This is done by the definition of
two zones: the near-miss detection is limited to the inner in-
tersection zone. The tracking, where objects can be initialized
and tracked is defined to a deeper into the roads opposite to
the cameras.

Fig. 3: Example of tracking (grey)- and near-miss (white) zone
definition. Colemans satellite view

B. Single Camera Object Detection and Tracking

Although not inherently part of the research scope, single-
camera tracking is an important basis of detection. The sys-
tem uses a custom-trained YOLO model, with 12 classes.
Detections are linked inter-frame by IoU (Intersection over
Union), which performs well under the frame rate of 5-10
Hz. Additionally, an appearance-based vector is calculated per
associated sequence of frames. The appearance-based method
is explicitly not used in later stages of cross-camera matching.
An image-based Kalman filter is used for linking detections
where IoU is not applicable, e.g. due to missed frames.

By applying simple heuristics, detection quality is increased:

• blip filtering, single frame detections are omitted.
• static object filtering, long static detections such as parked

cars are assumed to be part of the scenery and omitted.

C. Single Camera Pose Estimation

This research scope starting point is the single camera
tracks. To increase quality for matching and later steps the
tracks are further processed.

1) Middlepoint Estimation: As a starting point, bounding
box information is used to estimate the real-world position of
traffic participants. The aim is to find the center of the ground
area, Ground Area Middle (GAM), based on the bounding box
size and position as illustrated in Fig. 4. The pitch between

Fig. 4: A schematic of the camera view as an illustration
of middlepoint estimation, and directional uncertainties in the
longitudinal camera direction. Watkins, t04:52

the camera POV and the bounding box bottom middle is
calculated. Theoretically, the GAM can be found at:

[BMx, BMy + 0.5HBB ]for θC−BM = 0 (straight down)

[BMx, BMy + 0HBB ]for θC−BM =
1

2
π (at horizon)

By fitting a polynomial to a dataset of known GAMs at a
variety of different distances and pitches, a relation between
pitch to GAM position is fitted. By using this approximation,
the image GAM can be estimated using solely bounding box
information. The image GAM can then be projected onto the
world plane using the calibrated camera characteristics, as
found in section Camera Calibration.

2) Angle & Velocity Determination: To calculate the de-
tection angle and velocity at any time, the temporal relation
between the world GAM is used. To suppress noise in the
detection, for each detection, the future and history positions
with at least a distance of 1 meter are used to calculate the
angle and velocity. The use of a ”future” point can be justified
by the total system delay of 30 seconds.

D. Cross Camera Association

The cross-camera association is done sequentially, where
detections of a single frame of a single camera are matched
in one update. Each object has a corresponding extended
Kalman filter with state: {xworld, yworld, v, αheading} In each
update, new detections are matched to existing objects. For a
traffic participant entering the scene, an unmatched detection
initializes a new object.

a) Distance Calculation: The pairwise distance between
detection and object is calculated at tdetection, the object state
is extrapolated to this time using the Kalman filter state from
tdetection−δt. The distance is largely based on the Mahalanobis
distance and the normalized difference in angle, as discussed
in section II-C2. In addition, some terms to penalize or
incentivize certain matches are added. Parameters are found
experimentally.

• The single-camera track ID’s are generally consistent
with one ground truth object. To incentivize consistency
in assigning multiple detections from the same single
camera track to the same object, the following detections
with this ID have a lower distance.

• A common mistake is a double detection of one vehi-
cle. The newly initialized object from such a detection
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can coincidentally be closer to the following detections.
To avoid an identity split, newly initialized objects are
penalized in pairwise distance.

• The detection algorithm labels detections by class. Gen-
erally, the class assigned is consistent across one ground
truth object, and therefore incentivized.
b) Matching: Before the matching step, all detection-

object distances larger than a predefined threshold are given
a distance of inf . This ensures the Hungarian algorithm only
matches objects close to each other, and detection objects with
a large distance are not of influence on the global assignment.
Generally, each ground truth object is only detected once
per frame, allowing at most one detection per object. The
Hungarian algorithm finds a global optimum for assigning
detections to objects, with the constraint of assigning one
detection per object. The assignment benefits from a global
optimum under camera bias, caused by e.g. the road height
difference discussed in section III-A1, see Fig. 5.

Fig. 5: Example of a situation where matching globally proves
beneficial. Watkins [C1 t8:06, C2 t8:10]

Non-matched detections are seen as new objects, and ini-
tialize a new object with a new Kalman filter, which is fully
instantiated after a threshold of 80 detections. Objects without
a match are not automatically discarded. A period of no
detections is common, e.g. by occlusion or decreased detection
confidence due to partly being out of frame. Therefore a time-
out is used for discarding objects, where with each assignment,
the timer is reset. The threshold is determined dynamically,
based on the number of previous assignments and increases
for pedestrian classes to compensate for a lower detection rate.

Fig. 6: A schematic of the directionality of the measurement
noise based on the (perpendicular) camera view axis, and
process noise dependent on the (lateral) longitudinal vehicle
direction

c) Object Kalman Filters: With each new assigned de-
tection, the object’s Kalman filter is updated. Due to large
differences in detection accuracy, a variable measurement
covariance matrix is used.

If a vehicle is only partly visible on the camera frame, this
is coarsely detected by checking if any of the bounding box
corners lie within a threshold on the frame edges. If a bounding
box is detected on the edge, often the GAM estimation as dis-
cussed in the II-C2, is inaccurate. The measurement covariance
is set to infinite, effectively discarding the measurement.

At larger distances, the precision in bounding box coordi-
nates of the detection model decreases. In the view direction,
errors in the image Y axis are amplified due to the projection
step, as discussed in [56], and further amplified by differences
in road height, as discussed in section Camera Calibration.
This is illustrated in Fig 4. In the direction lateral to the
view direction the variance is mostly based on the detection
accuracy. Depending on the distance to the camera and view
angle a new measurement covariance is calculated for this
update step.

Similarly, for vehicles, the process noise covariance depends
on the vehicle’s orientation. Lateral motion is less variable than
the longitudinal motion. Based on the angle of the current
object state, a process noise covariance is calculated. An
example of how the covariances apply for a certain detection
is shown in Fig 6.

E. Size Estimation

We approach the size estimation as an optimization problem
of fitting the ground area of the vehicle inside the world-
projected bounding box. Which relies predominantly on ge-
ometrical constraints, comparable to the method of [51]. The
matching step yields corresponding detections with multiple
bounding boxes from various view angles and vehicle poses
across time and cameras. Traffic participants are assumed to be
shaped as a rectangular beam, of which 3 corners are always
assumed to lie on the bounding box [8]. Two examples are
depicted in Fig. 7. By minimizing the cost associated with
the fit, the size of the vehicle is approximated. This cost is
calculated as the weighted sum of distances from each of
the vehicle’s corner points to the corresponding line of each
bounding box.

We denote the ground area middle of the vehicle by
WGAM = (x, y) and αheading as its heading angle. The distance
from WGAM to each corner point of the vehicle is represented
by R, and the angle offset from the heading to determine the
corners is denoted by δ, as in Fig. 8

The corner points of the vehicle, relative to WGAM, R, and
δ, are defined as:

CornerPointi = (x+R cos(αi), y +R sin(αi))
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with:

Front Right :αFR = αheading + δ

Front Left :αFL = αheading − δ

Rear Right :αRR = αheading + δ + π

Rear Left :αRL = αheading − δ + π.

Each bounding box is defined by four lines, each with its
own weight. The weight vector for the lines of a bounding
box is denoted by w = {wT , wR, wB , wL}, where each w
corresponds to the weight of a bounding box line based on
the image domain Top, Right, Bottom and Left lines. Since
the top line is highly influenced by the vehicle height, it is
omitted by using a weight of 0, as the bottom line is generally
more accurate, a higher weight is given.

Depending on vehicle orientation: αheading and the view-
angle of the camera, each corner point is assigned to a
corresponding line. This assignment is done based on the
difference of αheading and αBB-line. Where depending on the
quadrant in which this difference lands, lines are assigned to
the corners.

The weighted distance Di from a corner point C = (cx, cy)
to the closest point on a line of the bounding box can be
calculated using equation 1.

Di = wi ·
|a · cx + b · cy + c|√

a2 + b2
, (1)

where a = sin(θi), b = − cos(θi), and c is derived from
the line’s equation in world view.

Given multiple bounding boxes, each with its own set of
weights, the total cost function T (R, δ) for fitting a vehicle
within these bounding boxes is the average of the weighted
costs for each bounding box. For a total of N bounding boxes,
each with a weight Wj for the j-th bounding box, the total cost
is given by equation 2.

T (R, δ) =
1

N

N∑
j=1

Wj

4∑
i=1

Di,j(R, δ), (2)

where Di,j(R, δ) is the weighted distance from the corner
points of the vehicle to the lines of the j-th bounding box.

The optimization process involves adjusting the parameters
R and δ to minimize the averaged total cost T (R, δ).

F. Near-Miss Detection

For the final near-miss detection we use both Post En-
croachment Time (PET) and Time To Collision (TTC). To
reduce complexity and reduce false positives vehicles are
extrapolated over their trajectory. The future trajectory is found
by delaying the near miss detection by e.g. 15 seconds, which
is possible due to the near-realtime flexibility, discussed in
section Introduction. A projected collision is identified by
overlapping ground area. PET times are found by comparing
object ”1” at detection time Td, to all history detections of
other objects to a maximum time-window, see Fig. 10. The
minimum |∆t| between objects is stored as PET. For the

Fig. 7: An example of a collection of detections of one object,
bounding boxes across time and cameras are projected to the
world domain

Fig. 8: An example of the optimization within one bounding
box, with 4 vehicle corners. The angle and length are opti-
mized. Note that the bounding box top line is not guaranteed
to lie on a vehicle corner, and is therefore given weight 0 and
omitted in the drawing

Time To Collision, a window of interest is determined as
∆Lpath

vd
≤ ∆tmax. All object areas with a t1 = t2 are

compared. The minimum ∆t between objects is stored as TTC.

G. Near-Miss Classification

TTC and PET are limited descriptors for a variety of near-
miss events. To further classify and filter to near-miss events
of interest, general classifications are used.

Simple classification is done based on modalities, such as
vehicle-vehicle or vehicle-pedestrian accidents.

Based on the proposed ∆v for the severity of accidents [29],
we use a similar metric where the unknown mass of traffic
participants is omitted in equation (3):

∆V =
1

2

√
V 2
1 + V 2

2 − 2V1V2 cos(θ∆1−2) (3)

To account for the time difference to the projected collision,
we decrease each traffic participant’s speed by 1m/s2 for
the time difference to calculate the projected ∆V . Finally,
to obtain the ”severity score”, we increment ∆V by 20 for
cars colliding with vulnerable road users (VRU’s) such as
pedestrians and cyclists. Over time, we group multiple triggers
that occur between two road users, which allows for further
analysis.

Lastly, a rough scenario-based classification is used [30],
[31]. Based on the initial and final orientation of a vehicle,
a rough classification to straight, left-turn or right-turn can
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Fig. 10: A schematic of the used metrics, PET left, and TTC
right.The red cross indicates minimum ∆t for the frame.
Note: The schematic at ∆t indicates the shortest PET time,
the PET is not necessarily constant in the PET zone.
Note: The schematic at ∆t indicates the TTC with minimum
δt of all extrapolated collision points

be made. Combining these directions and the difference in
orientation during collision, the predicted type of accident is
categorized.

IV. EXPERIMENTS

In correspondence with the contributions of this work,
the positioning, the cross-camera association, and the size
estimation are evaluated. While the collection of severe near-
miss events is limited, it suffices for validation of the system.
Finally, the operational efficiency is assessed to confirm the
system’s real-time capabilities on edge devices. First, the
datasets and configuration are elaborated on.

A. Experimental setup

1) Datasets: In the evaluation of the system, multiple
datasets are used. An overview of the intersections is given
in Fig. 9.

a) Synthehicle: The Synthehicle [57] dataset is a syn-
thetic dataset made in the CARLA engine. The dataset sim-
ulates intersections with up to six cameras. We use various

configurations: 2 cameras on opposite corners, the 4 cor-
ner cameras, or all 6 cameras. Object world position and
bounding box are automatically computed based on the 3d
models of traffic participants. This allows a large and accurate
set of ground truth annotations for performance evaluation.
The dataset has 63206 annotated detections of various traffic
participants. Assuming there are no errors in the labeling, we
use this dataset as a best-case scenario dataset as a theoretical
top performance benchmark.

b) FlowCube Data: The system’s performance is eval-
uated further on the custom FlowCube dataset. This dataset
is created based on video data from FlowCubes and is
comparable to the real-world circumstances the system is
designed for. As the object detection is identical to the real-
time system under normal operation, the in-the-field system
performance is expected to match the performance on this
test set. Two intersections are used, Colemans and Watkins.
At 30-second intervals, all completely in-screen vehicles are
annotated. Annotation is done by assigning a 4 sided polygon,
with a vertex on each vehicle corner. As shown in Fig. 11a.
To avoid overestimating positioning performance, stationary
vehicles are annotated only once. The ground truth width
and length, and ground area middle are calculated from this
polygon. 104 vehicles are annotated. To assess the tracking
performance, detections across cameras are linked to the same
traffic participant. In total 3330 detections are annotated.
Finally, the dataset is manually checked for severe near-miss
events. A near-miss event is classified manually, based on
the visible distance and speed between the vehicles and the
reaction of traffic participants [21]. However, no severe near-
misses are found in the dataset.

c) Single Camera Data: The small amount of FlowCube
multi-camera data limits the amount and severity of near-miss
events that can be found. To further evaluate near-miss events,
additional video data acquired by GoPro cameras is used. 20
hours of data is manually checked for near-miss events. We
use a 36-minute fragment from the dataset at the intersection
”Hilversum”, as this contains the three most severe near-miss

(a) FlowCube dataset: Colemans,
4 min,
40°14’15.7”N, 83°20’58.9”W

(b) FlowCube dataset: Watkins,
8 min,
40°14’23.6”N, 83°20’30.5”W

(c) GoPro dataset: Hilversum,
36 min,
52°13’44.4”N, 5°10’44.4”E

(d) Synthehicle Dataset: Town05,
3 min,
[57]

Fig. 9: Overview of the intersections of the various datasets. A grey tracking zone and white near-miss zone are indicated.
Cameras and their corresponding field of view are depicted as stars and lines.
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Dataset Cameras Position
Precision

Association
Performance

Size
Precision

∆P [m] ↓ AssA ↑ ∆L ↓ ∆W ↓ IoU ↑
Synthehicle 2 0.66 0.991 11.6% 6.8% 0.57
Synthehicle 4 0.44 0.991 10.8% 5.9% 0.69
Synthehicle 6 0.36 0.992 10.6% 5.1% 0.74
FlowCube 4 0.72 0.966 9.5% 10.6% 0.61

TABLE I: Results table: The system’s performance tested across various
datasets and cameras. The average error in precision is always given
with respect to the world ground truth. The error in length and width is
calculated relative to the ground truth.

Method Dataset Cameras Position
Precision

Size
Precision

∆P [m] ↓ IoU ↑
Baseline FlowCube 1 2.09 x
Ours FlowCube 4 0.72 0.61
CAROM [33] custom 4 0.79 x
Abdel-Aty [8] location 1 1 0.48 0.55
Abdel-Aty [8] location 2 1 0.68 0.28
x Not available

TABLE II: Comparison table: Comparison is done be-
tween several SOTA methods. Note that the datasets are
different.

events. Although the available material is single camera, it can
still be used as input for our system.

2) Setup: As the system is designed to be continuously
effective, a warm-up of at least 60 seconds is used before
measurements start. This ensures sufficient history data for
angle calculation in single camera domain, and detections
for size estimation. The cameras are synchronized, for each
simulation, all selected cameras are active for the entire time
fragment.

B. System Performance

1) World Position Precision: As a single reference point
for positioning, the center of the vehicle or ”Ground Area
Middle” (GAM) is used. The precision is always evaluated in
the world domain. The evaluation is done for all points inside
the near-miss zone, as discussed in sec. Zone Definition.

An example of the output of a single frame is shown in
Fig. 11b. The average Euclidean distance to the ground truth
is given in table I. Results show an increase in accuracy with
the increase in the number of cameras, indicating the system
benefits from multiple cameras.

A comparison to the baseline and methods with comparable
datasets is given in table II. The performance of the baseline
method is given, which simply projects the bottom middle
point of the bounding box to the world domain. Compared to
the baseline, logically, a large increase in accuracy is gained.
The system shows comparable performance to a monocular
segmentation-based system [8], and has a better performance
than the CAROM framework [33].

2) Cross Camera Association Performance: The cross-
camera association is calculated by using a subpart of the
popular Higher Order Tracking Accuracy (HOTA) metric [58],

(a) The frame annotated with polygons

(b) The BEV view, ground truth (green)
and system output (black)

Fig. 11: A image annotation and its projected BEV view. The
annotation is done on the top right (cyan) camera, indicated
by a star and field of view, Colemans dataset [t03:01]

the Association Accuracy (AssA), which is a metric aimed at
evaluating the association performance without the influence
of detection performance. As the detection step is not part of
this research, a metric aimed solely at association performance
is favorable.

Results are given in table I. The association is largely cor-
rect. Again, the system shows an improvement in association
performance when using more cameras. At 6 cameras the
number of association errors is halved with respect to the
single camera.
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The system’s enhanced robustness is demonstrated by its
performance under unexpected conditions. The system should
ignore irrelevant objects. This is achieved by setting a thresh-
old for the number of detections of objects; any object that
doesn’t meet this criterion, due to inconsistent detection across
frames and cameras, is not instantiated. As discussed in sec.
III-D0c.

For instance, in the Colemans dataset, there is an example
case involving a vehicle carrier truck, illustrated in Fig. 12.The
YOLO model is not trained to recognize this type of vehicle.
The resulting sporadic detections of vehicles on the carrier,
result in the association algorithm failing to consistently track
the objects across different frames and cameras, and excluding
the detections. Therefore, none of the vehicle carrier objects
negatively impact the system performance.

Fig. 12: A vehicle carrier as an example of an anomaly, the
carried vehicles are detected at inaccurate positions

3) Size Precision: The estimated sizes are evaluated via
three metrics. The IoU with the ground truth ground area,
is a straightforward measure used often [8], [9]. To further
decompose the size, and omit inaccuracy in position also
the relative error in both the width and length estimation is
evaluated. An example of the output is shown in Fig. 11b.
Results are given in table I.

The experiments show the performance is high for the ideal
synthetic data, reaching highest IoU with 6 cameras. The
FlowCube data performs slightly lower. The system shows to
be robust across different datasets. The scores are compared
to other methods in table II. Our method scores than the
computationally costly single frame keypoint estimation model
of [8].

4) Near-Miss Detection Performance: Because of the
scarcity of near-miss events in the limited multi-camera
FlowCube data, we make the assumption that a low PET or
TTC value, if calculated correctly, will indicate a near-miss
event. This way, we can estimate the quantitative performance
of the system by analyzing the correctness of the PET and TTC
metrics. By analyzing system PET and TTC output between
two objects, a true case indicates an actual area of overlap
in future or history, a postive case indicates that the system
accurately detected such a case. The results of this surrogate
performance for a maximum time-difference of 2.5s can be
found in table III.

5) Near-Miss Detection Validation: To qualitatively vali-
date the near-miss detection, we compare the system’s output
with manually labeled near-miss events.

Method PET/TTC
triggers

Trigger
Performance Runtime

# precision ↑ [s]
FlowCube

Multi-Camera 101 0.87 240

TABLE III: PET and TTC trigger performance, all trigger
groups with ∆T < 2.5s are checked on actual overlap

For this analysis, near-miss trigger groups are filtered to
remove false positives and low-severity near-misses. With the
minimum δt so that: 0.01 > δt > 1.5, severity score> 7.5 and
at least 10 triggers per group.

• FlowCube Dataset: No severe near-miss events were
observed. Within a span of 12 minutes (4 Colemans, 8
Watkins), the system identified two near-miss events, one
low-severity near-miss and one false positive.

• Synthehicle Dataset: A single severe near-miss event was
observed and correctly detected by the system over a 3-
minute period, as illustrated Fig. 13).

• Single Camera Hilversum Dataset: Three severe near-
miss events were observed. The system detected 14 near-
miss events across 36 minutes. The three observed severe
events were ranked highest based on severity scores
and are sequentially presented in Fig. 14. All remaining
triggers were true positives of low severity.

The system shows the near-miss events are correctly de-
tected. The calculated severity score helps in the filtering of
the near-miss events. The system rarely wrongly detects a near-
miss event, however, differentiating between low-severity near-
misses remains a challenge.

6) Operational Efficiency: To evaluate the real-time edge
performance of the system, a test sequence of 100 seconds,
comprising of 1000 frames per each of the cameras was
conducted. This sequence is from the colemans dataset, and
consists of 4 cameras. Throughout the testing period, the en-
vironment consistently contained at least 15 objects, ensuring
a substantial processing load.

As the system is currently in its prototype phase, it utilizes
relatively slow pandas dataframes for data loading, storage and
evaluation. This design decision has significantly affected the
performance. To precisely evaluate the real-time capabilities of
the system and identify performance bottlenecks, the Python
cProfile module was used for an analysis of the subsystems.

During the performance evaluation, on a single thread of
an i5-1245U processor, the system registered a total compu-
tation time of 201.72 seconds, or 5 iterations per second. A
performance breakdown is presented in table IV that specif-
ically omits the time-consuming dataframe operations. This
exclusion is intentional, aiming to highlight the processing
efficiency of the system’s core components. It should be noted
that replacing pandas dataframe methods will reduce but not
eliminate processing overhead. According to our assessments,
with adaptations, the chosen methods have the potential to
operate on an edge computing system.
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(a) t = 5.7, output: TTC trigger 1.6s

(b) t = 7.5, output: TTC trigger of 0.2s

(c) t = 8.0, output: PET trigger of 0.4s

Fig. 13: The system detecting a near-miss event in the syn-
thetic data. Black boxes are traffic participants with a black
dotted trajectory, the red dotted boxes is the projected moment
of collision, synthehicle dataset

Function calls
[#]

Total Time
[s]

Time Per Call
[s]

Bounding box projection 4000 0.28 7.07E-05
Image to world 4000 0.37 9.24E-05
Matching: cost matrix 3934 10.97 2.79E-03
Matching: assigment 3934 0.03 6.92E-06
Kalman predict 183829 2.75 1.50E-05
Kalman update 91914 10.88 1.18E-04
Size Estimation 2948 6.68 2.27E-03
Near-miss detection 996 22.37 3.55E-04

TABLE IV: System Profiling: Processing times of various
methods of a 100-second time-frame of 4 cameras of the
”Colemans” dataset. Note that time-consuming dataframe op-
erations are excluded.

V. CONCLUSIONS AND LIMITATIONS

We developed an automated monitoring system for tracking
traffic participants, estimating their sizes, and detecting near-
miss events at intersections using a multi-camera setup with
overlapping views. The system operates effectively across
various camera configurations, independent of their timing,
enhancing robustness and accuracy. Our approach synthesizes
multiple camera perspectives into a unified Bird’s Eye View
(BEV) world model.

A study with synthetic and in-the-field data across multiple
intersections has validated that the system can match and
track multiple modalities cross-camera. The method effectively
leverages rudimentary bounding box information to form a
cohesive and robust worldview. With this, a solid basis for
accurate kinematic calculations is formed. Compared to the

(a) Near-miss event A, car turning left rapidely ap-
proaches a pedestrain crossing the road, resulting in
a TTC trigger[t 04:16]

(b) Near-miss event B, a car turning left while another
car is approaching results in a PET trigger[t 05:20]

(c) Near-miss event C, a car turning left while another
car is approaching results in PET trigger [t34:35]

Fig. 14: Three examples of near-miss events detected by the
single camera system, Black boxes are traffic participants
with a black dotted trajectory, the red dotted boxes traffic
participants positions at the projected collision, Hilversum
dataset

baseline method, a factor 2.90 increase in positional accuracy
is achieved. Size and position estimation, with an average IoU
of 0.61, proved to be more accurate than some single-frame
methods utilizing computation-intensive segmentation models.
As a consequence of the accurate positioning, the PET and
TTC can be seen as accurate predictors for collision risk, and
can be used in further research for analysis based on impact
velocity, angle, and contact point.

We validated the system’s near-miss detection capability by
manually analyzing the system output, confirming its reliabil-
ity. Using severity metrics, classification, and video analysis,
it has the potential to offer detailed insights into safety risks.
Field deployment of this system could help to pinpoint the
most prevalent hazards, contribute to accident prevention, and
reduce the number of incidents.

Future work includes further increasing robustness for mul-
tiple modalities such as trucks, by tuning both the detec-
tion model and method. The research could benefit from
performing a field study for several weeks. Additional near-
miss data can be acquired after setting up a video trigger
and storing method. Manual classification of such fragments
allows a performance assessment of the system. The fragments
would comprise a larger dataset that would allow for improved
classification and filtering by the severity of near-miss events.
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