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Abstract

Newborns requiring intensive medical care are placed in a specialized area of the hospital
known as the neonatal intensive care unit (NICU). In the NICU, electrocardiography (ECG)
is employed to continuously monitor heart function. Due to the delicate nature of infants’
skin epidermis, removing ECG electrodes can result in skin lesions and discomfort for the
infant, causing pain and disrupting sleep. Introducing a reliable, contactless measurement
technique could significantly enhance comfort levels for neonates in a NICU.

Remote photoplethysmography (rPPG) is an contactless technology that utilizes video record-
ings of individuals to extract vital health parameters, such as heart rate. This thesis explores
the functionality and reliability of near-infrared remote photoplethysmography (NIR-rPPG)
for non-contact heart rate measurement, irrespective of skin tone and environmental lighting
conditions. NIR-rPPG is particularly intriguing due to its potential to operate without dis-
rupting sleep and its likely independence from variations in skin tone compared to ambient
rPPG. Additionally, a Python-based rPPG application will be developed.

The rPPG application will undergo optimization initially on a single test subject to assess
the impact of factors such as camera type, noise, motion artifacts, environmental lighting,
and stability. Subsequently, tests will be conducted with eighteen human test subjects repre-
senting all skin types according to the Fitzpatrick skin type classification. The experimental
procedures were approved by the ethics committee of the University of Twente (application
nr. 230114). Heart rate error (HRE), signal-to-noise ratio (SNR), and analysis of variance
(ANOVA) will be utilized to interpret the results.

During the human subject experiments, our rPPG application demonstrated independence
from variations in skin tone and environmental lighting under NIR conditions. The heart
rate error was found to be within a 95% confidence interval ranging from -6.1% to 6.2%.
Additionally, a demonstrator resembling a mirror was developed for heart rate measurement
purposes. Through optimization, we identified the optimal parameters and settings within
the scope of this research. The HQCAM was chosen as the camera for experiments with
human subjects. Furthermore, after evaluating various rPPG algorithms, the POS algorithm
emerged as the most promising option under NIR conditions.
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1 Introduction
1.1 Heart Rate Measurement as Indicator for Health
The well-being of an individual can be evaluated by monitoring various physiological param-
eters, including heart rate, blood pressure, respiration rate, and blood oxygenation [1]. These
measurable biological functions offer valuable insights into an individual’s cardiorespiratory
stability and overall health. Established limits have been defined for these parameters to
delineate normal ranges in healthy individuals. Moreover, monitoring physiological param-
eters serves not only to diagnose diseases but also to identify potential health risks. In this
thesis, particular emphasis will be placed on heart rate, which serves as a reliable indicator
of human health during resting conditions.

Heart rate stands out as a crucial physiological parameter due to the indispensable role of
the heart in sustaining bodily functions. Responsible for circulating oxygen and nutrient-
rich blood throughout the body, the heart also facilitates the removal of carbon dioxide and
waste products [2]. Additionally, heart rate serves as a valuable diagnostic tool for various
diseases. Tachycardia may signal underlying health issues such as infection, cardiomyopathy,
or hypokalemia [3][4][5]. Conversely, bradycardia could indicate conditions like Lyme disease
or hyperkalemia [6][7]. However, it’s important to note that an elevated or reduced heart
rate isn’t always indicative of a health problem; fluctuations occur naturally, such as during
sleep or periods of excitement.

The measurement of heart rate dates back to around 300 B.C., credited to the ancient Greeks,
Chinese, or Indians, who palpated the subject’s pulse at a major artery using their fingers
[8]. However, it wasn’t until 1707 that clinical assessment of heart rate became feasible with
the invention of the "Physicians Pulse Watch," equipped with two sets of hands, one of which
could be stopped to function as a timer [9]. A significant milestone occurred in the 1920s with
the development of the first electrocardiogram (ECG) device by Dutch physiologist Willem
Einthoven [10]. The introduction of the ECG marked a monumental breakthrough in the
scientific community’s ability to analyze heart function. Over time, continuous improvements
have been made to ECG technology, rendering it an indispensable component of the initial
evaluation of patients with cardiovascular health issues [11].

Figure 1: Willem Einthoven with one of the first commercially available ECG devices.
Source: [12]
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Over the past few decades, extensive research has been dedicated to photoplethysmography
(PPG), a non-invasive method derived from the Greek words "photos" (light), "plethysmos"
(increasing), and "graphein" (to write) [13]. PPG operates by measuring changes in blood
volume within tissues using light, detectable via a photodetector. Figure 2 illustrates a
schematic representation of a finger pulse oximeter, a device employing PPG to measure
heart rate, blood oxygen saturation, and respiration rate. Typically, finger pulse oximeters
utilize two LEDs emitting light at 690 nm (red) and 940 nm (infrared) wavelengths [14].
Widely employed in sports medicine, medical diagnostics, and wearable technology, PPG
offers several advantages over traditional methods for measuring physiological parameters,
including its non-invasiveness and greater comfort for patients [15]. Moreover, with the pro-
liferation of wearable devices integrated into daily attire, PPG has emerged as a pivotal
technology for real-time tracking of health and fitness parameters.

Figure 2: A schematic depiction illustrating the operational principle of a finger pulse
oximeter. With each heartbeat, blood is propelled throughout the body, filling the blood

vessels, thereby causing a slight increase in volume. Conversely, between heartbeats, the
volume diminishes. These minute fluctuations in volume induce alterations in the

transmission of light through the tissue. Despite their subtle nature, these variations can be
detected and quantified by a pulse oximeter utilizing photoplethysmography. Source: [16]

Page 7



Master Thesis

1.2 Remote Photoplethysmography
Remote photoplethysmography (rPPG) represents the non-contact adaptation of traditional
photoplethysmography (PPG). This method enables the measurement of physiological pa-
rameters such as heart rate, oxygen saturation, and respiration rate from a distance [17].
Utilizing a video camera, rPPG captures subtle variations in skin color attributed to changes
in blood volume, thereby reflecting alterations in heart rate and various other physiological
parameters. Typically, ambient light serves as the primary illumination source for rPPG. In
recent years, rPPG has garnered considerable interest as a promising technology for remote
health monitoring, sports performance analysis, and numerous other applications [18]. How-
ever, owing to the delicate nature of the changes in skin color induced by fluctuations in blood
volume, the rPPG signal extracted from video data tends to be weak. Motion artifacts and
suboptimal lighting conditions can introduce noise into the rPPG signal, thereby compro-
mising its reliability. Moreover, individuals with darker skin tones exhibit lesser variations
in skin color under ambient conditions compared to those with lighter skin tones, leading to
a comparatively weaker rPPG signal in darker skin types [19].

To mitigate the weaker signal of rPPG in individuals with darker skin tones, our focus will
be on near-infrared remote photoplethysmography (NIR-rPPG). Near-infrared (NIR) wave-
lengths, ranging from 800 to 2500 nm, lie just beyond the red light in the electromagnetic
spectrum and are imperceptible to the human eye (see Figure 3). We hypothesize that NIR-
rPPG exhibits greater resilience to darker skin types compared to ambient rPPG due to
the diminished absorption of NIR light by melanin, the pigment in the skin, in contrast to
visible light [19]. Consequently, NIR light can penetrate deeper into dark skin, potentially
yielding a stronger rPPG signal relative to noise. Moreover, NIR-rPPG proves particularly
advantageous in scenarios where traditional rPPG may falter, such as during sleep in dark
environments. Research has shown that NIR-rPPG reliably captures heart rate and blood
oxygen saturation readings across diverse settings, including low-light conditions and individ-
uals with varying skin tones [20]. In this thesis we will look at NIR-rPPG in the wavelength
range from around 800 nm to 1000 nm.

Figure 3: A representation of the electromagnetic spectrum. It shows that near infrared
illumination has a higher wavelength than visible illumination. Source: [21]
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1.3 Heart Rate Monitoring in Neonatal Intensive Care
Units

Newborn infants requiring intensive medical attention are admitted to a specialized unit
within hospitals known as the Neonatal Intensive Care Unit (NICU). Typically, infants ad-
mitted to the NICU are either born prematurely, have low birth weight, or exhibit med-
ical conditions necessitating specialized care. In this critical care setting, the continuous
monitoring of cardiorespiratory stability is paramount, particularly for preterm infants [22].
Throughout their hospitalization in the NICU, vital signs are continuously monitored to en-
sure optimal care. These vital signs encompass parameters such as heart rate, respiratory
rate, pulse oximetry readings, and blood pressure [23]. Such meticulous monitoring aids in
early detection of any fluctuations or abnormalities in the infant’s physiological status, en-
abling prompt intervention and management when necessary.

In the NICU, continuous monitoring of cardiac activity is achieved through the use of ECG
[24]. ECG functions by detecting the electrical impulses generated by the heart muscle during
depolarization, which propagate as electrical signals to the skin’s surface. These signals are
captured by electrodes affixed to the infant’s chest, as depicted in Figure 4. The skin of infants
is notably delicate, making the removal of ECG electrodes a potential source of discomfort and
pain for the infant [25][26]. Additionally, the presence of electrodes can disrupt the infant’s
sleep patterns, further complicating their care. rPPG presents a promising alternative to
traditional ECG monitoring, potentially mitigating the challenges associated with electrode
use. However, it is important to note that while rPPG offers advantages in terms of comfort
and sleep quality for infants, it cannot fully replace ECG due to its inability to provide
comprehensive monitoring of cardiac function.

Figure 4: A picture demonstrating how the electrodes of the ECG are connected to a baby.
Source: [27]

Throughout the duration of this research, a novel device known as the Bambi Belt, developed
by Bambi Medical based in Eindhoven, was investigated for its efficacy in cardiorespiratory
monitoring. The Bambi Belt represents a wireless, non-adhesive sensor belt, which under-
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went extensive testing at both the Máxima Medical Centre in Eindhoven and the Academic
Medical Centre in Amsterdam. Results from these trials revealed that the Bambi Belt demon-
strated non-inferiority in heart rate monitoring when compared to the standard ECG method
employing adhesive electrodes, particularly in testing involving infants [28]. Moreover, ob-
servations indicated that prolonged utilization of the Bambi Belt was associated with fewer
adverse effects on skin conditions in preterm infants, in contrast to the utilization of tradi-
tional adhesive electrodes [29]. These findings underscore the potential of the Bambi Belt
as a promising alternative for cardiorespiratory monitoring, offering enhanced comfort and
reduced skin-related complications for infants in clinical settings.
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1.4 Aims of this Research
This thesis aims to create a rPPG implementation in Python software code that functions
under NIR-lighting conditions and for every skin colour. Therefore, several pre-existing
rPPG scripts are incorporated, translated and adapted. Moreover, the implementation will be
optimized, validated and tested with test subjects and newly available NIR-sensitive cameras.
Finally, a demonstrator will be designed and produced that can be used at Open Days at
the University of Twente.
To be able to reach these goals, some research questions have been formulated:

• Is rPPG a feasible method for non-contact heart rate measurement independent of skin
tone and environment light using near-infrared illumination?

• Which rPPG method performs the best under NIR conditions?

• Which rPPG method performs the best independent of skin tone?

The following are the new aspects that this thesis adds to the rPPG research:

• A real-time software implementation of core rPPG algorithms into one Python appli-
cation.

• The use of RGB-cameras modified to NIR sensitive cameras.

• The use of a new rPPG method optimized for NIR light.

• Evaluation of the application by testing on humans with different skin tones.

• The creation of a demonstrator.
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2 Theory
2.1 The Optics behind Photoplethysmography
2.1.1 Skin Chromophores and the Light-Tissue Interaction
Since rPPG relies on detecting subtle changes in skin coloration, understanding the role of
skin chromophores is crucial. Chromophores are particles within tissues that influence their
coloration. In human skin tissue, the primary chromophores responsible for absorbing short-
wavelength near-infrared light include melanin, water, oxyhemoglobin, and deoxyhemoglobin
[30]. The absorption coefficient of these chromophores varies across different wavelengths, as
depicted in Figure 5. Water, being the most abundant chromophore, is uniformly distributed
throughout human tissues. However, significant absorption of light by water occurs only at
higher wavelengths, typically above 1200 nm [31]. This suggests that water does not signifi-
cantly influence NIR-rPPG measurements under 1200 nm.

Figure 5: The absorption spectrum of the main chromophores in human skin tissue. Source:
[32]

Melanin, the primary chromophore in human skin tissue, largely determines skin coloration
[33]. The Fitzpatrick scale provides a classification system for human skin types based on
constitutive skin pigmentation and the ability to tan in sunlight, as depicted in Figure 6
[34]. Two types of melanin are significant contributors to the color of human skin tissue:
eumelanin and pheomelanin [33]. Eumelanin, responsible for darker tones, contrasts with
pheomelanin, which imparts more pinkish tones. The unique combination of these melanin
types determines an individual’s skin color. While all individuals generally possess the same
number of melanocytes (cells responsible for melanin production), the amount of melanin
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produced varies. Higher levels of melanin production result in darker skin, hair, and eye
colors.

Figure 6: The Fitzpatrick skin types classifications. Source: [35]

The absorption spectra of skin chromophores reveal an optical window wherein visible and
near-infrared light can effectively penetrate tissue for blood flow or volume measurements
[36]. This optical window arises from the strong absorption of light by water in the ultra-
violet and longer infrared wavelengths, as well as by melanin at shorter wavelengths. The
wavelength of light plays a crucial role in its interaction with tissue [37]. Tissue penetration
depth, defined as the depth to which light can penetrate tissue for a given intensity, varies
based on the wavelength of light, as illustrated in Figure 7. The absorption coefficient of
melanin decreases as the wavelength increases within the range of 400 to 1000 nm [38]. For
instance, the absorption coefficient of melanin reduces from approximately 600 cm-1 at 600
nm to about 90 cm-1 at 940 nm. This reduction in absorption coefficient suggests that the
rPPG signal at near-infrared wavelengths would be stronger for darker skin types due to
lesser light absorption compared to visible wavelengths.
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Figure 7: The penetration depth of different wavelengths of light into human skin tissue
shown per 50%, 10% and 1% of the light intensity that reaches that depth. Source: [39]

Blood flow is essential for delivering oxygen to all parts of the human body. Haemoglobin
molecules, present in red blood cells, contain four heme groups capable of binding oxy-
gen molecules. When oxygen is bound to a haemoglobin molecule, it forms oxyhemoglobin
(HbO2), whereas when no oxygen is bound, it is referred to as deoxyhemoglobin (Hb). The
presence or absence of oxygen binding influences the absorption profile of haemoglobin, as
depicted in Figure 5. Wavelengths near 805 nm are termed isosbestic wavelengths. At these
wavelengths, there are minimal differences in absorption between oxyhemoglobin and deoxy-
hemoglobin [40]. Consequently, the signal remains largely unaffected by changes in oxygen
saturation. Pulse oximeters, commonly used for measuring blood oxygenation, typically
utilize one non-isosbestic wavelength and one isosbestic wavelength to calculate oxygen sat-
uration levels [41].

2.1.2 The Dichromatic Reflectance Model
To delve into the principles underlying pulse extraction in rPPG methods, it’s essential
to begin by summarizing the dichromatic reflectance model, which defines the optical and
physiological properties of skin reflections. This model provides valuable insights into the
challenges encountered in rPPG usage and how various rPPG methods address these chal-
lenges.

The signal captured by a digital camera comprises both specular reflections and diffuse re-
flections, as described in the dichromatic reflectance model [42][43]. Specular reflection refers
to the mirror-like reflection of waves, such as light, from a surface. However, specular re-
flections typically lack meaningful physiological information relevant to rPPG analysis. In
contrast, diffuse reflection in rPPG refers to light that penetrates the skin, scatters within
the deeper layers of tissue, and is either absorbed or emitted back out of the body. Varia-
tions in the diffuse reflection component are primarily induced by the cardiac cycle, as blood
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exhibits stronger light absorption compared to surrounding tissues [44]. The degree of light
absorption is directly proportional to the volume of blood flowing through the tissue’s blood
vessels. Consequently, changes in blood volume lead to alterations in the color of the diffuse
reflection [45].

Now, imagine a scenario where a light source illuminates a piece of human skin tissue, and
there is a pulsating blood flow within this piece of skin. Simultaneously, a remote camera
captures this illuminated skin tissue, depicted in Figure 8. Additionally, we assume that the
light source emits light of a consistent spectral composition. The distance between the light
source and the skin tissue and the distance between the skin tissue and the sensors inside the
camera will influence the intensity the camera detects. So, the skin captured by the camera
has a specific intensity that changes over time. These variations in intensity are caused by
both motion-induced specular changes and subtle colour shifts induced by the pulse. The
extent of these temporal changes is directly related to the luminance intensity level.

Figure 8: A schematic representation of the dichromatic reflectance model. Source: [42]

Using the dichromatic model, the reflection of each skin pixel in a recorded image sequence
by the RGB channels can be represented as a time-dependent function:

Sk(t) = I(t) · (vs(t) + vd(t)) + vn(t), (2.1)

where Sk(t) stands for the RGB channels in a column of the k-th pixel; I(t) represents the
luminance intensity level, accounting for the variations in intensity caused by the light source
and the relative distances between the light source, skin tissue and camera. I(t) is modulated
by the specular reflection vs(t) and the diffuse reflection vd(t). The quantization noise of
the camera sensors is represented by vn(t). The time-dependent nature of the components
results from both the body’s motion and the pulsatile blood flow.

Specular reflections refer to the mirror-like reflection of the light from the skin tissue; this
light does not contain any pulsatile information. Hence, the spectral composition of the
specular reflection remains the same as that of the light source. The component varies over
time due to the influence of body motion; this affects the geometric relationship between the
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light source, skin surface and the camera. The specular reflection component can be written
as:

vs(t) = us · (s0 + s(t)), (2.2)
here us represents the unit colour vector of the light spectrum of the light source. The s0
and s(t) components refer to the stationary and varying parts of the specular reflections,
respectively. The motion of the body specifically induces the s(t) component.

Whereas the specular reflection contains no pulsatile information, the diffuse reflection does
contain information about the pulsatile flow of the blood. The diffusely reflected light is con-
nected to the absorption and scattering of the light within the skin tissues. The haemoglobin
and melanin levels in the blood and skin influence the chromaticity of the diffuse reflection
component. This means that the diffuse reflection component varies due to changes in the
blood volume and is, therefore, time-dependent. We represent this time dependency as:

vd(t) = ud · d0 + up · p(t), (2.3)

ud refers to the unit colour vector of the skin tissue; d0 stands for the stationary reflection
strength; up denotes the relative pulsatile strengths in the RGB channels; and p(t) stands
for the pulse signal.

When we substitute Equation 2.2 and Equation 2.3 into Equation 2.1, we receive the following
formula:

Sk(t) = I(t) ·
(

us · (s0 + s(t)) + ud · d0 + up · p(t)
)

+vn(t). (2.4)

From Equation 2.4, we can take the stationary parts of both the specular reflection component
and the diffuse reflection component; this will represent the stationary skin reflection:

uc · c0 = us · s0 + ud · d0, (2.5)

here uc represents the unit colour vector of the skin reflection, and c0 stands for the reflection
strength.

Now we are able to rewrite Equation 2.4 into:

Sk(t) = I0 ·
(

1 + i(t)
)

·
(

uc · c0 + us · s(t) + up · p(t)
)

+vn(t), (2.6)

the luminance intensity level I(t) is expressed as a combination of the stationary part I0 and
a time-varying part I0 ·i(t). It’s important to note that the specular reflection component can
be significantly larger than the other components, overpowering them. To address this, we
assume the existence of means to negate the pixels where the specular reflection dominates.
Furthermore, polarization could also help solve this problem; a polarization filter could be
placed in front of the light source and the camera. Only diffusely reflected light would then
reach the sensor of the camera.

From the dichromatic model and the model Equation 2.6, it becomes apparent that we want
to extract the pulsatile component p(t) from the colour information Sk(t).
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2.1.3 The rPPG Signal
The rPPG signal can be divided into an AC and a DC component; see Figure 9 [44]. The
AC component is the pulsatile component p(t) of the rPPG waveform and usually has its
fundamental frequency around 1 Hz. This AC component is superimposed onto a large DC
component. The DC component relates to the tissues and the average blood volume in the
tissue; this component varies slowly due to vasomotor activity, respiration, thermoregulation
and other physiological processes. These characters are dependent on where on the body the
rPPG signal is recorded [46].

Figure 9: A depiction of a perfect rPPG signal, with at the bottom the DC component and
superimposed on top of this the AC component. Source: [47]

The main factors influencing the AC component are the blood volume and the blood vessel
wall movement [48]. The amount of blood in the vessel and the position of the blood vessel
wall influence how the light is reflected and the amount of light that is captured by the
camera. So, the recorded rPPG pulses directly correlate with the tissue perfusion that the
camera is pointed on [49].

It should be noted that extracting the PPG signal in the NIR wavelength range presents
significantly greater challenges compared to the RGB wavelength region, primarily due to
two physiological reasons [20]. Firstly, the pulsatile strength (AC/DC ratio) in NIR is no-
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tably lower than in RGB, attributed to the lower spectral absorption of hemoglobin in the
NIR wavelength range. Secondly, the pulsatile contrast between different NIR wavelengths
is smaller because the blood absorption spectrum in NIR is flatter than that in RGB. These
factors contribute to strong disturbances that can easily disrupt the pulsatile component,
making it challenging to separate from these disturbances during signal extraction processes.
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2.2 The rPPG Pipeline
2.2.1 Analysis of State-of-the-art Core rPPG Algorithms
In order to design our Python implementation effectively, a thorough understanding of the
evolution and advancements in rPPG technology and algorithms is crucial. To accomplish
this, a comprehensive review of relevant literature was conducted prior to initiating the
project. This review process yielded the process flow depicted in Figure 10.
A typical rPPG processing chain comprises several key components, including region of inter-
est (ROI) selection, signal pre-processing, and the core algorithm for extracting the rPPG sig-
nal. More sophisticated rPPG pipelines may also incorporate ROI tracking and post-filtering
of the signal. These building blocks collectively form the foundation of rPPG technology and
play integral roles in its successful implementation and utilization.

Figure 10: A generalized pipeline of a rPPG algorithm.

2.2.2 Region of Interest Detection Methods
To detect a person’s heart rate from a real-time video, it’s essential to first detect the per-
son’s face, as the face often serves as the region of interest. Two commonly used methods for
detecting ROIs in Python are Haar cascade and MediaPipe FaceMesh.

The Haar cascade method utilizes an Object Detection Algorithm to identify faces in images
or real-time video [50]. This algorithm relies on edge or line detection features proposed by
Viola et al. and is readily available in the OpenCV module of Python [51]. On the other
hand, the MediaPipe FaceMesh method, developed by Google, not only locates faces within a
frame but also landmarks facial features by outputting 468 3-dimensional face landmarks [52].

While the Haar cascade method is known for its computational efficiency and speed,
MediaPipe FaceMesh is preferred for its accuracy and ease of use in facial landmark detec-
tion and tracking [53][54]. Despite requiring more processing power than the Haar cascade
method, MediaPipe FaceMesh is better suited for our rPPG implementation as it enables a
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more accurate definition of the ROI.

2.2.3 Facial Regions of Interest
The information captured by the camera varies depending on the specific area of the face
being targeted, primarily due to differences in skin thickness. According to Chen et al.,
this variation in skin thickness directly influences the depth at which blood vessels are situ-
ated [55]. Thicker skin tends to have deeper-seated blood vessels. Based on the findings of
Dae-Yael et al., the facial regions most suitable for rPPG signal extraction include the malar
regions, the lower medial forehead, and the glabella [56]. These regions have been highlighted
in Figure 11. These areas are particularly conducive to rPPG signal extraction due to their
relatively thin skin and proximity to superficial blood vessels.

Figure 11: A depiction of the ROI used in this thesis with the malar regions, the lower
medial forehead, and the glabella.

2.2.4 rPPG Algorithms
To incorporate the rPPG methods into our Python application, some algorithmic changes
had to be made to the available rPPG algorithms. These changes do not affect the nature of
the methods. The rPPG methods incorporated into the application can be seen in Figure 12.
These are the GREEN method, the POS method, the CHROM method and our own NIR
method. Our Python implementation has been built based on an open-source rPPG imple-
mentation called yarppg [57]. The GREEN, POS and CHROM methods have been adapted
to our implementation, and the NIR method has been added to these existing methods.

Now we will discuss some terminology that will help explain the functioning of the algorithms.
Henceforth, we notate x(t) = (xr(t), xg(t), xb(t)) as the pre-processed temporal trace in the
RGB space. This signal results from inputting the raw RGB signal s(t) in the filtering-based
pre-processing stage. So, for the homogeneity of the application, every method will receive a
piece of the sequence x(t) as input and produce y(t) as output.
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Figure 12: A systematic overview of the GREEN, POS, NIR and CHROM algorithms
implemented in the Python application.

2.2.4.1 GREEN
It has been reported in previous works that the green channel provides the strongest plethys-
mographic signal in the visible wavelength spectrum [58]. This is due to a peak in the
absorption spectrum of oxyhemoglobin. The GREEN method is one of the simpler algo-
rithms for estimating the heart rate from the pre-processed temporal trace in the RGB space
[59]. The algorithm follows the following steps:

1. The RGB temporal traces are acquired and detrended.

2. The average colour intensity for the green colour channel is calculated.

3. By spatial averaging, the spectral component is extracted. The most dominant fre-
quency is determined and passed on from this spectral component.

So, for the given RGB temporal traces x(t), the GREEN algorithm can be simplified to the
following formula: y(t) = xg(t).
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2.2.4.2 CHROM
The chrominance-based (CHROM) algorithm has been designed to try to deal with a weak-
ness that is present in several other rPPG methods: the unpredictability of the errors that
are caused during the normalization of the specular reflections at the skin [45]. The light
captured by the camera consists of specular and diffuse reflection components. The relative
contributions of the components, which together create the observed colour, depend on the
angles between the light source, skin, and camera. Thus, these angles vary over time due to
the person’s motion in front of the camera. This creates a weakness in the rPPG algorithms
when the specular component is not eliminated. The CHROM method eliminates the spec-
ular component using colour difference or chrominance signals. The algorithm follows the
following steps:

1. The RGB temporal traces are acquired, normalized, and detrended.

2. The normalized RGB traces are projected with the following projection matrix:[
3 −2 0

1.5 1 −1.5

]

3. This delivers the following two orthogonal chrominance vectors:

XCHROM(t) = 3xr(t) − 2xg(t) (2.7)

Y CHROM(t) = 1.5xr(t) + xg(t) − 1.5xb(t) (2.8)

4. From the following formula, the rPPG signal can be determined:

y(t) = XCHROM(t) − αY CHROM(t) (2.9)

where α = σ(XCHROM(t))
σ(Y CHROM(t)) (2.10)

5. By spatial averaging, the spectral component is extracted. The most dominant fre-
quency is determined and passed on from this spectral component.

2.2.4.3 POS
The plane-orthogonal-to-skin (POS) method tries to accomplish the same goal as the CHROM
method in eliminating the specular component [59]. However, while pursuing the same goal
as the CHROM method, the POS method takes a distinct approach. Instead of focusing
solely on analyzing temporal changes in chrominance components, as the CHROM method
does, the POS method introduces a novel concept – the creation of a plane orthogonal to
the skin tone within the temporally normalized RGB space [60]. This innovative approach
capitalizes on the unique characteristics of the RGB color space, where each color component
(red, green, blue) can be individually manipulated and analyzed. The projection matrix is
orthogonal to the intensity variation direction. By projecting the rPPG signal on the plane
orthogonal to the skin tone, the POS method tries to eliminate the specular reflection. This
allows for a more precise extraction of physiological signals embedded within the skin color
variations, thus improving the overall accuracy and reliability of the rPPG measurements.The
algorithm follows the following steps:
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1. The RGB temporal traces are acquired, normalized, and detrended.

2. The normalized RGB traces are projected with the following projection matrix:
[

0 1 −1
−2 1 1

]

3. This delivers the following two orthogonal vectors:

XPOS(t) = xg(t) − xb(t) (2.11)

Y POS(t) = −2xr(t) + xg(t) + xb(t) (2.12)

4. The rPPG signal is described by the following formula:

y(t) = XPOS(t) + αY POS(t) (2.13)

where α = σ(XPOS(t))
σ(Y POS(t)) (2.14)

5. By spatial averaging, the spectral component is extracted. The most dominant fre-
quency is determined and passed on from this spectral component.

2.2.4.4 NIR
The near-infrared (NIR) method was thought of in this research. The NIR method is based
on the GREEN method in that it only uses the information of one of the colour channels, the
red colour channel, of the camera. The red colour channel is used because this channel is the
most sensitive to light in the near-infrared wavelength range; see Figure 13a. This piqued
our interest to investigate whether this would mean that this channel would then contain
more plethysmographic signal than the other channels. The algorithm follows the following
steps:

1. The RGB temporal traces are acquired and detrended.

2. The average colour intensity for the red colour channel is calculated.

3. By spatial averaging, the spectral component is extracted. The most dominant fre-
quency is determined and passed on from this spectral component.

So, for the given RGB temporal traces x(t), the NIR algorithm can be simplified to the
following formula: y(t) = xr(t).
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(a) The typical sensitivities of CCD/CMOS sensors and the wavelengths without IR block filter.
Source: [61]

(b) Sensitivity area of the
GREEN [62] method in green,
which makes use of only the

green channel.

(c) Sensitivity area of the POS
[60] and CHROM [45] method
in red, green and blue, which

make use of all three channels.

(d) Sensitivity area of the NIR
method in red, the NIR method

only makes use of the red
channel.

Figure 13: The typical sensitivities of CCD/CMOS sensors and accompanying subfigures
that zoom in on the NIR range. The subfigures b, c and d show the relative response of the

colour channels to the rPPG method in the NIR region.
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2.3 Video and Camera Parameters

Figure 14: An overview of the video and camera parameters that influence the rPPG signal.

2.3.1 Brightness
Multiple factors influence the brightness and the quality of an image or video. The subsequent
equation can represent the relationship between these factors [63]:

IB ∝ gain ∗ ISO ∗ ET ∗ SI ∗ C (2.15)
where IB stands for Image Brightness, gain is the electronic amplification of the detected
voltage, ISO stands for the analogue gain, also known as the ISO sensitivity of the camera,
ET stands for the exposure time, SI is the scene illumination, and C is a constant that rep-
resents factors that are difficult to control, like the reflectivity of objects.

Increasing the gain amplification enhances image brightness, but excessive gain can introduce
strong salt-and-pepper noise artefacts [64]. On the other hand, exposure time dictates how
long the camera sensor is exposed to light: longer exposure times result in brighter images,
but excessive durations may cause motion-blur effects. ISO sensitivity, standardized by the
International Organization for Standardization (ISO), represents the camera’s sensitivity to
light and is quantified as a numerical value [65]. Higher ISO sensitivity values indicate greater
light sensitivity and improved light capture capability. Additionally, scene illumination (SI)
refers to the intensity of light per unit area, typically measured in lux units. Higher SI values
correspond to brighter scenes.

According to Odinaev et al., brightness values below 50 on an 8-bit scale (ranging from 0
to 255) indicate underexposure, while values above 200 indicate overexposure [66]. Their
study concluded that increasing video brightness does not significantly reduce the mean
absolute error of heart rate estimation. These findings align with the conclusions of van Esch
et al., who suggest that controlling exposure time is crucial only to avoid saturation [67].
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Moreover, Odinaev et al. found that the best agreement between heart rates calculated from
PPG and rPPG signals occurred within a brightness range of 100 to 150 [66]. Additionally,
their study revealed that increasing gain did not improve the cross-correlation between heart
rates derived from PPG and rPPG signals. These insights emphasize the importance of
optimizing brightness levels and exposure settings to achieve accurate heart rate estimation
through rPPG methods.

2.3.2 Noise
When acquiring biomedical signals like rPPG, various types of noise accompany the signal.
Some of the most common causes of noise from camera electronics in rPPG include:

• Motion: Motion of the ROI leads to motion artefacts in the signal. Attempts to
minimize this noise often involve ROI tracking techniques [68].

• Illumination changes: Variations in illumination cause fluctuations in the brightness
of the ROI. Using a uniform light source can help mitigate noise caused by these changes
in illumination [68].

• Skin Tone and Pigmentation: Variations in skin tone and pigmentation affect how
light is absorbed and reflected, resulting in differences in the detected rPPG signal.
Darker skin types, such as type VI, tend to exhibit lower signal-to-noise ratio (SNR)
values in rPPG measurements compared to lighter skin types [19].
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2.4 rPPG Signal Processing
In the processing of the rPPG signal, digital filters play a crucial role in removing or accentu-
ating specific signal characteristics [69]. These filters utilize Fourier transforms to decompose
the signal into its frequency components. A Fourier transform converts a signal from the
time domain to the frequency domain, providing information about the frequencies present
in the original signal. An illustration of a Fourier transform is depicted in Figure 15. Digital
filters enable us to isolate specific frequency ranges or eliminate unwanted frequencies from
the signal. By allowing certain frequencies to pass through while blocking others, these filters
help refine the signal to focus on relevant physiological information. Different types of filters
exhibit varying characteristics in terms of signal transmission and blocking.

Figure 15: An illustration of a Fourier transform where the signal is transformed from the
time domain to the frequency domain. Adapted from: [70]

The cutoff frequency is a crucial characteristic of a filter, determining the frequency at which
the filter begins to block or pass the signal. The extent of signal attenuation by the filter
depends on its order; higher-order filters typically attenuate the signal more effectively. In
rPPG research, most filters used are passband filters, which are defined by lower and upper
cutoff frequencies. Frequencies within this passband are allowed to pass through the filter
without significant attenuation. Frequencies outside the lower and upper cutoff frequencies
fall into the stopband, where the filter attenuates or blocks these frequencies.

2.4.1 Butterworth Filter
The Butterworth filter stands as a pivotal signal-processing tool in rPPG research, effectively
managing noise and artefacts within rPPG signals to enhance the accuracy and reliability of
extracted physiological information. Often employed as a band-pass filter, the Butterworth
filter is engineered to exhibit a maximally flat frequency response within the passband, en-
abling all band frequencies to traverse without significant attenuation, as depicted in Figure
16 [71]. However, this design characteristic results in a relatively gradual roll-off of frequencies
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within the stopband, where frequencies are attenuated. Despite this, the primary objective
of the Butterworth filter remains maintaining a smooth response within the passband, albeit
at the expense of steeper roll-off characteristics.

Figure 16: The frequency response of the Chebyshev and the Butterworth bandpass filters.
The cut-off frequencies are depicted here at 0.75 and 3 Hz. Adapted from: [72]

2.4.2 Chebyshev Filters
Chebyshev filters represent another type of filter frequently utilized in rPPG research. They
offer a steeper roll-off in the stopband compared to the Butterworth filter, albeit at the
expense of introducing ripples in either the passband (Type 1) or the stopband (Type 2),
as illustrated in Figure 16 [73]. Specifically, the Chebyshev Type 2 filter exhibits ripples
in the stopband, facilitating faster attenuation of frequencies in that region compared to
the Butterworth filter. This characteristic renders the Chebyshev Type 2 filter particularly
advantageous for rPPG applications, as it allows for efficient attenuation of unwanted fre-
quencies outside the cut-off frequency while minimizing attenuation of the signal of interest
within the passband.

2.4.3 Pre-processing
In the pre-processing stage of the application, a moving average filter is employed. This filter
operates by considering a window of frames over a specified timespan, continuously shifting
with the addition of each new frame [56]. The moving average filter is renowned for its
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ability to smooth the signal and capture its general trend. By applying this filter, abrupt
motion artefacts noise can be mitigated, and high-frequency noise as well as intermittent
motion artefacts can be effectively suppressed [56]. Overall, the moving average filter plays
a crucial role in enhancing the quality of the signal in rPPG applications by reducing noise
and enhancing the clarity of physiological information.
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3 Methods
3.1 Optimization of the rPPG Application
In an effort to optimize the functionality of the rPPG Application, a root cause analysis
will be conducted. This analysis aims to identify and address potential bottlenecks that
may impede the application’s performance. Five key areas of concern have been identified
and visualized in an association map, as depicted in Figure 17. These potential bottlenecks
include:

1. Camera (Section 3.1.2): Issues related to the camera hardware or setup that may
affect signal quality or data acquisition.

2. Noise (Section 3.1.3): Sources of noise within the signal, such as ambient noise or
electronic interference, which can degrade signal clarity.

3. Stability (Section 3.1.4): Factors affecting the stability of the signal acquisition pro-
cess, including fluctuations in lighting conditions or camera positioning.

4. Motion Artefacts (Section 3.1.3): Disturbances caused by subject movement or cam-
era motion during signal acquisition, leading to artefacts in the data.

5. Environment (Section 3.1.3): External factors in the surrounding environment that
may impact signal quality, such as ambient lighting or temperature.
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Figure 17: A mind-map for the optimization of the rPPG application.

3.1.1 The Testing Method
During the optimization process, a single test subject (the researcher) will be utilized un-
der nearly identical conditions to ensure consistency. The test subject will be positioned in
front of the camera for preliminary tests, maintaining a distance of approximately 0.5 meters
between the camera and the subject. Each measurement session will last up to 30 seconds,
during which the test subject will be instructed to maintain a steady posture and gaze di-
rectly at the camera. The experimental setup can be seen in Figure 18.
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Figure 18: A schematic representation of the experimental setup.

To ensure robustness, each measurement will be repeated five times to account for variabil-
ity. The POS rPPG method will be employed during the preliminary testing phase, as it is
considered the state-of-the-art method according to existing literature.

Various parameters for both the camera and the application will be systematically tested
and adjusted as needed. Additionally, different cameras and light sources will be evaluated
to determine their impact on signal quality and performance. Through this rigorous testing
process, optimal settings and configurations will be identified to enhance the accuracy and
reliability of the rPPG application.

3.1.2 Camera
In this research, several cameras are utilized for data acquisition, each serving specific pur-
poses. The cameras employed include:

1. Sony a6000 and HP Webcam: These cameras are used for ambient measurements.
The Sony a6000 (1920 x 1080 pixels) is a high-quality digital camera, while the HP
webcam (640×480 pixels) serves as a more affordable option.

2. HQCAM NIR Camera: The HQCAM NIR camera is a 1920×1080 pixel camera
equipped with a built-in ring of 940 nm NIR-LEDs. It is commonly used for surveillance
purposes in low-light conditions and captures 30 frames per second.

3. Near-Infrared Modified Sony NEX-5T: This camera has been modified for near-
infrared imaging, enhancing its sensitivity to NIR wavelengths. A NIR spotlight (centre
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wavelength at 850 nm) was used for the NIR illumination during the NIR measurements
with the Sony NEX-5T (1920×1080 pixels, 60 fps).

The Sony cameras (a6000 and NEX-5T) are connected to the PC via a video capture card,
resulting in a maximum resolution of 2MP HD (1980 x 1080). Both Sony cameras can achieve
a frame rate of up to 60 fps, while the HQCAM NIR camera and the HP webcam operate at
30 fps The HQCAM NIR camera is connected to the PC through an USB cable.

The HQCAM NIR camera is of particular interest due to its affordability and built-in NIR-
LEDs. It features a NIR filter with a passband ranging from 800 to 1064 nm, making it
suitable for capturing near-infrared signals.

3.1.3 Noise, Motion Artefacts and the Environment
To mitigate noise interference, we will manipulate the lighting conditions during testing on
the test subject. Three distinct lighting conditions will be employed:

1. Darkness with HQCAM NIR-LEDs Only: In this condition, the test subject
will be positioned in darkness, with illumination provided solely by the NIR-LEDs
integrated into the HQCAM camera.

2. Darkness with Additional NIR Flashlight: Similar to the first condition, the test
subject will be in darkness, but with supplementary illumination from a NIR flashlight
in addition to the NIR-LEDs of the HQCAM camera.

3. Natural and NIR-LED Illumination: In this condition, the test subject will be
exposed to ambient sunlight along with illumination from the built-in NIR-LEDs of
the HQCAM camera.

By varying the lighting conditions in this manner, we aim to evaluate the impact of different
lighting sources on noise levels in the acquired signals. This comprehensive approach will
provide insights into the effectiveness of each lighting configuration in reducing noise and
enhancing signal quality during rPPG measurements.

In addition to manipulating lighting conditions, we will also vary the gain level of the camera
to assess its impact on noise levels. The gain levels selected for experimentation include 1,
3, 5, 7, and 8. These varying gain levels will be applied while ensuring that the exposure is
adjusted accordingly to maintain brightness levels within the optimal range of 100 to 150, as
reported in the literature [66]. Given that the ISO sensitivity of the HQCAM camera cannot
be adjusted, tests related to ISO sensitivity adjustments will not be conducted. Instead,
focus will be placed on evaluating the influence of different gain levels on noise levels dur-
ing rPPG measurements. By systematically varying the gain levels while controlling other
parameters, we aim to elucidate the optimal gain setting that minimizes noise and enhances
signal quality in our experimental setup.

To comprehensively assess the impact of illumination direction on rPPG measurements, the
following setups will be employed with respect to the direction of sunlight:

Page 33



Master Thesis

1. Directly Facing Window: The test subject will be positioned directly facing a win-
dow, receiving direct sunlight as the a source of illumination.

2. 20 Degrees from Window: In this setup, the test subject will be seated at a 20-
degree angle relative to the window, allowing sunlight to illuminate the subject’s face
from an oblique angle.

3. 45 Degrees from Window: In this setup, the test subject will be seated at a 45-
degree angle relative to the window, allowing sunlight to illuminate the subject’s face
from an oblique angle.

4. 90 Degrees from Window: The test subject will be positioned perpendicular to the
window, receiving sunlight from the side.

By varying the direction of sunlight illumination in this manner, we aim to investigate how
different lighting angles affect the quality of rPPG signals. The uneven surface of the face
may result in varying levels of brightness and shadow, potentially impacting the reliability
of rPPG measurements [15]. This comprehensive approach will provide insights into the op-
timal positioning of subjects relative to sunlight sources during rPPG data acquisition.

To evaluate the influence of motion artefacts on rPPG measurements, tests will be conducted
under varying conditions:

1. Free Head Movement: In this condition, the test subject will be instructed to remain
seated without any constraints on head movement. They will be free to move their head
naturally during the measurement process.

2. Head Resting on Headrest: For this setup, the test subject will be provided with
a headrest to stabilize their head during the measurement. The headrest will ensure
minimal head movement during the data acquisition process.

By conducting measurements under these different conditions, we aim to assess how motion
artefacts impact the quality and reliability of rPPG signals. Stabilizing the head with a
headrest may help minimize motion artefacts, thereby improving the accuracy of rPPG mea-
surements. Comparing results obtained under free head movement and headrest conditions
will provide valuable insights into the effectiveness of motion artefact mitigation of our rPPG
application.

3.1.4 Stability
In the optimization process, various configurations of signal filters and parameters will be
tested to enhance the quality of rPPG signals:

• Butterworth and Chebyshev Type 2 Bandpass Filters: Filters will be tested at
different orders (2, 4, 6, and 8) to assess their effectiveness in attenuating noise and
preserving relevant signal components. Both Butterworth and Chebyshev Type 2 filters
will be evaluated to compare their performance characteristics.
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• Moving Average Filter: Different window sizes for the moving average filter will be
tested to evaluate their impact on signal smoothing and noise reduction. The moving
average filter’s ability to mitigate abrupt motion artefacts and high-frequency noise will
be assessed across various window sizes.

• Frequency Ranges for Bandpass Filters: Different frequency ranges will be exam-
ined for the bandpass filters to identify the optimal range for capturing physiological
signal components while suppressing noise and artefacts effectively.

• Frame Rate (FPS) Considerations: Due to limitations in adjusting the FPS of the
HQCAM camera, the sample frequency cannot be modified. Therefore, the impact of
fixed FPS on signal quality will be noted and considered in the analysis of experimental
results.

By systematically testing these configurations and parameters, we aim to identify the most
suitable settings for the signal filters and optimize the rPPG application’s performance under
different conditions and scenarios.
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3.2 Experiment with Test Subjects
3.2.1 Experimental Setup and Measurement Equipment
In this section, the experiment with different human test subjects will be detailed. These
measurements will be conducted after the optimization process, the results of the optimization
process will be implemented. The experimental setup, as illustrated in Figure 18, includes
the following components:

• Cameras:

– Sony a6000: This camera has a maximum frame rate of 60 fps, making it suitable
for measurements in ambient conditions.

– HQCAM: Equipped with a maximum frame rate of 30 fps and 2MP HD 1980 x
1080 resolution, this camera will be utilized for the NIR measurements.

• Connection to PC: The Sony a6000 camera will be connected to a PC via a USB
HD Video Capture Device. Video images from this camera will be captured at 2MP
HD 1980 X 1080 resolution.

• Finger Pulse Oximeter: A SPO55 finger pulse oximeter from SilverCrest Health-
ForYou will be utilized to measure the heart rate simultaneously with the camera
measurements. The SPO55 oximeter offers an accuracy of ± 2 beats per minute [74].

• Other parameters and choices for the rPPG application can be seen in Table 6 in the
results section.

This setup enables the simultaneous capture of video data using the rPPG application, along
with the measurement of the subject’s heart rate using the finger pulse oximeter. These
reference measurements will facilitate comparison and validation of the camera-based mea-
surements.

3.2.2 Experimental Protocol
In this experiment, the camera was positioned at a distance of 0.5 meters from the test
subject, following the methodology established by Verkruysse et al. [62]. The test subject
was instructed to gaze directly at the camera, and their head was placed on a headrest to
minimize motion artefacts. The camera’s height and orientation were adjusted to ensure that
the entire face of the participant was captured within the frame. During the NIR measure-
ments, the subject’s face was illuminated from the front by the built-in 940 nm LEDs for the
HQCAM camera.

A total of eighteen test subjects participated in this experiment, with their distribution across
different skin types outlined in Table 1. Prior to participation, written consent was obtained
from each volunteer, and the experimental procedures were approved by the ethics committee
of the University of Twente (application nr. 230114).
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Skin Type I II III IV V VI
Amount of Participants 3 5 3 2 1 4

Table 1: The distribution of the participants based on skin types.

3.2.3 Measurement Protocol
The measurements were taken according to the following protocol:

1. The participant is seated in front of the camera.

2. A finger pulse oximeter is placed on the finger of the participant to measure the reference
heart rate.

3. The ambient / NIR light source frontally illuminates the face of the participant.

4. The measurement will take thirty seconds.

5. Steps 2 to 4 will be repeated in ambient and NIR conditions.

6. The participant will be asked to walk up and down two flights of stairs to elevate their
heart rate. This enables us to see the rPPG algorithms’ functioning in different heart
zones.

7. Steps 2 to 4 will again be repeated in ambient and NIR conditions.

8. Ten measurements will be taken per test subject (5 ambient, 5 NIR).

3.2.4 Analysis and Statistics
3.2.4.1 Heart Rate Error
The evaluation metrics used in this study are the mean percentage error (MPE, from here
on forward referred to as heart rate error (HRE)) and the signal-to-noise ratio (SNR). The
correspondence between the heart rate extracted from the rPPG pulse signal by the algo-
rithms and the pulse rate extracted by the finger pulse oximeter is evaluated by the HRE.
The HRE is defined as follows:

HRE = 100
N

N∑
i=1

(HRAlgorithm − HRref)
HRref

. (3.1)
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Figure 19: A visual representation of the mean absolute percentage error.

3.2.4.2 Signal-to-Noise Ratio
SNR analysis is used to obtain a quality metric from the signals produced during the exper-
iments. The method used in this research project is adopted from de Haan et al. [45]. The
ratio of the energy around the fundamental frequency plus the first harmonic of the pulse
signal and the remaining energy contained in the spectrum is used in the calculation of the
SNR metric. The first harmonic is also selected to account for harmonic distortion. The
SNR is defined as follows:

SNR = 10log10

 Σ180
f=45(U t(f)S(f))2

Σ180
f=45((1 − U t(f))S(f))2

, (3.2)

where Ut(f) is a template around the peak heart rate and its first harmonic detected by the
finger pulse oximeter, and S(f) is the full frequency spectrum as measured by the algorithm.
The template can be seen in Figure 20. The template around the peak heart rate and its first
harmonic contain the five heart rates at either side to allow for heart rate variability [45].
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Figure 20: The template that is used in the SNR calculation. The template is centred
around the heart rate frequency determined by the finger pulse oximeter and contains the

five heart rates at either side to allow for heart rate variability. The first harmonic and the
five heart rates at either side are also included in the template.

3.2.4.3 Analysis of Variance
Analysis of variance (ANOVA) is a statistical method used in research to assess the differences
among group means in a data set [75]. The one-way ANOVA tests whether the group means
of two or more groups are significantly different, using one independent variable. ANOVA
aims to determine whether the observed variances between the groups are significant or if they
could be attributed to random chance. The one-way ANOVA will be applied on the SNRa
(average SNR) values to test the significance of differences between different measurement
conditions. A common significance threshold is used in this thesis, P < 0.05. If the calculated
p-value is smaller than 0.05, it indicates that there is a significant difference between the two
groups.
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3.3 The Flow of the rPPG Application
The application proposed in this thesis takes a stream of video as input. The input consists
of a sequence of tuples of the form (frame[i], timestamp[i]), where i denotes the counter of
video frames captured, frame[i] is a (width, height,3) matrix containing the RGB intensity
values of each pixel and timestamp[i] denotes the time at which frame[i] was captured. The
application pipeline can be seen in Figure 21.

Figure 21: The flow of the rPPG application that is created in this thesis.

For every video frame (frame[i]), an average of the intensity of the RGB channels within
a predicted skin ROI is computed and denoted as mean_rgb[i]. This process involves face
detection (3.3.1), landmarks prediction (3.3.2), ROI selection (3.3.3) and RGB signal extrac-
tion (3.3.4). It is worth noting that aside from the initialization of the face and landmarks
detection algorithm, no extra memory is required for these tasks.

Next, the blood volume pulse (BVP) signal will be estimated. The BVP signal is denoted
as bvp[t] and collected from the raw RGB signal. Since the subsequent rPPG algorithms
assume that the samples are evenly distributed in time, the asynchronous raw RGB signal is
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resampled to ensure uniform timing. Then, we utilize one of the rPPG methods, explained
in Section 2.2.4, to convert the skin RGB signal into the BVP signal. To clean the signal for
peak detection, a bandpass filter is applied.

Lastly, the heart rate is estimated using the filtered BVP signal. The first step involves
applying peak detection on the BVP signal to identify the true heartbeats; from this, the
pulse-to-pulse intervals can be calculated. Estimations can be made about the heart rate by
analysing the pulse-to-pulse intervals. In the subsequent sections, we will outline the sequen-
tial flow of the application. We will detail each step, discussing its purpose and function in
the overall process.

3.3.1 Face Detection
For face detection, both the OpenCV computer vision and machine learning library as well
as the MediaPipe face detection machine learning model are integrated into the application
[76][77]. Both of these libraries are openly accessible. The MediaPipe method functioned
more smoothly with the application, so the decision was made to make this the primary
method. The MediaPipe method makes use of the BlazeFace face detector. BlazeFace, a
machine learning model (a kind of AI), has an average accuracy of 98.61% and has been
trained on a database of 66,000 videos [78]. BlazeFace, has an average CPU latency of 2.61
ms which is short enough to detect the face in every frame at 60 fps [79]. The process
generates a rectangle representing the detected face in the format (xul, yul, width, height),
where ul denotes the rectangle’s upper left corner around the detected face. For our applica-
tion, only one face is detected at a time, whereas BlazeFace can detect up to 10 faces at a time.

Input: frame[i]
Output: rect[i]

3.3.2 Landmarks Prediction
The landmarks are detected using the Mediapipe Face Landmarker; it uses machine learning
models that can work with single images or a continuous stream of images. The model takes
a frame and a rectangle corresponding to the detected face area as input and generates the
output shape[i]. The shape[i] represents a 468-point list containing the pixel coordinates of
the 468 facial landmarks modelled by this machine learning instance [52]. The 468 landmarks
are visualized in Figure 22.

Input: frame[i], rect[i]
Output: shape[i]
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Figure 22: A graphic representation of the 468 facial landmarks that are detected by the
Mediapipe Face Landmarker. Source: [80]

3.3.3 ROI Selection
Selecting the Region of Interest (ROI) involves utilizing the predicted landmarks to create
contours around the relevant regions. In this research, we focus on targeting areas in the
face; in later research, other body areas should also be targeted. The information the cam-
era receives differs per area of the face being targeted. The main reason for this difference
is the thickness of the skin; the thicker the skin, the deeper the blood vessels are situated
respectively [55]. According to Dae-Yael et al., the facial regions best suited for rPPG signal
extraction are the malar regions, the lower medial forehead and the glabella [56]. The cor-
responding pixel coordinates were used to enclose the ROI; see Figure 23. The skin close to
the eyes, mouth and nose has been excluded from the ROI since these areas often move.

Figure 23: The ROI depicted on a face in NIR, contouring the malar regions, the lower
medial forehead and the glabella.
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The selection of the ROI is a critical step for the rPPG analysis. It is crucial to avoid noise
from non-skin areas during sampling, as this can interfere with the detection of the delicate
rPPG signal. The output, mask[i], is a binary matrix of dimensions (width, height), contain-
ing ones for skin areas and zeros for non-skin areas.

Input: shape[i]
Output: mask[i]

3.3.4 RGB Signal Extraction
The obtained skin mask is used to mask the corresponding frame using a bitwise operation,
resulting in a new masked_frame[i]. From this masked_frame[i], the red, green and blue
intensities of the pixels are extracted over the ROI. These intensities are averaged and denoted
in a (3,1) vector as mean_rgb[i]. This vector is computed by summing the masked_frame’s
RGB intensities of the masked_frame[i] over its width and height, and then dividing the sum
by the total number of skin pixels in the mask[i].

Input: frame[i], mask[i]
Output: mean_rgb[i]

3.3.5 Resampling
In real-time video processing, the video signal is often processed asynchronously. This means
that the sampled video frames are not evenly temporally spaced. This asynchronicity can be
attributed to the fact that the entire rPPG pipeline, including video capture and processing,
runs on a single computer thread. Consequently, the processing of each new video frame
takes a varying amount of time, and only when the current frame is processed a new frame
is grabbed. This leads to an irregular temporal sampling pattern.

For efficient signal processing in the subsequent stages of the pipeline, it is essential to have
a fixed sampling rate. So, by adding a resampling step to the pipeline, we can generate an
evenly-spaced signal for further processing. This entails converting the irregularly spaced
points in time into evenly spaced points. The resampling process uses linear interpolation;
each pair of consecutive frames generates evenly spaced points using the sampling frequency
(fs). The evenly spaced time points are stored in a 1D array-like list ts.

Input: frame[i], frame[i + 1]
Output: ts

3.3.6 BVP Signal Extraction and Filtering
Using a rPPG algorithm, a one-dimensional BVP signal can be extracted from the RGB sig-
nal. The rPPG algorithms GREEN, NIR, CHROM and POS from Section 2.2.4 have been
implemented in the application.

The BVP signal from the rPPG algorithms has been through a moving average filter, which
smoothed and cleaned the signal using the data points in a window of 300 frames, for the 30
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fps cameras this is a time frame of 10 seconds. The BVP signal will be filtered because this
simplifies finding the true pulse peaks in the BVP signal. The signal can be filtered using the
SciPy library, from which both the Butterworth and the Cheby2 bandpass filters have been
implemented. The bandpass filter range has been set at [0.75, 3] Hz since these frequencies
correspond to a heart rate range of 45 to 180 beats per minute. The output after the filters
is a 1D array-like list vs containing the filtered BVP signal.

Input: mean_rgb[i], ts
Output: vs

3.3.7 Peak Detection
The SciPy library is useful for detecting peaks in a 1D array with the scipy.signal.find_peaks
function. This function takes our vs 1D-array with the filtered BVP signal and starts de-
tecting peaks. However, we first need to define which peaks it needs to detect because the
function considers everything a peak if it is higher than its neighbour on either side. As you
would expect, this is problematic with a noisy signal.

To filter the list of peaks that the SciPy function initially produces, we can give the func-
tion a minimum distance between the peaks and a minimum height. The minimum distance
between the peaks is set to 0.33 * the sampling rate. The 0.33 value corresponds to 0.33 sec-
onds, which is the time between heartbeats at a frequency of 181 beats per minute. Applying
these settings to the list of peaks gives us a list with the indices between the true heartbeats.

Input: vs, ts
Output: indices, ts

3.3.8 HR Estimate
The indices with the true heartbeats get paired with the corresponding timestamps. The
average of the differences between the indices is taken; this gives us a heartbeat in Hertz, see
Equation 3.3.

HRHertz = mean(diff(ts[indices])) (3.3)

When we multiply 60 by the outcome of Equation 3.3, we get the HR in beats per minute
(bpm); see Equation 3.4.

HRbmp = 60 ∗ HRHertz (3.4)
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Now that we have the HR in bpm, we can take the average of the last three calculated heart
rates and the last calculated average to filter out any sudden drops or rises in the calculated
heart rate that are not continuous. The weighting of the average heart rate can be seen in
Equation 3.5.

HRbpmshown = (3 ∗ (HRbpm[fromthelastthreeframes]) + 2 ∗ HRbpm)/5 (3.5)

Input: indices, ts
Output: HRbpmshown

3.3.9 Signal Quality Index
To assess the quality of the rPPG signal, we will employ a signal quality index (SQI). Skew-
ness, which reflects the asymmetry of the probability distribution, is often linked to corrupted
rPPG signals [81]. Eldengi et al. have suggested that skewness SQI is the most effective index
for evaluating PPG signals [82]. To calculate skewness, we will utilize the skew function from
the SciPy library.
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3.4 Data Processing and Interpretation
For a clearer understanding of how results are obtained from the rPPG application, a
schematic representation of the process is depicted in Figure 24. The process commences
with the retrieval of the raw BVP signal from the POS algorithm. This BVP signal under-
goes filtration through both a Bandpass Filter and a moving average filter (Section 3.3.6).
Subsequently, peaks in the filtered BVP signal are detected, and the signal is Fourier trans-
formed to facilitate heart rate determination (Section 3.3.7).

During a measurement with the rPPG application, a heart rate value is outputted into the
Command Prompt every three seconds. Each heart rate value is accompanied by an SQI
value. Seven consecutive heart rate values with satisfactory SQI values (between -5 and 5)
are considered a measurement. These seven heart rate values are then averaged and incor-
porated into the data processing procedure. The resultant average value is compared with
the heart rate value obtained from the finger pulse oximeter.

Interpretation of the HRE values is based on comparable research in literature, as outlined
in references [66], [83], and [84]. Table 2 provides interpretations of the HRE values.

HRE value (%) Interpretation Color
x ≤ 3 Good Green
3 < x < 5 Okay Orange
x ≥ 5 Bad Red

Table 2: Interpretation of the HRE values

The template from Figure 20 is used in the calculation of the SNR value. The interpretation
of the SNR values is based on SNR values that have been achieved in comparable research
in literature [45][60][83]. The interpretation of the SNR values can be seen in Table 3:

SNR values (dB) Interpretation Color
x ≥ 7 Good Green
5 < x < 7 Okay Orange
x ≤ 5 Bad Red

Table 3: Interpretation of the SNR values

The color indications will be used in the bar charts in the results section to give an indication
of the value of the evaluation metrics.

Page 46



Master Thesis

Figure 24: A schematic overview of the process of retrieving results from the rPPG
application, starting with raw BVP signal and ending with data figures.
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4 Results
4.1 Results of Tests with Human Subjects with varying

Skin Types
Figures 25 and 26 depict boxplots illustrating the distribution of HRE values for rPPG
measurements conducted under ambient and NIR (940 nm) conditions across different skin
types. Analyzing Figure 25, it becomes apparent that HRE values for skin type VI exhibit
considerable variability (-15% to 20%) under ambient conditions compared to other skin type
categories. Conversely, HRE values for skin types I - II and III - IV - V remain relatively
consistent within the range of -5% to 5%.

Turning to Figure 26, the data suggests that NIR rPPG yields improved HRE values for skin
type VI in comparison to ambient rPPG. Additionally, the HRE values for skin types I - II
and III - IV - V exhibit slightly greater variability compared to those obtained under ambient
conditions.
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Figure 25: The evaluation metric HRE of the rPPG measurement with the Sony a6000 and the finger pulse
oximeter under ambient conditions, where the x-axis and y-axis denote the skin type and the HRE,

respectively.

Figure 26: The evaluation metric HRE of the rPPG measurement with the HQCAM (940 nm) and the
finger pulse oximeter under NIR conditions, where the x-axis and y-axis denote the skin type and the HRE,

respectively.
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In Figure 27, the SNR evaluation metric for rPPG measurements conducted under both am-
bient and NIR (940 nm) conditions is presented. It is evident that under ambient conditions,
the SNR value for skin type VI is notably low. However, under NIR conditions, the SNR
value for skin type VI demonstrates improvement and can be deemed acceptable. For skin
type categories I - II and III - IV - V, the SNR values are high under ambient conditions,
but slightly lower under NIR conditions, albeit still within acceptable ranges. The one-way
ANOVA conducted between the skin type VI and the other two skin type groups yielded a
p-value of P < 0.001 both times under ambient conditions, indicating a significant difference,
see Table 4. In Table 5 the p-values between the skin type categories under NIR conditions
can be seen, no significant differences were found.

(a) The SNR metric of rPPG under ambient conditions for
the different skin type categories.

(b) The SNR metric of rPPG under NIR (940 nm)
conditions for the different skin type categories.

Figure 27: The SNR metric of rPPG under ambient and NIR (940 nm) conditions for the
different skin type categories.

Ambient I - II III - IV - V VI
I - II - P = .29 P < .001
III - IV - V P = .29 - P < .001
VI P < .001 P < .001 -

Table 4: The p-values for the one-way ANOVA of the SNRa values of the rPPG
measurements under ambient conditions between the skin type categories.

NIR (940 nm) I - II III - IV - V VI
I - II - P = .67 P = .12
III - IV - V P = .67 - P = .49
VI P = .12 P = .49 -

Table 5: The p-values for the one-way ANOVA of the SNRa values of the rPPG
measurements under NIR (940 nm) conditions between the skin type categories.
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In Figure 28, a plot displaying the average HRE per measurement per test subject of the NIR
rPPG (940 nm) and finger pulse oximeter measurements is presented. The 95% confidence
interval spans from -6.1% to 6.2%.

Figure 28: The HRE of the measurements per test subject for the NIR (940 nm)
measurements.

In Figure 29, the plots depict the average HRE per test subject of the NIR rPPG (940 nm)
and finger pulse oximeter measurements, divided per skin type group (I-II, III-IV-V, VI).
The 95% confidence interval for skin type category I - II ranges from -4.2% to 4.7%, for skin
type category III - IV - V from -5.4% to 7.3%, and for skin type VI from -9.4% to 6.1%.
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Figure 29: The HRE of the measurements per test subject for the NIR (940 nm)
measurements divided per skin type group (I-II, III-IV-V, VI).
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4.2 Results of the Optimization of the rPPG Applica-
tion

In Table 6, the final settings and choices for the rPPG application are summarized. These set-
tings and choices were utilized to collect the results presented in the preceding sections. For
a more detailed examination of the optimization process results, please refer to Appendix 8.1.

Category Selected Option

Camera Ambient: Sony a6000
NIR: HQCAM

Angle of Illumination 0 degrees (head-on)
NIR Lighting NIR-LEDs and outside light
Gain Level Dependent on the illumination level
Head Fixation Fixed head

Type and Order of Bandpass Filter Type: Chebyshev Type 2
Order: 4

Frequency Range Bandpass Filter 45 - 180 Hz
Window Size of Moving Average Filter 10 seconds
rPPG Algorithm POS

Table 6: The selected settings and choices for the rPPG application.
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4.3 Application and Demonstrator Design
When the application is launched, two windows appear simultaneously. The first window is
dedicated to rPPG functionalities, while the second window displays camera and video prop-
erties. The rPPG window comprises the following elements: the video feed, the calculated
heart rate display, the logos of the University of Twente and the Techmed Centre, and a
pushbutton. Figure 30 provides a visual representation of the rPPG window.

Figure 30: The main window of the rPPG application

In the camera and video properties window (Figure 31), users can fine-tune settings such as
brightness, contrast, hue, saturation, sharpness, gamma, white balance, backlight compensa-
tion, gain, and exposure values.

Figure 31: The camera properties windows

The pushbutton in the rPPG window leads the user to the validation window, depicted in
Figure 32. The validation window includes two graphs, the calculated heart rate display,
the SQI value, and two additional pushbuttons. The left graph in the validation window
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illustrates the average brightness of the Region of Interest (ROI) in the video, which ideally
falls within the range of 100 to 150, as recommended by Odinaev et al. [66]. On the other
hand, the right graph in the validation window shows the Fourier transform of the rPPG
signal. Additionally, by right-clicking the mouse, this graph can also display the rPPG signal
itself. The SQI value serves as an indicator of the signal quality, with a value ranging from
-5 to 5 signifying good signal quality.

Figure 32: The validation window of the rPPG application.

When the "Create Spectrogram" pushbutton is activated, a new window displaying a spec-
trogram of the rPPG signal is generated, as illustrated in Figure 33. A spectrogram visually
represents the spectrum of frequencies of the rPPG signal over time, providing valuable in-
sights into its frequency components and variations.

Figure 33: An example of a spectrogram created with the rPPG application. The white line
indicates the highest frequency.
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The setup of the demonstrator is depicted in Figure 34. The HQCAM can be conveniently
positioned either on a laptop or a larger screen with a PC behind it, providing flexibility in
the demonstration setup.

Figure 34: The demonstrator with the HQCAM placed on a laptop.
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5 Discussion
5.1 rPPG Application Optimization
5.1.1 Camera
During the optimization process it became apparant that the impact of the camera on the ac-
curacy of our rPPG application is significant. A notable difference was observed between the
Sony a6000 (1920 x 1080 pixels, 60 fps) and the HP webcam (640×480 pixels, 30 fps) in terms
of the HRE and SNR when detecting heart rate under ambient conditions. The ANOVA test
revealed a significant difference (P < 0.001) in the SNRa between the HP Webcam and the
Sony a6000, suggesting that camera resolution plays a crucial role in performance. This
finding is consistent with existing literature, which underscores the importance of hardware
selection in rPPG systems [85].

However, distinguishing the precise factor responsible for the performance variation between
the HQCAM (1920×1080 pixels, 30 fps, 850 nm central wavelength) and the Sony NEX-5T
(1920×1080 pixels, 60 fps, 940 nm central wavelength), whether frame rate or central wave-
length, is challenging. Prior research indicates that frame rates exceeding thirty frames per
second may not substantially enhance rPPG system performance [15]. Therefore, the minor
discrepancies observed between the measurements with the Sony NEX-5T and the HQCAM
could likely be attributed to differences in central wavelength. Future investigations should
delve deeper into determining the optimal central wavelength for NIR-rPPG across various
skin types.

Nevertheless, the results of the one-way ANOVA analysis between the SNRa of the NEX-5T
and the HQCAM (P = 0.13) suggest no significant difference between the two NIR cameras.
Considering the HQCAM’s cost-effectiveness and built-in NIR light source, we opted to pro-
ceed with this camera for further experimentation.

5.1.2 Noise, Motion Artefacts and the Environment
The angle of illumination plays a crucial role in both the HRE and the SNR. Our observa-
tions indicate that as the angle of illumination increases, the HRE tends to increase while
the SNR decreases. The most accurate results were obtained when the illumination angle
was zero degrees (head-on). Consequently, we opted to maintain this illumination angle for
the continuation of our research.

The unexpected influence of NIR light intensity on the SNR, as observed in our experiments,
challenges our initial assumptions. Contrary to our expectations, increasing the NIR intensity
with the NIR flashlight led to a decrease in the SNR. This unexpected effect could potentially
be attributed to the introduction of undesirable noise by the flashlight source. Therefore,
further investigation into the relationship between NIR light intensity and its impact on the
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SNR is warranted.

On a positive note, tests conducted solely with the NIR-LEDs yielded promising results for
both the HRE and SNR, as compared to our predefined interpretations outlined in Tables
2 and 3. This suggests that our rPPG application can effectively operate independently of
ambient light conditions. This assertion is supported by the results of the one-way ANOVA,
which revealed no significant difference in SNRa values between NIR-LEDs in a dark room
and NIR-LEDs with ambient light (P = .42). Despite these findings, we opted to proceed
with subsequent experiments using NIR-LEDs in conjunction with the NIR light present in
the ambient light due to practical considerations.

Testing the different levels of gain proved difficult while also trying to maintain the delicate
balance between achieving optimal brightness levels (between 100 and 150 [66]) and, at the
same time, preserving the signal integrity. Contrary to our expectations, we were unable to
discern a clear relationship in our data where increasing the gain level would correspondingly
increase noise levels. This difficulty in manipulating the gain level without compromising the
signal quality highlights the intricate nature of parameter fine-tuning in rPPG systems.

Our findings reinforce the advantages of fixing the ROI by stabilizing the head during rPPG
signal acquisition, resulting in reduced HRE and improved SNR. This underscores the impor-
tance of minimizing head movement to enhance signal stability and quality. Practically, these
observations suggest that the ROI tracking function of our application could be enhanced
and warrants improvement.

5.1.3 Stability
Employing the Chebyshev Type 2 filter with an order of 4 has proven to yield the most
favorable HRE and SNR among the tested bandpass filters, as indicated by the findings of
Guler et al. [69]. This underscores the importance of signal processing techniques in refining
rPPG signals. The impact of the frequency range of this bandpass filter aligns with our
expectations; the narrowest frequency range of 45-120 exhibited the lowest HRE and highest
SNR. However, adopting this frequency range would limit heart rate measurements to below
120 beats per minute. Additionally, with a p-value of P = .10 for the one-way ANOVA of the
SNRa values between the frequency ranges of 45-120 and 45-180, no significant difference is
observed. Consequently, we opted for the frequency range of 45-180, as it could yield simi-
lar results in HRE and SNR while accommodating heart rates exceeding 120 beats per minute.

Concerning the window size of the moving average filter, the ten-second window demon-
strated superior performance in terms of both HRE and SNR. Smaller window sizes likely
encountered heightened susceptibility to noise and erratic variations due to their higher tem-
poral resolution. Conversely, larger window sizes might compromise the ability to capture
rapid physiological changes. The ten-second window strikes a balance by facilitating the
identification of both short-term variations and long-term trends in the rPPG signal.

The POS algorithm emerged as the most effective rPPG algorithm, exhibiting the lowest
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HRE and the highest SNR under both ambient and NIR conditions. This aligns with find-
ings from Wang et al., where the POS algorithm outperformed several other algorithms [60].
The effectiveness of the POS algorithm lies in its capability to eliminate specular components,
resulting in reduced noise levels. Notably, the performance of the POS method did not sig-
nificantly deteriorate under NIR conditions compared to ambient conditions, as indicated by
a p-value of P = .05 from the one-way ANOVA. The CHROM algorithm was excluded from
the results as it failed to measure the heart rate within the specified thirty-second time frame
for the measurements. Future investigations may explore the CHROM method using a PC
with greater computational capabilities. The GREEN and NIR algorithm exhibited poor
performance under NIR conditions. This poor performance can be dedicated to the fact that
both these algorithms only make use of one color channel and make no attempt to eliminate
the specular component of the light.

5.2 Tests with Human Subjects with varying Skin Types
5.2.1 Influence of Skin Type
During the testing with the eighteen test subjects an improvement was observed in HRE and
SNR for individuals with skin type VI when transitioning from ambient light conditions to
NIR-rPPG; this improvement is significant, with P < 0.001.

In contrast to the positive outcomes observed for skin type VI, our results reveal an increase
in HRE and a decrease in SNR for the other skin type categories when transitioning from
ambient to NIR conditions. However, it is noteworthy that the measurements still fall within
the acceptable range interpreted from the literature despite these changes. This suggests that
our rPPG method is robust enough to deliver reliable heart rate estimations across different
skin types.

With the p-values of the one-way ANOVA of the SNR values of the rPPG measurements
under NIR (940 nm) conditions between the different skin type categories all exceeding 0.05,
we can infer that our rPPG method is skin type invariant. There is no significant difference
in function observed across the various skin type categories. However, this is not the case for
the ambient measurements, as the p-value for skin type VI compared to the other categories
is P < 0.001.

5.2.2 The Reference Measurement
Comparing the 95% confidence interval of the HRE for all test subjects, ranging from -6.1% to
6.2%, with the accuracy of ± two beats per minute of the finger pulse oximeter, suggests that
our rPPG application approaches similar accuracy levels. It’s important to note that while
the finger pulse oximeter is commonly used as a reference measurement, the gold standard
for measuring heart rate is ECG. Despite that our research employs two methods reliant on
photoplethysmography, we decided for practical reasons, to continue using the finger pulse
oximeter as the reference measurement in this study.
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5.2.3 Future Research
The potential influence of breathing on rPPG signals presents a crucial consideration. The
observed decrease in SNR after having the test subjects walk up and down the stairs sug-
gests a potential impact of respiration on the measurements. Recognizing the significance
of respiration rate and exploring higher cut-off frequencies could be essential in mitigating
respiratory artefacts. Future research endeavors should focus on developing methods to in-
tegrate respiration rate data into rPPG algorithms, thereby enhancing the robustness and
accuracy of the measurements.

The initial plan to test the rPPG application’s performance in higher heart rate zones was
not executed as intended. This was due to the test subjects’ heart rates returning to their
resting levels too quickly after walking up and down the stairs. For future research endeav-
ors, the measurement protocol could be adapted to include exercise-induced scenarios using
equipment like a home trainer or similar methods. This approach would enable the assess-
ment of rPPG technology’s performance in dynamic physiological conditions, enhancing its
applicability in real-world scenarios where heart rates are elevated.

While our research has demonstrated the robustness of the rPPG application in terms of
its independence from skin tone and environmental light conditions, it is important to note
that further testing is required before its suitability for clinical practice can be confirmed.
Notably, the application has not yet been evaluated in higher heart rate zones and under
conditions of extreme heart rate variations. Furthermore, movement, a common occurrence
in clinical settings, has been limited in our tests. Evaluating the performance of the rPPG
application under conditions of movement is essential to ascertain its practical viability in
real-world scenarios. The decrease in accuracy of the heart rate estimation when motion
occurred during the measurements, indicates that additional research is needed into motion
artefact suppression. Additionally, the size of our subject pool remains relatively small, war-
ranting further investigation with a larger and more diverse sample population. These factors
highlight the need for continued research and validation efforts to ensure the reliability and
efficacy of the rPPG technology in clinical settings.

5.3 Application and Demonstrator Design
The graphical user interface (GUI) of the rPPG application was designed to emulate the
experience of looking into a mirror while simultaneously having your heart rate measured. In
the center of the screen, real-time video is displayed, providing users with a familiar visual
feedback. Adjacent to the video feed, the measured heart rate is displayed in a white box,
accompanied by a GIF of a beating heart to enhance user engagement. The application’s
background is kept black to ensure that the user’s focus remains on the camera image and the
displayed heart rate. To further enhance the GUI and provide more options, transitioning
from PyQt5 to the newly released PyQt6 would be advisable. PyQt is a Python binding of
a GUI toolkit, and upgrading to PyQt6 will offer additional features and improvements.

In the camera properties window, users have the flexibility to adjust various camera settings
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to ensure optimal performance. Specifically, users can fine-tune properties such as brightness,
aiming to maintain levels within the recommended range of 100 to 150 as advised by Odi-
naev et al. [66]. The impact of these adjustments can be visualized in real-time within the
validation view window, where users can monitor the signal quality through the SQI value
and the FFT spectrum. The validation window is meant to give more experienced users
more insights into the quality of the signal. Additionally, users have the option to generate a
spectrogram by clicking the corresponding button, providing a comprehensive visualization
of the captured signal up to that point. Spectrograms can reveal periodic patterns in the
signal corresponding to the heart rate and can be used to assess the quality of the signal.
Anomalies or irregularities in the spectrogram may indicate poor signal quality. To improve
the application, we would like to find a Python module to create a real-time spectrogram.

To enhance the user experience and create a more immersive setup, for when it is used dur-
ing an exhibition like the Open Days at the University of Twente, we propose mounting the
HQCAM on a larger display screen instead of solely on a laptop. By connecting the display
screen to a PC running the rPPG application, users can enjoy a mirror-like experience while
simultaneously monitoring their heart rate. This larger demonstrator not only provides a
more engaging interaction but also offers greater visibility and ease of use for users during
heart rate measurements.
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6 Conclusion
In this master thesis, we delved into the realm of remote photoplethysmography (rPPG), with
a particular focus on near-infrared remote photoplethysmography. Our aim was to compre-
hensively understand its performance, adaptability, and potential applications. The central
objective was to determine whether near-infrared rPPG could serve as a reliable method for
non-contact heart rate measurement, regardless of variations in skin tone and ambient light
conditions. Through meticulous optimization processes and experiments involving human
test subjects, our investigation has yielded valuable insights into the capabilities and chal-
lenges associated with this technology.

During the optimization phase, we identified the optimal parameters and settings essential
for our research scope. The HQCAM emerged as the chosen camera for our experiments with
human subjects. Additionally, after evaluating various rPPG algorithms, the POS algorithm
stood out as the most promising candidate. Among the digital signal filters tested, the Cheby-
shev Type 2 filter with order 4 demonstrated the best performance in terms of HRE and SNR.

Our rPPG application has showcased independence from environmental light in NIR condi-
tions. We observed no significant difference between measurements conducted in the dark,
illuminated solely by NIR LEDs, and those conducted under ambient light conditions.

Furthermore, our rPPG application has demonstrated robustness across various skin tones in
NIR conditions. While ambient rPPG showed significant disparities in HRE and SNR values
for different skin types on the Fitzpatrick scale, NIR rPPG exhibited consistent performance
across all skin types. Notably, while HRE and SNR values for skin type categories I - II and
III - IV - V saw minor deteriorations, significant improvements were observed for skin type VI.

We developed a demonstrator where the HQCAM is positioned atop a laptop, connected via
USB cable, allowing the rPPG application to run seamlessly. The application functions akin
to a mirror, with the user’s measured heart rate displayed alongside their "reflection."

For future research endeavors, exploring the functionality of the rPPG application in higher
heart rate zones, such as through exercise sessions on a home trainer, could provide valu-
able insights. Additionally, determining the optimal NIR wavelength for NIR-rPPG could
enhance the technology’s accuracy and applicability. Ultimately, enhancing the study’s va-
lidity and generalizability could be achieved by expanding the sample size and diversifying
the participant demographics.
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8 Appendix
8.1 Results of the Optimization of the rPPG Applica-

tion
8.1.1 Cameras
In Figure 35 the HRE and the SNR, that have been determined with the measurements, of
the different cameras are presented in bar charts. The Sony a6000 under ambient conditions
performs the best in both metrics. The HP Webcam performs the worst in both metrics. The
HRE of the HQCAM is lower than that of the Sony NEX-5T, as to where the SNR of the
Sony NEX-5T is higher. The p-value for the ANOVA between the SNRa of the HP Webcam
and the Sony a6000 is P < .001. The p-value for the one-way ANOVA between the SNRa of
the NEX-5T and the HQCAM is P = .13.

(a) The absolute HRE of the different cameras (b) The SNR of the different cameras

Figure 35: The evaluation metrics of the different cameras presented in bar charts, where
the x-axis and y-axis denote the evaluation metrics and the different cameras, respectively.
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8.1.2 Results Noise, Motion Artefacts and the Environment Tests
8.1.2.1 Angle of Illumination
A schematic representation of the angles of illumination is given in Figure 36. In Figure 37
HRE and SNR under different angles of illumination are presented. An angle of zero degrees
indicates that the light source is perpendicular to the face of the test person. It shows that
the heart rate is most accurately calculated when the angle of illumination is 0 degrees, this
also delivers the highest SNR. An angle of illumination of 90 degrees gives the least accurate
heart rate estimation with the lowest SNR. An increasing angle of illumination causes an
increasing HRE and a decreasing SNR.

Figure 36: A schematic overview of illumination angles.

(a) The absolute HRE of the different illumination angles (b) The SNR of the different illumination angles

Figure 37: The evaluation metrics of the different angles of illumination, where the x-axis
and y-axis denote the evaluation metrics and the different angles of illumination in degrees,
respectively. The angle of zero degrees indicates that the light source is perpendicular to the

face of the test person.

8.1.2.2 NIR Lighting
An overview of the results of the tests with the different NIR light sources is given in Figure
38. The combination of NIR illumination from environment light and the NIR-LEDs that
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are integrated in the HQCAM give the highest SNR, where the use of only the NIR-LEDs in
a dark room gives the lowest HRE. The additional use of a NIR flashlight causes an increase
in the HRE and a decrease in the SNR. The p-value for the one-way ANOVA of the SNRa
values between NIR-LEDs in a dark room and NIR-LEDs with environment light is P = .42.

(a) The absolute HRE of the type of illumination (b) The SNR of the type of illumination

Figure 38: The evaluation metrics of the different types of illumination, where the x-axis
and y-axis denote the evaluation metrics and the type of illumination, respectively.

8.1.2.3 Gain Level
The results of the measurements investigating the influence of the gain parameter are dis-
played in Figure 39. Gain levels five and eight show the lowest HRE, whereas gain level three
shows the highest average SNR.

(a) The absolute HRE of the different gain levels (b) The SNR of the different gain levels

Figure 39: The evaluation metrics of the different gain levels, where the x-axis and y-axis
denote the evaluation metrics and the different gain levels respectively.
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8.1.2.4 Head Fixation
The influence of fixating the head on the HRE and SNR of rPPG measurements can be seen
in Figure 40. A fixated head causes a lower HRE and a higher SNR compared with a loose
head.

(a) The absolute HRE of the head fixation (b) The SNR of the head fixation

Figure 40: The evaluation metrics of the head fixation, where the x-axis and y-axis denote
the evaluation metrics and whether the head is fixated or loose, respectively.
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8.1.3 Results Stability Tests
8.1.3.1 Bandpass Filters
The results of the measurements investigating the influence of the order of the Butterworth
filters can be seen in Figure 41. The fourth order of the Butterworth filter gave the lowest
HRE and the highest SNR, however the SNR value is relatively low.

(a) The absolute HRE of the different Butterworth orders (b) The SNR of the different Butterworth orders

Figure 41: The evaluation metrics of the different orders of the Butterworth filter, where
the x-axis and y-axis denote the evaluation metrics and the order of the Butterworth filter,

respectively.

Figure 42 shows the evaluation metrics of the different orders of the Chebyshev Type 2 filter.
The fourth order of the Chebyshev Type 2 filter show the lowest HRE and the highest SNR
value. Comparing these values with the ones of the best Butterworth order, it becomes clear
that the fourth order of the Chebyshev Type 2 filter shows both the lowest HRE and the
highest SNR.
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(a) The absolute HRE of the Chebyshev Type 2 orders (b) The SNR of the Chebyshev Type 2 orders

Figure 42: The evaluation metrics of the different orders of the Chebyshev Type 2 filter,
where the x-axis and y-axis denote the evaluation metrics and the order of the Chebyshev

Type 2 filter, respectively.

8.1.3.2 Frequency Range
Figure 43 shows the evaluation metrics of the different frequency ranges that have been
tested. The range from 45 to 120 Hertz gives both the lowest HRE and the highest SNR.
The frequency range from 45 to 180 Hertz is the only other range tested that gives both a
HRE and SNR value that can be considered good according to our interpretation in Table 2
and 3. The p-value for the one-way ANOVA of the SNRa values of the frequency range of
45-120 and 45-180 is P = .10.

(a) The absolute HRE of the different frequency ranges (b) The SNR of the different frequency ranges

Figure 43: The evaluation metrics of the different frequency ranges of the bandpass filter,
where the x-axis and y-axis denote the evaluation metrics and the different frequency ranges

in Hertz, respectively.
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8.1.3.3 Window Size of the Moving Average Filter
The results of the measurements investigating the influence of the window size of the moving
average filter on the HRE and SNR are displayed in Figure 44. The window size of 10 seconds
shows both the lowest HRE and the highest SNR.

(a) The absolute HRE of the different window sizes (b) The SNR of the different window sizes

Figure 44: The evaluation metrics of the window sizes of the moving average filter, where
the x-axis and y-axis denote the evaluation metrics and the window size of the moving

average filter respectively.
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8.1.4 rPPG Algorithms
From the tested rPPG algorithms, the POS algorithm delivered both the lowest HRE and the
highest SNR in both the ambient and the NIR conditions, see Figure 45 and 46. The p-value
for the one-way ANOVA of the SNRa values between the POS method under ambient and
under NIR conditions is P = .05.

(a) The absolute HRE of rPPG algorithms under ambient
conditions

(b) The SNR of the rPPG algorithms under ambient
conditions

Figure 45: The evaluation metrics of the rPPG algorithms under ambient conditions, where
the x-axis and y-axis denote the evaluation metrics and rPPG algorithm, respectively.

(a) The absolute HRE of the rPPG algorithms under NIR
conditions

(b) The SNR of the rPPG algorithms under NIR conditions
Same height

Figure 46: The evaluation metrics of the rPPG algorithms under NIR conditions, where the
x-axis and y-axis denote the evaluation metrics and the rPPG algorithm, respectively.
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8.2 Bland Altman plots of the NIR measurements

Figure 47: Bland Altman plots of the NIR-rPPG measurements.
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