
Towards applications’ fingerprinting through the
usage of NetFlow/IPFIX technology

Mario R. Vuolo
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente

Email: m.r.vuolo@student.utwente.nl

Abstract—Flow monitoring has become an increasingly preva-

lent method for monitoring traffic in enterprises mainly due to

its performance and scalability. We present a system that detects

anomalous outbound HTTP communications, which exploits the

advantages of NetFlow/IPFIX technology to passively extract

fingerprints for each application running on a host. The aim

of our work is to identify the most discriminative features

within an IPFIX system to identify both the application types

and detect fingerprints from anomalous communications. We

evaluate our prototype with real-world data from an international

organisation and a dataset of traffic generated from malware

and show that it can detect malicious traffic with an accuracy of

98.6% and a recall of 91.6% for 246 monitored host machines.

We compare our solution with DECANTeR [6], the current

state-of-the-art application fingerprint approach, which detects

anomalous outbound HTTP traffic independently from their

payload without using malicious data during the training phase.

The results show how our approach is a good alternative, in terms

of detection rate and resources required in detecting malicious

traffic. This capability is further demonstrated in an analysis

of the dataset composed of malicious traffic, where our system

detected malicious traffic in 99,06% of the cases.

Keywords—Network Security, Anomaly Detection, Data Exfil-
tration, IPFIX, Passive Application Fingerprinting.

I. INTRODUCTION

Data is one of the biggest and most valuable assets for
organisations. For this reason, in the last years sensitive data
has been a key motivator for most of cyber-attacks performed
against enterprises. In 2015, the Italian security company
Hacking Team was itself hacked, causing the disclosure of
around 400GB of internal files including zero-day exploits, a
list of its clients and private emails. In 2021, Facebook warned
its customers that in 2019 a cyber-attack had compromised
around 533 million accounts causing the loss of millions of
phone numbers, full names, locations and biographical infor-
mation [1]. These are two examples of companies among many
others that have been breached in the last years. Additionally,
data exfiltration has been shown to be a serious, expensive and
increasing problem for companies by the latest Verizon Data
Breach Investigations Report [2] and the IBM Security Report
[3].

In response to these issues, automatic or semi-automatic
methods have been proposed to mitigate the risks to incur
data exfiltration. Different techniques exist to detect mali-
cious communication by exploiting malware characteristics.
In particular, the so-called signature-based, behavioural-based
and anomaly-based techniques. In signature-based approaches,

tools rely on datasets of known malware to identify unique pat-
terns and characteristics of specific threats, called signatures.
These solutions detect malware by identifying unique patterns
that match the signatures of known malware. This type of tech-
nique works because many malware maintain portions of code
recycled from old attacks. Differently, behavioural-based tools
aim to understand the characteristics and patterns of what is
considered “normal” in a given environment and then identify
deviations or changes from this baseline. On the other hand,
anomaly-based tools are built on the premise that malicious
activities differ significantly from normal behaviours, and by
identifying those deviations, potential threats can be detected.
In particular, malicious traffic is analysed and clustered into
families based on a notion of structural similarity between the
malicious HTTP traffic they generate. In this way, it is possible
to train classifiers to spot generic command and control (C&C)
communication channels [12].

These techniques are the first steps many companies go
through to prevent most threats. However, malware commonly
employ evasion methods that exploit the weaknesses of these
techniques to remain undetected. Firstly, these techniques are
strongly influenced by the characteristics of the malware used
for the generation of the signatures and classifiers. Thus,
unknown or new malware are not detected by these signatures
and behavior based tools. Secondly, variants of known malware
can exploit obfuscation techniques to hide their behaviour
and evade detection techniques. For these reasons, researchers
have proposed anomaly-based approaches to overcome these
limitations. These solutions are capable without any knowledge
of malware to define a baseline of benign network data, which
detect potentially a wide range of novel attacks. Unfortunately,
most existing approaches do not provide a good detection rate
in high speed network enterprise scenarios as they are easy to
evade and require a lot of computational and storage costs.

Since many companies rely on NetFlow/IPFIX technology
to monitor their network due to its performance, scalability,
cost and less privacy concerns, we wanted to investigate
whether we could use the advantages of this technology to per-
form passive application fingerprinting to identify anomalous
outgoing HTTP connections. Passive application fingerprinting
is a method that observes the network traffic generated by the
applications to gather information about their behaviour and
characteristics. By analysing this network traffic, the technique
can identify the applications installed on each machine and
detect any anomalies or the presence of new applications, in-
cluding potential malware infections. Most monitoring occurs
within the organization, granting us the advantage of reading

unencrypted traffic like HTTP through MITM (Man-in-the-
Middle) proxies. Further elaboration on our threat model is
presented in Section III.

The main contributions of this paper can be summarised
as follows:

• we designed and fully implemented a system capable
of detecting anomalous HTTP flows, based on a pas-
sive application fingerprinting technique [6], using Net-
Flow/IPFIX technology. The approach can automatically
model different HTTP-based applications of a host from
their network traffic and detect anomalous traffic connec-
tions. While there is literature about OS fingerprinting
within a scheme of IPFIX monitoring [7], to the best
of our knowledge, none has been proposed towards the
implementation of application fingerprinting.

• we evaluated the obtained solution by comparing the
results obtained with DECANTeR. Our results involved
two different datasets containing traffic generated by data
exfiltration malware and samples of live network traffic.

The remainder of the paper is structured as follows. Section
II describes the technologies and concepts adopted in our
work and motivates our choices. Section III elaborate the
threat model considered. Section IV gives an overview of
the proposed system. Section V motivates the choice for the
features that were extracted to generate application fingerprint
and details each module of our solution. Section VI describes
the datasets we used to evaluate the proposed solution and
presents the evaluation performed on these datasets. Section
VII goes through benefits and limitations of our solution.
Section VIII compares our work with related literature. Finally,
section IX presents the conclusions and possible directions for
future research.

II. BACKGROUND AND MOTIVATIONS

As mentioned in the previous section, our work focus on
NetFlow/IPFIX technology to perform application fingerprint-
ing to define users’ ‘normal’ traffic behaviour to detect data
exfiltration through HTTP protocol. This section explains the
motivations of our choices.

A. NetFlow/IPFIX

NetFlow and IP Flow Information eXport (IPFIX) are
scalable passive network monitoring approaches suitable for
high-speed networks, where packets are aggregated into flows
and exported for storage and analysis. A flow is defined as
“a set of IP packets passing an observation point in the
network during a certain time interval, such that all packets
belonging to a particular flow have a set of common properties”
[27]. In addition to their suitability for high-speed networks,
these approaches have other advantages: 1) they are widely
deployed, as integrated in high-end packet forwarding devices;
2) they can be efficiently stored and compressed, allowing flow
collections for long periods of time (e.g., years); 3) they are
usually less privacy-sensitive, since traditionally only packet
headers are considered; and 4) they traditionally do not rely
on Deep Packet Inspection (DPI), so these solutions can be
applied to encrypted communications and standard protocols,
such as HTTPS [26]. In our research we setup flow exporters

using a tool called nProbe [28] that receives packets leaving
and entering the international organisation network, aggregate
them into flows and export the flow data to a flow collector for
storage. In our case, IPFIX was used as a flow export protocol
as it is nowadays considered much more accessible and open
than its predecessor (i.e., NetFlow protocols). Each stored flow
record contains different types of information extracted from
the IP header, such as source and destination IP addresses, TCP
and HTTP protocols. Examples of the type of information that
we analysed in this research will be discussed in Section V.

B. Passive application fingerprinting

Just like a fingerprint’s unique pattern serves to identify an
individual, each application has unique characteristics in its
communications that can be used to identify it on a network.
Passive application fingerprinting only listens to the packets
on the network. When a packet is received, it extracts specific
values of IP, TCP or application headers in order to describe
an application. Thus, by creating a baseline reference set
of benign application fingerprints, passive fingerprinting can
also be used to detect unknown applications and anomalous
behaviours at regular intervals [6]. For instance, when a new
software is installed, such as a malware, its traffic may be
flagged as anomalous. In our system we aim to generate
a set of fingerprints for each application from live traffic.
This, however, has two main challenges: 1) flow records
regarding a specific application may be insufficient to properly
model the characteristics of the application due to their low
frequency or changes of messages transmitted over time; 2)
new applications can be installed or old ones can be updated
by users, so new fingerprints need to be added to or modified
from the set of fingerprints of the host. We address both these
challenges in this paper in section V. In conclusion, even
though there is literature in OS fingerprinting within a scheme
of IPFIX monitoring [7], none has been proposed towards the
implementation of a passive application fingerprinting.

C. HTTP

HTTP is the most popular protocol via which malware
exfiltrate data and communicate with command and control
(C&C) servers [20][9]. This protocol is almost always al-
lowed, even by very restrictive firewalls or proxy, as it is
mostly used by every user application. This guarantees to an
attacker a persistent communication channel, where data can
be exfiltrated from the organisation’s network. Moreover, some
characteristics of the HTTP(S) protocol (e.g., higher bandwidth
usage, pattern irregularity and extensive use in enterprises)
make it a much effective protocol to exfiltrate large volumes
of data in a shorter amount of time without being noticed. For
these reasons our research focus on HTTP protocol, addressing
the challenges mentioned above.

III. THREAT MODEL

We consider a network monitor that extract all network
information from servers and workstations in an enterprise
network. The malware under consideration utilises HTTP or
HTTPS as its communication protocols. These are protocols
commonly used by malicious software either to communicate
with their C&C server or to exfiltrate data [21][8]. One of
the primary reasons for this preference is that HTTP and

HTTPS traffic is generally allowed through enterprise firewalls,
and malware can easily conceal data exfiltration among large
volumes of benign HTTP and HTTPs traffic. Our solution
focuses on HTTP but can be extended to HTTPS in enterprise
scenarios where Man-In-The-Middle (MITM) proxies are de-
ployed to inspect encrypted traffic. This is common practice for
enterprise networks that inspect employees’ encrypted traffic
to gain network visibility and detect security threats [24][25].
In fact, many commercial solutions and open-source solutions
are widely available depending on the use-case and protocol
that should be analysed [23][22]. These solutions intercept,
decrypt, inspect, then re-encrypt and forward on traffic between
applications or browsers and external web servers.

We assume that access to the network monitors analysing
HTTP(S) traffic is restricted and the probes cannot be
compromised by an attacker. The attacker can just infect the
monitored hosts with any number of malware. We assume
attackers can obfuscate (i.e., encode, compress or encrypt)
the content of the communication before transmitting it over
the network. This is a common hypothesis, because attackers
are used to exploiting different evasion techniques [30][32] to
avoid detection mechanisms. Finally, our approach assumes
there is a security operator that analyses the alerts produced
by our solution, acting on those alerts.

IV. SYSTEM OVERVIEW

We recall that our goal is to perform passive application
fingerprinting on IPFIX/HTTP data to detect malicious appli-
cations. To do so, we present an overview of our approach
for detecting data exfiltration by passively modelling benign
traffic to identify anomalous behaviours in application network
activities. The final output is a list of connections classified
as anomalous because these connections were initiated by
new installed applications, inconsistent application network
communications or malicious traffic. We motivate the design
choices that lead to our proposed framework.

The main goal of our approach is to overcome challenges
posed by existing malware detection solutions through a new
approach with the following characteristics:

• we work with flow records to efficiently deal with high
volumes of network traffic. This design choice achieves
better results both in terms of computational performance
and storage cost. This is in contrast with solutions which
require the analyses of huge amount of information that
is often derived from data payload or host-based logs
[18][19].

• We focus only on individual hosts and the behaviour of
the applications running on those hosts. This approach
enables us to detect suspicious activities conducted by
applications installed on monitored hosts, considering
their application type (i.e., browser or background appli-
cations), and past behaviour. By distinguishing between
browser and background applications, we can treat flows
identified as either type of application differently based on
the expected behavioral patterns of their communication
and the level of user interaction.

• we propose a set of features that is tailored to identify
anomalous communications with respect to the different
application type. For this purpose, we specifically extract

features that are discriminatory for background applica-
tions from those commonly seen in browsers.

Figure 1 represents the five main phases of our framework:
1) flow export and collection; 2) bidirectional correlation; 3)
feature extraction; 4) training; and 5) detection.
The first phase involves both the extraction and collection of
flows of HTTP connections (e.g., GET and POST requests).
Thanks to the computational and storage advantages given
by NetFlow/IPFIX technology mentioned in section II-A,
we analyse applications traffic in both directions. Thus, we
analyse not only outgoing traffic, as would be reasonably to
think when working with data exfiltration (e.g., [15][6][17]),
but also incoming traffic. In this way, we can detect suspicious
unidirectional flows that carry traffic in just one direction
(i.e., client to server or server to client). For example, an
application that periodically poll a remote server without
answer.

The second phase involves the correlation between
outgoing and incoming traffic. In order to have in one
flow both information regarding the whole connection (i.e,
obtain bidirectional flows) we had to separately match the
unidirectional flows exported by nProbe corresponding to the
same connection. We adopted this solution to overcome the
fact that the Network Interface Card (NIC) in our flow probe
was not able to reliably state which packets came in and
which ones went out the network. Therefore, we correlated
the outgoing flows initiated in the enterprise to the incoming
flows merging the ones that belonged to the same connection
(if any). The information used to do this correlation was the
5-tuple: protocol, source IP, source port, destination IP and
destination port.

The third phase extracts features that are relevant for
defining both the application type originating the requests and
detect possible data exfiltration. These features are computed
for each internal host every time flows are exported. Details,
examples and motivations on the chosen features will be
discussed in Section V.

The fourth phase is the training phase, where the system
analyses the flows of the hosts in a non-infected state or
through the supervision of a security operator. In this way, we
can generate an initial set of benign applications’ fingerprints
running on the host machine. It can be seen as a setup phase,
which runs for a specific amount of time, required before
starting with the testing of flows. In this phase we have
two sub-phases, called browser identification and fingerprint
generator. In the browser identification case, our system
classifies the observed flows as either browsers or background
applications. Identifying a flow as generated by a background
application signifies its association with tasks such as updates,
data synchronisation or system maintenance, whereas flows
originating from browsers are tipically more dynamic due to
user interaction. For this reason, depending on the application
type the flow belongs to, the next module generates for each
flow the set fingerprints using a specific set of features. The
output of the training phase is a set of fingerprints for each
monitored host. There are two ways to obtain a non-infected
state: analyse a new or formatted host or using a Threat
Intelligence to help define which flows are legitimate. Details
on how we implemented both browser identification and
fingerprint generator will be discussed in Section V as we
explain the key features used in these modules.

Fig. 1: Framework overview. a) check of the application fingerprints generated in the training phase with the current analysed
flow; b) new fingerprints can be added to or updated from the set of fingerprints in the fingerprint database; c) a security

operator analyses the alerts produced by the system acting on them.

The fifth phase is the last phase of our framework: the
detection phase. The detection of the traffic of a host begins
as soon as the training phase ends. This phase has three
modules: browser identification, fingerprint generator and
detection. While the first two follow the behaviour already
described for the training phase, the detection module checks
if there are any anomalous connections. This phase keeps on
testing each flow that is passively extracted from the network.
In this way it detects whether generated fingerprints result
anomalous with respect to already seen applications. In case
traffic is generated from new applications, heuristics are in
place to automatically confirm new applications as legitimate
or raise an alert. The outcome of this phase is a list of alerts
that can be immediately seen by a security operator, which
can act on the results flagging them as true or false alerts and
updating the fingerprint database. Details on the heuristics,
the detection module and the operator role in our system will
be discussed in Section V.

V. SYSTEM DETAILS

In this section, we present and motivate a set of discrimi-
native features that we extract for each flow, as we discuss the
details of each module of our solution.

A. Browser identification Module

The goal of the browser identification module is to
distinguish between flows generated from browsers and
background applications in both training and testing phases.
Knowing the application type of a flow helped us determine
the legitimacy of the request in terms of the behaviour
that we would have expected to see from it. In particular,
background applications usually follow common patterns,
while browsers’ traffic is more dynamic as it directly depends

on user actions. Beyond that, dividing the problem in two
different ones helped us reducing the complexity we face as
we were defining fingerprints features to two different kinds
of behaviours. In this module we were mainly interested
in classifying flow as browsers or background applications
according to the extracted flow values. In this module there
is no attempt of understanding the legitimacy of behaviour
of the application generating the flows. Their behaviour is
analysed in the detection module discussed in Section V-C.
In that module, any new or anomalous flows are alerted as
potentially malicious, where “anomalous” being defined in
relation to the identified application type.

As we collected the data using the setup described in IV,
the browser identification module is used in both training
and detection phase. The only difference between training
and detection phase, regarding this module, is the type of
data processed. In fact, in the training phase we handle only
non-infected data, while in the detection phase we may see
both legitimate and non-legitimate application flows.

We used one of the HTTP header fields extracted by
nProbe, called User-Agent, to differentiate applications. We
used this header as a way to aggregate flows deriving possibly
from the same application. The User-Agent is a request-header
field that contains information about the software agent, which
acts on behalf of the user and originates the request. It is
often used by software as a sort of identifier, thereby making
it unique per application. In training phase this assumption
holds because the training is assumed to be trusted, therefore
no malicious traffic is expected to be aggregated. In detection
phase this decision has some consequences regarding evasion
techniques as seen in the works of [33] [34], which we
discuss Section VII. It has been proven that this string is one
of the most identifying metrics (together with information on
plugins and fonts installed) to generate unique fingerprints as
these are commonly user-specific [29].

TABLE I: Browser identification features.

Description Type
1 Length of the User-Agent header field Numeric
2 Entropy of the User-Agent header field Numeric
3 Flag whether the HTTP referer header exists Boolean
4 Length of the request body Numeric
5 Longest packet (bytes) of the flow Numeric
6 Length of the path in the URI Numeric
7 Entropy of the path in the URI Numeric
8 Number of alphanumeric values in the path and query of the URI Numeric
9 Depth of the hierarchical path in the URI Numeric

We implemented a binary classifier using random forests
as it is a strong modelling technique and much more robust
than a single decision tree. They aggregate many decision
trees to limit overfitting as well as error due to bias and
therefore yield useful results. In respect to other models
considered lazy, such as the K-Nearest Neighbour, random
forests work well with large datasets and is faster in testing.
This was a requirement considering the scenario we described
in Section III. Further analysis and comparisons between
classification models are shown in Appendix A.

The set of features for our classifier are depicted in Table
I. These features were derived from a user dataset used
for validation. We employed feature importance techniques
to assess the relevance of each feature in predicting the
target variable, which in this case is the application type
(i.e., browser or background application) in network flows.
By analysing the importance scores of each feature, we
identified the most informative and discriminative features
for inclusion in our classifier. We note that the features
related to incoming traffic were excluded from the set as not
discriminant in determining the type of application generating
the flow. Features 1 and 2 were chosen as the User-Agent
field is often unique for each application, except for minor
changes in version numbers due to software updates. We
would expect browsers to have longer User-Agent strings
linked to a higher entropy value than the ones in background
applications. Feature 3 distinguishes a browser from a
background application as it indicates the address of the
webpage that linked to the resource being requested. Features
4 and 5 determine the communication pattern of the request
as background applications are usually small with a steady
ratio between packets and bytes transmitted. The last four
features show the complexity of the location of a certain
resource (i.e., URI) on the Internet. In this case, resources
required by background applications are not usually identified
by human-readable URIs, as usually are the URIs of websites.

B. Fingerprint Generation Module

The goal of the fingerprint generation module is to create a
fingerprint of each flow coming from the browser identification
module by extracting a set of features that changes according
to the type of application identified in the previous module.
The features we extracted on this module came from the
analysis of the available features extracted in the previous
modules, using the knowledge from data exfiltration malware

and legitimate user traffic. In particular we applied feature
importance techniques to determine the relevance of certain
features for certain type of network flows generated by either
browsers and background applications (an example of an
output it is show in Appendix A). In the case of background
applications, we extracted the following features:

• Outgoing data: the information representing the length of
the body of each packet. In this way, we want to define
how much data was transmitted in the payload. We have
observed that many background applications transmit a
similar amount of data.

• MIME type: the format of the resource requested by a
host application. We have seen that most background
applications request periodically resources with constant
MIME type (e.g., ‘application/vnd.ms-cab-compressed’,
‘application/rss+xml’, etc.).

• Request method: the string of the HTTP request method
field. Depending on the application function, an appli-
cation may retrieve information from a host and upload
information to another server.

• Status code: the return codes issued by a server in
response to the client’s request made to the server. As
for the other extracted features, this one help distinguish
between legitimate and anomalous connections.

• URL path structure: the location to one specific network
resource requested by a host machine. Unlike browsers
human-readable URIs, background applications often re-
quest resources located in fixed or encoded directories.
In this case the information collected is the number of
alphanumeric values and the entropy of the path of the
URL.

We considered other type of features, such as the longest
packet of the flow or the User-Agent, but we decided to use
those features that could capture a clear snapshot of the normal
application connection. In this case, ‘normal’ is defined as the
behaviour that is consistent with the most common behaviour
of the application. Moreover, we avoid using features that
could possibly be spoofed by an attacker and favoured features
that require a correct configuration of a server. In this way we
made harder the job of the attacker as he has to spoof the User-
Agent to pass the application type classification, configure
a server that return the correct set of headers values and
generate a specific request packet with a fixed payload. These
assumptions slow down possible data exfiltration.

Fingerprints generated by this module are stored in a
database for future comparison and reference. This database
serves as a repository of known application fingerprint, stored
during the training phase. The fingerprint can be updated
automatically by the framework or populated by the operator
(details on this are mention in Section V-B). This is a solution
used also by DECANTeR as it facilitates comparison with
newly generated fingerprints during the detection phase.

The way we have defined our objectives, we wanted to ob-
tain a system able to identify flows of a specific class amongst
all the others. For this reason, we focused on one-class
classification. This term was coined by Moya and Hush [35],
and many systems have been published about the advantages
in the field of anomaly detection, outliers detection and novelty
detection [36]. In our case we used a probabilistic outlier

detection model, the python library LSAnomaly1, based on
the work of Quinn and Sugiyama [37] on a novel, probabilistic
and nonparametric least-squares approach. The main advantage
we obtained from using this approach was the capacity to
recognise unknown applications requests. In addition, this kind
of classifier can easily be updated, works very well with a
limited set of training data, and is much faster to train and
test on large datasets than many alternative methods, such as
one-class support vector machine (SVM).

In our research we could not distinguish different browsers
applications by using only the features we extracted in a single
HTTP connection. The reasons are mainly because browsers
contents are unpredictable and dynamic as it directly depends
on both web sites and specific user actions. Beyond that the
features extracted by default by nProbe resulted not enough
to properly define different browsers. Details on how we cope
with these issues will be explained in Section V-C, while we
will discuss the difficulties we found in Section VII.

C. Detection Module

The goal of the detection module is to determine whether
new generated fingerprints are similar to any of the application
fingerprints generated during the training phase. The compar-
ison is done by executing specific similarity functions using
most of the features used on both Browser identification and
Fingerprinting Generation modules. In case a tested fingerprint
doesn’t match any of the fingerprints in the database, the
module treats the flow as a new application running on the
host.

In the detection module we used different heuristics for
two main reasons:

• Updating the database fingerprints. An anomaly detection
system should provide an updating mechanism in case
new fingerprints are generated related to new applica-
tions installed on the host. Depending on how similar
the features were compared to trained fingerprints and
the expected behaviour for the type of application (i.e.,
background application or browser) we would define the
fingerprint as an update or as a complete different appli-
cation. We employed the Euclidean distance to quantify
the absolute difference between two numeric features,
whereas we utilized the longest contiguous matching
subsequence for string features.

• Add new application fingerprints. Differently than an
update, the detection module would still trigger an alert,
but it would still try to classify as a legitimate or malicious
applications depending on some heuristics specific to
the type of application (i.e. background application or
browser). We assessed whether new applications align
with known and trusted behaviour focusing on observed
patterns and thresholds within HTTP attributes and re-
sponse codes. For browser applications, a new applica-
tion will be considered legitimate if its content, visited
sites, and successful server responses exhibit similarity to
established patterns. Similarly, a new background appli-
cation will be deemed legitimate if its behaviour closely
resembles that of recognized ones, evidenced by fewer

1https://github.com/lsanomaly

failed requests and URL request patterns consistent with
those of known applications.

These are some of the behaviours inspected while adding
a new application fingerprint during the detection module:

• The URI request structure. While background applica-
tions are programmed to use a fixed structure in their
request (i.e., same type of headers and similar content
and size), browsers are directly influenced by users. In
fact, browsers connections are characterised by patterns
that are almost unique across the entire web, given the
wide range of resources that can be accessed. This makes
harder to find a unique model, which can differentiate two
browsers (e.g., Chrome and Firefox);

• The number of possible domains applications can commu-
nicate with. This number is huge for browsers in respect
of the number of domains a background application
makes HTTP requests to. Thus, every day we would
expect to see a browser to contact different servers, while
background applications usually keep on reaching to the
same set of domains;

• The MIME types of the transmitted resource. Depending
on the application type, we would expect various for-
mat resources in servers’ responses. For example, it is
common to observe charset encoding and many different
MIME types on flows initiated by a browser. On the
other hand, this is not a common behaviour in background
applications’ communications.

VI. EXPERIMENTAL RESULTS

In this section we describe the three different datasets used
during our research. We evaluate the detection performance of
our solution on the datasets used.

A. Datasets

In our evaluation we made use of Data Exfiltration Malware
(DEM) dataset analysed in DECANTeR as to analyse the
efectiveness of the solution to label malicious traffic flows.
In addition to these datasets, we deployed our solution on
an international organisation (OD), which results will be
discussed in this section.

Data Exfiltration Malware2 (DEM). This dataset was used
to evaluate DECANTeR. It contains network captures (.pcap)
mainly of info-stealer malware run on a virtual machine (VM)
for roughly 60 minutes per sample. The samples belong to 8
families of information-stealer malware: iSpy, Shakti, FareIT,
CosmicDuke, Ursnif, Pony, Dridex, and SpyEye. We ran our
solution on this dataset to show effectiveness of the solution
in detecting anomalous traffic. To evaluate our solution we
used the same labels for benign and malicious traffic used by
DECANTeR. In particular, all requests that had same user-
agent as the applications in the VMs traffic (without the
execution of the malware). The other requests are considered
malicious, including browser requests as malware are the only
ones that could have used browsers user-agents.

Organisation Dataset (OD). Our system has been deployed
to an international organisation monitoring both incoming and

2https://scs.ewi.utwente.nl/downloads/

outgoing HTTP traffic on a network link with thousands of
hosts. nProbe [28] has been used for exporting the flows
without sampling, while IPFIXcol [38] was used for storing
the flows. Thus, these flows were processed by our system.
We used real data to avoid possible biases by running the
system with data captured in a lab (e.g., a fixed set of
installed applications or operating systems). Over a period of
two weeks, we obtained 979.463 HTTP requests generated by
network traffic in 252 hosts. In total we saw 3126 User-Agent
deriving from the applications installed in these hosts.

B. Experimental Setup

As we wanted to evaluate both our solution and DE-
CANTeR we followed the same process to label malicious and
benign requests in our datasets. We used the first day of traffic
for the training phase and the rest of the captured traffic for
the testing. As the training mode is a trusted scenario, where
only legitimate flows are seen, we manually checked if there
were malicious fingerprints, and if so, we removed them. For
the OD dataset we used the help of external threat intelligence
services3 and with indicators of compromise we have obtained
from a professional threat intelligence provider.

In our solution the operator is required to help the solution
to learn by checking the legitimacy of alerted flows are related
to new background applications or browser on the monitored
hosts. In the case the fingerprint is considered legitimate this
will be added to the fingerprints database. This is similar
to how DECANTeR handle unseen traffic and it is also a
normal case seen in most of the solutions experienced from
professional threat intelligence providers. In our experimental
setup, we assume that the operator is actively updating the
trained fingerprints database.

C. Results

Solution Dataset Accuracy Precision Recall F1-score
IPFIX Solution DEM 99.06% 99.77% 99.27% 99.40%
IPFIX Solution OD 98.60% 11.78% 91.60% 21.09%

TABLE II: Comparison of both solutions on background
application contained in Organisation Dataset.

As shown in Table II we ran our framework on the DEM
and OD datasets, containing both background and application
flows.

We consider a message to be: true positive (TP) if the
flow was assessed as anomalous and we had indicators of
compromise; false positive (FP), if the flow was assessed as
anomalous and we had no indicators of compromise; false
negative (FN) if the flow was assessed as legitimate and we
had indicators of compromise; and true negative (TN) if the
flow was assessed as legitimate and we had no indicators of
compromise.

We used perfomance metrics to compare each evaluation:

Accuracy =
TP + TN

TP + TN + FP + FN
3We have used the information provided by ThreatCrowd

(https://www.threatcrowd. org/) and VirusTotal (https://virustotal.com/)

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1-score = 2⇥ Precision ⇥ Recall
Precision + Recall

These performance metrics related to DEM provide
insights into the effectiveness of the model in detecting
anomalous flows, with high precision and recall, resulting in
a high F1-score. This is probably due to the fact that new
applications are not seen as this is a closed dataset. So we
have mainly new flows coming from malware, flows that are
not added to the trained dataset as they don’t comply with
the heuristics mention in Section V-C (i.e., URI structure,
domains and MIME types).

Regarding the OD dataset, the framework analysed a total
of 262,916 flows. Among these, 1064 flows triggered alerts as
new applications, leading to the addition of new fingerprints to
the database. False negatives primarily occurred with applica-
tions utilizing user-agents such as “Transmission”, “Clemen-
tine” and “curl”. Notably, the majority of false positives (72%
corresponding to 2201 flows) from background applications
were attributed to just two applications on two separate
monitored hosts, identified by the user-agents “MEGAsync”
and “p2/1.1.300.v20161004-0244”. Further investigation is re-
quired to determine why these behaviors were not recognized
as those of new legitimate applications by the detection mod-
ule.

We counted the number of times that an operator would
have intervened during the analysis. The number was 1,924
times. Of these, 502 were related to new fingerprints added
to the fingerprinting database, while around 1,000 were
related to two single users behaving in an uncommon way. In
particular, user-agent from HTTP request headers, of what it
seems to be browsers applications, appeared to be malformed.
These strings contained a mixture of characters, symbols,
and sequences that deviated from the usual pattern for a
User-Agent string.This anomaly, which could be attributed to
bot activity, script execution, or data corruption, was observed
on two monitored hosts.

We compare our solution to DECANTeR only on back-
ground applications as we didn’t have all features to permit
DECANTeR to properly identify browsers traffics (i.e., Accept-
Language field):

Solution Accuracy Precision Recall F1-score
DECANTeR 93.53% 0.14% 11.67% 0.25%

IPFIX Solution 98.01% 2.75% 73.67% 5.35%

TABLE III: Comparison of both solutions on background
application contained in Organisation Dataset.

The IPFIX solution shows better performance than
DECANTeR in terms of accuracy, recall, and F1-score.

However, both solutions exhibit relatively low precision,
suggesting that there is room for improvement in accurately
identifying true threats while minimizing false alarms. A
way to reduce false positive alerts would be to increase
the training phase period, so all applications running on
the monitored hosts would be already present on trained
fingerprint database. In some cases during the testing phase, a
monitored host was observed with only one flow available for
testing. Meanwhile, the maximum number of flows collected
from a single monitored host was 13,615, with a median of
432 flows per host.

To conclude, this evaluation shows that the solution pro-
posed for fingerprinting application traffic proposed is a good
alternative, in terms of detection rate with an accuracy of
98%. One possible factor contributing to this discrepancy could
be the variation in the collected HTTP headers. DECANTeR
appears to gather a comprehensive set of headers includ-
ing Accept, Accept-Encoding, Accept-Language, Connection,
Cookie, DNT, X-Requested-With, among others, whereas on
OD these headers are not considered potentially influencing
the analysis. In this case the IPFIX solution requires less
information related to the HTTP headers to detect anomalous
traffic on background applications.

VII. DISCUSSION

We had issues in the way nProbe extracted flow records
regarding the HTTP headers. In particular, we sometimes
had some malformed HTTP header strings from browser
connections working with the third dataset (i.e., OD). For
example, for some hosts we saw one or two connections with
malformed User-Agent strings, such as “Moz”, or “Mozilla/5.0
(Wind”. Looking deeper to the flow record we found out that
those connections were from the host’s browser. This issue
was half fixed by using edit distance algorithms and finding
out if there was some correspondence with an already seen
application. However, depending on how badly the string was
cut it could have simply slip, and as they are not frequent it
would have been flagged as anomalous (i.e., false positives).
Further understanding of the mechanism through which nProbe
HTTP plugin exports HTTP headers needs to be done, in order
to fix this issue from the beginning of our framework avoiding
unnecessary processing cost and alerts output from the system.

We have some parallelism with the features used by
Decanter. Specifically, how the traffic was labelled and the
features used. Being able to see the difference between requests
from the same application, helps to give a better look on what
is actual being sent out, while in our case we don’t have this
level of details. Another distinction lies in our approach, which
extends beyond scrutinizing outgoing traffic. We looked into
responses within the fingerprint generation module as well
checking the status code. This capability enables us to assess
communication, whether within a well-configured client-server
scenario or when dealing with applications within our system
that solely transmit data without anticipating responses, or per-
haps only expecting a 404 error (indicating requested content
not found).

We had issues univocally identifying a browser from the
features collected at the beginning of the experiment. In
particular, we would have some issues if a malware application
was able to imitate the specific browser user by the user on

that host. The issue is caused by the entropy seen in the traffic
generated by the browsers to different hosts that generated dif-
ferent MIME types and Responses when requested in different
times for instance.

Evasion. Our solution is not easy to evade with simple
evasion techniques such as spoofing user agent or other header
values. To successfully mask data exfiltration, a malicious actor
would need to replicate both outgoing features and responses
from an external server of an existing application on the
monitored hosts. However, this does not make our solution
impossible to evade as we have mentioned previously in the
article. In fact, the identifying browsers with the features
used is still not robust enough to univocally identify different
browsers by the type of data sent and response from the
servers.

Recent research from Davis et al. [16] analyses the validity
of using human expertise to blindly choose the most relevant
features for them. Thus, the authors generate a total of 1,141
for each HTTP connection and select the top 25 features to
be used. The result achieved a detection rate above 99.93%
at a false positive rate below 0.01%. However, the huge
number of features considered make the solution unusable in
large enterprise networks. In particular, it requires the usage
of unigrams of the request body, which extends beyond our
research focus. For this research we constructed the set of
features used by manually inspecting network traffic produced
by both malicious and normal traffic to find discriminating
attributes. We also review other related works.

VIII. RELATED WORK

In this section we review several works that explore differ-
ent network-based monitoring techniques.

A. Application fingerprinting approaches

Application fingerprinting is based on active and passive
techniques in which information about different features of
the environment, web browser and OS are extracted. While
for active fingerprinting different techniques are used, such
as JavaScript to query information about the list of browser
plugins or screen resolution, passive fingerprinting techniques
analyse network traffic. Bortolameotti et al. presented
in DECANTeR [6] a system for detection of anomalous
HTTP network traffic by passively extracting fingerprints
of benign applications running on the host. This process
involves extracting information from clustered POST and
GET requests in the form of Host header value, constant
header fields, average request size, User-Agent header value,
Accept-Language header value, and the size of outgoing
information in the cluster. In another work, Headprint [45],
Bortolameotti et al. presented a system for the detection
of anomalous traffic that does not rely on a small set of
predefined features to model the message content, but it
automatically identifies the most characterizing content
directly. Both these techniques covered both web browsers
and background applications running on workstation and
server. However, they require more computational and storage
cost compared to our work to monitor and process network
traffic.

John Althouse, et al. [41] distinguishes itself from passive
application fingerprinting methodologies by focusing on

SSL/TLS handshake patterns as a means of identifying
application behavior.

Several works contribute to our comprehension of
mobile app behavior through varied approaches. Miskovic
et al. proposed [42] AppPrint, an automatic fingerprinting
technique, which uses different HTTP features in combination
with machine learning algorithms. Similarly, Taylor et al. [43]
extends this capability to encrypted traffic scenarios using
statistical features of the packet length (e.g., mean, skew) of
incoming, outgoing, and complete flows to train traditional
machine learning models. A step further is taken by Van Ede
et al., which introduced FlowPrint a semi-supervised approach
for fingerprinting mobile application that creates fingerprints
based on 5 min captures of traffic and strong correlations (i.e.,
cross-correlations). Moreover, their approach uses Jaccard
similarity [46] to cluster flows with fingerprints created from
a set of network destinations to form a maximal clique in
the correlation graph. All these solutions explore mobile
applications communication to generate mobile application
fingerprints, which differ to common workstation and servers
network traffic.

B. Threat-specific approaches

These works have the common goal of understanding the
characteristics and patterns of malicious traffic. Some works
analyse and cluster malicious traffic into families to train
classifiers to spot generic C&C communication channels. For
example, the work of Perdisci et al. [9] propose a system that
cluster network-level behaviour of malware by focusing on
URL similarities among traces of malicious HTTP traffic.

Other works focus on specific traffic patterns generated by
botnets [10][11][12]. In particular, Botfinder [12] uses machine
learning to identify key features of C&C communication, based
on the observation of traffic generated by bots in a controlled
environment. Instead, the research of Al-Bataineh et al. [13]
focus on the network behaviour of the Zeus malware to identify
its unique pattern in HTTP POST requests.

All these works help to identify patterns of unknown
malware attacks, as long as they have common features to
the malware families used during the training phase. However,
effective analysis is hard to achieve as they require a deep
understanding of malware specific actions and characteristics,
done by tools performing static or dynamic analysis. Thus,
they end up requiring a huge dataset of malware samples to
properly train a detection model. On the other hand, our focus
is on benign network traffic so that we can detect anomalies
without any prior knowledge on malware.

C. Anomaly-based approaches

Unlike the previous approach, these works use only the
legitimate traffic generated by hosts within the organisation
to detect potentially a wide range of novel attacks. However,
they strongly depend upon the quality of the patterns chosen
to define the baseline ‘normality’. If this is not properly
defined, the approach can miss the detection of new malware
or even miss known ones.

Web Tap [14] applies anomaly detection techniques and
statistical model to the application layer to find unusual
HTTP request headers indicative of a tunnel. Thus, its goal

is to spot non-standard web browsing traffic. Nevertheless,
the evaluation of the system showed that 12% of 767 alerts
was wrongly classified as malicious (i.e., false positives). An
improvement of Web Tap in terms of false positive is obtained
by another tool, called DUMONT [15]. It is a similar system
that uses a hierarchy of one-class Support Vector Machine
(SVM) to classify flows as legitimate or malicious. It uses
lengths, structure, timing and entropy calculated from HTTP
requests as key features. Even though they had a lower
amount of false positive, their average detection rate was
89.3% as it is strongly user-dependent. Both these tools (Web
Tap and DUMONT) are constrained to the fact that they
need a high computational and storage costs. Not because
they can easily be evaded with encryption techniques, as they
inspect the payload. In addition to that, they do not provide
any solution in case of changes in the host behaviour as new
applications are installed or old ones are updated.

A recent research from Davis et al. [16] analyses the
validity of using human expertise to blindly choose the most
relevant features for them. Thus, the authors generate a total
of 1141 for each HTTP connection and select the top 25
features to be used. The result outperforms the previously
mentioned solutions achieving a detection rate above 99.93%
at a false positive rate below 0.01%. However, the huge
number of features considered make the solution unusable in
large enterprise networks.

Regarding data exfiltration detection methods using IPFIX,
the only known research was done by Marchetti et al. [17].
Their framework can identify and rank suspicious hosts in a
large organisation possibly involved in data exfiltration. They
only use network traffic data, such as the number of bytes
uploaded, the number of flows initiated, and the number of
external IP addresses related to an internal host. As it does
not need to inspect payload data, their framework can work
even for encrypted communications. Nevertheless, their list
of hosts with high ‘suspiciousness score’ results constrained
by the knowledge and availability of security analysts. On the
other hand, we aim to obtain a list of anomalous connection
alerts raised by the system.

IX. CONCLUSIONS AND FUTURE WORK

In this work we have shown how NetFlow/IPFIX tech-
nologies can be used to detect anomalous communications in
HTTP traffic. This solution requires a training phase without
malicious data in order to generate an initial set of legitimate
fingerprints of applications in host machines. Our approach
gathers and analyses only traffic data extracted from headers
field. The proposed set of features can detect the application
type and possible data exfiltration of each flow analysed. The
effectiveness of the proposed solution has been evaluated using
two different datasets containing data from malware and from
an organisation network. We have evaluated the system against
other state of the art solution (i.e., DECANTeR), showing that
with less features it can correctly detect anomalous traffic on
background applications. Future work includes the integration
of additional features in nProbe able to distinguish different
kind of browsers and a deeper performance analysis using a
bigger dataset with thousands of hosts.

REFERENCES

[1] David McCandless. World’s Biggest Data Breaches &Hacks.
http://www.informationisbeautiful.net/visualizati
ons/worlds-biggest-data-breaches-hacks/

[2] Verizon. Verizon Data Breach Investigations Report (2022).
https://www.verizon.com/business/resources/reports/dbir/

[3] IBM Security. Cost of Data Breach: Report 2022.
https://www.ibm.com/reports/data-breach

[4] Regulation (EU) 2016/679 of the European Parliament and of the
Council of 27 April 2016 on the protection of natural persons with
regard to the processing of personal data and on the free movement of
such data, and repealing Directive 95/46/EC (General Data Protection
Regulation). Official Journal of the European Union, L119:1–88, May
2016.

[5] Kerry G. Coffman and Andrew M. Odlyzko. Internet growth: Is there
a “Moore’s Law” for data traffic?. Handbook of massive data sets.
Springer, Boston, MA, 2002. 47-93.

[6] Riccardo Bortolameotti, Thijs van Ede, Marco Caselli, Rick Hofstede,
Maarten H. Everts, Willem Jonker, Pieter Hartel and Andreas Peter.
DECANTeR: DEteCtion of Anomalous outbouNd HTTP TRaffic by
Passive Application Fingerprinting. Proceedings of the 33rd Annual
Computer Security Applications Conference. ACM, 2017.

[7] Petr Matousek, Ondrej Rysavy, Matej Gregr, and Martin Vymlatil. To-
wards identification of operating systems from the internet traffic: IPFIX
monitoring with fingerprinting and clustering. In Data Communication
Networking (DCNET), 2014 5th International Conference on, pages
1–7. IEEE, 2014.

[8] The Mitre Corportation. Commonly Used Ports.
https://attack.mitre.org/techniques/T0885/

[9] Roberto Perdisci, Wenke Lee, and Nick Feamster. Behavioral Clustering
of HTTP-Based Malware and Signature Generation Using Malicious
Network Traces. In NSDI, volume 10, page 14, 2010.

[10] Guofei Gu, Phillip A Porras, Vinod Yegneswaran, Martin W Fong, and
Wenke Lee. BotHunter: Detecting Malware Infection Through IDS-
Driven Dialog Correlation. In Usenix Security, volume 7, pages 1–16,
2007.

[11] Guofei Gu, Roberto Perdisci, Junjie Zhang, and Wenke Lee. BotMiner:
Clustering Analysis of Network Traffic for Protocol- and Structure-
Independent Botnet Detection. In USENIX Security Symposium, volume
5, pages 139–154, 2008.

[12] Florian Tegeler, Xiaoming Fu, Giovanni Vigna, and Christopher
Kruegel. Botfinder: Finding bots in network traffic without deep packet
inspection. In Proceedings of the 8th international conference on
Emerging networking experiments and technologies, pages 349–360.
ACM, 2012.

[13] Areej Al-Bataineh and Gregory White. Analysis and detection of
malicious data exfiltration in web traffic. In Malicious and Unwanted
Software (MALWARE), 2012 7th International Conference on, pages
26–31. IEEE, 2012.

[14] Kevin Borders and Atul Prakash. Web tap: detecting covert web
traffic. In Proceedings of the 11th ACM conference on Computer and
communications security, pages 110–120. ACM, 2004.

[15] Guido Schwenk and Konrad Rieck. Adaptive detection of covert com-
munication in http requests. In Computer Network Defense (EC2ND),
2011 Seventh European Conference on, pages 25–32. IEEE, 2011.

[16] Jonathan J Davis and Ernest Foo. Automated feature engineering for
HTTP tunnel detection. Computers &Security, 59:166–185, 2016.

[17] Mirco Marchetti, Fabio Pierazzi, Michele Colajanni, and Alessandro
Guido. Analysis of high volumes of network traffic for advanced
persistent threat detection. Computer Networks, 109:127–141, 2016.

[18] Frank L Greitzer, Lars J Kangas, Christine F Noonan, A Dalton,
and RE Hohimer. Identifying at-risk employees: A behavioral model
for predicting potential insider threats. Report PNNL-19665. Pacific
Northwest National Laboratory (PNNL), Richland, WA (US), 2010.

[19] Ivo Friedberg, Florian Skopik, Giuseppe Settanni, and Roman Fiedler.
Combating advanced persistent threats: From network event correlation
to incident detection. Computers &Security, 48:35–57, 2015.

[20] Guodong Zhao, Ke Xu, Lei Xu, and Bo Wu. Detecting APT Malware

Infections Based on Malicious DNS and Traffic Analysis. IEEE Access,
3:1132–1142, 2015.

[21] Singh, Abhay Pratap, and Mahendra Singh. A comparative review
of malware analysis and detection in HTTPs traffic. In International
Journal of Computing and Digital Systems 10.1 (2021): 111-123.

[22] Aldo Cortesi, Maximilian Hils, Thomas Kriechbaumer, and contribu-
tors. mitmproxy: A free and open source interactive HTTPS proxy.
https://mitmproxy. org/

[23] SSL Forward Proxy - Decryption
https://docs.paloaltonetworks.com/

[24] Wilkens, Florian, et al. Passive, transparent, and selective TLS decryp-
tion for network security monitoring. In IFIP International Conference
on ICT Systems Security and Privacy Protection. Cham: Springer
International Publishing, 2022.

[25] Ruoti, Scott, et al. User attitudes toward the inspection of encrypted
traffic. In Twelfth Symposium on Usable Privacy and Security. 2016.

[26] Rick Hofstede, Pavel C�eleda, Brian Trammell, Idilio Drago, Ramin
Sadre, Anna Sperotto, and Aiko Pras. Flow monitoring explained:
From packet capture to data analysis with netflow and ipfix. IEEE
Communications Surveys &Tutorials, 16(4):2037–2064, 2014.

[27] B. Claise, B. Trammell, and P. Aitken. Specification of the IP Flow
Information Export (IPFIX) Protocol for the Exchange of Flow Infor-
mation. RFC 7011 (Internet Standard), Internet Engineering Task Force
(IETF), September 2013.

[28] Luca Deri. nProbe: An Open Source NetFlow Probe for Gigabit
Networks. In Proceedings of the TERENA Networking Conference,
TNC’03, 2003.

[29] Eckersley, Peter. How unique is your web browser?. International
Symposium on Privacy Enhancing Technologies Symposium. Springer,
Berlin, Heidelberg, 2010.

[30] Ryan Van Antwerp. Exfiltration techniques: An examination and emu-
lation. PhD thesis, University of Delaware, 2011.

[31] Annarita Giani, Vincent H Berk, and George V Cybenko. Data exfil-
tration and covert channels. In Defense and Security Symposium, pages
620103–620103. International Society for Optics and Photonics, 2006.

[32] Annarita Giani, Vincent H Berk, and George V Cybenko. Data exfil-
tration and covert channels. In Defense and Security Symposium, pages
620103–620103. International Society for Optics and Photonics, 2006.

[33] Clint Andrew Hall. Web presentation layer bootstrapping for accessibil-
ity and performance. In Proceedings of the 2009 International Cross-
Disciplinary Conference on Web Accessibility (W4A). ACM, 2009. p.
67-74.

[34] Christian Rossow, Christian J. Dietrich, Herbert Bos, Lorenzo Cavallaro,
Maarten Van Steen, Felix C Freiling, and Norbert Pohlmann. Sandnet:
Network traffic analysis of malicious software. In Proceedings of the
First Workshop on Building Analysis Datasets and Gathering Experi-
ence Returns for Security. ACM, 2011. p. 78–88.

[35] Mary M. Moya, and Don R. Hush. Network constraints and multi-
objective optimization for one-class classification. Neural Networks,
1996, 9.3: 463-474.

[36] Shehroz S. Khan, and Michael G. Madden. A survey of recent trends
in one class classification. In Irish Conference on Artificial Intelligence
and Cognitive Science. Springer, Berlin, Heidelberg, 2009. p. 188-197.

[37] John A. Quinn, and Masashi Sugiyama. A least-squares approach to
anomaly detection in static and sequential data. Pattern Recognition
Letters, 2014, 40: 36-40.

[38] Petr Velan; KREJČÍ, Radek Krejc�ı̀. Flow information storage assess-
ment using IPFIXcol. In IFIP International Conference on Autonomous
Infrastructure, Management and Security. Springer, Berlin, Heidelberg,
2012. p. 155-158.

[39] Google. HTTPS encryption on the web.
https://transparencyreport.google.com/https/overview

[40] Frediani, Carola, et al. Attacco ai pirati. L’affondamento di Hacking
Team: tutti i segreti del datagate italiano. (2015)

[41] John Althouse, et al. TLS Fingerprinting with JA3 and JA3S
[42] Miskovic, Stanislav, et al. Appprint: automatic fingerprinting of mobile

applications in network traffic. In Passive and Active Measurement: 16th
International Conference, PAM 2015, New York, NY, USA, March 19-
20, 2015, Proceedings 16. Springer International Publishing, 2015.

[43] Taylor, Vincent F., et al. Appscanner: Automatic fingerprinting of smart-
phone apps from encrypted network traffic. In 2016 IEEE European
Symposium on Security and Privacy (EuroS&P). IEEE, 2016.

[44] Van Ede, Thijs, et al. Flowprint: Semi-supervised mobile-app finger-
printing on encrypted network traffic. In Network and distributed system
security symposium (NDSS). Vol. 27. 2020.

[45] Bortolameotti, Riccardo, et al. Headprint: detecting anomalous commu-
nications through header-based application fingerprinting. In Proceed-
ings of the 35th Annual ACM Symposium on Applied Computing. 2020.

[46] Paul Jaccard. The Distribution of the Flora of the Alpine Zone. New
Phytologist, 1912.

APPENDIX A
FIGURES AND TABLES

Figure 2 shows a comparison between different algorithms used on DEM for the browser identification module on our
solution used to identify the type of application.

Fig. 2: Comparison of the results between different classification models tested on browser identification module.

Figure 3 shows a visual example of output generated by the analysis of certain type of features generated by browsers.

Fig. 3: Feature importance for network flows generated by browsers.

