MSc Computer Science
Master’s thesis

Design and Implementation of
new features for Runtime
Permission Verification in
Concurrent Java Programs
using VerCors

Dylan Damian Janssen BSc.

Supervisor:
Prof. dr. Marieke Huisman
Pieter Bos MSec.

External examiner:
Dr. Ir. Pieter-Tjerk de Boer

April, 2024

Department of Computer Science
Faculty of Electrical Engineering,
Mathematics and Computer Science,
University of Twente

UNIVERSITY OF TWENTE.

Abstract

Concurrent programs increase productively significantly for computers, but they can also
introduce bugs, like data races and deadlocks. VerCors is a static verification tool that can
verify using formal specifications that the concurrent programs behave correctly. VerCors
also wants support for runtime verification for Java programs using the same formal spec-
ifications as static verification.

Gijsen implemented an initial prototype in 2015 to perform basic runtime permission check-
ing in VerCors. However, the prototype does not work with the current version of VerCors
and uses an approach that is different from the annotations from VerCors, which limits the
addition of new features to the runtime checking prototype. Additionally, the prototype
was only limited in its functionality, it only provides support for basic permission checking.

In this master’s thesis, we will first identify how to rework the old prototype to a new
prototype that does work with the current version of VerCors. Additionally, we will design
and implement new features for implementing permission checking for arrays, quantifiers,
loop invariants, lock invariants and predicates. We identify different options to implement
the new features in the prototype and implement the mentioned features into the prototype.

Each feature is evaluated using a test case. The test cases should not throw any error if
they are executed and by altering the test cases slightly, the test case should throw an
error. All test cases throw the error that was expected and thus the prototype works as
intended. The test cases produce a method and line coverage of 89% and 92% respectively,
which shows that most of the prototype is tested thoroughly. Finally, the test cases are
significantly faster for runtime verification than static verification. Runtime verification
took an average of 5.039 seconds while static verification took 14.923 seconds.

Keywords: runtime verification, static verification, VerCors, runtime assertion checking,
program verification

Acknowledgements

I would first like to thank the persons who helped and supported me during the creation
of this master’s project.

First I would like to thank Prof. Dr. Marieke Huisman for being my supervisor during my
research topics and master’s project. I am thankful for all the feedback and insights that
you provided during the project.

Additionally I would like to thank Pieter Bos MSc. for being my second supervisor during
my research topics and master’s project. Due to your technical insights into VerCors and
Scala, I was able to start the implementation of the prototype relatively quickly. Moreover,
whenever I had a question I could contact you directly and you would reply within a couple
of minutes.

I would also like to thank Dr. Ir. Pieter-Tjerk de Boer for being my external examiner.
During my bachelor studies, I always enjoyed the courses that you taught me and you are
a great teacher.

This master’s thesis has been performed at ALTEN Netherlands B.V., which I would like
to thank for their technical expertise and guidance. In particular, Hugo Logmans, Nick
Eilander BSc., and Anil Ozen BSc. Hugo Logomans always enabled me to have different
views on certain problems and provided me with feedback on my presentational skills.
Nick Eilander for providing me with all the resources I needed to accomplish this project.
Finally, Anil Ozen for being my coach during the project and for your keen eye for details
in my report

Finally, I would like to thank my family and friends for supporting me during the master’s
project period. My parents, Heleen Janssen van Loon BSc. and Maarten Janssen MD.
PhD, my sisters, Rachel Janssen MD. and Sharon Janssen MSc, and my girlfriend Pleun
Hakvoort BSc. were always there to motivate me during the project. I would like to thank
my friends for being there during my studies and providing me with technical feedback
and support on the project.

Contents

1 Introduction
1.1 Motivation e
1.2 Problem statement L
1.3 Research Questions
1.4 Outline e
2 Problem domain
2.1 CONnCurrency v v v v vt e e e
2.1.1 Bugs in concurrent programs
2.2 Formal specifications
2.3 Static verification
2.3.1 Problems with static verification
2.4 Runtime checking
2.5 Byte code transformation L L
3 Permission logic
3.1 Seperation logic
3.2 Fractional permissions e
3.3 Symbolic permissions
4 VerCors
4.1 What is VerCors? e
4.2 VerCors internal structure o
4.3 Syntax
5 Implementation Design
5.1 Basic permissions
5.1.1 Storing permissionso
5.1.2 Checking permissions
5.1.3 Exchanging permission oo
514 Locking
5.2 Array permissiono
5.3 Quantifiers
5.4 Loop invariants L. Lo
5.5 Predicates
5.6 Prototype Implementation Overview
5.6.1 Ledger
5.6.2 Class Descriptionso

14
14
15
16

17
17
17
18

6 Testing & Results

6.1

6.2

6.3

6.4

6.5

6.6

Test case Shared Buffer from Gijsen
6.1.1 Results
Test case Shared Buffer for arrays
6.2.1 Results
Quantifiers test case
6.3.1 Results
Loop Invariant test case
6.4.1 Results
Lock Invariant test case
6.5.1 Results
Predicates test case
6.6.1 Results e

7 Related work

7.1

7.2

7.3

Runtime verification for sequential programs
7.1.1 Frama-C.
7.1.2 Whiley
Runtime verification for concurrent programs
7.2.1 Old prototype
722 OpenJML
7.2.3 Concurrent and Distributed systems
Static verification tools concurrent programs
7.3.1 VerCors e
7.3.2 VeriFast o
7.3.3 VCC . . . e
7.3.4 Chalice
7.3.50 GPUVerify

8 Conclusion

9 Future work

9.1
9.2
9.3

New features
Automated testing environmento
Scoping permissions per function00

A Detailed Prototype Implementation

Al

A2

Details Helper Classes
AL UL .o e
A.1.2 LedgerHelper
A.1.3 CreateConstructor
A.14 PermissionData L
A.1.5 FindBoundsQuantifier 0L
A.1.6 AbstractQuantifierRewriter
A.1.7 RewriteContractExpr 0
A.1.8 TransferPermissionRewriter
Details Stage Classes
A.2.1 CreateLedger
A.2.2 RemoveSelflLoopso
A.2.3 RefactorGeneratedCode

36
37
38
38
38
39
39
39
39
39
40
40
40

41
41
42
42
42
42
43
43
43
43
43
43
44
44

45

47
47
47
47

A.2.4 AddPermissionOnCreate 57
A.2.5 CreatePredicateFoldUnfold 58
A.2.6 CheckPermissionsBlocksMethod 58
A.2.7 CreatePrePostConditions 60
A.2.8 CreateLocking 61
A.2.9 CreateLooplnvariants 61
A.2.10 ForkJoinPermissionTransfer 61
A.2.11 GenerateJava 62

B Code of tests 63
B.1 Test case for reviving code Gijsen 63
B.2 Test cases for new features 64
B.2.1 Arrays 64
B.2.2 Quantifiers 67
B.2.3 Loop Invariants o 68
B.2.4 Lock Invariant 69
B.2.5 Predicates e 69

Chapter 1

Introduction

Many bugs and issues can occur when working on programs and this is often challenging to
verify the behaviour of the implementation. It is important to find these bugs because they
can lead to undesired program behavior and have significant consequences, such as the loss
of important data. Fortunately, there are many different testing methods to do this, e.g.
white box, black box, and model-based testing. Next to testing methods, there is also static
verification, which verifies if the code conforms to the specifications of the program. These
techniques work on sequential programs, but it is also necessary that concurrent programs
are verified as well. Additionally, runtime verification is another technique to verify the
behaviour of the program. In runtime verification, the program will be verified while the
program is being executed compared to static verification which is being validated with-
out executing the program. In this work, we will provide the design and implementation
of a runtime verification for concurrent processes extension for VerCors [3|. VerCors is
a tool that is being developed by the University of Twente in the Formal Methods and
Tools group (FMT)!. VerCors, at the moment of writing, is a tool that statically verifies
programs using specifications provided in annotations and it is specialized at concurrent
software.

1.1 Motivation

Concurrent programs are used to increase the performance of a program significantly or
they can give a user feedback in a User Interface (UI) while other threads perform other
background tasks.

Although concurrent programs have a significantly high performance due to the use of
multiple threads, they are also more sensitive to bugs and it can be more complex to un-
derstand the behaviour of the software. This is because multiple threads can access fields
of objects at the same time and therefore introduce data races. To counter data races, it
is possible to introduce locking. On one hand, this prevents other threads from accessing
a certain field of an object simultaneously and therefore solves the data race issue. On the
other hand, it also removes the purpose of creating a concurrent program if other threads
have to wait till a thread is finished. Additionally, it can also introduce deadlocks, which
means that two threads are waiting for each other to release a lock and thus not execute
at all (see Chapter 2 for more information on data races and deadlocks). So by using con-

!Formal Methods and Tools group (FMT): https://www.utwente.nl/en/eemcs/fmt/

https://www.utwente.nl/en/eemcs/fmt/

current software, data races and deadlocks can be introduced, and because of that makes
it harder to ensure that the code is thread-safe.

Some tools can verify if code is thread-safe, for instance, VerCors [3] and other tools, see
Chapter 7. VerCors verifies if the code is thread-safe by using function contracts that
specify permission specifications for fields. Permission specifications describe how much
permission a thread has for an object or field in the program. Despite using modular veri-
fication, VerCors still requires a significant time to verify larger software. Also, everything
in a program needs to be specified to let the static verification succeed. A solution for this
would be using a runtime checking solution, which means that the program is validated
during runtime. In runtime verification, the program will not be verified statically (without
executing the program) but will be validated during execution. This is done by adding
assert statements to the source code, so the behaviour of the program can be verified. This
is useful because it will give a fast indication if the system behaves correctly, but it can
never show that it covers all the cases of the program behaviour. By combining the run-
time and static verification techniques a developer can get a fast indication if the program
works as intended by using runtime verification and in the end, prove that the behaviour
of the program is correct by using static verification.

1.2 Problem statement

An initial prototype of an extension of VerCors for runtime checking for basic permissions
was created by Gijsen. [9]. VerCors has changed significantly over the past years, resulting
in the original code not being functional anymore. Moreover, the prototype only covers of a
small subpart of the functionality that VerCors provides. For instance, the prototype lacks
permission with locks, array permissions, quantifiers in annotations, loop invariants, and
the use of predicates. Additionally, the prototype makes use of symbolic permission check-
ing, while VerCors uses fractional permission checking. It is desirable that the runtime
verification checker also uses fractional permissions because then the same annotations can
be used for verifying the program statically and during runtime.

Gijsen provided a suggestion to use byte code alteration to rewrite as little source code as
possible. Byte code alteration would enable the possibility to check permissions anywhere
and anytime in the program. Therefore research should be done to investigate if byte code
alteration is worth implementing.

Summarizing what must be done during this research is to provide a solution to revive and
extend the project of Gijsen to work with the current version of VerCors and its syntax,
investigate if byte code alteration is worth implementing, and introduce new features such
as permission with locks, array permissions, quantifiers in annotations, loop invariants,
and the use of predicates for checking concurrent Java programs.

1.3 Research Questions

To create a prototype of the runtime verifier of concurrent programs, we need to answer
the following research questions:

o What are the different techniques to do runtime verification using fractional permis-
sions?

— How will the different techniques be applied to the prototype of Gijsen to revive
the project?
— What are the benefits of using byte code alteration?

e How can features be integrated into VerCors, and what design considerations should
be taken into account?

How can basic permissions be integrated into VerCors?
— How can array permissions be integrated into VerCors?
— How can quantifiers be integrated into VerCors?

— How can predicates be integrated into VerCors?

— How can locks be integrated into VerCors?

— How can loop invariants be integrated into VerCors?

e What is the performance and coverage of the prototype compared to static verifica-
tion?

1.4 Outline

This thesis will have the following structure. First, we will discuss the problem domain in
Chapter 2. In Chapter 3 we will discuss how permissions can be handled in verification
techniques. After that, we will introduce how VerCors works internally and syntactically
in Chapter 4. Using the gained knowledge from the previously mentioned chapters, we
will discuss different options to implement the features into VerCors and how they are
implemented in Chapter 5. To verify if the prototype works correctly we perform tests
on the prototype and show the results of those tests in Chapter 6. In Chapter 7 we will
discuss the related works to this thesis. Finally, Chapter 9 we will discuss the possible
future work.

Chapter 2

Problem domain

In this chapter, we will discuss the problem domain of concurrent programs. This includes
what concurrent programs are, the bugs that can occur, what static verification is, and
what runtime checking is.

2.1 Concurrency

In the early days of computer science, it was normal to have sequential programs. A se-
quential program is executed on one thread. This is fine if the program is not large and
only needs to perform a couple of tasks. Programs gradually require a lot more calculating
power or have more tasks running in parallel. This is achieved by having the program exe-
cuted on multiple threads, by dividing a computationally heavy task over multiple threads,
or by running the different processes on different threads.

At the beginning of designing concurrent programs (the 1960s), most computers only had
one processor core with one logical thread. This meant that the different tasks of a program
would be scheduled by a scheduler to execute multiple processes at the same time on a
single core. Nowadays, almost every device has a multi-core processor with sometimes
multiple logical threads as well. This means that multiple processes can run on their
logical thread and in parallel. To determine which logical threads a process runs is still
determined by a scheduler, which is often built-in into the operating system.

2.1.1 Bugs in concurrent programs

Although the performance boost of concurrent programs is desirable, it also introduces
bugs that cannot occur in sequential programs. These bugs cannot occur because in se-
quential programs each line of code is executed after the other, so there is no other process
that can use the same resources as another thread.

The first bug that can occur in concurrent programs is data races, described by Pun et
al. [21]. Data races can occur when two threads are accessing or altering the same field
at the same time and at least one of the threads is writing. In Listing 2.1, you can see an
example of a data race bug. In this example, we have the class BankAccount, which keeps
track of the balance of the account. If two or more threads would invoke the add method
at the same time, it is possible that the balance would not be correct anymore. In Table
2.1 we can see how the data race can occur. The starting balance is 100 and there is one
thread that wants to add 10 to the balance value and one thread that wants to add 20 to

the balance. Every thread has its own stack, but they access the balance field from the
heap memory. First, thread one reads the value of the balance, adds 10 to it, and stores
it on its stack. Then thread two reads the value of the balance adds 20 to it and stores it
back on the heap. Finally, thread one stores the value of its stack to the heap. This results
in a data race, because the end value of the balance is now 110 instead of 130.

class BankAccount {
int balance = 0;

public void add(int difference) {
balance += difference

}
}
LISTING 2.1: Example of implementation that is prone to data races

Thread one Thread two Balance

read value balance 100

increment value in stack by 10 100
read value balance 100
increment value in stack by 20 | 100
write stack to balance field 120

write stack to balance field 110

TABLE 2.1: Example flow data race bug

Fortunately, it is possible to avoid data races by using locks. A lock ensures that a thread
will wait until the thread that is operating on a field has released the lock. However, if this
is not implemented correctly by a developer it is possible that a deadlock can occur, see
Pun et al. [21]. A deadlock occurs when two threads have acquired two different locks, but
want to request each other’s lock as well. This would mean that two threads are waiting
for each other to finish, thus resulting in no execution at all. Table 2.2 shows an example
of a deadlock, where two threads want to transfer money from one balance to the other.
Thread one reads and locks the first balance one, then Thread two reads and locks balance
two. Now they also need to know the other balance to do the transfer, so both threads
attempt to get the lock of the other balance, which fails because both balances are locked
already. Now both threads will wait infinitely for the lock of the other balance which is
held by the other thread.

Additionally, it is possible that the misuse of locks does not prevent the data race
problem. For instance, if a different lock is used for reading and writing, it is still possible
that a thread can alter the value while another thread is reading the value. Thus creating
a data race even though locks are used.

2.2 Formal specifications

Formal specifications define, according to Thomson et al. [23], the characteristics that a
system is to embody, where each statement should be defined so that it is proveable to
be correct. According to Hierons et al. [10], a variety of different formal specification

Thread one Thread two

Read value balance one (lock balance one)

Read value balance two (lock balance two)

Waiting to read value balance two due to lock

Waiting to read value balance one due to lock

Both infinitely waiting for each other

TABLE 2.2: Example deadlock

techniques exists. They discussed some of the more popular notations, which will be
discussed briefly.

First, the Finite State-Based Languages defines the states of a finite set of values. This
model represents what happens when certain inputs and outputs happen in a state and
what the next state will be.

The second form is the Process Algebra State-Based Languages, which describes the
system as several communicating concurrent processes. This language works similarly to
the Finite State-Based Languages, but can also keep track of traces of inputs and outputs.

The third form is the Hybrid Languages, which encompasses both discrete and contin-
uous mathematics. This is because many systems use a combination of analog and digital
components.

The fourth form is the Algebraic Languages, which describes a system using algebraic
properties. The language describes the behaviour of the systems in terms of axioms. This
approach is useful for functional programming languages.

Finally, we have the Model-Based Languages, which is an approach by building a model
of the intended behaviour of the program. This is often done by defining pre- and post-
conditions for functions. The conditions can be proved correctly using the Hoare logic [11].
If these conditions do not hold then the program might not work as intended, which means
that a bug can occur in the program. This type of formal specification we will use in this
document.

Programs that use Model-Based Languages to prove the behaviour of a program are,
for instance, the Java Modelling Language (JML) [19] or the ANSI/ISO C Specification
Language (ACSL) [7]. See Listing 2.2 for an example of how JML can be used to prove
the behaviour of a function that calculates the area of a square. In the specification, we
require the sideLength to be a positive number and the result of the function is the area
based on that sideLength.

VerCors also uses the Model-Based Languages to prove the behaviour. Permission-
Based Separation Logic (PBSL) is used to specify the behaviour of a program. PBSL is
an implementation of the fractional permissions introduced in Section 3.2. Since the static
verification of VerCors uses PBSL, the prototype also uses the same PBSL annotations to
prove the behaviour of programs.

@requires sideLength > 0
@ensures \result = sideLength * sideLength
public int areaSquare(int sideLength) {
return sideLength % sideLength
}

LisTING 2.2: Example formal specifications using JML

10

2.3 Static verification

Static verification is a process where a program is verified without running it. For instance,
some compilers perform static verification on the program to ensure the type safety of a
program. Static verification is often done using formal methods, which are mathematical
models of the code and checking if the behaviour of the model is correct using specifications.
A formal specification is called sound if the program is verified then the program will not
throw exceptions and will always behave to the specifications. It is also possible to do
unsound verification by only traversing through a subset of the model.

2.3.1 Problems with static verification

Static verification can prove that the program works correctly, but there are also challenges
with using static verification. Hé&hnle et al. [13] identified 24 challenges for deductive
software verification. In their research, they split the challenges into technical- and non-
technical. Each challenge represents a task that could be solved for further development
in deductive software verification. Also, each challenge is categorized into a certain topic
and this topic explains an overall current problem in deductive software verification. We
will briefly explain these topics what the problems are in deductive verification and what
the effect of using runtime verification is. Topics for deductive software verification are:

1. Technical:

(a) Specification: All specifications must be precise to let the verification proof
succeed, even if some specifications are trivial from the code and can be inferred
into the specification in a (semi) automated matter. When using runtime ver-
ification it is not required that all specifications must be precisely defined, so
that only one property is verified in the system.

(b) Integration: Different programming languages need different tools to perform
the verification. Unfortunately, there is no one-fits-all solution for verifying all
types of programs. This cannot be solved in runtime verification because the
runtime checks have to be implemented in the same language as the source
language. Thus a new tool needs to be created for each language.

(c) Coverage: Verification techniques need to take functional- and non-functional
techniques into account. When new research is done to extend the deductive
verification to concurrent programs, the problems need to be resolved in the
other tools as well. This also holds for runtime verification.

2. Non-Technical:

(a) Usability: The effectiveness of the deductive verification tools is very high,
but using the tools during the existing development environment can be cum-
bersome. At the moment there are only a few usability studies being done,
therefore more research must be done to adopt deductive verification in more
programs. The effectiveness of runtime verification is lower than deductive ver-
ification because we can never prove that runtime verification has covered all
paths in the program. However, the runtime verification approach can increase
the use of verification, because not all specifications have to be defined and thus
is easier to use.

(b) Funding: Building tools that perform deductive or runtime verification is an
expensive process where adding support for different industrial languages takes

11

a long time. Additionally, not all problems are solved, such as floating point
types and weak memory models, so research is still being done which requires
money and time. Funding the building of the tools and research is difficult.
This also applies for runtime verification.

(¢) Industrial and Social Context: Programming languages evolve and are not
designed to take verifiability in mind. This makes formal verification and cov-
erage a difficult task. This is also a problem in runtime verification, because if
the programming language changes then the runtime verification does not work
as well.

2.4 Runtime checking

Unlike the static verification process, it is possible to do the verification during runtime.
Static verification verifies the program based on the code and the formal specifications,
this happens without executing the program. Runtime verification validates the program
on the formal specifications while the program is being executed. For instance, pre- and
post-conditions of a method will be verified at the beginning and ending of the method
respectively. Additionally when variables, fields or objects are used check if the thread has
enough permission to access it. All the verification steps are evaluated in assert statements,
which throw an error if the program does not behave correctly. This has the advantage
that there is a fast indication if the program behaves correctly or not, but it can never
prove if the program is working completely correctly because it might not have covered all
the edge cases. Moreover, it also requires more processing power to check that the code is
correct, this can lead to performance issues for running the program.

To use runtime assertion checking, a program needs to be transformed so that assertions are
added to the program that are specified in the formal specifications. Listing 2.3, shows how
the simple function from Listing 2.2 can be transformed into a program that can be verified
by runtime assertion checking. The setLength method in the example will set the length
of the class to the newLength that is provided as a parameter. There is one pre-condition
that requires the newLength parameter to be larger than 0. As shown in the example
the pre-condition is translated to an assert statement. Next to the pre-condition, another
assertion is added when the this.length field is accessed, to ensure that the thread has
enough permission to change this field. Runtime assertion can only check if the conditions
hold for the current inputs and variables, thus it will not check all the possible inputs and
variables as in static verification.

@Qrequires newLength > 0;
public void setLength(int newLength) {
assert (newLength > 0);

// assert check write permission this.length
this.length = newLength;

LisTING 2.3: Example formal specification into runtime assertion checking pre-
condition

12

2.5 Byte code transformation

Gijsen [9] proposed to use byte code transformation to perform assertion checking only
when variables are used. This section will discuss byte code transformation and its advan-
tages and disadvantages.

Byte code transformation is a process where the byte code of a program is altered. Using
byte code transformation it is possible to change the program when it is loading into the
Java Virtual Machine (JVM). This can be used for runtime verification because no source
code will be changed during the process, only byte code will be added that checks whether
the code is correct. In Listing 2.4 you can see an example code that benefits from byte code
transformation. According to Gijsen if you want to check permissions for property b then
this would require either rewriting the source code to Listing 2.5 or checking the permission
before the if statement (which leads to performance drawbacks). In byte code alteration it
is possible to do the permission check before the variable is loaded into the stack and thus
it can verify if the program has enough permission and the source code does not have to
be altered. However, byte code transformation is a complex process and should be done
with care, because it can break programs relatively quickly if it is not done correctly. Since
a lot of code needs to be added to the program, therefore more byte code operations be
added to perform permission checking. One mistake in a byte code operation can cause a
failure in the program and thus should be implemented with care. Additionally, VerCors
does not have existing tools built-in to work with byte code alteration. Thus a completely
new system needs to be created for byte code alteration. Therefore it is more convenient
to use the tooling that VerCors already provides and alter the program such that it can
perform runtime verification.

public void threeOptions () {
if (a) {

return "a

} else if(b) {

return "b"

} oelse {

return
}

nan

na-n

C

LISTING 2.4: Example code that would benefit from byte code alteration

public void threeOptions () {

if(a) {
return "a"
} oelse {
if (b) {
return "b"
} else {
return "c¢"
}
}

LISTING 2.5: Rewritten code of Listing 2.4 for checking permissions that is required
instead of using byte code alteration

13

Chapter 3

Permission logic

This chapter discusses how permissions can be handled in verification. Therefore, we will
discuss Separation logic, Fractional permissions, and Symbolic permissions.

3.1 Seperation logic

To understand the concept of separation logic [18] we have to explain Hoare logic [11] first.
Hoare logic is a method to verify a computer program with the use of a set of logical rules.
For this, the Hoare triple is used, which is in the form of {P}C{Q} where P represents
assertions for the preconditions, @ the assertions for the postconditions and C' is the code
that is being executed. Hoare [11] defines the Hoare triple as:

“If the assertion P is true before initiation of a program C, then the assertion Q will be
true on its completion”

Listing 3.1 and 3.2 show 2 example programs to show how the Hoare logic can be used.
Listing 3.1 shows a simple program that increments b as long as it is smaller or equal to a.
In this example, the precondition (P) is set to true, because there are no constraints to the
program when it is started. Then the code (C) is executed. Finally, the postcondition (Q)
checks the behaviour of the program, meaning that b should now be bigger than a. Listing
3.2 shows an example of a program that has no ending. In this program, the precondition
(P) is set to true, therefore the code (C') can be executed directly, which is a while loop
that will run infinitely many times. The postcondition (@) is set to false, meaning that
the program cannot complete its execution.

P = true
Cf
a = 10;
b = 0;
while (b <= a){
b =1+ b;
}
¥
Q=Db> a

LisTING 3.1: Example Hoare triple

Separation logic is an extension of Hoare logic, where the idea of spatial conjunction is
checked. Spatial conjunction checks using the binary operator * (separation conjunction)

14

P = true

{

while (true){

foo () ;

}
}
Q = false

LisTIiNG 3.2: Example Hoare triple with no ending

P = perm(x, 1);
{

x = 10;
}
Q = perm(x, 1);

LisTING 3.3: Example separation logic spatial conjunction

that the left and right sides of the operator are true and are in different memory locations
of the heap. Therefore, getting permission for a field twice in the memory is impossible.
At first, separation logic did not allow concurrent programs at all. Later on, separation
logic was adapted to concurrent separation logic [5], which allowed concurrent programs,
and verified that two threads could not access the same field simultaneously. Although
this verifies that there are no data races, it also disallows multiple threads from reading
the value of the field simultaneously.

3.2 Fractional permissions

Fractional permissions [4] is a method using separation logic and fractions, to determine
permissions in a program. VerCors uses fractional permission checking to verify the be-
haviour of programs. In fractional permissions, each field stored on the heap has an asso-
ciated fraction assigned to it per thread. The total permission for a field is 1 and therefore
a thread is allowed to read and modify a field when it holds the complete permission of
1. This prevents 2 threads from accessing a field simultaneously and functions similarly to
separation logic. However, in fraction permission checking, multiple threads may read the
same variable simultaneously. This is allowed when the permissions for all of the threads
hold the 2 conditions:

1. Vt € threads : 0 < P(f) < 1. Meaning that each thread that wants to read the field
has permission between zero and one.

9. Shthreads p () <1 Meaning that the sum of all the permissions for a field is in total
less or equal to one.

Listings 3.3 and 3.4 show an example of a program that uses fractional permissions. In
the first listing, the permission for the field x is set to 1, meaning that the thread can read
and modify the field. The second listing is the same example however now the thread only
has half the permission for the field z.

Furthermore, using the mentioned conditions for fractional permission checking shows that
when a thread holds a read permission, it is impossible that another thread has write

15

P = perm(x, 1/2);
{

x = 10; not allowed
}
Q = perm(x, 1/2);

LisTING 3.4: Example separation logic spatial conjunction

P = perm(x, [T1]);
{

x = 10;
}
Q = perm(x, [T1]);

LisTiNG 3.5: Example separation logic spatial conjunction

permission. Assuming we have one thread with write permission and one thread with read
permission for the same field, this would mean that the total permission of that field is
bigger than one which is not allowed according to the conditions.

3.3 Symbolic permissions

Symbolic permissions [12] also represent if a thread has read or write access to a certain
field of the program. Instead of keeping track of fractions, see Section 3.2, it keeps track of
a list of all threads that will access the field. When a thread is the only one in the list then
it has write access and is allowed to modify the value of the field. When there are multiple
threads in the list then these threads have read access to the field and are not allowed to
modify the value. Listing 3.5 shows an example of symbolic permission checking. In the
example, the precondition holds a permission list for field z. In this list is only T'7, which is
in this case the main thread. Since T is the only thread in the list it has write permission
for the field z and thus is allowed to set the value of z to 10.

Using symbolic permissions makes it possible to easily check if a thread has enough per-
missions for a field, however proving that a thread has only read access, while the thread
is the only one in the list is complicated. A workaround would be adding a dummy thread
to the list to show that it only has read permission. Listing 3.6 shows an example on how
the dummy thread can be used. The example has a permission list for field xz. This list
has two threads, namely 77 and Dummy. This indicates that there are multiple threads
in the list and therefore the threads are only allowed to read. Therefore it is not possible
that T1 can set the value of z to 10.

P = perm(x, [T1, Dummy]) ;
Cf

}
Q = perm(x, [T1, Dummy]) ;

x = 10; //not allowed

LisTING 3.6: Example separation logic spatial conjunction

16

Chapter 4

VerCors

This chapter explains what VerCors is and how it is internally structured. The complete
and up-to-date explanation of how VerCors works can be found on the GitHub of VerCors'.

4.1 What is VerCors?

VerCors is a static/deductive verifier built and maintained by the Formal Methods and
Tools (FMT)? research group of the University of Twente. The tool is specialized in
concurrent software and validates programs using fractional permission. This is done using
formal specifications about how the program should work and what permissions threads
have on certain fields, these annotations are called Permission-Based Separation Logic
(PBSL). At the moment of writing the paper, VerCors supports the following languages:
Java, C, OpenCL, and PVL.

4.2 VerCors internal structure

VerCors is written in Scala [1], which is a programming language that combines Object
Oriented Programming (OOP) and Functional programming. This language works well
for VerCors, because an abstract syntax tree (AST) can be easily constructed in an OOP
language. Also, for transforming the AST, functional programming features can be applied.

VerCors consists of multiple stages to prove that a program is correct, see Figure 4.1. The
first stage is the Parsing stage, which parses the source language of the program with
annotations. This stage translates the program to its internal language (Col) which is a
notation for an AST. This stage makes sure that there are no syntactical errors in the code
and annotations.

VerCors: https://github.com/utwente-fmt/vercors
?Formal Methods and Tools group (FMT): https://www.utwente.nl/en/eemcs/fmt/

Resolution Transformation Backend

))

FIGURE 4.1: VerCors stages

Parse

Y

Y
Y

17

https://github.com/utwente-fmt/vercors
https://www.utwente.nl/en/eemcs/fmt/

The second stage is the Resolution stage, which resolves all the names of the AST and
loads in classes that are present in the source code. This also loads in classes that are
already predefined in the source language, for instance, it is possible to load in a shim of
the Thread class of the java.lang package.

The third stage is the Transformation stage, this stage is responsible for repeatedly
transforming the AST into nodes that the verifier supports.

The final stage is the Backend stage, this stage is used to verify the produced AST and
see if it is (in)correct. VerCors uses Viper [17] as the backend to prove the program.

4.3 Syntax

In this section, we will discuss the specification syntax of VerCors. Only the specification
syntax that is used in this project (see Section 5) is discussed. Every specification also has
an example of how the keywords should be used in VerCors.

Pre- and Postconditions

In VerCors, you define pre- and postconditions using the requires- and ensures keywords
respectively. Additionally, it is also possible to use the context keyword if the condition
must hold in the pre- and postcondition. In the postcondition, it is also possible to use the
result of the function by using the \result keyword and to get the old value of a variable
by using the \old keyword.

/@ context Perm(this.x, write);
@ ensures \result = \old(this.x) + 1;
public int increment () { /* ... x/ }

‘@ ensures false;
public void neverEndingMethod () {
while (true){ /« ... =%/ }
}

LISTING 4.1: Example on how to use the requires and ensures keywords

Permissions

Permissions are defined using the Perm(o.f, frac) function, where the o represents the
object and the f represents the field of that object. If the field is inside the object the
keyword this can be omitted. Two permissions of the same field can be combined using the
separation conjunction operator (**); but they cannot be more than one in total. Listing
4.2 shows an example of how the permission syntax can be used, where write permission
for the this.val field is required as a pre- and postcondition of the incr method.

class Counter {
public int wval;
context Perm(this.val, write);
*
void iner(int n) { /* ... */ }

}

LISTING 4.2: Example on how to use the syntax for defining permissions

18

Quantifiers

It is possible to use the 3, V, and V* quantifiers using the \ezists, \ forall, and \ forallx
keywords respectively. The \exists quantifier means that at least one of the conditions
should be true. The \ forall quantifier means that all the conditions must be true. The
\forall* also means that all the conditions must be true, but all conditions are in a
separating conjunction, meaning that all the permissions for each field are maximally 1.
Quantifiers are often used in combination with arrays to check if a condition holds for all
elements of the array. Listing 4.3 shows an example of how the quantifier keywords can
be used in a program. First, we check that the arr is not null. Then we check if we have
write permission for each element in the array. Finally, we check if there exists an element
in the array that has a value of bigger than 0.

//@ requires arr != null;

@ requires (\forallx int i ; O<=i && i<arr.length ; Perm(arr|[i], 1));
//@ requires (\exists int i ; 0<=i && i<arr.length ; arr[i]|>0);
void foo(int[] arr) { /« ... =/ }

LIsTING 4.3: Example on how to use the syntax for defining quantifiers

Loop invariants

Loop invariants are conditions that must hold before and after each iteration of the loop.
This is specified using the loop invariant keyword. Loop invariants must redeclare the
permissions, just like function contracts. If they are the same as the function contract, it
is possible to use the contexrt everywhere keyword in the function contract. Listing 4.4,
shows an example of how loop invariants can be used. The first loop invariant shows that
1 is always lower or equal to a.length. The second loop invariant shows that the write
permission for afi/ is required.

public int mult(int [] a, int b) {
//@ loop invariant i <= a.length;
//@ loop invariant Perm(this.a[i], write);
for (int 1=0; i<a.length; i++) {
if(a[i] = b) {

return i;

}

return —1;

}

LISTING 4.4: Example on how to use the syntax for defining loop invariants

Predicates

Predicates can be seen as a box where permissions and conditions can be put in. This
makes it easy to transfer multiple permissions to a function without showing the underly-
ing fields of that object. Thus allowing methods not to see the private fields of other objects
and therefore conform to the Object Oriented Programming (OOP) paradigm. Predicates
also make it possible to not have a rippling effect where the developer has to write down
each individual permission every time they call another method.

19

To have access to fields, the predicates must be unboxed inside the method. Predicates can
only be created inside the methods, but then the thread puts its permission to access the
field into a "box". This box can be passed to the next method, where it can be unboxed to
receive access to the required fields. In VerCors first, a definition of the predicate must be
defined, this is done using the resource keyword. Then it is possible to "box" the predicate
using the fold keyword and "unbox" it using the unfold keyword.

Listing 4.5 shows an example of how a predicate can be used in a program. The program
has a class Cell. The class has a predicate called state which receives a parameter val. The
body of the predicate checks if the write permission for this.z is present and if the val and
this.x are the same value. The foo method will add this.z and n together and returns that
value. The method has a pre- and postcondition that specify that an instance of the state
predicate must be present. To read the value of this.x the predicate must first be unfolded
and later on be folded again to satisfy the postcondition.

class Cell {

@ resource state(int val) = Perm(this.x, write) x%x x = val;
int x;

@ requires state(this.x);
‘@ ensures state(this.x);
public int foo(int n) {
@ unfold state(this.x);
int result = this.x + n;
@ fold state(this.x);
return result ;

LISTING 4.5: Example on how to use the syntax for defining predicates

Locks

In VerCors it is possible to create a lock invariant, which is a special kind of predicate to
determine the properties of a lock. The role of the lock invariant is a condition that should
hold when the lock on an object is acquired. The condition can also exist of permissions
that can be provided to the thread that locks on the object. A lock invariant is always
on a class and should always hold at the end of the constructor of that class (so it is
automatically folded). In the constructor, the creating thread should have all the access
to the object. If that is not the case then it can never be true later. In VerCors showing
that the lock is initialized is by using the keyword commit.

The only way to currently use the lock invariant in Java is by using a synchronized block.
To use the lock we must first verify that the lock is initialized using the keyword com-
mitted. When a thread is in this block the lock invariant can be assumed of that object
(so it is automatically unfolded). At the end of the block, the lock invariant should be
reestablished (folding it again) to its original state. If it cannot be folded again, and thus
permission gets lost, an error should be thrown, because the next thread that wants to
lock the object, will not receive the permissions that the lock invariant promises to give.

20

Listing 4.6 shows an example of how lock invariants can be used to verify a program.
The program consists of a class Cell. This class has a lock invariant, that holds write
permission of the this.z field. In the constructor, the lock invariant will be established
using the keyword commsit. Finally when using the method increment it is required that
the lock invariant is established. If it is and the thread enters the synchronized block it
acquires the lock invariant.

//@ lock invariant Perm(this.x, write);
class Cell {
int x;
public Cell() {
/ Lock invariant is established here!
//@ commit this;

/@Qrequires committed (this);
public void increment () {
synchronized (this){
/ Assume lock
X 4= 2
" Return lock invariant

LISTING 4.6: Example on how to use the syntax for defining predicates

21

Chapter 5

Implementation Design

This chapter will consider the advantages and disadvantages of different options for imple-
menting the prototype. Additionally, we will discuss what design choice for each feature is
used in the prototype implementation with a discussion about design mistakes.

5.1 Basic permissions

The internal structure of VerCors has changed significantly, so the prototype that Gijsen
created [9] does not work anymore. Additionally, the prototype used symbolic permission
checking, see Chapter 3, to check if a thread has enough permission. Since we want to use
fractional permissions, the code cannot be reused in this project and needs to be reworked
completely.

5.1.1 Storing permissions

Fortunately, Gijsen did introduce different ideas for tracking and storing permissions.

ThreadLocal permission accounting

First, Gijsen introduced the ThreadLocal permission accounting. This accounting stores
all the permissions which a thread has in the ThreadLocal (See Listing 5.1) storage and
thus is only available to the owner of the thread’s local storage.

ThreadLocal<Map<Object , Fraction>> permissions;

LISTING 5.1: Storing permission in the ThreadLocal

This approach has the following advantages and disadvantages:

On one hand, using this approach it is very easy to check if the thread has enough
permission to access a field. On the other hand, exchanging permissions between threads
is not trivial because the threads only know how much permission they have themselves,
and not what the others have. Additionally, it is not possible to store permissions for
primitive types, because primitive types are passed by value in Java.

Global permission accounting

The second approach is to have a global static map (Ledger), where the permissions are
stored into a map based on the object, field, and the id of the thread, see Listing 5.2. By
using a global map it is relatively easy to transfer the permission between threads. This

22

approach is close to a symbolic permission checking approach because every thread knows
the permissions of all threads. Gijsen decided that fractions are not necessary at all and
therefore the fraction can be removed from this map to save memory. Although this is
true for basic permissions, this removes a core concept of VerCors, by not using fractional
permission syntax and thus makes it harder to support different features other than basic
permissions, for instance, predicates and quantifiers. This would also require the developer
to write different annotations for static verification and runtime verification, which is not
desired.

Map<Threadld , Map<Object , Map<Field , Fraction>>>

LISTING 5.2: Storing permission in global map

Per-field permission accounting

The final approach Gijsen proposed was the per-field permission checking. For this, each
class holds a map that can be used to check the permission for the field of the class, see
Listing 5.3. The advantage of this approach is that you can check the permission of a field
relatively easily because the class is already known. A disadvantage is that the definition
of the class changes, and thus when the program makes use of reflection or serialization of
objects in the program, the permission accounting is exposed.

class Example{
Map<Threadld , Map<Field , Fraction>>>
}

LISTING 5.3: Storing permission in per-field map

Implementation Choice & Discussion

At the beginning of writing the prototype, we decided to implement the per-field permission
storage. At first, this was a good decision because it was relatively easy to implement the
storage for basic permissions for fields, making use of internal numbers that refer to the
fields of an object. However, this implementation also had its drawbacks namely:

e Every class in the prototype should create HashMaps to store permissions. This
results in creating a large number of HashMaps when a significant number of objects
are created. Due to the creation of HashMaps the implementation is scaling poorly
in memory

e Accessing the permissions got significantly complicated for quantifiers and predicates
and thus implementing these features got significantly harder

e Per-field permission storage is unable to determine permissions for function parame-
ters. This is because a parameter in a function can be an Object or array which does
not have to point to a field but can be a locally created object in another function.
Due to this, we do not know where the permission should be checked and thus the
permission cannot be checked entirely. This is the most important reason that per-
field permission storage cannot be used in runtime assertion checking because it has
cases that it simply cannot support.

Due to the mentioned reasons we decided to change the prototype to make use of the global
permission storage (Ledger). This created multiple benefits:

23

e All objects that are created can be put into a single HashMap and thus save memory
as much as possible

e Permissions can be requested or altered from anywhere in the code

e Predicates and join tokens can also be stored in the global storage (Ledger), making
it easier to add different functionality to the code in future implementations

To store permissions we also need a Fraction object to store fractional permissions. In-
stead of implementing the Fraction class ourselves, we use the Fraction class of the
org.apache.commons.math3' package. The Fraction class supports mathematical opera-
tions between fractions. Additionally, it also provides methods to easily compare fractions
with each other.

5.1.2 Checking permissions

Gijsen discussed when permissions should be checked. According to Gijsen, permissions
should be checked above each line that is referencing to a field to ensure that all expres-
sions have the correct permissions. They mention two scenarios when permissions should
be checked automatically.

The first scenario is when a field of an object is dereferenced and thus is being used in an
expression. Then the permission for that field should be a read permission, see Listing 5.4.

need read access for counter.count
int ¢ = counter.count

need read access for program.counter
/need read access for program.counter.count
int d = program.counter.count

LisTING 5.4: Assignments that requires read permission

The second scenario is when a dereference happens on the left side of an assignment
statement. Then the thread needs write permission to access that field, see Listing 5.5.

' need write access for counter.count
counter.count = 4

LisTING 5.5: Assignment that requires write permission

These two approaches are correct but create a lot of unnecessary permission checks. For
this, we can introduce permission checks based on blocks, where assignments and operations
can be grouped so that the permissions have to be checked only once per block instead
of for each statement. A block ends when a change on the heap occurs, for which there
are two scenarios. The first scenario is when a method invocation occurs because we do
not know what happens in that function so we must assume that the heap can change in
that function. The second scenario is when an assignment to a non-primitive variable/field
occurs. In this case, the heap will change and the permissions need to be rechecked. Listing
5.6 shows an example of how the permissions for blocks. In this example we create two
different Counter objects, therefore the heap changes and thus both statements need to
be in a separate block. Block three has two statements reading and altering the value of

'Fraction class: https://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/org/
apache/commons/math3/fraction/Fraction.html

24

https://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/org/apache/commons/math3/fraction/Fraction.html
https://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/org/apache/commons/math3/fraction/Fraction.html

primitive fields, therefore all the permissions that are required in this block can be grouped.
Block four changes a non-primitive variable by assigning counterTwo to counterOne and
thus the permissions need to be rechecked in the next block. Block five creates two new
integers using the counterOne.count variable, thus the permission for counterOne.count
only needs to be checked once. Finally, a statement with a method invocation in block six
needs to be in a separate block since we do not know if the increment method changes the
heap or not, so we must assume that it does.

public void main() {

/block 1
Counter counterOne = new Counter () ;
/block 2
Counter counterTwo = new Counter () ;
block 3
int a = counterOne.count;
counterOne.count = a * counterTwo;
'/block 4 (assignment to non—primitive variable)
counterOne = counterTwo;
block 5
int b = counterOne.count x* 2;
int ¢ = counterOne.count + 1;

block 6 (method invocation, so new block)
counterTwo.increment (b + ¢);

LISTING 5.6: Permission checking per block

Gijsen also mentioned that permissions checks on the fields of a class are not necessary
inside the constructor of that class, because the permissions for these fields are initialized
in the constructor and thus no other thread could have accessed the field yet. Permissions
of fields of an external object that are used in a constructor should be checked, see Listing
5.7. In the listing, permission checking is not required for the this.val field but is required
for the e.val field.

public class Example{
int val;
public Example(Example e) {
/no write permission required for this.val
this.val = 0;
write permission required for the e.val field
e.val = e.val + 1;

LI1STING 5.7: Permission checking inside the constructor

Implementation Choice & Discussion

In the prototype, we make use of the permission per block checking method. This removes
redundant permission checks and thus saves performance. Checking permissions can easily
be done by looking up the permission for the object in the HashMap. However, the pro-
totype should also support the verification, shown in Listing 5.8, where the permission for
this.i is checked twice for a permission of % permission.

25

/@ requires Perm(this.i, 1\2) %x Perm(this.write, 1\2)
is equivalent to:
/@ requires Perm(this.i, 1)

LISTING 5.8: Permission should be added up for this.write

This is a valid check, but due to the x* operator, the permissions need to be added up and
thus the permission that needs to be checked is actually % To do this, we keep track of the
permission objects and add all the permissions together if they are referring to the same
object. After we checked the complete condition, we additionally check that the permission
of the tracked objects is not higher than the permission the thread has for that object.

5.1.3 Exchanging permission

Permission can only be exchanged when threads are forking, joining, or acquiring a lock.

Starting a thread

Gijsen used a preFork predicate to indicate how the permission should be transferred be-
tween threads. The thread that starts another thread first needs to check if it has enough
permission to transfer the permission. If it has enough permission, it can create the preFork
predicate and hand over the permission to the other thread. Additionally, Gijsen made
use of start tokens to verify that the thread cannot be started more than once. However,
this is unnecessary for the prototype because the Java Runtime Environment (JRE) will
throw an Fzception when a thread is started more than once.

Another option to know the permissions needed to be transferred to the new thread, is
using the pre-conditions of the run method. All newly created threads have the run method
implemented and thus can specify in annotations what permissions are required to start
the thread. Before transferring the permissions, the starting thread needs to check that it
has enough permission.

Joining a thread

A thread can be joined more than once and can be joined by multiple threads. To decide
how much permission each thread will get from the joined thread, join tokens are used.
The sum of all join tokens is maximally 1, when a thread is joining a thread it will receive:

join_token X perm + old_perm

For this, it is possible to add a special annotation to VerCors called postJoin(frac). This
annotation must then be used in the runtime verifier to show how much of the permission
is transferred between threads. The special annotation can then be used on the post-
condition of the run method. The post-condition of the run method indicates what the
final permissions of the thread are.

Gijsen made use of symbolic permission checking. This enabled storing the join tokens as
a list of threads that will join the joining thread. This implementation could be used in
our prototype as well and is relatively easy to implement, however, this will limit the pro-
totype that every joining thread gets the same permission of the joined thread. Therefore
this limits the functionality of the prototype and limits implementing other features as well.

26

Implementation Choice & Discussion

In the prototype, we use the specifications of the run method for starting and joining the
threads. The pre-condition of the run method specifies how much permission the thread
wants to acquire. The starting thread will have to check if it has enough permission to
transfer the permissions to the newly started thread. If that is the case the started thread
can assign the required permissions to itself.

Joining makes use of the post-condition of the run method and a special annotation for
a join token using the following format: o.postJoin(frac). The o indicates which thread
object the post join token applies to and the frac indicates the size of the join token that is
used in the joining operation. The join token for each thread is stored in the global storage
and is used to check if no more than the allowed join token is requested. After checking
if there is enough join token left for the thread, the permissions will be transferred to the
joining thread by multiplying the post-condition with the join token.

5.1.4 Locking

As explained in Section 4.3 locking is a special predicate in VerCors. Predicates will be ex-
plained in Section 5.5, but work similarly. In the prototype, we can remove the permissions
that are required for the lock invariant when the object is initialized. When a thread enters
the synchronized block it will receive the permission that is defined in the lock invariant.
At the end of the synchronized block, the lock invariant should be re-established, if this is
not possible then permission for a field has been lost or the program reached an undesired
state. The advantage of this approach is that there are no extra objects created to store
the permissions of the lock invariant.

Another option would be to store the predicate for the lock invariant in the object itself
and when the thread acquires the predicate, it first unfolds the predicate and receives the
permissions. Finally, at the end of the synchronized block, it needs to set the lock invariant
of the object back to its original value. The advantage of this approach is that there is
only one lock invariant and thus when a thread acquires the lock invariant we show that
there are no other threads with the lock invariant predicate. The disadvantage is that an
extra lock invariant object needs to be created and thus requires additional memory usage.

Implementation Choice & Design

Locking is implemented by removing the required permissions of the thread that creates
the object holding a lock invariant. When a thread enters the synchronized block it will
receive the permissions of the lock invariant. Finally, at the end of the synchronized block
it will need to reestablish the lock invariant.

5.2 Array permission

Next to basic permission checking, array permission checking should also be supported in
the prototype. This is possible by creating another field in the global storage (Ledger) for
arrays specifically, where we also store the location of the array in the Map, see Listing
5.9. By doing this, it still works similarly to normal permission storage.

An advantage of this approach is that its permissions can easily be looked up in the Map.
A disadvantage of this approach is that a significant number of Maps need to be created

27

Map<Threadld , Map<Object , Map<Integer , Fraction>>>

LISTING 5.9: Storing permission for array in another map

and thus be memory inefficient.

Another option is to store the permissions in the same map we use for basic permission
checking but making use of Object/], where we can store the array and its location and
then refer to a Fraction, see Listing 5.10. In the listing, we create an integer array with
two elements. The prototype should create a Object[] for each element in the array. The
content of the Object[] is the array (a) and the location of the element in the array. An
advantage of this approach is that we can reuse the same map for basic permission checking
for the array permission checking. A disadvantage is that extra objects have to be created
to check the permission for the arrays.

int [] a = new int [2];
/store permission Object[]{a, 0}
store permission Object[]{a, 1}

LISTING 5.10: Storing permission for array in Object/]

Implementation Choice & Design

Since we started with implementing permission storage per field, we also created an addi-
tional HashMaps that also kept track of the location in the array. However as we mentioned
before, we do not always know where the array is coming from in a function when it is
passed as a parameter. Therefore, we cannot use this approach for permission checking on
positions in the array.

The solution is that we can use the same global HashMap that we are using for normal
permission. We can store the location of the array in an Object/[and this can be stored in
the HashMap as well. Unfortunately, HashMaps and List make use of the equals method
on objects and thus the equals method on two Object/] will return false even though their
content is the same. This is because the arrays both refer to different positions in the
memory and thus are not equal, see Listing 5.11. Fortunately, it is possible to make a
wrapper class (DataObject) which stores the Object/] but uses the Arrays.equals method
to determine if two Object/] are equivalent, see Section A.2.1 for a more detailed explanation
of how the DataObject works.

Object [|] arrl = new Object[]{1, 2};
Object [] arr2 = new Object[]{1, 2};
arrl.equals(arr2);
returns false since they refer to different object even though their
content is the same

L1STING 5.11: Comparing 2 Object/] with similar content

5.3 Quantifiers

In VerCors it is possible to use the 3, V, and V* quantifiers in the pre- and postconditions
and lock/loop invariants using the \exists, \ forall, and \ forallx keywords respectively.

28

For this, we can provide two options on how they can be implemented in the prototype.

The first option is relatively simple, where we create a loop that checks the condition of
the quantifiers. Although this option is easy to implement, the generated code looks less
clean, because of the number of for-loops in it.

The second option is to create a function that creates a for-loop to check the conditions of
the quantifier. This makes the code look very clean but is relatively difficult to implement.
Since the quantifiers might need variables that are defined earlier, this needs to be bub-
bled down into other quantifiers if there are multiple quantifiers nested, so Listing 5.12.
Using the first option does not require bubbling down of the parameters because all the
parameters are available in the function itself.

/%@ requires (\forall* int i ; 0<=1 && i<arr.length
(\forallx int j; 0<=j && j<i; Perm(arr|[i], 1) *x arr|[i| <= arr|j|
% arr[i] < this.val));
*

public void main () {
assert (quantifier 1 (arr, this.val));
}

the inputs of the variables that are needed needs to be bubbled down
to this function
public boolean quantifier 1(int[] arr, int val) {
for (int i=0; i < arr.length; i++){
if (! quantifier 2 (arr, val, i)){
return false;
}
}

return true;

the inputs of the variables that are needed needs to be bubbled down
to this function
public boolean quantifier 1(int[] arr, int val, int i) {
for(int i=0; i < arr.length; i++){
/check permission for arr|i]
if (arr[i] >= arr[j]){
return false;

if (arr[i] >= val) {
return false;
}
}

return true;

LisTING 5.12: Example quantifier bubbled down problem

Implementation Choice & Design

At first, we implemented the option for generating new functions for each quantifier. How-
ever, as mentioned before the bubbling down of the parameters became significantly more

29

difficult to implement. Thus we changed the implementation to generating for-loops for
each quantifier in the code. First, the bounds of the will be looked up, if there are no
minimum or maximum bounds defined we make use of the Integer.MinValue and Inte-
ger.MaxValue respectively. Second, a check is generated that the loop condition holds, if
this is not the case the code will proceed to the next iteration. Finally, the loop check is
performed and returns true or false based on the quantifier.

Additionally, the \ forall* quantifier also needs to check that there are no duplicate objects
in the array the quantifier is checking permissions from. This behaviour is not allowed in
the static version of VerCors and thus will also not be allowed in the runtime assertion
checking, see Listing 5.13 for an implementation that should not be allowed by VerCors. In
the example an array with Dummy objects is created, where the first and second elements
point to the same Dummy object a. The pre-condition of the test method checks if all
elements have % permission. It is not allowed that two elements are tested twice on
permission in a \ forallx quantifier and thus should return an error if it does occur.

class Dummy{
int a;
}

public void main() {
Dummy a = new Dummy() ;
Dummy|[] b = new Dummy[]{a, a};
test (b);

/@ requires (\forallx int i ; O<=i && i<arr.length; Perm(arr|[i].a,
1\2);
public void test (Dummy[] arr) { /*...x/ }

LisTiING 5.13: Example that shows an implementation that is not allowed by
VerCors

5.4 Loop invariants

Loop invariants are needed to check at the beginning and end of each loop iteration. This
can be done by adding assertions to the beginning and ending(s) of a method. This is
similar to the pre- and postconditions of a loop iteration. When a continue- keyword
occurs, the loop invariant is also checked before this keyword. This is required because
they will stop a loop iteration and thus the loop invariant needs to be checked since it is
the end of the loop iteration.

Implementation Choice & Design

Loop invariants are implemented as described above in the prototype and no problems
occurred when implementing it.

5.5 Predicates

Predicates are more difficult than the other new features since they work as a box (see
Section 4.3). The minimal requirements are that we can fold and unfold the predicate and

30

check if the thread has the predicate in its possession. Two different options are considered
for implementing predicates into the prototype.

Class per predicate

The first option is to use a separate class for each predicate. This class has a generated
fold and unfold method, that can remove the permission and return the permission to the
thread. This class can also be used statically to store all the predicates that the thread
currently has of this predicate type. See Listing 5.14 for an example of how this option for
predicates works.

public class Counter{
int count;
//@resource state(int val) Perm(this.count, write) =xx this.count
— val;

}

public class RuntimePredicateState{
Map<Long, List<RuntimePredicateState>> predicates;

public void unfold (Counter count, int val){
adds permission to the thread and removes predicates from
thread

}

public void fold (Counter count, int wval){
check predicate condition
//remove permissions to the thread and add predicate to the
list

}

public boolean hasPredicate(Counter count, int val){
//returns true if the thread has the predicate
}

LISTING 5.14: Predicate creating class for each predicate

The fold method will remove the permissions of the thread that are required by the
predicate. First it needs to check if the thread has enough permissions for the fields. After
which it will remove the permissions of the thread that are required by the predicate.
Then it will create an instance of the predicate class and store it in the predicate store.
To know the properties of the predicate, we also need to store the corresponding class and
the parameters of the predicate.

The unfold method works the other way around than the fold method. First, the
method will check if the thread has the predicate in its possession, and then it will add
the permissions to the thread. Finally it will remove the predicate from the store.

The advantage of this approach is that the permissions only change when a thread
accesses the predicate class. The disadvantage of this approach is that a lot of boilerplate
code needs to be generated to create the predicate functionality. Additionally, when a
predicate is created, a new instance of the predicate is created as well, this uses a signifi-
cant amount of memory.

31

Predicate in Object]|]

The second option is to store the predicate details in an Object/] and store it in a map
globally. An example of this approach is shown in Listing 5.15. In this example, the
predicate is folded and unfolded using the Object[]. In the Object/] is the class that is
associated with the predicate, in this case this. Then the parameters of the predicate
(count) and finally the name of the predicate ("state”). The advantage of this approach is
that the predicate can easily be folded and unfolded and easily be checked that the thread
has the predicate in possession. The downside of this approach is that for each predicate
that is folded an extra object is created with the details of the predicate, this uses more
memory. Another downside of this approach is that the transfer of permissions happens in
the method with the fold /unfold statements. Thus making the code of that method long
and difficult to understand. However, this is generated code so it should not be read by
the developer of the program and only by the developer of the runtime assertion checker.

Map<Long, List<Object[|>> predicatestore

public class Counter{
int count;
//resource state(int val) = Perm(this.count, write) *x this.count
— val;

@ requires state(count);
/@ ensures state(count);
public void increment (){

assert (predicatestore.contains (new Object []{this, count, "state
"}));
unfold predicate permissions to thread
predicatestore.remove(new Object[]{this, count, "state"});
count += 1;

/fold predicate permissions from thread
predicatestore.add(new Object []{this, count, "state"});

LISTING 5.15: Predicate store predicate details in Object//

Implementation Choice & Desgin

The initial idea for predicates was to create a different class for each predicate that is
defined. These classes will have a fold and an unfold method so that the permission can
be removed and added inside of this generated class. Additionally, this class could also be
the store for the predicates to check if the thread has the predicate. This idea worked but
was not ideal, because of the following reasons:

e When a significant number of predicates are stated in the code also a significant num-
ber of classes are generated. This resulted in being unclear of what was happening
in the code and made the code look poorly

e Each of the generated classes is coupled to a class that the resource is defined in, so
there is no general store that can handle all the predicates at once

e Each generated predicate class has a predicate store to store all the predicates for
each thread, thus generating more HashMaps for the predicate objects

32

Due to these reasons, we also decided to rework the predicates and store them in the
global storage (Ledger) in a different HashMap, which has the thread id as the key and a
list of all the predicates that the thread has as the value. The object that is used to refer
to the predicate is, just like array permissions, an Object/| wrapped in a DataObject. In
the Object[], we keep track of the arguments of the predicate, the object the predicate is
associated with, and the name of the predicate, see Listing 5.16. When a predicate is being
folded the condition of the predicate is checked, then the permissions are removed from the
thread beforehand and finally, the predicate object is created. Unfolding a predicate first
checks if the thread has the predicate, then it will remove the predicate from the storage
and finally will return the permission to the thread.

‘@ resource state(int val) = Perm(this.count, write) %% this.count —
val
DataObject. create (new Object []{ this.count, this, "state"});

LISTING 5.16: Predicate transformation to DataObject holding predicate data

5.6 Prototype Implementation Overview

This section will discuss the generated global storage (Ledger) and how it works. Addi-
tionally, a brief overview of all classes that are used throughout the prototype.

5.6.1 Ledger

Figure 5.1 shows the generated Ledger. The Ledger has a store for permissions, predicates,
and join tokens. The permissions and predicates make use of the DataObject class. The
DataObject class is a wrapper class for the Object/|. Because comparing two different
Object|| arrays always returns false even if the content is the same, we need to define a
new equals method. The equals method of the DataObject makes use of the Array.equals
method to compare the content of the arrays as well. The DataObject makes it possible
for array permissions and predicate information can be stored in an Object/] so that they
can be globally stored with other permissions and predicates.

5.6.2 Class Descriptions

Figure 5.2 shows the different classes that are used to make the prototype work. We will
briefly explain how each class works and what the responsibilities are of each class. First,
we have all the helper classes, which are defined on the right side of the figure.

e Ledgerhelper: responsible for interacting the the global storage (Ledger).
e Util: provides utility methods which can be used throughout multiple different stages

e CreateConstructor: restores the removed constructor in the Resolution stage. The
CreateConstructor class is only used by the RefactorGeneratedCode indicated by the
green line.

¢ FindBoundsQuantifier: searches through the quantifier and defines bounds for
each quantifier

e PermissionData: data object that provides extra information for rewriting con-
tracts and transferring permissions

33

Ledger

Permissions Predicates Join tokens

DataObject

FIGURE 5.1: Ledger overview

e AbstracQuantifier: an abstract class that transforms a quantifier to a for-loop, so

that only the loop body have to be implemented by the RewriteContractExpr and
TransferPermissionRewriter rewriters

RewriteContractExpr: rewrites a contract expression to multiple assert state-
ments. So it is responsible for rewriting contracts of pre- and post-conditions, lock
invariants, loop invariant, predicates, forking and joining. Stage classes that make
use of the RewriteContractExpr class are indicated with an orange line in the figure.

TransferPermissionRewriter: rewrites a contract expression so that is possible to
transfer permission between two threads. This is used in forking, joining, predicate
and lock invariants. Stage classes that make use of the TransferPermissionRewriter
are indicated with a blue line.

Second, we have the stage classes, which are stages to transform the source code into the
newly generated code. The stages are displayed on the right side of the figure.

1.

CreateLedger: creates the global storage (Ledger) for storing permissions, predi-
cates and join tokens.

. RemoveSelfLoops: removes the self loop for each object to the Object class. Since

each object in java extends the Object class, VerCors automatically adds the Object
class as a dependency for each class. But in the generated code there can only be
one extension therefore, the Object reference must be removed

. RefactorGeneratedCode: responsible for recreating the constructor if the class is

a class and not an interface

. AddPermissionOnCreate: add permissions to the Ledger when an object is in-

stantiated. Additionally, it initializes the permission when a new array is created.

. CreatePredicateFoldUnfold: responsible for creating the fold and unfold func-

tionality. It needs to create a check if the condition of the predicate is met. If so it

34

Stages Helpers

Util
(used throughout project)

CreateConstructor LedgerHelper

(used in all stages)

CreateLedger

RemoveSelfLoops

RefactorGeneratedCode

‘ AddPermissionsOnCreate

v

’CheckPermissionsBIocksMethod H CreatePredicateFoldUnfold

| .

CreatelLocking

I TransferPermissionRewriter

PermissionData

CreatePrePostConditions

RewriteContractExpr
FindBoundsQuantifier
CreateLooplnvariants
1 Extends
ForkJoinPermissionTransfer I_ D{ AbstractQuantifierRewriter

FIGURE 5.2: Prototype stages

can remove the permissions of the thread and create the predicate object and store
it in the Ledger. When unfolding it first needs to check if the thread has a predicate
of this type and can then remove it and return the permission to the thread.

6. CreateLocking: responsible for removing the permissions of the lock invariant when
the class is instantiated in the constructor. Additionally when entering a synchro-
nized block the permissions of the lock invariant are transferred to the thread. At
the end of the synchronized block, the lock invariant is reestablished.

7. CreatePrePostConditions: transforms pre- and post-conditions to assert state-
ments at the beginning and end of each method.

8. CreateLooplInvariants: transforms loop invariants to assert statements at the be-
ginning and end of each loop iteration.

9. ForkJoinPermissionTransfer: responsible for transferring permission between threads
when a fork or join occurs.

10. GenerateJava: the final stage, which tries to transform the generated code to code
that can be executed directly. So it removes unnecessary classes and functions as
much as possible, add imports and creates a package name.

Appendix A, provides a more detailed description of each class and how the classes work.

35

Chapter 6

Testing & Results

An important part of the project is testing and validating that the implementation of the
prototype is correct. In the current version of VerCors, there are test cases that can be run
to test the implementation of VerCors. Ultimately this would have been nice to use on the
runtime verification as well. Unfortunately, the code that is produced by the prototype
cannot be executed immediately. For instance, a dummy implementation of the Thread
class is in the produced output, which at the moment of writing this report is not possible
to remove from the produced output. Due to the small errors in the produced output, the
produced code first needs to be manually changed to immediately execute it. Due to this,
it is not possible to automatically test the implementation of the prototype.

In this chapter we provide the test cases that were used to test the implementation of
the prototype. For each test, we first describe the test that should not throw an error
when the produced output is executed. All following test descriptions will describe how
the succeeding test can be changed slightly such that the test fails with the correct error.
All the code of the test programs and the changes to the program so that the program fails
can be found in Appendix B. To run the prototype we execute the command in Listing
6.1. The command shows that we use the VerCors program, and want to use the runtime
plugin. Additionally, we need to provide a runtime-output, which is a file location to store
the generated code by the prototype. Finally, we also need to provide an input file that
needs to be validated, since there is always an input file required we do not have to insert
a flag for it. After that, the generated code can be executed like a normal Java file, and
assertions are enabled using the -ea flag.

vercors —p —lang java —runtime —runtime—output {output} {input}

LisTING 6.1: Command running the prototype

The test coverage of the test cases on the prototype is 89% method- and 92% line coverage.
These are gathered using the IntelliJ coverage runner !. These values are good and mean
that most of the code is tested. The parts that are not covered by the prototype are most
of the time default cases in a scala match-case statement, to not receive warnings when
compiling even though we know that the prototype will never reach that line. Addition-
ally, each stage class needs to overwrite the RewriteBuilder class, which requires the desc
method to be overridden. However, the function is never used during the test coverage,

ntelli] Coverage runner:https://www.jetbrains.com/help/idea/running-test-with-coverage.
html#coverage-run-configurations

36

https://www.jetbrains.com/help/idea/running-test-with-coverage.html##coverage-run-configurations
https://www.jetbrains.com/help/idea/running-test-with-coverage.html##coverage-run-configurations

thus lowering the method coverage. Finally, the method coverage of the wtil package is
82%), therefore lowering the total method coverage as well.

Another important metric is how long the runtime verification prototype took to trans-
form and execute the tests. Table 6.1 shows the execution time for static verification and
the time it took for the runtime prototype to transform and execute the program. On
average the static verification took 14.923 seconds and the runtime verification took 5.039
seconds. Although runtime verification is faster, static verification guarantees that the
code’s behaviour is correct. Therefore runtime and static verification cannot be compared
to each other. Additionally, the test case programs are relatively small and will complete
their execution. If the program does not complete its execution, and therefore the pro-
gram has an infinite loop, the runtime verification will also run infinitely. Static verification
tools would terminate and prove that the infinite program works as intended and therefore
would be faster than runtime verification in those cases. Combining runtime and static
verification in verifying the behaviour is a suitable option because runtime verification can
be used to get a fast indication of the program’s behaviour and static verification would
completely verify that the program is correct.

Test case Static Runtime Runtime Runtime
transfor- execution | total
mation

Shared Buffer 13.210 5.116 0.025 5.141

Shared Buffer arrays 17.443 4.854 0.022 4.876

Shared Buffer duplicate objects | 14.682 4.012 0.022 4.034

Quantifiers 16.779 5.941 0.021 5.962

Loop invariant 14.412 5.422 0.020 5.442

Lock invariant 11.913 4.193 0.023 4.216

Predicates 16.023 5.583 0.022 5.605

TABLE 6.1: Test results on duration in seconds

6.1 Test case Shared Buffer from Gijsen

Gijsen [9] defined a test case to test their prototype for checking permissions on fields.
Since checking permissions on fields is also one of the requirements of our prototype, we
will test our program using the same test as Gijsen used. The test program Gijsen created
was called the Shared Buffer. Figure 6.1 shows how the threads in the program are related
to each other. The program simulates the following behaviour:

1. The Main thread will create the Source and Sink threads

2. When the Source thread is started it acquires permission for the buffer and changes
its value

3. The Sink and Main thread will join the main thread, each receiving half of the
permission of the buffer of the Source thread

4. The Sink can perform operations and use the buffer as a read value

5. The Sink thread is eventually done executing and the Main thread joins the Sink
thread and thus receives the other half of the permission of the buffer

37

Start

FIGURE 6.1: Diagram of the threads of the reviving code of Gijsen|9|

6. The Main thread now holds complete permission for the buffer and thus is allowed
to modify the value of the buffer

To let the test case fail we change it so that the Sink thread tries to change the value of
the buffer. This is not allowed since it only has half of the permission for the buffer and
thus only has read permission.

6.1.1 Results

When executing the transformed program Shared Buffer the base case does not throw any
assertion error, meaning that the test passed and thus the program executed successfully.
The failing version of the Shared Buffer program does throw an error, that there is not
enough permission for the Sink thread to access the buffer and points to the line in the
program that fails.

6.2 Test case Shared Buffer for arrays

The Shared Buffer program used for testing the prototype for basic permission checking
can also be used for checking permissions for arrays. In this version of the Shared Buffer,
we change the buffer to be an array. Thus it simulates the same behaviour as mentioned
in Section 6.1.

There are multiple scenarios in which the permissions of arrays should fail. We changed
the original program slightly for multiple scenarios, such that the implementation should
fail in each scenario.

1. The Sink will try to modify a position in the array

2. Having 2 identical Objects in the array should throw an error

6.2.1 Results

The succeeding case of the Shared Buffer program for arrays, does not return any errors
when it is executed. Thus the program conforms to the specifications that were provided.

38

The first scenario of the failing cases of the Shared Buffer program for arrays does throw
an error if the Sink thread tries to modify the array. The second scenario of the failing
cases also throws an error if the permission is checked for 2 identical objects in the array.
The program throws an error inside the quantifier, which checks if the permission location
is not checked twice in a quantifier. The errors also point to lines in the program that are
failing.

6.3 Quantifiers test case

The quantifiers test case is a simple program that represents different types of quantifiers
that can be created in VerCors. Not all of the quantifiers are tested, for instance, quantifiers
without bounds are not tested since it would take too long for the program. Additionally,
quantifiers that make use of syntactic sugar are not supported by the prototype and thus
cannot be tested. By changing the program slightly for each quantifier, we can test if the
quantifier implementation works. We do this by changing the operators in the quantifier
statements, for instance, changing the < operator to >= operator. When changing the
operators to be the complete opposite of each other, the program should always return an
error.

6.3.1 Results

Running the succeeding test case does not create any errors. The failing test cases all failed,
so that means that the prototype works as intended. Each quantifier that was changed
throws an error that the quantifier does not hold and points to the line in the program
that fails.

6.4 Loop Invariant test case

The loop invariant test case is the same simple program that is used for testing quantifiers,
except that there are no pre- and post-conditions for the method, but only loop invariants
for the for-loop. This results that we can test the loop invariant standalone and thus
is not dependent on the pre- and post-conditions test case for quantifiers. Similarly to
the quantifiers test case, we change the loop invariant contract slightly by inverting the
operators, such that it fails.

6.4.1 Results

The succeeding loop invariant test case does not create any errors when executing the
program. The slightly altered versions of the program, such that the loop invariant is not
true, do return errors about the loop invariant not being correct. Similarly to the other
test cases, the errors show that the invariant is not correct and point to the loop invariant
that fails.

6.5 Lock Invariant test case

The lock invariant test case is a simple program that has a simple lock invariant on a field.
The test case has a synchronized block on the object and alters the value of the field in
the synchronized block. By altering the program, such that the field is accessed outside
the synchronized block should return an error when executing the program.

39

6.5.1 Results

When executing the succeeding test case, there are no errors returned. However, when
executing the failing test case an error will be thrown that there is not enough permission
for the field that is being accessed and points to the line that fails in the program.

6.6 Predicates test case

The predicate test case is an example program shown in the wiki of the GitHub page of
VerCors. This is a good test since it incorporates all the important aspects of predicates,
where folding, unfolding and checking if a predicate exists are present for different objects.
It has a Main class that creates some counters and folds 2 predicates, thus removing the
permissions for the count field. Then it will call the foo method to test if the predicate
can be transferred from one method to another method. In the increment method, the
predicate gets unfolded, so that the count value can be changed. To test the implementation
of predicates in the prototype we can use the following scenarios:

1. Accessing a field before unfolding the predicate should return a not enough permission
error

2. Removing the initial folding should return in a predicate not present error

6.6.1 Results

The succeeding predicate test case does not throw any errors while executing the program.
The first failing scenario of the program returns as expected an error that the thread that
is accessing the field does not have enough permission. The second failing scenario of the
program throws an error that the predicate is not present and points to the pre-condition
of the method that requires the predicate.

40

Chapter 7

Related work

In this chapter, we will discuss related works to VerCors and runtime verification on (con-
current) programs. First, we will discuss tools that can already verify concurrent software
using static verification. Followed by related works on runtime verification for sequential
programs. Finally, we will discuss other related works that combine runtime verification
and concurrent software.

7.1 Runtime verification for sequential programs

In this section, we will discuss other runtime verification software to verify the behaviour
of programs. The main difference between the other runtime verifiers and the prototype is
that they are built for one specific language, for instance, OpenJML is made for Java and
E-ACSL is made for C. These programs can simply use the AST of the program, in VerCors
the AST is first converted to an internal AST named Col. Therefore transforming the AST
to an executable file in the original language is significantly more difficult in the prototype
because essential information may be removed from the AST since it is not necessary for
static verification. VerCors does transform each AST to Col to support multiple languages
with the same tool. However, in this particular use case of runtime checking, it would be
counterintuitive to first change the language to Col and then convert it back to the original
language.

OpenJML

OpenJML [19] is a tool that uses the Java Modeling Language (JML) to prove the be-
haviour of sequential Java programs, using pre- and postconditions, ghost code, and as-
sertions. This can be done statically, but also using Runtime Assertion Checking (RAC).
When using RAC they change the pre- and postconditions, ghost code, and assertions, to
Java assertions. These assertions will then be executed while the program is running on
variables and inputs that occur in the program, and thus not check all the possible inputs
as in static verification.

OpenJML RAC works similarly to the created prototype for VerCors. Both the OpenJML
RAC and prototype change the program such that the behaviour of the program can be
verified during execution. However, the OpenJML RAC uses a library to provide function-
ality to the runtime checker. This has the advantage that the standard code does not have
to be generated each time the verification tool is being executed. A disadvantage is that
the library’s functionality needs to be accessed by the verification tool, so some mechanism

41

should be built to automatically generate nodes so that the tool can use the library’s func-
tionalities. OpenJML RAC can also compile the Java class to an executable, the prototype
does not have this functionality yet, but is a feature that should be implemented in future
developments.

7.1.1 Frama-C

Frama-C [7] is a tool that can be used to do static verification of sequential C programs
using the ANSI/ISO C (ACSL) language. The ACSL language is inspired by the OpenJML
specifications and thus looks similar syntactically. It is possible to do runtime verification
using the E-ACSL [22] plugin in Frama-C. E-ACSL transforms an annotated C program
into a new C program that has an inline monitor generated using runtime assertion checks.

Even though E-ACLS and the prototype are built for different languages, they work simi-
larly in functionality. Both systems first transform the program into an AST that can be
altered such that it can verified during runtime. Similar to OpenJML, E-ACLS can gener-
ate an executable that can be run, this is unfortunately not possible yet in the prototype.

7.1.2 Whiley

Whiley [20] is a sequential programming language with verification built into it. In Whiley,
it is possible to create pre- and postconditions inside the function declaration or variable
declarations. These conditions will be statically verified during the compilation of the
program. Additionally, it is also possible to do the verification during runtime. The main
difference between VerCors and Whiley is that VerCors is used for verifying other languages
and Whiley is a language by itself. The advantage of verifying the language itself is that
new features in Whiley also require to be verified by the compiler. In comparison, VerCors
needs to adapt to new features of the languages that they support.

7.2 Runtime verification for concurrent programs

7.2.1 Old prototype

Gijsen [9] introduced a limited prototype to perform runtime assertion checking for Ver-
Cors. Gijsen investigated what the best methodology would be to do permission checking
in runtime assertion checking for fields and objects. The prototype uses symbolic permis-
sion checking to verify if a thread has enough permission to a field. They store all the
threads in a list that wants to have access, if there is only one thread in the list it has write
permission. Otherwise, all the threads in the list have read permission. The prototype
does not work with the current version of VerCors and should be revived so new features
can be added to the runtime verification.

The new prototype replaces the prototype made by Gijsen. It uses fractional permission
checking, similar to the fractional permission checking that VerCors uses for static veri-
fication. Additionally, the new prototype supports more features than the old prototype
making it more usable than the old prototype.

42

7.2.2 OpenJML

Kandziora [15] introduced a way to do runtime assertion checking for concurrent programs
in OpenJML. Kandziora makes use of the e-STROBE framework to take snapshots of the
memory during execution. Therefore the OpenJML assertion checks can be executed on
the snapshots instead. This protects the runtime assertion checker against assertion in-
terference, which is when an assertion is being interfered by another thread, and results
in unexpected behaviour in the assertion check. However, this ensures thread-safety of
the assertion checking but does not provide information about checking if the program is
thread-safe or not.

7.2.3 Concurrent and Distributed systems

Din et al. [8] performed a comparison between runtime assertion checking and deductive
verification on concurrent and distributed systems, making use of a history-based specifi-
cation approach. For runtime verification they made use of Maude backend of ABS. They
extended this language such that pre- and postconditions and invariants are supported.
For static verification, they used Theorem proving using the KeY theorem prover. In
their comparison, they mention that runtime-assertion checking can be used to detect the
presence of bugs, while formal verification can prove that the code is correct.

7.3 Static verification tools concurrent programs

7.3.1 VerCors

VerCors [3] is a static verification tool that verifies if concurrent software conforms to spec-
ified formal specifications written in Permission-Based Separation Logic (PBSL). VerCors
makes use of fractional permissions, which in short is a method that stores a fraction be-
tween zero and one for each field and verifies if the thread has enough of that fraction to
access the field. Fractional permissions are in Section 3.2. VerCors is the tool that is used
for the prototype, therefore it is discussed in detail in Chapter 4.

7.3.2 VeriFast

VeriFast [14] is a tool that verifies sequential and concurrent software in C or Java using
pre- and postconditions for each method. VeriFast also supports the use of fractional per-
missions to verify if a thread has enough access to a field. Additionally, using a plugin in
VeriFast also supports counting permissions, which is more applicable for verifying pro-
grams that use reference counting for resource management.

7.3.3 VCC

Similarly to VerCors and Verifast, VCC [6] verifies programs using annotations for function
pre- and postconditions, assertions, type invariants, and ghost code. VCC aims at verifying
low-level concurrent C code, where each method will be verified individually. Permissions
are being checked making use of claims, which detect the opening and closing of an object
and the reference count to that object. This is applicable for objects, but not primitives,

43

so they create a LOCK for primitive fields to keep track of the claim.

7.3.4 Chalice

Chalice [16] (not maintained anymore) uses pre- and postconditions to verify if the pro-
gram behaves as intended. It is possible to provide read and write access to objects/fields
using percentages, where 100% is write permission and nonzero % is read permission. This
is similar to a fractional permission approach.

7.3.5 GPUVerify

GPUVerify [2], as the name implies, verifies GPU kernels written in OpenCL and Cuda.
For this, they create the synchronous, delayed visibility (SDV) semantics to verify if the
program works correctly. In SDV, group executions are synchronous, meaning that the
divergence of the program can be checked precisely. Every thread in the kernel creates a
shadow of the shared memory, then it alters the shadow and thus limits the wvisibility of
the thread on the shared memory. When all threads reach a barrier (delayed), the visibility
of the shared memory is re-established. Using all of the shared memories of the threads,
GPUVerify can determine if the program is race- and divergence-free and thus proves if
the program behaves correctly.

44

Chapter 8

Conclusion

In this research, we worked on a prototype that extends the functionality of the prototype
that Gijsen made. The prototype of Gijsen had the functionality to perform permission
checking for fields of objects. Unfortunately, the prototype was not functional anymore
with the current version of VerCors, so the prototype had to be revived so that new fea-
tures can be added to the runtime checker.

The new prototype we developed starts by having the same functionality as the prototype
of Gijsen The prototype makes use of fractional permission checking instead of symbolic
permission checking that Gijsen used. This ensures that the same syntax for static veri-
fication can be reused in runtime assertion checking. All the permissions are stored in a
global map that can be accessed by any thread anywhere in the program.

Next to basic permissions checking the prototype successfully supports the functionality
for 5 other features. The first feature is permission checking for arrays, which reuses the
same global map as basic permission checking and thus requires not a significant amount
of memory to be supported as well. The second feature is the support of quantifiers, which
are translated into for-loops in the generated code. These for-loops can check conditions
that are specified in any type of contract specification. The third feature is the support for
loop invariants, which are similar to pre- and post-conditions of a method but are meant to
check permissions for pre- and post-conditions of loops. The fourth feature is the support
of lock invariants, which take a part of the permission of a class and release the permis-
sion when a thread enters a synchronized block that is synchronizing on that class. The
final new feature is the support for predicates, where details of the predicates are stored
if a thread holds the predicate. A predicate can temporarily remove the permissions and
restore them when the predicate unfolds.

Each feature is evaluated using a test case. The test cases should not throw any error if
they are executed and by altering the test cases slightly, the test case should throw an error.
As of now, all test cases throw the error that was expected and therefore the prototype
works as intended. However, more and larger tests are required to show that the prototype
is completely correct. The test cases produce a method and line coverage of 89% and 92%
respectively, which shows that most of the prototype is tested thoroughly. Finally, the
test cases are significantly faster for runtime verification than static verification. Runtime
verification took an average of 5.039 seconds while static verification took 14.923 seconds.
The prototype now supports a variety of features but other features are still available to
be added to the prototype, such as support for the old and result keywords. Additionally,

45

an automated testing environment can be created such that the generated code can be
executed directly and new features of the prototype can be tested immediately. Finally,
a scoping mechanism for storing permissions per method can be used to determine if the
thread has enough permission in the method.

46

Chapter 9

Future work

This section describes what can be done to improve/optimize the functionality of the
runtime assertion checker in VerCors.

9.1 New features

The proposed prototype has new features, but there are still some features that are not
implemented yet, for instance, the old and result keywords. The result keywords determine
what the result of the function is and can be used in a post-condition to verify if the
result of the function is correct. The old keyword is used to show behaviour in the post-
condition where the program uses the value of the object /field that was in the pre-condition.
Therefore a duplicate of this object/field must be created so that it can be used in the
post-condition, which is a difficult task.

9.2 Automated testing environment

As mentioned in Chapter 6, the prototype does not support the functionality to be tested
automatically. The developer must adjust the output program manually as mentioned in
Chapter 6. However, the most optimal solution would be that the transformed program
is automatically loaded into a Java Runtime Environment and is executed in this environ-
ment. Resulting in that the developer does not see the generated code at all. Additionally,
this allows automated testing of new features that are added to the prototype.

9.3 Scoping permissions per function

In the static version of VerCors it is possible to specify in the pre-condition that the
thread has only read permission for a field, which implies that the field cannot be changed
in the method. In the current prototype, it is possible to change the field even though
the pre-condition specified that it only be read if the thread has write permission for the
field. Future research can be done to create a scoping mechanism for permissions, where
each time the thread enters the method the topmost permission is checked and the new
permission is pushed at the top of the stack. When the thread leaves the method it will
pop from the stack.

47

Bibliography

1]

2]

3]

4]

[5]

(6]

17l

8]

19]

[10]

Scalacenter , Lightbend , and Virtuslab . Scala Programming Language, 2002. URL:
https://www.scala-lang.org/. 4.2

Adam Betts, Nathan Chong, Alastair Donaldson, Shaz Qadeer, and Paul Thomson.
GPUVerify. ACM SIGPLAN Notices, 47:113-132, 11 2012. doi:10.1145/2398857.
2384625. 7.3.5

Stefan Blom, Saeed Darabi, Marieke Huisman, and Wytse Oortwijn.
The VerCors Tool Set: Verification of Parallel and Concurrent Soft-
ware, 2017. URL: https://research.utwente.nl/en/publications/
the-vercors-tool-set-verification-of-parallel-and-concurrent-soft,
doi:10.1007/978-3-319-66845-1_7. 1, 1.1, 7.3.1

John Boyland. Checking interference with fractional permissions, 06 2003. URL:
http://dl.acm.org/citation.cfm?id=1760267.1760273. 3.2

Stephen Brookes. A semantics for concurrent separation logic. Theoretical Computer
Science, 375:227-270, 05 2007. doi:10.1016/j.tcs.2006.12.034. 3.1

Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinenbach, Michal Moskal,
Thomas Santen, Wolfram Schulte, and Stephan Tobies. VCC: A Practical System for
Verifying Concurrent C. Lecture Notes in Computer Science, pages 23-42, 08 2009.
doi:10.1007/978-3-642-03359-9_2. 7.3.3

Pascal Cuoq, Florent Kirchner, Nikolal Kosmatov, Virgile Prévosto, Julien Signoles,
and Boris Yakobowski. Frama-C. Lecture Notes in Computer Science, pages 233247,
01 2012. doi:10.1007/978-3-642-33826-7_16. 2.2, 7.1.1

Crystal Din, Olaf Owe, and Richard Bubel. Runtime Assertion Checking and Theorem
Proving for Concurrent and Distributed Systems Envisage: Engineering Virtualized
Services View project Credo: Modeling and analysis of evolutionary structures for
distributed services View project Runtime Assertion Checking and Theorem Proving
for Concurrent and Distributed Systems. 2014. doi:10.5220/0004877804800487.
7.2.3

Stijn Gijsen. Runtime Permission Checking in Concurrent Java Programs. Master’s
thesis, 2015. 1.2, 2.5, 5.1, 6.1, 6.1, 7.2.1

Robert M. Hierons, Kirill Bogdanov, Jonathan P. Bowen, Rance Cleaveland, John Der-
rick, Jeremy Dick, Marian Gheorghe, Mark Harman, Kalpesh Kapoor, Paul Krause,
Gerald Liittgen, Anthony J. H. Simons, Sergiy Vilkomir, Martin R. Woodward, and
Hussein Zedan. Using formal specifications to support testing. ACM Computing Sur-
veys, 41:1-76, 02 2009. doi:10.1145/1459352.1459354. 2.2

48

https://www.scala-lang.org/
https://doi.org/10.1145/2398857.2384625
https://doi.org/10.1145/2398857.2384625
https://research.utwente.nl/en/publications/the-vercors-tool-set-verification-of-parallel-and-concurrent-soft
https://research.utwente.nl/en/publications/the-vercors-tool-set-verification-of-parallel-and-concurrent-soft
https://doi.org/10.1007/978-3-319-66845-1_7
http://dl.acm.org/citation.cfm?id=1760267.1760273
https://doi.org/10.1016/j.tcs.2006.12.034
https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.5220/0004877804800487
https://doi.org/10.1145/1459352.1459354

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

[23]

C. A. R. Hoare. An axiomatic basis for computer programming. Communications of
the ACM, 12:576-580, 10 1969. doi:10.1145/363235.363259. 2.2, 3.1

Marieke Huisman and Wojciech Mostowski. A Symbolic Approach to Permission
Accounting for Concurrent Reasoning. 2015 14th International Symposium on Parallel
and Distributed Computing, 06 2015. doi:10.1109/ispdc.2015.26. 3.3

Reiner Hahnle and Marieke Huisman. Deductive Software Verification: From Pen-and-
Paper Proofs to Industrial Tools. Lecture Notes in Computer Science, 10000:345-373,
2019. doi:10.1007/978-3-319-91908-9_18. 2.3.1

Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx,
and Frank Piessens. VeriFast: A Powerful, Sound, Predictable, Fast Verifier for C
and Java. Lecture Notes in Computer Science, pages 41-55, 04 2011. doi:10.1007/
978-3-642-20398-5_4. 7.3.2

Jorne Kandiziora. Runtime Assertion Checking of Multithreaded Java Programs.
Master’s thesis, 2014. 7.2.2

K. Rustan M. Leino, Peter Miiller, and Jan Smans. Verification of Concurrent Pro-
grams with Chalice. Lecture Notes in Computer Science, 5705:195-222, 01 2009.
d0i:10.1007/978-3-642-03829-7_7. 7.3.4

Peter Miiller, Malte Schwerhoff, and Alexander J Summers. Viper: A Verification
Infrastructure for Permission-Based Reasoning. Lecture Notes in Computer Science,
9583:41-62, 01 2016. doi:10.1007/978-3-662-49122-5_2. 4.2

Peter W O’Hearn, John V Reynolds, and Hongseok Yang. Local Reasoning
about Programs that Alter Data Structures. pages 1-19, 09 2001. doi:10.1007/
3-540-44802-0_1. 3.1

OpenJML.org. Home | OpenJML, 2015. URL: https://www.openjml.org/. 2.2, 7.1

David J Pearce and Lindsay Groves. Whiley: A Platform for Research in Software
Verification. Lecture Notes in Computer Science, pages 238248, 01 2013. doi:10.
1007/978-3-319-02654-1_13. 7.1.2

Violet Ka I Pun, Martin Steffen, and Volker Stolz. Deadlock checking by
data race detection. Journal of Logical and Algebraic Methods in Programming,
83:400-426, 09 2014. URL: https://www.sciencedirect.com/science/article/
pii/S2352220814000492, doi:10.1016/j. jlamp.2014.07.003. 2.1.1, 2.1.1

Julien Signoles, Nikolai Kosmatov, and Kostyantyn Vorobyov. E-ACSL, a Runtime
Verification Tool for Safety and Security of C Programs (tool paper), 2017. 7.1.1

Steven Thomson. Validation and Verification of Formal Specifications in Ob-
jectOriented Software Engineering, 2000. URL: https://scholar.afit.edu/cgi/
viewcontent.cgi?article=5872&context=etd. 2.2

49

https://doi.org/10.1145/363235.363259
https://doi.org/10.1109/ispdc.2015.26
https://doi.org/10.1007/978-3-319-91908-9_18
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-03829-7_7
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1007/3-540-44802-0_1
https://www.openjml.org/
https://doi.org/10.1007/978-3-319-02654-1_13
https://doi.org/10.1007/978-3-319-02654-1_13
https://www.sciencedirect.com/science/article/pii/S2352220814000492
https://www.sciencedirect.com/science/article/pii/S2352220814000492
https://doi.org/10.1016/j.jlamp.2014.07.003
https://scholar.afit.edu/cgi/viewcontent.cgi?article=5872&context=etd
https://scholar.afit.edu/cgi/viewcontent.cgi?article=5872&context=etd

Appendix A

Detailed Prototype Implementation

This appendix will describe each class that is used in the prototype individually and what
the responsibilities are of these classes.

A.1 Details Helper Classes

This section will discuss all the helper classes individually on how they work in detail.

A.1.1 Util

The Util class provides functions that can be used to find certain nodes/properties of the
AST. These functions are not related to any specific transformation stage and can thus be
generalized in the Util class and be used by different transformation stages.

A.1.2 LedgerHelper

The LedgerHelper class is used to create functions for the Ledger class. Moreover, other
transformation stages can make use of the LedgerHelper to create method invocations to
set and get permissions, predicates, and join tokens. The LedgerHelper file consists of 4
parts.

Static methods

The first part is a helper function called findNumberInstanceField that can retrieve the
associated number of any instance field anywhere in the program.

LedgerRewriter

The second part is the LedgerRewriter, which is responsible for rewriting the Ledger and
the DataObject class. This rewriter will most likely be called before each rewrite stage so
that the Ledger can be used in each stage.

LedgerMethodBuilderHelper

The third part is the LedgerMethodBuilderHelper case class, which is responsible for eas-
ily accessing functions and creating method invocations to the Ledger. This class will be

50

initialized in the LedgerRewriter so that it can be used in the transformation stages.

DataMethodBuilderHelper

The final part is the DataMethodBuilderHelper case class, which is used for accessing
functions and creating method invocations to the DataObject class. This class will also,
like the LedgerMethodBuilderHelper, be initialized in the LedgerRewriter so that it can be
used in the transformation stages.

A.1.3 CreateConstructor

When VerCors transforms the program into their internal representation named Col, the
constructor of each object is removed and is put into a Procedure node. In the final output,
the constructor needs to be re-established, so the job of the CreateConstructor class is to
recreate the old constructor to its original form.

A.1.4 PermissionData

The PermissionData class will be used by the RewriteContractExpr and TransferPermis-
sionRewriter rewriters to create statement(s) for verifying and transferring permissions
respectively. Table A.1 shows an overview of what can be stored in the PermissionData

class.

Content Description

cls The class that currently is being rewritten

outer The Rewriter class that is creating this PermissionData class

Factor If not all of the permission should be transferred a factor is used to
transfer permissions

threadld On which thread object the permission check/transfer should be oper-
ated

offset The offset is used to change the this keyword to another object. This
is useful for transferring permissions and collecting the pre/post per-
missions of the run method, but on the correct object

ledger Holds an instance of the LedgerMethodBuilderHelper so that the
Rewriters can access the ledger

injectivityMap | Holds a variable to the closest injectivityMap possible.

TABLE A.1: Content of PermissionData class

A.1.5 FindBoundsQuantifier

The purpose of this class is to identify what the upper and lower bounds of a quantifier are.
It will search through the quantifier expression to retrieve the upper and lower bounds. If
it is not possible to find a lower and upper bound then it will use the minimal and maximal
values respectively for an integer.

A.1.6 AbstractQuantifierRewriter

The AbstractQuantifier Rewriter class is an abstract rewriter class for quantifiers. It has
functions that can be used to transform a quantifier into a for-loop. The class makes

o1

use of the FindBoundsQuantifier to collect the bounds for the new for-loop. The method
that should be implemented by the class extending the AbstractQuantifierRewriter is the

dispatchLoopBody method so that the Rewriter can determine what the body of the loop
should be.

A.1.7 RewriteContractExpr

The RewriteContractExpr class is an extension of the AbstractQuantifierRewriter and fo-
cuses on transforming a contract expression into assert statements. It first unfolds the
expression into smaller segments that can be checked using a single assertion check. After
that, it will transform the segments into assert statements. When a quantifier occurs then
it will use the functions of the AbstractQuantifierRewriter to transform the quantifier into
a for-loop and uses the dispatchLoopBody to insert the assert statements into the for loop.

A.1.8 TransferPermissionRewriter

The TransferPermissionRewriter class is also an extension of the AbstractQuantifier Rewriter
and focuses on transforming a contract expression into adding/removing statements for
transferring permissions.

Similar to the RewriteContractExzpr it will also first unfold the contract expression into
smaller segments. Then only the Perm and Starall nodes are transformed into permission
transferring statements. The Perm node is normally used to check if a thread has enough
permission for an object. The Starall node represents the forallx notation, which can also
hold permissions and thus should be able to transfer the permission. All other expressions
cannot hold permissions and thus do not have to be rewritten into transferring statements.
When the expression has an Starall node it will make use of the dispatchLoopBody method
of the AbstractQuantifierRewriter to create the transferring of permissions inside the newly
created for-loop.

A.2 Details Stage Classes

This section will discuss in detail how the stage classes work individually and how they
contribute to creating the final implementation.

A.2.1 CreateLedger

The CreateLedger stage is responsible for creating the Ledger and the DataObject classes.
These classes are very important for handling permissions, predicates, and join tokens.
Both classes are being generated in this class making use of the DataMethodBuilderHelper
and LedgerMethodBuilderHelper. Whenever a field or method is created the two helper
classes are recreated, so that everything that has been generated already is available for
all the other methods to find fields and call methods of the Ledger and DataObject classes.

The DataObject class and the Ledger class will be discussed separately to give a better

understanding of how each of the classes works and what they contribute to the final
output.

92

DataObject

This section will discuss everything about the DataObject class. We will discuss each field
and method separately and what the purpose is of each field and method.

Listing A.1 shows the data field. This field holds the associated Object[] that needs to be
compared to other Object/| with similar content.

Object [] data;

LisTING A.1: DataObject: data field

Listing A.2 shows the setData method. This method sets the data field of the DataObject.
We can simply not use a constructor, because it is not a natively supported Node by the
internal language Col. It was not possible to create a parameter in the constructor, which
can then be assigned to the field. Since this was not a possibility we created a function to
set the data.

void setData(Object [|] data) {
this.data = data;
¥

LisTING A.2: DataObject: setData method

How can a DataObject be created if the class does not have a constructor? For this, the
static method create is used. Since methods are supported by the Col language, this was
a relatively easy workaround. Listing A.3 shows how the create method works.

static DataObject create(Object || data) {
DataObject object;
object = new DataObject () ;
object .setData (data) ;
return object;

LisTING A.3: DataObject: create method

Listing A.4 shows the equals method of the DataObject class. This is also the equals
method that will be used in the HashMaps/ArrayList to compare objects with each other.
This makes the most important method of the DataObject class. First, it is checked if the
object that is compared to it is the same as itself. Then it checks if the 0bj is not null and
if it is of the same type as itself. Finally, it can cast the other Object and make use of the
Arrays.equals method to compare both data fields of both DataObject objects.

boolean equals(Object obj) {
DataObject otherObject;
if (this = obj) {
return true;
}

if (obj = null || getClass() != obj.getClass()) {
return false;

otherObject = (DataObject) obj;

93

return Arrays.equals(this.data, otherObject.data);

LisTING A.4: DataObject: equals method

Finally, Listing A.5 shows the hashCode method. It overrides the Object hashCode method
and uses the Arrays.hashCode method to create a hash for the DataObject.

int hashCode () {
return Arrays.hashCode(this.data);
¥

LisTING A.5: DataObject: hashCode method

Ledger

This section will discuss everything about the Ledger class. We will discuss each field and
method separately and what the purpose is of each field and method. For initializing all
HashMaps fields we use the Collections.synchronizedMap to ensure that the HashMap is
concurrently safe. It is allowed to use a locking mechanism for storing data for the runtime
environment because this will not introduce locking for the program itself, but only for the
storage of the runtime data. Moreover, we make use of WeakHashMap to still be able to
do garbage collection when threads are done with their execution.

Listing A.6 shows the runtime field of the Ledger class. This field holds all the
permissions for each Object that has been created. The type of the field is Map<Long,
Map< Object, Fractiony where the Long represents the id of the thread. The Object is the
object for which permission is stored and the Fraction is the permission of that object.

static Map<Long, Map<Object, Fraction>> _ runtime = Collections.

synchronizedMap (new WeakHashMap<>()) ;

LiSTING A.6: Ledger: permission store field

The join_tokens _ field holds all the join tokens in the system, see Listing A.7. The
Object key refers to the started thread and the Fraction value is the remainder of the join
token of that thread.

static Map<Object, Fraction> _ join tokens = = Collections.
synchronizedMap (new WeakHashMap<>()) ;

LISTING A.7: Ledger: join token store field

The final field is the _ predicate_store_ , see Listing A.8, which holds all the predicates
for each thread. The Long object refers to the id of the thread. The value is of type
ArrayList<DataObjecty, which holds all the predicates that are in the system for a specific
thread. Therefore we cannot use a Map to store the predicates, because a thread can hold
multiple predicates of the same predicate type. Thus in order to store multiple predicates
of the same type they need to be stored in a list.

static Map<Long, ArrayList<DataObject>> _ predicate store =
Collections .synchronizedMap (new WeakHashMap<>()) ;

LisTING A.8: Ledger: predicate store field

o4

Listing A.9 shows the createHashMap method. This method is used to initialize the _ run-
time_ _ and the __ predicate store_ when a new thread wants to set/get permission or
predicates from the predicate store.

static void createHashMap () {
if (!(LedgerRuntime. runtime _.containsKey (Thread.currentThread ().
getld()))) {
LedgerRuntime. runtime .put(Thread.currentThread ().getId (),
Collections .synchronizedMap (new WeakHashMap<>()) ;) ;

if (!(LedgerRuntime. _ predicate store _ .containsKey (Thread.
currentThread () .getId ()))) {
LedgerRuntime. predicate store .put(Thread.currentThread().
getld (), new ArrayList<DataObject >());

LisTING A.9: Ledger: createHashMap method

The next method is the getPermission method shown in Listing A.10. This method first
checks if the thread has its hashmaps initialized. Then it will retrieve the permission for
a certain object. If the thread does not have permission stored for the object then it will
return Fraction.Zero.

static Fraction getPermission(Object input) {
LedgerRuntime . createHashMap () ;
return LedgerRuntime. runtime _ .get (Thread.currentThread (). getld ()
). getOrDefault (input, Fraction.ZERO);

LisTING A.10: Ledger: getPermission method

To set the permission for an object for a thread, we make use of the setPermission method,
see Listing A.11. This method has a Object and Fraction as input. The fraction is the
new value for the object for a thread. So first the fraction must be checked that it is
valid (between 0 and 1). Then it needs to be checked that the thread has its HashMaps

initialized. Finally, the value will be stored in the runtime__ permission storage.
static void setPermission (Object input, Fraction value) {
assert (value.compareTo(Fraction.ZERO) != —1): "Permission_cannot_
be_below _0";
assert (value.compareTo(Fraction.ONE) != 1): "Permission_cannot.
exceed _1";
LedgerRuntime . createHashMap () ;
LedgerRuntime. runtime . get (Thread.currentThread ().getId ()).put(
input, value);
}

LisTING A.11: Ledger: setPermission method

When a new Object is created the initiatePermission (see Listing A.12) method will be
used. This method receives an input Object and an optional integer called size. The size
is used to show how many fields the Object has. Then the permission for the Object and
the fields of the Object will be set to Fraction.One.

95

static void initiatePermission (Object input, int size) {
int 1i;
LedgerRuntime . setPermission (input, Fraction.ONE);
for (i = 0; 1 < size; 1 =1 + 1) {

LedgerRuntime. setPermission (DataObject . create (new Object []{
input, i}), Fraction.ONE);

}

}

static void initiatePermissionl (Object input) {
LedgerRuntime. initiatePermission (input, 0);

}

LISTING A.12: Ledger: initiatePermission method

The getJoinToken, shown in Listing A.13, returns the join token of the thread that is being
joined.

static Fraction getJoinToken(Object input) {
return LedgerRuntime. join tokens .get(input);
}

LisTING A.13: Ledger: getJoinToken method

The setJoinToken, shown in Listing A.14, will set the value of the join token to a new
Fraction. This fraction is first checked that it is not below 0. This method is called when
a thread is joining another thread and takes a part of its permission.

static void setJoinToken (Object input, Fraction value) {

assert (value.compareTo(Fraction.ZERO) != —1): "Join_token_cannot_
be_below _0";
LedgerRuntime. join tokens .put(input, value);

LisTING A.14: Ledger: setJoinToken method

Listing A.15 shows the hasPredicateCheck method, that checks if the thread holds a pred-
icate that is equals to the input Object.

static void hasPredicateCheck (Object [] input) {
assert (LedgerRuntime. predicate store .get(Thread.currentThread
().getld()).contains(DataObject.create (input))): "Thread_does.
not_own_the_predicate";

LisTING A.15: Ledger: hasPredicateCheck method

The foldPredicate method(see Listing A.16) first checks if the thread has its HashMaps
initialized. Then it will store the newly created predicate into the predicate store

static void foldPredicate (Object[] input) {
LedgerRuntime . createHashMap () ;
LedgerRuntime. predicate store .get(Thread.currentThread().getId
()).add(DataObject . create (input));

o6

L1STING A.16: Ledger: foldPredicate method

The unfoldPredicate method(see Listing A.17) also first checks if the thread has the HashMaps
initialized. Then it will check if the thread owns such a predicate. Finally it will remove
the predicate from the predicate store

static void unfoldPredicate (Object[] input) {
LedgerRuntime . createHashMap () ;
LedgerRuntime. hasPredicateCheck (input) ;
LedgerRuntime. predicate store .get (Thread.currentThread () .getId
()).remove(DataObject.create (input));

LisTING A.17: Ledger: unfoldPredicate method

Finally, in Listing A.18, is the checkForInjectivity method. This method receives a mapping
of Object to Fraction. This method will check if the wanted permissions in the mapping are
equal or less than the permission for that object in the runtime__ permission store.
This resolves the permission-checking shown in Listing 5.8.

static void checkForInjectivity (WeakHashMap<Object , Fraction>
injectivityMap) {
for (Object key : injectivityMap.keySet()) {
assert (injectivityMap .get (key).compareTo(LedgerRuntime.
getPermission(key)) != 1): "Permission_cannot_exceed_1_due_
to_injectivity";

LIsTING A.18: Ledger: checkForlnjectivity method

A.2.2 RemoveSelfLoops

In the Resolution stage of VerCors, see Chapter 4, other objects and definitions that are
not defined in the loaded program will be loaded into VerCors so that they normally can
be used to do static verification. In the runtime verification, this is not the case and this
results that all created classes extending the Object class. This is true, but they have to
be removed if a class wants to extend another class, because in Java it is only allowed to
have 1 extending class. So this would make it impossible for other classes to extend the
Thread class. The RewriteSelfLoops rewriter is used to remove all loops back to the Object
class.

A.2.3 RefactorGeneratedCode

The RefactorGeneratedCode will recreate the constructor for classes. It first determines if
the Class node is an interface or a normal class. If the node is a class it will recreate the
constructor using the CreateConstructor rewriter, otherwise it will not create a constructor.

A.2.4 AddPermissionOnCreate

The AddPermissionOnCreate is responsible for:

e Initializing permissions for classes and objects

o7

— Classes: The AddPermissionOnCreate searches for the constructor of a class
and the number of fields the class has. Using the initiatePermission method
from the Ledger class it is possible to instantiate the permissions for each field
in the class.

— Arrays: When a new array is created, the initiate Permission method of the
Ledger is called with the size of the array.

e Initialize join token in the constructor if the class is extending the Thread class to
Fraction.ONE

A.2.5 CreatePredicateFoldUnfold

The main function of the CreatePredicateFoldUnfold is to transform the fold /unfold state-
ments to statements that can be used for handling predicates during runtime.

When a fold statement is found the following operations will be done to create state-
ments for handling predicate during runtime:

1. Collect the expression of the predicate

2. Check if the thread has all the permissions that are required by the predicate

3. Remove the permissions from the predicate, using the correct object as an offset
4. Bundle predicate arguments, the object, and the predicate name into an Object//

5. Call the foldPredicate method of the Ledger

When a unfold statement is found in the AST the following operations need to be performed
to translate it to new statements for handling the unfold method:

1. Collect the expression of the predicate
2. Bundle predicate arguments, the object, and the predicate name into an Object/]
3. Call the unfoldPredicate method of the Ledger

4. Add permissions from the predicate back to the thread

A.2.6 CheckPermissionsBlocksMethod

The CheckPermissionsBlocksMethod rewriter is a relatively complex class and implements
the idea of checking permissions when the heap changes mentioned in Section 5.1.2.

Figure A.1 shows the general steps the CheckPermissionsBlocksMethod rewriter will have
to take. It starts by setting some global variables. The first variable is the isTarget vari-
able which is a boolean value representing that the dereferences that are occurring are
from the target. The second variable is the dereferences variable, which is of type Scope-
dStack[HashMap[Ezxpr, Boolean]]. A ScopedStack is a utility class in VerCors, where it
is possible to create a new scope and thus create a new object, in this case, HashMap,
on the stack. We make use of a ScopedStack because multiple blocks can be nested into
each other, requiring us to transform each block independently and thus keep track of the
dereferences of only the block that it is currently in. The HashMap uses an Ezpr as key,
this will be the node that holds a dereference to an object. The value is a Boolean, which

o8

T

isTarget = false
dereferences = ScopedStack()
heapChange = false

Enter method block
Y

heapChange = false

iterate statements

Proceed to next statement Proceed to next statement

Combine all previous and
store in block
store heapChange
later use heapChange = false heapChange = true statement in seperate

block

store statement for

No statements left

Combine previous
and store in block

;

FIGURE A.1: CheckPermissionsBlocksMethod general flow for permission checking
in blocks

represents true if the dereference needs write permission otherwise it will be set to false.

The second step in the figure is by entering a method block and setting the heapChange
variable to false. Then all of the statements in the method will be evaluated. If the
heapChange variable was set to false while evaluating the statement, then the statement
will be stored in a buffer for later use. If the heapChange variable was set to true then
it will collect all the statements from the buffer and transform it to a single block with
the correct assertions. The statements that had a change in the heap will be put in their
own block. The buffer and the dereferences will be cleared when proceeding to the new
statement.

Finally, when there are no statements left of a block, all the remaining statements that are
in the buffer will be put in a block with the correct assert checks for the dereferences.

Figure A.1 did not describe how the isTarget variable is being used. Figure A.2 shows
the flow of how derefences are archived in the dereferences stack. The figure starts the
same by initializing the isTarget, dereferences, and heapChange variables. Then it starts
iterating over all the statements, which is explained in Figure A.1. If it finds a statement
or expression that is an assignment, then before evaluating the left side for dereferences

99

isTarget = false
dereferences = ScopedStack()
heapChange = false

iterate over statements in a block

left side of assignment—>»{ isTarget = true

right side of assignment or other usages

Find dereference and
store in derefences

Y

store assert based on
the dereference and
the target

l

FIGURE A.2: CheckPermissionsBlocksMethod general flow for dereferences to as-
serts

the isTarget variable is set to true.

When a dereference is found in the AST the dereference is added to the dereferences map
using the isTarget as its value. If the dereference already exists in the dereferences list it
will update the value to true if the isTarget variable is true, otherwise it will not change
the map. Due to this we know that when the boolean value of the dereference is set to
true it always remains true and thus require write permission.

Finally, when a block is formed all the dereferences of that block will be transformed using
the dereference map to assert statements that can be put at the beginning of the block.

A.2.7 CreatePrePostConditions

The CreatePrePostConditions rewriter is used to transform pre- and postconditions of a
method into a method using assert statements. This also initializes the injectivityMap for
each method. The preconditions are transformed using the Rewrite ContractEzpr to assert
statements which are checked at the beginning of the method. Normally the preconditions
are checked at the call point in static verification, however, this would generate a significant
amount of code. When inserting it at the beginning of the method, the preconditions
are generated only once and keep the code as clear as possible. The postconditions are

60

transformed by the RewriteContractExpr as well but are inserted before each Return node
or at the end of the function if there is not a Return node.

A.2.8 CreateLocking

The CreateLocking rewriter, converts a lock invariant to work in a runtime environment.
It will do the following steps to ensure that locking works as intended:

1. When a class has a lock invariant, remove permissions of lock invariant in the con-
structor of that class

2. When entering a synchronized block, add permissions (using TransferPermission-
Rewriter) of the lock invariant to the thread that entered the synchronized block

3. Before leaving a synchronized block, check that the thread has enough permissions to
reestablish the lock invariant (using RewriteContractEzpr). If it has enough remove
the permissions (using TransferPermissionRewriter) of the thread. If it does not
have enough permissions then throw an error

A.2.9 CreateLooplnvariants

The CreateLoopInvariants rewriter converts the loop invariant using the RewriteContract-
Ezxpr and inserts the statements at the beginning and the ending of the loop. Additionally,
when a continue, break, or return keyword is found the statements are inserted before
the keywords because these keywords will end the loop prematurely and thus the loop
invariant needs to be checked there as well. False assert statements inside the loop re-
fer back to the loop invariant when the error is thrown. So this rewriter is similar to
the CreatePrePostConditions, but it inserts the post statements at more places than the
CreatePrePostConditions rewriter does.

A.2.10 ForkJoinPermissionTransfer

The main responsibility of the ForkJoinPermissionTransfer stage is to transfer the per-
mission of threads when a new thread is started or when the thread is joined. Different
steps need to be taken to achieve this functionality:

1. When finding the run method of a Class that is extending the Thread class, transfer
the permissions in the precondition of the run method to the thread. When the
thread is leaving the run method and thus is done with its execution, check and
remove the permissions that are in the postcondition of the run method from the
thread.

2. When a start method invocation occurs, remove the permissions of the preconditions
of the run method from the current thread, before starting the new thread. The
Ledger will check if the current thread has enough permission to start the new thread,
so there cannot be a thread without enough permission.

3. When a join method invocation occurs, 3 steps need to occur to retrieve the permis-
sion from another thread

(a) Collect the join token that is specified above the join method invocation

(b) Check using the Ledger that there is enough left of the join token and set the
new remainder of the join token otherwise throw an error

61

(¢) Add the permission to the joining thread using the join token as a factor for the
permissions that should be transferred

A.2.11 GenerateJava

The final stage is the GenerateJava rewriter. This rewriter has the responsibility to add/re-
move nodes from the AST so that it is as close as possible to executing the program. This
stage is not performed in the Transformation stage in VerCors, but in the CodeGeneration
stage, which is an additional stage that is not normally used in VerCors. This stage works
similarly to the Transformation stage but is less strict about rewriting the code and thus
allows us to use the Java Nodes without references in VerCors.

62

Appendix B

Code of tests

This appendix shows all the tests that we will use to validate if the implementation of the
features is correct.

B.1 Test case for reviving code Gijsen

import java.util .x;

class Source extends Thread {
int i;
*@
requires Perm(this.i, 1);
ensures Perm(this.i, 1);
public void run() {
i = 42;
}

public void join (){}
public void start () {

}
}

class Sink extends Thread {
Source source;

public void setSource(Source source) {
this.source = source;

(%@
requires Perm(source, 1);
ensures Perm(source, 1);
ensures Perm(source.i, 1/2);

*

public void run() {

/@ source.postJoin (1\2);
source . join () ;

63

public void join (){}
public void start (){}
}

class Main{

public void main() {
Source source = new Source () ;
Sink sink = new Sink();
sink . setSource (source) ;

source.start () ;
sink.start ();

//@ source.postJoin (1\2);
source. join () ;

//@Q sink.postJoin(1);
sink . join ();

source.i = 1988;

}

class Thread{

}

LisTING B.1: Shared buffer

After changing the program to fail:

public void run() {

//@ source.postJoin (1\2);
source . join () ;
source.i = 1;

LisTiNG B.2: Change in program to fail Shared Buffer case

B.2 Test cases for new features

B.2.1 Arrays

class Source extends Thread {
int [] i;

)

public void createl() {
this.i = new int [2]
}

requires Perm(this.i, 1);

64

requires (\forallx int j; 0 <= j & j < i.length; Perm(i[j],
write));

ensures Perm(this.i, 1);

ensures (\forallx int j; 0 <= j && j < i.length; Perm(i[j],

write));

public void run() {
i[0] = 42;
i[l] = 43;

public void join (){}
public void start (){

}
}

class Sink extends Thread {
Source source;

public void setSource(Source source) {
this.source = source;

requires Perm(source, 1);
ensures Perm(source, 1);
ensures Perm(source.i, 1/2);
ensures (\forallx int j; 0 <= j && j < source.i.length = Perm(
source.i[j], 1/2));
public void run() {
//@ source.postJoin (1\2);
source . join () ;

}

public void join (){}
public void start (){

}
}

class Main{

public void main() {
Source source = new Source();
Sink sink = new Sink();
sink . setSource (source);
source.createl () ;

source.start () ;
sink.start () ;

//@ source.postJoin (1/2);
source . join () ;

//@ sink.postJoin(1);
sink . join ();

source.i[0] = 1988;

65

class Thread{

}

LisTING B.3: Shared buffer arrays

public void run() {
//@ source.postJoin (1\2);
source . join () ;
source.i[0] = 1;

LisTiNG B.4: Change in program to fail Shared Buffer array case Scenario 1

class DummyData {
int val;
}

class Source {
DummyData || 1i;

public void createl () {
this.i = new DummyData|2];
DummyData o = new DummyData() ;

this.i[0] = o;
this.i[1] = o;
}
/%@
requires Perm(this.i, 1);
requires (\forallx int j; 0 <= j & j < i.length; Perm(i[j].val
write));
ensures Perm(this.i, 1);
ensures (\forallx int j; 0 <= j & j < i.length; Perm(i[j].val,
write));
Y/

public void test () {

}

public void main(){
Source source = new Source () ;
source.createl () ;
source . test () ;

LisTiNG B.5: Change in program to fail Shared Buffer array case Scenario 2

66

B.2.2 Quantifiers

class Program {
int []
int b;

/+@Q
requires (\forallx int i; 0
write));

<= 1 && i < a.length; Perm(a[i],

*/

public void setA(int[] a) {
this.a = a;

}

/%@
requires a.length 0;
requires (\forallx int x;

=

0 <= x && x < a.length; Perm(a|[x],

write));
requires (\forall int x; 0 <= x & x < a.length; a[x] > 0);
requires (\forall int x; 0 <= x & x < a.length; (\forall int j
0= j &b j<x;alil <= alx])):
ensures (\forallx int x; 0 <= x && x < a.length; Perm(a[x],
write));
ensures (\forall int x; 0 <= x && x < a.length; a[x] > 0);

,
/

public int indexOf(int b) {

for (int i = 0; i < a.length; i++) {
if (a[i] = b) {
return i;
}
}
return —1;

}

public void main() {
Program program

new Program () ;

int [] tmp = new int[3];
tmp [0] = 2;
tmp 1] = 4;
tmp[2] = 6;

program .setA (tmp) ;
program . indexOf (4) ;

LisTING B.6: Quantifiers test case

/*Q

requires a.length <= 0;

requires (\ forallx int x;

0 <= x && x < a.length; Perm(a[x],

write));
requires (\forall int x; 0 <= x & x < a.length; a[x] <= 0);
requires (\forall int x; 0 <= x & x < a.length; (\forall int j
0« j &< x;alj] < alx])):

67

ensures (\forallx int x; 0 <= x & x < a.length; Perm(a[x],
write));
ensures (\exists int x; 0 <= x && x < a.length; a|x| <= 0);

LisTING B.7: Change in program to fail quantifiers case

B.2.3 Loop Invariants

class Program {
int [| a;

public void setA(int[] a) {
this.a = a;
}

public int indexOf(int b) {
//@ loop invariant i <= a.length;
//@ loop invariant (\forallx int j; 0 <= j & j < a.length;
Perm(a[j|, read));

//@ loop invariant (\forall int j; 0 <= j && j < a.length; a[j]|
% 2 =— 0);

for(int i = 0; i < a.length; i++) {
if(afi] b) {

return i;
}
}

return —1;

}

public void main() {

Program program = new Program() ;
int [] tmp = new int[3];

tmp [0] = 2;

tmp [1] = 4;

tmp[2] = 6;

program . setA (tmp) ;
program . indexOf (4) ;

)

Li1STING B.8: Loop Invariants test case

//@ requires (\forall int x; 0 <= x && x < a.length; (\forall int j

; 0<= j & j < x; alj] >= alx]));

public int indexOf(int b) {
for (int i = 0; i < a.length; i++) {

if (ali] = b) {

return i;
}
}

return —1;

68

LisTING B.9: Change in program to fail loop invariant case

B.2.4 Lock Invariant

@ lock invariant Perm(this.i, write);
class Source {

int i;
public void test (){
synchronized (this) {
this.i = 0;
}
}
public void main() {
Source source = new Source();
source . test () ;
}

LisTING B.10: Lock Invariant test case

public void test ()
int x = this.i
synchronized (
this.i = 0

}

{
this) {

)

LisTING B.11: Change in program to fail lock invariant case

B.2.5 Predicates

public class Main {

//@ requires ¢ != null %% c.state(0);
//@ ensures c.state(2);
void foo(Counter c¢) {

c.increment (2);

}

public void execute() {
Counter ¢ = new Counter () ;

@ fold c.state(0);

Counter ¢2 = new Counter () ;
//@ fold c2.state(0);
foo(c);
foo(c2);

}

69

public void main() {
Main m = new Main () ;
m. execute () ;

class Counter {
int count;

//@Q resource state(int val) = Perm(count, write) %% count =— val;

//@Q requires state(count):;
//@ ensures state (count);
void increment (int n) {

//@ unfold state (count):;

count += n;

//@ fold state(count);

}s

LISTING B.12: Predicate test case

void increment (int n) {
int z = count;
//@ unfold state(count);
count += n;
//@ fold state(count);

}s

LisTING B.13: Change in program to fail predicate case

70

	Introduction
	Motivation
	Problem statement
	Research Questions
	Outline

	Problem domain
	Concurrency
	Bugs in concurrent programs

	Formal specifications
	Static verification
	Problems with static verification

	Runtime checking
	Byte code transformation

	Permission logic
	Seperation logic
	Fractional permissions
	Symbolic permissions

	VerCors
	What is VerCors?
	VerCors internal structure
	Syntax

	Implementation Design
	Basic permissions
	Storing permissions
	Checking permissions
	Exchanging permission
	Locking

	Array permission
	Quantifiers
	Loop invariants
	Predicates
	Prototype Implementation Overview
	Ledger
	Class Descriptions

	Testing & Results
	Test case Shared Buffer from Gijsen
	Results

	Test case Shared Buffer for arrays
	Results

	Quantifiers test case
	Results

	Loop Invariant test case
	Results

	Lock Invariant test case
	Results

	Predicates test case
	Results

	Related work
	Runtime verification for sequential programs
	Frama-C
	Whiley

	Runtime verification for concurrent programs
	Old prototype
	OpenJML
	Concurrent and Distributed systems

	Static verification tools concurrent programs
	VerCors
	VeriFast
	VCC
	Chalice
	GPUVerify

	Conclusion
	Future work
	New features
	Automated testing environment
	Scoping permissions per function

	Detailed Prototype Implementation
	Details Helper Classes
	Util
	LedgerHelper
	CreateConstructor
	PermissionData
	FindBoundsQuantifier
	AbstractQuantifierRewriter
	RewriteContractExpr
	TransferPermissionRewriter

	Details Stage Classes
	CreateLedger
	RemoveSelfLoops
	RefactorGeneratedCode
	AddPermissionOnCreate
	CreatePredicateFoldUnfold
	CheckPermissionsBlocksMethod
	CreatePrePostConditions
	CreateLocking
	CreateLoopInvariants
	ForkJoinPermissionTransfer
	GenerateJava

	Code of tests
	Test case for reviving code Gijsen
	Test cases for new features
	Arrays
	Quantifiers
	Loop Invariants
	Lock Invariant
	Predicates

