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ABSTRACT 

Remote sensing techniques are crucial in monitoring and assessing forest health, 

particularly in detecting tree mortality events. This study investigates the effectiveness of 

spectral indices and Spectral Unmixing (SU) derived from satellite data in identifying tree 

mortality in Mediterranean forest ecosystems. The study demonstrates the utility of 

Unmanned Aerial Systems (UAS) imagery as ground truth data, showcasing its high 

correlation with direct field observations (R² = 0.95, RMSE = 2.97), thus offering a way 

to complement and/or simplify traditional field campaigns. UAS also verifies the reliability 

of SU (R² = 0.75, RMSE = 12.4) in estimating vegetation percentage within mixed pixels 

despite challenges such as variability in vegetation composition and spatial resolution 

limitations. Time series analysis reveals the minimal influence of a recent single drought 

event (which happened in 2015-2016) on vegetation indices derived from satellite time 

series imagery. Tree mortality found in the area is explained by disturbances that occurred 

in the late 1990s and mid-2000s, highlighting the need for having 2 or more droughts 

consequently for high tree mortality. Change detection using the LandTrendr algorithm 

(including using a novel technique of detecting changes in SU’s outputs with LandTrendr) 

confirms significant vegetation loss, with SU highlighting more pixels with changes than 

traditional vegetation indices. Despite SU having the lowest overall accuracy, evaluation of 

the presence of tree mortality accuracy demonstrates SU's superiority (97.96% accuracy) 

over vegetation indices (i.e., 93.88% NDVI, 93.75% NDWI) while acknowledging 

challenges in detecting the absence of tree mortality (i.e., 50% SU, 78.57% NDVI, 73.33% 

NDWI), presumably due to the overestimation of SU comparing to UAS data. Additionally, 

the research highlights the potential of NDVI in capturing changes in canopy dynamics as 

well as highlighting areas of drought-resilient tree species and NDWI in identifying areas 

of high drought susceptibility. The regression analysis between vegetation indices and tree 

mortality percentage, and between SU and tree mortality percentage, reveals low R² 

values for NDVI, NDWI, and SU (0.37, 0.18, and 0.35 respectively), and high RMSE values 

of 56.9, 84.9, and 26.6 respectively, including significantly lower correlations using NDWI. 

However, removing plots with tree mortality percentages higher than 80% helps to 

improve it, resulting in R² of NDVI, NDWI, and SU to be 0.42, 0.35 and 0.51; RMSE: 58.2, 

80.9, and 20.8 respectively. The study also discusses the importance of spatial and 

temporal resolutions in remote sensing data to accurately assess tree mortality and the 

potential of ensemble approaches with higher spatial resolution imagery to improve 

detection accuracy. Moreover, the findings underscore the significance of early detection 

of forest decline and the resilience of vegetation to environmental stressors, providing 

valuable insights for forest management and conservation efforts. Overall, this research 

advances our understanding of remote sensing applications in monitoring tree mortality 

and offers recommendations for future studies to enhance detection methodologies and 

improve forest management strategies. 

Keywords: Unmanned Aerial Systems (UAS), Spectral Unmixing, NDVI, NDWI, tree 

mortality, vegetation indices, change detection, drought monitoring, remote sensing, 

LandTrendr algorithm, Landsat, Mediterranean ecosystem. 
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1. INTRODUCTION  

1.1. The problem of drought and the role of (Mediterranean) forest 
The adverse effects of drought impede nature's ability to provide a diverse range of 

environmental, social, and economic benefits (Li et al., 2023). Drought is characterized by 

an extended duration of high temperature and/or low precipitation, resulting in a persistent 
water deficit in a specific region over a specified period (Haied et al., 2023). Due to climate 

change, we expect more frequent and intense drought events in the near future. The 
possible consequences of drought are increasing fire risk, biodiversity loss, habitat 

destruction, etc. Drought is the slowest but one of the world's most dangerous and 
widespread hazards (Mo et al., 2023). Therefore, its impact could be followed and 

investigated in long-term periods.   

Forests play a crucial role in preventing biodiversity crisis and the further development of 
global change. Conservation of forests, especially mature and old-growth communities, is 

essential to preserve its ecosystem services (Woodall et al., 2023). Therefore, there is a 
particular interest in the impact of droughts on forest ecosystems. There are different 

criteria to evaluate the effect of changing climate on forests. Such as its direct impact on 

trees via physiological processes (for example, water content) or considering other factors 
such as insect attacks (Hartmann et al., 2022). All of this generally results in forest 

degradation and, ultimately, tree mortality.   

Droughts have been causing widespread tree mortality in Mediterranean ecosystems and 
semi-arid regions (Schröter et al., 2005). Mediterranean climate regions cover almost 5 % 

of the Earth but contain about one-fifth of the global plant biodiversity, as well as have 
extremely high rates of endemic and rare species (Cowling et al., 1996). This area 

represents the biome on the border between subtropical dry forest and semi-arid 
ecosystems, in other words it locates on the border between temperate and arid zones 

(Barbeta et al., 2015). Mediterranean species of flora and fauna are adapted to prolonged 
dry seasons but nowadays the drought events are becoming more intense and frequent 

that the ecosystem cannot support them anymore. So, this region is overly sensitive to 

climate change, especially to expected increasing temperatures and reduced precipitation 
in the future (Schröter et al., 2005). Thus, it is indispensable to study this type of 

ecosystem to preserve global biodiversity, protect Mediterranean biodiversity hot-spots, 

and prevent or reduce desertification in other Mediterranean areas in the future.  

1.2. Tree mortality as an indicator of drought impact 
Tree mortality as an indicator of droughts is one of the most pivotal factors of changes in 

the carbon cycle (Liu et al., 2023). This is not only due to the reduction of forests’ 
ecosystem services but also due to the destruction of both standing and fallen biomass, 

including aboveground vegetation and belowground roots of dead and dying trees, which 

has an impact on the process of carbon sequestration and the exchange of elements within 
the ecosystem (Anderegg et al., 2012). Besides, there is an increase of forest fire risk due 

to increased fuel to burn. This is especially important in Mediterranean ecosystems due to 

the habitat destruction that forest fires might cause.   

Tree mortality is the last stage of the effect of drought on a forest and an indicator of 

drought impact. The process of tree death due to drought can be divided into several 
stages (Gaylord et al., 2015). However, it is crucial to emphasize that the specific timeline 

and progression of these phases can differ significantly based on factors such as tree 
species, soil conditions, the severity of the drought, and environmental factors. The initial 

stage involves the tree experiencing drought stress. This occurs when the soil moisture 
levels drop significantly, leading to reduced water uptake by the tree's roots. As a response 

to water scarcity, the tree may begin to close its stomata (small openings on leaves) to 

conserve water, leading to reduced photosynthesis. As the drought stress continues, the 
tree may exhibit visible signs of wilting, where leaves droop or curl to minimize water loss 

through transpiration.  The next step is a so-called hydraulic failure when air bubbles 
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produced in the xylem block the flow of water and nutrients from roots up to leaves. As 
the drought persists, the tree's growth is severely impacted. It gives way to reduced 

photosynthesis, limited nutrient uptake, and, furthermore, weakened defence 
mechanisms, making them more susceptible to attacks by pests and pathogens. These 

organisms take advantage of the tree's compromised defenses, causing further damage 
to the tree. The tree's canopy may start to thin as more leaves are shed, and the remaining 

leaves may become discolored and show signs of damage. Also, drought can damage the 
tree's root system, particularly in shallow-rooted species. As the soil dries and shrinks, 

roots may become desiccated or die, further reducing the tree's ability to access water 

and nutrients. The combination of the above factors eventually leads to the tree's death. 
The exact cause of death may vary but is typically related to a critical inability to transport 

water and nutrients throughout the tree (Gaylord et al., 2015).  

In summary, droughts can retard the growth of plants, which leads to a reduction of 
primary growth in general and such consequences as a decline in fruit production, the 

smaller size of leaves and their number, and changes in phenological cycles and 
reproductive phases (Silva et al., 2013). Moreover, it makes trees more prone to wildfires. 

Also, it increases autotrophic respiration, which leads to a decline in the tree’s natural 
ability to absorb carbon dioxide and release oxygen (Brando et al., 2019). Overall, the 

influence of droughts on tree communities reduces the profit of their ecosystem services 

and contributes further to anthropogenic climate change (Ewane et al., 2023).   

Thus, precise estimation and mapping of tree mortality may help to understand and assess 

the total drought-induced impact on the forest, identify areas of priority intervention, and 
help develop restoration plans. Consequently, this information will help forest managers 

in the decision-making process to prevent or reduce the impact of drought in other 

Mediterranean areas, thus reducing the risk of desertification. Remote Sensing (RS) seems 
to be the most appropriate approach for this type of analysis because it can cover larger 

and/or inaccessible areas, reduce the cost of fieldwork, and cover data from the past.   

1.3. Tree mortality detection using Remote Sensing 
There are diverse types of RS data to be used. Multispectral data is the most widely used 
to monitor tree mortality due to their high temporal resolution. Multispectral data typically 

involves the utilization of vegetation indices (VIs), which emphasize various object 
properties. Among them, the most widely used is the Normalized Difference Vegetation 

Index (NDVI) (Rouse et al., 1974). NDVI has been commonly recognized in RS as the 
‘greenness’ index and was used to detect land cover changes in different ecosystems, 

including semi-arid ecosystems (Almalki et al., 2022; Chaulagain et al., 2023; Worqlul et 

al., 2023; X. Zhang et al., 2022).   

Another well-used VI is the Normalized Difference Water Index (NDWI) (Gao, 1996). The 

NDWI is capable of detecting alterations in the moisture levels of vegetation, making it a 

valuable tool for assessing and tracking the moisture status of vegetation canopies across 

large areas (Chou et al., 2022; Marusig et al., 2020; Taherizadeh et al., 2023).  

NDVI has been utilized to detect tree mortality and the impact of droughts on forests. For 

example, Garrity et al. (2013) examined tree mortality of a mixed species forest in the 
southwestern U.S. using bi-temporal (before and after tree mortality) differencing of NDVI, 

with an accuracy of 97.9 %. Another study used change metrics (calculated using 
differences in VI’s summer and winter values) derived from three years of MODIS data in 

the Pinus plantation of southern New South Wales, Australia. It proved that NDVI 
outperforms other indices such as Enhanced Vegetation Index (EVI) and Normalized 

Difference Infrared Index (NDII) in estimating tree mortality (R2=0.37 using NDVI against 

0.04 and 0.15 using EVI and NDII respectively) (Verbesselt et al., 2009).  

NDWI has been widely used as a proxy for vegetation stress during droughts (Huete & 

Didan, 2004; Marusig et al., 2020; Sturm et al., 2022; Xulu et al., 2019). For instance, 
Anderson et al. (2010)examined the impact of the 2005 drought in Amazonia through VIs 

and climatological variables correlations. They revealed that NDWI shows a significant 
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inverse correlation (P < 0.09) with tree mortality. Sturm et al. (2022) used NDWI to 
examine pre-drought conditions, resistance during a drought, and post-drought recovery 

of temperate forests in Central Europe. Results showed a decline in index values (i.e., the 
decline in water content) during the drought, highlighting low-resistance areas. So, NDWI's 

response to a drought event is prompt.   

Mediterranean forests are characterized by an open canopy, resulting in a considerable 
influence of soil and understory vegetation on the reflected signal from the top of the 

canopy using mid-spatial resolution data. To help with that, there is an auspicious 
approach, Spectral Unmixing or Spectral Mixture Analysis (SU or SMA), which is widely 

used in hyperspectral RS but can also be implemented with multispectral data. It is capable 
of breaking down a blended pixel's spectral signal into a set of fractional abundances 

(Elmore et al., 2000). So, the final output provides information on the element cover at 

the sub-pixel level. Thus, SU may help isolate the vegetation fraction at the sub-pixel level, 

eliminating or minimizing the impact of soil signal.  

SU techniques have been applied to investigate various aspects of tree mortality and forest 

diseases using multispectral (Landsat and MODIS) and hyperspectral (AVIRIS and 
Hyperion) data. For instance, He et al. (2019) examined disease-caused tree mortality in 

the areas of oak forests in the Western United States using SU to extract sub-pixel disease 
presence using yearly Landsat data. Brewer et al. (2017) explored change in land cover 

after a severe drought event in pinyon-juniper woodland of New Mexico, U.S., using the 
SU approach and showed its ability to map physical changes in vegetation. So, for 

example, a 24.6 % decline in Pinus edulis woodlands and a 23.8 % increase in dead Pinus 
edulis were detected. Somers et al. (2010) explored different unmixing methods for 

defoliation detection using Landsat and Hyperion images in the eucalyptus plantations in 

Southern Australia. He et al. (2020) explored green vegetation dynamics in semi-arid 
regions using SU with Landsat images for the 1999-2014 period and emphasized its 

performance in heterogeneous areas. One of the first and foremost papers comparing the 
results of NDVI and SU was the research done by Elmore et al. (2000) that quantified 

vegetation change in semi-arid environments using a Landsat time series of five years 
(1991-1996). Their results showed that SMA outperforms NDVI. It accurately determined 

the sense of change (whether it was positive or negative) of live vegetation cover.  

Due to tree mortality, a structural change in the time series or a break in the pattern is 
expected. LandTrendr is a well-known tool for detecting land cover change over time (Z. 

Zhu, 2017). It makes use of so-called temporal segmentation, where the tool breaks down 
a time series of vegetation index into segments, each representing a distinct period of land 

cover change. It identifies abrupt and gradual changes to determine the boundaries of 

these segments and then fits the best model based on simple fitting statistics. This 
provides information on the magnitude and direction of change during that specific time 

frame (Kennedy et al., 2010). For example, Tao et al. (2023)applied the LandTrendr 
algorithm to identify disruptions (extreme climate events and insect outbreaks) in both 

planted and natural woodlands in a temperate zone of Northern China between 1985 and 
2020, utilizing Landsat and Sentinel-2 satellite data. Cohen et al. (2017) compared seven 

forest change detection algorithms over the contiguous United States and reported that 

LandTrendr is more sensitive to subtle changes.   

1.4. UAS data as reference data 
The results obtained from the multispectral data analysis require reference data for 

validation. Direct in-situ observations are often the most accurate reference data for 

validation (Chen et al., 2023). However, very high spatial resolution data, such as imagery 
derived through Unmanned Aerial Systems (UAS), may increase the number of 

observations to complement field measurements (Alvarez-Vanhard et al., 2021). For 
instance, Schiefer et al. (2023) used UAS red-green-blue (RGB) imagery as ground 

reference data to recognize not fallen dead tree crowns automatically. Kattenborn et al. 
(2019) used UAS data to map invasive tree species as an alternative to field observations. 

Also, the study mentioned above about the spectral separability of land cover classes in 
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New Mexico used a four-band camera mounted on a light-wing aircraft to obtain high 

spatial resolution (5 cm) aerial imagery for accuracy assessment (Brewer et al., 2017). 

1.5. Problem Statement 
Mediterranean ecosystems are critically important due to their rich biodiversity, which is 

pivotal in sustaining complex ecological relationships. This type of ecosystem faces 
imminent threats from global warming, increased incidence of forest fires, and heightened 

tree mortality resulting from prolonged drought. A few research papers investigating tree 
mortality proved the high performance of NDVI in detecting it. However, NDVI is usually 

utilized as an index for live vegetation. Therefore, the particular interest is to investigate 
not only live vegetation but also dead tree communities and pay attention to very open 

(Mediterranean) ecosystems where soil significantly influences the pixel signal. NDWI has 

been used for drought detection and post-drought recovery in arid or temperate forest 
areas. Meanwhile, tree mortality detection using this index and the Mediterranean areas 

has yet to be explored. Additionally, time series analysis of indices for tree mortality 
estimation has yet to be extensively investigated. The particular interest is in comparing 

the performance of different vegetation indices. Here, one biomass-related index (NDVI) 
will be used along with a water-related index (NDWI). As stated above, NDWI’s faster 

(than other VIs) response to disturbances will be compared to response of NDVI. SU is an 
option to detect subtle changes in areas of high landscape heterogeneity by disaggregating 

the pixel into components, even with mid-spatial resolution imagery. It has been used for 

tree mortality detection as an outcome of forest disease, quantifying drought-induced tree 
mortality areas, and exploring green vegetation dynamics in semi-arid climates. Thus, SU 

was not used to estimate tree mortality in Mediterranean ecosystems but mainly to detect 
land cover changes in other types of ecosystems. As a result of this research, the 

comparison of NDVI, NDWI, and SU in detecting and estimating tree mortality in the 
Mediterranean ecosystem will be explored. This, as well as the utilization of LandTrendr 

for the detection of vegetation cover changes derived from SU as a way to detect and 

estimate tree mortality, have not been examined before. 

1.6. Objectives and research questions  

1.6.1. General research objective  
This study aims to identify droughts' impact on forest communities by assessing drought-

induced tree mortality in Mediterranean ecosystems. High and ultra-high-resolution 
multispectral and RGB imagery will be used to determine the most accurate technique to 

evaluate tree mortality.   

This study will evaluate how NDVI and NDWI perform in assessing tree mortality and if 
removing the influence of soil in open forests using SU techniques may improve the 

accuracy of tree mortality detection and estimation.   

1.6.2. Specific research objectives, questions, and hypotheses 
Objective 1: To compare performances of NDVI and NDWI in detecting and quantifying 

tree mortality using time series analysis.   

RQ1: Is there a significant difference in the performance of the two indices in 

detecting tree mortality?  

H1: There is a significant difference between the two VIs. 

RQ2: Is there any relationship between the magnitude of the drop and the 

percentage of tree mortality?  

H1: Higher drops are associated with higher tree mortality percentage.   

RQ3: Is there any time lag between the two VIs in detecting tree mortality? 

H1: NDWI's responses to drought-induced tree mortality are faster than those of 

NDVI's.   
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Objective 2: To evaluate the performance of SU in improving tree mortality detection and 

estimation.  

RQ4: What is the performance rate of SU in comparison with VIs?   

H1: SU performs better in detecting and quantifying tree mortality than VIs.  
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2. STUDY AREA AND DATASETS  

2.1. Study area  
The above research hypotheses will be investigated in Lefka Ori National Park in Crete, 
Greece. Specifically, the south slopes of the Lefka Ori (White Mountains) massif in the 

southwest of Crete Island (Figure 1). This region is a vivid example of forest communities 
in Mediterranean ecosystems of semi-arid regions, and it might be considered the limit of 

having a forest in the Mediterranean ecosystem. This area's most common tree species 

(Pinus Brutia) is one of the most drought-resilient tree species (Christopoulou et al., 2022). 

Consequently, it dominates the driest forest zone throughout Lefka Ori. 

Tree mortality typically happens some years after a drought. So, those tree communities 

experience various mortality rates in the following years after the drought starts. In the 
case of ubiquitous tree mortality there is a massive threat of losing forest communities 

here and thus turning into a desert. The area is part of Samaria National Park, the UNESCO 
MAB reserve, and the Natura 2000 site.  The reserve management is highly concerned 

about desertification, i.e., the shift from open forest to shrubland. 

The mountain range covers an area of approximately 1100 km2. The southern section of 
the massif, which descends sharply into the Libyan Sea, exhibits a steep and rugged terrain 

in contrast to the gentler landscape of the vast northern foothills (Vogiatzakis et al., 

2003).  

The climate of Crete is categorized as warm and semi-arid. The annual precipitation at the 

lower elevations of the White Mountains is 450 to 600 millimetres. Nevertheless, higher 
elevations are the wettest place on the island, where average annual precipitation up to 

2000 mm, primarily (80 % of the yearly rainfall) is concentrated during the months 

spanning November to April (Grove & Rackham, 1993; Varouchakis et al., 2018).   

Lefka Ori has the highest local and regional endemism rate among the Greek mountains, 

hosting 22 threatened species (Strid, 1995). Calcareous woodland is prevalent throughout 
the Lefka Ori massif. Pines (Pinus brutia Ten.) occur on drier substrates, particularly on 

the southern slopes, where they coexist with cypresses (Cupressus sempervirens L.) and 

oaks (Quercus coccifera L.), growing at elevations up to 1200 m above sea level (a.s.l.) 
(Turland et al., 1993). The upper boundary for forest growth on the southern slopes of 

Lefka Ori is situated at altitudes ranging from 1600 to 1650 m a.s.l.  

Grazing by sheep and goats is the most significant human influence in the Lefka Ori region. 
The animals are herded to the high mountain areas in spring and summer, specifically from 

March to October. Also, at lower altitudes, apiaries are common.   

Three sites within the study area were chosen. All sites are different in terms of elevation, 
topography, landforms, flora, and accessibility. Site 1 is located on a higher elevation 

between 750-1000 m and has the steepest terrain. Also, this site is notable due to its 
heterogeneous tree species composition. Here, cypresses occur as often as pines and rarer 

oaks. On the other two sites, almost all trees are Pinus Brutia. Site 2 is located in mid 
valley region at elevation between 650-700 m and has less steep incline. Site 3 is located 

at an elevation between 460-650 m and is the only site which faces north (Figure 1).  
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Figure 1. Location of the study area 

 

2.2. Remote Sensing Data  

2.2.1. Multispectral satellite data  
This research made use of several sources of multispectral data, such as Landsat 5 TM, 
Landsat 7 ETM+, Landsat 8 OLI and Sentinel-2. These sources were chosen because of 

their convenient accessibility and spatial and temporal resolution suitable for the goals of 
the present study. The Landsat satellite missions have been delivering images with a 

spatial resolution of 30 m since April 1972 and continue to do so (P. Li et al., 2013). These 

satellites operate on a 16-day repeat cycle. Sentinel-2 has a spatial resolution of 10 (i.e., 
red and near-infrared (NIR) bands) and 20 (i.e., shortwave infrared (SWIR) bands) m and 

a revisiting time of 5–10 days (Soriano-González et al., 2022). Landsat and Sentinel-2 
imagery were used to estimate NDVI, NDWI and SU during the study period to detect 

vegetation greenness and water content response to disturbances.   

All the images were accessed using Google Earth Engine (GEE) cloud computing platform 

with names as follows: 

• Landsat 5 TM: LANDSAT/LT05/C01/T1_SR 

• Landsat 7 ETM+: LANDSAT/LE07/C01/T1_SR 
• Landsat 8 OLI: LANDSAT/LC08/C01/T1_SR 

• Sentinel-2 Top-of-atmosphere reflectance: COPERNICUS/S2_HARMONIZED 

• Sentinel-2 Surface reflectance: COPERNICUS/S2_SR_HARMONIZED 
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2.2.2. Unmanned Aerial System (UAS) 
UAS data was collected using ‘DJI Mavic 3M’. Its high spatial resolution RGB camera is able 
to capture very ultra high-resolution images (20MP), which is highly beneficial for the 

objectives of this study. Additionally, this drone is equipped with a Real-Time Kinematic 

Global Navigation Satellite System (RTK GNSS) that provides a few centimetres level 
precision positioning. At the same time, surveying and allows it to produce georeferenced 

images right after taking them. Furthermore, ‘DJI Mavic 3M’ has a terrain follow feature 
that uses sensors at the bottom. That allowed us to fly a drone in the area of uneven 

terrain without additional efforts of using digital elevation models.   

UAS settings during the flights were: flying height is 100 m above ground level, speed is 
6.7 m/sec, the front overlap is 85 %, and side overlap is 75 %. A total of 1192, 952, and 

1010 images for sites 1, 2 and 3, respectively, were collected. The spatial resolution of the 

created orthomosaics is 3.26, 3.14, and 3.13 cm for sites 1, 2, and 3, respectively.   

2.3. Field observations  
The fieldwork was conducted in late August – early September 2023 and lasted for nine 

days. Data from 33 plots spread across all three sites were collected (Figure 2). Each plot 

is a 30x30m square. The centres of plots correspond to the centres of Sentinel-2 pixels.   

The information collected for each plot was:  

• the location of the centre of a plot and four edge points using RTK GNSS,  

• for each tree   

o species name,  

o diameter at breast height (DBH),  

o defoliation and discolouration status (where ‘5’ means dead tree),  

• pictures of the plot.  

Defoliation status and discolouration status were described following the ‘Manual for visual 
assessment of forest crown condition’ by the Food and Agriculture Association of the United 

Nations (FAO, 2014).   

Site 1 has 12 plots (plots IDs are from 22 to 33), site 2 has nine plots (plots IDs are from 
1 to 8), site 3 has 13 plots (plots IDs are from 9 to 21). More observations are taken from 

sites 1 and 3 to account for their variable topography. The maximum number of trees 
observed within one plot is 53, and the minimum is 3. Site 2 has the highest variety of 

number of trees per plot from 11 trees in plot 3 to 53 tress in plot 2. On the contrary, the 
number of trees per plot on site 3 varies from 3 to 28 (Figure 3). Tree density is higher on 

sites 1 and 2 because they tend to have more trees per plot than on site 3 (Figure 4). The 
percentage of tree mortality on site 3 is higher than on other sites. So, dead trees there 

cover between 30 percent and up to 79 % of all trees on the plot. Additionally, pines 

homogenously cover site 2, while site 1 has a vast number of cypresses spread across the 

whole area (Figure 5). Also, a small number of oaks were found on some plots.  
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Figure 2. Location of the plots within the study area 

 

Figure 3. Box plots illustrate how many trees all the plots have within each site 
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Figure 4. Distribution of alive and dead trees across plots 

 

Figure 5. Distribution of tree species across plot 
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3. RESEARCH METHODS  
This section outlines the steps required to carry out this research. The methodology was 

divided into three main phases to align with the research goals. A flowchart of the overall 

methodology can be seen in Figure 6. 
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Figure 6. The flowchart of the overall methodology used for this research
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3.1. Ortho-rectification and mosaicking of UAS imagery  
UAS drones take pictures of the surface sequentially, following a flight plan. The outcome 
data of the flight is some number of images and not one image covering a big area as if it 

were satellite imagery. This happens due to the drone's relatively much smaller flying 
height and consequently much more limited field of view. That is why there is a need to 

create a mosaic. Mosaicking is stitching multiple UAS images together in one whole image 
of the study area. It is done with the help of the geolocation that every image has, and 

side and front overlap images have between each other.   

The acquired aerial images can exhibit geometric distortions, such as stretching, 
squeezing, and twisting in certain areas, due to factors like sensor instability and 

atmospheric conditions (Zhang et al., 2023) that can affect UAV aerial photography 

operations. Consequently, it is essential to perform geometric ortho-rectification before 
creating a mosaic of the aerial images. This process corrects these distortions and aligns 

the imagery with their actual positions.   

The UAS images collected were processed using the Pix4Dmapper software, designed 
specifically for photogrammetry and geospatial applications utilizing UAS imagery. It 

performs ortho-rectification and mosaicking automatically and results in a useful 

orthomosaic.  

3.2. Calculation of NDVI & NDWI  
The calculation of NDVI and NDWI, as well as creating their times series, were executed 

using Sentinel-2, Landsat 5, 7 and 8 imagery using GEE.  

NDVI was calculated according to the formula given by Rouse et al. (1974):  

NDVI = 
 (𝑁𝐼𝑅 𝑏𝑎𝑛𝑑)− (𝑟𝑒𝑑 𝑏𝑎𝑛𝑑)

 (𝑁𝐼𝑅 𝑏𝑎𝑛𝑑)+(𝑟𝑒𝑑 𝑏𝑎𝑛𝑑)
 

Where NIR band corresponds to the bands 8, 4, and 5 of Sentinel-2, Landsat 5/7 and 
Landsat 8 respectively and red band corresponds to bands 4, 3 and 4 of Sentinel-2, 

Landsat 5/7 and Landsat 8 respectively. 

NDVI values are dimensionless and range from -1 to 1, where negative values correspond 
to water bodies, values from 0 to 0.25 for the soil without vegetation, and values from 

0.25 to 0.4 show soil with sparse vegetation. Values more than 0.4 correspond to 
vegetated surfaces. Values closer to 1 represent dense canopies and strong vegetation 

vigour (Filgueiras et al., 2019).  

NDWI was calculated according to the formula given by Gao, 1996:  

NDWI = 
𝑅 (842)−𝑅 (1610)

𝑅 (842)+𝑅 (1610)
 

Where R (842) imply reflectance in the wavelength of 842 nm (corresponds to NIR bands 
8, 4, and 5 of Sentinel-2, Landsat 5/7 and Landsat 8, respectively) and R (1610) imply 

reflectance in the wavelength of 1610 nm (corresponds to SWIR bands 11, 5 and 6 of 

Sentinel-2, Landsat 5/7 and Landsat 8 respectively). 

NDWI values are dimensionless and range from -1 to 1. High NDWI values indicate high 

vegetation water content and high vegetation fraction cover. Conversely, lower NDWI 
values signify low vegetation water content and low vegetation fraction cover. During 

periods of water scarcity or stress, NDWI is expected to decline.  

3.3. Change detection using the LandTrendr algorithm  
The change detection approach LandTrendr applied to the Landsat time series was used to 
detect significant changes in the time series at the pixel level. LandTrendr typically 

provides information about when and where changes occurred, as well as about the 
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magnitude of the change. It has the ability to identify sudden and gradual shifts and 
patterns within the annual time series. LandTrendr has been adapted for use on the GEE 

platform, simplifying data management and ensuring prompt algorithm processing. This 
leverages cloud-based processing to efficiently monitor forest disturbances, making the 

process less time-intensive and more effective.  

LandTrendr is a pixel-based algorithm used to analyse how the values of a pixel change 
over time in a sequence of connected straight segments. Breakpoints or vertices define 

these segments and represent the annual behaviour of the pixel in a time series (Kennedy 
et al., 2018). The algorithm follows a two-step process for temporal segmentation. Firstly, 

it identifies candidate vertices through iterative anomaly detection to locate breakpoints 
that distinguish periods of significant change and stability in the spectral trajectory over 

time. Once the vertices are identified, the algorithm connects straight segments and fits 

them to the observed spectral values using linear regression, ensuring the segment is 
anchored between two vertices. The best-fitting segment is iteratively calculated to 

determine the most suitable representation of the time series using linear regression from 
vertex to vertex, establishing the best-fitting straight-line trajectory across the vertices 

(Cohen et al., 2018). In each iteration, a goodness-of-fit statistic is estimated to adjust 
the vertices and segments to the spectral values, resulting in spectral segmentation. The 

outcome for each pixel is a fitted trajectory with a set of vertices and segments that reveal 
information about distinct phases in the data over time (Kennedy et al., 2010). The 

temporal segmentation process yields a set of metrics, including the duration of change, 

the year when the change occurs, and the magnitude of disturbance. 

This research made use of the LandTrendr JavaScript module in GEE developed by Kennedy 

et al. (2018) for detecting changes in VIs time series. LandTrendr JavaScript module uses 

USGS Landsat Surface Reflectance Tier 1 datasets. Clouds, cloud shadows, snow and water 
were masked out, which is done automatically using the findings of Zhu et al. (2015). The 

algorithm has to have one spectral value per pixel for each year. Annual composite images 
are created utilizing a medoid approach. For each pixel in a given image, the medoid 

represents the band value that is numerically closest to the median of corresponding pixels 
across all considered images within a specified annual data range. Annual medoid 

compositing incorporates Landsat 5 TM and Landsat 7 ETM+ data without modification. 
However, for Landsat 8 OLI images bands 2, 3, 4, 5, 6, and 7 are subset and adjusted to 

match the spectral characteristics of ETM+ bands 1, 2, 3, 4, 5, and 7, respectively. This 

step is necessary due to newly introduced bands in the Landsat 8 OLI sensor, which do not 
exist in previous Landsat sensors. This adjustment is achieved using slopes and intercepts 

derived from reduced significant axis regressions, as detailed in Roy et al. (2016). 

To compare changes in VI’s and SU’s time series, the same change detection algorithm 
needs to be used. To do so, a novel approach was made based on the existing LandTrendr 

script in GEE. That script was complemented by creating time series of SU’s outputs 
containing a percentage of vegetation per pixel, and after that, it detects changes using 

the original LandTrendr technique.  

LandTrendr uses different criteria to control the temporal segmentation process. The 
values used to run this tool were fine-tuned during the iterative procedure of (1) finding 

the best fit (using Root Mean Square Error (RMSE)) between the spectral trajectory and 
the temporal segmentation and (2) experimenting with different values to observe how 

they impact the segmentation results visually. These criteria are: 

• ‘maxSegments’ determines the maximum number of temporal segments that the 
algorithm will attempt to identify for each pixel in the time series. This can be useful 

for capturing different phases of vegetation growth, disturbance, or recovery. Each 
segment represents a distinct temporal trend or change in the vegetation signal. If 

data has frequent and complex changes in vegetation dynamics, setting a higher 

value (e.g., ten or higher) might be appropriate. Here, this value was set to 6.  
• ‘spikeThreshold’ determines how sensitive the algorithm is to rapid changes or 

spikes in the time series. A higher value (e.g., 0.8 – 1) makes the algorithm less 
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sensitive to sudden changes. This setting is helpful if filtering out short-term 
fluctuations and focusing on larger, more sustained changes in vegetation are 

needed. Here, this value was set to 0.9.  
• ‘vertexCountOvershoot’ influences the level of detail in the detected segments. A 

higher value allows the algorithm to use a more detailed representation of the 
temporal trends in the data to capture fine-scale changes or rapid fluctuations. 

Setting a value ‘3’ (which was used here) means that the initial number of vertices 
used in the segmentation process can be exceeded by up to three times during the 

optimization process. 

• ‘preventOneYearRecovery’ was set to ‘true’. It prevents the algorithm from 
detecting recovery within a single year as a separate segment. This can be useful 

to avoid detecting short-term fluctuations as significant changes.  
• ‘recoveryThreshold’ determines the threshold for detecting recovery in the time 

series. It represents the proportion of the range between the minimum and 
maximum values of the time series that the recovery segment must cover. Setting 

a value to ‘0.25’ (which was used here) means that the recovery segment must 
cover at least 25% of the range between the minimum and maximum values to be 

considered significant. 

• ‘pvalThreshold’ sets the significance level for the statistical test used to determine 
whether a segment is significant. A lower value makes the algorithm more stringent 

when considering a segment as a substantial change. A used value of 0.05 implies 
that the algorithm requires relatively statistical solid evidence to consider a 

segment as a significant change.  
• ‘bestModelProportion’ determines the proportion of the best model to use when 

constructing the final segmentation. The used value of 0.75 implies that it gives 
more weight to the model which the algorithm considers the most representative 

and makes the segmentation more robust to outliers or noisy data by reducing the 

influence of less optimal models. 
• ‘minObservationsNeeded’ specifies the minimum number of observations required 

for a pixel to be included in the analysis. Pixels with fewer observations than 6 
(which was used here) will not be processed by the LandTrendr algorithm. Requiring 

a minimum of 6 observations ensures that only pixels with a relatively substantial 
amount of data are considered in the analysis. This can enhance the reliability of 

the results by excluding pixels with sparse or incomplete time series.  

A specific timeframe (June 1st to August 31st) for selecting images was chosen to depict 
dry summer conditions caused by a lack of summer rainfall and to reduce within-year 

fluctuations in the captured conditions. 

3.4. Spectral Unmixing Approach  
The typical approach for addressing the mixed pixel issue is SU. This process contains the 
decomposition of the spectrum of a pixel into two main components: a collection of 

endmembers and a set of fractions (abundances) that correspond to these endmembers. 

These abundance values essentially represent the fractional coverage, indicating the 

proportion of each endmember present within the target pixel (Celik, 2023).   

SU is usually carried out in two consecutive steps: (1) endmember extraction and (2) 

abundance estimation. Endmember extraction means deriving endmembers using pure 
pixels from imagery or reference data. Here endmembers were derived from Landsat 

multispectral satellite imagery. The endmembers selected are live vegetation 
(photosynthetically active vegetation) and non-photosynthetically active vegetation with 

bare soil. The areas for endmember selection were chosen using UAS data collected during 
the field campaign. Furthermore, fractional abundances were calculated using spectra of 

the given endmembers. SU was performed using GEE.  
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3.5. Validation   
Corroboration of UAS data as reference data was done by comparing field observations 
from all 33 plots with UAS data. It was assessed whether UAS can provide information 

comparable to direct field observations and if it can be used as ground truth data. This 

allows more observations to be selected for the validation.   

Tree mortality detection using three different approaches (NDVI, NDWI, SU) were verified 

using field observations and UAS data to increase the number of field observations. Thirty-
three field plots and 30 randomly selected plots from UAS were used, making up 63 plots 

in total. The validation set for all approaches was the same. The validation was done using 

a confusion matrix.  

Regression analysis was used to evaluate the relationship between two groups: (1) the 

magnitude of the decrease of VIs or vegetation percentage from SU and the percentage 
of tree mortality; (2) the magnitude of the decrease and number of dead trees. Values of 

the magnitude of the drop were taken from LandTrendr results for pixels corresponding to 

plots from the validation dataset (i.e., 63 plots). These values were compared with the 
number of dead trees and the percentage of tree mortality (ratio between number of dead 

trees and total number of trees per plot) derived from UAS data and fieldwork.  

SU results were verified at the subpixel level using high-resolution UAS imagery. The 
validation dataset of 63 plots was used for this verification (after estimating tree mortality 

percentage within them using UAS data) and compared to SU results to reveal the 

correctness of endmembers abundances representation throughout pixels.  
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4. RESULTS 
The results acquired using the methods described above are presented in this section. It 

includes corroboration of UAS imagery as ground truth data and verification of SU 

approach performance; examines temporal profiles of VIs; performs change detection in 

the times series of VIs and SU as well as its validation. Finally, it investigates the 

correlation between the magnitude of the drop in time series and the percentage of tree 

mortality. 

4.1. Corroboration of UAS imagery 
The regression model between field observations and UAS data was created to confirm 

using UAS data as ground truth data. The high R2 value of 0.95 and low RMSE values of 

2.97 suggest a strong relationship between the field observations and the UAS estimation 

of the number of trees per plot (Figure 7). In more than 80% of the cases (i.e., 27 out of 

33), field observations for a total number of trees almost coincide with what is observed 

using UAS imagery. The difference between these two values is at most 1-3 trees.  In 4 

cases out of 33 (i.e., 12%), the difference is 4-6 trees; in another two cases (i.e., 6%), 

the difference is 7-8 trees. Confusion may arise when there is a high density of trees within 

a plot, and they grow very close to each other. In this situation, it is hard to differentiate 

between canopies from the top (i.e., using UAS imagery) and state how many trees are 

actually there (Figure 8). In these cases, usually, the number of trees in the field data 

exceeds a value taken from a visual assessment of UAS imagery. Another point is about 

counting dead trees (Figure 9). In some cases, trunks of dead trees lay down on each 

other or very close to each other, making it difficult to separate them visually from above. 

It gets even more complicated when stems of dead trees are thin and lay next to each 

other. Also, in some cases, dead trunks are not clearly visible because of the wide canopies 

of surrounding trees. It was observed in the field that sometimes people collect dry tree 

trunks next to each other and drag them from nearby areas to a place they were found. 

Consequently, it may lead to a clearer interpretation of validation results of tree mortality 

estimation using time series analysis.  

 

Figure 7. Linear regression chart between field and UAS estimation of number of trees 

per plot 
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Figure 8. Linear regression chart between field and UAS estimation of number of alive 

trees per plot 

 

Figure 9. Linear regression chart between field and UAS estimation of number of dead 

trees per plot 

For example, in plot 7, there were 22 trees (12 alive and ten dead) observed during the 

field campaign (Figure 10a), this is in agreement with what was found in the UAS visual 

interpretation, thus it is a good example of a coincidence between field observations and 

UAS imagery. On the other hand, plot 28, with 23 trees (21 alive and two dead) (Figure 

10b), shows a good agreement with dead trees, but it is challenging to count 21 alive trees 

in this image. 
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a                                                                                          b 

Figure 10. Plots 7 (a) and 28 (b) on top of UAS imagery. Red digits show dead trees and 

yellow digits show alive trees) 

4.2. Temporal profiles of NDVI & NDWI 
Plots representing different scenarios in terms of tree mortality percentage were selected 

to explore time series of chosen VIs (two of them are displayed in this section). Firstly, 

Sentinel-2 imagery was used, namely Level-1C (Top-of-Atmosphere Reflectance, available 

since 2015-06-23) and Level-2A (Surface Reflectance, available since 2017-03-28). No 

changes in the magnitude or trends of time series were detected using this type of sensor. 

The time series patterns remain nearly identical for plots with low and high tree mortality 

rates (Figures 11 and 12). Small drops were identified in the year of disturbance 

(November 2015 – March 2016), but during the following years, values stayed at the same 

high level as before the disturbance. Next, Landsat 8 OLI/TIRS Collection imagery 

(available since April 2013) was used for building a time series for comparison with already 

created time series. Time series illustrating plot with high tree mortality does not show 

any drops in the year of disturbance or later but in the plot with low tree mortality it is 

seen (Figures 13 and 14). However, the time series subsequently gets back to its regular 

pattern. Also, it was observed that there are lower values of VIs using Landsat than those 

of the same pixel using Sentinel-2 probably due to differences in the spatial resolution.  

Due to the presence of dead trees on the plots and the absence of changes or drops in the 

time series, the mortality is expected to happen before the time span that was considered 

before (2015-2023). Thus, it was decided to inspect datasets available for earlier dates. 

Landsat 5 TM, Landsat 7 ETM+ and Landsat 8 OLI were used. Figure 15 represents a time 

series of NDVI values made from image collection from 1985 to 2022 for a plot with a high 

tree mortality rate. It shows a significant drop from 2000 to 2012 (Figure 16). This, 

therefore, supports the opinion of considering earlier dates and selecting a wider time 

frame for further analysis to be able to track the roots of the current situation of 

widespread tree mortality throughout Lefka Ori. Based on the analysis of the time series, 

severe tree mortality started around the late 1990s to the late 2000s. Mentioned earlier, 

datasets of three Landsat missions will be used further, covering the 1995-2022 time span.  
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Figure 11. Time series of NDWI values for a plot with high tree mortality rate using 

Sentinel-2 Level-1C orthorectified top-of-atmosphere reflectance imagery 

 

Figure 12. Time series of NDWI values for a plot with dense vegetation and low tree 

mortality rate using Sentinel-2 2 Level-1C orthorectified top-of-atmosphere reflectance 

imagery 
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Figure 13. Time series of NDWI values for a plot with high tree mortality rate using 

Landsat 8 OLI atmospherically corrected surface reflectance 

 

Figure 14. Time series of NDWI values for a plot with dense vegetation and low tree 

mortality rate using Landsat 8 OLI atmospherically corrected surface reflectance 
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Figure 15. Image collection with calculated NDVI values for 1985 to 2022 for a plot with 

high tree mortality rate using datasets of Landsat 5 TM, Landsat 7 ETM+ and Landsat 8 

OLI 

 

Figure 16. Annual median composite of NDVI values for 1985-2022 for a plot with a high 

tree mortality rate 

 

4.3. Change detection of VIs time series using LandTrendr 
Landtrendr enables the identification of land cover disturbances through temporal 

segmentation. By assessing the magnitude of change at the pixel level using spectral 

signatures, the algorithm determines the year of the change by considering the vertex of 

the change vector's magnitude. Figures 17 and 19 illustrate the year of detection using a 
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representation of NDVI×1000 and NDWI×1000 values. As you can see, most of the 

changes started at the beginning of the time frame chosen, 1995. Only a few patches in 

the south of site 3 had undergone changes in 2009-2022. Also, in these figures, the 

magnitude of change is shown. The majority of the pixels experienced a decrease in their 

values for around 100-300 points, which corresponds to a decrease in NDVI and NDWI 

values by 0.1-0.3. However, in general terms the magnitude of change is higher using 

NDWI rather than NDVI. Their temporal segmentation is seen in Figures 18 and 20. For 

the exclusion of non-significant changes and bare soil, pixels whose magnitude of change 

is more than 100 and pre-change spectral value is more than 300 (for NDVI, because 

values starting with 0.3 illustrate presence of vegetation) or 0 (for NDWI, because areas 

having values higher than 0 illustrate (some) presence of water in them and together with 

absence of water bodies in the area of interest highlight all the possible patches of 

vegetation) are only included in the Figures 17 and 19.  

As seen in Figures 17 and 19, most of the changes happened between 1995-2008. To 

illustrate this and make the time period of significant changes more vivid, only the 

mentioned time period was mapped, and each year was assigned a different colour (Figure 

21). Here, notable periods are 1996-1999 and 2001-2005, when major changes happened. 

More significant part of changes has taken place in 1996 what both VIs illustrate equally. 

However, greater number of patches of different colour throughout the site were detected 

earlier with NDWI rather than with NDVI (1996 vs 1998, 1996 vs 2000, 2002 vs 2004, 

etc). 

To confirm the year of 1996 as the year of greatest vegetation loss and to confirm that 

beginning of the time period the year before (i.e., 1995) do not influence such significance 

of 1996, period of 1990-2008 was mapped (Figure 22). Here, it can be seen that the 

majority of pixels are not coloured by 1996 as it was before but shifted to later years, 

1998 and 1999. If the year of change is not 1996 when the starting year of analysis moved 

to 5 years earlier could be explained by the influence of the beginning of the time period. 

Thus, we cannot rely on changes that occur at the beginning of the time series being 

necessary to consider some years before to confirm this change.  

NDWI detected changes in 41% and NDVI detected changes in 35% of the area (NDWI 

detected changes in 0.23 km2 in the area equal to 0.55 km2, NDVI - 0.19 km2). The 

calculation was made using changes that happened in 1990-2008 (Figure 22). 
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Figure 17. NDVI×1000 the magnitude of change and the year of detection for site 3 

using Landtrendr 
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Figure 18. Temporal segmentation scheme for NDVI×1000 corresponding to the pixels in 

red and black squares on Figure 17 (the magnitude of change) 

 

Figure 19. NDWI×1000 the magnitude of change and the year of detection for site 3 

using Landtrendr 
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Figure 20. Temporal segmentation scheme for NDWI×1000 corresponding to the pixels in 

red and black squares on Figure 19 (the magnitude of change) 

 

Figure 21. Changes happened in 1995-2008 for stie 3 using Landtrendr, without defined 

pre-change spectral value and with magnitude of change more than 100 
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Figure 22. Changes happened in 1990-2008 for stie 3 using Landtrendr, without defined 

pre-change spectral value and with magnitude of change more than 100 

4.4. Validation of tree mortality detection using VIs 
Accuracy assessment of tree mortality detection using VIs and reference data was 

performed using confusion matrixes. The validation dataset consists of 63 observations, 

49 of them are plots with observed tree mortality, and 14 are without. NDVI correctly 

showed a drop in the pixel when a tree mortality was detected in the corresponding plot 

for 46 observations (Table 1). NDVI correctly showed no drop in the pixel’s value when 

there is no tree mortality detected in the plot for 11 plots. Thus, producer accuracy and 

user accuracy for plots with tree mortality is 93.88% and for plots without tree mortality 

is 78.57%. Overall accuracy is 90.48%. NDWI correctly showed a drop in the pixel when 

there is tree mortality detected in the corresponding plot for 45 observations (Table 2). 

NDWI correctly showed no drop in the pixel’s value when there is no tree mortality 

detected in the plot for 11 plots. Thus, producer accuracy for plots with tree mortality is 

93.75% and for plots without tree mortality is 73.33%. User accuracy for pixels with a 

drop is 91.84%, and for pixels without a drop is 78.57%. Overall accuracy is 88.89%. 

Consequently, the detection of tree mortality using NDVI is slightly better than using NDWI 

and both indices performed with the same accuracy for pixels without tree mortality.  
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Table 1. Performance measurement of NDVI values using a confusion matrix 

 

Table 2. Performance measurement of NDWI values using a confusion matrix 

 

4.5. Relationship between the VIs’ magnitude of the change and tree 

mortality  
Regression functions were used to estimate tree mortality using values of drops of VI’s 

LandTrendr magnitude. Regression analysis was performed in two ways, using a 

percentage of tree mortality per plot and a number of dead trees per plot. Both of these 

sets of values were plotted against the VI’s magnitude of the drop. Figure 23 illustrates 

the percentage of tree mortality and NDVI’s magnitude of the drop. These values do not 

show a good correlation, especially among plots with high tree mortality. Only 37% of the 

variation is explained by this regression, and the RMSE value is also high (i.e., 56.9). When 

plots with tree mortality percentage higher than 80% are removed (i.e., 3 plots), 42% of 

variation is explained. The same plots but using NDWI values explain only 18% of the 

variation; RMSE value is even higher (i.e., 84.9) (Figure 24). NDWI, in general, shows 

higher values in magnitude of the drop than NDVI for the same plots. Regression between 
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the magnitude of the drop using NDVI/NDWI values and a number of dead trees show a 

poor correlation (Figures 25 and 26). Only 24% of the variation is explained by these 

regressions (RMSE = 81.3 and 106.8 using NDVI and NDWI, respectively). When plots 

with tree mortality percentage higher than 80% are removed (i.e., 3 plots), 35% of 

variation is explained. It was proved that NDVI drops are associated with tree mortality, 

but higher drop magnitude is not associated with higher tree mortality. A hypothesis about 

this association is only correct in the case of low tree mortality percentage or absence of 

tree mortality. So, algorithm performs well when there are only a few dead trees within 

the plot. In these cases, those pixels associate with no magnitude drop or very low drop.  

 

Figure 23. Linear regression between magnitude of the drop (using NDVI values) and 

estimation of percentage of tree mortality 

 

Figure 24. Linear regression between magnitude of the drop (using NDWI values) and 

estimation of percentage of tree mortality 
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Figure 25. Linear regression between magnitude of the drop (using NDVI values) and 

number of dead trees 

 

Figure 26. Linear regression between magnitude of the drop (using NDWI values) and 

number of dead trees 

 

4.6. Verification of SU approach 
SU algorithm was run for the area of interest using two selected endmembers, bare soil 

and live vegetation. It resulted in having two outputs containing one layer for each defined 

endmember with information about percentage of each endmember in each pixel. For 

further analysis, output for live vegetation was taken and compared to the calculated area 

of live vegetation per pixel of the validation dataset using UAS data. Regression analysis 

was used to illustrate the findings of verification of the SU approach (Figure 27). Seventy-

five percent of the variation is explained by this regression (and RMSE = 12.4). SU values 

are overall higher than those estimated using UAS data. This trend occurs within all the 

plots via increasing the difference between the variables and the largest difference 

observed at around 20% of vegetation per pixel. The difference in estimated live 
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vegetation percentage is approximately 20-30%. Also, it is noticeable that values are much 

more similar when there is dense vegetation within plots. Consequently, SU is more reliable 

for pixels with denser vegetation and tends to overestimate for pixels with sparse 

vegetation.  

 

Figure 27. Linear regression between percentage of vegetation within the pixel using SU 

and derived from UAS data 

 

4.7. Change detection of SU results using LandTrendr 
The LandTrendr algorithm was run to assess and detect changes in the percentage of 

vegetation per pixel using outputs of SU. The magnitude of change and the year of 

detection are seen in Figure 28 (only pixels where the magnitude is more than ten are 

shown for comparison with the same picture for changes in the VIs time series). Within 

pixels where changes have occurred, the magnitude of change is predominantly from 10 

to 20% and years of detection are mostly between 1995 and 2008. It is observed more 

recent changes occurred in the south part of the area. To illustrate this time period of 

significant changes (1995-2008) and make it more vivid, only these years were mapped, 

and each year was assigned a different colour (Figure 29). The picture is patchy, but 

notable years are 1996, 2001-2003 and 2008, when major changes happened. Significant 

part of changes has taken place in 1996. To confirm the year of 1996 as the year of great 

vegetation loss and to confirm that beginning of the time period the year before (i.e., 

1995) do not influence such significance of 1996, period of 1990-2008 was mapped (Figure 

30). It can be seen that almost all the pixels previously taken by 1996 are now covered 

by 1991. Other pixels mostly remained with the same years as before. This can corroborate 

the same fact found before with VIs, the start of the time series influences the year of 

detection. 

SU detected changes in 47% of the area (0.26 km2 in the area equal to 0.55 km2). The 

calculation was made using changes that happened in 1990-2008 (Figure 30). 
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Figure 28. The magnitude of change and the year of detection of percentage of 

vegetation within the pixel using SU approach for site 3 using (with pixels where the 

magnitude is more than 10 only)  
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Figure 29. Changes happened in 1995-2008 for stie 3 using Landtrendr (with pixels 

where magnitude is more than 10 only) 

 

Figure 30. Changes happened in 1990-2008 for stie 3 using Landtrendr (with pixels 

where magnitude is more than 10 only) 
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4.8. Validation of tree mortality detection using SU 
Accuracy assessment of tree mortality detection using SU and reference data was 

performed using a confusion matrix (Table 3). It was done in the same way and using the 

same validation dataset as for the accuracy assessment of tree mortality detection using 

VIs. SU correctly showed a drop in the pixel when tree mortality was detected in the 

corresponding plot for 48 observations. It correctly showed no drop in the pixel when there 

was no tree mortality detected in the plot for seven observations. Thus, producer accuracy 

for plots with tree mortality is 97.96% and for plots without tree mortality is 50%. User 

accuracy for pixels with a drop is 87.27%, and for pixels without a drop is 87.50%. Overall 

accuracy is 87.30%.   

Table 3. Performance measurement of SU values using a confusion matrix 

 

4.9. Relationship between the SU magnitude of the change and tree 

mortality 
Analysis using regression functions was used to relate tree mortality and values of drops 

of SU’s LandTrendr magnitude. Regression analysis was performed in two ways, using a 

percentage of tree mortality per plot and a number of dead trees per plot. Both of these 

sets of values were plotted against the SU’s magnitude of the drop. Figure 31 illustrates 

the percentage of tree mortality and SU’s magnitude of the drop. These values do not 

show a good correlation, especially among plots with high tree mortality. Only 35% of the 

variation is explained by this regression. When plots with tree mortality percentage higher 

than 80% are removed (i.e., 3 plots), 51% of variation is explained. The regression chart 

with a magnitude of the drop and the number of dead trees shows a poor correlation 

(Figure 32). Only 27.6% of the variation is explained by these regressions.  
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Figure 31. Linear regression between magnitude of the drop (using SU values) and 

estimation of percentage of tree mortality 

 

Figure 32. Linear regression between magnitude of the drop (using SU values) and 

number of dead trees 
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5. DISCUSSION 
The use of UAS imagery as ground truth data has been successfully corroborated with an 

R2 value of 0.95 and RMSE of 2.97, which is higher than previous research (Riihimäki et 

al., 2019). This allowed UAS imagery to be used complementary to direct field observations 

and increase the number of them without the necessity of prolonging the field campaign. 

This can complement and reduce field data collection, and it could be an alternative in 

non-accessible areas for field campaigns due to their challenges, such as high costs, 

logistical complexities, time-consuming nature, etc. Detecting and quantifying tree 

mortality, specifically, the cover of dead tree crowns per area faces challenges due to the 

scarcity and cost of obtaining spatially explicit reference data through field campaigns 

(Frolking et al., 2009; Schuldt et al., 2020). Earth observation satellite missions like 

Landsat or Sentinel have limitations in resolving individual trees analysis, hindering the 

link with ground observations (Pause et al., 2016). UAS offers a solution that provides very 

high spatial resolution imagery for precise dead tree crown segmentation. The proven very 

high spatial resolution of UAS RGB imagery allows for accurate segmentation of dead tree 

crowns (if trees are standing), and the adaptable deployment of UAS has demonstrated 

efficient detection of tree mortality events over large and inaccessible areas. Future 

research can leverage these findings, combining them with advancements in pattern 

recognition and deep learning, such as Convolutional Neural Networks (CNN), to achieve 

highly accurate crown segmentation of standing dead trees (Alvarez-Vanhard et al., 2021; 

Kattenborn et al., 2019; Schiefer et al., 2023). Despite the overall high precision of UAS 

data as reference data, R2 for regression between field and UAS estimation of a number 

of only dead trees per plot is comparatively lower (0.88) than regression using a total 

number of trees. Standing deadwood is well detectable using a bird’s eye perspective. 

Also, the open canopy of the Mediterranean forests helps in distinguishing individual trees. 

The point of confusion here is primarily due to lying dead tree trunks, often thin or/and 

very close to each other or on each other. In some cases, local people drag dead trees and 

collect them at one point as firewood or for construction. All these lead to confusion in 

observations using both field campaigns and UAS imagery. 

Verification of SU outputs using UAS data resulted in an R2 value of 0.75 and RMSE = 12.4. 

The analysis was done to prove SU as a reliable approach for estimating vegetation 

percentage within mixed pixels. In general, verification results support it but also show an 

overestimation using SU and imperfect agreement, leaving room for discussions of possible 

reasons. One of them could be variability in vegetation composition in the area. Even 

though all the data utilized in the research was gathered for summer months when most 

of the understory vegetation is dried off (it is essential to mention that there is not much 

understory in the area in the first place) and it was assumed that it would not affect the 

spectral signature of live vegetation, some of the understory could have affected it an led 

to confusion. Another reason could be the imperfect match between field plots and satellite 

imagery’s pixels. Fieldwork and field plots were designed to be coincident with Sentinel-2 

pixels as at that time Sentinel-2 was considered as the main data source. Later on, after 

shifting to Landsat and putting its pixels on top of plots it was revealed that not all the 

trees which are within a plot end up being within a Landsat pixel. Thus, the correction of 

field plots using UAS data to estimate the right number of live and dead trees within the 

Landsat pixel could be helpful. Additionally, spatial resolution might affect the performance 

of SU. Using higher spatial resolution may help improve SU accuracy, as indicated by Zhou 

et al. (2016). 

Creating time series of the chosen VIs showed low influence on changes in temporal profile 

due to the single (even if severe) recent drought event that occurred in Crete in 2015-

2016 (Proutsos et al., 2022). During the early stages of the present study, the period of 

2015-2023 and Sentinel-2 data were chosen to investigate drops and changes in 
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vegetation indices under the influence of this severe drought. Investigation of temporal 

profiles of pixels representing dissimilar land cover fractions, such as of vigorous 

vegetation or of high tree mortality, revealed very low or absence of drops/changes. So, 

pixels with high tree mortality do not change during or after the mentioned disturbance 

and those with low tree mortality and vigorous vegetation contain small drops but return 

to a regular pattern soon after. This supports the findings of Dorman et al. (2013) about 

the ‘resulting damage’ of a second drought period that intensifies the negative impact of 

a single drought period and leads to higher mortality risk. The research by Dorman et al. 

(2013) was carried out in forests of Israel with a climatic gradient ranging from semi-arid 

continental in the centre to Mediterranean conditions in the north of the country. Here the 

effect of the severe drought from 1998-2000 was intensified by the moderate drought 

from 2005-2011. Almost coinciding with these drought periods, periods of increasing tree 

mortality are seen in the region of interest in this study, too. This could have resulted in 

the current situation of widespread tree mortality throughout Lefka Ori.  

Recent drought event did not affect tree mortality. Using the Landsat sensor helped us to 

detect drops in time series that could be related to observed tree mortality that happened 

in the earlier dates. Meteorological data is available from stations within the study area 

(Palaiochora does not have continuous data) and in the city of Chania (which holds data 

from the 1950s). Temperature patterns in Palaiochora and Chania meteorological stations 

are similar (Figure 33), with Palaiochora consistently being 1.5-2 degrees warmer than 

Chania due to its location and topography. The precipitation in Palaiochora (Figure 34) is 

continuously lower than in Chania. The precipitation difference varies significantly, starting 

from 20-50 mm (1987, 2009), rising up to 260 mm (2016) and reaching 350-550 mm 

(during 1991-1997). The first drought period of the mid-1990s matches with observed 

significant drops in the VIs time series (Figure 35). Also, the drought of 2015-2016 is 

noticeable. Given the abovementioned theory of ‘resulting damage’, widespread tree 

mortality of the late 1990s could be an outcome of that severe drought period, which 

intensified previous drought which occurred throughout Greece in mid-1980s to early 

1990s (Varlas et al., 2022). The reason for the absence of recent tree mortality, even with 

the observed drought of 2015-2016, could be that this drought is the first period of low 

precipitation and/or high temperatures in some time. 

 

Figure 33. Annual mean temperature for Chania, Palaiochora, annual mean max and 

annual mean min temperatures for Palaiochora automated station 
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Figure 34. Annual precipitation for Chania, Palaiochora and Palaiochora automated 

stations 

 

Figure 35. Annual mean temperature and annual precipitation for Chania 

Another interesting aspect concerns the analysis and comparison of the temporal profiles 

of the same VIs with different multispectral data sources (for the same period). The values 

of VIs obtained from Landsat-8 imagery are lower than those from the corresponding pixel 

in Sentinel-2 imagery. This is due to the very open ecosystem where it is difficult to find 

large patches of vegetation and soil, which significantly influences the pixel signal. Landsat 

pixels cover nine times the area of Sentinel-2 pixels. As a result, within a single Landsat 

pixel, there could be a mix of vegetation, non-vegetation, and other land cover types. This 

mixing of land cover types can weaken the vegetation signal captured by Landsat, leading 

to lower NDVI values in the area compared to Sentinel-2, which has finer spatial resolution 

and can better capture vegetation details within its pixels. 

The LandTrendr algorithm was chosen to perform change detection in the time series of 

VIs and SU. All three methods used (i.e., NDVI, NDWI and SU) have confirmed nearly the 

same area as areas that have experienced changes (there is overlap in the affected areas 

using all methods). It is an area detected by NDVI because this method highlighted the 

least number of pixels (34% of the area, 0.19 km2 in the area equal to 0.55 km2). NDWI 

highlighted more than NDVI (42% of the area, 0.23 km2, 21% more than NDVI), and SU 
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highlighted more than NDWI (47% of the area, 0.26 km2, 13% more than NDWI and 37% 

more than NDVI). Also, NDVI’s magnitude of change is lower than that of NDWI. And SU’s 

magnitude is higher than NDWI’s magnitude. So, changes in NDVI mostly have a 

magnitude of 0.1-0.2; changes in NDWI are also present in more pixels as it was 

commented before, and many of them have a change of 0.2-0.3. In the case of SU, even 

more pixels with significant drops were detected, and the magnitude of the loss varies 

uniformly among pixels from 10% to 40%. It is essential to mention that 10% of 

vegetation loss per pixel using SU may not be the same loss as 0.1 of VIs. Several drops 

were observed near roads and in areas neighbouring buildings which were built during the 

time period chosen. This may mean that anthropogenic factors contributed to the observed 

changes. Additionally, the year of detection using all methods confirmed the importance 

of indicating a starting year in order to detect changes correctly. Thus, when the starting 

year is set to 1995, LandTrendr tends to mark 1996 as the year of significant changes. 

The same is true with 1990; 1991 was the year of major changes, but 1996 was no longer 

notable. So, to detect changes correctly, it is crucial to have a few years before the period 

of interest.  

The visual assessment of the year of detection among VIs and SU proves NDWI to detect 

changes in most cases earlier or in the same year as NDVI. SU detects changes a few 

years later than VIs. This is explainable given that VIs detect all changes, including subtle 

changes in vegetation health, and SU estimates changes in live vegetation fraction (for 

example, when trees transit from one state (alive) to another (dead)), which takes much 

more time. Thus, the possibility of NDWI to detect forest disturbances earlier than NDVI 

was proven in this study and previous research (Sturm et al., 2022; Aljahdali et al., 2021). 

It might detect areas less resilient to drought, give early warnings in areas of high 

drought/tree mortality risk, and help foresters in the decision-making process to prevent 

massive tree loss. 

Comparison of magnitude (drop) of VI’s and SU’s time series and the percentage of tree 

mortality in corresponding plot was assessed using regression functions. These values do 

not show good correlations; only 37% of the variation is explained using NDVI values, 

35% using SU values, 18% using NDWI values, and RMSE values are 56.9, 26.6, and 84.9 

for NDVI, SU and NDWI respectively. When plots with tree mortality percentage higher 

than 80% are removed (i.e., 3 plots), 51%, 42%, 35% of variation is explained for SU, 

NDVI and NDWI respectively. Also, it helps to increase the degree of correlation between 

these variables (R = 0.71, 0.64, 0.59 for SU, NDVI and NDWI respectively). So, SU and 

tree mortality percentage are highly correlated, but we cannot use SU as a predictor of 

percentage of tree mortality in a very accurate way. Additionally, SU is relatively better in 

terms of how close the predicted values are to the actual values, and NDVI better indicates 

how well the independent variables explain the variability of the dependent variable. 

Spruce et al. (2019) investigated mapping tree mortality using MODIS data and aerial 

imagery as reference data. Depending on the MODIS product used, linear regression 

analyses could explain 36% to 54% of the variation. The differences are most noticeable 

for the extreme tree mortality values (i.e., the lowest and the highest levels of tree 

mortality percentage), which coincide with the present study's findings.  

The performance of two VIs and SU in tree mortality detection has been assessed using 

confusion matrixes. Accuracies of VIs are nearly identical, with NDVI slightly 

overperforming NDWI in detecting tree mortality (46 observations are correct out of 49 

for NDVI and 45 for NDWI). SU’s accuracy is higher than VIs in detecting the presence of 

tree mortality (48 observations are correct out of 49; accuracy is 97.96% versus 93.88% 

and 93.75% in NDVI and NDWI respectively). However, it has the lowest accuracy in 

detecting the absence of tree mortality (7 observations are correct out of 14, and accuracy 

is 50% in SU versus 78.57% and 73.33% in NDVI and NDWI respectively). Validation of 
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SU reveals this approach’s tendency to overestimate the percentage of tree mortality. The 

possible reason for this could be an overestimation of SU in the vegetation percentage, 

(i.e. showing higher values than the actual amount of vegetation in the plot). Liu et al. 

(2021) also state that the greenness-related index NDVI is performing better in predicting 

tree mortality than the water-related index NDII, suggesting that fluctuations in greenness 

predominantly influenced the canopy dynamics observed. As a result, initial drought stress 

on the canopy may cause a reduction in chlorophyll content (leading to a decrease in 

NDVI) while maintaining relatively constant water content (stable NDII), indicating forest 

resilience to climate change.  

There are various reasons why not in all cases NDWI show changes earlier than NDVI. The 

possible reason for that is the SWIR band being affected by atmospheric absorption, which 

makes the signal more noisy, or the severity of the drought was higher, and water and 

biomass were reduced within the same year. Liu et al. (2021) state that drought-tolerant 

species reduce greenness before water, unlike species not drought-tolerant. This explains 

why, in some cases, NDWI detect changes later than NDVI – those are less drought-

tolerant species. Additionally, NDVI uses red and NIR bands, which many remote sensing 

satellites (SPOT, Proba-V, PlanetScope, etc.) are equipped with. It makes utilization of this 

index more feasible as most widely used and free satellites have bands needed for its 

calculation. On the contrary, NDWI uses NIR and SWIR, which is less common on free 

remote sensing satellites. Even though overprediction of tree mortality using spectral 

indices is a common practice, there is significant promise in detecting trees and forests at 

high mortality risk (Bergmüller & Vanderwel, 2022). Nevertheless, various factors 

unrelated to tree mortality influence spectral metrics, such as species composition and 

forest structure. Consequently, these methods can only offer indirect information about 

tree mortality and do not explicitly determine whether tree crowns are dead (Glenn et al., 

2008). 

Various steps could be taken to achieve better SU and VIs performance accuracy. One is 

creating an ensemble of multiple metrics instead of using them independently. Following 

the findings of De Marzo et al. (2021), Grogan et al. (2015), Hislop et al. (2019) and Qiu 

et al. (2023), the combination of a few spectral indices and other metrics may improve 

the accuracy of forest disturbance detection. Recently, there has been a transition in the 

application of automatic change detection algorithms from utilizing time series of single 

spectral metrics, such as band 5, NDVI, and NBR, towards adopting ensemble approaches. 

These ensembles, which combine various change detection techniques, have 

demonstrated significant potential in capturing disturbances, mostly outperforming 

individual methods. Two is using higher spatial resolution data such as aerial imagery. This 

point is supported by the findings of Cheng et al. (2024), which indicate the importance 

of mapping individual dead trees in a Mediterranean forest (a California case study) to 

estimate tree mortality accurately. This is due to a large number of isolated dead trees or 

standing in small groups that were observed using sub-meter spatial resolution imagery, 

and at Landsat with a resolution of 30 m would not have been visible. In our case, we deal 

with tree mortality that is not recent. Thus, trees could be down, moved or disappeared. 

Presumably, the detection of more recent tree mortality would benefit from this approach 

of mapping individual dead trees.  

There are various reasons for poor agreement between the magnitude of the change and 

the percentage of tree mortality. One of them is the availability of validation data. The 

validation dataset in this study consists of field observations and UAS data collected in 

2023. One of the assumptions made was that due to the low regeneration of the vegetation 

in the area of interest, changes detected in the time frame chosen may be validated using 

a dataset collected in 2023. However, it was observed during the fieldwork that local people 

living nearby collect dry trees as firewood, so if these dead trees are found in the forest, 
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they might not be where they grew and died. Also, it negatively affects visual estimation 

of dead trees using UAS (here, dead tree trunks are one under another and very close to 

each other; field observations or LiDAR data may help in this case to differentiate stems 

from each other). If so, it affects both the accuracies of VIs and SU and the regression 

between the magnitude of the drop and the percentage of tree mortality. Thus, it is 

impossible to understand whether an error in the tool or the absence of accurate data for 

validation for those specific years affects the results. Spruce et al. (2019) mentioned that 

disagreements between validation data and satellite products seem to arise in areas of 

high heterogeneity of the landscape where patches of dead trees neighbour with non-

forest and healthy forests, due to much coarser spatial resolution of testing dataset 

comparing to validation dataset. Another reason could be that these VIs such as NDVI or 

NDWI do not quantify the amount of vegetation or water. They are normalized values 

where a value of 1 means high biomass or a high amount of water but not how much of it 

is there. Another possible reason is that the coverage of dead trees in the plot is not 

calculated, but the ratio between dead trees and all trees is used as a value for the 

percentage of tree mortality. This is due to the difficulty of calculating the coverage. 

Problem concerns, for example, laying trees. Usually, it is canopy cover, which is counted 

towards tree coverage, but the problem of how to estimate canopy coverage of laying 

trees arises. With laying trees, it is only possible to calculate the surface coverage, but 

then how can the surface coverage of standing trees be estimated? Also, it is tricky to 

estimate the surface of dead trees because some of them have only stems, some of them 

have branches too, and some of them remain exactly the same as when they were alive. 

To improve the accuracy of predicting tree mortality percentage, consider coverage and 

find a way to include laying trees. It might be done by counting the surface or measuring 

the diameter at breast height (it can give an idea of how big a tree is). Also, vegetation 

health might play a role. Analyzing vegetation conditions and health in forests and crops 

often involves employing VIs derived from remote sensing data. This method, as 

highlighted by Aljahdali et al. (2021) and Beygi Heidarlou et al. (2024), is a common 

approach utilized to assess the state of vegetation cover. However, a brief duration of forest 

disturbances such as droughts allows an ecosystem to regain its original state without tree 

mortality (Gazol et al., 2018). Thus, drops in the VIs time series are noticed but not 

supported by the presence of tree mortality but by different stages in vegetation health.  

Mapping tree mortality using remote sensing tools discussed in this study provides forest 

managers with valuable assistance in various aspects of forest management. Firstly, it 

enables early detection of tree mortality, allowing fast intervention and mitigation 

strategies to minimize further loss. Secondly, resources can be allocated more efficiently 

by identifying areas with high mortality rates. Additionally, remote sensing facilitates 

continuous monitoring of tree mortality over large area and extended periods, enabling 

forest managers to track trends and assess the effectiveness of used management 

practices. It also helps understand the drivers of mortality, such as drought, pests, 

diseases, or human activities, allowing for targeted management plans. Moreover, the 

discussed tools support informed decision-making for forest management, such as 

prioritizing areas for restoration; it helps assess overall forest health and resilience and 

identify vulnerable areas. The findings of this study might be extrapolated and used in 

further research with other data sources. For example, there is not a long enough time 

series available using Sentinel-2 data. Still, it might be helpful in the future to make time 

series with higher spatial resolution than Landsat, as well as to use hyperspectral data 

with higher spectral resolution. Current and future hyperspectral satellite missions (e.g. 

PRISMA (Italy), EnMAP (Germany), Surface Biology and Geology (USA) may contribute to 

monitoring tree mortality more accurately at a global scale.   
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6. RECOMMENDATIONS AND CONCLUSION 

6.1. Recommendations 
In order to prevent tree mortality, it is essential to have tools for early detection of decline 

in forest health and to take action before it is too late, which is the case of tree mortality. 

Analyzing the inter-annual changes in spectral metrics shows more promise for early 

detection than classifying based on a single date (Bárta et al., 2021). Future studies should 

also consider changes in the phenological cycles of forests. Instead of working with annual 

data, we can consider the whole yearly cycle and look for changes. This will probably help 

to detect different health statuses and take action before trees die. 

Water and greenness-related indices respond to drought differently in drought-resistant 

species versus non-resistant species. Drought-resistant species first lose their 

greenness/biomass. If there are drops in NDVI values but not in NDWI values, it may mean 

that some level of disturbance is there and it is affecting forest health, but due to the good 

resilience of the forest, it is not (yet) influencing vegetation water content. Thus, NDVI 

can be used for early detection for drought-resistant species. In the areas where NDWI 

show changes earlier than NDVI, it may mean that stress is influencing forest health and 

that this forest is not resilient. NDWI could be more appropriate for detecting disturbance 

in drought-resistant species. In cases of drastic drought stress and continuing limited 

regeneration, the decline in greenness may eventually lead to substantial decreases in 

canopy water content, indicating an increasing probability of mortality.  

Studies that have been detecting changes using the LandTrendr algorithm note it has been 

late in detection for one year (Bright et al., 2019; Qiu et al., 2023; Zhu et al., 2019). Due 

to the unavailability of a validation dataset for years of severe tree mortality, we could not 

support or reject this statement for the area of interest of this study. However, it is 

essential to take it into account.  

LandTrendr has proven itself as a reliable tool for change detection. However, some time 

needs to be given before the change is detected. The tool tends to mistakenly mark pixels 

as vegetation loss the following year after the starting year.  

SU is a reliable tool for detecting tree mortality. Its accuracy is higher than VIs, and both 

VIs and SU can detect different stages of forest health and not only tree mortality, as the 

reduction of vegetation percentage could be due to a reduction in biomass and not 

necessarily because of tree mortality. However, SU tends to overestimate vegetation 

percentage, especially within not dense canopies, which may lead to confusion.  

6.2. Conclusion 
Integrating UAS imagery and remote sensing tools offers valuable insights into tree 

mortality detection and forest management. UAS imagery has proven effective in 

complementing field observations and increasing their frequency without extending field 

campaigns. Overall, remote sensing plays a crucial role in enhancing forest management 

strategies and resilience in the face of environmental challenges. Remote sensing tools 

enable early detection of tree mortality, efficient resource allocation, and continuous forest 

health monitoring. The results of this research showed the usefulness of VIs from the 

Landsat time series in detecting tree mortality in a very open Mediterranean forest. In 

addition, we used the percentage of live vegetation derived from SU for the first time to 

detect tree mortality. A novel approach was made to calculate the percentage of vegetation 

per pixel using SU and then employ the LandTrendr technique to detect changes in it. 

Challenges remain in accurately quantifying tree mortality due to spatial resolution 

limitations of satellite missions and the complexities of distinguishing between standing 

and laying deadwood. Additionally, the verification of SU as an approach has shown 
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promise but leaves room for discussions on possible reasons for discrepancies. At this 

point, we could not determine if our estimation is in line with other studies due to very 

little research on this topic. The same issue arises when looking for quantifying the 

magnitude of the drop and tree mortality, as well as higher accuracy of estimation of tree 

mortality percentage with VIs compared to the number of dead trees. There is a 

considerable number of tasks remaining to be addressed in this context. Future research 

should address these challenges by exploring innovative approaches, such as combining 

various spectral metrics, estimating biomass to consider tree size and leveraging 

advancements in deep learning techniques.  
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APPENDIX 
The figures below illustrate LandTrendr’s outputs for sites 1 and 2. For the exclusion of 

non-significant changes and bare soil, pixels whose magnitude of change is more than 100 

and pre-change spectral value is more than 300 (for NDVI, because values starting with 

0.3 illustrate presence of vegetation) or 0 (for NDWI, because areas having values higher 

than 0 illustrate (some) presence of water in them and together with absence of water 

bodies in the area of interest highlight all the possible patches of vegetation) are only 

included in the Figures 36, 37, 40, 41. 
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Figure 36. NDVI×1000 the magnitude of change and the year of detection for site 1 

using Landtrendr 
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Figure 37. NDWI×1000 the magnitude of change and the year of detection for site 1 

using Landtrendr 



55 
 

 

Figure 38. Changes happened in 1990-2008 for stie 1 using Landtrendr, without defined 

pre-change spectral value and with magnitude of change more than 100 
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Figure 39. Changes happened in 2003-2015  for stie 1 using Landtrendr without defined 

pre-change spectral value and with magnitude of change more than 100 
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Figure 40. NDVI×1000 the magnitude of change and the year of detection for site 2 

using Landtrendr 
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Figure 41. NDWI×1000 the magnitude of change and the year of detection for site 2 

using Landtrendr 
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Figure 42. Changes happened in 1990-2008 for stie 2 using Landtrendr without defined 

pre-change spectral value and with magnitude of change more than 100 
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Figure 43. Changes happened in 2003-2015 for stie 2 using Landtrendr without defined 

pre-change spectral value and with magnitude of change more than 100 
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