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SUMMARY 
Extreme high and low streamflow commonly negatively affects societies. A concern is that climate 

change will increase the frequency and severity of problems due to extreme streamflow. Hydrological 

models are used to simulate the rainfall-runoff transformation to quantify the impact of climate change 

on extreme streamflow. However, parameters of hydrological models are optimized for historic 

conditions and may not be valid for future scenarios.  

This study evaluated the robustness of the hydrological models HBV and GR6J for simulating impact of 

climate change on high and low streamflow in the Lesse catchment, Belgium. Models are defined to be 

robust when they do not show notable deterioration in performance under changing climatic 

conditions. This means that there is no need to recalibrate model parameters or update model 

structure. To evaluate the robustness, both models were evaluated on historic periods that resemble 

climatic conditions projected by the recently published KNMI’23 climate scenarios of the Royal 

Netherlands Meteorological Institute.  

To determine the periods that resemble future conditions, meteorological indicators were defined that 

summarize the meteorological conditions leading to high and low streamflow. It was found that the 3-

day precipitation sum that is exceeded 6 days per year is an indicator for annual maximum daily 

discharges. This meteorological indicator for high flows was expected to be higher in 2100 for KNMI’23 

scenarios with high future greenhouse gas emissions. The 150-day potential precipitation deficit that is 

exceeded 14 days per year was determined as an indicator for annual minimum 7-day mean discharges. 

This meteorological indicator for low flows was expected to be higher in 2100 for all KNMI’23 scenarios. 

Based on the expected changes in the future, a number of historic years was selected that resemble 

future conditions for each KNMI’23 climate scenario, for normal years (median) and extreme years (5% 

exceedance probability). 

Both models showed a loss in performance in validation periods that resemble future conditions 

compared to calibration periods with historic climatic conditions. However, both models still performed 

acceptable, possibly due to the use of a multi-objective function for calibration. The GR6J model showed 

better performance in the simulation of high flows but had difficulties with simulation of low flows. The 

HBV model showed better performance for simulating low flows but could be improved on its ability to 

capture summer peaks. The optimal parameter values of the HBV and GR6J model were proven to be 

different when calibrated on different periods. This indicates that parameter sets calibrated on historic 

conditions are suboptimal under changing climatic conditions and thus lose validity. This advocates the 

use of a calibration period that closely resembles future climatic conditions for climate impact studies.  

The median change in annual maximum daily discharge was projected to be between -14% and +27% in 

2100 compared to reference period 1991-2020. For low streamflow, the median projected change in 

annual minimum 7-day mean discharge was between -66% and +13%. These ranges covered 

uncertainties in climate scenario, model structure and calibration approach. Two different calibration 

approaches were used, namely calibration on historic periods and calibration on periods that resemble 

future climatic conditions. The uncertainty in the projected impact of climate change was mainly due to 

uncertainty in future greenhouse gas emissions and climate response. However, the uncertainty subject 

to selected model structures and calibration approaches should not be neglected. 

Therefore, it is important that the ability of hydrological models to simulate climate change impact is 

not taken for granted. Improving model structures of conceptual hydrological models, focusing for 

example on the simulation of summer peaks, may improve robustness of these models and therefore 

contribute to a projection of the impact of climate change in the future with less uncertainties.
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LIST OF SYMBOLS 
HBV Model parameters: 
𝐹𝐶 -   Field capacity of the soil moisture storage of the HBV model [mm] 
𝛽 -   Parameter in the soil moisture routine of the HBV model [-] 
𝐿𝑃 -   Limit for potential evapotranspiration as a fraction of 𝐹𝐶 in the HBV model [-] 
𝛼 -   Measure of non-linearity for quick runoff in the HBV model [-] 
𝐾𝑓 -   Recession coefficient for upper response box of the HBV model [day-1] 

𝐾𝑠 -   Recession coefficient for lower response box of the HBV model [day-1] 
𝑃𝐸𝑅𝐶 -  Maximum percolation from upper to lower response box in the HBV model [mm/day] 
𝐶𝑓𝑙𝑢𝑥 -  Maximum value of capillary flux in the HBV model [mm/day]  
GR6J Model parameters: 
𝑋1 -   Capacity of the production store of the GR6J model [mm] 
𝑋2 -   Catchment exchange coefficient for the GR6J model [mm/day] 
𝑋3 -   Capacity of the non-linear routing store 𝑅1 of the GR6J model [mm] 
𝑋4 -   Time base of the unit hydrographs in the GR6J model [day] 
𝑋5 -   Threshold for catchment exchange for the GR6J model [-] 
𝑋6  -   Exponential routing store depletion coefficient of the GR6J model [mm] 

KNMI’23 climate scenarios: 
2100Hd -  Climate scenario based on high emissions and a trend towards a drier future climate. 
2100Hn -  Climate scenario based on high emissions and a trend towards a wetter future climate. 
2100Ld -  Climate scenario based on low emissions and a trend towards a drier future climate. 
2100Ln  -  Climate scenario based on low emissions and a trend towards a wetter future climate. 

Testing schemes: 
DSST -    Differential split-sample test 
SST -   Split-sample test 
Codes of testing schemes  - The codes of the different tests are made up of the type of flow (High (H), 

Low (L) or Both (B)), the type of test (SST or DSST), the type of year (Normal (N) or Extreme (E)) and the 

climate scenario (Figure 6). In the codes for the SSTs, ‘_I’ and ‘_II’ are added. ‘_I’ means calibration on 

period 1996-2020 and validation on period 1970-1994. ‘_II’ means the opposite. 

Objective functions: 
𝑁𝑆𝑤 -   Weighted form of the Nash-Sutcliffe criterion, used to give emphasis to high flows [-] 
𝑁𝑆𝑖𝑛𝑣 -   Nash-Sutcliffe criterion calculated on inverse transformed flows [-] 
𝑅𝑉𝐸 -   Relative volume error [%] 
𝑦𝑤 -   Multi-objective function for high flows that combines 𝑁𝑆𝑤 and 𝑅𝑉𝐸 [-] 
𝑦𝑖𝑛𝑣 -   Multi-objective function for low flows that combines 𝑁𝑆𝑖𝑛𝑣 and 𝑅𝑉𝐸 [-] 
𝑦𝑐𝑜𝑚𝑏 -   Multi-objective function for both flows that combines 𝑁𝑆𝑤, 𝑁𝑆𝑖𝑛𝑣 and 𝑅𝑉𝐸 [-] 

𝑄𝑠𝑖𝑚
𝑖  (𝑞𝑠𝑖𝑚

𝑖 ) -  (Inverse transformed) Simulated discharge at day 𝑖 [m3/s] 

𝑄𝑜𝑏𝑠
𝑖  (𝑞𝑜𝑏𝑠

𝑖 ) -  (Inverse transformed) Observed discharge at day 𝑖 [m3/s] 
𝑄𝑜𝑏𝑠̅̅ ̅̅ ̅̅  (𝑞𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ) -  Mean of (inverse transformed) observed discharge over 𝑛 days [m3/s] 
𝑛 -   Total number of timesteps [-] 

Indices: 
𝑄𝑚𝑎𝑥 -   Annual maximum daily discharge [m3/s] 
𝑄7𝑚𝑖𝑛 -  Annual minimum 7-day mean discharge [m3/s] 
𝑃3_𝑟𝑎𝑛𝑘6 -  Meteorological indicator for high flows; 3-day precipitation sum exceeded 6 days per 

year [mm] 
𝑃𝑃𝐷150_𝑟𝑎𝑛𝑘14 -  Meteorological indicator for low flows; 150-day potential precipitation deficit 

that is exceeded 14 days per year [mm] 
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1. INTRODUCTION 
1.1. Problem Context 

Extreme high and low streamflow commonly negatively affects societies. Most eye-catching are high 

flows, which may cause risk to human life and can negatively affect economic development (Malede et 

al., 2022). Low flows may negatively impact important river functions, such as water supply, power 

production and navigation, on a much larger spatial and time scale and may result in deterioration of 

water quality (Demirel et al., 2013a). 

A concern is that climate change will increase the frequency and severity of these problems (Tongal & 

Booij, 2018). Gudmundsson et al. (2021) showed that climate change, indicated by higher temperatures 

and changes in rainfall intensity, affects the entire flow regime, including high and low flows. The impact 

of climate change on extreme high flows is highly linked to trends in extreme precipitation events, 

especially in smaller catchments (Do et al., 2017). In larger catchments, temperature increases leading 

to snow melt and decreases in soil moisture may be dominant (Hirabayashi et al., 2021). The increase 

in snow melt may increase the severity of high flow events, while the decrease in soil moisture may 

result in less severe high flow events. Temperature increases may also decrease low flows, due to drier 

summers and increases in potential evapotranspiration (Marx et al., 2018; Rameshwaran et al., 2021; 

Tohver et al., 2014; Trenberth, 1999). However, these effects are uncertain, due to the complexity of 

different hydrological processes (Prudhomme et al., 2014). 

Quantifying the impact of climate change on extreme streamflow involves a number of steps.  

Commonly, a number of global circulation models (GCMs) is used and combined to represent a multi-

model ensemble (Coron et al., 2012; Vormoor et al., 2018). GCMs simulate the climate based on one or 

more emission scenarios as input. As the resolution of a GCM is too coarse for use at regional catchment 

scale, the second step often involves downscaling the output of the GCM with the use of regional 

climate models (RCMs) or statistical downscaling. Lastly, a hydrological model is used to simulate the 

rainfall-runoff transformation and this simulated runoff is compared with the recorded runoff (Chiew et 

al., 2014; Vaze & Teng, 2011). Whereas this last step generally contributes less to the overall uncertainty 

compared to the other steps (Arnell, 2011; Kay et al., 2009; Prudhomme & Davies, 2009; Teng et al., 

2012; Wilby & Harris, 2006), the uncertainty in the rainfall-runoff transformation due to changing 

catchment conditions can be substantial (Merz et al., 2011; Wilby, 2005).  

In October 2023, the Royal Netherlands Meteorological Institute (KNMI) published its new climate 

scenarios (KNMI’23) for the Netherlands and the Rhine and Meuse basin. Subject to respective emission 

scenarios, the KNMI’23 scenarios describe how the future climate could look like and form the basis for 

research to the effects of climate change (Van Dorland et al., 2023). The impact of climate change on 

extreme streamflow in the Rhine and Meuse basin can be estimated using these KNMI’23 scenarios and 

hydrological models. However, parameters of hydrological models are optimized for historic conditions 

and may not be transferable in time (Thirel et al., 2015). The ability of hydrological models to simulate 

catchment runoff behaviour under changing climatic conditions should thus not be taken for granted. It 

is important to assess the quality of hydrological models, to improve impact projections for the future.  

1.2. Theoretical Framework  
1.2.1. Hydrological models 

Hydrological models are simplified representations of the real-world system (Moradkhani & Sorooshian, 

2009), which are mainly used to enhance knowledge and understanding about hydrological processes, 

or as tools to predict or simulate impacts of interventions or changes (Sitterson et al., 2018). The focus 

of this study is on rainfall-runoff models, a type of hydrological model that simulates the transformation 
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of precipitation into runoff in a catchment (Sitterson et al., 2018). Rainfall-runoff models are forced with 

hydro-climatic timeseries, while the catchment characteristics are described by model parameters. 

Various types of rainfall-runoff models exist. Models can for example be classified based on how the 

models describe hydrological processes, being empirical, conceptual or physically-based (Dwarakish & 

Ganasri, 2015). Empirical models, or data-driven models, only make use of observed data and thus do 

not characterize physical processes in the hydrological system (Jaiswal et al., 2020). Due to their black-

box nature, empirical models lack physical analogues and transparency (Razavi, 2021). Conceptual and 

physically-based models do represent hydrological processes and storages that are theoretically 

observable and are mass-conservative (Jaiswal et al., 2020). Conceptual models often simplify 

hydrologic processes with empirical relations, whereas physically-based models represent 

characteristics of the catchment more explicitly, by using momentum and energy conservation 

equations and more model parameters. Due to their simpler model structure, conceptual models do 

not need as many parameters and computational resources compared to physically-based models. 

Due to a lack of knowledge on the functioning of the hydrological system and/or a lack of data, all 

models remain to some extent conceptual and thus will always contain some parameters that have to 

be estimated (Beven & O’Connell, 1982; Coron et al., 2012; Montanari & Koutsoyiannis, 2012). This is 

done via calibration, which means that parameters are tuned such that the model most closely and 

consistently simulates the hydrological response in a basin over some historical calibration period for 

which both forcing data and output are available (Moradkhani & Sorooshian, 2009).  

For calibration of hydrological models, an objective function is selected based on the purpose of 

simulation. An objective function is a measure of the error between the model-simulated output and 

observations (Gupta et al., 1998). Parameters are tuned such that this objective function is optimized. 

Parameter sets optimized for a certain objective function may be suboptimal for other objective 

functions. This for example means that models calibrated with focus on the simulation of peak flows 

may poorly simulate low flows. Multiple single objective functions can be aggregated into one multi-

objective function. Gupta et al. (1998) advocated to use a multi-objective approach, as this limits the 

loss of information that is observed when using a single objective function. For this reason, the multi-

objective paradigm is widely used in the calibration procedure of hydrological models (De Vos & 

Rientjes, 2007). 

1.2.2. Hydrological models under change 
To quantify the impact of climate change, hydrological models are applied under transient hydro-

climatic forcing, while keeping the model parameter values constant (Chiew et al., 2014). Stationarity is 

assumed, which means that the system is characterized based on past observations only (Chiew et al., 

2014). However, it may not be valid to assume stationarity in a changing climate, as the optimal 

parameter set may be different for future periods (Blöschl & Montanari, 2010; Ji et al., 2023; Merz et 

al., 2011; Nicolle et al., 2021; Thirel et al., 2015). Parameter values calibrated on historic periods may 

thus be suboptimal for modelling impact of climate change. 

Two reasons can be distinguished for the potential change of model parameter values in response to 

changes in climatic conditions. First of all, dominant processes and catchment conditions may 

fundamentally change. For example, climate change may lead to changes in land cover, as vegetation 

may adapt their root systems to respond to water stress in dry periods (Bouaziz, 2021). Secondly, the 

optimal parameter set may change for different calibration periods because parameters tend to 

compensate for model structure errors and data errors (Merz et al., 2011). Model parameters are tuned 

such that a predefined objective function is optimized, aiming to minimize the difference between 

simulated and observed runoff. The choice for an objective function determines which aspects of the 
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hydrograph receive most attention. To optimize the objective function, parameters may thus represent 

more than just the static catchment characteristics and may thus also compensate for errors in the 

model structure, hydro-climatic forcing data, initial conditions and observations (De Vos et al., 2010). 

Osuch et al. (2015) found that the parameters of the HBV model are mostly influenced by mean 

precipitation, mean wet day precipitation and mean evapotranspiration, even though the general idea 

of parameters in hydrological models is that that they are independent of time-varying boundary 

conditions. Wagener et al. (2003) and Niel et al. (2003) showed that parameters sets are significantly 

different when calibrated on periods with different hydroclimatic conditions but could not find obvious 

relationships between the parameter sets and climatic conditions in the calibration periods. This shows 

that calibration parameters may not have a physical interpretation as they compensate for uncertainties 

in model structure. This parameter non-uniqueness is one of the well-known limitations of conceptual 

models (Beven, 2006; Wilby, 2005).  

Parameter non-uniqueness, also parameter non-identifiability, means that multiple sets of parameter 

values can fit equally well to observed data (Beven, 2006). It may thus be difficult to determine which 

parameter set represents the underlying system most correctly. A parameter set that does not lead to 

the optimal value for the objective function may not be chosen, whereas this parameter set would 

qualitatively give more correct simulation of the response in a catchment. Beven & Binley (1992) 

recognized that multiple parameter sets may be equally likely and introduced the GLUE method to 

estimate the uncertainty associated with model predictions due to uncertainty in  parameter set. In this 

method, each possible parameter set is assigned a likelihood of being the best simulator for observed 

behaviour. Based on this, a probability distribution function for each parameter can be obtained. De Vos 

& Rientjes (2007) let go the idea of time-invariant parameters and used dynamic model parameters for 

a rainfall-runoff model of a meso-scale catchment. Next to that, minimizing calibration to the past by 

using physically-based models is often tried, however, the parameter values in these more complex 

models may not be representative for the underlying processes as well (Blöschl & Montanari, 2010).  

By keeping model parameters constant in climate change applications, hydrologists thus assume that 

parameters are well-identified and that parameter values remain valid for a future period. As this may 

not be true, model performance generally declines when models are used to predict behaviour outside 

the calibration period using the same parameter set (Ji et al., 2023). This is even more the case when 

models are run under drastically different hydroclimatic conditions than those used for calibration.  

Thirel et al. (2015) emphasized the importance of assessing the robustness of models before applying 

them under changing conditions. In this study, a model is defined to be robust when a model does not 

show notable deterioration in performance under changing climatic conditions. This means that there 

is no need to recalibrate model parameters or update the model structure. Robust models are not only 

able to simulate closely to observations in a reference period (i.e. precision) but are also able to react 

to change in an accurate way (Thirel et al., 2015). A lack of model robustness could undermine the 

confidence in hydrological models (Blöschl & Montanari, 2010).  

1.2.3. Tests for assessing the robustness  
The most widely used tool to assess model robustness in time and space is the four-level testing scheme 

proposed by Klemeš (1986). The underlying principle of this testing framework supposes that when a 

model needs calibration, the model should be evaluated on both the calibration dataset and an 

independent dataset. This scheme consists of the split-sample test (SST) on two independent periods, 

the proxy-basin test on two neighbouring catchments, the differential split-sample test (DSST) on two 

contrasting independent periods and the proxy-basin differential split-sample test on neighbouring 

catchments and contrasting periods.  
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The DSST is most relevant for applying models under changing climatic conditions, as this test is 

recommended for simulating flows other than those observed in the existing flow record (Klemeš, 

1986). In the DSST, the available data is divided in two parts based on their climatic differences. The first 

part of the data is used for calibration, the second part for validation. The idea is that when the 

calibration and validation is done over climatically contrasting past periods, the model faces the 

difficulties it will have to deal with in the future (Nicolle et al., 2021). In case the model shows performs 

substantially worse in the validation period than in the calibration period, this test can falsify a 

hydrological model for applying it under change. However, a satisfactory behaviour in the DSST does not 

mean that the model can always be confidently used for future periods (Nicolle et al., 2021). This is 

because the observed historic variability in climate may not be as extensive as the changes that are 

expected to occur in the future (Stephens et al., 2020). 

Statistical analysis is used to partition the reference historical period into periods with contrasting 

climates. In most applications of the DSST, this discretization is based on mean annual precipitation 

(Chiew et al., 2009; Luo et al., 2012; Refsgaard & Knudsen, 1996; Ruelland et al., 2015; Tramblay et al., 

2013; Vaze et al., 2010; Wilby, 2005; Wu & Johnston, 2007), sometimes in combination with 

temperature (Dakhlaoui et al., 2017; Seiller et al., 2012; Xu, 1999) or potential evapotranspiration 

(Coron et al., 2012). In some other applications of the DSST, the discretization is based on observed 

runoff characteristics only (Donnelly-Makowecki & Moore, 1999; Seibert, 2003; Vormoor et al., 2018).  

A limitation of the DSST is that only a small number of contrasting periods is identified (Coron et al., 

2012; Dakhlaoui et al., 2019). Several studies tried to overcome this by proposing variations of the 

original testing scheme of Klemeš (1986). For example, Coron et al. (2012) proposed a generalization of 

the standard SST and DSST by testing as many climatic configurations as possible, including similar and 

contrasting conditions between calibration and validation. This generalized split-sample test considers 

all possible configurations of continuous subperiods of equal length. Besides, a random bootstrap SST 

was proposed (Coron, 2013), in which sub-periods are generated from randomly selected combinations 

of years. Dakhlaoui et al. (2017) increased the number of validation exercises by using four combinations 

(hot/dry, hot/wet, cold/dry and cold/wet years) (4-sub-period DSST) and lastly, the general differential 

split-sample test was proposed in which a combination of the random bootstrap SST and the 4 sub-

period DSST was used to efficiently identify a number of contrasting periods (Dakhlaoui et al., 2019).  

Despite the limitations that the testing framework of Klemeš (1986) may have, Ji et al. (2023) concluded 

that the application of (variations of) this test may still be the best course of action today. Only two tests 

for assessing model robustness were proposed without implementing the testing framework of Klemeš 

(1986), which are the robustness assessment test (RAT; Nicolle et al., 2021) and the proxy for model 

robustness (PMR; Royer-Gaspard et al., 2021). The main advantage of these tests is that robustness can 

be evaluated without employing a multiple calibration process. However, also these tests have 

limitations, often being similar to the limitations of the differential split-sample test (Nicolle et al., 2021).  

1.2.4. Findings on model robustness 
In recent decades, there has been increasing interest in exploring robustness for hydrological models, 

due to the growing demand for climate change impact assessments (Ji et al., 2023) and due to the 

growing interest on hydrological modelling under change linked to the Panta Rhei decade of IAHS 

(Montanari et al., 2013). Various studies applied a model robustness test, either to test whether a 

hydrological model could be used for future conditions (Chiew et al., 2009; Ruelland et al., 2015; 

Tramblay et al., 2013; Wilby, 2005; Xu, 1999), to compare the robustness of different models (Dakhlaoui 

et al., 2017; Donnelly-Makowecki & Moore, 1999; Refsgaard & Knudsen, 1996; Seiller et al., 2012) or to 
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compare or improve robustness by advanced calibration schemes (Luo et al., 2012; Seibert, 2003; Wilby, 

2005; Wu & Johnston, 2007). Based on these studies, some overarching conclusions can be derived.  

First, performance losses were found to be higher for wet and cold to dry and hot transfers than vice 

versa (Ji et al., 2023). In general, models tend to underestimate runoff with a wetter and colder future 

climate only slightly, whereas runoff is overestimated significantly with a dryer and hotter future climate 

(Dakhlaoui et al., 2019). Model parameters may thus be less transferable under drier future conditions. 

The reason for this may be related to the more pronounced nonlinearities in hydrological processes in 

drier environments compared to wetter regimes (Van Esse et al., 2013). Second, degradation of 

performance under changed conditions is especially apparent when the model is run under 

hydroclimatic conditions that differ substantially from the hydroclimatic conditions of the calibration 

period (Ji et al., 2023). Numerous studies tried to determine transferability limits, being the values for 

changes in climatic variables for a future climate between which the calibrated parameter values are 

valid (Bastola et al., 2011; Dakhlaoui et al., 2017, 2019; R. Singh et al., 2011; Sleziak et al., 2018; Vaze et 

al., 2010). For example, Vaze et al. (2010) derived that models, when calibrated over 20 years of data, 

can generally be used for catchments in Australia when the future mean annual rainfall is between 15% 

drier or 20% wetter than the mean annual rainfall in the calibration period. However, generalizing 

interpretations on model robustness is challenging, as interpretations depend on catchment 

characteristics, model structure, calibration method, the range of climatic configurations tested and the 

specific requirements of users (Coron et al., 2012; Gupta et al., 2014; Ji et al., 2023). Acknowledging 

these limitations, Ji et al. (2023) proposed that a model can only be considered transferable if the annual 

mean precipitation and temperature vary within 10% and 1.75⁰C, respectively.  

To improve model robustness, Ji et al. (2023) advised to use a calibration period that closely resembles 

future climatic conditions, as long as a sufficiently long calibration period (5 to 10 years) is employed. 

This approach would yield parameter values based on the most relevant data, capturing future 

behavioural patterns effectively. This recommendation contrasts with the regular approach of 

calibration using the full-length dataset. This approach is normally regarded as the most robust option, 

as it provides a diverse and unbiased representation of climate variability without needing a priori 

knowledge on what the future climatic conditions will be (Bastola et al., 2011).  

Despite the fact that many studies advice to use a calibration period that closely resembles future 

climatic conditions, only a few studies have put model robustness in the context of climate projections. 

Dakhlaoui et al. (2019) compared the limits of transferability of three conceptual hydrological models 

to climate projections under two representative concentration pathway scenarios (RCPs 4.5 and 8.5) for 

catchments in northern Tunisia. They found that for climate projections under RCP 8.5, the calibrated 

parameter set was invalid. The projected impact of climate change on mean annual runoff when the 

model was calibrated on the whole period was found to be 5 to 20% lower compared to when the model 

was calibrated on subperiods with mean annual precipitation and temperature closer to projections. 

Also Singh et al. (2011) found that, when using parameters calibrated with data resembling future 

conditions, streamflow projections for 394 watersheds in the United States could diverge significantly 

from those using parameters calibrated with the full dataset. Both studies focused on the robustness of 

models for simulating climate change impact on mean annual runoff but not on high or low flows. Wilby 

(2005) did look at high and low flows, by determining the change in the runoff exceeded 95%, 50% and 

5% of the time, for numerous climate scenarios, hydrological models and calibration periods for the 

river Thames. He found that the uncertainty in projected change in runoff due to the choice of the 

calibration period was comparable to the uncertainty due to the future emission scenarios.  



1  - Introduction 

 
14 

1.3. Research Gap 
The previous discussions stressed the need for evaluating the robustness of hydrological models before 

applying them under changing conditions. Despite the increased attention to model robustness in 

literature, only a few studies (Dakhlaoui et al., 2019; R. Singh et al., 2011; Wilby, 2005) have aimed to 

develop advanced approaches for testing validity of models for climate change impact assessments. 

However, the conclusions of these studies may not be applicable to all catchments (Ji et al., 2023).  

Ji et al. (2023) stated that additional methodological works are still required on the topic of robustness 

evaluation. One of their recommendations is to not only focus on mean conditions of climate 

characteristics but look at a wider range of possible changes. Some studies applied a model robustness 

test focusing on high flows (Donnelly-Makowecki & Moore, 1999; Seibert, 2003; Vormoor et al., 2018), 

however, no study was found that focused on the simulation of the combination of high and low flows.  

1.4. Research Aim 
This study aimed to evaluate the robustness[1] of the HBV and GR6J model[2] for simulating the impact 

of climate change on high and low streamflow[3] in the Lesse catchment[4], by evaluating the models on 

historic periods resembling the climatic conditions projected by climate change scenarios[5]. 

[1] In this study, a model is defined to be robust when a model does not show notable deterioration in 

performance under changing climatic conditions. This means that there is no need to recalibrate the 

model or update the model structure. A lack of model robustness can either be attributed to model 

structure or to model parameters. 

Robustness was evaluated by testing if and how the performance of a model changed under changing 

climatic conditions. If the model showed a notable deterioration in performance under changing 

climatic conditions, this indicated a lack of robustness. Secondly, robustness was evaluated by testing 

the extent to which model parameter values changed when models were calibrated on different climatic 

conditions. In case parameter values remained approximately constant and the model performed well 

under changing climatic conditions, a model was robust.  

[2] This study evaluated the robustness of the HBV and GR6J model. These are both conceptual rainfall-

runoff models that are frequently used in model robustness assessment and climate change impact 

studies. The focus was on two models, as a multi-model approach can help in identifying model flaws, 

in understanding models and in proposing improvements (Dakhlaoui et al., 2019; De Boer-Euser et al., 

2017; Thirel et al., 2015). Section 2.2 describes the choice for and the structure of these models.  

[3] The focus of this robustness assessment was on how well the models were able to capture high and 

low streamflow. This comprises the magnitude and timing of high and low flows with a return period of 

approximately one year. This aligned with the recommendation of Ji et al. (2023) to explore a wider 

range of potential hydroclimatic changes, rather than focusing solely on average conditions. A return 

period of 1 year was chosen, because longer return periods asked for extreme value distributions, which 

would bring additional extrapolation errors (Booij, 2005) and would be likely to change due to human 

influences and climate change (Katz, 2013).  

[4] The focus of this study was on the Lesse, Belgium, which is a tributary to the Meuse. In section 2.1, 

the choice for the Lesse is explained and a description of the catchment is given.  

[5] This study used the KNMI’23 climate scenarios as projections of future conditions. Different climate 

scenarios for time horizon 2100 were used. This is described in section 2.3.3 in more detail.  
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1.5. Research Questions 
To achieve the research aim, 5 research questions were formulated. The first research question (RQ1) 

provided insight in the projected changes of meteorological conditions that lead to high and low flows. 

RQ1 –  Which meteorological conditions lead to high and low flows in the Lesse and how are these 
conditions expected to change in the future? 

The next step was to select historic periods that resemble future conditions projected by climate change 

scenarios. For this, the meteorological conditions determined in RQ1 were used. 

RQ2 – Which historic periods most closely resemble future conditions projected by climate 
change scenarios? 

Then, the robustness of the HBV and GR6J model was evaluated by testing whether the HBV and GR6J 

models showed deterioration in simulating high and low streamflow when validated under climatic 

conditions that resemble future conditions projected by the KNMI’23 scenarios (RQ3). A comparison 

was made between the performance in periods which resemble future conditions and the performance 

under historic climatic conditions. In RQ4, it was tested to what extent parameters of the HBV and GR6J 

model changed when these were calibrated on climatic conditions that resemble future conditions 

projected by the KNMI’23 scenarios, compared to calibration on historic climatic conditions. In this 

study, historic climatic conditions encompass all climatic conditions that were observed during a certain 

period in the past.  

RQ3 –  What is the performance of the HBV and GR6J model in simulating high and low streamflow 

under climatic conditions resembling future conditions projected by climate change 

scenarios, compared to the performance of the models under historic climatic conditions? 

RQ4 – What are the model parameter values of the HBV and GR6J model when calibrated on 
climatic conditions resembling future conditions projected by climate change scenarios, 
compared to when the models are calibrated on historic climatic conditions?  

 
Finally, the projected impact of climate change on high and low streamflow in the Lesse was determined. 

A comparison was made between the impact of climate change for different climate scenarios, 

hydrological model structures and calibration approaches. Two different calibration approaches were 

used, namely calibration on historic periods and calibration on periods that resemble future climatic 

conditions. This comparison gave insight in the uncertainty in the impact of climate change due to these 

choices.  

RQ5 –  What is the projected impact of climate change on high and low streamflow in the Lesse, 
and how does the uncertainty of this impact due to different climate scenarios relate to the 
uncertainty due to different hydrological model structures and calibration approaches? 

1.6. Research Scope 
This study focused on the robustness of models for simulating the impact of climate change. With 

climate change, global warming resulting in higher temperatures, extremer precipitation, prolonged dry 

periods and higher variability was understood. The focus of this study was thus on the temporal 

transferability of models. Transferability of models in space was outside the scope of this study.  

Only the impact of climate change on high and low streamflow was examined. The impact of climate 

change on mean streamflow or other climate characteristics, such as evapotranspiration, was excluded 

from this study. It was assumed that catchment characteristics that may impact high and low streamflow 

do not change in the future.  
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1.7. Thesis Outline 
Chapter 2 explains the study area, hydrological models and data that were used in this study. In chapter 

3, the methods of this study are presented. This starts with a general overview of the methodology and 

continues with a detailed description of the methods used to answer each research question. The 

results of each research question are presented and discussed in chapter 4. An overarching discussion 

of the results of all research questions can be found in chapter 5. The effects of limitations in data and 

methods are described, the results are compared with literature and some generalizations are 

formulated. The thesis ends with the conclusions per research question, a general conclusion and the 

recommendations in chapter 6. 
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2. STUDY AREA, MODELS AND DATA DESCRIPTION 
2.1. Study area 

This study focused on the Lesse, which is a sub-basin of the Meuse. The choice for this study area, its 

main characteristics and the hydroclimatic conditions are described below. 

2.1.1. Choice for the study area 
The focus of this study was on the Lesse, a sub-catchment of the Meuse, which has the advantage of 

not being influenced by reservoirs, locks and weirs (RIWA, 2022). The recently published KNMI’23 

scenarios were published for the combined area of the Netherlands and the upstream parts of the 

catchments of the Rhine and Meuse, as the amount of precipitation in the regions upstream is important 

for river discharges in the Netherlands (Van Dorland et al., 2023). Compared to the Rhine, the Meuse is 

less affected by snowmelt, making the discharge more dependent on rainfall. Because of this, the Meuse 

has more pronounced fluctuations in river flow. This study focused specifically on high and low flows, 

making the Meuse basin an interesting area to look at.   

The sub-catchments of the Meuse located in the Belgian Ardennes have a relatively fast response, due 

to their impermeable soil and high slope (RIWA, 2021). This causes their discharge regimes to be 

relatively extreme when compared to those of other tributaries, which made them interesting to study. 

 
Figure 1 - Location of the Meuse catchment (orange) and the Lesse sub-catchment (blue) (Lehner & Grill, 2013). 

2.1.2. Description of the study area 
The Lesse river springs in Ochamps at an elevation of 403 m+NAP, and flows to Anseremme, at an 

elevation of 89 m+NAP, where it joins the Meuse (Berger, 1992). The elevation in the catchment ranges 

between 89 m+NAP and 589 m+NAP and is shown in Figure 2 (European Space Agency, 2021). The 

catchment is located in the Belgian Ardennes and covers an area of 1286 km2 upstream the 

measurement station Gendron (Service Public de Wallonie, 2023). The length of the river is 83 km and 

its main tributaries are the Gembes, Lomme, Wimbe and Ywenne. The average gradient of the river is 

approximately 5∙10-3 m/m. This gradient is the highest near the source and decreases towards the 

mouth (Berger, 1992).  
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Figure 2 - Elevation [m] in the Lesse catchment (European Space Agency, 2021).  

The main land-use class of the Lesse is forest (55%), followed by crops (29%), pastures (11%) and urban 

area (5%) (European Environment Agency, 2000). Due to the presence of limestone in the basin, karst 

features are found, resulting in some underground parts of the river, such as near Belvaux and Han 

(Berger, 1992). Due to the high gradient and impermeable soil, the Lesse is a fast-reacting river. As a 

result, the contribution of the Lesse to the Meuse is relatively larger during high flows than during low 

flows (RIWA, 2021).  

2.1.3. Hydroclimatic conditions 
Figure 3 shows the average precipitation, potential evapotranspiration and streamflow for each month 

in the Lesse catchment, based on the data described in section 2.3 for period 1968-2021. It is visible 

that the precipitation is relatively constant throughout the year, whereas the potential 

evapotranspiration has a clear peak in summer. As a result, the lowest discharges occur during summer 

and the highest discharges in winter. The mean annual precipitation of the Lesse catchment is 933 

mm/year. The precipitation is the highest in the south and the smallest in the west (Berger, 1992). The 

mean annual runoff at the measuring station near Gendron is 427 mm/year.  

 
Figure 3 - Climatology of streamflow (green), potential evapotranspiration (red) and precipitation (blue) [mm/day] for the 

Lesse. Based on data described in section 2.3 (period 1968-2021). 
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2.2. Hydrological models 
This study evaluated the robustness of two rainfall-runoff models, namely the HBV and GR6J model. 

Both models are parsimonious conceptual models (Dakhlaoui et al., 2019), meaning that the models 

are intentionally kept simple with at maximum 8 model parameters to be optimized for modelling 

rainfed catchments. These models were preferred over more physically-based models because they are 

more interpretable, easier to understand and less prone to overfitting. For simplicity, the models were 

lumped, which means that spatial variability within the catchment was not included. The models were 

run at a daily timestep. Both models were calibrated based on historical precipitation, potential 

evapotranspiration and runoff.  

The models differ in the way they conceptualise the hydrological processes, their complexity and 

number of parameters. This made it interesting to compare both models. An important difference is 

that HBV had no-flux boundary conditions, meaning that precipitation is the only input and 

evapotranspiration and discharge are the only output. In contrast, the GR6J model includes 

groundwater exchange with other catchments, which can either enter or exit the system. This 

groundwater exchange is physically realistic in catchments with karst features such as the Lesse (Le 

Moine et al., 2007). However, calibration of this model may tune groundwater exchange parameters in 

such manner that simulated streamflow match to observed streamflow, while possibly leading to 

unrealistic values for groundwater exchange.  

2.2.1. HBV 
The HBV model (Bergström, 1976) has been widely used under various climatic conditions in climate 

change impact studies and robustness assessment studies (Dakhlaoui et al., 2019; De Wit et al., 2007; 

Stephens et al., 2019). Next to that, the HBV model forms the basis for flood forecasting systems in the 

Netherlands of the rivers Rhine and Meuse (Sperna Weiland et al., 2015).  

2.2.1.1. Model description 
The HBV model is a conceptual model which simulates river discharge (𝑄) using precipitation (𝑃) and 

potential evapotranspiration (𝑃𝐸𝑇) as input. Several versions of the model exist (Bergström & 

Lindström, 2015). In this study, the HBV-96 version is used (Lindström et al., 1997; SMHI, 2006). Figure 

4 shows the structure of the HBV model. The model consists of three storage boxes. The soil moisture 

(𝑆𝑀) box controls the runoff formation and the response function is described by the upper response 

(𝑈𝑍) and lower response (𝐿𝑍) box. The model is described in detail below. 

 
Figure 4 - Structure of the HBV-96 model, adopted from Lindström et al. (1997). Model parameters are given in green. 
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1. Soil routine 

The soil moisture box is filled due to infiltration (𝑃𝐼𝑁) and emptied due to actual evapotranspiration 

(𝐸𝑎). The inflow in the soil moisture box (𝑃𝐼𝑁) depends on the precipitation (𝑃), the level in the soil 

moisture box (𝑆𝑀) and field capacity (𝐹𝐶), the maximum capacity of the soil moisture box (Equation 1). 

𝑃𝐼𝑁 = {
𝑃,                        𝑆𝑀 + 𝑃 ≤ 𝐹𝐶 
𝐹𝐶 − 𝑆𝑀,         𝑆𝑀 + 𝑃 > 𝐹𝐶  

                  [Eq. 1] 

All remaining precipitation (𝑃𝐷) is directly transferred to the upper response box (Equation 2). 

𝑃𝐷 = 𝑃 − 𝑃𝐼𝑁         [Eq. 2] 

The recharge from the soil moisture box to the upper response box is determined using Equation 3. This 

recharge depends on the infiltration and on the soil moisture content of the previous day. In Equation 

3, 𝛽 determines the relative contribution to runoff from precipitation at a given soil moisture deficit.  

𝑅 = 𝑃 ∙ (
𝑆𝑀

𝐹𝐶
)
𝛽

         [Eq. 3] 

The actual evapotranspiration 𝐸𝑎 depends on the soil moisture content (𝑆𝑀) of the previous day, the 

potential evapotranspiration (𝑃𝐸𝑇) and the parameter 𝐿𝑃, which is given as a fraction of 𝐹𝐶. 𝐿𝑃 is the 

limit at which the evapotranspiration reaches its potential value (Equation 4).  

𝐸𝑎 =  {
𝑃𝐸𝑇 ∙ (

𝑆𝑀

𝐿𝑃∙𝐹𝐶
) ,        𝑆𝑀 < 𝐿𝑃 ∙ 𝐹𝐶

𝑃𝐸𝑇,                        𝑆𝑀 ≥ 𝐿𝑃 ∙ 𝐹𝐶
      [Eq. 4] 

The soil moisture storage is updated by adding the infiltration (𝑃𝐼𝑁) and subtracting the recharge (𝑅) 

and actual evapotranspiration (𝐸𝑎) (Equation 5). The upper response box (𝑈𝑍) is updated by adding the 

direct precipitation (𝑃𝐷) and the recharge (𝑅) (Equation 6). 

𝑆𝑀 = 𝑆𝑀 + 𝑃𝐼𝑁 − 𝑅 − 𝐸𝑎       [Eq. 5] 
𝑈𝑍 = 𝑈𝑍 + 𝑃𝐷 + 𝑅        [Eq. 6] 

2. Response function 

The upper response box (𝑈𝑍) represents the quick runoff routine. This box is filled with recharge (𝑅) 

and direct precipitation (𝑃𝐷) and has as output the percolation (𝑃𝑒𝑟𝑐, Equation 7), the capillary flux 

(𝐶𝐹, Equation 10) and the non-linear quick runoff (𝑄𝑈𝑍, Equation 13). The upper response box has no 

maximum capacity but cannot be negative. Therefore, no more water can leave the box than is present 

in the box and the boxes are updated after every flux.  

𝑃𝑒𝑟𝑐 = max (𝑈𝑍; 𝑃𝐸𝑅𝐶)      [Eq. 7] 
𝑈𝑍 = 𝑈𝑍 − 𝑃𝑒𝑟𝑐 ;  𝐿𝑍 = 𝐿𝑍 + 𝑃𝑒𝑟𝑐     [Eq. 8 & Eq. 9] 

𝐶𝐹 = max (𝐶𝑓𝑙𝑢𝑥 ∙ (1 −
𝑆𝑀

𝐹𝐶
) ; 𝐹𝐶 − 𝑆𝑀;𝑈𝑍)    [Eq. 10] 

𝑆𝑀 = 𝑆𝑀 + 𝐶𝐹;  𝑈𝑍 = 𝑈𝑍 − 𝐶𝐹     [Eq. 11 & Eq. 12] 

𝑄𝑈𝑍 = max (𝑘𝑓 ∙ 𝑈𝑍
1+𝛼; 𝑈𝑍)       [Eq. 13] 

𝑈𝑍 = 𝑈𝑍 − 𝑄𝑈𝑍       [Eq. 14] 

The lower response box represents the slow runoff routine. This box is filled with percolation (𝑃𝑒𝑟𝑐, 

Equation 8) and emptied with base flow (𝑄𝐿𝑍, Equation 15). This base flow depends linearly on the 

storage in the lower response box and cannot be higher than what is present in the lower response box. 

The lower response box is updated with Equation 16. 

𝑄𝐿𝑍 = max (𝑘𝑠 ∙ 𝐿𝑍; 𝐿𝑍)      [Eq. 15] 
𝐿𝑍 = 𝐿𝑍 − 𝑄𝐿𝑍       [Eq. 16] 

3. Total discharge 

The total discharge is the sum of the quick runoff (𝑄𝑈𝑍) and base flow (𝑄𝐿𝑍). No transformation routine 

is included, as water is discharged within one timestep (1 day) through the catchment. 



2  - Study area, models and data description 

 
21 

2.2.1.2. Model parameters 
The 8 parameters of the HBV model are summarized in Table 1.  

Table 1 - Description of the parameters in the HBV model. 

 Unit Description  Unit Description 

FC [mm] Field capacity of the soil moisture 
storage 

Kf [day-1] Recession coefficient for upper 
response box 

β [-] Parameter in soil moisture routine  Ks [day-1] Recession coefficient for lower 
response box 

LP [-] Limit for potential evapotranspiration 
(fraction of FC)  

PERC [mm/day] Maximum percolation from 
upper to lower response box  

α [-] Measure of non-linearity for quick 
runoff 

Cflux [mm/day] Maximum value of capillary flux  

 

2.2.2. GR6J 
The GR6J model is a modified version of the widely-used GR4J model. The GR4J model, modèle du Génie 

Rural à 4 paramètres Journalier (Perrin et al., 2003), is a daily lumped four-parameter rainfall-runoff 

model which is widely used for climate change impact studies and robustness assessment studies 

(Dakhlaoui et al., 2019; Tian et al., 2013; Zeng et al., 2019). This model performs generally well on 

estimating high flows but lacks performance on low flows. For example for the Ourthe, Semois and Lesse 

(sub-catchments of the Meuse), the model generally performs well in simulating flood peaks but 

overestimates low flows (De Boer-Euser et al., 2017). The modifications of the model proposed by Le 

Moine (2008) and Pushpalatha et al. (2011) have led to the GR6J model, which improved low-flow 

simulation, while performance losses in high-flow conditions were avoided (Pushpalatha et al., 2011). 

Therefore, the GR6J model was used in this study. 

2.2.2.1. Model description 
Figure 5 shows the model structure of the GR6J model, which was described by Perrin et al. (2003) and 

adopted by Le Moine (2008) and Pushpalatha et al. (2011). The inputs to the model are areal catchment 

precipitation (𝑃) and potential evapotranspiration (𝑃𝐸𝑇) and the output is discharge (𝑄). Groundwater 

exchange with other catchments is included as well, which can be either an input or output of the 

model. All water quantities are expressed in millimetres and all operations are on a daily timestep. The 

model is described in detail below.  
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Figure 5 - Structure of the GR6J model, adopted from Perrin et al. (2003), Le Moine (2008) and Pushpalatha et al. (2011). 

Model parameters are given in green. 

1. Determination of net rainfall or evapotranspiration capacity 

First, the net precipitation (𝑃𝑛) or net evapotranspiration capacity (𝐸𝑛) is determined. In case the 

precipitation at a timestep is larger than the potential evapotranspiration, 𝑃 ≥ 𝑃𝐸𝑇, there is net 

precipitation and the net evapotranspiration capacity is zero. In case the potential evapotranspiration is 

larger than the precipitation, 𝑃 < 𝑃𝐸𝑇, there is zero net precipitation and a net evapotranspiration 

capacity is determined. This is displayed in Equations 17 and 18. 

If 𝑃 ≥ 𝑃𝐸𝑇,  𝑃𝑛 = 𝑃 − 𝑃𝐸𝑇,  𝐸𝑛 = 0    [Eq. 17] 
If 𝑃 < 𝑃𝐸𝑇,  𝑃𝑛 = 0,   𝐸𝑛 = 𝐸 − 𝑃𝐸𝑇   [Eq. 18] 

2. Production store or soil moisture accounting store 

In case there is net precipitation (𝑃𝑛 ≠ 0), a part of the net precipitation fills the production store, also 

called soil moisture accounting store. This part 𝑃𝑠 is determined using Equation 19. In this equation, 𝑋1 

is the capacity of the production store and 𝑆 is the level of the store. 

If 𝑃𝑛 ≠ 0,  𝑃𝑠 =
𝑋1(1−(

𝑆

𝑋1
)
2
) tanh(

𝑃𝑛
𝑋1
)

1+
𝑆

𝑋1
tanh(

𝑃𝑛
𝑋1
)

     [Eq. 19] 

In case of a net evapotranspiration capacity (𝐸𝑛 ≠ 0), the actual evapotranspiration rate 𝐸𝑠 is 

determined, which is a function of the level in the production store (𝑆) and the maximum capacity of 

this store (𝑋1) (Equation 20). The evapotranspiration cannot be higher than what is present in the 

production store.  

If 𝐸𝑛 ≠ 0:  𝐸𝑠 = max(
𝑆(2−

𝑆

𝑋1
)𝑡𝑎𝑛ℎ(

𝐸𝑛
𝑋1
)

1+(1−
𝑆

𝑋1
) 𝑡𝑎𝑛ℎ(

𝐸𝑛
𝑋1
)
; 𝑆)    [Eq. 20] 
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After this, the water content in the production store is updated using Equation 21. Due to the hyperbolic 

tangent functions in Equations 14 and 15, the level in the production store (𝑆) can never exceed the 

maximum capacity 𝑋1. 

𝑆 = 𝑆 − 𝐸𝑠 + 𝑃𝑠        [Eq. 21] 

After updating, a percolation leakage 𝑃𝑒𝑟𝑐 is determined, which is a power function of the reservoir 

content (Equation 22). Due to the power law in this percolation or infiltration function, the percolation 

does not contribute much to the streamflow and is thus mainly interesting for simulating low flows. 

After that, the content of the production store (𝑆) is again updated (Equation 23). 

 𝑃𝑒𝑟𝑐 = 𝑆 {1 − [1 + (
4𝑆

9𝑋1
)
4
]
−1/4

}       [Eq. 22] 

𝑆 = 𝑆 − 𝑃𝑒𝑟𝑐        [Eq. 23] 

3. Linear routing with unit hydrographs 

The total quantity of water that reaches the routing functions (𝑃𝑟) is determined using Equation 24.  

𝑃𝑟 = 𝑃𝑒𝑟𝑐 + (𝑃𝑛 − 𝑃𝑠)       [Eq. 24] 

This quantity is divided into two flow branches. A fixed 90% of 𝑃𝑟 is routed by unit hydrograph 1 (𝑈𝐻1), 

the remaining 10% is routed by unit hydrograph 2 (𝑈𝐻2). The water that is routed by unit hydrograph 

1 is also routed by non-linear routing stores. By having two unit hydrographs, the time lag between the 

rainfall event and the resulting streamflow peak is simulated. 

Parameter 𝑋4 is the time-base of 𝑈𝐻1. This means that, in a discrete form, unit hydrograph 1 has 𝑚 

ordinates, with 𝑚 being the smallest integer exceeding 𝑋4. The time-base of unit hydrograph 2 is 2𝑋4 

and has 𝑛 ordinates, 𝑛 being the smallest integer exceeding 2𝑋4. The ordinates of the unit hydrograph 

are derived using the S-curves, which are given in Equation 26. 

Unit Hydrograph 1 Unit Hydrograph 2  

𝑆𝐻1(𝑡) =  {

0,                          𝑡 ≤ 0

(
𝑡

𝑋4
)
5/2

,       0 < 𝑡 < 𝑋4

1,                           𝑡 ≥ 𝑋4

  

 

𝑆𝐻2(𝑡)

{
 
 

 
 
0,                                                𝑡 ≤ 0

1

2
(
𝑡

𝑋4
)
5/2

,                        0 < 𝑡 ≤ 𝑋4

1 −
1

2
(
𝑡

𝑋4
)

5

2
,                𝑋4 < 𝑡 < 2𝑋4

1,                                            𝑡 ≥ 2𝑋4

   

 

[Eq. 25] 

𝑈𝐻1(𝑗) = 𝑆𝐻1(𝑗) − 𝑆𝐻1(𝑗 − 1) 
 𝑗 is an integer 

𝑈𝐻2(𝑗) = 𝑆𝐻2(𝑗) − 𝑆𝐻2(𝑗 − 1)  
𝑗 is an integer 

[Eq. 26] 

 

The output of unit hydrograph 1, 𝑄9, is calculated using Equation 27. The output of unit hydrograph 2, 

𝑄1, is calculated in a similar way, using Equation 28. 

𝑄9(𝑡) = 0.9 ∙  ∑ 𝑈𝐻1(𝑘) ∙ 𝑃𝑟(𝑡 − 𝑘 + 1)
𝑚
𝑘=1      [Eq. 27] 

𝑄1(𝑡) = 0.1 ∙  ∑ 𝑈𝐻2(𝑘) ∙ 𝑃𝑟(𝑡 − 𝑘 + 1)
𝑛
𝑘=1       [Eq. 28] 

Maximum catchment water exchange 

The water that reached the routing function is thus split into two branches. The first branch, the routing 

stores branch, is composed of a non-linear routing store and an exponential routing store. The branch 

is fed by 𝑄9 from unit hydrograph 1. 60% of 𝑄9 flows to the non-linear routing store, the remaining 

40% to the exponential routing store. The exponential store is an additional (parallel) routing store 

compared to the GR4J model. Exponential stores are efficient for simulating long recession spells 

(Michel et al., 2003). The second branch, the direct branch, is fed by 𝑄1 from unit hydrograph 2. 
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The next step is to determine the groundwater exchange for the non-linear routing store, the 

exponential routing store and the direct branch. The maximum possible exchange 𝐹 is determined 

based on the content of the non-linear routing store 𝑅1, the maximum capacity of the routing store 𝑋3 

and exchange parameters 𝑋2 and 𝑋5 (Equation 29). This groundwater exchange function was proposed 

by Le Moine (2008) to better account for interactions between surface and groundwater. The value can 

be either positive, zero or negative. This function replaces the old groundwater exchange function of 

the GR4J model. 

𝐹 = 𝑋2 (
𝑅1

𝑋3
− 𝑋5)        [Eq. 29] 

The actual catchment exchange of the routing store 𝐴𝐹𝑅1 equals the maximum possible exchange 𝐹 if 

enough water is present in the routing store (Equation 30).  

𝐴𝐹𝑅1 = {
𝐹,                                 𝑅1 + 0.6𝑄9 + 𝐹 ≥ 0
−𝑅1 − 0.6𝑄9,             𝑅1 + 0.6𝑄9 + 𝐹 < 0   

     [Eq. 30] 

The actual catchment exchange of the exponential store 𝐴𝐹𝑅2 equals 𝐹, as the content in the 

exponential store can be negative as well (Equation 31). 

𝐴𝐹𝑅2 = 𝐹         [Eq. 31] 

The actual catchment exchange of the direct branch 𝐴𝐹𝐷 equals the maximum possible exchange 𝐹 if 

enough water is in the direct branch (Equation 32).  

𝐴𝐹𝐷 = {
𝐹,                         𝑄1 + 𝐹 ≥ 0    
−𝑄1,                 𝑄1 + 𝐹 < 0   

       [Eq. 32] 

4. Routing stores 

Non-linear routing store  
The non-linear routing store content 𝑅1 is updated by adding 60% of the water routed by unit 

hydrograph 1 (𝑄9) and the groundwater exchange of the non-linear routing store 𝐴𝐹𝑅1 (Equation 33). 

The routing store cannot exceed its capacity 𝑋3. All water that does not fit in the non-linear routing 

store is discharge directly by 𝑄𝑅1𝑑 (Equation 34). 

𝑅1 = max (𝑅1 + 0.6𝑄9 + 𝐴𝐹𝑅1; 𝑋3)      [Eq. 33] 
𝑄𝑅1𝑑 = max (𝑅1 + 0.6𝑄9 + 𝐴𝐹𝑅1 − 𝑋3; 0)     [Eq. 34] 

The output of the non-linear routing store 𝑄𝑅1 is determined using Equation 35. This flow depends on 

the level in the routing store 𝑅1 and the maximum capacity 𝑋3. The non-linear routing store is 

afterwards updated for the next timestep (Equation 36). 

𝑄𝑅1 = 𝑅1 {1 − [1 + (
𝑅1

𝑋3
)
4
]
−1/4

}       [Eq. 35] 

𝑅1 = 𝑅1 − 𝑄𝑅1          [Eq. 36] 

Exponential routing store 
The exponential routing store content 𝑅2 is updated by adding 40% of the water routed by unit 

hydrograph 1 (𝑄9) and the groundwater exchange of the exponential routing store 𝐴𝐹𝑅2 (Equation 37). 

There is no maximum capacity of the exponential routing store. 

 𝑅2 = 𝑅2 + 0.4𝑄9 + 𝐴𝐹𝑅2      [Eq. 37] 

The output of the non-linear routing store 𝑄𝑅2 is computed using Equation 38. The output only depends 

on the level of the routing store 𝑅2 and an exponential store depletion coefficient 𝑋6 (Michel et al., 

2003). The routing store is updated afterwards (Equation 39). 

𝑄𝑅2 = 𝑋6 ∙ ln (1 + 𝑒𝑥𝑝 (
𝑅2

𝑋6
))       [Eq. 38] 

𝑅2 = 𝑅2 − 𝑄𝑅2        [Eq. 39] 
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5. Total streamflow 

The water in the direct branch is fed by the output of unit hydrograph 1 𝑄1. Besides the catchment 

exchange 𝐴𝐹3, the water is discharged directly by 𝑄𝐷 (Equation 40). 

𝑄𝐷 = 𝑄1 − 𝐴𝐹3        [Eq. 40] 

The total streamflow (𝑄) is finally obtained by adding the 4 flow components (Equation 41). 

𝑄 = 𝑄𝑅1 + 𝑄𝑅1𝑑 + 𝑄𝑅2 + 𝑄𝐷       [Eq. 41] 

2.2.2.2. Model parameters 
The 6 parameters of the GR6J model are summarized in Table 2.  

Table 2 - Description of the parameters in the GR6J model. 

 Unit Description P. Unit Description 

X1 [mm] Capacity of the production store X4 [day] Time base of unit hydrograph  

X2 [mm/day] Catchment exchange coefficient X5 [-] Threshold for catchment exchange 

X3 [mm] Capacity of the non-linear routing 
store R1 

X6 [mm] Exponential routing store depletion 
coefficient  

 

2.3. Data description 
2.3.1. Historic discharge timeseries 

Daily discharge data for the period 1968-2021 was used. This is an observed discharge timeseries at the 

outlet point of the Lesse, near Gendron (50°12'40.8"N, 4°57'46.1"E). For the period 1968-1998, the 

discharge series was obtained from SETHY/WACONDAH. For 1998-2021, the discharge series was 

obtained from the annual reports from Service Public de Wallonie (2023). Because of unrealistic values, 

the data was pre-processed as described in Appendix A. 

2.3.2. Historic climatic timeseries 
Basin-averaged daily precipitation and potential evapotranspiration timeseries for the period 1968-

2021 were used. These timeseries were provided by KNMI and were based on a combination of the 

HYRAS and E-OBS dataset. HYRAS data was used in the part of the study area for which this data was 

accessible. For the remaining part of the study area, E-OBS data was used. E-OBS is a daily high-

resolution gridded dataset for various climate variables such as precipitation and minimum, maximum 

and mean surface temperature, which is based on measurements that are part of the European Climate 

Assessment & Dataset project (Cornes et al., 2018). Similarly, HYRAS is a high-resolution gridded daily 

dataset for various climate variables as well. This dataset is based upon measurements gathered for 

Germany and 9 neighbouring countries (Razafimaharo et al., 2020). The potential evapotranspiration 

timeseries were estimated using the Makkink formula (Hooghart & Lablans, 1988) by KNMI. 

2.3.3. Future climatic timeseries 
The recently published KNMI’23 climate scenarios were used as future climatic timeseries. In October 

2023, the KNMI published its KNMI’23 scenarios (Van Dorland et al., 2023), which are a translation of 

the insights from the most recent IPCC report (IPCC, 2021) to the Netherlands and the Rhine and Meuse 

basin. These scenarios are plausible future climate states, containing sets of climatological variables that 

are to a certain degree physically consistent (Van Dorland et al., 2023). The KNMI’23 climate scenarios 

are based on climate simulations run with global circulation model EC-EARTH and downscaled with 

regional climate model RACMO (Van Dorland et al., 2023).  

Four different scenarios were used, which all describe a possible climate state for time horizon 2100. 

The scenarios are constructed around two axes, which was done to decouple policy uncertainty from 

scientific uncertainty (Van Dorland et al., 2023). The first axis represents the uncertainty in future 
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greenhouse gas emissions, being either high (H) or low (L). The second axis represents uncertainty in 

the regional climate response, which could either be dry (d) or wet (‘nat’, n). This leads to four climate 

scenarios, which are the cornerstones between which the climate is likely to change (Figure 6). No 

probabilities or estimates of likelihood can be assigned to the scenarios. 

 
Figure 6 - Overview of the KNMI'23 climate scenarios considered in this study. Figure adopted from KNMI (2023). 

The first axis thus represents the uncertainty in future greenhouse gas emissions, which is policy 

uncertainty. The amount of emission is uncertain because this depends on global climate policy, 

demographic, technological and socio-economic factors. Upper and lower boundaries for future 

emissions are used, to emphasize the consequences of international choices of mitigation policies (Van 

Dorland et al., 2023). The upper boundary is the SSP5-8.5 pathway, which is considered as the base line 

of not taking any mitigation measures at all, resulting in 50% likelihood of 4.9⁰C global warming in 2100 

compared to the pre-industrial period. The lower boundary is the SSP1-2.6 pathway, which is close to 

the mitigation pathway that is aimed for in the Paris Agreement. This pathway is 50% likely to result in 

1.7⁰C global warming in 2100 compared to pre-industrial conditions.  

The second axis represents the uncertainty in regional climate response. Even though much progress 

has been made in understanding and quantifying climate feedbacks, the response of the climate to a 

doubling of the CO2 concentration (climate sensitivity) is still very uncertain (IPCC, 2021). The output of 

climate models shows a large spread, because climate models differ in the way relevant processes are 

parametrized (Van Dorland et al., 2023). The KNMI’23 scenarios are based on two storylines of how 

precipitation can change. The storylines are designed such that they span the CMIP6 models spread in 

precipitation changes in the Netherlands and Rhine and Meuse basins. The CMIP6 models (IPCC, 2021) 

consistently project an increase in winter precipitation and decrease in summer precipitation but differ 

in their sign for annual precipitation. Therefore, the 33 CMIP6 models were partitioned based on their 

combined projected change of winter, summer and annual precipitation. The ‘dry-trending group’ 

contains the 11 models that projected the largest trends towards a drier future climate, which means a 

decrease in annual total precipitation, a strong decrease in summer precipitation and a small increase 

in winter precipitation. The ‘wet-trending’ group contains the 11 models with the largest trend towards 

a wetter future climate. 

This study used the bias-corrected model output of the climate scenarios for time-horizon 2100. This is 

the output from climate model RACMO but corrected using Quantile Delta Mapping (Cannon et al., 

2015) because the RACMO climatology differs from the observed climatology. The reasons for bias-
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correction are further explained in section 3.1.2.1. For all scenarios, a dataset was used containing 8 

timeseries of basin-averaged precipitation and potential evapotranspiration for the surrounding 30-year 

period (2086-2115). All 8 timeseries (ensemble members) were used to capture the climate variability. 

In the KNMI’23 scenarios, the potential evapotranspiration was calculated using the Makkink formula 

(Van Dorland et al., 2023). 

For each climate scenario and time-horizon, bias-corrected RACMO model output was available for 

reference period 1991-2020 as well. The bias-corrected model output for reference period 1991-2020 

of scenario 2050Md (time horizon 2036-2064, moderate emissions, dry-trending group) showed the 

best statistical match with observations and was therefore recommended by the KNMI (2023a) as the 

reference climate. This reference climate data consists of 8 ensemble members of 30 years as well. The 

use of the reference climate is further discussed in the chapter 3.
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3. METHODS 
An overview of the methodology used to evaluate the robustness of the HBV and GR6J model for 

simulating the impact of climate change on high and low streamflow in the Lesse is given in Figure 7.  

 
Figure 7 - Overview of methodology. Green frames indicate to which research question (RQ) each step belongs. 

To evaluate the robustness, both models were evaluated under historic climatic conditions and under 

climatic conditions that resemble future conditions (RQ3). Next to that, model parameters were 

calibrated on historic conditions and conditions that resemble future conditions (RQ4). As a preparation 

for this, historic periods were selected that resemble future conditions (RQ2). For this, it was necessary 

to know which meteorological indicators correlate with high and low flows, and how these indicators 

were projected to change in the future (RQ1). Lastly, the impact of climate change on high and low 

streamflow in the Lesse was determined for various climate scenarios, hydrological model structures 

and calibration approaches (RQ5). The method per research question is explained in more detail below. 

3.1. RQ1: Changes in important meteorological indicators 
Evaluating the robustness of models in simulating the impact of climate change on high and low 

streamflow demanded for an understanding of the meteorological conditions that lead to these flow 

conditions and insight in how these meteorological conditions are expected to change in the future. 

A single meteorological indicator for high flows was obtained that describes the meteorological 

conditions driving high flows, and a single meteorological indicator for low flows was obtained that 

describes the meteorological conditions that drive low flows. Section 3.1.1 describes the method used 

to obtain these meteorological indicators for high and low flows. Section 3.1.2 describes the method 

used to determine how these meteorological indicators are expected to change in the future.  

3.1.1. Meteorological indicators for high and low flows 
3.1.1.1. Step 1 - Description of high and low flows 

High flows 
High flows were described by the annual maximum daily discharge (𝑄𝑚𝑎𝑥), following studies on the 

implications of the KNMI climate scenarios for discharges of the Rhine and Meuse (Buitink et al., 2023; 

Sperna Weiland et al., 2015) and a model robustness study focused on high flows (Vormoor et al., 2018). 
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Annual maxima are of major importance for water managers, as series of annual maxima are often used 

for deriving design water levels for flood protection (Diermanse et al., 2010).  

A series of annual maximum daily discharges was obtained by taking the maximum of all daily discharge 

values in one hydrological year. A hydrological year from the 1st of September to the 31st of August was 

used. The reason for this is explained in Appendix B. With 54 years of available data and a hydrological 

year from September to August, a series of 53 annual maximum daily discharges was obtained.  

Low flows 
For low flows, it is uncommon to use the annual minimum daily discharge, as this discharge is very 

sensitive to measurements errors (Smakhtin, 2001). An overview of low-flow indices was provided by 

Smakhtin (2001). These indices all describe different aspects of the low-flow regime, however, most of 

them are strongly intercorrelated. It was chosen to present the magnitude of a low flow by the annual 

minimum 7-day mean discharge (𝑄7𝑚𝑖𝑛), following the climate change impact studies by Buitink et al. 

(2023) and Sperna Weiland et al. (2015). 

A series of annual minimum 7-day mean discharges was obtained by taking the moving average 

discharge over a period of 7 days and taking the minimum value in each hydrological year. The 7-day 

mean discharge at day 𝑡 represents the average discharge over the surrounding 7-day period (day 𝑡 − 3 

to day 𝑡 + 3). For low flows, the hydrological year was similar to the calendar year (January -December), 

as described in Appendix B. Thus, a series of 54 annual minimum 7-day mean discharges was obtained. 

3.1.1.2. Step 2 - Correlation analysis 
High flows 
Correlation analysis was performed to find a meteorological indicator for high flows that best resembles 

the meteorological conditions that drive high flows. The correlation between several potential 

meteorological indicators for high flows and the annual maximum discharge was determined and the 

indicator with the highest correlation was selected. It was important that this meteorological indicator 

for high flows was not only justifiable from a statistical point of view (high correlation), but also  

hydrologically meaningful. 

The most important meteorological indicator for annual maximum discharges was expected to be the 

precipitation preceding the discharge peak. High flows typically occur during periods of intense 

precipitation, leading to a sudden increase in water flow within rivers. This is especially the case when 

the soil is already saturated due to previous precipitation (saturation overland flow) or when 

precipitation exceeds the infiltration capacity of the soil (infiltration excess overland flow) (Kirkby, 1988). 

The correlation between the annual maximum discharge and the preceding precipitation sum over 

various temporal windows was analysed. The temporal window was varied between 1 and 10 days, as 

this was physically the most meaningful range based on the scale of the catchment. These precipitation 

sums either included or excluded the day of the discharge peak. For example, a 3-day precipitation sum 

including the day of the annual maximum discharge (sum of day 0, 1 and 2, i.e. 𝑃3𝑖) was computed, as 

well as a 3-day precipitation sum excluding the day of the peak discharge (sum of day 1, 2 and 3, i.e. 

𝑃3𝑒). This is illustrated in Figure 8.  
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Figure 8 - Illustration of the different temporal windows of precipitation sums preceding the discharge peak. Green lines 

indicate the precipitation sums including (i) the day of the annual maximum discharge, red lines indicate the precipitation 
sums excluding (e) the day of the annual maximum discharge. The temporal windows varied between t=1 and 10 (n) days. 

The Pearson correlation coefficient was computed to quantify the correlation between the series of 

annual maximum daily discharges and the series of each of the preceding precipitation sums. The 

Pearson correlation coefficient is the most common way for measuring a linear association between 

two variables (Helsel et al., 2020). A higher precipitation sum was expected to result in a higher annual 

maximum daily discharge, so a positive correlation was expected. The temporal window with the highest 

positive correlation was used for the next steps.  

Low flows 
Just as for high flows, correlation analysis was performed between the annual minimum 7-day mean 

discharge and several potential meteorological indicators for low flows. Again, the meteorological 

indicator for low flows had to be both hydrologically meaningful and statistically justifiable.  

Demirel et al. (2013b) found that, in rainfed sub-basins of the Rhine, precipitation and potential 

evapotranspiration with large temporal scales (order of months) are important when predicting low 

flows. This is in line with the study of de Wit et al. (2007) on the Meuse basin, which hints at the 

importance of the preceding winter precipitation on low flows in summer. The combination of 

precipitation and potential evapotranspiration was thus important, as well as the consideration of larger 

temporal windows.  

For these reasons, the correlation between the annual minimum 7-day mean discharge and the 

preceding potential precipitation deficit over various temporal windows was determined. The potential 

precipitation deficit (𝑃𝑃𝐷) is the difference between the amount of potential evapotranspiration (𝑃𝐸𝑇) 

and the amount of precipitation (𝑃) over a certain period of time (𝑛 days) (Equation 42). The potential 

precipitation deficit is a widely used indicator for characterizing meteorological droughts by the KNMI 

(Sluijter et al., 2018). A negative potential precipitation deficit indicates a potential precipitation surplus. 

𝑃𝑃𝐷 =  ∑ (𝑃𝐸𝑇𝑖)
𝑛
𝑖=0 − ∑ (𝑃𝑖)

𝑛
𝑖=0      [Eq. 42] 

The period started 𝑛 − 1 days before the day with the annual minimum 7-day mean discharge and 

ended at the day of the annual minimum 7-day mean discharge. The day of the annual minimum 7-day 

mean discharge is the middle day of the 7-day period featuring the minimum 7-day mean discharge, as 

stated in section 3.1.1.1. The temporal window of the potential precipitation deficit was varied between 

𝑛=30 and 360 days, with steps of 30 days. This represented periods of 1 to 12 months (Figure 9). 
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Figure 9 - Illustration of the different temporal windows considered for the potential precipitation deficit (PPD). 

Just as for high flows, the Pearson correlation coefficient was used as a measure for the correlation. The 

correlation between the series of annual minimum 7-day mean discharges and the series of preceding 

potential precipitation deficits over various temporal windows was determined. A higher potential 

precipitation deficit was expected to result in a lower annual minimum 7-day mean discharge, therefore 

a negative correlation was expected. The temporal window with the most negative correlation was thus 

used for the next steps. Due to a lack of data, the preceding potential precipitation deficit could not be 

determined for all considered temporal windows in the first year. Therefore, only the observations of 

the period 1969 -2021 (𝑛=53) were used.  

3.1.1.3. Step 3 - Exceedance frequency 
High flows 
In order to determine how the meteorological indicator for high flows obtained in the previous step was 

expected to change in the future, precipitation and discharge data would be needed for the future. 

However, as described in section 2.3.3, only precipitation and potential evapotranspiration timeseries 

were available for the future. An indicator thus had to be obtained that could be determined based on 

precipitation and potential evapotranspiration only. For this reason, a precipitation sum with a temporal 

window and an appropriate annual exceedance frequency was determined that corresponded the best 

with the precipitation sum preceding the annual maximum daily discharge. 

The procedure for this was as follows: For each hydrological year, the precipitation sum with the 

temporal window of step 2 (𝑡) preceding the annual maximum daily discharge was determined. This 

was called the precipitation sum of interest (𝑃𝑡_𝑜𝑖). Then, the precipitation sum with that temporal 

window (𝑃𝑡) was determined for each day of the year. The exceedance frequency (𝐹𝐸) is the number 

of days in a hydrological year for which the 𝑃𝑡 was larger than the 𝑃𝑡_𝑜𝑖. The exceedance frequency 

thus was a number between 0 and 365. This is illustrated in Figure 10. Here, the orange boxes indicate 

the days with a smaller precipitation sum than the precipitation sum preceding the annual maximum 

discharge, and the blue boxes indicate days with a higher precipitation sum. The number of blue boxes 

was thus the exceedance frequency.  
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Figure 10 - Illustration of the procedure for determining the exceedance frequency 𝐹𝐸 of the precipitation sum of temporal 

window t that precedes 𝑄𝑚𝑎𝑥 (𝑃𝑡_𝑜𝑖, green). The orange (blue) boxes indicate the days with a precipitation sum of temporal 
window t lower (higher) than the preceding precipitation sum 𝑃𝑡_𝑜𝑖. In this example, only 10 days are shown, and it is 

assumed that for the other days, the precipitation sum is not exceeded. 

The exceedance frequency for each hydrological year (53 years in total) was determined and the median 

exceedance frequency was taken. The preceding precipitation sum with the temporal window of step 2 

and the median annual exceedance frequency of this step was used as meteorological indicator for high 

flows. The median value was chosen over the mean because of the skewed distribution that was 

observed in exceedance frequencies. The median value is a more representative value, which is less 

affected by outliers or extreme occurrences.  

Low flows 
For low flows, the potential precipitation deficit with a certain temporal window that precedes the 

annual minimum 7-day mean discharge was determined as an indicator. However, just as for high flows, 

it was required that an indicator was obtained that could be determined based on precipitation and 

potential evapotranspiration only. Following the same approach as for high flows, a potential 

precipitation deficit over a certain temporal window was thus determined for every day in the year. The 

number of days for which the potential precipitation deficit was larger than the potential precipitation 

deficit preceding the annual minimum 7-day mean discharge was called the exceedance frequency. The 

preceding potential precipitation deficit with the temporal window of step 2 and the median 

exceedance frequency of this step was used as meteorological indicator for low flows. 

3.1.2. Changes in the future 
This section describes the method used to determine how the meteorological indicators for high and 

low flows are expected to change in the future. It was not possible to compare the future climatic 

timeseries and the observations directly, as this does not only show the impact of climate change, but 

also the possible climate model bias. The magnitude of the climate model bias was determined by 

comparing the observations with the reference climate. Based on this, the future climatic timeseries 

were bias-corrected and compared with the observations.  

3.1.2.1. The reason for bias-correction 
The reference climate should represent the climate as observed in the period 1991-2020. However, 

discrepancies between the reference climate and the observations exist for several reasons (Van 

Dorland et al., 2023). First of all, some meteorological processes are poorly represented in the RACMO 

climate model which was used for constructing the reference climate. Next to that, the land-use map 

and topography in RACMO and the climatological forcing used as input for the RACMO model may differ 

from reality, leading to biases in the climatology of RACMO. Thirdly, the resolution of the RACMO model 

is 12x12 km, while observations are local. Last but not least, the climatology in the reference climate 

will always differ from observations due to natural variability. To isolate the effects of climate change, 

Van Dorland et al. (2023) applied a bias-correction for each variable in the RACMO climate model using 

the Quantile Delta Mapping method. The bias-corrected model output was used in this study. 
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However, comparing the meteorological indicators computed from the observed dataset with the 

meteorological indicators computed from the reference climate data still showed a substantial 

difference. The reason for this could be that the bias-correction was not performed specifically on the 

meteorological indicators for high and low flows. As a result, the difference in meteorological indicators 

between observations and future scenarios may be due to the combination of climate change and a 

model bias. This is illustrated in Figure 11A. Therefore, a model bias-correction was applied to the 

meteorological indicators in the reference climate and future scenarios. These values were adapted 

such that the reference climate matched the observations. As a result, the difference between observed 

values and values in the future was due to climate change only. This is illustrated in Figure 11B. 

 
Figure 11 - Fictive illustration of the bias-correction. A) The fictive values of meteorological indicators in the observations 

(blue), reference climate (grey) and future scenario (orange) before bias-correction. The difference between observations and 
future is due to a climate model bias and the impact of climate change. B) The fictive values after bias-correction. Here, the 

differences between observations and future are due to the impact of climate change only. 

3.1.2.2. Applying the bias-correction 
To determine the magnitude of the model bias, the relative difference between the meteorological 

indicators for high flows from the observations and the reference climate was computed. This relative 

difference was used to correct the values of the meteorological indicator for high flows in the future 

scenarios. This means that, when the values in the observations were for example 5% lower than the 

values in the reference climate, the values in the future scenario were corrected by making them 5% 

lower. A relative bias was preferred over an absolute bias (i.e. applying the absolute difference between 

observations and reference climate on the future scenario), as a relative bias was used in most bias-

correction methods for variables with an absolute zero (ratio variables), such as precipitation and 

potential evapotranspiration (Cannon et al., 2015). 

High flows 
The reference climate represents the climate of 1991-2020 and thus only the observations from the 

period 1991-2020 were used. This 30-year period contains 29 hydrological years, therefore 29 observed 

values of the meteorological indicator for high flows were computed. For the reference climate, 8 

ensemble members with each 30-years of data were available. The meteorological indicator for high 

flows was determined for each available hydrological year in the reference climate, leading to (29∙8=) 

232 values of the meteorological indicator. To make it possible to compare 29 observations with 232 

values in the reference climate, the 232 values of the reference climate were sorted and clustered into 

29 groups of 8 indicators. The average value of each group was compared with the sorted 29 

observations. This led to a percentual difference for 29 pairs of meteorological indicators. The average 

percentual difference was used as the relative bias. This procedure is illustrated in Figure 12.  



3  - Methods 

 
34 

Just as for the reference climate, 8-ensemble members with each 30 years of data were available for 

each of the future scenarios. Therefore, 232 values of the meteorological indicator for high flows were 

computed for each future scenario as well. These values were adjusted using the relative model bias.  

 
Figure 12 - Illustration of the procedure used to compute the average relative bias between observations and reference. The 

29 values of observations were ranked from low to high. The 232 values of the reference climate were sorted from low to high 
as well, and clustered in 29 groups of 8 values. The average of each group was compared with the 29 values of the 

observations by taking a relative difference. The average of this relative difference was used for further steps. 

Low flows 
For the meteorological indicator for low flows, a similar procedure as for high flows was used. However, 

as the meteorological indicator for low flows was a potential precipitation deficit, consisting of a 

precipitation and potential evapotranspiration component, the relative bias was not determined 

directly. Instead, the relative bias was determined separately for the precipitation sum corresponding 

to the potential precipitation deficit, as well as for the potential evapotranspiration sum corresponding 

to the potential precipitation deficit. Then, the precipitation sum and potential evapotranspiration sum 

corresponding to the potential precipitation deficits in the future were corrected using these biases. 

With these new values, the corrected values of the potential precipitation deficits were determined.  

It was consciously chosen not to use more complicated statistical bias-correction methods such as the 

Quantile Delta Mapping method used by Van Dorland et al. (2023), as only 29 values of the observations 

were available. This limited number of observations would lead to large uncertainties in the cumulative 

distribution function needed for the Quantile Delta Mapping method.  

3.1.2.3. Changes in the future 
After the bias-correction, boxplots were made from the series of meteorological indicators for high and 

low flows in the future, as well as for the indicators computed from observed data. Comparing these 

boxplots gave insight in the expected changes of these indicators in the future, focusing on normal and 

extreme years. Normal years were defined as the median of all years in the future and extreme years 

were years for which the meteorological indicator is exceeded 5% of the time.  

3.2. RQ2: Selection of historic periods resembling future 
climatic conditions 

This section describes the method used to select historic periods that resemble future conditions. A set 

of historic periods was selected for the 4 future scenarios and for normal and extreme years. This step 

thus led to (4∙2=) 8 sets of selected historic periods for high flows and 8 sets for low flows. The historic 

periods were selected based on the selected meteorological indicators for high and low flows of RQ1.  

High flows 
A historic hydrological year in the period 1968-2021 was selected, when the meteorological indicator 

for high flows of that hydrological year was close to the meteorological indicator for high flows expected 

in the future. For selection of historic years resembling normal future years, the median of the 
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meteorological indicators of a future scenario was used. For extreme years, the meteorological indicator 

of a future scenario that is exceeded 5% of the time was used.  

As the expected value for the meteorological indicator for high flows in a future scenario never perfectly 

matched the meteorological indicator observed in a historic hydrological year, a historic hydrological 

year was selected when it felt within the 10% bandwidth around the expected value for a future 

scenario. This means that the year was selected when the meteorological indicator for high flows in that 

year was between 5% lower or 5% higher than the expected future value. 

Low flows 
For selecting historic hydrological years that resemble future low flow conditions, a similar procedure 

was adopted. For low flows however, a 20% bandwidth was used. It is chosen to have a 20% bandwidth, 

because of the larger variability in meteorological indicators for low flows. This means that a historic 

year was selected when the meteorological indicator for low flows was between 10% lower and 10% 

higher than the expected value.  

3.3. RQ3: Evaluation of performance for simulation under 
different climatic conditions 

To assess the robustness of the HBV and GR6J model, it was first tested if and how the performance of 

a model changes under changing climatic conditions. A flowchart for this is given in Figure 13. 

Various differential split-sample tests (DSSTs) were used to test if and how the performance of a model 

changes under changing climatic conditions. In these tests, the model was validated on historic periods 

that were selected in RQ2. The calibration was on non-selected historic periods. In case the performance 

in the validation period was as good as the performance in the calibration period, the model could be 

defined as robust. However, most hydrological models perform worse in a validation period than in a 

calibration period (Ji et al., 2023). Therefore, two split-sample tests (SSTs) were used as a reference. In 

the SSTs, the model was calibrated on the first half of the observed data and validated on the second 

half of the observed data, and vice versa. A model was robust in case the model did not show more 

notable deterioration in performance in the DSST than in the SST. 

 

Figure 13 - Overview of methodology for RQ3. The procedure consisted of two SSTs (‘SST_I’ and ‘SST_II’) and a number of 
DSSTs. The green frame indicates that a number of DSSTs is formulated, related to the climate scenario and type of year. 

The robustness of the HBV and GR6J model was evaluated for simulation of high flows, low flows and a 

combination of high and low flows. For each type of flow, the same testing methodology (Figure 13) was 
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used. However, the years selected for validation in the DSSTs differed per type of flow, as well as the 

selected calibration parameters and employed objective function. Section 3.3.1 provides an overview 

of the testing schemes for high flows, low flows and a combination of high and low flows. In section 

3.3.2, the calibration procedure is described in more detail. 

3.3.1. Testing schemes 
High flows 
For evaluating the robustness of models for simulating high flows, 2 SSTs and 4 DSSTs were formulated. 

An overview of the periods used for calibration and validation for each test is given in Figure 14.  

 
Figure 14 - Visualisation of the periods used for calibration (blue) and validation (orange) in the tests for simulation of high 

flows. Grey periods were not included in calibration or validation. The codes of the different tests are made up of the type of 
flow (High (H)), the type of test (SST or DSST), the type of year (Normal (N) or Extreme (E)) and the climate scenario (Figure 6). 

For the SSTs, the type of year and climate scenario is not relevant. In these tests, ‘_I’ and ‘_II’ are added. ‘SST_I’ means 
calibration on period 1996-2020 and validation on period 1970-1994. ‘SST_II’ means the opposite. 

For the STTs, the period of 54 years for which historic data is available was divided in 2 periods of 25 

years each. The first period was from 1/1/1970 to 31/12/1994 and the second period was from 

1/1/1996 to 31/12/2020. The first two years (1968 and 1969) were used as warm-up period, to limit 

the effect of storage initialization. 1995 was not included in the calibration or validation, to make sure 

that both periods were independent of each other and 2021 was not included to make sure that both 

periods were of equal length. 

Four DSSTs were formulated. In the first DSST, the validation periods matched the periods selected for 

the climate scenario with the smallest meteorological indicator for high flows in normal years, which is 

scenario ‘2100Ld’. This is the scenario for which the smallest high streamflow in normal years is 

expected. The validation periods of the second DSST were the periods selected for the climate scenario 

with the largest meteorological indicator for high flows in normal years, which is scenario ‘2100Hn’. This 

is the scenario for which the highest high streamflow in normal years is expected. Then, in the third and 

fourth DSST, the validation periods matched the periods for the climate scenarios with the smallest and 

largest meteorological indicator for high flows in extreme years, thus the climate scenarios for which 

the lowest and highest high streamflow are expected in extreme years. It was chosen to select two 

scenarios for normal years and two scenarios for extreme years, as these scenarios describe the limits 

between which high streamflow is likely to change for normal and extreme years in the future. A model 

was proven to be robust for all scenarios when the model was robust for these scenarios. In the DSSTs, 

all years that were not selected for validation were used in the calibration period, except 1968, which 

was used as warm-up period and thus excluded from calibration and validation.  
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An overview of the testing framework is given in Appendix C as well, which also shows the number of 

years selected for calibration and validation in each test. 

Low flows 
For evaluating the robustness of models for simulating low flows, 2 SSTs and 4 DSSTs were formulated. 

An overview of the periods used for calibration and validation for each test is given in Figure 15.  

 
Figure 15 - Similar to Figure 14, but for the simulation of low flows. Type of flow is ‘L’ (Low). 

The selected tests were based on the same reasoning as for high flows, which means the scenarios were 

selected which showed the lowest and highest meteorological indicator for low flows for both normal 

and extreme years. These scenarios thus represent the boundaries between which low streamflow is 

expected to change in normal and extreme years in the future. For the last DSST, scenario ‘2100Ld’ was 

selected, as this was the scenario with the highest meteorological indicator for low flows in extreme 

years for which observed years were selected that resembled the conditions in this scenario. The 

validation period of test ‘N_2100Hd’ was the same as the validation period of test ‘E_2100Ld’. 

High and low flows 
For evaluating the robustness of models for simulating both high and low flows, two SSTs and six DSSTs 

were formulated. An overview of the periods used for calibration and validation for each test is given in 

Figure 16. 

 
Figure 16 - Similar to Figure 14, but for the simulation of high and low flows. Type of flow is ‘B’ (Both). 

The selected SSTs were based on the same reasoning as for high and low flows. Six DSSTs were 

formulated. Four tests were formulated for normal years (‘N_2100Ld’, ‘N_2100Hn’, ‘N_2100Ln’ and 
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‘N_2100Hd’), one for each scenario that was included in the DSSTs for either high flows or low flows. 

For extreme years, DSSTs for scenarios ‘E_2100Ld’ and ‘E_2100Ln’ were formulated, as for these 

scenarios both years were selected for high flows and low flows. Appendix C shows the years selected 

for validation in all DSSTs, categorized into years selected based on high flows and based on low flows. 

3.3.2. Calibration procedure 
The HBV and GR6J models (section 2.2) were calibrated using the SCEM-UA algorithm (section 3.3.2.1). 

This algorithm uses a predefined objective function (section 3.3.2.2) and parameter space (section 

3.3.2.3) to find the optimal parameter set. A sensitivity analysis was performed to select the most 

important parameters to be calibrated (section 3.3.2.4).  

Parameters were calibrated on the different periods described in section 3.3.1. Although discontinuous 

sub-periods were used for model calibration and validation, the models were run continuously over the 

period 1968-2021. Only the periods corresponding to the calibration or validation periods were 

considered for calculating the objective function. The storages in the HBV model (SM, UZ and LZ) and 

GR6J model (S, R1 and R2) were initialized at 0 mm. The effect of this storage initialization was checked 

to be negligible because of the warm-up period that was included in all tests.  

3.3.2.1. SCEM-UA algorithm 
Automatic model calibration methods are objective and relatively easy to implement (Vrugt et al., 2003). 

Therefore, an automatic model calibration method called the Shuffled Complex Evolution Metropolis 

(SCEM-UA) algorithm (Vrugt et al., 2003) was used. This optimization algorithm was selected due to its 

proven fast converge to a global optimum (Osuch et al., 2015; Van Den Tillaart et al., 2013; Vrugt et al., 

2003). The SCEM-UA algorithm is an automatic global searching method  based on the SCE-UA algorithm 

of Duan et al. (1992). The SCEM-UA algorithm, a Markov Chain Monte Carlo (MCMC) sampler, uses the 

strengths of the Metropolis algorithm, controlled random search, competitive evolution and complex 

shuffling to find the optimal parameter set in a parameter space (Vrugt et al., 2003).  

In short, a number (𝑠) of parameter sets was randomly generated within the predefined parameter 

space. Based on the objective function for each parameter set, sets were ranked and partitioned in a 

number (𝑞) of complexes and sequences. The Sequence Evolution Metropolis (SEM) algorithm was used 

to find new candidate parameter sets based on the objective function of previous sets. As a result, the 

algorithm continuously evolved the population towards parameter sets with the best objective function. 

This is called genetic drift. The algorithm stopped when the maximum number of iterations was reached. 

In this study, no convergence criterion was used to terminate the algorithm before reaching the 

maximum number of iterations. The SCEM-UA algorithm is extensively described in Vrugt et al. (2003). 

Table 3 shows the settings that were used for the SCEM-UA algorithm and the explanation for choosing 

these settings. Most settings were based on the recommendations of Vrugt et al. (2003) for complex 

problems. The termination settings were configured such that convergence and a stable objective 

function value was found. This is shown in Appendix D.  

Table 3 - Settings for the SCEM-UA algorithm. 

 Setting Description Value Explanation 

Algorithmic 
settings 
 

q Number of sequences or 
complexes. 

10 Recommended by Vrugt et al. (2003) for 
complex problems. 

s Number of initial values. 250 Recommended by Vrugt et al. (2003) for 
complex problems. 

Basic 
settings 

L Offspring value. m/5 Value used in Van Den Tillaart et al. 
(2013) 

T Predefined likelihood ratio. 106 Basic choice, used in the case studies of 
Vrugt et al. (2003). 
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cn Jump rate. 2.4/√𝑛 
 

Basic choice, recommended by Vrugt et 
al. (2003). 

Termination 
settings  

n Number of iterations. 5000 Turned out to be sufficient iterations to 
find convergence and a global optimum.  

GR Gelman-Rubin convergence 
criterion. Score close to 1 
indicates convergence. 

Not  
included 

Including this convergence criterion did 
not lead to a global optimum. Excluding 
the criterion still led to a fast 
computation. 

 

3.3.2.2. Objective functions 
Sorooshian & Gupta (1995) described the goal of calibration as “selecting model parameters such that 

the model simulates the hydrological behaviour of the catchment as closely as possible”. Depending on 

the purpose of simulation, it was determined which hydrological behaviour should be simulated as 

closely as possible and thus which objective function was used. In general, four different objectives can 

be considered, namely (1) a good water balance, (2) a good overall agreement of the shape of the 

hydrograph, (3) a good agreement of high flows and (4) a good agreement of low flows (Madsen, 2000). 

This study used a multi-objective function, which combines multiple single objectives functions. The use 

of a multi-objective function resulted in a single-objective optimalisation problem which was solved 

with the SCEM-UA algorithm. The robustness of models for simulating high flows, low flows and a 

combination of high and low flows was evaluated. As the purposes for simulating high and low flows 

differ, a multi-objective function was selected for each type of flow. The multi-objective function was 

also used as performance criterion in the validation period. 

High flows 
For simulating high flows, model parameters were selected such that the model has a good agreement 

of peak flows. For this objective, a weighted form of the commonly used Nash-Sutcliffe criterion was 

used (𝑁𝑆𝑤, Equation 43), which was introduced by Hundecha & Bárdossy (2004). A weight 𝑤𝑖, equal to 

the observed flow at day 𝑖, was used to give emphasis to high flows. The mismatch between high 

observed and simulated discharge is penalized proportionally to the observed discharge value and 

therefore calibration on 𝑁𝑆𝑤 proves to provide good simulations of high flows in Vormoor et al. (2018) 

and Ott et al. (2013) as well. The value of 𝑁𝑆𝑤 ranges between  -∞ and 1, with an optimum value of 1.  

𝑁𝑆𝑤 = 1 −
∑ [𝑤𝑖(𝑄𝑠𝑖𝑚

𝑖 −𝑄𝑜𝑏𝑠
𝑖 )

2
]𝑛

𝑖=1

∑ [𝑤𝑖(𝑄𝑜𝑏𝑠
𝑖 −𝑄𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅)

2
]𝑛

𝑖=1

 with 𝑤𝑖 = 𝑄𝑜𝑏𝑠
𝑖      [Eq. 43] 

𝑄𝑠𝑖𝑚
𝑖 : Simulated discharge at day 𝑖    

𝑄𝑜𝑏𝑠
𝑖 : Observed discharge at day 𝑖 

𝑄𝑜𝑏𝑠̅̅ ̅̅ ̅̅ : Mean observed discharge over 𝑛 days  
𝑛: The total number of timesteps 

Next to that, a correct water balance was important. This objective was reflected in the objective 

function 𝑅𝑉𝐸, which is the relative volume error (Equation 44). The 𝑅𝑉𝐸 varies between -∞ and ∞, 

with a perfect water balance leading to a 𝑅𝑉𝐸 of 0. In case the 𝑅𝑉𝐸 is shown as a percentage, Equation 

44 is multiplied by 100.  

𝑅𝑉𝐸 = 
∑ (𝑄𝑠𝑖𝑚

𝑖 −𝑄𝑜𝑏𝑠
𝑖 )𝑛

𝑖=1

∑ (𝑄𝑜𝑏𝑠
𝑖 )𝑛

𝑖=1

        [Eq. 44] 

Combining the objective functions, gave the multi-objective function 𝑦𝑤, defined in Equation 45. A 

comparable objective function was introduced by Akhtar et al. (2009). An optimal situation results in a 

𝑁𝑆𝑤 of 1 and a 𝑅𝑉𝐸 of 0, thus 𝑦𝑤 of 1. 

𝑦𝑤 =
𝑁𝑆𝑤

1+ |𝑅𝑉𝐸|
  with 𝑅𝑉𝐸 as a fraction     [Eq. 45] 
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Low flows  
For the simulation of low flows, the model should have a good agreement of low flows. Therefore, the 

Nash-Sutcliffe criterion calculated on inverse transformed flows (𝑁𝑆𝑖𝑛𝑣) was used (Equation 46). This 

objective function was introduced by Le Moine (2008) and recommended by Pushpalatha et al. (2012), 

as this criterion allows a focus on the lowest 20% of the flows over a study period. Just as the weighted 

Nash-Sutcliffe criterion, the 𝑁𝑆𝑖𝑛𝑣 ranges between  -∞ and 1, with an optimum value of 1. As the 

simulated and observed daily discharges are never equal to 0, the addition of a small constant 𝜀 

described by Pushpalatha et al. (2012) was not necessary. 

𝑁𝑆𝑖𝑛𝑣 = 1 −
∑ (𝑞𝑠𝑖𝑚

𝑖 −𝑞𝑜𝑏𝑠
𝑖 )

2
𝑛
𝑖=1

∑ (𝑞𝑜𝑏𝑠
𝑖 −𝑞𝑜𝑏𝑠̅̅ ̅̅ ̅̅ )

2𝑛
𝑖=1

 with 𝑞𝑖 =
1

𝑄𝑖
     [Eq. 46] 

A correct water balance was important for low flows as well. Therefore, a multi-objective function 𝑦𝑖𝑛𝑣, 

defined in Equation 47, was used for the simulation of low flows. An optimal situation would result in a 

𝑁𝑆𝑖𝑛𝑣 of 1 and a 𝑅𝑉𝐸 of 0, thus 𝑦𝑖𝑛𝑣 of 1. 

𝑦𝑖𝑛𝑣 =
𝑁𝑆𝑖𝑛𝑣

1+ |𝑅𝑉𝐸|
         [Eq. 47] 

Both flows 
For the simulation of both flows, the model should have a good agreement on both high flows and low 

flows and should have a correct water balance as well. Therefore, the objective functions for high flows 

and low flows were combined into the multi-objective function 𝑦𝑐𝑜𝑚𝑏 (Equation 48). An optimal 

simulation would result in a 𝑁𝑆𝑖𝑛𝑣 and 𝑁𝑆𝑤 of 1 and a 𝑅𝑉𝐸 of 0, thus 𝑦𝑐𝑜𝑚𝑏 of 1.  

𝑦𝑐𝑜𝑚𝑏 =
𝑁𝑆𝑤+𝑁𝑆𝑖𝑛𝑣

2(1+|𝑅𝑉𝐸|)
        [Eq. 48] 

3.3.2.3. Parameter space 
In the SCEM-UA algorithm, model parameters were drawn from a predefined parameter space. The HBV 

model contains 8 parameters (section 2.2.1). The lower and upper limits of the model parameters of 

the HBV model are listed in Table 4. These parameter limits were adopted from Osuch et al. (2015), that 

based their parameter space on various studies that used the HBV model in different catchments (Abebe 

et al., 2010; Booij & Krol, 2010; Deckers et al., 2010; Seibert, 1999, 2003). 

Table 4 - Parameter limits for the HBV model. 
 FC [mm] β [-] LP [-] α [-] Kf [day-1] Ks [day-1] PERC [mm/day] Cflux [mm/day] 

Lower limit 10 0.01 0.1 0.1 0.0005 0.0005 0.001 0 

Upper limit 1000 6 1 1 0.3 0.3 6 6 

 
The GR6J model contains 6 parameters (section 2.2.2). The lower and upper limits of the model 

parameters of the GR6J model are listed in Table 5. These limits were based on the parameter values 

obtained for the GR6J model on a large set of catchments in France (Pushpalatha et al., 2011). 

Table 5 - Parameter limits for the GR6J model. 
 X1 [mm] X2 [mm/day] X3 [mm] X4 [day] X5 [-] X6 [mm] 

Lower limit 0 -5 0 0 -5 0 

Upper limit 1500 5 500 10 5 20 

 

3.3.2.4. Selection of calibration parameters 
A univariate sensitivity analysis was conducted to select the most important parameters for calibration. 

By limiting the number of parameters to optimize, the calibration became more efficient and less 

computationally intensive. The objective function was insensitive for parameters when variations in 

parameters did not significantly affect the objective function. The parameters for which the objective 

function was insensitive were given a fixed default value (Pushpalatha et al., 2011; SMHI, 2006). As the 
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selection of parameters depended on the model structure and objective function, the sensitivity 

analysis was conducted for each model and type of flow separately. The results of the sensitivity analysis 

can be found in Appendix E. Table 6 shows for each model and type of flow which parameters were 

selected and which value was used in case a parameter was not selected. 

Table 6 - Selected parameters per model and type of flow. Blue cells with ‘Yes’ indicate that the parameter was selected for 
calibration. For non-selected parameters, the default value is stated. Default values of HBV are from SMHI (2006) and for 

GR6J from Pushpalatha et al. (2011). 

Selection of parameters HBV model 

Simulation of… FC β LP α Kf Ks PERC Cflux 

High flows Yes Yes Yes Yes Yes 0.005 day-1 1 mm/day 1 mm/day 

Low flows Yes Yes Yes 1 0.005 day-1 Yes Yes 1 mm/day 

High and low flows Yes Yes Yes Yes Yes Yes Yes 1 mm/day 

Selection of parameters GR6J model 

Simulation of… X1  X2  X3  X4  X5  X6 

High flows Yes Yes Yes Yes Yes 10 mm 

Low flows Yes Yes Yes Yes Yes Yes 

High and low flows Yes Yes Yes Yes Yes Yes 

 

3.4. RQ4: Evaluation of parameter sets for simulation 
under different climatic conditions 

To assess the robustness of the HBV and GR6J model, it was also tested to what extent model parameter 

values changed when the model was calibrated under changing climatic conditions. Large differences in 

model parameter sets indicate a low model robustness. In case model parameters remained 

approximately constant and the model performed well under changing climatic conditions, a model was 

robust. A flowchart is given in Figure 17.  

 
Figure 17 - Overview of methodology for RQ4. The models were calibrated on the periods not selected as periods resembling 
future conditions (blue) and on periods selected to resemble future conditions (orange). The green frame indicates that this 

was done for different combinations of climate scenario and type of year.  

The parameter sets of the HBV and GR6J model were evaluated for simulation of high flows, low flows 

and a combination of high and low flows. The same testing schemes as described in section 3.3.1 were 

used. This means that the models were calibrated on the periods that do not resemble future conditions 

(blue) and periods that resemble future conditions (orange), shown in Figure 14, Figure 15 and Figure 

16. The calibration procedure described in section 3.3.2 was used.  

3.5. RQ5: Projected impact of climate change 
This study focused on the robustness of hydrological models for projecting the impact of climate change 

on high and low streamflow in the Lesse. It was therefore interesting to see what the projected impact 

of climate change is and how this projected impact differed for different climate scenarios, hydrological 

model structures and calibration approaches. The projected impact of climate change on the annual 

maximum daily discharge (𝑄𝑚𝑎𝑥) and annual minimum 7-day mean discharge (𝑄7𝑚𝑖𝑛) in the Lesse was 

determined for 8 different scenarios. These scenarios were combinations of climate scenarios, 

hydrological model structures and calibration approaches (Table 7). The uncertainty of the impact due 
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to different climate scenarios was related to the uncertainty due to different hydrological model 

structures and calibration approaches by comparing the projected impact between the scenarios. 

Table 7 - Overview of the 8 scenarios used to project the impact of climate change on high and low streamflow. The 8 
scenarios consisted of combinations of a climate scenario (Figure 6), hydrological model structure and calibration approach. 
Calibration approach ‘historic’ means that models were calibrated on a 25-year historic period. Calibration approach ‘future’ 

means that models were calibrated on historic periods that resemble future climatic conditions.  

# Scenario 1 2 3 4 5 6 7 8 

Climate 
scenario 

High flows 2100Ld 2100Ld 2100Ld 2100Ld 2100Hn 2100Hn 2100Hn 2100Hn 

Low flows 2100Ln 2100Ln 2100Ln 2100Ln 2100Hd 2100Hd 2100Hd 2100Hd 

Model structure HBV HBV GR6J GR6J HBV HBV GR6J GR6J 

Calibration approach Historic Future Historic Future Historic Future Historic Future 

 
Climate scenarios  
For determining the impact of climate change on high flows, climate scenarios ‘2100Ld’ and ‘2100Hn’ 

were used, as in these scenarios the smallest and largest changes in 𝑄𝑚𝑎𝑥 are expected, respectively. 

For low flows, climate scenarios ‘2100Ln’ and ‘2100Hd’ were selected, as here the smallest and largest 

changes in 𝑄7𝑚𝑖𝑛 are expected.  

Hydrological model structure 
The uncertainty due to different hydrological model structures was determined by comparing the 

projected impact of the HBV and GR6J model. 

Calibration approaches 
Generally, hydrological models are calibrated on a sufficiently long historic period, with a wide range of 

climatic conditions. However, various studies advocated using a calibration period that closely 

resembles future climatic conditions (Ji et al., 2023; Stephens et al., 2020), as these are the conditions 

that are expected in the evaluation period. For both calibration approaches, the projected impact of 

climate change was determined. For calibration on historic periods, the models were calibrated on the 

period 1996-2020 (‘SST_I’ in section 3.3.1). Secondly, hydrological models were calibrated on the 

periods that were selected to resemble normal years in the future. These are the orange periods in 

section 3.3.1. For example, for high flows and climate scenario ‘2100Ld’, the model was calibrated on 

the periods that resemble future conditions (orange) for ‘H_DSST_N_2100Ld’ (Figure 14).  

All 8 ensemble members in the climatic timeseries for future scenarios (section 2.3.3) were used, each 

consisting of 30 years of data (period 2086-2115). The input of the hydrological models was thus a 

climatic timeseries with a length of 240 years. The first year was used as warm-up period. Therefore, 

𝑄𝑚𝑎𝑥 was determined for 238 hydrological years for high flows and 𝑄7𝑚𝑖𝑛 was determined for 239 

years for low flows. 𝑄𝑚𝑎𝑥 and 𝑄7𝑚𝑖𝑛 were determined for the 8 ensemble members of the reference 

climate (period 1991-2020) as well, using the HBV and GR6J model calibrated on historic period 1996-

2020. A boxplot was made for each scenario. The relative change for each future scenario compared to 

the reference climate was determined by sorting the 𝑄𝑚𝑎𝑥 and 𝑄7𝑚𝑖𝑛 values from high to low and 

calculating the relative difference between each pair or points. From the series of relative differences, 

boxplots were made.
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4. RESULTS 
4.1. RQ1: Changes in important meteorological indicators 
4.1.1. Meteorological indicators for high and low flows 
4.1.1.1. Correlation analysis 

High flows 
Figure 18 shows the Pearson correlation coefficients between the series of 53 annual maximum daily 

discharges and their preceding precipitation sums of different temporal windows. The correlation 

between the annual maximum daily discharge and the precipitation sum 𝑃3𝑖 is the highest. This 

precipitation sum is the sum of the precipitation on the day with the annual maximum discharge and 

the two days before and has a Pearson correlation coefficient of 0.85.  

 
Figure 18 - Pearson correlation coefficients for the correlations between the timeseries of annual maximum daily discharges 

and preceding precipitation sums of various temporal windows. 

For temporal windows of 3 days or larger, the precipitation sum including the day of discharge (𝑃𝑋𝑖) 

shows a larger correlation than the precipitation sum excluding the day of discharge (𝑃𝑋𝑒). For example, 

the correlation of 𝑃4𝑖 is 0.81, while this correlation is 0.78 for 𝑃4𝑒. This indicates that a part of the 

precipitation is discharged the same day. The positive correlation between 𝑃3𝑖 and 𝑄𝑚𝑎𝑥 is visible in 

the scatterplot of Figure 20A. Here, a positive relationship between the annual maximum daily discharge 

and the preceding precipitation 𝑃3𝑖 can be observed.  

Low flows 
Figure 19 shows the Pearson correlation coefficients between a series of 53 annual minimum 7-day 

mean discharges and the preceding potential precipitation deficits aggregated over periods from 1 to 

12 months (a month is 30 days). Negative correlations are shown between the precipitation deficits and 

the annual minimum 7-day mean discharge, indicating that a larger precipitation deficit leads to a 

smaller minimum discharge. The correlation is the highest when the precipitation deficit was aggregated 

over 5 months (150 days), with a Pearson correlation coefficient of -0.76.  
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Figure 19 - Pearson correlation coefficients for the correlations between the timeseries of annual minimum 7-day mean 

discharges and preceding potential precipitation deficits aggregated over various temporal windows. 

A scatterplot of the annual minimum 7-day mean discharge versus the preceding potential precipitation 

deficit aggregated over 150 days is shown in Figure 20B. For 13 out of 53 years, the potential 

precipitation deficit is negative, indicating a surplus. For the remaining years, a potential precipitation 

deficit is visible.  

  
Figure 20 - A) Scatterplot of the annual maximum daily discharge versus the preceding precipitation sum with the highest 
correlation (P3i), B) Scatterplot of the annual minimum 7-day mean discharge versus the preceding potential precipitation 

deficit with the highest correlation (PPD_150i). The dots indicate a negative deficit, which is a surplus. 

4.1.1.2. Exceedance frequency 
High flows 
Figure 21 shows the annual exceedance frequency of the 𝑃3𝑖 value for the hydrological years 1969-

2021. This exceedance frequency varies between 0 and 273. The median exceedance frequency is 6 

days, which corresponds with an exceedance of 1.6% of the days in a year. Based on these results, the 

3-day precipitation sum that is exceeded 6 times per year was chosen as a meteorological indicator for 

high flows. 
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Figure 21 - Frequency of exceedance (FE) of the precipitation sum P3i preceding the annual maximum discharge. A frequency 

of exceedance of 0 means that the P3i was the highest P3 in that year. The dotted line represents the median exceedance 
frequency. 

Low flows 
Figure 22 shows the annual exceedance frequency of the preceding potential precipitation deficit with 

a temporal window of 150 days for the hydrological years 1969-2021. This frequency varies between 0 

and 84. The median exceedance frequency is 14 days, which corresponds with an exceedance of 3.8% 

of the days in a year. Based on these results, the potential precipitation deficit over 150 days that is 

exceeded 14 times per year was chosen as a meteorological indicator for low flows. 

 
Figure 22 - Frequency of exceedance (FE) of the potential precipitation deficit over 150 days preceding the annual minimum 7-

day mean discharge. A frequency of exceedance of 0 means that the PPD150i was the highest potential precipitation deficit 
over 150 days in that year. The dotted line represents the median exceedance frequency. 

Compared to Figure 21, Figure 22 shows more variations in the exceedance frequency. This shows that 

it is more difficult to identify the rank for the preceding potential precipitation deficits for low flows than 

the preceding precipitation sums for high flows. The reason for this may be related to the fact that 

potential precipitation deficits were determined over a longer timespan (150 days), whereas the 

preceding precipitation sums were determined for 3 days. As a result, the exact rank of the potential 

precipitation deficit was more difficult to identify. 

4.1.2. Changes in the future 
4.1.2.1. Bias-correction 

Figure 23A shows a boxplot of the meteorological indicator for high flows for the observations and the 

reference climate. The boxplot for the observations was made up of 29 values, the boxplot of the 
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reference climate was made up of 232 values. The median value of the observations is 36.0 mm, 

whereas the median value of the reference climate is 36.6 mm. This shows there is a small bias in the 

climate model; the precipitation was overestimated by the model. 

Figure 23B shows a boxplot of the relative differences of the 29 pairs of meteorological indicators for 

high flows based on the observations and the reference climate. The meteorological indicator for high 

flows in the observed dataset is on average 4.74% lower than the meteorological indicator for high flows 

in the reference climate. Therefore, the meteorological indicators for high flows in the future scenarios 

were bias-corrected by making all values 4.74% lower.  

  
Figure 23 - A) Boxplot of the meteorological indicator for high flows for the observations (blue) and reference climate (grey). 

B) Boxplot of the relative differences of the 29 pairs of meteorological indicators based on the observations and reference 
climate. The horizontal lines in the boxes represent the median value, the boxes represent the 25-75% data range and the 
whiskers represent the 5-95% data range. The values in the boxes are the median values. The blue dotted line in Figure B 

shows the average value. 

Figure 24 shows a boxplot of the meteorological indicator for low flows for the observations and the 

reference climate. The median value of the observations is 56.5 mm, whereas the median value of the 

reference climate is 85.5 mm. This shows that the climate model overestimated the potential 

precipitation deficit. 

 
Figure 24 - Boxplot of the meteorological indicator for low flows for the observations (blue) and reference climate (grey). The 

horizontal lines in the boxes represent the median value, the boxes represent the 25-75% data range and the whiskers 
represent the 5-95% data range. The values in the boxes are the median values. 
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The bias can be either related to the corresponding precipitation sum, the corresponding potential 

evapotranspiration sum or a combination of both. Figure 25 shows that the climate model 

overestimates the corresponding precipitation sum as well as the corresponding potential 

evapotranspiration sum. Figure 26 shows that the precipitation sum corresponding to the 

meteorological indicator for low flows was overestimated on average with 4.09%, and the potential 

evapotranspiration sum was overestimated on average with 6.12%. The bias in potential 

evapotranspiration sum is thus larger than the bias in precipitation sum.  

All future values of the precipitation sum and potential evapotranspiration sum were bias-corrected 

with 4.09% and 6.12%, respectively. The bias-corrected values of the potential precipitation deficit were 

obtained by subtracting the corrected values of the precipitation sum from the corrected values of the 

potential evapotranspiration sum. 

  
Figure 25 - Boxplots of (A) the corresponding precipitation sum and (B) the corresponding potential evapotranspiration sum to 
the meteorological indicator for low flows for the observations (blue) and reference climate (grey). The horizontal lines in the 

boxes represent the median value, the boxes represent the 25-75% data range and the whiskers represent the 5-95% data 
range. The values in the boxes are the median values. 

 
Figure 26 - Boxplots of the relative differences of the 29 pairs of corresponding precipitation and potential evapotranspiration 
sum to the meteorological indicator for low flows based on the observations and reference climate. The horizontal lines in the 

boxes represent the median value, the boxes represent the 25-75% data range and the whiskers represent the 5-95% data 
range. The values in the boxes are the median values. The blue and red dotted lines show the average values of the 

corresponding precipitation and potential evapotranspiration sum. 
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4.1.2.2. Changes in the future 
Figure 27 shows the boxplots made up from a series of 232 bias-corrected meteorological indicators for 

high flows for each future scenario, as well as the boxplot made up from a series of 29 observed 

meteorological indicators for high flows. Normal years are defined as the median of all years in the 

future, extreme years are years for which the meteorological indicator is exceeded 5% of the time. 

 
Figure 27 - Boxplot of the meteorological indicator for high flows, based on observations (blue) and the bias-corrected values 
of each future scenario (other colours). The horizontal lines in the boxes represent the median value, the boxes represent the 

25-75% data range and the whiskers represent the 5-95% data range. The values in the boxes are the median values, with the 
relative change compared to observations in square brackets. The values at the whiskers are the absolute values in extreme 

years (5% exceedance probability), with the relative change compared to the observations in square brackets.  

For normal years, the meteorological indicator for high flows increases compared to the observations 

in the high emission scenarios ‘2100Hd’ and ‘2100Hn’. For the other scenarios, a slight decrease in the 

median value is visible. For extreme years, the meteorological indicator for high flows increases in all 

scenarios compared to the observations. The highest meteorological indicator for high flows in normal 

years is expected in scenario ‘2100Hn’, while the lowest is expected in scenario ‘2100Ld’. This means 

that it is expected that these scenarios will lead to the highest and lowest high streamflow, respectively. 

Climate scenario ‘2100Hn’ is based on high future emissions and a trend towards a wetter future 

climate. It therefore makes sense that this climate scenario leads to the highest meteorological indicator 

for high flows. The relative change compared to observations is larger for extreme years than for normal 

years. This indicates that more variation in the meteorological indicator for high flows is expected in the 

future.  

Figure 28 shows the boxplots made up from a series of 232 bias-corrected meteorological indicators for 

low flows for each future scenario, as well as the boxplot made up from a series of 29 observed 

meteorological indicators for low flows.  
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Figure 28 - Similar to Figure 27, but for the meteorological indicator for low flows. 

An increase in the median value for the meteorological indicator for low flows compared to the 

observations is visible for all future scenarios, with the largest increase (392.4%) in scenario ‘2100Hd’. 

This scenario is based on high future emissions and a trend towards a drier future climate. It therefore 

makes sense that this climate scenario leads to the highest meteorological indicator for low flows. This 

means that it is expected that the lowest low streamflow is expected in scenario ‘2100Hd’. For extreme 

years, an increase is visible for all future scenarios as well, however this relative increase is smaller than 

for normal years. The increase in potential precipitation deficit is both due to an increase in potential 

evapotranspiration as well as a decrease in precipitation (Appendix F).  

4.2. RQ2: Selection of historic periods resembling future 
climatic conditions 

High flows 
The sets of historic years selected to resemble future high flow conditions are shown in Figure 29 and 

Figure 30 for normal and extreme years, respectively. The upper row shows the observed values of the 

meteorological indicator for high flows in the period 1969-2021. The values range between 24 mm 

(2017) and 51 mm (1995). Then, the other 4 rows show the sets of hydrological years that are selected 

for each future scenario.  

 
Figure 29 - Visualisation of the hydrological years (1/9/X-1 to 31/8/X) selected as historic period resembling future high flow 
conditions for each scenario, based on normal years. The colours in the boxes refer to the magnitude of the meteorological 

indicator for high flows. In the right of the figure, the number of selected years for each scenario is shown in bold. 
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Figure 30 - Similar to Figure 29, but for extreme years. 

For normal years, for each scenario at least 9 years are selected. There is some overlap in the years that 

are selected for each scenario. For example, year 2004 is selected for each scenario, except scenario 

‘2100Hn’. The selection includes years with an above-average value for the meteorological indicator for 

high flows, however the years with the highest values for meteorological indicators are not included. 

For extreme years, only 1 or 2 years are selected. For scenarios ‘2100Ln’ and ‘2100Hd’, these are 1995 

and 2021, the years with the two highest values for the meteorological indicator. For scenario ‘2100Hn’, 

only 1995, the year with the highest meteorological indicator, is selected.  

Low flows 
The sets of historic years selected to resemble future low flow conditions are shown in Figure 31 and 

Figure 32 for normal and extreme years, respectively. The observed values of the meteorological 

indicator for low flows in the period 1968-2021 range between  -141 mm (1987) and 299 mm (1976).  

 
Figure 31 - Similar to Figure 29, but for low flows and normal years. 

 

 
Figure 32 - Similar to Figure 29, but for low flows and extreme years. 
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For normal years, between 1 and 6 years are selected per scenario. Compared to the selected years for 

high flows, there is little overlap between the scenarios. For extreme years, only years are selected for 

‘2100Ld’ and ‘2100Ln’. For scenarios ‘2100Hd’ and ‘2100Hn’, no observed years fall within the 

bandwidth and thus no years are selected.  

4.3. RQ3: Evaluation of performance for simulation under 
different climatic conditions 

This section shows and discusses the results for RQ3. First, sections 4.3.1 and 4.3.2 show the results and 

state the main observations for the HBV model and GR6J model, respectively. In section 4.3.3, the results 

of both models are compared, explained and discussed.  

4.3.1. Results HBV model 
The performance of the HBV model on the calibration and validation period of all testing schemes is 

shown for the simulation of high (Table 8A), low (Table 8B) and high and low flows (Table 8C).  

Table 8 - Performance of the HBV model in the testing schemes for simulation of A) high, B) low and C) high and low flows. 
The names of the testing schemes are explained in section 3.3.1. For high flows, performance is given by objective function 𝑦𝑤 

and corresponding 𝑁𝑆𝑤 and 𝑅𝑉𝐸. For low flows, performance is given by objective function 𝑦𝑖𝑛𝑣 and corresponding 𝑁𝑆𝑖𝑛𝑣 
and 𝑅𝑉𝐸. For simulation of high and low flows, performance is given by objective function 𝑦𝑐𝑜𝑚𝑏  and corresponding 𝑁𝑆𝑤, 
𝑁𝑆𝑖𝑛𝑣 and 𝑅𝑉𝐸. Blue columns show the performance in the calibration period, orange columns the performance in the 

validation period. The last column (Δ𝑦) shows the difference in multi-objective function between validation and calibration. 
Red and green numbers indicate a degradation and increase of performance in the validation period compared to the 

calibration period, respectively. 

A) Simulation of high flows 

Testing scheme 

Calibration period Validation period 
Δyw 

[-] yw 
[-] 

NSw 
[-] 

NSinv 
[-] 

RVE 
[%] 

yw 
[-] 

NSw 
[-] 

NSinv 
[-] 

RVE 
[%] 

HBV_H_SST_I 0.83 0.83 - -2.0∙10-4 0.80 0.82 - -2.6 -0.03 

HBV_H_SST_II 0.82 0.82 - +1.2∙10-4 0.80 0.83 - +3.4 -0.02 

HBV_H_DSST_N_2100Ld 0.82 0.82 - +3.2∙10-3 0.72 0.78 - +8.0 -0.10 

HBV_H_DSST_N_2100Hn 0.81 0.81 - +2.7∙10-3 0.81 0.82 - +1.1 0.00 

HBV_H_DSST_E_2100Ld 0.82 0.82 - -1.1∙10-3 0.75 0.75 - -8.9∙10-2 -0.07 

HBV_H_DSST_E_2100Hn 0.81 0.81 - +2.6∙10-3 0.84 0.86 - +2.6 +0.03 

B) Simulation of low flows 

Testing scheme 
Calibration period Validation period 

Δyinv 

[-] yinv 
[-] 

NSw 
[-] 

NSinv 
[-] 

RVE 
[%] 

yinv 
[-] 

NSw 
[-] 

NSinv 
[-] 

RVE 
[%] 

HBV_L_SST_I 0.86 - 0.86 +2.5∙10-3 0.80 - 0.82 -2.2 -0.06 

HBV_L_SST_II 0.86 - 0.86 +2.3∙10-3 0.81 - 0.83 +2.7 -0.05 

HBV_L_DSST_N_2100Ln 0.85 - 0.85 -5.7∙10-3 0.72 - 0.83 -15 -0.13 

HBV_L_DSST_N_2100Hd 0.84 - 0.84 +7.3∙10-4 0.83 - 0.88 +5.6 -0.01 

HBV_L_DSST_E_2100Ln 0.85 - 0.85 +1.2∙10-3 0.91 - 0.92 -1.6 +0.06 

HBV_L_DSST_E_2100Ld 0.84 - 0.84 +5.4∙10-3 0.82 - 0.86 +5.3 -0.02 

Table continues on next page 
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C) Simulation of high and low flows 

Testing scheme 

Calibration period Validation period 
Δycomb 

[-] ycomb 
[-] 

NSw 
[-] 

NSinv 
[-] 

RVE 
[%] 

ycomb 
[-] 

NSw 
[-] 

NSinv 
[-] 

RVE 
[%] 

HBV_B_SST_I 0.84 0.82 0.87 +5.9∙10-3 0.81 0.81 0.83 -2.2 -0.03 

HBV_B_SST_II 0.85 0.83 0.87 -4.1 ∙10-3 0.81 0.83 0.83 +2.8 -0.04 

HBV_B_DSST_N_2100Ld 0.83 0.80 0.87 +2.3 ∙10-3 0.78 0.83 0.80 +4.0 -0.05 

HBV_B_DSST_N_2100Hn 0.82 0.79 0.86 +1.7 ∙10-3 0.83 0.82 0.85 +0.33 0.01 

HBV_B_DSST_N_2100Ln 0.83 0.80 0.87 +3.1 ∙10-1 0.78 0.83 0.80 +4.4 -0.05 

HBV_B_DSST_N_2100Hd 0.82 0.80 0.83 +7.0∙10-3 0.81 0.83 0.88 +5.9 -0.01 

HBV_B_DSST_E_2100Ld 0.81 0.79 0.84 +1.6∙10-3 0.86 0.86 0.90 +2.7 0.05 

HBV_B_DSST_E_2100Ln 0.84 0.82 0.85 +9.6∙10-4 0.78 0.69 0.91 -2.9 -0.06 

 
For all SSTs, the multi-objective function 𝑦 in the validation period is slightly lower than in the calibration 

period, which is mainly due to an increase in 𝑅𝑉𝐸. In the calibration periods, 𝑅𝑉𝐸 is close to 0%, while 

the absolute value of 𝑅𝑉𝐸 increases on average to +/-2.7% in the validation period. 𝑁𝑆𝑤  is constant in 

the SSTs, while 𝑁𝑆𝑖𝑛𝑣 is mainly lower in the validation period. As a result, the largest decrease in 𝑦 is 

observed for the simulation of low flows. 

In most DSSTs, the multi-objective function 𝑦 is lower in the validation period than in the calibration 

period. However, in four cases 𝑦 is higher in the validation period (‘HBV_H_DSST_E_2100Hn’, 

‘HBV_L_DSST_E_2100Ln’, ‘HBV_B_DSST_N_2100Hn’ and ‘HBV_B_DSST_E_2100Ld’) or there is no 

difference between calibration and validation period (‘HBV_H_DSST_N_2100Hn’). In all DSSTs, an 

increase in 𝑅𝑉𝐸 is observed in the validation period. For the DSSTs with an increase in 𝑦, the increase 

in 𝑁𝑆𝑤 and/or 𝑁𝑆𝑖𝑛𝑣 prevails over the increase in 𝑅𝑉𝐸.  

In most DSSTs 𝑁𝑆𝑤 increases. Only in ‘HBV_H_DSST_N_2100Ld’, ‘HBV_H_DSST_E_2100Ld’ and 

‘HBV_B_DSST_E_2100Ln’, the 𝑁𝑆𝑤 decreases. 𝑁𝑆𝑖𝑛𝑣 increases in the DSSTs on extreme years and 

scenario ‘N_2100Hd’. In all other cases, 𝑁𝑆𝑖𝑛𝑣 decreases. ‘HBV_L_DSST_N_2100Hd’ and 

‘HBV_L_DSST_E_2100Ld’, which have the same validation and calibration period, show comparable 

results in both periods.  

4.3.2. Results GR6J model 
Table 9 shows the performance of the GR6J model on the calibration and validation period of all tests.  

Table 9 - Similar to Table 8, but for the GR6J model. 

A) Simulation of high flows 

Testing scheme 

Calibration period Validation period 
Δyw 

[-] yw 
[-] 

NSw 
[-] 

NSinv 
[-] 

RVE 
[%] 

yw 
[-] 

NSw 
[-] 

NSinv 
[-] 

RVE 
[%] 

GR6J_H_SST_I 0.89 0.89 - -3.5∙10-3 0.83 0.87 - -5.1 -0.06 

GR6J_H_SST_II 0.89 0.89 - -7.3∙10-3 0.83 0.88 - +5.6 -0.06 

GR6J_H_DSST_N_2100Ld 0.90 0.90 - -2.1∙10-3 0.82 0.89 - +8.5 -0.08 

GR6J_H_DSST_N_2100Hn 0.91 0.91 - +3.1∙10-3 0.93 0.94 - -0.43 +0.02 

GR6J_H_DSST_E_2100Ld 0.92 0.92 - +5.0∙10-3 0.66 0.69 - +4.7 -0.26 

GR6J_H_DSST_E_2100Hn 0.91 0.91 - -3.3∙10-1 0.90 0.97 - +8.7 -0.01 

Table continues on the next page 
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B) Simulation of low flows 

Testing scheme 

Calibration period Validation period 
Δyinv 

[-] yinv 
[-] 

NSw 
[-] 

NSinv 
[-] 

RVE 
[%] 

yinv 
[-] 

NSw 
[-] 

NSinv 
[-] 

RVE 
[%] 

GR6J_L_SST_I 0.83 - 0.83 -2.5∙10-1 0.77 - 0.81 -5.3 -0.06 

GR6J_L_SST_II 0.80 - 0.80 +1.4∙10-3 0.75 - 0.79 +5.8 -0.05 

GR6J_L_DSST_N_2100Ln 0.82 - 0.82 +7.7∙10-3 0.72 - 0.80 -12 -0.10 

GR6J_L_DSST_N_2100Hd 0.77 - 0.77 -1.2∙10-2 0.83 - 0.84 +1.2 0.06 

GR6J_L_DSST_E_2100Ln 0.79 - 0.79 +4.5∙10-4 0.86 - 0.90 -4.5 0.07 

GR6J_L_DSST_E_2100Ld 0.77 - 0.77 -2.3∙10-2 0.83 - 0.83 +0.76 0.06 

C) Simulation of high and low flows 

Testing scheme 

Calibration period Validation period 
Δycomb 

[-] ycomb 
[-] 

NSw 
[-] 

NSinv 
[-] 

RVE 
[%] 

ycomb 
[-] 

NSw 
[-] 

NSinv 
[-] 

RVE 
[%] 

GR6J_B_SST_I 0.82 0.86 0.79 -5.7∙10-3 0.76 0.82 0.79 -5.7 -0.06 

GR6J_B_SST_II 0.81 0.83 0.80 +2.3∙10-3 0.77 0.85 0.79 +5.9 -0.04 

GR6J_B_DSST_N_2100Ld 0.86 0.90 0.83 -1.2∙10-2 0.73 0.89 0.62 +3.7 -0.13 

GR6J_B_DSST_N_2100Hn 0.85 0.91 0.79 +1.3∙10-3 0.83 0.88 0.79 -9.4∙10-2 -0.02 

GR6J_B_DSST_N_2100Ln 0.85 0.90 0.79 -3.0∙10-3 0.75 0.89 0.72 +7.4 -0.10 

GR6J_B_DSST_N_2100Hd 0.80 0.85 0.75 +4.2∙10-3 0.82 0.83 0.87 +3.3 0.02 

GR6J_B_DSST_E_2100Ld 0.81 0.89 0.74 -6.7∙10-1 0.87 0.88 0.92 +3.7 0.06 

GR6J_B_DSST_E_2100Ln 0.80 0.83 0.78 +6.1∙10-1 0.87 0.91 0.89 -3.3 0.07 

 
For all SSTs, the multi-objective function 𝑦 is lower in the validation than in the calibration period. The 

decrease in 𝑦 is comparable for simulation of all types of flows. The decrease in 𝑦 is mainly attributable 

due to an increase in 𝑅𝑉𝐸, but also due to a slight decrease in 𝑁𝑆𝑤 and/or 𝑁𝑆𝑖𝑛𝑣. The 𝑅𝑉𝐸 increases 

from 0% in the calibration period to on average +/-5.6% in the validation period. 

In 7 out of 14 DSSTs, the multi-objective function 𝑦 is lower in the validation period than in the 

calibration period. In the 7 other DSSTs, 𝑦 is higher in the validation period. The 𝑅𝑉𝐸 increases in the 

validation period in all DSSTs. An increase in 𝑦 means that the increase in 𝑁𝑆𝑤 and/or 𝑁𝑆𝑖𝑛𝑣 efficiency 

prevails over the increase in 𝑅𝑉𝐸. 𝑁𝑆𝑤 increases in ‘GR6J_H_DSST_N_2100Hn’, 

‘GR6J_H_DSST_E_2100Hn’ and ‘GR6J_B_DSST_E_2100Ln’. 𝑁𝑆𝑖𝑛𝑣 increases in the DSSTs on extreme 

years and scenario ‘N_2100Hd’. In all other cases, 𝑁𝑆𝑖𝑛𝑣 decreases. ‘GR6J_L_DSST_N_2100Hd’ and 

‘GR6J_L_DSST_E_2100Ld’, which have the same validation and calibration period, show comparable 

results in both periods.  

4.3.3. Discussion of the results RQ3 
Performance of HBV and GR6J in the SSTs 
For simulation of high flows, the HBV model showed a 𝑦𝑤  of 0.83 in the calibration period of SST 

‘H_SST_I’ and a 𝑦𝑤 of 0.80 in the validation period. The GR6J model showed a 𝑦𝑤 of 0.89 and 0.83 in 

the calibration and validation period, respectively. This shows that the GR6J model performs better 

when simulating high flows. This is also visible in the hydrographs in Figure 33 below. These show the 

observed and simulated discharges for the HBV and GR6J model on a part of the calibration and 

validation period of ‘H_SST_I’. In both the calibration and validation period, it can be observed that 

models underestimate the annual maximum discharge. However, the GR6J model more closely 

simulates the peaks. As a result, the 𝑁𝑆𝑤 is higher, leading to a higher 𝑦𝑤. Next to that, the GR6J model 

better captures small peaks in summer, such as the peaks in July 2002. The HBV model is not able to 

capture these peaks well and shows a constantly decreasing discharge in summer.  
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Figure 33 - Observed and simulated discharge in a part of A) the calibration period (2002) and B) validation period (1983). The 
green line shows the simulated discharge with the GR6J model, the red line shows the simulated discharge for the HBV model. 
Models are calibrated on the calibration period in testing scheme ‘SST_I’ with objective function 𝑦𝑤. The observed discharge is 

shown with the grey dotted line. The black, red and green dot show the annual maximum daily discharge which was 
observed, simulated by HBV and simulated by GR6J, respectively. 

For simulation of low flows, the HBV model showed a 𝑦𝑖𝑛𝑣 of 0.86 in the calibration period of SST 

‘L_SST_I’ and a 𝑦𝑖𝑛𝑣 of 0.80 in the validation period. The GR6J model showed a 𝑦𝑖𝑛𝑣  of 0.83 and 0.77 in 

the calibration and validation period. This shows that the HBV model performs better when simulating 

low flows. This is also visible in the hydrographs in Figure 34 below. These show the observed and 

simulated discharges for the HBV and GR6J model on a part of the calibration and validation period of 

‘L_SST_I’. In general, the HBV model simulates more closely to the observations and thus has a higher 

𝑁𝑆𝑖𝑛𝑣 and 𝑦𝑖𝑛𝑣. Both models face difficulties with simulating the small peaks in summer: The GR6J 

model overestimates them, while the HBV model slightly underestimates them. Both models seem to 

underestimate the observed discharge just after a peak (April 2002), which shows that both models 

seem to have a too rapid decline in the recession part of the hydrograph. 

  
Figure 34 - Similar to Figure 33, but by calibration with objective function 𝑦𝑖𝑛𝑣 for low flows. 

For simulating both high and low flows, in ‘B_SST_I’, the HBV model shows a 𝑦𝑐𝑜𝑚𝑏 of 0.84 and 0.82 in 

the calibration and validation period, while these values are 0.81 and 0.76 for the GR6J model. This 
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shows that the HBV model is better at simulating both high and low flows. This is mainly due to the 

better performance on low flows, which is represented by a higher 𝑁𝑆𝑖𝑛𝑣. The values of 𝑁𝑆𝑤  are 

comparable. Figure 35 confirms the better performance of the HBV model for simulating high and low 

flows. It is visible that the GR6J model overestimates peaks in summer and autumn, while the HBV 

model simulates these smaller peaks closer to observations.  

  
Figure 35 - Similar to Figure 33, but by calibration with objective function 𝑦𝑐𝑜𝑚𝑏  for both high and low flows.  

For both models and all types of flow, the 𝑅𝑉𝐸 is close to 0% in the calibration period. This implies that 

it is important that the water balance over the calibration period corresponds with observations for an 

optimal value of multi-objective function 𝑦. For HBV, the average 𝑅𝑉𝐸 in the validation period of the 

SSTs is +/-2.7%, while this average 𝑅𝑉𝐸 is +/-5.6% for the GR6J model. The increase in 𝑅𝑉𝐸 is the main 

reason for a lower 𝑦 in the validation period. This means that the model performance of both models 

decrease in the validation period, mainly due to a worse simulation of the water balance. Still, the model 

performs acceptable in the validation period, as the 𝑅𝑉𝐸 in the validation period of the SSTs was 5.9% 

at maximum. 

Performance of HBV and GR6J in the DSSTs for simulating high flows 
In the DSSTs for simulation of high flows, both models show a large decrease in 𝑦𝑤 in tests 

‘H_DSST_N_2100Ld’ and ‘H_DSST_E_2100Ld’. For both models, this is due to an increase in 𝑅𝑉𝐸 and 

decrease in 𝑁𝑆𝑤. Conversely, in DSSTs ‘H_DSST_N_2100Hn’ and ‘H_DSST_E_2100Hn’, 𝑁𝑆𝑤 increases in 

the validation period. This increase in 𝑁𝑆𝑤 prevails over the increase in 𝑅𝑉𝐸, leading to a higher or 

similar 𝑦𝑤 in the validation period.  

As models were calibrated with multi-objective function 𝑦𝑤, including 𝑁𝑆𝑤, the focus in the calibration 

was on good agreement on peak flows. In 𝑁𝑆𝑤, a mismatch between high observed and simulated 

discharges is penalized proportionally to the observed discharge value. The mismatch between 

simulated and observed discharge in peak periods is thus weighted more than non-peak periods. In 

years with high peaks, the difference between weights in peak periods and non-peak periods is even 

more pronounced. This means that the mismatch between simulated and observed discharges in the 

rest of the year is weighted relatively less. As peaks are simulated rather well, years with a higher peaks 

show generally a higher 𝑁𝑆𝑤. 

This may be the reason for the fact that 𝑁𝑆𝑤  is very high in the validation period of DSST ‘E_2100Hn’. 

The 𝑁𝑆𝑤 is 0.86 for HBV and even 0.97 for GR6J. The validation period of this test consists of only one 
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hydrological year (1995), which includes a high peak which is simulated close to observations. The 

appointed reasoning may also explain the small changes in 𝑁𝑆𝑤 in ‘N_2100Ld’ and ‘N_2100Hn’. The 

validation periods of these tests include years with peaks that are slightly lower and higher than in 

normal years. As a result, 𝑁𝑆𝑤 slightly decreases in ‘N_2100Ld’ and slightly increases in ‘N_2100Hn’. 

However, the appointed reasoning does not explain the decrease in 𝑁𝑆𝑤 in ‘E_2100Ld’. Here, a large 

decrease in 𝑁𝑆𝑤 is observed, while the validation period includes two years with high observed peaks. 

The reason for this may be related to the overestimation of the maximum discharge in hydrological year 

1980. The observed annual maximum discharge is 203 m3/s, whereas the simulated discharge is 275 

and 396 m3/s for the HBV and GR6J model, respectively. This large overestimation of the peak discharge, 

which is not observed in any other year, may indicate a random error in the observed discharge 

timeseries or precipitation input. 

The HBV and GR6J model show the same patterns in 𝑁𝑆𝑤 in the various DSSTs. However, the GR6J 

model is more pronounced in its changes. For example, whereas the HBV model has a 𝑁𝑆𝑤 of  0.82 and 

0.75 in the calibration and validation period of DSST ‘E_2100Ld’, these values are 0.92 and 0.69 for the 

GR6J model. Regarding the 𝑅𝑉𝐸, both models show values in the same order of magnitude. The relative 

volume increases in the validation period, but within acceptable limits. 

Performance of HBV and GR6J in the DSSTs for simulating low flows 
For the simulation of low flows, again both models show comparable patterns regarding the change in 

multi-objective function 𝑦𝑖𝑛𝑣 in the DSSTs. In the first DSST, ‘N_2100Ln’, a large decrease in 𝑦𝑖𝑛𝑣 is 

observed in the validation period (-0.13 for HBV and -0.10 for GR6J). This is partly due to a small decrease 

in 𝑁𝑆𝑖𝑛𝑣 and mainly due to a large increase in 𝑅𝑉𝐸, being -15% and -12% in the validation period for 

HBV and GR6J, respectively. In the other DSSTs, 𝑁𝑆𝑖𝑛𝑣 increases in the validation period and the increase 

in 𝑅𝑉𝐸 is relatively small (<6%). 

The large decrease in 𝑅𝑉𝐸 in DSST ‘N_2100Ln’ suggests that both models have difficulties with 

simulating the water balance of the validation period of this DSST. The reason for this is that both models 

underestimate the observed small peaks in the summer period, leading to a large negative 𝑅𝑉𝐸. 

However, given that this validation period consists of only one year, such an observation may be 

coincidental. With a longer validation period, the relative volume error may have been closer to 0, as 

such a period contains periods in which discharge is overestimated and periods in which observed 

discharge is underestimated. 

For all other DSSTs, the 𝑁𝑆𝑖𝑛𝑣 increases substantially. The HBV model even shows an increase to 0.92 in 

the validation period of DSST ‘E_2100Ln’. The reason for this increase in 𝑁𝑆𝑖𝑛𝑣 could be that the 

validation periods of these tests consists of 1976 and 2020 (‘N_2100Hd’ and ‘E_2100Ld’) or 2020 only 

(‘E_2100Ln’). These years contain both long dry summers with nearly any summer peaks. These peaks 

are difficult to simulate, as these precipitation events have an intensity higher than the infiltration 

capacity of the soil and thus lead to infiltration excess overland flow. However, in the model, this 

precipitation is stored in the soil rather than discharged directly to the river. As these peaks have a low 

observed discharge value are weighted relatively much in 𝑁𝑆𝑖𝑛𝑣. As the validation periods of DSSTs 

‘N_2100Hd’, ‘E_2100Ln’ and ‘E_2100Ld’ hardly contain any summer peaks, there is a smaller mismatch 

between observed and simulated inverse transformed discharges, leading to a higher value for 𝑁𝑆𝑖𝑛𝑣. 

For the GR6J model, this increase in 𝑁𝑆𝑖𝑛𝑣 prevails over the increase in 𝑅𝑉𝐸, leading to an increase in 

𝑦𝑖𝑛𝑣 in the validation period. For the HBV model, the increase in 𝑅𝑉𝐸 is slightly higher, therefore the 

𝑦𝑖𝑛𝑣 value does not increase in the validation period, except in ‘E_2100Ln’.  
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Performance of HBV and GR6J in the DSSTs for simulating high and low flows 
For simulation of high and low flows, the results of the DSSTs show more differences between HBV and 

GR6J model. The HBV model shows smaller differences in 𝑦𝑐𝑜𝑚𝑏 between calibration and validation 

period compared to the GR6J model. The differences for HBV are between +0.01 and -0.06. For the GR6J 

model, these differences are larger, namely between +0.07 and -0.13. Both models show changes in 

𝑅𝑉𝐸 in the same order of magnitude for all DSSTs. The difference between both models can thus be 

attributed by the differences in 𝑁𝑆𝑤  and/or 𝑁𝑆𝑖𝑛𝑣.  

The results for HBV show that, when calibrated on 𝑦𝑐𝑜𝑚𝑏, the 𝑁𝑆𝑖𝑛𝑣 is higher than 𝑁𝑆𝑤 in the 

calibration period of all DSSTs. The opposite is observed for GR6J. Here, 𝑁𝑆𝑤 is higher than 𝑁𝑆𝑖𝑛𝑣 for 

all DSSTs. This relates to the finding that GR6J performs better at high flows and HBV at low flows. 

Both models show decreases in 𝑁𝑆𝑖𝑛𝑣 in the first three DSSTs, while increases are found for the last 

three DSSTs. This may be related to the relatively large proportion of years in the validation period that 

were selected to resemble future high flow conditions (Appendix C). This led to a validation period in 

which high flows dominate and as a result the increase in 𝑁𝑆𝑖𝑛𝑣 in the validation period, which was 

observed for the simulation of low flows, does not apply here.  

4.4. RQ4: Evaluation of parameter sets for simulation 
under different climatic conditions 

This section shows and discusses the results for RQ4, for the HBV model (section 4.4.1) and the GR6J 

model (section 4.4.2). After that, in section 4.4.3, the results are discussed in general.  

4.4.1. Results HBV model 
The parameter sets of the HBV model calibrated on the periods in the testing schemes of high flows 

(Table 10A), low flows (Table 10B) and high and low flows (Table 10C) are shown below. The blue rows 

show the parameter sets when calibrated on the calibration period of RQ3 (blue in section 3.3.1), the 

orange rows show the parameter set when calibrated on the validation period of RQ3 (orange in section 

3.3.1), which are years that were selected to resemble future conditions. The corresponding objective 

function values in the calibration periods can be found in Appendix G. 

Table 10 - Parameter sets of the HBV model when calibrated on the calibration and validation periods of the testing schemes 
for A) simulation of high flows, B) low flows and C) high and low flows. The names of the testing schemes are explained in 
section 3.3.1. Colours in the table refer to the colour of the periods in Figure 14, Figure 15 and Figure 16. Parameters for 

which no value is given, were fixed at 𝛼=1, 𝐾𝑓=0.005 day-1, 𝐾𝑠=0.005 day-1, 𝑃𝐸𝑅𝐶=1 mm/day and 𝐶𝑓𝑙𝑢𝑥=1 mm/day. 

A) Simulation of high flows 

Testing scheme Period 
FC 

[mm] 
β 
[-] 

LP 
[-] 

α 
[-] 

Kf 
[day-1] 

Ks 
[day-1] 

PERC 
[mm/day] 

HBV_H_DSST_N_2100Ld 
Not-selected 113 5.97 0.351 0.403 0.040 - - 

Selected 220 5.83 0.433 0.101 0.112 - - 

HBV_H_DSST_N_2100Hn 
Not-selected 111 5.99 0.247 0.412 0.039 - - 

Selected 266 5.20 0.700 0.320 0.056 - - 

HBV_H_DSST_E_2100Ld 
Not-selected 110 5.99 0.214 0.454 0.032 - - 

Selected 207 3.33 0.578 0.103 0.122 - - 

HBV_H_DSST_E_2100Hn 
Not-selected 112 5.98 0.250 0.443 0.033 - - 

Selected 306 4.68 0.570 0.146 0.116 - - 

Table continues on next page 
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B) Simulation of low flows 

Testing scheme Period 
FC 

[mm] 
β 
[-] 

LP 
[-] 

α 
[-] 

Kf 
[day-1] 

Ks 
[day-1] 

PERC 
[mm/day] 

HBV_L_DSST_N_2100Ln 
Not-selected 223 1.74 0.470 - - 0.029 0.310 

Selected 157 1.11 0.470 - - 0.042 0.380 

HBV_L_DSST_N_2100Hd 
Not-selected 191 1.46 0.353 - - 0.028 0.348 

Selected 314 2.78 0.793 - - 0.034 0.231 

HBV_L_DSST_E_2100Ln 
Not-selected 208 1.71 0.434 - - 0.029 0.338 

Selected 191 0.89 0.103 - - 0.031 0.432 

HBV_L_DSST_E_2100Ld 
Not-selected 193 1.35 0.344 - - 0.027 0.323 

Selected 322 2.89 0.809 - - 0.035 0.235 

C) Simulation of high and low flows 

Testing scheme Period 
FC 

[mm] 
β 
[-] 

LP 
[-] 

α 
[-] 

Kf 
[day-1] 

Ks 
[day-1] 

PERC 
[mm/day] 

HBV_B_DSST_N_2100Ld 
Not-selected 188 1.81 0.431 0.630 0.015 0.024 0.336 

Selected 242 2.40 0.488 0.450 0.027 0.024 0.357 

HBV_B_DSST_N_2100Hn 
Not-selected 202 1.96 0.452 0.618 0.016 0.023 0.338 

Selected 189 1.41 0.318 0.638 0.013 0.026 0.323 

HBV_B_DSST_N_2100Ln 
Not-selected 185 1.81 0.434 0.622 0.015 0.024 0.333 

Selected 227 1.82 0.434 0.637 0.012 0.019 0.278 

HBV_B_DSST_N_2100Hd 
Not-selected 172 1.84 0.404 0.598 0.017 0.022 0.362 

Selected 290 1.58 0.408 0.654 0.013 0.037 0.295 

HBV_B_DSST_E_2100Ld 
Not-selected 184 1.49 0.346 0.730 0.009 0.023 0.315 

Selected 299 2.47 0.661 0.388 0.036 0.032 0.291 

HBV_B_DSST_E_2100Ln 
Not-selected 209 1.90 0.451 0.574 0.017 0.025 0.338 

Selected 105 2.40 0.107 0.264 0.092 0.013 0.550 

 
Simulation of high flows 
For simulation of high flows, the parameter sets obtained when calibrated on the periods that do not 

resemble future conditions (blue) are quite comparable between the DSSTs. Especially the differences 

between ‘E_2100Ld’ and ‘E_2100Hn’ are very small. This can be explained by the fact that the blue 

calibration periods of the DSSTs are for a large part the same (Figure 14). 

Remarkable is the high value of 𝛽, which is close to 6 in each DSST. This means that 𝛽 approaches the 

upper limit of its parameter space. Such a high value for 𝛽 was not observed when calibrating the model 

on the calibration period of the SST (Table E1 in Appendix E, with 𝛽≈3.7). The reason for this may be the 

fact that hydrological year 2021 was included in the calibration period of all DSSTs, whereas this year 

was not included in the calibration period of the SSTs. Hydrological year 2021 showed an atypical 

extreme high flow event which took place in summer, which may have had large effects on the 

parameter set. In order to simulate this peak well, 𝛽 is ideally very high and 𝐹𝐶 very small. A high value 

for 𝛽 means that recharge 𝑅 from soil moisture box to upper response box is smaller for a given soil 

moisture deficit. As a result, the soil moisture box is not emptied fast. In combination with a small 𝐹𝐶, 

which means a low capacity of the soil moisture box, this leads to a large direct runoff component. It is 

expected that this direct runoff component was needed to simulate the 2021 peak most closely.   

Calibrating the models on periods resembling future conditions (orange) leads to different parameter 

sets compared to calibration on periods that do not resemble future conditions (blue). This shows that 

optimized parameter values tend to be specific for the period and thus model forcing-time series they 

are calibrated on. Parameters calibrated on historic periods may thus be suboptimal for future 

conditions. For simulation of high flows, soil parameters 𝐹𝐶 and 𝐿𝑃 increase and 𝛽 decreases. 

Comparing the values of 𝐹𝐶 and 𝛽 between the different periods is difficult, because of the large 

influence of 2021 on these parameters. 𝐿𝑃 is higher when calibrated on periods that resemble future 
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conditions. This means that, given that 𝐹𝐶 also increases, the limit for potential evapotranspiration 

increases and thus the simulated actual evapotranspiration decreases. This leads to an increase in quick 

runoff response, which is reasonable, as the calibration data contains more peak flows.  

Quick runoff parameter 𝐾𝑓 increases when calibrated on future conditions. This means that quick runoff 

for a certain volume in the upper response box increases. The increase in 𝐾𝑓 comes along with a 

decrease 𝛼, so the relation between quick runoff and upper response box volume becomes more linear.  

Simulation of low flows 
For simulation of low flows, the parameter sets obtained when calibrated on the periods that do not 

resemble future conditions (blue) are again quite comparable between the DSSTs. For example, 

parameter 𝐾𝑠 deviates between 0.027 day-1 and 0.029 day-1. Just as for high flows, this can be explained 

by the fact that the blue calibration periods of the DSSTs are for a large part the same (Figure 15). 

The parameter sets obtained by calibration with objective function 𝑦𝑖𝑛𝑣 are substantially different from 

the parameter sets obtained by calibration with objective function 𝑦𝑤, even though the calibration 

periods for a large part overlap. This shows that parameter values optimized with objective function 𝑦𝑤 

may be suboptimal for simulating low flows. 𝐹𝐶 is higher for simulation of low flows than for simulation 

of high flows. This means the capacity of the soil moisture storage is higher, which means there is more 

possibility for buffering in case of large precipitation. This thus leads to less steep peaks, which is 

reasonable for a model that is not focused on simulating peaks due to objective function 𝑦𝑖𝑛𝑣. A lower 

value for 𝛽 means that for a given soil moisture deficit, the recharge is larger. This means that the upper 

response box is filled at a more constant pace, which again represents a slower responding system.  

Calibration on periods that resemble future conditions (orange) leads to different parameter sets than 

calibration on periods that do not resemble future conditions (blue). This again shows that parameters 

are specific for the period on which they are calibrated. For DSST ‘N_2100Ln’ and ‘E_2100Ln’, a decrease 

in 𝐹𝐶, 𝛽 and 𝐿𝑃 and an increase in 𝑃𝐸𝑅𝐶 is observed. For DSST ‘N_2100Hd’ and ‘E_2100Ld’, the exact 

opposite is observed: An increase in 𝐹𝐶, 𝛽 and 𝐿𝑃 and a decrease in 𝑃𝐸𝑅𝐶. For all DSSTs, 𝐾𝑠 increases.  

In DSST ‘N_2100Ln´ and ‘E_2100Ln’, 𝑃𝐸𝑅𝐶 thus increases, leading to a higher flux of percolation to the 

lower response box. Together with the increase in 𝐾𝑠 this thus leads to more baseflow. The decrease in 

𝐹𝐶 means that there is less possibility of buffering in case of large precipitation. The decrease in 𝛽 

means that there is a larger recharge for a given soil moisture deficit. The decrease in 𝐹𝐶 and 𝛽 thus 

both lead to higher peaks after a precipitation event at the time there is a soil moisture deficit. The 

influence of the parameters is visible in Figure 36, which shows the simulated discharge in the summer 

period of 2020, which is the validation year of DSST ‘E_2100Ln’. It is visible that the model calibrated on 

future conditions (orange) shows a higher baseflow and captures peaks in summer slightly better. 

 
Figure 36 – Observed (grey) and simulated discharge in a part of the summer of 2020. Calibration is on the blue and orange 

periods of ‘HBV_L_DSST_E_2100Ln’.  
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In DSST ‘N_2100Hd´ and ‘E_2100Ld, 𝑃𝐸𝑅𝐶 decreases, leading to a lower flux of percolation to the lower 

response box. Despite the increase in 𝐾𝑠, this leads to less baseflow. The increase in 𝐹𝐶 and 𝛽 thus both 

lead to lower peaks after a precipitation event at the time there is a soil moisture deficit. The influence 

of the parameters is visible in Figure 37, which shows the simulated discharge in the summer period of 

1976, which is the validation year of DSST ‘E_2100Ld’. It is visible that the model calibrated on periods 

that resemble future conditions shows a lower baseflow.  

 
Figure 37 - Similar to Figure 36, but for the summer period of 1976 and scenario ‘HBV_L_DSST_E_2100Ld’.  

The parameter sets for DSST ‘N_2100Hd’ and ‘E_2100Ld’, which have the same validation and 

calibration period, are comparable. This shows that the SCEM-UA algorithm was able to find a global 

optimum. 

Simulation of high and low flows 
For simulation of high and low flows, calibration on periods that do not resemble future conditions 

(blue) of the different DSSTs again lead to comparable parameter sets. Figure 16 shows that the blue 

calibration periods of the DSSTs largely overlap, which explains these similarities.  

The parameter values deviate slightly from the parameter values obtained for models focused on 

simulation of high flows or low flows only. For simulation of high flows, parameters 𝐾𝑠 and 𝑃𝐸𝑅𝐶 are 

fixed at default values and for simulation of low flows, parameters 𝛼 and 𝐾𝑓 are fixed at default values. 

These default values may not be the optimal values. For simulation of high and low flows, these 

parameters were included in the calibration and were thus not given the default value. As a result, due 

to dependencies between parameters, other parameters may be slightly different as well. The 

parameter values obtained are most comparable with the parameter values obtained for the simulation 

of low flows. This matches with the observation made when evaluating the results of RQ3, namely that 

the HBV shows higher values for 𝑁𝑆𝑖𝑛𝑣 (low flows) than for 𝑁𝑆𝑤 (high flows) when calibrated on 𝑦𝑐𝑜𝑚𝑏.   

Similarly to simulation of high flows or low flows only, the parameter sets obtained when calibrated on 

periods that resemble future conditions (orange) are different than when calibrated on periods that do 

not resemble future conditions (blue). This indicates a lack of robustness. Compared to simulation of 

high flows or low flows only, it is more difficult to distinguish patterns in the parameter sets obtained by 

calibration on periods that resemble future conditions (orange). This is because the changes in 

parameter set may be related to the simulation of both high and low flows. For example, the parameter 

set obtained by calibration on ‘E_2100Ln’ shows a large increase in 𝐾𝑓 and decrease in 𝐾𝑠, whereas 

calibration on ‘N_2100Hd’ shows a decrease in 𝐾𝑓 and increase in 𝐾𝑠.  

4.4.2. Results GR6J model 
Table 11 shows the parameters sets of the GR6J model when calibrated on periods that do not resemble 

future conditions (blue rows) and periods that resemble future conditions (orange rows). The 

corresponding objective function values in the calibration periods can be found in Appendix G. 
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Table 11 - Similar to Table 10, but for the GR6J model. For simulation of high flows, parameter 𝑋6 was fixed at 10 mm/day. 

A) Simulation of high flows 

Testing scheme Period 
X1 

[mm] 
X2 

[mm/day] 
X3 

[mm] 
X4 

[day] 
X5 

[-] 
X6 

[mm] 

GR6J_H_DSST_N_2100Ld 
Not-selected 102 -0.681 31 2.22 +0.34 - 

Selected 180 +0.915 35 2.12 +0.72 - 

GR6J_H_DSST_N_2100Hn 
Not-selected 114 +0.384 31 2.22 +0.95 - 

Selected 113 -0.196 47 2.09 -0.33 - 

GR6J_H_DSST_E_2100Ld 
Not-selected 98 +0.585 40 2.13 +0.79 - 

Selected 302 -0.225 19 2.38 -0.14 - 

GR6J_H_DSST_E_2100Hn 
Not-selected 144 +0.649 30 2.26 +0.78 - 

Selected 166 -0.834 26 2.23 +0.41 - 

B) Simulation of low flows 

Testing scheme Period 
X1 

[mm] 
X2 

[mm/day] 
X3 

[mm] 
X4 

[day] 
X5 

[-] 
X6 

[mm] 

GR6J_L_DSST_N_2100Ln 
Not-selected 216 -0.293 3.46 3.00 +0.22 10.84 

Selected 180 -0.042 2.06 4.15 -1.73 19.88 

GR6J_L_DSST_N_2100Hd 
Not-selected 73 -0.248 300 1.94 -0.30 0.19 

Selected 12 +0.152 336 2.02 +1.88 0.46 

GR6J_L_DSST_E_2100Ln 
Not-selected 83 -0.500 274 2.00 +0.05 0.13 

Selected 46 +0.116 297 1.40 +1.79 0.43 

GR6J_L_DSST_E_2100Ld 
Not-selected 80 -0.249 302 2.00 -0.29 0.16 

Selected 44 -0.729 263 2.08 +0.10 4.33 

C) Simulation of high and low flows 

Testing scheme Period 
X1 

[mm] 
X2 

[mm/day] 
X3 

[mm] 
X4 

[day] 
X5 

[-] 
X6 

[mm] 

GR6J_B_DSST_N_2100Ld 
Not-selected 158 -0.367 20 2.28 +0.20 9.22 

Selected 135 +0.101 284 2.42 +2.06 0.29 

GR6J_B_DSST_N_2100Hn 
Not-selected 165 -0.383 21 2.28 +0.20 9.22 

Selected 134 -0.322 20 2.29 +0.11 12.02 

GR6J_B_DSST_N_2100Ln 
Not-selected 148 -0.335 21 2.28 +0.16 10.16 

Selected 148 -0.534 21 2.37 +0.25 11.10 

GR6J_B_DSST_N_2100Hd 
Not-selected 93 -0.535 245 2.31 +0.10 0.11 

Selected 185 -0.440 23 2.26 +0.22 7.81 

GR6J_B_DSST_E_2100Ld 
Not-selected 168 -0.366 19 2.35 +0.19 9.66 

Selected 94 -0.349 54 2.16 -0.04 17.04 

GR6J_B_DSST_E_2100Ln 
Not-selected 69 -0.181 304 2.32 -0.55 0.34 

Selected 30 -0.214 250 1.92 -0.42 3.93 

 
Simulation of high flows 
The parameter sets obtained by calibration on periods that do not resemble future conditions (blue) 

show variations between the DSSTs, despite the fact that the blue calibration periods of the DSSTs are 

for a large part the same. This is especially apparent for parameters 𝑋2 and 𝑋5, which are related to the 

groundwater exchange. Both magnitude and signs of these parameters differ between the DSSTs. This 

finding matches with the observed variation in the parameter sets calibrated on ‘SST_I’ in Appendix E.  

For ‘N_2100Ld’, a negative 𝑋2 is observed, which means that groundwater is extracted as long as 𝑋5 <

𝑅1/𝑋3 (Equation 29). 𝑋5 has a relatively small value (0.34), which means that 𝑋5 < 𝑅1/𝑋3 for a large 

part of the time (99% of the calibration period). The other DSSTs show a positive 𝑋2, which means 

groundwater is extracted as long as 𝑋5 > 𝑅1/𝑋3. As the values of 𝑋5 in these DSSTs are large (>0.78), 

groundwater is extracted for most of the days as well (>0.96% of the calibration period). Despite the 

sign differences in 𝑋2 and 𝑋5, all DSSTs thus show a negative groundwater exchange flux. In the 

calibration period of each DSST, an average of 0.4 mm/day is extracted, which makes up 15% of the total 
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water balance. However, the groundwater exchange over time (Figure 38) shows that there are 

differences in the patterns of the groundwater exchange flux. For DSST ‘N_2100Ld’, groundwater 

exchange is larger (more negative) when 𝑅1 is larger and closer to zero when 𝑅1 is smaller. For the other 

DSSTs, the opposite occurs.  

 
Figure 38 - A) Groundwater exchange over time for a part of the calibration period (hydrological year 1985), modelled with 

GR6J calibrated on the periods that do not resemble future conditions of the different DSSTs. B) Non-linear routing store 
content (𝑅1) as a fraction of its capacity (𝑋3) over time, for the same period and models. C) Discharge for the same period and 

models. Grey dashed line represents the observed discharge. 

Thus, the parameter sets obtained when calibrated over periods that do not resemble future conditions 

(blue) are not comparable between the DSSTs, whereas the parameter sets are comparable for the HBV 

model. Despite the differences in parameter sets, all models simulate more or less the same discharge 

(Figure 38C). This indicates that there may be parameter equifinality, which means that multiple sets of 

parameter values can produce comparable simulations. Next to that, the parameters are interrelated. 

A higher value for 𝑋1 comes with a lower value for 𝑋3 and vice versa. 

The parameter equifinality and interrelations between parameters make it challenging to attribute 

changes in parameter sets resulting from different calibration periods to underlying factors. As there 

are multiple parameter sets that can produce an equally good fit, it is difficult to determine whether 

changes in parameter values are due to differences in calibration period or due to parameter equifinality 

or a combination of both.  

In general, parameter sets show a low value of 𝑋1 and 𝑋3. As these parameters are the capacity of the 

production store and non-linear routing store, low values indicate a fast responding system. These low 

values of 𝑋1 and 𝑋3 may be needed to simulate peaks well. Parameter 𝑋4, the time-base of the unit 

hydrographs, has a relatively low value as well, which again matches with a fast-responding catchment.  

Simulation of low flows 
For simulation of low flows, again large variations in the parameter sets are observed and clear patterns 

are hard to distinguish. The variations in parameter sets obtained when calibrated on periods that do 

not resemble future conditions (blue) are even larger than for the simulation of high flows. This may be 
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explained by the larger number of parameters that is optimized. For the simulation of high flows, 

parameter 𝑋6 was fixed at 10mm, while this was not the case for the simulation of low flows. The 

inclusion of 𝑋6 may have impacted the other parameters in the routing module, which was observed by 

Pushpalatha et al. (2011) as well. This makes it hard to compare the parameter sets obtained when 

calibrated on 𝑦𝑤 and 𝑦𝑖𝑛𝑣. 

𝑋6 is the depletion coefficient of the exponential routing store. A lower value of 𝑋6 suggests a slower 

depletion, which means that the discharge from the non-linear routing store 𝑄𝑅2 is lower (Equation 38). 

A lower value for 𝑋6 thus indicates a slower responding system. In all DSSTs except ‘N_2100Ln´, 𝑋6 is 

close to 0 and 𝑋3 is high compared to the values obtained for simulation of high flows. This means a 

slower reacting system. However, in these DSSTs also a very small value for 𝑋1 is found, which indicates 

a fast reacting system. There is thus a relationship between parameters 𝑋1, 𝑋3 and 𝑋6. For ‘N_2100Ln´ 

for example, 𝑋3 is smaller and 𝑋6 is larger, indicating a faster responding system, but this may be 

compensated with a larger 𝑋1. 

Calibration on periods that resemble future conditions (orange) lead to different parameter sets than 

calibration on periods that do not resemble future conditions (blue). Also the parameter sets for DSSTs 

‘N_2100Hd’ and ‘E_2100Ld’, which have the same validation and calibration period, differ. This shows 

that multiple parameter sets can produce comparable simulations. Even though the SCEM-UA algorithm 

was able to find convergence (Appendix D), it may not have been able to find a global optimum. Just as 

for high flows, it is thus difficult to say whether these changes in parameters are due to the parameter 

equifinality or due to a different calibration period or both. 

Simulation of high and low flows 
For simulation of high and low flows, the parameter sets obtained by calibration on periods that do not 

resemble future conditions (blue) show more similarities compared to simulation of high flows or low 

flows only. For example, the parameter sets for ‘N_2100Ld’ and ‘N_2100Hn’ are comparable. The reason 

for this may be that models calibrated on 𝑦𝑐𝑜𝑚𝑏 should be able to capture both high and low flows well, 

and thus only a few parameter sets can produce these good simulations. Parameter equifinality may 

thus be less of a problem.  

The parameter values for simulation of high and low flows have values mostly comparable with the 

parameter values obtained for the simulation of high flows. This matches with the observation made 

when evaluating the results of RQ3, namely that the GR6J model tends to focus on the calibration on 

high flows when calibrated on 𝑦𝑐𝑜𝑚𝑏. 

Parameter sets obtained when calibrated on periods that resemble future conditions (orange) are 

slightly different than when calibrated on periods that do not resemble future conditions (blue). This 

indicates a lack of robustness. Just as for the HBV model, it is difficult to distinguish patterns in the 

parameter sets obtained by calibration on periods that resemble future conditions (orange), as the 

changes in parameter set may be related to the simulation of both high and low flows. An analysis of 

the values of 𝑋2 and 𝑋5 showed that models calibrated on periods that resemble future conditions lead 

to a larger total loss of groundwater and comparable evapotranspiration, thus to a lower total discharge. 

This may be needed to simulate low flows well, while keeping a fast response to simulate high flows. 

4.4.3. Discussion of the results RQ4 
For both the HBV and GR6J model, parameter values proved to be different when calibrated on periods 

resembling future conditions. This indicates that parameters calibrated on historic periods may be 

suboptimal for future conditions, which is a lack of robustness. For the HBV model, changes in 
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parameter sets are for a large part explainable. For the GR6J model, due to aspects related to equifinality 

of calibrated parameter sets and interrelationships between parameters, this is more difficult.  

4.5. RQ5: Projected impact of climate change 
High flows 
Figure 39 shows the relative change in annual maximum daily discharge in 2086-2115 compared to 

1991-2020 for the 8 scenarios described in Table 7. The projected absolute values for annual maximum 

daily discharge in each scenario can be found in Appendix H. 

 
Figure 39 - Boxplot of the projected relative difference [%] in annual maximum daily discharge (𝑄𝑚𝑎𝑥) in the future (2086-

2115) compared to the reference climate (1991-2020) for 8 scenarios (combinations of climate scenarios, hydrological model 
structures and calibration approaches (Table 7)). The boxplots in yellow and purple are based on climate scenarios ‘2100Ld’ 
and ‘2100Hn’, respectively. Red and green boxplots show the projected change in 𝑄𝑚𝑎𝑥 simulated with the HBV and GR6J, 
respectively. Dotted boxplots show the projected change in 𝑄𝑚𝑎𝑥 with models calibrated on historic periods, boxplots with 
diagonal stripes show the projected change in 𝑄𝑚𝑎𝑥 with models calibrated on periods resembling future conditions. The 

horizontal lines in the boxes represent the median value, the boxes represent the 25-75% data range and the whiskers 
represent the 5-95% data range.  

The median change in annual maximum daily discharge compared to reference climate 1991-2020 

fluctuates between -14% (‘2100Ld, GR6J, Future’) and +27% (‘2100Hn, GR6J, Historic’). The uncertainty 

in this projected impact is the largest due to different climate scenarios. Whereas an increase is 

projected with each model and calibration approach for climate scenario ‘2100Hn’, a decrease or 

comparable value as the reference climate for 𝑄𝑚𝑎𝑥 is projected for climate scenario ‘2100Ld’. Climate 

scenario ‘2100Hn’ was based on high future emissions and a trend towards a wetter future climate. It 

therefore makes sense that this climate scenario leads to the highest annual maximum discharges.  

Still, the uncertainty in the projected impact of climate change due to different hydrological model 

structures and different calibration approaches is substantial and can thus not be neglected. For 

example, within climate scenario ‘2100Ld’, the median change in 𝑄𝑚𝑎𝑥 deviates between -14% (‘GR6J, 

Future’) and 0% (‘HBV, Historic’) due to different hydrological model structures and calibration 

approaches. The uncertainty in projected impact due to different calibration approaches is slightly 

higher than the uncertainty in projected impact due to different hydrological model structures. 

Figure 39 shows that calibration on periods resembling future conditions leads in most cases to a lower 

annual maximum daily discharge than when the model is calibrated on historic periods. This was 

unexpected, as models calibrated on historic periods showed to underestimate peaks. Models 

calibrated on periods resembling future conditions are expected to be trained more on peaks and to 
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simulate higher peaks. However, the atypical high flow event of 2021 was included in the period 

resembling historic conditions, which may have had large effects on the obtained parameter set, as was 

described in section 4.4.1. 

The differences in projected impact of climate change due to different calibration approaches are more 

apparent for the GR6J model than for the HBV model. This shows that for simulation of 𝑄𝑚𝑎𝑥, the GR6J 

model is more sensitive for the choice of the calibration approach than the HBV model. The quick runoff 

parameters of the GR6J model thus tend to be more specific for the calibration period.  

Figure H1 in Appendix H shows that the variability of 𝑄𝑚𝑎𝑥 in the future is larger when simulated with 

the GR6J model than with the HBV model. The lower whiskers (5%) are comparable for both models, 

whereas the upper whiskers (95%) show more differences. This shows that the lower 𝑄𝑚𝑎𝑥 values in 

the future are quite comparable for both models, but that above-normal 𝑄𝑚𝑎𝑥 values are simulated 

differently by both models. The reason for this could be that the HBV model underestimates peak flows, 

whereas the GR6J model better captures high peaks. Especially in summer periods, the HBV model 

showed to have difficulties with simulating peaks, which is further elaborated in section 5.2.2. As a 

result, the projected above-normal 𝑄𝑚𝑎𝑥 values may be too low for the HBV model. 

The variability of 𝑄𝑚𝑎𝑥 in the future is larger for climate scenario ‘2100Hn’ than for climate scenario 

‘2100Ld’ (Figure H1 in Appendix H). This shows that for the climate scenario with high future emissions 

and a trend towards a wetter future climate, more variability in 𝑄𝑚𝑎𝑥 is expected. 

Low flows 
Figure 40 shows the relative change in annual minimum 7-day mean discharge in 2086-2115 compared 

to 1991-2020 for the 8 scenarios described in Table 7. The absolute values for the projected impact in 

each scenario can be found in Appendix H. 

 
Figure 40 - Similar to Figure 39, but for the projected relative difference [%] in annual minimum 7-day mean discharge 

(𝑄7𝑚𝑖𝑛). Boxplots in green and orange are based on climate scenarios ‘2100Ln’ and ‘2100Hd’, respectively. 

All scenarios project a decrease in 𝑄7𝑚𝑖𝑛, except ‘2100Ln, GR6J, Future’, which projects a median 

increase of +13%. The largest decrease is projected for ‘2100Hd, HBV, Future’, with a projected median 

change of  -66%. The changes in 𝑄7𝑚𝑖𝑛 are thus expected to be larger than the changes in 𝑄𝑚𝑎𝑥. 

Just as for high flows, the uncertainty in projected impact is the largest due to different climate 

scenarios. Climate scenario ‘2100Hd’ projects a larger decrease than climate scenario ‘2100Ln’. Climate 

scenario ‘2100Hd’ was based on high future emissions and a trend towards a drier future climate. It 
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therefore makes sense that this climate scenario leads to the lowest annual minimum 7-day mean 

discharges. Especially for climate scenario ‘2100Ln’, the uncertainty in climate change impact due to 

calibration approaches cannot be underestimated.  

For climate scenario ‘2100Hd’, large differences between projected impact with the HBV and GR6J 

model are observed. For this climate scenario, the uncertainty in projected impact is larger due to 

different hydrological model structures than due to different calibration approaches. The HBV model 

projects a decrease of approximately 70%, while this decrease is approximately 40% for the GR6J model. 

Figure H2 in Appendix H also shows that the GR6J model calibrated on periods that resemble future 

conditions predicts higher 𝑄7𝑚𝑖𝑛 values. The GR6J model showed to be able to simulate 𝑄7𝑚𝑖𝑛 values 

well in case of a prolonged drought. However, when these periods of drought are alternated with 

precipitation events in summer, the model tends to overestimate peaks and encounters difficulties with 

the subsequent recession after such a precipitation event. Low streamflow in summer periods in the 

future that include these precipitation events may thus be overestimated. As a result, the projected 

𝑄7𝑚𝑖𝑛 values may be too high for the GR6J model. 

The variability of 𝑄7𝑚𝑖𝑛 in the future is smaller for climate scenario ‘2100Hd’ than for climate scenario 

‘2100Ln’ (Figure H2 in Appendix H). This shows that for the climate scenario with high future emissions 

and a trend towards a drier future climate, less variability in 𝑄7𝑚𝑖𝑛 is expected. Years in the future will 

thus look more the same for climate scenario ‘2100Hd’.
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5. DISCUSSION 
This study evaluated the robustness of the HBV and GR6J model for simulating the impact of climate 

change on high and low streamflow in the Lesse. This chapter discusses the limitations in data and 

methods that may have had influence on the results of this study and puts the results in perspective in 

relation to existing literature. After that, some generalizations regarding the study area and hydrological 

models are made. 

5.1. Limitations in data and methods 
5.1.1. Limitations in data 

In this study, historic discharge and climatic timeseries were used with a daily timestep. The Lesse has 

a relatively fast response and the results of RQ1 showed that a part of the precipitation is discharged at 

the same day. For simulation of high flows, it therefore would have been useful when timeseries with a 

sub-daily timestep were available. In this way, diurnal variability in precipitation could have been 

captured. This could have led to more insight in the meteorological conditions that lead to high 

streamflow and could have led to better simulations of high streamflow.   

The historic discharge timeseries of this study has been used in multiple studies, indicating its quality 

and reliability. However, errors in the discharge timeseries may have had large effects on the model 

performance and parameters, especially for simulation of high flows (Van Den Tillaart et al., 2013). The 

same applies for errors in the climatic timeseries. Donat et al. (2014) showed that the gridded datasets 

that are used in this study lack reliability for precipitation extremes. For the simulation of high flows, 

errors in the discharge and climatic timeseries may thus have impacted the results of this study. 

5.1.2. Limitations in methods 
Meteorological indicators 
This study focused on high and low streamflow with a return period of 1 year. Meteorological conditions 

that lead to this streamflow were based on historic data. This study assumed that the same 

meteorological conditions that led to high and low streamflow in the past will continue to do so in the 

future. However, this study did not consider other meteorological conditions that may lead to high and 

low streamflow in the future. This assumption has important implications for the results of this study. 

This is illustrated with the example of the high flow event that took place in 2021.  

In 2021, an atypical high flow event took place that was caused by extreme precipitation. The event led 

to a lot of damage, amongst others in the Lesse (Task Force Fact-finding hoogwater 2021, 2021). The 

event, with a peak discharge of more than 500 m3/s at Gendron, was atypical, because the event took 

place in summer. Whereas most historic peak discharges took place after a period of intense 

precipitation in winter with a saturated soil, this precipitation event was of such high intensity that 

infiltration was not possible (Task Force Fact-finding hoogwater 2021, 2021). This shows that other 

physical mechanisms played a role.  

The high flow event of 2021 may have had large impacts on the results of this study. As the 

meteorological indicator for high flows was not high enough in 2021, this year was not selected for a 

period resembling future conditions. As a result, an extremely high flow event was included in the period 

that resembled historic conditions, whereas this high flow event is typically what is expected to happen 

more often in the future. Next to that, the model performance and parameters in RQ3 and RQ4 were 

substantially affected by high flow event 2021, as for example described in section 4.4.1. 

This study mainly focused on the robustness of models for simulating the impact of climate change on 

high streamflow in winter that is caused by the same meteorological conditions as were observed in 
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history. However, year 2021 shows that high streamflow caused by different meteorological conditions 

was not covered by this study. This also implies that robust models should give physically realistic 

simulations. High and low streamflow in the future may be caused by different meteorological 

conditions than were used in this study. For projecting climate change impacts in the future, it is 

important that models can deal with other conditions as well.  

Bias-correction 
In this study, a relative bias-correction was applied to account for the discrepancies between the 

reference climate and observed data. This means that the relative difference between the median of a 

meteorological indicator in the reference climate and the observed median meteorological indicator 

was determined. This relative difference was then used to correct the meteorological indicators of the 

future climatic timeseries. It was consciously chosen to use a relative bias-correction on the median of 

the meteorological indicators, instead of using more complicated statistical bias-correction methods. 

However, the choice for this bias-correction method could have largely influenced the results. Using 

another bias-correction method would have resulted in different bias-corrected values for the future 

and thus a different selection of years.  

Length of calibration and validation period 
The historic discharge and climatic timeseries of this study covered a period of 54 years. From this 

period, historic years were selected that resembled the future, based on the meteorological indicator 

for high and low flows. These historic periods together made up one validation or calibration period for 

evaluating the robustness. Due to large expected changes in the meteorological indicator for low flows 

in the future, only a limited number of historic years was selected. As a result, the selected periods in 

RQ3 and RQ4 for the simulation of low flows have lengths of only one or two years. The same applies 

for the validation periods for simulation of high flows on extreme years. This means that the 

performance of the HBV and GR6J model was evaluated based on a small validation period (RQ3) and 

that the parameter sets were calibrated on a small calibration period (RQ4 and RQ5).  

Perrin et al. (2007) showed that a calibration period of 1 year may be sufficient to obtain stable and 

robust parameter values, but this depends on the type of model and objective function. However, 

periods of 1 or 2 years, given the relatively small size of the study area with rapid rainfall-runoff 

responses, may not be necessarily sufficient for calibration and validation in this study, as the influence 

of one high or low flow event may have had large effects on the results of RQ3 and RQ4. This was for 

example the case when evaluating the performance of DSST ‘H_DSST_E_2100Ld’, which showed that 

the overestimation of the peak in 1980 largely affected the model performance. A too short calibration 

period could have led to nonunique solutions that are overfitted to the calibration period, meaning that 

true relationships in the data were not captured accurately. This could have made the projections for 

the future modelled with parameters calibrated on these periods more uncertain.  

This shortcoming could be solved by expanding the bandwidth that was used to select a historic 

hydrological year. This bandwidth was chosen to be 10% and 20% for high and low flows, respectively. 

In case the bandwidth would have been larger, more years would have been selected. However, this 

would have meant that the selected years show less similarities with the future. A good balance is thus 

necessary.  

Selection of years for simulation of high and low flows 
For simulation of both high and low flows, the periods that resemble future conditions were a 

combination of periods that resemble future high flow conditions and future low flow conditions. Figure 

C1 in Appendix C shows that a relatively large proportion of years in the validation period was selected 

based on the meteorological indicator for high flows. Thus, years with high flows dominated these tests. 
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This may have impacted the performance of the models when validated on these years and the 

parameter sets obtained by calibration on these years. For example, calibration on these years was 

focused on tuning the quick runoff parameters which could have affected the other parameters. A more 

balanced period would have been better and could have been obtained by selecting as many years 

resembling high flows as years resembling low flows. 

Selection of parameters 
This study used a univariate sensitivity analysis to select parameters to which the objective functions 

were sensitive. This means that the parameters were varied one by one and parameter interactions 

were not considered. However, a univariate sensitivity analysis may have been too simple and thus 

unreliable for models with high interrelations between the parameters (Wagener & Kollat, 2007). It 

would have been useful to employ a multivariate sensitivity analysis as well, such that the entire 

parameter space would have been evaluated and parameter interactions would have been considered. 

Still, the selection of parameters seems reasonable. For example, parameters 𝐾𝑓 and 𝛼, that are both 

related to the quick runoff in the HBV model, are always either jointly included (for high flows) or 

excluded (for low flows) from calibration. It is thus expected that a more complex sensitivity analysis 

method would have led to the same selection of parameters.  

5.2. Results in perspective 
Despite the limitations in the data and methods, the results of this study were largely relatable to what 

was found in literature. In this section, the results are put in perspective in relation to existing literature. 

5.2.1. Selection of periods resembling future conditions 
This study selected years that should resemble future high and low flow conditions based on 

meteorological indicators for high and low flows. These meteorological indicators should summarize the 

meteorological conditions that lead to annual maximum discharges and annual minimum 7-day mean 

discharges. As a meteorological indicator for high flows, the 3-day precipitation sum that is exceeded 6 

days per year was determined. This meteorological indicator showed that the discharge depends on the 

precipitation of 3-days before, which is reasonable for a medium-sized basin with relatively fast 

response. As a meteorological indicator for low flows, the 150-day potential precipitation deficit that 

was exceeded 14 days per year was determined. The temporal window (150 days) is in line with findings 

of Demirel et al. (2013b) for rainfed sub-basins of the Rhine. In the end, the meteorological indicators 

showed to be good indicators for selecting periods that resembled the future. For example for low flows, 

the years with the highest meteorological indicator for low flows (1976 & 2020), which were selected 

as years that were selected to resemble future conditions, were also the years with the lowest annual 

minimum 7-day mean discharge.  

5.2.2. Robustness of GR6J and HBV 
Performance of GR6J and HBV model for simulating high and low flows 
Both the GR6J and HBV model underestimated peak discharges (section 4.3.3). This was found by De 

Boer-Euser et al. (2017) in their model intercomparison study for amongst others the Lesse catchment 

as well. They also found that the GR4H model performed best for simulating high flows. As the GR4H 

and GR6J model are based on the same modelling concept, this corresponds with the results of this 

study where GR6J was better at simulating high flows than the HBV model.  

For simulating low flows, the HBV model was preferred over the GR6J model. The HBV was well-capable 

at simulating the annual minimum 7-day mean discharge, especially in years with a long dry period. This 

was shown by the high value for 𝑁𝑆𝑖𝑛𝑣 of 0.92 in the validation period of ‘HBV_L_DSST_E_2100Ln’. 

However, the HBV model had difficulties with simulating discharge peaks in the summer period. These 

summer peaks were underestimated by the model, as precipitation was stored in the soil rather than 
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discharged directly to the river. This is physically unrealistic, as these precipitation events in reality have 

an intensity higher than the infiltration capacity of the soil, which leads to infiltration excess overland 

flow. This quick runoff for summer events could have been modelled better with the addition of a very 

quick runoff component (De Boer-Euser et al., 2017). Future research may thus focus on improving 

model structures to improve hydrological modelling and understanding, especially for low flows. 

The GR6J model, as a modified version of the widely-used GR4J model, was used in this study as the 

GR6J model was expected to provide better simulations on low flow compared to the original GR4J 

model without impacting the high-flow simulation ability (Golian et al., 2021; Pushpalatha et al., 2011). 

Still, the GR6J model did not perform as well as the HBV model did on low flows. Even though the annual 

minimum 7-day mean discharges were captured quite well, the model deviated from observations in 

the transition from high to low flows and in summer peaks. This is visualized in Figure 41, which shows 

the too steep recession curve in May 2001 and the overestimation of summer peaks. This may indicate 

that the GR6J model was calibrated such that a faster-responding system was represented than is 

actually the case.  

However, the model’s predictive power for simulating annual minimum 7-day mean discharges was still 

quite good. This may indicate that the groundwater exchange and/or evapotranspiration were adjusted 

such that this low streamflow was simulated well. Due to karstic features in the Lesse catchment, 

groundwater exchange is physically realistic (Le Moine et al., 2007). However, including groundwater 

exchange in hydrological models gives another uncertainty, as two sources of output fluxes 

(evapotranspiration and groundwater exchange) that are mostly unobservable have to be modelled. As 

this study calibrated the model parameters such that the parameters showed good fits on the discharge, 

the evapotranspiration and/or groundwater exchange may become physically unrealistic. The 

developers of the GR6J model acknowledged this limitation and focused on improving the model’s 

predictive power rather than explicitly representing physical mechanisms (Pushpalatha et al., 2011). 

 
Figure 41 - Simulated discharge by the GR6J model, calibrated on test 'L_SST_I', and observed discharge in a part of the 

calibration period. Black dot shows the observed annual minimum 7-day mean discharge. 

Calibration of the HBV model with 𝑦𝑐𝑜𝑚𝑏, which focuses on simulation of both high and low streamflow, 

led to comparable values of 𝑁𝑆𝑤 and 𝑁𝑆𝑖𝑛𝑣 as when calibrated on high or low streamflow only. This 

shows that the HBV model did not lose performance on the simulation of high or low streamflow when 

calibrated on this combined objective function. For the GR6J model, the performance on simulating low 

streamflow (𝑁𝑆𝑖𝑛𝑣) slightly decreases when calibrated on both high and low streamflow. Both models 

are thus able to capture both high and low streamflow well within the same simulation. 

Performance in periods resembling future conditions 
The results of RQ3 showed that the performance of models in periods resembling future conditions was 

comparable with the performance in periods that do not resemble future conditions. Multi-objective 
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functions 𝑦𝑤, 𝑦𝑖𝑛𝑣 and 𝑦𝑐𝑜𝑚𝑏 were only slightly different between calibration and validation period in 

the DSSTs. This was both due to differences in 𝑅𝑉𝐸 and Nash-Sutcliffe efficiencies. 

The changes in 𝑅𝑉𝐸 in the validation period compared to the calibration period in most of the DSSTs 

were in the same order of magnitude as the changes in 𝑅𝑉𝐸 in the SSTs. This comparable increase in 

absolute 𝑅𝑉𝐸 means that the water balance was captured worse in the validation period, but within 

acceptable limits. This contradicts with findings in other model robustness studies, such as the one of 

Dakhlaoui et al. (2019) that identified that the water balance was simulated worse in validation periods 

of their DSSTs. The reason for this could be that the validation periods used in this study, especially for 

simulating high flows, were not contrasting enough to identify these large model performance losses. 

The validation periods in this study were different from the calibration periods in their high and low 

flows. However, a year with a high flow did not have to include a totally different water balance in the 

rest of the year. As a result, the water balance could still be captured well. This point was discussed by 

Vormoor et al. (2018) as well.  

In most DSSTs, the Nash-Sutcliffe efficiencies increased in the validation period. Reasons for these 

increases were given in section 4.3.3. Increases in Nash-Sutcliffe efficiencies were not observed in other 

model robustness studies. A difference with other model robustness studies, such as Dakhlaoui et al. 

(2017) is that this study used a multi-objective function instead of a single objective function. De Vos & 

Rientjes (2007) and Seibert (1999) showed that parameter sets may indicate a good fit for 𝑁𝑆, but a 

poor fit for 𝑅𝑉𝐸 and vice versa. By using a multi-objective function, parameter sets should give both a 

good fit for simulation of discharge extremes and a good water balance. The use of this objective 

function thus already made the models more robust, as physically more realistic parameter sets were 

obtained by calibration. When parameter sets were physically more realistic in calibration, these 

parameter sets may have been more realistic in validation periods as well. This thus shows that the 

choice of an objective function plays a large role in the evaluation of model robustness. 

Changes in parameter sets  
The results of RQ4 proved that both models showed different parameter sets when calibrated over 

different periods. This showed that parameter sets calibrated on historic conditions may be suboptimal 

for future conditions, which corresponds with the studies of Blöschl & Montanari (2010), Ji et al. (2023), 

Merz et al. (2011), Nicolle et al. (2021), Osuch et al. (2015) and Thirel et al. (2015). 

This study used the SCEM-UA optimization algorithm for model calibration. With 5000 iterations, the 

algorithm showed to evaluate the parameter sets to a stable set (convergence, Appendix D). For the 

HBV model, a stable objective function and parameter set was found when calibrated multiple times on 

the same period. This means that the SCEM-UA algorithm could find a global optimum. For the GR6J 

model, a stable objective function was found, however, the parameter sets between multiple 

calibrations varied (Appendix E). This may indicate parameter equifinality, which means that multiple 

sets of parameter values produce comparable simulations. This problem was acknowledged by the 

developers of the model as well (Pushpalatha et al., 2011). The parameter equifinality made it 

challenging to attribute changes in optimal parameter values to differences in calibration period or to 

parameter equifinality. To get more insight in this, it would have been useful to do the same calibration 

exercises for each parameter separately, as parameter equifinality is expected to be less of a problem 

with a lower number of parameters. Next to that, it would have been interesting to calibrate on multiple 

smaller parts of the period that resembles future conditions. In case approximately the same parameter 

values are obtained for calibration on these subperiods with comparable conditions, the changes in 

parameter values in this study are mainly due to changes in calibration period. Pelletier & Andréassian 

(2022) showed that additional groundwater level data can improve the stability of parameters in the 

GR6J model. Further research into this field may thus improve the robustness of the model.  
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5.2.3. Effects of climate change 
Due to an increase in potential evapotranspiration and a decrease in precipitation, the potential 

precipitation deficit is expected to increase, leading to a decrease in low streamflow. At the same time, 

more intense precipitation events are expected, leading to an increase in high streamflow. This study 

demonstrated that the projected effects of climate change on the annual minimum 7-day mean 

discharge are larger than the projected effects of climate change on the annual maximum discharge. 

This is in accordance with the projections of these discharges at Gendron with the KNMI’23 climate 

scenarios using the ‘wflow_sbm’ model Buitink et al. (2023), given in Appendix H. This stresses the need 

for a focus shift towards low flows. 

The results of RQ5 showed that the uncertainty in projected impact due to different hydrological model 

structures and calibration approaches was not as large as the uncertainty due to different climate 

scenarios. This thus shows that the uncertainty in future emissions and regional climate response 

remains the largest source of uncertainty for climate change impact. However, the uncertainty in the 

climate change impact due to different hydrological model structures and calibration approaches cannot 

be neglected, which corresponds with findings of Merz et al. (2011) and Wilby (2005).  

The projected change in annual maximum daily discharge was determined to be between -14% and 

+27% and to be between -66% and +13% in the annual minimum 7-day mean discharge. These ranges 

cover uncertainty in future emissions, climate response, model structure and calibration approach, 

which were expected to be the main sources of uncertainty. Still, climate change impacts may fall 

outside the given ranges, due to limitations in the hydrological modelling for example as a result of 

errors in calibration data or the uncertainty related to the choice for an objective function.  

5.3. Generalizations 
5.3.1. Study catchment 

The focus of this study was on the Lesse, which is a medium-sized basin (1286 km2) with a relatively fast 

response. The interpretations made for this catchment may be difficult to generalize, as basins with a 

different size or different catchment characteristics may lead to different outcomes. Future research 

into these catchments is thus needed.  

Low streamflow in the Lesse showed to depend on the precipitation and potential evapotranspiration 

of the preceding 5-month period. This showed that the preceding winter does not have large effects on 

low streamflow, which is the case for the full Meuse basin (De Wit et al., 2007). Applying this 

methodology on larger sized basins may thus imply that periods longer than one year have to be 

selected to resemble conditions of the future.  

5.3.2. Hydrological models 
This study evaluated the robustness of two parsimonious conceptual hydrological models. This means 

the models are intentionally kept simple with a limited number of model parameters to be calibrated. 

Applying the methodology of this study on other parsimonious conceptual models is expected to result 

in similar outcomes. It is expected that using a different study basin would have more influence on the 

outcomes of this model robustness study than using a different conceptual model (Thirel et al., 2015). 

Some models contain a relatively larger share of parameters derived from data on catchment 

characteristics rather than being obtained by calibration. For these models, the methodology applied in 

this study may be less relevant. For example, in the wflow_sbm model, most parameters are derived 

from data, but the parameter KsatHorFrac is calibrated and compensates for errors in model structure 

and data (Aerts et al., 2022). Calibration of this parameter on future conditions may have less effect on 

the simulated discharge, as the largest share of parameters are derived from data and are thus stable. 
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6. CONCLUSION AND RECOMMENDATIONS 
This chapter gives the main conclusions per research question and an overarching conclusion. After 

that, practical recommendations and recommendations for future research are given. 

6.1. Conclusion 
RQ1 –  Which meteorological conditions lead to high and low flows in the Lesse and how are these 

conditions expected to change in the future? 
Annual maximum daily discharges in the Lesse were most often caused by precipitation events that took 

place in winter when the soil was already saturated. The 3-day precipitation sum that is exceeded 6 days 

per year showed to correlate with high flows. This meteorological indicator for high flows is expected to 

increase slightly in 2100 for climate scenarios with high future greenhouse gas emissions and decrease 

slightly for climate scenarios with low future greenhouse gas emissions.  

Low streamflow in the Lesse correlated with a potential precipitation deficit over 150 days, which means 

that low flows were caused by a combination of high potential evapotranspiration and low precipitation. 

The 150-day precipitation deficit that is exceeded 14 days per year showed to be a good indicator for 

low flows. This meteorological indicator for low flows is expected to increase substantially in 2100 for 

all climate scenarios. 

RQ2 – Which historic periods most closely resemble future conditions projected by climate 
change scenarios? 

For most climate change scenarios, historic years were selected that resemble future conditions for high 

flows and for low flows. As the projected meteorological indicator for low flows in extreme years in the 

future for climate scenarios with high future greenhouse gas emissions was higher than has ever been 

observed, no historic periods were selected for these climate scenarios. The expected changes in the 

meteorological indicator for high flows were smaller, therefore a larger number of years resemble future 

conditions. For low flows, only one or two historic years resemble the future conditions projected by 

climate scenarios.  

RQ3 –  What is the performance of the HBV and GR6J model in simulating high and low streamflow 

under climatic conditions resembling future conditions projected by the KNMI’23 scenarios, 

compared to the performance of the models under historic climatic conditions? 

The HBV and GR6J model performed well in simulating high and low streamflow in the Lesse. The GR6J 

model showed better performance on high streamflow, whereas the HBV model showed better 

performance on low streamflow. Both models faced difficulties with simulating summer peaks.  

The performance of both models when simulating streamflow under historic conditions was different 

than the performance under conditions resembling future conditions, due to differences in the 

simulation of the water balance and the simulation of high and low streamflow. However, large 

degradation in performance that was observed in other studies was not observed in this study. This may 

be due to the use of a multi-objective function. For simulation of high flows, another reason may be the 

fact that climatic conditions were not as climatically contrasting between validation and calibration 

periods as in other studies. 

RQ4 – What are the model parameters of the HBV and GR6J model when calibrated on climatic 
conditions resembling future conditions projected by the KNMI’23 scenarios, compared to 
when the models are calibrated on historic climatic conditions? 

Model parameters of the HBV and GR6J model were different when calibrated on climatic conditions 

resembling future conditions compared to when calibrated on historic climatic conditions. This shows 

that parameter values calibrated on historic periods may have been suboptimal for simulation of the 
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future and thus indicates a lack of robustness. For the HBV model, the changes in parameter sets were 

for a large part explainable. For the GR6J model, parameter equifinality was observed, which made it 

more difficult to find underlying reasons for the observed changes in parameter values. It is thus advised 

to calibrate models on climatic conditions that resemble future conditions, as this leads to higher 

performances in these periods.  

RQ5 –  What is the projected impact of climate change on high and low streamflow in the Lesse, 
and how does the uncertainty of this impact due to different climate scenarios relate to the 
uncertainty due to different hydrological model structures and calibration approaches? 

Climate change is projected to lead to a small increase in annual maximum daily discharges and a large 

decrease in annual minimum 7-day mean discharges. The uncertainty in future greenhouse gas 

emissions and regional climate response was the largest source of uncertainty for determining this 

climate change impact. However, the uncertainty of the projected impact due to different hydrological 

model structures and calibration approaches should not be neglected. 

Aim –  To evaluate the robustness of the HBV and GR6J model for simulating the impact of climate 
change on high and low streamflow in the Lesse catchment, by evaluating the models on 
historic periods resembling the climatic conditions projected by climate change scenarios 

Overall, given the methodology used in this study, the HBV and GR6J model showed to be robust for 

simulating the impact of climate change on high and low streamflow in the Lesse catchment. The 

performance of both models when simulating streamflow in periods that resemble future conditions 

was only slightly different from performance under historic conditions. In case the same meteorological 

conditions that led to high and low streamflow in the past will lead to high and low streamflow in the 

future, the HBV and GR6J model can thus be used for simulating impact of climate change on high and 

low streamflow in the Lesse. 

However, the optimal parameter values of the HBV and GR6J model proved to be different when 

calibrated on different periods. This indicates that parameter sets calibrated on historic conditions are 

suboptimal under changing climatic conditions and thus lose validity. This showed that the model 

robustness can still be improved, by improving model structures or calibration approaches. As long as a 

completely robust model does not exist, it is advised to calibrate conceptual models on periods that 

resemble the conditions projected in the future. 

6.2. Recommendations 
6.2.1. Practical recommendations for projecting climate change 

impact 
The results of this study showed that projecting climate change impact on high and low streamflow in 

the Lesse is highly uncertain. Even though other uncertainties, for example due to the choice of an 

objective function or due to errors in calibration data, may have affected the project impact as well, it 

is expected that uncertainties in climate scenarios, hydrological model structures and calibration 

approaches are the largest sources of uncertainty. To project climate change impacts on high streamflow 

in the Lesse, it is recommended to use the GR6J model. This model showed good performance on high 

streamflow, also in periods with climatic conditions resembling future conditions. For simulating low 

streamflow in the Lesse, it is recommended to use the HBV model. Next to that, it is recommended to 

calibrate models on periods that resemble future conditions. Despite the rather short calibration period, 

these periods may be more suitable for calibration.  

Both models showed changes in model performance and parameters when calibrated or validated on a 

period with climatic conditions resembling the future. However, compared to other studies, the 

degradation in model performance in validation periods was rather small. This may be due to the use 



6  - Conclusion and recommendations 

 
75 

of a multi-objective function, which focuses on both a good simulation of the water balance and a good 

simulation of high and/or low streamflow. It is therefore recommended to use a multi-objective function 

for calibration of models in the future.  

6.2.2. Recommendations for future research 
Improving the model structures of the HBV and GR6J model could improve the performance of the HBV 

and GR6J model for simulating high and low flows. As a result, the robustness of these models for 

projecting impact of climate change may improve as well. The HBV model underestimated peaks in the 

summer periods. Precipitation was stored in the soil rather than discharged, whereas precipitation 

intensity in reality may be larger than the infiltration capacity of the soil and thus may lead to infiltration 

excess overland flow in reality. Future research could focus on the addition of a very quick runoff 

component to improve simulations of summer peaks with the HBV model. This is of importance, as high 

flows in summer, such as the high flow event in 2021, may occur more often in the future. 

The GR6J model was able to simulate high and low streamflow rather well but showed physically 

unrealistic behaviour in the rest of the year. The inclusion of the groundwater exchange may be 

physically realistic due to the karstic feature in the Lesse, but this groundwater exchange may be the 

reason for the parameter equifinality and physically unrealistic simulations as well. Further research on 

the role of this groundwater exchange function for simulating low flows is recommended. 

This study showed that the impact of climate change on high and low streamflow is substantial. 

Especially low flows are projected to decrease in the future. Given the societal relevance, it is thus of 

importance to conduct more model robustness assessment studies that specifically focus on high and 

low streamflow. This study focused on high and low streamflow with a return period of 1 year. It would 

be interesting to evaluate the robustness for simulating the impact of climate change on streamflow 

with longer return periods as well. 

Lastly, this study evaluated the robustness of two hydrological models on one study catchment. The 

conclusions made for this study may be difficult to generalize for other types of catchments or other 

hydrological models. It would therefore be interesting to extend this study, by applying a similar 

methodology to other hydrological models or catchments. This can be every catchment, as long as a 

sufficiently long period of historic data and climate scenarios are available. As the Lesse is a fast-

responding catchment, it would be interesting to look at a slower responding catchment. 
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APPENDICES 
Appendix A: Pre-processing of observed discharge timeseries 
As described in section 2.3.1, observed discharge data for the period 1968-2021 was used. For the 

period 1968-1998, the discharge series was obtained from SETHY/WACONDAH. For 1998-2021, the 

discharge series was obtained from the annual reports from Service Public de Wallonie (2023).  

Annual reports from Service Public de Wallonie for the period 1968 – 1998 were available as well. This 

made it possible to compare the discharge data of Service Public de Wallonie and SETHY/WACONDAH 

for the period 1968 – 1998. When doing this, large differences were observed on each first of July. The 

discharge on the first of July in the annual reports from Service Public de Wallonie was very high when 

compared with the data from SETHY/WACONDAH, as illustrated in Figure A1. 

It was therefore decided to pre-process the data such, that each discharge value on the first of July is 

substituted by the average discharge on the 30th of June and 2nd of July.  

 
Figure A1 - A comparison of the observed discharge data for year 1978. In blue, the data from Service Public de Wallonie is 

shown. In red, the data from SETHY/WACONDAH is shown. A major difference was observed on the first of July. 

Appendix B: Determination of hydrological year 
For determining annual high flow statistics, a hydrological year from the 1st of September to the 31st of 

August was used. This hydrological year starts on the first day of the month with the lowest mean daily 

streamflow. As is visible in Figure B1, the lowest mean streamflow is on the 13th of September. Therefore, 

the hydrological year starts on the first day of September. In case a calendar year would have been used, 

there would be a larger probability that the annual maximum discharges in two different years are not 

independent but are related to the same discharge events. By taking a hydrological year from the 1st of 

September to the 31st of August, this probability is lower.  

For annual low flow statistics, a calendar year was used. The year starts on the first day of the month 

with the maximum mean daily streamflow, which is on the 6th of January (Figure B1).  
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Figure B1 - Mean daily streamflow throughout the calendar year, based on observed streamflow data from 1968-2021. The 
minimum mean daily streamflow is indicated with a red dot (13th of September). Therefore, the hydrological year for high 
flows starts on the first of September. The maximum mean daily streamflow is indicated with a blue dot (6th of January). 

Appendix C: Testing schemes 
This appendix gives an overview of the testing schemes explained in section 3.3.1. Table C1 shows the 

(number of) years selected in the calibration and validation period for each test for simulation of high 

flows. For simulation of low flows, the overview is given in Table C2. 

Table C1 - Overview of the testing framework used for high flows. The codes of the different tests are made up of the type of 
flow (High (H)), the type of test (SST or DSST), the type of year (Normal (N) or Extreme (E)) and the climate scenario (Figure 6). 

Split-sample tests (SST) 

Code Calibration period 
Nr. of 
years 

Validation period 
 

Nr. of 
years 

H_SST_I 1/1/1996 – 31/12/2020 25 1/1/1970 – 31/12/1994 25 

H_SST_II 1/1/1970 – 31/12/1994 25 1/1/1996 – 31/12/2020 25 

Differential split-sample tests (DSST) 

Code 
Calibration period 

All years except selected 
hydrological years 

Nr. of 
years 

Validation period 
Selected hydrological years from 

1/9/X-1 to 31/8/X. 

Nr. of 
years 

H_DSST_N_2100Ld 
1/1/1969 – 31/12/2021 

Except selected years 
44 

1975, 1987, 1990, 1991, 1997, 
2001, 2004, 2007, 2010 

9 

H_DSST_N_2100Hn 
1/1/1969 – 31/12/2021 

Except selected years  
43 

1983, 1984, 1992, 1994, 1996, 
1999, 2003, 2012, 2016, 2019 

10 

H_DSST_E_2100Ld 
1/1/1969 – 31/12/2021 

Except selected years 
51 1980, 2014 2 

H_DSST_E_2100Hn 
1/1/1969 – 31/12/2021 

Except selected years 
52 1995 1 

 
Table C2 - Similar to Table C1, but for low flows. Type of flow is ‘L’ (Low). 

Split-sample tests (SST) 

Code Calibration period 
Nr. of 
years 

Validation period 

 

Nr. of 
years 

L_SST_I 1/1/1996 – 31/12/2020 25 1/1/1970 – 31/12/1994 25 

L_SST_II 1/1/1970 – 31/12/1994 25 1/1/1996 – 31/12/2020 25 

Table continues on next page 
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Differential split-sample tests (DSST) 

Code 
Calibration period 

All years except selected 
calendar years 

Nr. of 
years 

Validation period 

Selected calendar years from 
1/1/X to 31/12/X. 

Nr. of 
years 

L_DSST_N_2100Ln 
1/1/1969 – 31/12/2021 

Except selected years 
52 1971 1 

L_DSST_N_2100Hd 
1/1/1969 – 31/12/2021 

Except selected years  
51 1976, 2020 2 

L_DSST_E_2100Ln 
1/1/1969 – 31/12/2021 

Except selected years 
52 2020 1 

L_DSST_E_2100Ld 
1/1/1969 – 31/12/2021 

Except selected years 
51 1976, 2020 2 

 
Table C3 shows an overview for the tests for simulation of high and low flows. Figure C1 shows the 

calibration and validation periods for simulation of high and low flows, categorized by years selected 

based on high flows and years selected based on low flows. Orange periods are periods that were 

selected based on both high flows and low flows. Because of this overlap and the different hydrological 

year used for high and low flows, the number of years in Table C3 is not the sum of the years selected 

for high flows and low flows (indicated by *). 

Table C3 - Similar to Table C1, but for high and low flows. Type of flow is ‘B’ (Both). Blue years in the validation period are 
selected based on the meteorological indicator for high flows, red years based on the meteorological indicator for low flows. 

Split-sample tests (SST) 

Code Calibration period 
Nr. of 
years 

Validation period 

 

Nr. of 
years 

B_SST_I 1/1/1996 – 31/12/2020 25 1/1/1970 – 31/12/1994 25 

B_SST_II 1/1/1970 – 31/12/1994 25 1/1/1996 – 31/12/2020 25 

Differential split-sample tests (DSST) 

Code 

Calibration period 
All years except selected 
hydrological & calendar 

years 

Nr. of 
years 

Validation period 

Selected hydrological years from 
1/9/X-1 to 31/8/X. 

Selected calendar years from 
1/1/X to 31/12/X 

Nr. of 
years 

B_DSST_N_2100Ld 
1/1/1969 – 31/12/2021 

Except selected years 
39⅓ 

1973, 1975, 1987, 1990, 1991, 
1996, 1997, 1999, 2001, 2002, 
2004, 2007, 2009, 2010, 2012 

9 + 6 = 
13⅔* 

B_DSST_N_2100Hn 
1/1/1969 – 31/12/2021 

Except selected years 
41 

1975, 1983, 1984, 1992, 1994, 
1996, 1999, 2003, 2011, 2012, 

2016, 2019, 2019 

10 + 3 = 
12* 

B_DSST_N_2100Ln 
1/1/1969 – 31/12/2021 

Except selected years 
43 

1971, 1981, 1987, 1990, 2000, 

2001, 2004, 2007, 2008, 2010 

9 + 1 =  

10 

B_DSST_N_2100Hd 
1/1/1969 – 31/12/2021 

Except selected years  
40 

1976, 1981, 1983, 1987, 1988, 

1990, 2000, 2001, 2004, 2007, 

2008, 2019, 2020 

11 + 2 = 

13 

B_DSST_E_2100Ld 
1/1/1969 – 31/12/2021 

Except selected years 
49 1976, 1980, 2014, 2020 

2 + 2 = 
4 

B_DSST_E_2100Ln 
1/1/1969 – 31/12/2021 

Except selected years 
50⅓ 1995, 2020, 2021 

2 + 1 = 

2⅔* 
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Figure C1 - Visualisation of the periods used for calibration (blue) and validation in the different tests for simulation of high 
and low flows. In yellow, validation periods selected based on meteorological indicators for high flows are visualized. Red 

periods are selected based on meteorological indicators for low flows. Periods that are selected based on the meteorological 
indicator for high flows and based on the meteorological indicator for low flows are given in orange. Grey periods are not 

included in calibration or validation. The codes of the different tests are made up of the type of flow (Both (B)), the type of test 
(SST or DSST), the type of year (Normal (N) or Extreme (E)) and the climate scenario (Figure 6). 

Appendix D: SCEM-UA Calibration algorithm 
The SCEM-UA optimization algorithm shows to the able to give a stable parameter set. After 5000 

iterations, convergence and a global optimum is found.  

Figure D1 and Figure D2 show the parameter values that were evaluated over each iteration for 

calibration of the HBV and GR6J model on testing scheme ‘H_SST_I’. It is visible that after 5000 

iterations, the algorithm finds a stable model output, showing that convergence is found.  

 
Figure D1 - Parameters sets for each iteration in the calibration of the HBV model on testing scheme ‘H_SST_I’ with calibration 

settings described in section 3.3.2.1. 
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Figure D2 - Similar to Figure D1, but for the GR6J model. 

It was tried to decrease calibration time by including the Gelman-Rubin convergence termination 

criterion in the SCEM-UA algorithm. A Gelman-Rubin convergence score (GR) close to 1 indicates that 

parameters have converged to a stable value. Following the recommendations of Vrugt et al. (2003), 

convergence is found when GR is lower than 1.2 for all parameters. Including the Gelman-Rubin 

convergence termination criterion thus means that calibration is stopped when all parameters have a 

GR<1.2. 

Figure D3 shows the parameter sets evaluated over each iteration for the same calibration as Figure D1 

(HBV model), but with the inclusion of the Gelman-Rubin convergence criterion. After 300 iterations, 

the algorithm was terminated, as GR<1.2 for each parameter. However, it is visible that convergence is 

not yet found; parameters still vary over a large part of the parameter space. It was therefore decided 

to exclude the Gelman-Rubin convergence termination criterion for model calibration. 

 
Figure D3 - Parameters sets for each iteration in the calibration of the HBV model on testing scheme ‘H_SST_I’ with calibration 

settings described in section 3.3.2.1, but with inclusion of the Gelman-Rubin convergence termination criterion.  
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Appendix E: Selection of calibration parameters 
This appendix shows the results of the sensitivity analysis used to select the parameters for calibration. 

The sensitivity analysis provides insight in the parameters to which the objective function is insensitive, 

meaning that these parameters hardly impact model performance. Insensitive parameters were kept 

outside calibration, to limit the number of parameters in the optimization problem. As a result, the 

SCEM-UA algorithm was better able to find convergence efficiently. 

A univariate sensitivity analysis was done, which means that parameters were varied one by one. First, 

calibration was done with all parameters. Then, each parameter was replaced by 1000 values ranging 

from 50% and 150% of the found optimal values. For each new parameter set, the multi-objective 

function was determined. Based on the sensitivity of the multi-objective function to a change in 

parameter, insensitive parameters were selected.  The results of the sensitivity analysis were described 

per model and type of flow. 

E.1. HBV, High flows 
Figure E1 shows the results of the univariate sensitivity analysis of the HBV model, for simulation of high 

flows. Multi-objective function 𝑦𝑤 hardly changes for a change in parameters 𝐾𝑠, 𝑃𝐸𝑅𝐶 and 𝐶𝑓𝑙𝑢𝑥. 

These three parameters are thus determined to be the least sensitive. Therefore, these parameters 

were fixed at default values recommended by SMHI (2006), being 0.005 day-1, 1 mm/day and 1 mm/day, 

respectively.  

 
Figure E1 - Results of the univariate sensitivity analysis of the HBV model for simulation of high flows. The x-axis shows the 

parameter value scaled to its original value.  

With fixed values for parameters 𝐾𝑠, 𝑃𝐸𝑅𝐶 and 𝐶𝑓𝑙𝑢𝑥, calibration of the remaining 5 parameters shows 

a stable behaviour regarding objective function 𝑦𝑤 and the resulting parameter set. Table E1 shows five 

outcomes of calibration for testing scheme ‘SST_I’. A stable objective function and parameter set is 

observed, indicating that the SCEM-UA found a global optimum.  

Table E1 - Objective function 𝑦𝑤 and parameter set of the HBV model, calibrated 5 times using testing scheme ‘SST_I’, 
objective function 𝑦𝑤. Parameters 𝐾𝑠, 𝑃𝐸𝑅𝐶 and 𝐶𝑓𝑙𝑢𝑥 were fixed at 0.005 day-1, 1 mm/day and 1 mm/day, respectively.  

# yw FC [mm] β [-] LP [-] α [-] Kf  [day-1] 

1 0.83 206 3.95 0.488 0.178 0.098 

2 0.83 193 3.64 0.430 0.203 0.088 

3 0.83 199 3.77 0.458 0.172 0.101 

4 0.83 195 3.71 0.441 0.180 0.097 

5 0.83 196 3.82 0.449 0.198 0.089 
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E.2. HBV, Low flows 
Figure E2 shows the results of the univariate sensitivity analysis of the HBV model, for simulation of low 

flows. Multi-objective function 𝑦𝑖𝑛𝑣 hardly changes for a change in parameters 𝛼, 𝐾𝑓 and 𝐶𝑓𝑙𝑢𝑥. These 

three parameters are thus determined to be the least sensitive. Therefore, these parameters were fixed 

at default values recommended by SMHI (2006), being 1, 0.005 day-1 and 1 mm/day, respectively. 

 
Figure E2 - Results of the univariate sensitivity analysis of the HBV model for simulation of low flows. The x-axis shows the 

parameter value scaled to its original value.  

With fixed values for parameters 𝛼, 𝐾𝑓 and 𝐶𝑓𝑙𝑢𝑥, calibration of the remaining 5 parameters shows a 

stable behaviour regarding objective function 𝑦𝑖𝑛𝑣 and the resulting parameter set. Table E2 shows five 

outcomes of calibration for testing scheme ‘SST_I’. A stable objective function and parameter set is 

observed, indicating that the SCEM-UA found a global optimum.  

Table E2 - Objective function 𝑦𝑖𝑛𝑣 and parameter set of the HBV model, calibrated 5 times using testing scheme ‘SST_I’, 
objective function 𝑦𝑖𝑛𝑣. Parameters 𝐾𝑓 , 𝐶𝑓𝑙𝑢𝑥 and 𝛼 were fixed at 0.005 day-1, 1 mm/day and 1, respectively. 

# yinv FC [mm] β [-] LP [-] Ks [day-1] PERC [mm/day] 

1 0.86 210 1.20 0.270 0.0308 0.353 

2 0.86 210 1.22 0.275 0.0308 0.352 

3 0.86 210 1.20 0.269 0.0310 0.352 

4 0.86 210 1.21 0.270 0.0309 0.351 

5 0.86 210 1.21 0.274 0.0313 0.354 

 

E.3. HBV, High and low flows 
For simulation of high and low flows, no sensitivity analysis was done. Instead, the selection of 

parameters for high flows and for low flows was analysed. All parameters in the HBV model are 

important for simulation of high flows and/or low flows, except parameter 𝐶𝑓𝑙𝑢𝑥 (Table E3). It was 

therefore expected that selecting every parameter except 𝐶𝑓𝑙𝑢𝑥 would result in a global optimum. 

𝐶𝑓𝑙𝑢𝑥 was thus fixed at the default value of 1 mm/day (SMHI, 2006). 

Table E3 - Selected parameters in the HBV model for high flows and for low flows. 

Selected for… FC [mm] β [-] LP [-] α [-] Kf [day-1] Ks [day-1] PERC [mm/day] Cflux [mm/day] 

High flows Yes Yes Yes Yes Yes No No No 

Low flows Yes Yes Yes No No Yes Yes No 

 
With a fixed value for parameter 𝐶𝑓𝑙𝑢𝑥, calibration of the remaining 7 parameters shows a stable 

behaviour regarding objective function 𝑦𝑐𝑜𝑚𝑏 and the resulting parameter set. Table E4 shows five 
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outcomes of calibration for testing scheme ‘SST_I’. A stable objective function and parameter set is 

observed, indicating that the SCEM-UA found a global optimum.  

Table E4 - Objective function 𝑦𝑐𝑜𝑚𝑏  and parameter set of the HBV model, calibrated 5 times using testing scheme ‘SST_I’, 
objective function  𝑦𝑐𝑜𝑚𝑏 . Parameter 𝐶𝑓𝑙𝑢𝑥 was fixed at 1 mm/day. 

# ycomb FC [mm] β [-] LP [-] α [-] Kf [day-1] Ks [day-1] PERC [mm/day] 

1 0.84 213 1.40 0.314 0.539 0.0208 0.0282 0.356 

2 0.84 229 1.67 0.410 0.627 0.0149 0.0285 0.348 

3 0.84 214 1.40 0.316 0.544 0.0204 0.0283 0.353 

4 0.84 213 1.39 0.312 0.551 0.0196 0.0282 0.358 

5 0.84 214 1.39 0.314 0.548 0.0199 0.0282 0.354 

 

E.4. GR6J, High flows 
Figure E3 shows the results of the univariate sensitivity analysis of the GR6J model, for simulation of 

high flows. Multi-objective function 𝑦𝑤 hardly changes for a change in parameter 𝑋6. This parameter 

was thus determined to be the least sensitive and thus is fixed at 10mm, which is the median of the 

parameter space for this parameter (Pushpalatha et al., 2011). 

 
Figure E3 - Results of the univariate sensitivity analysis of the GR6J model for simulation of high flows. The x-axis shows the 

parameter value scaled to its original value.  

With a fixed value for parameter 𝑋6, calibration of the remaining 5 parameters shows a stable behaviour 

regarding objective function 𝑦𝑤. Table E5 shows five outcomes of calibration for testing scheme ‘SST_I’. 

However, the parameter sets show large variations. Especially parameters 𝑋2 and 𝑋5, related to 

groundwater exchange, show large variations. Despite this, still parameters 𝑋1 to 𝑋5 were selected for 

calibration.  

Table E5 - Objective function 𝑦𝑤 and parameter set of the GR6J model, calibrated 5 times using testing scheme ‘SST_I’, 
objective function 𝑦𝑤. Parameter 𝑋6 was fixed at 10 mm.  

# yw X1 [mm] X2 [mm/day] X3 [mm] X4 [day] X5 [-] 

1 0.89 157 0.175 27.0 2.21 1.52 

2 0.89 155 -0.0474 26.4 2.22 -3.03 

3 0.88 178 -0.278 23.3 2.22 -0.0188 

4 0.89 159 0.317 27.1 2.22 1.08 

5 0.89 156 -0.151 26.6 2.21 -0.564 
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E.5. GR6J, Low flows 
Figure E4 shows the results of the univariate sensitivity analysis of the GR6J model, for simulation of low 

flows. A substantial change in multi-objective function 𝑦𝑖𝑛𝑣 is visible for a change in each parameter. It 

was therefore chosen to select all parameters for calibration.  

 
Figure E442 - Results of the univariate sensitivity analysis of the GR6J model for simulation of low flows. The x-axis shows the 

parameter value scaled to its original value. 

Calibration results of 5 times calibration of the 6 parameters for testing scheme ‘SST_I’ are shown in 

Table E6. A stable behaviour regarding objective function 𝑦𝑖𝑛𝑣 is observed. However, the parameter sets 

show large variations. Especially parameters 𝑋2 and 𝑋5, related to groundwater exchange, show large 

variations. Next to that, a low value for 𝑋1 leads to a high value of 𝑋3 and vice versa.  

Table E6 - Objective function 𝑦𝑖𝑛𝑣 and parameter set of the GR6J model, calibrated 5 times using testing scheme ‘SST_I’, 
objective function 𝑦𝑖𝑛𝑣.  

# yinv X1 [mm] X2 [mm/day] X3 [mm] X4 [day] X5 [-] X6 [mm] 

1 0.82 320 -0.327 5.93 2.06 0.226 7.98 

2 0.83 231 -0.383 6.26 2.02 0.265 10.2 

3 0.81 200 -0.171 7.15 1.90 -0.314 16.6 

4 0.81 94.9 -0.577 280 1.87 0.0670 0.167 

5 0.83 207 -0.373 6.03 2.08 0.245 11.7 

 

E.6. GR6J, Both flows 
Just as for the HBV model, the selection of parameters was based on the selected parameters for 

simulation of high flows and simulation of low flows (Table E7). All parameters in the GR6J model were 

important for simulation of high flows and/or low flow. Therefore all 6 parameters were selected for the 

simulation of both flows.  

Table E7 - Selected parameters in the GR6J model for high flows and for low flows. 

 X1 [mm] X2 [mm/day] X3 [mm] X4 [day] X5 [-] X6 [mm] 

Selected for high flows Yes Yes Yes Yes Yes No 

Selected for low flows Yes Yes Yes Yes Yes Yes 

 
Table E8 shows the calibration results when using the SCEM-UA algorithm with objective function 

𝑦𝑐𝑜𝑚𝑏. A stable objective function 𝑦𝑐𝑜𝑚𝑏 was found, varying between 0.81 and 0.84. Just as for 

simulation of high flows or simulation of low flows, variability is observed between the parameter sets. 
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Table E8 - Objective function 𝑦𝑐𝑜𝑚𝑏  and parameter set of the GR6J model, calibrated 5 times using testing scheme ‘SST_I’, 
objective function 𝑦𝑐𝑜𝑚𝑏 .  

# ycomb X1 [mm] X2 [mm/day] X3 [mm] X4 [day] X5 [-] X6 [mm] 

1 0.82 51.5 0.155 386 2.21 1.610 1.45 

2 0.82 63.2 -0.299 326 2.27 -0.264 1.29 

3 0.84 195 -0.349 16.4 2.30 0.143 11.5 

4 0.82 64.5 -0.318 325 2.24 -0.224 1.38 

5 0.81 42.0 0.326 411 2.24 0.968 1.66 

 

Appendix F: Changes in precipitation and potential 
evapotranspiration 
The results described in section 4.1.2.2 showed that the meteorological indicator for low flows is 

expected to increase for all future scenarios. Figure F1 and Figure F2 show that this increase in potential 

precipitation deficit is both due to an increase in potential evapotranspiration as well as a decrease in 

precipitation.  

 
Figure F1 - Boxplot of the precipitation sum corresponding to the meteorological indicator for low flows, based on 

observations (blue) and the bias-corrected values for each future scenario (other colours). The horizontal lines in the boxes 
represent the median value, the boxes represent the 25-75% data range and the whiskers represent the 5-95% data range. 

The values in the boxes are the median values.  

 
Figure F2 - Similar to Figure F1, but for the potential evapotranspiration sum. 
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Appendix G: Calibration performance 
Table G1 shows the performance of the HBV model in the calibration period, when calibrated on the 

calibration period of RQ3 (blue in section 3.3.1) and when calibrated on the validation period of RQ3 

(orange in 3.3.1). These are the periods that were selected to resemble future conditions. In general, 

model performance in the calibration period is higher when calibrated on the periods that resemble 

future conditions. 

Table G1 - Performance of the HBV model calibrated on the testing schemes for simulation of A) high, B) low and C) high and 
low flows. The names of the testing schemes are explained in section 3.3.1. For high flows, performance is given by objective 

function 𝑦𝑤 and corresponding 𝑁𝑆𝑤 and 𝑅𝑉𝐸. For low flows, performance is given by objective function 𝑦𝑖𝑛𝑣 and 
corresponding 𝑁𝑆𝑖𝑛𝑣 and 𝑅𝑉𝐸. For simulation of high and low flows, performance is given by objective function 𝑦𝑐𝑜𝑚𝑏  and 

corresponding 𝑁𝑆𝑤, 𝑁𝑆𝑖𝑛𝑣 and 𝑅𝑉𝐸. Blue and orange columns show the performance when calibrated on periods that do not 
resemble future conditions (blue) and periods that resemble future conditions (orange). The last column (Δ𝑦) shows the 

difference in multi-objective function. Red and green numbers indicate a degradation and increase of performance in the 
orange calibration period compared to the blue calibration period, respectively. 

A) Simulation of high flows 

Testing scheme 

Calibration on not-selected years Calibration on selected years 
Δyw 

[-] yw 
[-] 

NSw 
[-] 

NSinv 
[-] 

RVE 
[%] 

yw 
[-] 

NSw 
[-] 

NSinv 
[-] 

RVE 
[%] 

HBV_H_DSST_N_2100Ld 0.82 0.82 - +3.2∙10-3 0.81 0.81 - -2.8∙10-3 -0.01 

HBV_H_DSST_N_2100Hn 0.81 0.81 - +2.7∙10-3 0.83 0.83 - +1.6∙10-3 +0.02 

HBV_H_DSST_E_2100Ld 0.82 0.82 - -1.1∙10-3 0.84 0.84 - -8.7∙10-3 +0.02 

HBV_H_DSST_E_2100Hn 0.81 0.81 - +2.6∙10-3 0.87 0.87 - +1.3∙10-2 +0.06 

B) Simulation of low flows 

Testing scheme 

Calibration on not-selected years Validation period 
Δyinv 

[-] yinv 
[-] 

NSw 
[-] 

NSinv 
[-] 

RVE 
[%] 

yinv 
[-] 

NSw 
[-] 

NSinv 
[-] 

RVE 
[%] 

HBV_L_DSST_N_2100Ln 0.85 - 0.85 -5.7∙10-3 0.89 - 0.89 +2.2∙10-2 +0.04 

HBV_L_DSST_N_2100Hd 0.84 - 0.84 +7.3∙10-4 0.92 - 0.92 -5.8∙10-3 +0.08 

HBV_L_DSST_E_2100Ln 0.85 - 0.85 +1.2∙10-3 0.97 - 0.97 +3.4∙10-4 +0.12 

HBV_L_DSST_E_2100Ld 0.84 - 0.84 +5.4∙10-3 0.92 - 0.92 -3.4∙10-3 +0.12 

C) Simulation of high and low flows 

Testing scheme 

Calibration on not-selected years Calibration on selected years 
Δycomb 

[-] ycomb 
[-] 

NSw 
[-] 

NSinv 
[-] 

RVE 
[%] 

ycomb 
[-] 

NSw 
[-] 

NSinv 
[-] 

RVE 
[%] 

HBV_B_DSST_N_2100Ld 0.83 0.80 0.87 +2.3∙10-3 0.81 0.83 0.79 +6.2∙10-3 -0.02 

HBV_B_DSST_N_2100Hn 0.82 0.79 0.86 +1.7∙10-3 0.84 0.81 0.87 +1.0∙10-2 +0.02 

HBV_B_DSST_N_2100Ln 0.83 0.80 0.87 +3.1∙10-1 0.80 0.82 0.86 +4.1 -0.03 

HBV_B_DSST_N_2100Hd 0.82 0.80 0.83 +7.0∙10-3 0.85 0.81 0.89 +3.7∙10-2 +0.03 

HBV_B_DSST_E_2100Ld 0.81 0.79 0.84 +1.6∙10-3 0.89 0.87 0.93 +7.0∙10-1 +0.08 

HBV_B_DSST_E_2100Ln 0.84 0.82 0.85 +9.6∙10-4 0.87 0.84 0.90 +6.2∙10-3 +0.03 

 
Table G2 shows the performance of the GR6J model in the calibration period, when calibrated on the 

calibration period of RQ3 (blue in section 3.3.1) and when calibrated on the validation period of RQ3 

(orange in 3.3.1). Again, in general, model performance in the calibration period is higher when 

calibrated on the periods that resemble future conditions. 
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Table G2 - Similar to Table G1, but for the GR6J model. 

A) Simulation of high flows 

Testing scheme 

Calibration on not-selected years Calibration on selected years 
Δyw 

[-] yw 
[-] 

NSw 
[-] 

NSinv 
[-] 

RVE 
[%] 

yw 
[-] 

NSw 
[-] 

NSinv 
[-] 

RVE 
[%] 

GR6J_H_DSST_N_2100Ld 0.90 0.90 - -2.1∙10-3 0.90 0.90 - -1.1∙10-2 0.00 

GR6J_H_DSST_N_2100Hn 0.91 0.91 - +3.1∙10-3 0.94 0.94 - +5.3∙10-3 +0.03 

GR6J_H_DSST_E_2100Ld 0.92 0.92 - +5.0∙10-3 0.89 0.89 - -1.3∙10-2 -0.03 

GR6J_H_DSST_E_2100Hn 0.91 0.91 - -3.3∙10-1 0.96 0.96 - -1.3∙10-1 +0.05 

B) Simulation of low flows 

Testing scheme 
Calibration on not-selected years Validation period 

Δyinv 

[-] yinv 
[-] 

NSw 
[-] 

NSinv 
[-] 

RVE 
[%] 

yinv 
[-] 

NSw 
[-] 

NSinv 
[-] 

RVE 
[%] 

GR6J_L_DSST_N_2100Ln 0.82 - 0.82 +7.7∙10-3 0.87 - 0.87 +1.9∙10-3 +0.05 

GR6J_L_DSST_N_2100Hd 0.77 - 0.77 -1.2∙10-2 0.89 - 0.89 +3.4∙10-2 +0.12 

GR6J_L_DSST_E_2100Ln 0.79 - 0.79 +4.5∙10-4 0.93 - 0.93 +3.1∙10-2 +0.14 

GR6J_L_DSST_E_2100Ld 0.77 - 0.77 -2.3∙10-2 0.89 - 0.89 +1.0∙10-2 +0.12 

C) Simulation of high and low flows 

Testing scheme 

Calibration on not-selected years Calibration on selected years 
Δycomb 

[-] ycomb 
[-] 

NSw 
[-] 

NSinv 
[-] 

RVE 
[%] 

ycomb 
[-] 

NSw 
[-] 

NSinv 
[-] 

RVE 
[%] 

GR6J_B_DSST_N_2100Ld 0.86 0.90 0.83 -1.2∙10-2 0.78 0.85 0.71 -1.7∙10-2 -0.07 

GR6J_B_DSST_N_2100Hn 0.85 0.91 0.79 +1.3∙10-3 0.84 0.87 0.80 -2.4∙10-3 -0.01 

GR6J_B_DSST_N_2100Ln 0.85 0.90 0.79 -3.0∙10-3 0.83 0.88 0.77 +1.2∙10-2 -0.02 

GR6J_B_DSST_N_2100Hd 0.80 0.85 0.75 +4.2∙10-3 0.88 0.88 0.88 -7.8∙10-3 +0.08 

GR6J_B_DSST_E_2100Ld 0.81 0.89 0.74 -6.7∙10-1 0.88 0.88 0.88 +4.6∙10-2 +0.07 

GR6J_B_DSST_E_2100Ln 0.80 0.83 0.78 +6.1∙10-1 0.92 0.95 0.89 +7.2∙10-3 +0.12 
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Appendix H: Projected impact of climate change 
Figure H1 and Figure H2 show the projected impact of climate change on the annual maximum daily 

discharge and annual minimum 7-day mean discharge in all scenarios described in Table 7, as well as in 

the reference climate. The projected impact simulated with the ‘wflow_sbm’ model by Deltares (Buitink 

et al., 2023) is given as well. These projected impacts were used as comparison.  

 
Figure H1 - Boxplot of the annual maximum daily discharge [𝑄𝑚𝑎𝑥, m3/s] projected for 8 scenarios (combinations of climate 
scenarios, hydrological model structures and calibration approaches (Table 7)), and the effects projected by Deltares using 

wflow_sbm (Buitink et al., 2023). The three most left boxplots (in grey) were based on the reference climate of KNMI (1991-
2020). The boxplots in yellow and purple are based on climate scenario ‘2100Ld’ and ‘2100Hn’, respectively. These boxplots 
show the projected 𝑄𝑚𝑎𝑥 for the period 2086-2115. Red, green and blue boxplots show the projected 𝑄𝑚𝑎𝑥 simulated with 

the HBV, GR6J and wflow_sbm model, respectively. Dotted boxplots show the projected 𝑄𝑚𝑎𝑥 with models calibrated on 
historic period 1996-2020, boxplots with diagonal stripes show the projected 𝑄𝑚𝑎𝑥 with models calibrated on periods 

resembling future conditions. The horizontal lines in the boxes represent the median value, the boxes represent the 25-75% 
data range and the whiskers represent the 5-95% data range. 

 
Figure H2 - Similar to Figure H1, but for the annual minimum 7-day mean discharge [𝑄7𝑚𝑖𝑛, m3/s]. Boxplots in green and 

orange are based on climate scenario ‘2100Ln’ and ‘2100Hd’, respectively. 


