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Summary  
In the Netherlands, managing groundwater effectively is essential, since groundwater is crucial for 

the Netherlands. Because it affects everything from drinking water supply to nature conservation and 

urban development. Monitoring groundwater levels is a key part of this effort, but it is becoming 

more complicated because of new laws and the large amounts of data being collected more 

frequently than ever before. Previously, observing and checking the accuracy of groundwater data 

was mostly done by hand, a detailed but increasingly slow method given the growing amount of data 

and the legal need to process this information quickly. Consequently, driven by the requirements of 

new legislation and advances in technology this research focuses on exploring ways to automate this 

process of checking groundwater data. Therefore during this research the new BRO legislation, ways 

of automating the validation process, hydrological validation and the current protocols are discussed. 

This research aims to gain insight into what steps can be automated in these validations protocols. 

The primary goal of this thesis is to investigate the feasibility of automating steps within the anomaly 

detection phase of the groundwater data validation process. Traditionally and still in the majority of 

the current protocols this step is performed manually. Because of the recent shift of measuring 

methods to telemetry the amount of data entries significantly increased. Making it more tedious to 

validate manually.  

To navigate towards this goal, several research questions need to be answered, including:  

• What requirements does the BRO have for the validated data? 

• What are the differences and contributions of hydrological validation in comparison to 

automatic validation?  

• How do the different validation protocols compare to each other? 

The research methodology covers a comparative analysis of hydrological versus automated validation 

techniques. Furthermore literature studies are also performed to find manners of executing 

automated and hydrological validation. Interviews and expert consultations are held to illustrate the 

requirements of the BRO and the validation protocols of the different organisations. 

The results show the capability of the automated tool to significantly improve the validation process's 

efficiency. Incorporating statistical tests, consistency checks, timeseries models and exploring the 

application of machine learning algorithms. The automated tools not only reduced the likelihood of 

human error but also accelerate the anomaly detection process, allowing for swift decision-making. It 

is important to note that automated tools are not perfect, and very dependent on among other 

things the quality of training data. 

The main conclusions drawn in this research marks the potential of automation in groundwater data 

validation. Although automation could improve data validation processes, human oversight remains 

important. The complex nature of some anomalies within groundwater data needs expert judgment, 

underscoring the importance of a hybrid approach that leverages the strengths of both automated 

tools and human expertise. 
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1. Introduction 

1.1. Context 
The Netherlands is a country where 19% of the territory is covered by water, and 26% of its landmass 

is below sea level [1]. It is very important to manage the water in the land. This is done by different 

levels of water governing bodies; namely Rijkswaterstaat, the provinces, the waterboards and the 

municipalities [2]. The different water governing entities have different tasks. The municipalities are 

responsible for managing urban groundwater [3]. Groundwater refers to water that gradually 

infiltrates into the subsoil formations through waterbodies such as ditches, lakes, and rivers. Filling 

the cracks and spaces within soil, sand, and rock where it is stored [4]. Moreover, groundwater plays 

a crucial role in sustaining healthy ecosystems, and a decrease in groundwater levels can lead to soil 

subsidence [5]. In recent years there has been a significant shift in the approach to measuring 

groundwater compared to the past [6]. Traditionally, groundwater level measurements were 

conducted using monitoring wells, which are tubes with a transparent filter allowing water to enter. 

Once the water entered the filter, parameters such as water level and quality could be derived. These 

measurements were previously performed manually or with dataloggers. Manual measurements 

required a person to be present for the experiment or to read values from the monitoring well. 

Datalogger data, although recorded, had to be physically retrieved from the well. The retrieved data 

from these manual measurement methods were riddled with administrative and communicative 

errors. Since making mistakes is human, and the possibilities for employing detailed, systematic 

procedures and precise definitions were limited [7]. Therefore, data validation which is a process of 

ensuring that data used in various applications and systems is accurate, consistent, and meets specific 

quality standards [8] is necessary. These manual methods have seen a decline in recent years, and the 

adoption of groundwater monitoring networks, especially in urban areas, has surged. Groundwater 

monitoring networks utilize telemetry for data transmission, enabling remote parameter 

measurement and results sent to a central computer. This transition provides water governing 

entities with real-time information for decision-making and early issue detection. However, it also 

leads to a substantial increase in recorded measurements. Which goes hand in hand with a significant 

increase in workload for the expert that checks the measurements on anomalies. 

In addition, due to a recent change in legislation, known as “de wet Basisregistratie Ondergrond 

(BRO),” this new law requires governing bodies to provide validated data about the Dutch subsoil to 

the BRO [9]. The validation aims to ensure the realism and trustworthiness of the telemetrically 

measured data. This submission of groundwater data to the BRO is also time-bound and must be 

done within 20 days. The fast amount of data that needs to be validated in this brief time frame asks 

for a more modern way of validating, namely automated validation. 

Previously, this was not the case, and water governing bodies used the data to observe groundwater 

trends, quality, and make decisions within their managed areas. However, accessing this data was 

challenging for different organizations as it was only partially public and lacked standardization. The 

new BRO law addresses this issue by establishing a uniform method to describe the Dutch subsoil. 

This is done with a centralized data collection point ensuring standardization, reliability, and public 

accessibility. As mentioned, the data must be reliable, requiring validation. BZIM conducts this 

validation in two steps: an automatic validation step ensuring water levels are within the monitoring 

well's height and checking for unusual increases or decreases. This is followed by a plausibility check, 

where an expert assesses the data for realism and consistency. However, this step becomes 

challenging given the brief time frame and large data sample size. BZIM is thus exploring ways to 

automatically validate all data reliably. 
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1.2. Problem Description  
The problem description will give some more background information about the research subject. 

First, the problem statement is given (1.2.1). Secondly, the involved parties of this research project 

are discussed. 

1.2.1.  Problem Statement 
The surge in implementing groundwater monitoring networks, particularly in urban areas, poses a 

challenge in ensuring the reliability of the collected data. This is especially the case because of the 

shift to telemetric systems, the establishment of new networks and, consequently, the rise in the 

recorded measurements. Additionally, these recorded measurements need to be critically examined 

and validated to comply with the BRO standards. The examination is conducted in two steps: firstly, 

an automatic check serves as the preliminary phase, followed by a manual check as the subsequent 

step, which can prove to be challenging. This challenge is primarily due to the vast amount of data 

and the limited time available for data validation, thereby necessitating a scalable solution. 

1.2.2.  Involved Parties  
The assignment that I will be doing is commissioned by BZIM. This project is relevant, because there 

has been a change implemented in legislation. This new legislation is called the BRO (Basisregistatie 

Ondergrond). The BRO is a law that commissions governing bodies to deliver reliable data on the 

subsoil. The BRO also hosts the database where organisations deliver their data, and since it orders all 

governing bodies to deliver data, it involves a lot of parties. In this research, the focus will be on the 

governing bodies which have a stake in the groundwater. So this new law will impact the provinces, 

municipalities and external companies that manage groundwater for the governing bodies. 

1.3. Research Aim and Questions  
The objective of this research is to investigate which validation steps can be done automatically and 

be part of the daily automatic validation process. This validation process checks groundwater levels 

on anomalies.  

The main research question is formed by the research aim: 

- What validation steps can be automated in the new validation process of groundwater 

level measurements? 

To answer the main question, the question needs to be dissected into the following sub-questions: 

• What requirements does the BRO have for the validated data? 

• What are the differences and contributions of hydrological validation in comparison to 

automatic validation?  

• How do the different validation protocols compare to each other? 

1.4. Reading Guide 
The remainder of this report consists as follows. First, in chapter 2 the theoretical background will be 

given. Which exists out of information of the BRO and the different kind of anomalies. In chapter 3 

the methodology is explained. Here the method of answering the sub-questions is discussed. The 

requirements of the BRO are discussed in Chapter 4. In Chapter 5 different automatic validation 

methods and how this compares to hydrological validation method are explored. Different validation 

methods from different water entities will be discussed and how these methods compare to each 

other in chapter 6. Afterwards, a discussion is given in chapter 7, the conclusion in chapter 8 and at 

last the recommendations are given in chapter 9. Afterwards, the references and appendices are 

given.  
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2. Theoretical Background  
This chapter is divided into two subjects. First, the BRO is explained (Section 2.1) and what kind of 

measurements it wants (Section 2.2). Afterwards, the several types of anomalies are discussed 

(Section2.3). 

2.1. Basis Registratie Ondergrond (BRO)  
The idea of including subsoil data in a basic registry has existed since the early 2000s [23]. 
Throughout this time, TNO was responsible for managing DINO-loket, where borehole-, well-, and 
groundwater level data were collected. Submissions to DINO was always voluntary, never a legal 
obligation. From the government a movement to include geo-information, especially subsoil data, 
within a legal framework started. This eventually led to the idea of also placing subsoil data under a 
basic registration, thus under a law. This basic registration encompasses an entire system, from 
people to vehicles, and now also the subsoil data. This law ensures that the administrative bodies 
(the data holders) take responsibility for the data complying with the BRO pillars. Where the 
following pillars for subsoil data are used by the BRO [10]: 

- High quality (The data entries are reliable) 
- Completeness (The data entries are complete) 
- Timeliness (The data entries are up to date)  

 
The data holdership now included in the BRO assigns a data holder, the party that monitors subsoil 
data (for example, a municipality, water board, province, Rijkswaterstaat), and makes them 
responsible for the data. If the data quality is assessed to be poor by other BRO users, it is up to the 
data holder to assess and improve it. In addition to the pillars of the BRO, there are also obligations 
associated with the basic registration, namely [20]: 

- Supply obligation (for administrative bodies): The data holders must submit subsoil data 
collected to the BRO. 

- Usage obligation: Administrative bodies (national government, provinces, municipalities, 
water boards) must use BRO data if the assignment or project entails the subsoil. 

- Reporting obligation: An administrative body that has doubts about whether an authentic 
piece of data in the BRO corresponds to the physical reality, must report this to the TNO. 
They must also state the reason for this.  

- Research obligation: According to the Wet BRO, data holders are obliged to investigate 
feedback on their BRO submissions. 

2.2. BRO Measurement Series 
The BRO Act framework has a scope to determine which measurement data are mandatory. Within 

the groundwater level investigation (GLD) domain, the registration object contains the measurements 

of the variation in the groundwater level that is obtained through a groundwater monitoring well 

[21]. It is useful to include data from wells where measurements have been taken for a duration 

longer than a year. This choice was made so that a hydrological cycle of at least one year is 

incorporated into the data. If the data holder has measurements that only cover, for example, half a 

year, it is up to the data holder to decide if the measurement series is thought to be relevant enough 

to register. In the BRO database three distinct types of validated time series are incorporated namely: 

- Provisional series: This series is expected to be quickly available, but not fully assessed yet. 

This data is labelled as a provisional series. 

- Definitive series: This series is established after a thorough assessment has taken place of 

each data entry and is labelled as a definitive series. 

- Historical series: Historical measurement series are voluntary, where TNO is legally obligated 

to migrate the data from the DINO desk to the BRO.  
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At last, it is possible to override the provisional series with the definitive series when it’s available.  

2.3. Anomalies 
Before discussing the detection of measurement errors in groundwater levels, it is essential to define 

what constitutes a measurement error. Simply put, a measurement error is the discrepancy between 

the recorded value and the actual groundwater level. However, a measurement is expected to 

represent the groundwater level at a specific layer, location, and time. An error occurs if a 

measurement intended for one layer is interpreted as belonging to another, despite being accurate 

for its actual layer. Errors can arise from various sources, including manual data entry, equipment 

inaccuracies, and misinterpretation of data layers [25]. Anomalies in data, which include both random 

and systematic errors, highlight the importance of careful monitoring and validation to ensure data 

accuracy. 

So for the data to be as reliable as possible, the data needs to be checked for anomalies. In this 

document seven anomalies will be discussed namely; drift, filter replacement, pattern change, jumps, 

temporary increases or decreases, and other unexpected measurements. In the category unexpected 

measurements four additional anomalies are added that are defined within the ArtDiver [26] 

anomaly checking software. This software is used by multiple water entities for their anomaly checks. 

These additional anomalies are dry, air, hang depth and frost. The level of importance to filter the 

anomaly is displayed in Appendix B1. The images and frequencies derive from a study done on the 

groundwater measurement series of the Dutch provinces of Noord-Brabant, Zuid-Holland, and 

Groningen [23]. 

• Drift (Frequency Low): Drift in groundwater measurement refers to a slow, consistent upward 

or downward trend in the data. This might not be apparent within the data series itself but 

becomes evident when analysing the differences between two measurement points over 

time. This drift could reflect actual changes in groundwater levels. For example those caused 

by increasing withdrawals, or it could be due to a gradual shift in the accuracy of the pressure 

sensors used for measurements. 

• Filter swapping (Frequency Low): Filter swapping can occur in various forms, such as 

occasional mix-ups over time, or a consistent swap from a certain point onwards. Sometimes 

this is clearly visible, but other times it only becomes apparent when analysing the series of 

differences between datasets.  

• Pattern Change (Frequency: Low): The pattern of the measurements can change during the 

monitoring period. For example, there may suddenly be more peaks visible, or the data might 

show a flattened curve that later becomes more variable. 

 

                    Figure 1: Drift [23]                                      Figure 2: Filter Swapping [23]                  Figure 3: Pattern Change [23] 
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• Spikes (Frequency: Moderately High): Spikes are occurrences where the groundwater level 

shows a sudden, noticeable increase or decrease.  

• Temporary Decrease (Frequency: Low): This category describes a scenario where the 

groundwater level suddenly drops but then, often after months or years, returns to its 

original level. It's typically an error similar to a spike, corrected eventually but not 

retroactively.  

• Temporary Increase (Frequency: Low): Similar to a temporary decrease, this refers to when 

the groundwater level experiences a temporary rise before eventually returning to the 

previous level.  

 

                      Figure 4: Spikes [23]                             Figure 5: Temporary Decrease [23]        Figure 6: Temporary Increase [23] 

• Unexpected Measurements (Frequency: High): This category includes all other anomalies 

that don't fit into the previously defined categories. These could be unexpected peaks, 

outliers, odd fluctuations, and any other abnormalities that stand out in the data series. Not 

all strange measurements are necessarily errors, but they are data points that require 

additional attention.  

- Dry/Air: The logger only measures air pressure, often seen as a flat period at the bottom of a 

data series.  

- Hang Depth: Errors related to the depth at which the logger is suspended, marked by periods 

where the data is at an incorrect level. 

- Frost: Water in the well's pipe is frozen, making measurements not related to the actual 

groundwater level. 

The same research [23] conducted on the groundwater measurement series of the Dutch 

provinces of Noord-Brabant, Zuid-Holland and Groningen concluded the anomalies that occurred 

the most in the series were strange measurements and spikes. Moreover, the same study also 

mentioned that all the anomalies had a high level of importance to be monitored in the 

measurement series. 

 

 

 

 

 

 



 
 6 

3. Methodology  
The objective of this project is to investigate which validation steps can be done automatically and be 

part of the daily automatic validation process. The methodology of this research describes the 

methods used to answer the research questions. A step-by-step method of answering the research 

question (RSQ) will be described. Where every sub question (SQ) will be addressed using specific 

research methods, with the associated coloured blocks indicating the chosen method for tackling 

each question: 

 

 

 

Research method Color-codes  

Literature study  
Interviews/expert consultations  
Case studies  
Table 1: Colour codes for the research methods 

Figure 7: Schematic representation methodology 
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Sub question 1 (SQ1): What requirements does the BRO have for the validated data?  

The initial phase involves documentation of BRO requirements, primarily through literature studies. 

Literature on the BRO requirements can be found on the website of the BRO and GitHub [22]. This 

encompasses an investigation of the guidelines that are given by the BRO. These guidelines range 

from type of delivery data to the timespan of delivery.  Furthermore additional questions as; what 

requirements does the BRO have for the quality of the data? Does the BRO prefer a certain way of 

testing the data? Are answered by looking at the literature provided by the BRO itself and by 

interviewing Erik Simmelink from the Nederlandse Organisatie voor toegepaste-

natuurwetenschappelijk onderzoeks (TNO). Erik Simmelink had a significant part in the creation of 

the BRO.  

Sub question 2 (SQ2): What are the differences and contributions of hydrological validation in 

comparison to automatic validation?  

To answer this question the first step is to identify what methods are available for automatic 

validation. Literature studies were conducted by searching through the internet for papers that give 

an overview of the possible different automated methods, and that compare different automated 

validation techniques with each other. A total of at least 30 papers over the last two decades were 

examined, with emphasis on automatic anomaly detection, what methods are used in modern water 

management and how accurate these methods are. Key search terms included “Groundwater 

anomaly detection”, “Smart measuring methods groundwater”, “models to forecast groundwater 

levels”, “groundwater hydrographs automated detection of errors”,” automated validation 

groundwater”, ” comparison variable specific and model-based anomaly detection” and “Machine 

learning algorithms for modelling groundwater level changes”, among others.    

Furthermore, for the hydrological validation process an expert consultation session with Johan 

Bouma and Emiel Groot two hydrologists from BZIM was held. This expert consultation session was 

executed, because hydrological validation on its own is not a term that is used outside of BZIM. So to 

get a better understanding of this term, this consultation was held. At last, the two methods got 

compared with each other by looking for the similarities and differences and how these may 

contribute or restrict one another.  

Sub question 3(SQ3): How do the different validation protocols compare to each other? 

To answer this question, it is important to start by identifying the different available methods. An 

overview of different validation protocols is supplied by the same BRO document as discussed in sub-

question 1. Also an expert consultation session was held with Johan Bouma and Emiel Groot to use 

their knowledge in this field to find additional validation protocols. After identifying the different 

protocols, interview questions were prepared intending to delve into the techniques employed by 

each organization in data validation. Five semi-structured interviews were performed, meaning the 

interviews had a specific focus while also allowing for flexible discussions. These experts were chosen 

based on their knowledge and experience in areas directly related to this research. The interviewees 

were hydrologists from various organizations: Jeroen Castelijns (Brabant Water), Pim van Santen (Aa 

en Maas), Clen Poulie (Vitens), Daniel Heimans (Blik), and Frank van Vliet (Artesia). For these 

interviews, experts were provided with a list of the interview questions in advance, allowing them to 

prepare their responses. After interviewing the water authorities, the different answers from the 

interviews were mapped out and compared with each other to determine the advantages and 

disadvantages of these methods. And the overall similarities and differences were within the different 

organizations and their way of validating.  
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4. BRO Requirements 
The requirements of the BRO can be split into two sections. What requirements does the BRO have 

for the validation process therefore for the data quality. And timewise how quickly does the BRO 

want the data to be delivered? 

4.1. Data Quality 
To ensure the reliability of data quality the measurement series must be fully evaluated. The content 
of the submitted measurement series is considered complete when each groundwater level entry has 
a quality control status given by a validator from the data holdership. The status of the quality 
consists of the following categories [22]: 

- Rejected: This means there is a reason to consider this data as incorrect based on the applied 

assessment procedure, and the actual value cannot be determined. 

- Approved: This means there is no reason to doubt the accuracy of this data based on the 

applied assessment procedure. 

- Not Yet Assessed: This means there has been no assessment of the quality performed yet, 

and the assessment will take place later. 

- Undecided: This means there are doubts about the accuracy of this data, but a definitive 

conclusion could not be reached based on the applied assessment procedure. 

- Unknown: This applies only to historical data series. These are data series that have been 

measured and stored before the introduction of the BRO. These data series need to be 

reassessed and the title unknown implies there has been no assessment of the quality, or it is 

unknown whether an assessment has been conducted. 

The content of a measurement submission is considered complete (definitive series) only when the 
full assessment has been performed. The BRO remains neutral on how this validation should be 
carried out. This means that ensuring the same level of data quality may be challenging because 
different parties use different validation methods. However, the BRO does not recommend any 
specific protocol. Nevertheless, the BRO recognizes the value of a uniform protocol to ensure 
consistent data quality. Although, it does not have the role of enforcing this, as it is a neutral and 
agnostic system designed to register acquired data for users [23]. Furthermore, the BRO does not 
concern itself with the measurement frequency of the series. It is up to the data holder to determine 
what is sufficient for their area [23]. 
 
At last as mentioned in the unknown category there are also measurement series that are recorded 
previous to the creation of the BRO. These are called the historical series, and these series are also 
kept on the BRO database. When these measurement series are fully assessed they fall into the 
following quality regimes: IMBRO and IMBRO-A. IMBRO-A allows for data submission without 
detailed metadata, and this is only allowed for historical data. If the metadata is available the IMBRO 
title is connected to the historical measurement series. Furthermore for new data entries, it is 
mandatory to provide information about the measuring instrument (IMBRO) [22]. 
 
 

4.2. Data Delivery 
After fully assessing the measurement series a legal term is set for data delivery. This legal term to 

send the data to the BRO is 20 days. In practice this is more complex, since the 20-day term only 

starts when both the data acquisition process and the assessment has been performed. The 20 days 

serve as a legal incentive to encourage a certain rhythm of fast deliveries to promote the speed of 

assessment for the benefit of society [23]. 

 



 
 9 

5.  Data Validation  
The process to control data is normally referred to as data validation but can also be referred to as 

quality control. This is inspired by the protocol named “protocol voor datakwaliteitscontrole (QC)” [7] 

the validation protocol used by the Dutch provinces. Therefore the blocks displayed below follow a 

similar structure as the QC protocol. Hereby the blue coloured blocks indicate which step of the 

process is being discussed. In this chapter however only the monitor and plausibility phases will be 

discussed, because these parts can benefit the most from automatising. Moreover the measuring and 

storage phases are shortly brought up in the discussions. Furthermore the measuring phase is 

explained in Appendix A1. 

 

Figure 8: Quality Control Phases 

5.1. Monitoring 
The first step in this chapter is monitoring the data. This entails checking the collected data for 

anomalies. Therefore automatic data quality checks will be discussed and at last manual control 

checks will be specified. 

 

Figure 9: Monitoring phase. 

5.1.1. Automatic Validation 
Automated data validation processes refer to the use of automated techniques, tools, or systems to 

evaluate and ensure the quality and integrity of data in an efficient manner. These processes include 

the development and implementation of algorithms, rules, or procedures that automatically check 

and validate various aspects of the data, such as accuracy and compliance to defined standards [16]. 

Additionally given the increase in measurement frequency, manual data quality control can be highly 

laborious and inefficient [12]. Furthermore, manual checks are subjective, harder to standardize, and 

can introduce errors themselves. Therefore, developing a validation and quality assurance system 

that leverages automated methods and tests is recommended [11]. This document covers a wide 

range of possible tests. Initially, it discusses basic tests. Following that, it explores statistical tests that 

can be performed. Lastly, it delves into time series models and machine learning models. 

5.1.1.1. Basic Tests 

Before starting with the basic tests, it is important to get familiar with the terms consistency and 

plausibility. Where consistency means checking if it is possible given the data about the measurement 

setup, and plausibility is defined as testing for likelihood or probability [7]. There are a series of tests 

for assessing data consistency and plausibility in groundwater measurements. These six basic tests 

are explored [27]:  

1. The top of the filter must be higher than its bottom (consistency). 
2. The top of the filter cannot be higher than the top of the monitoring well (consistency). 
3. Different filters at the same monitoring point must have identical coordinates (consistency). 
4. Checks if measurements are dated in the future (administrative test). 
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5. Verifies if measurements are above the top of the monitoring well (plausibility). 
6. Ensures measurements do not fall below the bottom of the filter (plausibility). 
The first six relatively simple tests were applied to a real dataset, including the KRW networks of 
three provinces together with 1466 measurement series across the Netherlands [24]. The results of 
the tests are displayed in Appendix B.2 and conclude that these simple tests are effective in checking 
the datasets. 

5.1.1.2. Statistical tests 

Another method of filtering anomalies automatically is by using statistical tests. In this segment the 

following methods are going to be discussed namely a value range, flow curve and successive 

measurements. At last, a case study will reveal the trustworthiness of these tests. 

Value Range  
The time series of variables fluctuates around an average with a specific value range. For example, 
shallow groundwater levels typically range from 1.5 to 2 meters below ground level [24]. 
Observations outside this range are considered anomalies. An automated method can calculate the 
average and standard deviation over a selected measurement period. If an observation deviates from 
the average by more than a set value (e.g., +/- three times the standard deviation), it's flagged as 
suspicious. In [27], an observation is flagged as extreme or suspicious if it falls outside a predefined 
value range based on all measurements in the series. A common approach is to use plus or minus 
three times the standard deviation, which corresponds to an interval encompassing 99% of the 
values in a normal distribution, as displayed in figure 10. 

 
                                       Figure 10: Value Range [24]                                Figure 11: Flow Curve [27] 

Flow Curve  
Many groundwater time series exhibit seasonal patterns. A flow curve is made with the averages of 
observations on specific dates or time intervals across different years, which characterizes this 
variation [27]. It offers better distinction than the value range but requires a longer observation 
period (e.g., at least 5 years) as displayed in figure 11. 
 
Successive Measurements  
To account for correlations between successive measurements, differences between equally distant 
observations can be calculated [27]. The average and standard deviation of these differences is used 
to determine if a new observation falls within an acceptable range (e.g., +/- three times the standard 
deviation) as displayed in figure 12.  

 
Figure 12: Successive Measurements [27] 
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Case study  

In [24] a statistical test was made that uses the value range and successive measurement principles. 
For this test, the groundwater levels from the Kaderrichtlijn Water (KRW) monitoring networks in the 
provinces of Groningen, Noord-Brabant, and Zuid-Holland were visually checked for errors and 
anomalies in the time series. During the visual check, one or more anomalies were found in 163 
groundwater level series. Thereafter the value range was determined meaning the upper and lower 
limits were established for all groundwater level series using the mean and standard deviation. The 
bounds of the upper and lower limits were varied by changing the standard deviation by 2, 3, 4, and 
5 times the standard deviation. Subsequently this value range test was used to check the number of 
anomalies it could detect correctly, having the visually checked number of anomalies as a reference 
point. However, there are two risks associated with this approach: 
 
1. False Positives: The test may indicate the presence of deviations in a series when there are none. 
2. False Negatives: The test may indicate that there are no deviations in a series even though 
deviations were found during visual inspection. 
 
From this test, the results are displayed in Appendix B3. The test concluded that the statistical tests 
appeared to be unsuitable for automatically detecting errors. With a bandwidth of 3 times the 
standard deviation, 27 out of 163 series are incorrectly approved, which accounts for 17% of the 
series with deviations. At the same time, 44% (72 out of 163 series) are still falsely indicated as 
containing deviations. Accounting for +/- 61% of the measurements being either false positives or 
false negatives. When comparing the results with the other standard deviations the percentage of 
false positives/negatives increases. This increase stretches from 59% with one standard deviation to 
75% with five standard deviations. Noteworthy is that the number of false positives decreased per 
standard deviation step and contrary the number of false negatives increased. Concluding that the 
value range and successive measurement method are not trustworthy in this case study. However, 
this method does perform well when filtering for extreme spikes. 
 

5.1.1.3. Time Series Models 

The next method that can be used for filtering data automatically is time series models. This 

validation process aims to ensure that hydrological models or data accurately represent the real-

world hydrological processes [15]. Here three distinct types of time series models are discussed 

namely.  

- Time series models without external input 

- Time series models with external input 

- Time series models with multiple measurement series 

But first it is important to know the different relevant objectives that can be used for time series 

models [17,18] mention:  

- Prediction: Predicting a value at time step n + 1 (or beyond) based on a time series with n 
data points. 

- Anomaly Detection: Identifying all intervals within a specific time series X that can be 
classified as "anomalous" based on a similar time series Y, where a different variable is 
measured for the same time steps. 

- Clustering: Grouping individual time series in a database based on their degree of similarity 
to each other. 
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To create a time series model it is important to make use of different rules and preferably make use 
of external influences. The time series models that are going to be discussed in this document are 
created by Alterra [26]. This research utilizes and displays rules such as Spike and Dry detection in 
Appendix B4. For additional rules that are commonly used, please refer to [26]. Five time series 
model were made and compared with each other. These five models make use of different 
rules/checks, where the measurement series are checked per defined rule. The results from the 
different rules/checks are merged at the end as displayed in figure 13. 

 
Figure 13: Merging different rules performed by the algorithms [26]. 

 

 

The five different time series model that were made are [26]: 

- Time series models without external input 

1. Basic Method with Dry Detection: Utilizes rules for spike detection, dry periods, and 

measurements above well tops (Greater/Smaller Than Threshold Rule).  

2. Basic Method with Liveliness: Designed for cases without logger depths or raw pressure 

data, this method assesses signal liveliness, first using spike detection and then flagging flat 

signals (liveliness). 

 

- Time series models with external input 

3. TRA Meteo Method: Employs a time series model calibrated daily with validated data and 

weather variables (precipitation and evaporation) to predict measurement ranges. 

4. TRA Meteo+ Method: Combines dry fall detection from the Basic Method with the TRA 

Meteo approach to improve dry measurement flagging. 

 

- Time series models with multiple measurement series 

5. TRA Obswell+ Method: Integrates dry fall detection with a time series model based on 

nearby measurement points, allowing for more accurate anomaly detection. 

In figures 14 and 15 an overview of how well the various time series methods can replicate manual 

validation is given, considering manual validation was used as the truth. Figure 14 shows how many 

of the suspicious measurements are correctly detected by the automatic methods. Figure 15 shows 

how many measurements are incorrectly flagged as suspicious. 
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    Basic TRA_meteo TRA_meteo+ TRA_obswell+ 

Dataset Number of 
measurements 
(millions) 

Number 
of signals 
(millions) 

Percentage 
of signals 

(%) 

Correctly 
signalled 

(%) 

Correctly 
signalled (%) 

Correctly 
signalled (%) 

Correctly 
signalled (%) 

Aa en 
Maas 

(divers) 

25.8 0.85 3.28 52.5 29.0 62.2 67.9 

Aa en 
Maas 

(telemetr
ie) 

7.6 0.02 0.23 1.9 28.2 - - 

Brabant 
Water 

98.2 0.61 0.62 69.6 80.6 83.4 - 

De 
Dommel 

6.4 0.98 15.27 5.2 33.2 36.0 - 

Rijn en 
Ijsel 

7.2 0.07 0.98 20.7 37.4 - - 

Vitens 149.7 6.40 4.28 56.2 47.8 67.7 - 

 

Figure 14: Percentage of correctly spotted anomalies by the different algorithms on the different datasets [26]. 

 

    Basic TRA_meteo TRA_meteo+ TRA_obswell+ 

Dataset Number of 
measurements 
(millions) 

Number 
of signals 
(millions) 

Percentage 
of signals 

(%) 

Too 
many 

removed 
(%) 

Too many 
removed (%) 

Too many 
removed (%) 

Too many 
removed (%) 

Aa en 
Maas 

(divers) 

25.8 0.85 3.28 1.44 1.37 2.28 4.21 

Aa en 
Maas 

(telemetr
ie) 

7.6 0.02 0.23 1.83 2.34 - - 

Brabant 
Water 

98.2 0.61 0.62 0.38 2.3 2.55 - 

De 
Dommel 

6.4 0.98 15.27 1.35 3.13 4.41 - 

Rijn en 
Ijsel 

7.2 0.07 0.98 3.34 1.46 - - 

Vitens 149.7 6.40 4.28 2.13 2.13 2.47 - 

 

Figure 15: Percentage of incorrectly spotted anomalies by the different algorithms on the different datasets [26]. 

Given the variations in datasets and the quality of manual validation, comparing outcomes across 

datasets is not meaningful. However, comparisons within a dataset show that the TRA methods are 

better at correctly identifying errors than the BASIC method, although with an increase in false 

positives. Incorporating a model that accounts for weather conditions or nearby measurement points 

provides added value over relatively simple statistical rules but, also results in more measurements 

being flagged as suspicious. The error detection based on time series methods of nearby 
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measurement points (TRA_obswell+) was only applied to one dataset (Aa en Maas (divers)). However 

it scored the highest in correctly signalling erroneous measurements, although it also had the highest 

number of false positives. (TRA_obswell+), showing it is quite a promising method.  

5.1.1.4. Machine Learning Models  

Methods that have been used in recent anomaly detection within groundwater measurement are 

machine learning models these are additional to hydrological models. Here traditional hydrological 

models have been employed to predict groundwater levels and detect anomalies, based on physical 

principles and historical data. These physical processes-based models often, predict groundwater 

levels by considering factors like precipitation, evaporation, soil moisture, and human extraction 

[44].These models provide valuable insights but may not always capture the intricate patterns of 

anomalies due to their reliance on predefined equations that might not account for all variability in 

groundwater data. However, the complexity of groundwater dynamics, influenced by various 

environmental factors, demands more sophisticated approaches like Machine Learning (ML) to 

enhance detection accuracy [43]. Machine learning (ML) is a form of artificial intelligence (AI) focused 

on building systems that can learn from processed data or use data to improve performance [28]. 

The Machine Learning process consists out of the following three steps [28]:  

1. Training the algorithm on a dataset to calibrate its parameters, aiming to align the model's 

output closely with reality.  

2. Testing phase where the model's performance is assessed on a separate dataset to ensure its 

predicting precision. 

3. Modelling involves leveraging machine learning algorithms to identify patterns and 

correlations within the data. Finalizing in a model that can predict or classify new instances 

based on its training. 

Machine Learning models detect anomalies by comparing new data points against the learned 

patterns. When a data point significantly deviates from the model's expectations, it is flagged as an 

anomaly. This process involves setting thresholds based on the model's confidence intervals or 

statistical metrics derived from the training data. Machine Learning models require substantial data 

for training and validation. This data includes historical groundwater levels, atmospheric pressure, 

precipitation rates, and any other relevant environmental factors that influence groundwater 

dynamics. 

But before the machine learning process starts it is important to choose how the machine learning 

algorithm is trained broadly categorized into [40]: 

- Supervised learning where the model learns from labelled data.  

- Unsupervised learning involves discovering patterns in unlabelled data.  

Both are applicable in automatic monitoring for anomalies in groundwater measurements. The 

selection of an appropriate algorithm depends on the nature of the problem and the data, with a 

wide range of options. The algorithms discussed in this research will be k-Nearest Neighbors (kNN), k-

means, Support Vector Machines (SVM) and the Isolation Forests (iF). The way these algorithms 

function is explained in Appendix B5. These algorithms can be further divided into two types of 

models where kNN, SVM and k-means are all geometric models. This entails that data is represented 

as points in a multidimensional space, where the number of attributes of the dataset also represents 

the number of dimensions of this space [42]. In its simplest form it can be a two-dimensional graph 

for example, the time plotted against the water level. The Isolation forests (iF) algorithm however, is 

an ensemble model which entails that the algorithm combines multiple machine learning algorithms 
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to collectively arrive at a prediction [29]. The following paper [19] observes that the best results are 

generally achieved with model ensembles. 

The above-named algorithms were compared to one another in two different studies [29,30], where 

the performance of the model is described by an AUC score. AUC ranges in value from 0 to 1. A model 

whose predictions are 100% wrong has an AUC of 0.0; one whose predictions are 100% correct has 

an AUC of 1.0 [41]. 

Table 2: Comparing the different machine learning algorithms on AUC score. 

Algorithm  Type Learning 
Method 

Results [29] Results 
[30] 

KNN Geometric Supervised 0.9662 0.9324 

k-Means Geometric Unsupervised 0.9719 - 

(One Class) 
SVM 

Geometric Unsupervised 0.9691 0.9566 

iForest  Ensemble Unsupervised  0.8764 0.9419 

 

The study [29] on anomaly detection of groundwater micro dynamics in Chengdu, China, utilized 

Machine Learning algorithms such as the kNN method, the SVM method, the Isolated Forest and 

One-Class SVM demonstrating their efficacy in identifying outliers in groundwater levels with high 

precision and recall rates here the k-Means method outperforms the others slightly. The study [29] 

used data from monitoring wells, including rainfall and barometric pressure, to train ML models for 

detecting anomalies in groundwater levels. Furthermore, in the second study [30] the results show 

that, one class SVM achieves the best detection performance while iForest and KNN are good 

candidates for anomaly detection. 

As the results show the level of correct predictions can be high ranging from 87% – 97% of the 

measurement series. This high percentage is also dependent on the quality of data that is presented 

to the method when training them. Moreover, the process also involves careful consideration of 

potential pitfalls. One of those being sampling bias, where the data used may not be representative 

of the broader context [28]. And overfitting, where the model becomes too tailored to the training 

data and loses its ability to generalize to new data [28]. Additionally, it's crucial to distinguish 

between correlation and causality to avoid erroneous conclusions about the relationships between 

variables.  

5.2. Manual measurement 
In modern times where groundwater measurements are increasingly dominated by telemetric sensor 

technology, manual measurements stand as a critical counterbalance, providing a means to validate 

and read out data loggers. When it comes to monitoring groundwater levels, the practice of manual 

control measurements has the following benefits: 

- Improving the measurement accuracy and reliability of groundwater level series [31].  

- Detecting any measurement errors and correcting them [32].  

Frequency: For the frequency of manual checks there is no specified or mandatory number but if 

automatic sensors are used, it is advisable to manually check the groundwater monitoring wells 

about four times a year, spread over the seasons [31]. These manual checks verify the accuracy of the 

recorded data from the past three months and ensure the validity of the upcoming three-month 

period, which is crucial for data validation. 

https://edepot.wur.nl/215081
https://edepot.wur.nl/215081
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Reliability: Errors can also occur in manual measurements, which is why multiple manual readings 

are required to correctly validate the quality of the data from pressure sensors. From an analysis 

performed at Vitens [33] +/- 15% of the manual measurements taken as manual control 

measurements had to be corrected or deleted, the most common types of correcting interventions 

were:  

- Meter Error: Manual measurement differs exactly by 1 or more meters from nearby 

measurements. 

- Zero Value Correction: Manual measurement is exactly 0 cm relative to the Reference Ground 

Level and clearly deviates from nearby measurements. 

5.3. Plausibility  
The following step after monitoring for anomalies is to determine what to do when anomalies are 

present in the measurement series. Anomalies, whether found through automated means or visual 

inspection, must always be investigated. This is to determine whether it is an actual incorrect 

measurement, or if it was a unique groundwater level that was accurately measured. So the anomaly 

has to be checked if it is possible and if so, what the explanation is behind the anomaly. If explainable 

it is time to correct the anomaly, if that is not the case, then it is maybe better to remove the data 

point from the series. The plausibility check consists of a visual check and hydrological reasoning. 

 

Figure 16: Plausibility check phase. 

The plausibility check process follows the structure depicted in figure 17: 

 

Figure 17: Schematic representation of a plausibility check [34]. 

5.3.1.  Visual Checks 
Visual inspection of the data series is a valuable tool to discover any unusual situations in a sequence 

(jumps, drift, outliers) [24]. Since manual efforts by experts are still crucial and necessary because 

data quality checks are integral. The study [13] reveals that complete automation has not yet been 

achieved, which necessitates human intervention. 

Graphical representation of series is a suitable method for this visual inspection. Including additional 

information to a groundwater level graph can improve the visual inspection. Extra information can 

include filter depth, ground level, top of the monitoring well, as well as statistical information like the 

expected range of groundwater levels [24]. 

Anomaly detected

Plausible

Possibly 

not plausible
Find Explanation

Possible

Not possible 
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Finally, each series is visually inspected. What the human eye sees is difficult to program. It is advised 

to conduct this evaluation at least annually and keep a detailed logbook of the validation and applied 

corrections so that changes are always reproducible and traceable [31]. 

The visual check can be performed as follows: 

When an anomaly is found in the measurement series, the first step is to consider the weather as an 
input. Therefore the measurement series is compared with daily precipitation and evaporation 
figures to see if the response is logical. Other points to consider are [34]: 

1. Soil description: Is the response logical in relation to the soil structure. 
2. Filter position of the monitoring well: Is the response logical in relation to the filter 

position. 
3. Surface water levels / polder levels: Are the groundwater levels logical compared to the 

surface water level. 
Another step [34] can be to compare the measurement series with an occurring anomaly to other 
nearby groundwater monitoring wells. Since under similar conditions, it is expected that nearby 
monitoring wells will react similarly. Another step can be comparing the measurement series to 
historical measurement data that has been validated previously. Here the data is checked whether 
the groundwater regime of the recent period differs from the previous measurement period. 
 
The result from these visual checks is classified into 2 types of measurement data [34]: 

1. Measurement data that is plausible: These are logical measurement values, and there is 
no reason to reject the measurement values. This data is thus qualified as reliable. 

2. Measurement data that may not be plausible: These measurement series exhibit 
abnormal behaviour, and it is the question if an explanation for the observed abnormal 
groundwater regime can be determined. 

 

5.3.2.   Hydrological Reasoning  
After the anomalies are discovered in the visual check, it is time to give an explanation of why this 

event occurred. If an explanation is not found, then the measurement is rejected. A few examples of 

anomalies and their possible explanations are given below: 

Pattern Change [24] 

- Relocating the tube to a different location or depth. 

- Raising the top of the monitoring well. 

- Environmental interventions, such as installing drainage or starting extraction. 

- Adjusting the measurement frequency. This does not change the actual groundwater level, but 

the measurement series does change. 

Jumps [24] 

- A jump can be caused by a hydrological intervention in the environment, such as an increase 

in extraction or setting up a surface water level. Usually, these types of interventions have a 

more gradual effect. 

- A sudden jump is often caused by adjusting the level filter. If a level filter is extended, then the 

distance from the top of the monitoring well to the water surface increases. If the new height 

of the top of the monitoring well is not recorded in the metadata, it appears as if the 

groundwater level has dropped. The opposite happens if the level filter is shortened. 

- A change in the hanging depth of a data logger that is not properly implemented also causes a 

jump. 
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- A sign change can cause a jump in the series. For example, if a reading in meters + top of the 

tube is entered instead of meters above the top of the tube. 

- In a well with salty groundwater, fresh (rain)water can infiltrate. This causes jumps in the 

measured pressure due to the difference in density. 

- Land subsidence causes the monitoring well to drop. 

Temporary lowering: for example, due to temporary dewatering [24].  

5.4. Comparison of Automatic Validation and Plausibility Check  
Plausibility checks and automatic validation serve distinct but complementary roles in the process of 

validating groundwater measurement data. In this segment the way these two validation systems 

differ from one another and contribute to the overall validation protocol will be discussed.  

5.4.1. Differences  
Automatic validation involves the use of algorithms, mathematical and statistical models. These 
models include time series models and machine learning, to process large datasets efficiently on 
anomalies. These anomaly detection techniques primarily focus on identifying data that deviates 
from expected patterns, ranges, or statistical norms. This is done without necessarily understanding 
the cause of these deviations, because these anomaly detections techniques are based on 
predefined criteria and statistical boundaries. While plausibility checks include manual analysis. 
These analyses involve visual inspection of data trends and comparing them with meteorological 
events and nearby monitoring wells. This process helps evaluate the plausibility of data points. 
Therefore it goes beyond only identifying anomalies. It relies on expert judgment and understanding 
of the hydrological processes to assess whether identified anomalies are errors or accurately 
represent real hydrological events. It considers the broader context for example equipment failure 
and environmental factors such as rainfall, evaporation and human activities affecting groundwater 
levels. 
 

5.4.2. Contributions  
Automatic validation and hydrological validation greatly support one another, adding these two 
methods together gives a more accurate validation process of groundwater data. In the first layer of 
detection automatic validation methods are used. Which offers a fast and efficient way to process 
large volumes of data, making it scalable and effective for initial screenings. Identifying anomalies 
and patterns of errors and flagging these potential anomalies. Here it is important to note that 
automatic validation methods are not 100% accurate, so using automatic validation as the only filter 
is not advised since it will get rid of true extreme values. So the best way to incorporate it is for 
flagging and labelling potential anomalies. Afterwards an expert checks the data and provides the 
necessary contextual interpretation, ensuring that the validated data is both accurate and reflective 
of real hydrological processes and deciding on the appropriate corrective actions. 
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6. Assessment of validation methods  

6.1. Overview of several quality control protocols 
The information displayed in table 3 comes from the conducted Interviews [35,36,37,38,39] with the 

different water authorities. The interview questions can be found in Appendix B2 and the summaries 

of the interviews in Appendix C.  

Table 3: Overview of quality control protocols 

    Brabant Water 
[35] 

AA & Maas 
[36] 

Vitens [37] Blik [38] Artesia [39] 

Estimated 
Number of 

Monitoring wells 

4000 1000 7000 1700 550 

Measuring 
Technique 

Datalogger Telemetric Predominantly 
datalogger 

Telemetric Datalogger 

Measuring 
Frequency 

Hourly (Retrieval 
every 3 months) 

Hourly 3 hours Hourly Hourly (Retrieval 
every 3 months) 

Air pressure 
measurements 

KNMI Own 
Equipment 

KNMI Own Equipment - 

Manual 
Measurements 

✓ ✓ ✓ ✓ - 

Visual Inspection ✓ ✓ ✓ ✓ ✓ 
Periodic Visual 

Checks of 
measurement 

series 

Quarterly 1/2 times per 
year 

Quarterly - Quarterly 

Used Software ArtDiver Traval & Python  ArtDiver Own software ArtDiver 

Use Of 
Timeseries 

Models 

- ✓ - - - 

Validation Step      

Physically 
impossible 

Manual Automatic Manual Automatic Manual 

Data 
Completeness 

Manual Automatic Manual Automatic Automatic 

Sensor Drift  Manual Automatic Manual Manual (by 
companies that 
use Blik’s 
software) 

- 

Air Pressure 
Compensations 

Automatic Automatic Automatic . Automatic 

Outlier Detection Manual Automatic Manual Manual (by 
companies that 
use Blik’s 
software) 

Automatic 

Pattern Change Manual Automatic Manual Manual (by 
companies that 
use Blik’s 
software) 

Manual 

Cross-reference Manual Automatic Manual Manual (by Manual 



 
 20 

with nearby well companies that 
use Blik’s 
software) 

Protocol      

 Brabant water 
emphasizes the 
thorough 
placement and 
maintenance of 
measurement 
points to ensure 
long-term 
reliability. They 
rely heavily on 
manual 
validation 
processes and 
historical data 
comparison for 
anomaly 
detection. 

AA & Maas 
uses 
automated 
Python scripts 
for daily checks 
of groundwater 
data against 
physical 
boundaries and 
predictive 
models. This 
telemetric 
system allows 
for quick 
identification 
of anomalies 
and timely 
intervention. 

Vitens focus on 
historical data 
trends, thorough 
equipment 
calibration 
technical feasibility 
checks, and 
comparison with 
nearby 
measurements to 
validate data. 

Blik conducts 
preliminary 
validation checks 
on the 
completeness of 
the data packet 
(water pressure, 
air pressure, and 
temperature). 

Artesia focuses 
on manual 
validation 
through hand 
measurements, 
acknowledging 
the inherent 
error possibilities 
in both hand 
measurements 
and sensor data. 
They advocate 
for the use of 
hand 
measurements 
as a critical 
validation step. 

 

6.2. Comparison of the different methods 
Comparing the five different groundwater measurement and validation protocols from Brabant 
Water, AA & Maas, Artesia, Vitens, and Blik. Provides insight into the variety of approaches used in 
monitoring and ensuring the quality of groundwater data. The methods have similarities, advantages, 
disadvantages and differences among each other. 
  

6.2.1. Similarities  
Measurement Frequency: All methods involve telemetry or dataloggers with an average frequency 
of one data entry every hour. Emphasizing the importance of continuous monitoring in modern 
groundwater management. 
 
Manual Validation: Despite varying degrees of automation, there's a common reliance on manual 
checks and visual inspection to confirm the accuracy of sensor data. 
 
Environmental Factors: Each method accounts for environmental influences like air pressure, 
temperature, and precipitation. 
 

6.2.2. Advantages and Disadvantages 
 
Brabant Water: 

- Advantages: Through careful site selection and measurement setup placement Brabant 
Water ensures high reliability and ensures long-term data consistency. 

- Disadvantages: The lack of automation and telemetry calls for a labour-intensive process. 
With less frequent data this leads to potential delays in identifying and addressing data 
issues and may not catch all anomalies as promptly as automated systems. 
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AA & Maas: 
- Advantages: Rapid identification of issues through real-time monitoring. Automated 

scripts enable efficient data validation and quick response to equipment failures. 
 

- Disadvantages: Potential overreliance on automation; complex statistical models may 
require significant expertise and could potentially miss anomalies not covered by the 
predictive models or physical boundary checks. 

Artesia: 
- Advantages: Flexible validation approach combining semi-automatic and manual 

methods; strong emphasis on manual control measurements for accuracy. 
- Disadvantages: Semi-automatic process may not be as quick as fully automated systems; 

manual aspects can be resource intensive. 
Blik: 

- Advantages: Protocol allows for automated preliminary checks to ensure data integrity 
before further analysis. 

- Disadvantages: strong reliance on manual processes  
Vitens: 

- Disadvantages: Strong reliance on manual processes and preliminary checks could also 
limit their ability to quickly process large volumes of data. 

 

6.2.3. Differences 
Air pressure data: The way the different water entities collect their data for air pressure differs. This 
differs between using the air pressure data provided by the KNMI and using their own equipment to 
measure the air pressure in situ. The problem with using KNMI data is that the KNMI only measures 
on a few selected areas. This implies that if the monitoring well is situated rather far from this KNMI 
point the air pressure data needs to be converted which can go hand in hand with anomalies. On the 
other hand organisations using their own equipment can lead to anomalies as well through faulty 
equipment. 
 
Datalogger vs Telemetric systems: Although the different water entities measure the data with 
approximately the same frequency. Retrieving the data is done in different intervals, where 
telemetric systems retrieve the data hourly and datalogger systems retrieve the data every 3 
months. This means there is a risk of data loss. Only knowing the measurement equipment and 
therefore the data series is faulty at the moment of retrieval, which can lead to significant loss of 
data.  
 
Degree of automation and manual processes: The key differences between the methods lie in the 
balance between automated and manual processes. Here some organizations lean more towards 
automation for efficiency and others prioritizing manual checks for their depth and 
reliability.  Automated systems offer efficiency and real-time monitoring capabilities, essential for 
managing large datasets and responding quickly to equipment failures or anomalies. However, 
manual validation processes provide depth, accuracy, and a nuanced understanding of data 
anomalies, which are invaluable for long-term groundwater management and analysis. 
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7. Discussion 
The aim of this research was to gain insight into what validation steps can be automated, with the 

scope focussing on the anomaly detection phase, and the BRO requirements.  

The first result was that the BRO does not have any requirements for the data entries. Since one of 

the pillars of the BRO is to have data entries of high quality in their database. It does not align when 

no requirements or validation protocols are suggested to get this desired result. Since different 

parties validate in different ways the quality of data may differ substantially. Leading to a not uniform 

quality of data entries.  

The next result is concerning the automated checks excluding the consistency checks. Since these 

automated checks are not simple physical boundary checks like the consistency checks but are 

dependent on the quality of the training data and how the models are fitted by an expert. As these 

models try to imitate the validated data which is assumed the truth and is put into the model as 

training material. Here a problem arises namely manual validation is subjective. Because the quality 

of the plausibility and visual checks are determined by the experience and the local knowledge the 

expert has. Here two experts can identify different number of anomalies in the same measurement 

sequence. Which create different fits on the same dataset making it hard to say when an automated 

check is performed correctly.  

It is also important to note that apart from the consistency test and the KRW case study using the 

value range method, the other automated validation methods were tested on different 

measurements sequences. Which can vary in quality, in quantity, in different events occurring in the 

data etc. making comparisons hard between methods. 

Furthermore next to the subjectiveness of the plausibility and visual checks there are other points 

that are just outside the scope. But are part of the validation process and influence the reliability of 

the data. These points are as follows a proper measurement set up, the quality of the training data 

and the storage of this data. Afterwards the expertise of making the model is discussed. 

Measurement set up 

Before the anomaly detection begins the first step is to establish the measurement setup for data 

retrieval. To have a reliable quality of data, it is important to place the measurement setup correctly. 

The proper way of setting up will be achieved by considering the most suitable location, what 

measuring method is the most applicable for your research goal, what equipment you want to use 

and maintaining the measurement setup [32]. Selecting an optimal location is crucial for groundwater 

measurement, emphasizing setup depth, and distance from influencing structures to ensure accuracy. 

The method chosen (monitoring wells, open boreholes, or field estimates) depends on the research 

goals. Measurement frequency and the choice between manual, semi-automatic, and fully automatic 

methods are tailored to monitoring objectives, balancing cost, labour, and data precision needs. Filter 

selection is based on the target aquifer and subsoil characteristics, ensuring the filter's placement 

and length are optimal for accurate measurements. Regular maintenance, both minor and major, is 

essential to maintain equipment reliability and data accuracy, supporting effective groundwater 

management and research. A more detailed description of the measurement setup can be found in 

Appendix A1. 
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Quality of data  

The quality of the automatic models (the value range, time series models and machine learning 

models) are dependent on the quality of groundwater level data. Ideally, the measurements should 

meet a pre-specified quality standard and if they don’t meet that quality standard the data series 

should be revalidated. 

Points to look after to ensure the training data is of decent quality are [27]: 

- Making sure the measuring equipment is set up correctly and working well. 

- Minimising the manual processing steps.  

- Revalidating historical measurement series. 

- Manual control measurements. 

Outside of the quality of data that is used to train the models, the availability of data is also 

important, since the available data can have the following problems [28]:  

1. Sparse Events: Making predictions on rarely occurring phenomena challenging due to 

insufficient historical data. Effective predictions require datasets with numerous instances of 

the phenomena. 

2. Short Measurement Periods: Long-term accuracy needs extensive historical data to 

understand and predict system dynamics. Short data periods risk increasing prediction errors 

over time due to the inability to recognize long-term patterns. 

3. Low Sampling Frequency: The frequency of data collection must match the system’s dynamics 

and the scale of relevant phenomena. 

Storage of data  

Measurement data are crucial for research, making documentation and storage vital [31]. According 

to [24], it's crucial to digitally archive both manual observations and raw readings from automatic 

instruments, ensuring that any data corrections can be accurately traced and reproduced. This 

archival process should clearly document who made specific corrections and when they were made, 

enhancing transparency and accountability. 

Since at the moment consistency across different databases is not the standard. The study 

performed in [27] highlighted the discrepancy that can occur across two distinct databases housing 

the same measurement series. By comparing groundwater levels from the same period in both 

databases, the study uncovered that 79 out of 81 series displayed discrepancies, including both 

technical data and groundwater measurement series. In the groundwater measurement series 

differences reached up to 6 cm between the databases and a consistent difference of 1 cm. These 

findings highlight the importance of maintaining uniformity in data to prevent such inconsistencies, 

which can significantly impact data reliability and analysis outcomes. 

Expertise of making model  

Creating an automated model is a useful and powerful method of anomaly detection, however 

developing an elaborate model takes time. The designer within the company wanting to model most 

likely has to get familiar with the software program and develop a complicated tool. This takes a 

substantial amount of time and for a company this is translated into labour costs. The cost-benefit 

ratio must therefore be explored before the development of a tool. An investigation must be 

conducted to find if the contribution of the developed tool outweighs the investment costs. A cost-

benefit analysis would have been an interesting insight for this research.  
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8. Conclusions 
In conclusion the conducted research tries to answer the main question:                                           

What validation steps can be automated in the new validation process of groundwater level 

measurements? 

This is an important question in current water management because of the new BRO legislation. Here 

the BRO wants the data to be of high quality, complete and up to date. And because of the shift to 

telemetry which also increases the number of data entries in the systems it is sought after to go 

through the validation process automatically. This is discussed in this research by looking at the BRO 

requirements, methods that can be used to automate anomaly detection, manual anomaly detection 

and at last looking at current validation protocols of different water entities. 

Although the BRO wants the delivered data to be of high quality, complete and up to date. The BRO 

sets no requirements surrounding how the quality of this data is inspected and does not recommend 

a particular validation method. Furthermore, the BRO set a limit of 20 days to deliver the data when 

completely validated. This implies when each data entry has been inspected and labelled with the 

status quality categories provided by the BRO. 

For methods to automatise validation, this research delves into basic tests, statistical tests, time 

series models and machine learning algorithms. Basic tests ensure the logical coherence of data, such 

as verifying that measurement timestamps are plausible and that spatial coordinates of 

measurement points remain consistent. These checks have a high-efficiency rate and are 

straightforward in automatically filtering out glaring inconsistencies before further analysis. Therefore 

a viable step in automatically checking the data if physically possible. 

Statistical tests play a significant role in automated validation processes. They include evaluating data 

for statistical anomalies, by use of value ranges determined by a moving average and a standard 

deviation. Based on the quality of the training data these tests can be an efficient way to filter out 

spikes or trends that deviate significantly from established patterns. 

Time series models and machine learning algorithms represent advanced methods for automating 

the validation process. These models can predict expected data values based on historical trends and 

external environmental factors, such as weather conditions. Anomalies are detected when actual 

measurements significantly deviate from these predictions. Again the quality of the training data here 

is important. The case studies discussed in this paper show the accuracy of the time series model and 

the machine learning algorithms in correctly identifying anomalies from the measurement series. This 

makes them both very viable steps to implement in automating the whole anomaly detection 

process. 

Despite the advancements in automation, this research emphasizes the importance of human 

oversight. Expert judgment is crucial for interpreting the results of automated tests, especially in 

complex situations where the context of data anomalies needs to be understood. For instance, an 

automated system might flag a sudden change in groundwater level as an anomaly, but an expert can 

determine whether this is due to a natural event, such as heavy rainfall, or an error in data collection. 

Furthermore, by comparing the different protocols used currently by the different water authorities it 

is seen that a large portion of the validation process is still predominantly performed manually. Each 

approach has its strengths and is tailored to the specific needs, resources, and objectives of the 

organization. The choice of validation protocol depends on the balance each organization wishes to 

achieve between efficiency, accuracy, and the specific demands of their groundwater monitoring 

projects.  



 
 25 

9. Recommendations 
The recommendations section aims to provide actionable insights based on the findings of this 

research, focusing on enhancing the efficiency and reliability of automated groundwater data 

validation processes. These suggestions are directed towards organizations involved in water 

management, encouraging a balanced approach that incorporates both automation and expert 

knowledge. By adopting these recommendations, stakeholders can improve data validation methods, 

contributing to more informed decision-making and effective groundwater management. 

• What can be applied in practice from this study: 

Implement a Hybrid Validation Framework: Organizations should integrate automated validation 

tools with visual expert checks to create a robust validation framework. This framework would 

accelerate the anomaly detection process while retaining the oversight for complex data 

interpretations. 

Standardization of Validation Protocols: There is a pressing need for the standardization of validation 

protocols across different organizations. Standardized protocols would enhance the consistency and 

reliability of groundwater data, facilitating more effective data sharing. 

Collaborative Efforts and Knowledge Sharing: Encourage collaborative efforts between academic 

institutions, government bodies, and industry players to share knowledge, data, and best practices 

related to automated data validation. This could accelerate innovation and improve the effectiveness 

of water management practices. 

• What is open for future research: 

Meerwaardig Validation Approaches: Explore the concept of 'meerwaardig' validation, where data is 

not merely classified as correct or incorrect but is assessed on a spectrum. This approach could offer 

a more nuanced understanding of data quality and anomaly significance. 

Interplay Between Manual and Automated Methods: A deeper examination of the interaction 

between visual checks and automated validation methods is needed to optimize their integration. 

This includes identifying specific scenarios where one method is preferable over the other and how 

they can complement each other even better. 
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Appendices 

A. Measurement  

A.1. Measurement Setup 

Location  

As a starting point it is important to consider the location of placement of the measurement setup, 

here it is important to focus particularly on the arrangement of the measurement site, such as depth, 

position, and length of the filter in relation to the soil structure and the hydrological system (Van der 

Bolt et al., 2010). In addition to the vertical positioning of a filter, its spatial positioning is also 

important, for instance, the distance to a watercourse, road, or house, or the location in a pit/ditch, 

verge, road, cutting, under trees, or on a local elevation (as reported by Kleijer, communicated by 

Massop & Van der Gaast, 2003). The local groundwater situation is influenced by these factors. For 

many measurement objectives, it is important to place the monitoring wells outside the sphere of 

influence of these local effects to ensure that the ground situation measured in the monitoring well 

reasonably corresponds with the ground situation in the surrounding area. Therefore, do not place a 

monitoring well too close to such objects, unless it is necessary for the measurement objective. The 

final location is determined in the field. At last, it is also important that the monitoring well is placed 

in a safe and protected spot.  

Soil, Hydrological system and Topography  

To effectively monitor groundwater, it's essential to integrate knowledge from soil science, hydrology, 

and topography. Understanding soil structure (layering, permeability, and composition) is crucial for 

accurately describing measurement data and optimally placing monitoring wells. This includes 

knowledge of the depth and variations of the water table, as well as the hydrogeological conditions 

like aquifers and groundwater flow. Additionally, the hydrological system's complexity, influenced by 

spatial variations in surface elevation, permeability, and environmental factors such as rainfall and 

atmospheric pressure, dictates groundwater flow patterns and level fluctuations. Topographical 

considerations are equally important; avoiding areas prone to runoff interference, maintaining safe 

distances from large trees and structures, and considering the effects of groundwater extraction are 

essential for precise groundwater level measurements. These considerations, combined with an 

awareness of the surrounding land usage, are foundational for effective groundwater monitoring, 

ensuring accurate data collection and the protection of water resources. 

Measuring method  

When the location of placement is determined, the next step is to evaluate the measuring method. 

The method that is chosen is mostly dependent on the research objective, these objectives can be 

regional, urban or project based. In the Netherlands, groundwater levels are estimated using the 

following methods:  

Monitoring wells, which are subdivided into.  

Groundwater level pipes  

Piezometers  

Open boreholes  

Field estimates 

A groundwater measuring network can exist out of multiple different estimating methods. 
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Groundwater level pipes: These are shallow monitoring wells that measure a hydraulic head that 

deviates little from the phreatic groundwater level. 

A piezometer is a monitoring well which is used to measure the head at the location of the filter. 

These are monitoring wells that measure the hydraulic head in deeper soil layers. 

 

Figure 18: Monitoring Well                                       Figure 19: Pressure Sensor 

 

 

Open borehole: Open boreholes are created by drilling a vertical hole with a diameter of 8-12 cm 

using a soil auger, down to about 10 cm below the groundwater level (Hooghoudt, 1952). After a 

settling period (1-2 days), the groundwater level in the boreholes is measured. 

Field estimates: Field estimates are primarily a tool to select the location of open boreholes. Field 

estimates are based on profile and field characteristics and measured groundwater levels in 

boreholes and monitoring wells. Profile characteristics are caused by the annual fluctuation of the 

groundwater level.  
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As seen in the table in below open boreholes and field estimates are less then ideal so that is why in 

practice, it is not recommended to use these 'non-monitoring wells' for groundwater level 

measurements, because their filters are usually located in multiple aquifers or the pipes have a 

diameter that adversely affects accurate measurements. 

 

Figure 20: Comparison off different measuring methods 

Frequency and Measuring Equipment 

Choosing the appropriate frequency and method for groundwater level measurements is crucial, this 

chose is also influenced by the objectives of monitoring. The distinction between manual, semi-

automatic, and fully automatic measurements outline the varied approaches to data collection. 

Manual measurements involve field visiting the site to record groundwater levels, suitable for 

locations with variable measurement frequency needs. Semi-automatic systems utilize pressure 

sensors and data loggers to record groundwater levels at set intervals, requiring manual data retrieval 

periodically, whereas fully automatic systems transmit data directly to a central station for immediate 

processing, enhancing real-time monitoring efficiency. 

The decision on measurement frequency impacts the clarity of data, with higher frequencies better 

capturing short-term effects like rainfall or evaporation, and lower frequencies suited for observing 

long-term trends. Equipment selection is driven by the measurement frequency, offering different 

benefits and costs. Manual measurement is cost-effective but labour-intensive and prone to errors. 

Semi-automatic measurement offers a balance, reducing labour while providing higher frequency 

data at the risk of data gaps dependent on how often the data gets retrieved. Fully automatic systems 

offer real-time error detection and alerts but at higher costs and maintenance needs. Pressure 

sensors, such as Keller and Divers, are commonly used in semi and fully automatic systems, 

measuring total pressure (water plus atmospheric) to determine groundwater levels. Keller sensors 

measure atmospheric pressure directly, facilitating immediate groundwater level calculation, while 

Divers require atmospheric pressure compensation, either through a separate sensor or external data 

from often the KNMI (Koninklijk Nederlands Meteorologisch Instituut), for accurate groundwater 

level determination. This technological framework ensures accurate, efficient, and adaptable 

groundwater monitoring to meet various research and management objectives. 

Filter  

When selecting a filter for groundwater measurements, the primary consideration is the target 

aquifer, guided by the objectives of the monitoring network. The filter depth and length should be 
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based on subsoil data, with a standard length of 1 meter, unless the target layer is thinner. Anisotropy 

(movement of water) in soil can affect measurements, so filters should not be placed too deep. 

Different filter setups may be used at one location for comprehensive studies, such as seepage or 

hydrological modelling.  

Maintenance  

To ensure that the quality of data that is incoming is as reliable as possible it is important to perform 

maintenance checks on the equipment. There are minor maintenance routines and major ones and 

during the maintenance routine it is important to registrate what is done to the monitoring well. 

During fieldwork, the field technician conducts check on the monitoring well and may notice issues 

that require maintenance, such as: 

- Damage to the monitoring well 

- Blockage in the monitoring well 

- …. 

Minor/Major maintenance 

Groundwater monitoring maintenance is split into minor and major tasks. Minor maintenance 

involves quick fixes and checks when systemic anomalies are detected in data readings, including 

sensor replacement for deviations of more than 10 centimetres. Major maintenance, scheduled every 

five years, focuses on extensive cleaning and recalibration of monitoring wells to ensure data 

accuracy, such as clearing blocked filters and recalibrating against a reference point like NAP. This 

systematic maintenance ensures reliable and precise groundwater measurements. 

 

B. Monitoring 

B.1. Frequency and importance of the anomalies 

 

Figure 21: Frequency and importance of the anomalies 
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Figure 22: Overview of the number of anomalies in the data series 

 

B.2. Efficiency of the basic tests 

 

Figure 23: Efficiency of the basic tests 

 

B.3. Different standard deviations for the value range 
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Figure 24: Results of using different sd on the value range 

 

B.4. Rules used for the algorithms 
- Standard Deviation Rule: If a measurement is more than N standard deviations away 

from the mean, it is considered suspicious. 
- Maximum Gradient Rule: If the change between two measurements is greater than a 

certain threshold, the measurement is considered suspicious. 
- Greater/Smaller Than Threshold Rule: If a measurement is greater/Smaller than a certain 

threshold value, it is considered suspicious. 
- Spike Detection Rule: If there is a spike above a certain magnitude that is immediately 

followed by a jump of comparable size in the opposite direction, the measurement is 
considered suspicious. 

- Flat Signal Rule: A comprehensive rule to signal a dead (flat) signal. This can involve 
checks such as maximum deviation over a period being below a certain value or the slope 
of a linear fit through the measurements in a period being below a certain value. 

- Dry detection: A measurement is considered suspicious if the immersion depth relative 
to NAP (Normal Amsterdam Level) of the logger plus a tolerance (0.05 m) is higher than 
the NAP value of the measurement. For this, the immersion depth must be known. Or a 
measurement is considered suspicious if the raw water pressure series minus the raw air 
pressure series is less than a certain tolerance. 

With these rules and a lot more that can be read in SOURCE. 5 algorithms were made and compared 

with each other the algorithms make use of different rules, but the different rules/checks are merged 

together at the end: 

B.5. Explanations of the different Machine Learning Algorithms 
K- Nearest Neighbors (KNN): For every data point in the feature space, the k-Nearest Neighbor (kNN) 

algorithm calculates the average distance to its 𝑘 nearest neighbors and learns a threshold to decide 

what data points to consider inliers or outliers (Fabrizio Angiulli and Clara Pizzuti. 2002. Fast outlier 

detection in high dimensional spaces. In PKDD.  

k-means clusting: K-means clustering is an unsupervised machine learning algorithm used to 

partition a dataset into 'k' distinct, non-overlapping clusters. It assigns each data point to the cluster 

with the nearest mean, optimizing the clusters based on minimizing the variance within each cluster. 

The process iteratively updates cluster centroids (the mean of all points in a cluster) until it 

converges, resulting in a set of separated groups with similar data points. 

One Class SVM: One-Class SVM was proposed by Bernhard Schölkopf et al. in 2000, and the method 

is often used to monitor abnormal behavior in data51. The basic idea is to compute a hypersphere 

with the smallest radius in a sample and to include all samples inside this hypersphere. When this 

hypersphere is used to classify the dataset, the samples that fall inside the hypersphere are the first 
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class (normal values) and the samples that fall outside the hypersphere are the second class 

(abnormal values). 

Isolation Forrest: The Isolation Forest (iForest) algorithm is an unsupervised anomaly detection 

method based on random binary trees, which is suitable for continuous data. The algorithm defines 

an anomaly as "easily isolated anomalous values", which are points that are sparsely distributed and 

far away from highdensity populations in the feature space. In the feature space, areas with sparse 

distribution indicate that the probability of occurring the event is very low, so it is inferred that data 

points distributed in sparse regions are anomalous values.  
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C.  Interview Questions 

C.1.  Interview Questions BRO 

• Kunt u mij meenemen in het tot stand koming van de BRO (Het idee achter de BRO)? 

• Hoe gaat de BRO te werk en dan specifiek over grondwaterstandenonderzoek?  

- En wat voor data moet er worden opgestuurd naar de BRO (ruwe 

grondwaterreeksen?/historische reeksen) 

• Binnen welk termijn moet de data zijn aangeleverd? 

• Binnen welk termijn moet de data zijn gevalideerd (gecontroleerd)? 

• Wanneer zijn meetreeksen nou definitief gevalideerd?  [Sinds geen unifromiteit voor 

definitieve controle, misschien is de kwaliteit per check wel anders, sommige partijen alleen 

handmetingen binnen 5 cm is dan gevalideerd andere kijken er naar met een hydroloog]  

• Hoe werken de verschillende betrouwbaarheid/beoordelings labels 

• Is er niet een protocol die de BRO aanraadt om te gebruiken en is het misschien een idee om 

een uniform protocol te valideren 

• Wat zijn punten waar de BRO nog op kan verder ontwikkelen  

C.2. Interview questions water authorities 
Protocol  

Hoe ziet jullie validatie protocol eruit?  (Kunnen tekenen?) 

Metingen 

• Hoe wordt de meting van grondwaterstanden uitgevoerd? Wat is de frequentie van metingen 

en hoeveel peilbuizen zijn in bezit/ worden gemonitord? 

•  Welke specifieke apparatuur wordt gebruikt voor de metingen, zoals Divers of Kellers? 

Voorlopige validatie 

• Op welke punten wordt de meetdata gevalideerd?  

              (VOORBEELD PUNTEN) 

- Gedupliceerde waarden  

- Metingen met een NaN- of een zero waarde 

- Correctie naar Tempratuur/Neerslag  

- Correctie naar luchtdruk 

- Bovenkant van de filter moet hoger zijn dan de onderkant van het filter  

- Bovenkant van de filter mag niet hoger zijn dan de bovenkant van de peilbuis  

- … 

 

• Welke van deze (genoemde punten door partij) worden er al automatisch uitgevoerd? 

• Hoe gaat die automatische validatie in zijn werk? 

• Waar loop je tegen aan bij het voorlopige/ automatische valideren 

Definitive validatie/ plausibilteitscheck 

• Doen jullie een definitieve/ plausibiliteit check?  

• Hoe doorlopen/welke stappen jullie je plausibiliteit check?   

  (Voorbeeld punten waarop gelet wordt)  
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- Metingen boven de bovenkant van de peilbuis liggen 

- Metingen onder de onderkant van het filter liggen 

- Geen drift/bias plaatsvind 

- Geen filterwissel plaatsvind 

- De verandering van het patroon gedurende de meetperiode 

- Uitschieters  

- Vreemde metingen  

 

• Hoeverre is dit al geautomatiseerd?  

• Zijn jullie van plan in de toekomst meer stappen te automatiseren? 
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D. Summary of the conducted interviews 

D.1. Summary Interview Artesia  
Artesia's semi-automatic validation system for groundwater measurements, focusing on manual 

validation as a primary method, supplemented by semi-automatic checks in ArtDiver. Key validation 

points include checking measurements against physical possibilities, such as the position above the 

monitoring well or below the filter, and looking for pattern changes, outliers, or unusual readings. 

Special attention is given to the measurement setup, especially in challenging environments like 

polders, and ensuring the accuracy of data like cable length and pressure. Artesia emphasizes the 

importance of accurate data collection and validation to maintain reliable groundwater monitoring, 

considering the specific challenges and errors that can occur in different measurement setups and 

environmental conditions. 

D.2. Summary Interview Brabant Water 
The Brabant Water validation protocol for groundwater measurement series involves a careful 

process including an initial quality check followed by a definitive validation or plausibility check. The 

initial validation examines the data for duplications, NaN or zero values, corrections for 

temperature/precipitation, air pressure, and ensuring the filter's top and bottom positions. Definitive 

validation involves checking for measurements outside plausible ranges, ensuring no drift or filter 

changes, and analysing pattern changes over the measurement period. While Brabant Water has 

extensive experience in groundwater measurements, the process still involves considerable manual 

work and assessment. The company emphasizes the importance of proper installation and 

maintenance of measurement points for long-term reliability and is exploring automation to enhance 

the validation process. 

D.3. Summary Interview AA & Maas 
The AA&Maas protocol involves monitoring 1000 telemetric points, with daily data checks using 

Python scripts. These scripts test against physical limits and predict groundwater levels by modelling 

precipitation and evaporation data, and comparing with nearby wells. Measurements falling outside 

expected ranges are flagged for further review. Real-time monitoring allows quick detection and 

response to issues, differing from quarterly data logger readings. The protocol lacks uniformity in 

handling erroneous data, with some being removed or interpolated. Data is pre-validated before 

being sent to the BRO (Dinoloket), using MOSGeo pressure sensors that compensate for air pressure, 

with each well having its own time series model. Challenges include insufficient staffing for visual 

checks of the measurement series and reliance on manual validation. The reliability of models is 

considered good. Further automation is sought, particularly in detecting dry measurements, but 

manual intervention remains necessary for issues like zero-point shifts. 

D.4. Summary Interview Blik 
The document describes Blik's protocol for validating groundwater measurement series. Blik's process 

involves preliminary validation and sharing the data through their dashboard. They utilize their 

measuring equipment and telemetry networks with hourly frequency. Upon receiving data, Blik 

checks for completeness and converts it into groundwater levels, considering the sensor's depth and 

location. Validation includes checking against physical impossibilities and visualizing data based on 

validation status, with errors highlighted in red. They face challenges in large-scale validation and aim 

for future automation, including a QC protocol for standardized data labelling. Blik monitors 1700 

wells and uses proprietary software for installation, emphasizing calibration against air pressure and 

direct hand measurements for accuracy. 

 


