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Abstract

The Dutch waterways, like the Waal River, are among Europe’s busiest navigation routes.
In these waterways, navigation faces challenges during periods of low flow due to shallow
water depths. Dredging is conducted to keep the waterways navigable. As future projections
indicate more extreme low-flow events, the need for efficient dredging strategies increases.
Currently, short-term dredging decisions rely on real-time bed level data. Providing forecasts
on bed levels can support this decision-making process by identifying potential future bot-
tlenecks, deeper locations for sediment disposal and areas where subsequent measurements
may not be necessary.

This study aimed to obtain a two-weekly bed level prediction in 3D for the Waal River, by
developing and comparing two data-driven approaches. This included the development of a
data-driven dune migration model, which only considers the horizontal displacement of bed
features, alongside improving the bed level prediction accuracy of the machine learning model
TrajGRU (Shi et al., 2017). The initial machine learning model TrajGRU produced highly
blurred predictions with the bed level predictions converging to the mean bed level. The
difference in the observed and predicted maximum bed levels was large (0.92m) and little
of the bedform patterns were captured accurately. To improve these predictions, five data
preprocessing experiments were set up: a sample selection, removal of outliers, coordinate
transformation, wavelet reconstruction and consistent time intervals. Herein, each successive
experiment built upon the previous experiments. Furthermore, three different loss functions
were tested in the machine learning model: the root mean square error, a combination of the
mean square error and structural similarity index and the Wasserstein loss.

The dune migration model showed to outperform the improved machine learning model. The
machine learning model with the wavelet reconstructed data and the root mean square error
loss function improved model performance most of all machine learning experiments. The
maximum bed level error reduced from 0.92m to 0.77m and bedform patterns were more
accurately captured compared to the other experiments. However, the blurring effect was
still largely present. Compared to the dune migration model, the dune migration model had
a substantially smaller maximum bed level error of 0.30m, the locations of the maximum bed
levels were captured more accurately with a locational error of 14.5m instead of 25m for the
machine learning model, and the overall bedform patterns were captured more accurately as
well. Even when manually increasing the bed level spread of the machine learning prediction,
the dune migration model outperformed the machine learning model.

Thus, the potential of a complicated machine learning model like TrajGRU for predicting
bed levels in the Waal River shows to be small and the dune migration model proves more
promising. Future research could focus more on the dune migration model and combine this
method with an approach suitable for predicting vertical bed level changes as well.
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1 INTRODUCTION

1 Introduction

1.1 Context

The Dutch rivers belong to the busiest navigation routes in Europe (Sys et al., 2020; Vinke
et al., 2022). Within the Netherlands, the Waal River is considered the busiest naviga-
tion route (Rijkswaterstaat, 2023). During periods of low flow, navigation encounters prob-
lems with low water depths at the Waal River, allowing less loading capacity and there-
fore increasing costs (Hiemstra et al., 2020; Ministry of Infrastructure and Water Manage-
ment, 2022). To keep the Dutch waterways navigable, they are maintained via dredging
(Rijkswaterstaat, 2023). Among the Dutch rivers, the Waal River undergoes the most fre-
quent dredging (Rijkswaterstaat, 2023), with an annual dredging volume reaching 700,000m3

(Rijkswaterstaat, 2020). Due to climate change, low flows in the Waal River are expected to
become more extreme in the future (Buitink et al., 2023), increasing the need for dredging
and therefore efficient dredging strategies.

Dredging strategies contain both long- and short-term perspectives. The long-term per-
spective focuses on the required budgeting for the upcoming year and determines whether
large-scale dredging is necessary. On the other hand, the short-term perspective primarily
focuses on local bottleneck dredging, requiring a short response time of a few days to two
weeks (Klaassen & Sloff, 2000). The focus of this study is on the short-term perspective.

Current decisions on short-term dredging rely on real-time bed level data. Dredging is initi-
ated when the bed level measurement exceeds the dredging reference level set by Rijkswaterstaat
(Kruis et al., 2023). Providing a short-term prediction on the bed levels can contribute to
effective channel regulation (Y. Liu et al., 2022). Such predictions can offer insights into po-
tential future bottlenecks, identify deeper locations for sediment disposal and pinpoint areas
where subsequent measurements may not be necessary due to low bed level predictions.

Bedforms in the Waal River consist of rhythmic features that propagate downstream. These
features include primary river dunes, secondary bedforms and large-scale features such as
river bars. The large-scale features such as river bars extend over kilometres long, are stable
in location and have heights of ∼1m (de Ruijsscher et al., 2020). They change in shape with
a dynamic timescale in the order of months to years (van Dijk et al., 2012). Secondary bed-
forms are smaller bed features superimposed on primary dunes. These bedforms have been
observed in the Waal River with heights below 0.5m, lengths below 10m and downstream
migration rates of around 1m/h (Zomer et al., 2021). Primary river dunes in the Waal River
generally are observed from 10cm to 1.5 meters high, extend from 10 to 150m long, and mi-
grate downstream several meters per day (Lokin et al., 2022; ten Brinke et al., 1999; Wilbers
& ten Brinke, 2003).

Given the focus on short-term 14-day bed level predictions, capturing primary river dune de-
velopment is most relevant for short-term prediction of bed levels. Including secondary bed-
form dynamics would be highly complex and would require hourly measurements to capture
its dynamics. Modelling large-scale feature dynamics is also less relevant as their dynamic
timescale extends beyond the 14-day prediction window.
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1.2 Research Objective 1 INTRODUCTION

Numerous numerical models have been developed to predict short-term river dune develop-
ments in 2DV (Giri & Shimizu, 2006; Nelson et al., 2011; Paarlberg et al., 2009) and 3D (Goll
& Kopmann, 2012; Nabi et al., 2012, 2013a, 2013b). The 2DV models generally fail to cap-
ture the 3D dynamics of river dunes, featuring variability across the field in crest curvature,
discontinuity, and height variations (Lefebvre, 2019). Still, Lokin et al. (2024) showed the ca-
pability of the 2DV model by Paarlberg et al. (2009) to accurately predict the growth rate of
the highest dunes. However, migration rates were largely underestimated and growth rates of
small dune dynamics were overestimated. The 3D models can capture the three-dimensional
dynamics of river dunes better, but require excessive computational resources to implement
for river-scale applications (Lokin, 2020). As there is a relatively large bed level dataset avail-
able for the Waal River, data-driven approaches are becoming attractive as well. Yet, very
few studies have applied data-driven approaches for predicting bed levels (B. Liu et al., 2023).

In this study, one of the data-driven approaches used for predicting bed levels in the Waal
River involves the application of the machine learning model TrajGRU (Shi et al., 2017).
Previous to this study, HKV revisited the TrajGRU machine learning model structure to
predict bed levels in the Waal River (Appendix A). The revisited model can provide a two-
weekly prediction on the bed levels, using two sequential bed level measurements as input
(Figure 2). Current model results show a highly blurred output with the bed levels converging
to the mean bed level. Bed level differences between the model prediction and observation
are in the order of decimeters to meters. Furthermore, the model tends to reconstruct the
input frames and fails to capture newly developed bed features. Still, there are opportunities
to improve model predictions by exploring data preprocessing and adapting loss functions.

Figure 2: Example prediction of the TrajGRU model for a section of the Waal River near Ochten.
t+1 denotes the predicted timestep, t the real-time situation and t-1 the previous timestep.

1.2 Research Objective
The objective of this research is to obtain a two-weekly bed level prediction in 3D for the
Waal River, by developing and comparing two data-driven approaches. This includes the de-
velopment of a dune migration model, alongside improving the bed level prediction accuracy
of the machine learning model TrajGRU. The bed level accuracy of the machine learning
model will be improved via data preprocessing and the adaptation of loss functions. Both
data-driven approaches focus on a 3D prediction, such that the three-dimensional variability
of the river bed can be captured. The lead time of the prediction is taken as two weeks,
which provides a sufficient response time for dredging (Klaassen & Sloff, 2000).
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1.3 Research Questions 1 INTRODUCTION

1.3 Research Questions

To achieve the research objective, four research questions were formulated. The first ques-
tion focuses on the bed level prediction accuracy of the dune migration model for predicting
bed levels in the Waal River. The second and third research questions focus on improving
the bed level prediction accuracy of the existing TrajGRU machine learning model via the
implementation of data preprocessing and the adaptation of loss functions. The fourth re-
search question focuses on a comparison between the machine learning model and the dune
migration model for predicting bed levels in the Waal River. Specific research questions are:

RQ1: What is the bed level prediction accuracy of the data-driven dune migration model?

RQ2: How can data preprocessing be implemented to improve the bed level prediction accuracy
of the TrajGRU machine learning model for the Waal River?

RQ3: How can the loss function be adapted to improve the bed level prediction accuracy of
the TrajGRU machine learning model for the Waal River?

RQ4: How well does the improved TrajGRU machine learning model perform compared to
the dune migration model for predicting bed levels for the Waal River?

1.4 Outline

The outline of this thesis is illustrated in Figure 3. In the next chapter, the research method-
ology is described. Herein, the study area and available data are described, together with the
dune migration model, the applied machine learning approach, the data preprocessing and
loss function experiments, and the performance evaluation method. The results are presented
in chapter three. Example predictions of the dune migration model and the machine learning
experiments are visually provided, together with supporting performance metric scores. Also,
a comparison is given between the bed level predictions by the dune migration model and the
machine learning model. Chapter four discusses the research results and chapter five gives
the conclusions on the research. Finally, chapter six provides recommendations for future
studies. The appendices contain a detailed overview of the machine learning model structure,
a visualisation of the outlier locations in the bed level data, example bed level predictions
of the two data-driven approaches, a brief analysis on the discharge implementation in the
machine learning model and the poster of this research presented on the NCR days 2024.

Figure 3: The outline of this thesis
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2 METHODOLOGY

2 Methodology

The methodology of this study is summarised in Figure 4. Two data-driven approaches are
focused upon: a dune migration model and machine learning. The dune migration model
applies a raster shifting approach, for which, a bed level measurement is shifted along the
channel-wise axis with an empirically derived dune celerity to obtain the bed level prediction.
For the machine learning model, five data preprocessing and three loss function experiments
were set up to improve the bed level prediction accuracy. For the data preprocessing ex-
periments, modifications were solely applied to the input data. Each successive experiment
builds upon the modifications introduced in the preceding one. Such a systematic approach
was thought to achieve a cumulative improvement of the model performance. The data pre-
processing step showing the most improvement in the model performance was further used
in the loss function experiments. Here, three different loss functions were tested. The best
performing machine learning model was derived, which was tested against the dune migration
model. The comparison between the two data-driven approaches indicates which one holds
the most potential for predicting bed levels in the Waal River.

Figure 4: Flowchart of the research methodology of this thesis

This section starts with a description of the study area and available data. Then, the dune
migration model is described. After this, the applied machine learning model is explained
with a focus on data preprocessing and loss functions. Then, the data preprocessing and
loss function experiments are elaborated upon. Finally, the method for evaluating the model
performance is discussed.

2.1 Study area and data

This study focuses on a 270m long river section in the Waal River near Ochten (Figure 5).
The study area was selected such that it represents a simple situation to test the suitability
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2.1 Study area and data 2 METHODOLOGY

of the data-driven approaches. The river section has not experienced ploughing or dredging,
based on dredging and ploughing data between 2021 to 2023. Therefore, natural bedform
developments are better captured in the data than for heavily dredged or ploughed areas (van
Dijk et al., 2012). Also, the section is relatively straight, excluding complex flow processes
like spiral flow effects in river bends (Beygipoor et al., 2013). The total study area covers an
area of 256x256m.

Figure 5: Study area of the Waal River section near Ochten in the Netherlands, plotted in the ’RD
new’ coordinate system. The multibeam echosounder measurement of 2005-07-19 is plotted here as
example.

The bed level data consists of 394 MultiBeam EchoSounder (MBES) measurements aggre-
gated to a 1x1m raster grid, covering the ∼200m wide navigation channel for the period
2005 to 2021. Time intervals between measurements are 14 days on median, but vary quite
substantially from 5 to 55 days (Figure 6). The time interval histogram follows a normal dis-
tribution with a standard deviation of 2.9 days for time intervals smaller than 27 days. The
time intervals of 27 days or more are due to missing MBES measurements between readings.

Figure 6: Histogram of the time intervals between MBES measurements for the period 2005 to
2021. Two outliers of 41 and 55 days, both occurring once, are excluded from the figure.
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2.1 Study area and data 2 METHODOLOGY

The riverbed in the Waal River consists of primary river dunes, secondary bedforms and large-
scale features such as river bars. As mentioned in Section 1.1, the understanding of river
dune dynamics is most relevant, given the focus on short-term 14-day bed level predictions.
River dunes are rhythmic features in sand and gravel beds that propagate in a streamwise
direction due to erosion at the stoss side and sedimentation on the lee side (Bradley & Ven-
ditti, 2021; Mohrig & Smith, 1996). River dunes in the Waal River are observed from 10cm
to 1.5 meters high, extend from 10 to 150m long, and migrate downstream several meters
per day (Lokin et al., 2022; ten Brinke et al., 1999; Wilbers & ten Brinke, 2003). A schema-
tisation of a river dune is shown in Figure 7. Their development is driven by current-induced
drag forces. They are therefore highly sensitive to river discharge. During low discharges,
river dunes in the Waal River tend to diffuse and reduce their migration rate, as the relative
strength of gravitation on sediment particles is higher than the current-induced drag force
(Lokin et al., 2022). During high flow conditions with dominant bed load transport, river
dunes will grow in height and develop until equilibrium is reached (van Duin et al., 2021).
Dune lengths decrease (Cisneros et al., 2020; Lokin et al., 2022) and migration rates increase
(Lokin et al., 2022; ten Brinke et al., 1999; Wilbers & ten Brinke, 2003). For extremely high
flows (i.e., during dike design conditions), the dominant mode of transport shifts from bed
load towards suspended transport (van Rijn, 1984), leading river dunes to decay in height
(Naqshband et al., 2014). This continues until the dunes have been washed out and a flat
riverbed remains (Hulscher et al., 2017; van Duin et al., 2021).

Figure 7: River dune schematisation. α represents the lee side angle (Naqshband et al., 2011)
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2.2 Data-driven dune migration model

A data-driven dune migration model was developed to predict the bed levels in 3D for the
Waal River. When trying to predict short-term bed evolution, key processes to be captured
are migration speed and growth/decay of the river dunes (length and height). Under modest
changes in flow conditions dunes still migrate meters per day but may not change significantly
in shape (Lokin et al., 2022; ten Brinke et al., 1999). Therefore, the dune migration model
only considers the horizontal displacement of the river bed. The model applies a method
further referred to as raster shifting, for which, a bed level measurement is shifted downstream
along the channel axis by a distance Lsh, giving the bed level prediction (Figure 8). The
shifting distance (Lsh [m]) is by summing the daily dune celerities (ci [m/d]) over the 14 day
prediction period (equation 1).

Lsh =
14∑
i=1

ci (1)

Figure 8: Schematisation of the raster shifting prediction approach. The grey box indicates the
bathymetry measurement. Lsh is the distance in meters with which the bed level measurement is
shifted.

Data on daily dune celerities is highly limited. Therefore, a relation was established between
the dune celerity and river discharge, for which daily measurements are available for the
period 2005 to 2021. Equation 2 depicts an empirically derived third-order relation between
the river discharge (Q [m3/s]) and dune celerity (c [m/d]) for the Waal River, based on data
by Lokin et al. (2022). This relation provides a reasonable estimate of the dune celerity
(Figure 9a), despite the relatively high uncertainty (R2 = 0.61). Dune celerities increase
with increasing discharges and stabilize near discharges of 3000m3/s and higher. Figure 9b
shows a discharge time series and the derived dune celerities by equation 2. The dune celerity
generally follows the discharge curve and shows high variability over a short period. This
high variability indicates the importance of accumulating daily dune celerity as applied in
equation 1.

c = 0.748 + 4.26 · 10−3Q− 1.20 · 10−6Q2 + 1.11 · 10−10Q3 (2)
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Figure 9: (a) Dune celerity against the discharge. The grey dots indicate the dune celerity data by
Lokin et al. (2022). The black line indicates equation 2. (b) The measured discharge time series
plotted in red and derived dune celerities from equation 2 plotted in black.

2.3 The applied machine learning approach

Next to the dune migration model, machine learning is applied as a data-driven approach
to predict bed levels in the Waal River. This study applies the machine learning model
TrajGRU (Shi et al., 2017). This model was originally developed for short-term forecasting of
precipitation, but was revisited by HKV for predicting bed levels in the Waal River (Appendix
A). The revisited model accepts two sequential bathymetry measurements as input and
provides a single prediction for the next time step (Figure 10). The machine learning model
is based on a video prediction model, meaning that time steps between frames are assumed
constant (Srivastava et al., 2015). Model time steps are denoted as t-1 (input), t (input)
and t+1 (prediction or target). This section will give an understanding of the fundamental
principles in this machine learning algorithm with a focus on data preprocessing and loss
functions.

Figure 10: Schematic overview of the machine learning model input and output.

8



2.3 The applied machine learning approach 2 METHODOLOGY

2.3.1 Steps in machine learning

Within machine learning, there are generally five steps followed to obtain a good performing
model (Figure 11). Firstly, all relevant data is obtained. Then, the data is presented in
such a way suitable for the model to accept. Consequently, the model is trained on a set of
training samples, where the model tries to improve its predictions. A trained model follows
from this, which is then tested to assess its performance. Finally, the model can be adapted
to improve predictions further. Data preprocessing is applied in the preparation of the data
and loss functions are applied in the training of the model.

Figure 11: Five core machine learning steps (Maloo, 2018)

2.3.2 Data preprocessing

Data preprocessing is done in the preparation of the model data. The data is transformed
before feeding it to the model to train. It is done to improve the data quality and model
performance (Maharana et al., 2022). Steps in the data preprocessing generally include the
removal of outliers in the data and a selection of the model domain (Dekker et al., 2022; Shi
et al., 2017; van der Kooij et al., 2021).

The data is provided to the model in the form of samples. Each sample contains three
sequential bathymetry frames. The first two frames are the input of the model and the last
frame is used for evaluation against the model prediction (Figure 12).

Figure 12: The model input together with observed and predicted bed levels. One sample includes
the input and observation.

9
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The data is split into training, validation and test samples.

• Training samples: These are the samples used for the training of the model. This
sample set contains around 80% of all data (e.g., Shi et al., 2017)

• Validation samples: These are the samples which are used to validate the model
against overfitting during training. This sample set contains around 5% of all data.

• Test samples: The test samples are used to test the model. This set is completely
independent of the training of the model. This sample set generally contains around
15% of all data.

In this study, only samples containing time intervals between frames within the range of 10 to
18 days were included for the model training, validating and testing. This selection was done
to keep some consistencies in time intervals, as the machine learning model is video-based
and therefore assumes constant time steps between frames. This selection resulted in a total
of 275 samples, which were split into 223 training samples, 13 validation samples, and 39
testing samples.

The model accepts bathymetry raster frames of size 256x256, containing cells values between
0 and 1 (Dekker et al., 2022). Therefore, bed levels are scaled between values of 0 to 1, based
on the maximum and minimum bed levels in the dataset, before entering the model.

2.3.3 Model training and loss functions

To understand the purpose of a loss function, a deeper understanding of the model training
is required. A flowchart of the training scheme for the applied machine learning approach
is shown in Figure 13. This scheme uses a classification in the data as presented in Figure
12. First, the model starts with a random set of model weights (Figure 13), which are the
internal connections in the neural network. Training samples are provided to the machine
learning model in batches (two samples at a time). The model provides a prediction for each
sample in the batch, which is evaluated via a loss function. The loss function quantifies a loss
between the prediction and observation. The larger the loss, the worse the model performs.
During training, this loss is minimised by adjusting the model weights after each batch.
After all training samples have passed through, the final set of model weights result, which
define the newly trained model. These model weights can be loaded into the model structure,
and the model is ready to provide a prediction. The model training uses a predefined set of
hyperparameter values, which guide the training process and remain constant during training.
More information on the hyperparameters and model structure can be found in Appendix A.
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2.3 The applied machine learning approach 2 METHODOLOGY

Figure 13: Training scheme for the applied machine learning approach. N indicates the total number
of training samples.

The flowchart indicated in Figure 13 shows one entire passing of training data through the
machine learning algorithm, also referred to as one epoch. By increasing the number of
epochs, the model can iterate its weights more often to achieve better predictions. However,
increasing the number of epochs increases the risk of overfitting. Overfitting in machine
learning occurs when a model learns the training data too well, capturing noise or random
fluctuations instead of general patterns, leading to poor performance on unseen data. To
prevent overfitting, a model validation step is included in the training scheme (Figure 14).
The model will continue training for another epoch until the model validation loss has not
decreased for four consecutive epochs, at which point it outputs the final model weights.

Figure 14: Model training including the model validation step

11



2.3 The applied machine learning approach 2 METHODOLOGY

2.3.4 The applied loss function

The machine learning model applies the Mean Square Error (MSE) loss function, which is
one of the most popular loss functions applied in image forecasting applications (Tran &
Song, 2019). The MSE loss function can make a decent estimation of the global similarity
between two images, but not about the local structure (Jonnalagadda & Hashemi, 2023;
Tran & Song, 2019). A small misplacement in features may result in a higher loss than for a
highly blurred prediction. Therefore, many studies argue that the blurriness in these types
of machine learning models arises due to the use of the mean square error (Jing et al., 2019;
Ma et al., 2022; Tian et al., 2019; Tran & Song, 2019).

The MSE loss function is depicted in equation 3. Here, Pi,j denotes the predicted bed level
and Oi,j the observed bed level for ith row and jth column. k is a masking parameter, which
excludes the most upstream part of the model domain for evaluation (Figure 15a). As the
model domain is stationary and dune features move downstream, the model cannot predict
what features enter from the upstream model boundary. This is different compared to other
forecasting applications, such as precipitation forecasting, where features can enter from all
model boundaries (Figure 15b).

LMSE(P,O) =
1

256 · (256− k)

256∑
i=1

(256−k)∑
j=1

(Pi,j −Oi,j)
2 (3)

Figure 15: Schematisation of the applied mask for (a) the bed level prediction and (b) precipitation
forecasting applications. The white box indicates the excluded section for evaluation of the model
performance, with k being the masking parameter.
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2.4 Data preprocessing experiments

Five data preprocessing experiments were set up to improve the bed level prediction accuracy
for the machine learning model. The five data preprocessing experiments include: sample se-
lection, removal of outliers, coordinate transformation, wavelet reconstruction, and consistent
time intervals. Each experiment built upon the modifications introduced in the preceding
one, as this was thought to achieve a cumulative improvement of the model performance.
The data preprocessing experiment showing the best model performance was further used in
the loss function experiments. Below, each of the data preprocessing experiments is further
discussed.

2.4.1 Sample selection

In this experiment, samples with high flow conditions were excluded from the training sample
set. Modelling of these periods is considered irrelevant, as navigation mainly experiences
problems during low flow periods (Lokin et al., 2023). The inclusion of high flow periods
could complicate the learning process, as river dune dynamics are highly sensitive to flow
conditions. Also, during high flow periods, river dunes encompass their lengths between
measurements (Figure 16a), further complicating the recognition of dune development for
the machine learning model. Therefore, samples are removed from the training set for which
the 14-day dune celerity exceeds the dune length. Figure 16b shows the scaled dune celerity
over the discharge. If this factor equals 1 or larger, the 14-day dune celerity exceeds the dune
length. There is quite some deviation in the data (R2=0.62), but the scaled dune celerity
remains generally below 1 for discharges below 2000m3/s. Discharges of 2000m3/s or higher
are therefore considered as a high flow condition for the Waal River and are removed from
the training samples. In total, 162 training samples remain for training the machine learning
model.

Figure 16: (a) The dune length, λ, and 14-day dune celerity, 14c, as a function of the discharge for
the Waal River, (b) Scaled dune celerity against the discharge for the Waal River. The plots are
based on data by Lokin et al. (2022)
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2.4.2 Removal of outliers

Far outliers sometimes occur in MultiBeam EchoSounder (MBES) datasets, even though
they are more than often filtered out as part of the acquisition process (Le Deunf et al.,
2020). These outliers misinform the machine learning model in the training process, poten-
tially leading to less accurate predictions. Therefore, in this second experiment, outliers were
identified and removed from the MBES dataset. This experiment built upon the data from
the sample selection experiment.

Outliers in the MBES data were identified by applying a median-based filter. The median
bathymetry was extracted over all measurements and the difference to the measured bed
levels was plotted (Figure 17). Bed level deviations from the median generally range up to
2m, which can be attributed to the constantly evolving river dunes and ripples. Deviations
larger than 2m are mostly observed in low bed levels, which could be due to the presence
of scour holes. As this study focuses on predicting the shallow areas more correctly, the
threshold deviation is set to 3m, which excludes deep scour holes and actual outliers. Also,
the spatial surrounding 3 meters of the outliers are removed, limiting the sloping effects. The
outliers are replaced by interpolation via inverse distance weighting, which assigns values
to the outlier locations based on the weighted average of surrounding cells, see also Lu and
Wong (2008) and Maleika (2020).

Figure 17: The differences in bed level measurements to the median bed for the study area, together
with the upper and lower threshold for outlier detection.

The bathymetry measurements also contain missing data within the navigation channel. In
the original data preprocessing, these missing values were replaced by zeros during normali-
sation of the data, which is equal to the minimum observed bed level. Thus, biases towards
low bed levels were introduced, leading to inaccuracies in the representation of the navigation
channel bed. To mitigate this effect, these missing values were also replaced using inverse
distance weighting. For a visualisation of the locations of the missing data and the identified
outliers within the navigation channel, please refer to Appendix B.
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2.4.3 Coordinate transformation

The raw input data is given as an orthogonal grid in RD new coordinates (X,Y). To simplify
the learning of bedform developments, the grid is transformed to a channel-fitted coordinate
system (s, n) proposed by Dietrich and Dungan Smith (1984). Here, s is the channel center-
line, which can be translated to the river kilometre (rkm), and an ’n’ axis perpendicular to
that centerline (Figure 18). This coordinate transformation aligns the main direction of flow,
and thus dune propagation, along a single horizontal axis. This simplifies the representation
of dune propagation in contrast to the RD coordinate system, as the dunes now propagate
horizontally over the frame instead of diagonally. Due to the stream coordinate transforma-
tion, the study area was slightly adjusted to keep consistency in the frame size of 256x256m
(Figure 18). Again, this experiment built upon the data provided by previous experiments:
the sample selection and the removal of outliers.

Figure 18: Stream coordinate transformation. (a) Raw bed level data in RD new coordinates [X,
Y], with the study area indicated in the black dotted line. (b) Bed level data transformed to the
channel-fitted coordinate system [rkm,n], where n represents the perpendicular distance from the
channel centerline and rkm denotes the river kilometre. The bed level measurement of 2005-07-19
is plotted here as example.

2.4.4 Wavelet reconstruction

In this experiment, secondary bedforms are removed from the bed level data, as their bed-
form dynamics can hardly be captured within measurements taken at 14-day intervals. By
removing these features from the data, the training data is simplified and the model can shift
its focus more towards relevant bed feature dynamics such as primary dune development.

The removal of secondary bedforms is achieved by applying a 2D wavelet transform (van
Denderen et al., 2022). Kruis et al. (2023) demonstrated the capability of such analysis
to accurately reconstruct the river bathymetry, whilst removing secondary bedforms. There
exist other dune analysis methods capable of removing secondary bedforms as well (Gutierrez
et al., 2018; van der Mark et al., 2008). However, these require additional data preprocessing
steps (removal of large-scale bedforms) to analyse and reconstruct dune features.
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Secondary bedforms in the Waal River typically have wavelengths up to 10m (Zomer et al.,
2021). Therefore, the riverbed is reconstructed with wavelengths between 10 to 500m. An
example reconstruction of the riverbed is depicted in Figure 19b. Figure 19d shows that
smaller bedform deviations are filtered, whilst capturing the larger bedform shapes well.
However, as shown in Figure 19c, the wavelet reconstruction does result in an overestimation
of higher bed levels and underestimates lower bed levels by up to three decimeters.

Figure 19: The bed level data and wavelet reconstruction of the study area riverbed, using wave-
lengths of 10-500m. (a) The bed level data in channel-fitted coordinates. (b) Reconstructed bed
levels with the wavelet transform (c) Absolute differences in bed level between the bed level data
and Wavelet reconstruction. A negative value indicates a lower bed level by the reconstruction com-
pared to the data and a positive value indicates a higher bed level. (d) 1D bed level profile along
the river axis, showing the bed level data and wavelet reconstruction. The bed level measurement
of 2005-07-19 is plotted here as example.

2.4.5 Consistent time intervals

The machine learning model TrajGRU assumes constant time intervals between consecutive
frames, since it is based on a video prediction model (Srivastava et al., 2015). As the time
intervals in the training samples deviate between 10 to 18 days (Section 2.3.2), it is proposed
to adjust the dataset such that time intervals become consistently 14 days. Time interval
inconsistencies are removed via the raster shifting approach as described in Section 2.2. If
the time interval between consecutive measurements deviates from the 14 day median, the
bathymetry raster is shifted along the channel axis, such that the time intervals become
consistently 14 days. The input frames are shifted with respect to the prediction frame,
preventing data augmentation of the evaluation frames. The shifting distance is determined
with equation 4.
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Lsh =
∆t∑
i=1

ci (4)

The deviation in time interval from the 14 day median (∆t) is determined by subtracting the
time interval between measurements (tint) with 14 days (∆t = |tint − 14|). For time intervals
smaller than 14 days, the raster is shifted downstream and for intervals larger than 14 days,
the raster is shifted upstream.

2.5 Loss function experiments

Many studies argue that blurriness in image machine learning predictions arises due to the
use of the Mean Square Error (MSE) (Jing et al., 2019; Ma et al., 2022; Tian et al., 2019;
Tran & Song, 2019). Dekker et al. (2022) has shown that the adaptation of loss functions in
TrajGRU can overcome the blurring effect to some extent. Therefore, three adaptations in
the loss functions were tested for: the Root Mean Square Error (RMSE), a combination of
the Mean Square Error (MSE) and Structural Similarity index (SSIM), and the Wasserstein
loss. Each of these loss functions is further discussed below. For the loss evaluation, 80m of
the most upstream part of the model domain is excluded (Section 2.3.4, k = 80m), as this is
near to the maximum distance river dunes migrate over 14 days (Figure 16).

2.5.1 Root mean square error

The Root Mean Square Error (RMSE) is equal to the square root of the MSE. It was observed
during the training of TrajGRU that the MSE losses within the model were in the order of
10−3. A change in the loss was hardly recognisable at this scale. By taking the RMSE as
loss function, differences between losses become more accentuated. The study by van der
Kooij et al. (2021) tested the RMSE loss function in the TrajGRU model for precipitation
nowcasting and showed substantial improvement in the mean absolute error and RMSE
metrics. However, they found that peak rainfall intensities were further underestimated
compared to the benchmark model. Despite this, the RMSE loss function is tested due to its
ability to accentuate differences in the loss. The RMSE loss function is denoted in equation
5, where Pi,j denotes the predicted bed level and Oi,j the observed bed level for ith row and
jth column. k is the masking parameter as indicated in Section 2.3.4.

LRMSE(P,O) =

√√√√ 1

256 · (256− k)

256∑
i=1

256−k∑
j=1

(Pi,j −Oi,j)
2 (5)

2.5.2 Mean square error & structural similarity index measure

In this experiment, a combination of the Mean Square Error (MSE) and Structural Similarity
Index Measure (SSIM) is tested as loss function. The Structural Similarity Index Measure
(SSIM) is a metric that measures the differences in local structure, luminosity and contrast
between two images (Dekker et al., 2022; Jonnalagadda & Hashemi, 2023). Tran and Song
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(2019) and Dekker et al. (2022) compared several loss functions and found that the imple-
mentation of the SSIM improved the model performance with respect to applying MSE only,
as the blurring effect in the model predictions was reduced.

The equation for SSIM is depicted in equation 6, where P represents the predicted bed levels
and O the observed bed levels. The luminance of the image is depicted by l(P,O), the contrast
by c(P,O) and the structural similarity by s(P,O). The value of SSIM ranges between 1 to
-1, with 1 indicating perfect similarity, 0 no similarity and -1 perfect anti-correlation. C1,
C2 and C3 (C3 = C2/2) are small positive constants for numerical stability. These are set to
C1 = 0.01 and C2 = 0.03, as proposed by Z. Wang et al. (2003) for normalised pixel values.

SSIM(Pi,j, Oi,j) =l(P,O) · c(P,O) · s(P,O) =

(
2µPµO + C1

µ2
P + µ2

O + C1

)
·
(

2σPσO + C2

σ2
P + σ2

O + C2

)
·
(

σPO + C3

σPσO + C3

)
=

(2µPµO + C1) (2σPO + C2)

(µ2
P + µ2

O + C1) (σ2
P + σ2

O + C2)
(6)

The SSIM is computed for each cell in the frame by considering its surrounding neighbour-
hood, where cells more nearby are accounted more heavily towards the SSIM score. For this,
a Gaussian filter is applied with a window size of 21 and a standard deviation of 5. The
window size and standard deviations are set higher than generally observed in the literature
(Dekker et al., 2022; Z. Wang et al., 2003), as the grid is highly detailed (1x1m) whilst the
interest lies into the larger scale river dune slopes. Finally, the SSIM loss can be computed by
averaging the SSIM scores over all cells (equation 7). A loss of 0 indicates perfect similarity,
1 no similarity and 2 perfect anti-correlation. The SSIM loss is combined with the MSE loss
in equation 8.

LSSIM(P,O) = 1− 1

256 · (256− k)

256∑
i=1

(256−k)∑
j=1

SSIM(Pi,j, Oi,j) (7)

LMSE+SSIM(P,O) = LMSE(P,O) + βLSSIM(P,O) (8)

β is a factor in equation 8 indicating the importance of the SSIM loss. Different values for
β are suggested in the literature, ranging from 0.02 to 0.5 (Dekker et al., 2022; Le et al.,
2022; Tran & Song, 2019; Zhang et al., 2023). From experimental analysis, it followed that
a scaling factor of β = 0.5 resulted in best model performance. Further increasing of the
scaling factor did not improve results.

2.5.3 Wasserstein loss

Another method to capture the deviations in bed levels more accurately is via the use of the
Wasserstein loss. The idea of this loss function is to treat each cell value as a mass located at
a specific point, calculating the cost required to move these masses to their correct positions
to match the observation. In the context of this study, the bed levels represent the masses in
the system. If a patch of higher bed levels would be predicted on locations with low observed
bed levels, the Wasserstein loss would calculate the lowest transport costs to allocate these
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masses to the correct location (Figure 20). The Wasserstein loss is implemented as depicted
in equation 9. Herein, γi,j denote the transport plans, which describe how much mass should
be moved from position xi to yj. The distance between the two positions is computed with
∥xi − yj∥. All possible transport plans (γ ∈ Π) are tried and the transport plan with the
lowest transport costs gives the Wasserstein loss.

Lwass(P,O) = min
γ∈Π

1

256 · 256

256∑
i=1

256∑
j=1

γi,j∥xi − yj∥ (9)

An advantage of this loss function is that it is less sensitive to displacement errors compared
to the MSE (Dekker et al., 2022). If a prediction is slightly shifted, the Wasserstein loss
would penalize the model less than the MSE loss function, as the transportation costs would
be small whilst the point-wise error would be large. Also, blurred prediction would be
higher penalised by the Wasserstein loss during training, as relatively large masses should be
converted to the right locations, giving a high Wasserstein loss.

Figure 20: Visualisation of an example transport plan of the Wasserstein loss. (a) shows observed
bed levels, (b) shows a random example prediction and (c) gives an example transport plan, see also
equation 9. The arrows indicate where masses are relocated. The thicker the arrow, the higher the
transport cost. Also, the bed level differences are indicated between the prediction and observation,
where a negative value indicates a lower bed level by the prediction compared to the observation
and a positive value indicates a higher bed level.

2.6 Performance evaluation

In this study, the evaluation of model performance focuses on two key points: the maximum
bed level and the overall bed level patterns. For the dredging companies and Rijkswaterstaat,
it is highly relevant to obtain an accurate prediction of the maximum bed level and its lo-
cation, as this indicates where future dredging might be necessary. From a scientific per-
spective, the ability of the model to effectively capture bedform patterns is also relevant,
as current studies have been struggling to develop predictive models capable of accurately
predicting bedform patterns (e.g. Paarlberg et al., 2009). For the performance evaluation,
80m of the most upstream part of the model domain is excluded, similar to the loss functions.
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The maximum bed level error serves as an indicator of how well the model predicts the
highest points of bed elevation. The maximum bed level error was determined by extracting
the maximum bed levels over 32-meter-long stretches of the river and computing the Mean
Absolute Error between the observed and predicted maximum bed levels (MAEb). Also, the
error in the locations of the maximum bed levels was determined. This was done via visual
inspection and quantification of the locational error. Two 80x80m regions were manually
identified in the observation for a total of 10 testing samples (Appendix C), capturing the
highest river dunes. Figure 21 depicts an example observation with corresponding 80x80m
regions. For each region, the location of the maximum bed level is determined for both the
prediction and observation and the distance between the predicted and observed locations
gives the locational error.

Figure 21: Example observation with two 80x80m regions, indicated by the black dotted lines,
capturing the highest river dunes. The red dot and plus indicate the location of the maximum bed
level within these regions.

The error in the overall bed level patterns was assessed via visual inspection and two sup-
porting point-wise performance metrics: the Mean Absolute Error (MAE) and the Root
Mean Square Error (RMSE). Dekker et al. (2022) and van der Kooij et al. (2021) both
showed the importance of visual inspection in TrajGRU forecasting applications and indi-
cated that an improvement in point-wise performance metrics does not necessarily lead to
visual improvement as well. Bosboom (2019) mentioned that point-wise metrics for mor-
phodynamic model evaluation generally penalize, rather than reward, the features of interest
(dune peaks/troughs). The prediction of a morphological feature that is correct in terms of
timing and size, but is misplaced in space, may not outperform even a flat bed, which is
inconsistent with the common judgement of morphologists. However, applying only visual
inspection could include a subjective bias. Therefore, combining visual inspection alongside
the MAE and RMSE metrics ensures a comprehensive evaluation of the overall bed level
patterns.
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3 Results

The results of the dune migration model and the machine learning model experiments are
presented in this chapter. First, the dune migration model results are presented. This is
followed by the data preprocessing and loss function experiment results for the machine
learning model. After this, a comparison is done between the best-performing machine
learning model and the dune migration model for predicting bed levels in 3D for the Waal
River.

3.1 Dune migration model

The dune migration model predicts the horizontal displacement of the river bed, applying
the raster shifting method described in Section 2.2. Figure 22 shows an example prediction of
this model. The model visually provides a good prediction of the bed levels. The locations of
maximum bed levels are effectively captured as well as the locations of the overall higher and
lower bed levels. Furthermore, bedform shapes remain similar in the prediction compared to
the previous time step. In Appendix C, extra example predictions are provided, also showing
the potential of the dune migration model. The maximum bed level error (MAEb) and the
overall bed level errors (MAE & RMSE) are relatively similar, around 30cm (Table 1).

Figure 22: Example prediction by the dune migration model, note that
the 80m upstream of the input frame is excluded for visual purposes.
The red plus and red dot indicate the location of two maximum bed
levels.

Dune
migration
model

MAEb [m] 0.30
MAE [m] 0.26
RMSE [m] 0.34

Table 1: Performance
metric scores for the dune
migration model on the
complete test sample set.

3.2 Data preprocessing experiments

Five data preprocessing experiments were set up and tested against the machine learning
model trained on the original data. Each successive experiment was built upon the modi-
fications introduced in the preceding one, as this was thought to achieve a cumulative im-
provement of the model performance. An example prediction of each experiment is provided
in Figure 23. The resulting performance metric scores are summarised in Table 2. The main
observation is that all model experiments provide a highly blurred output (Figure 23). The
blurring effect is not reduced between experiments. The maximum bed level prediction there-
fore remains largely underestimated with the lowest MAEb score of 0.92m for the original
data. Also, the location of the maximum bed levels is little accurately predicted.
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Figure 23: Example bed level prediction for the data preprocessing experiments. (a) and (f) rep-
resent the real-time bathymetry measurement, used as the second input frame for TrajGRU. 80m
upstream of the input frame is excluded for visual inspection purposes. (b) and (g) represent the
observed bathymetry for the next time step. (c) shows the model results of the model trained
on the original data and (d-e) and (h-j) represent the predictions by the five data preprocessing
experiments. The red plus and red dot indicate the location of two maximum bed levels.

Table 2: Performance metric scores for the data preprocessing experiments and the original dataset,
tested on the test sample set. Lowest metric scores are indicated in bold.

Original
data

Sample
selection

Removal of
outliers

Coordinate
transformation

Wavelet
reconstruction

Consistent
time intervals

MAEb [m] 0.92 0.96 1.03 1.01 0.95 0.95
MAE [m] 0.30 0.31 0.27 0.26 0.28 0.28
RMSE [m] 0.41 0.44 0.34 0.34 0.35 0.35

All model experiments appear to largely reconstruct the input frame. However, the removal
of outliers (Figure 23e) resulted in more deviation of the input frame (Figure 23e) compared
to previous experiments (Figure 23c-d), visually resulting in a more accurate prediction of
the river bed patterns. This is also reflected in the MAE and RMSE metric scores, which
are reduced compared to the original data (Table 2). This is likely caused by the narrower
bed level range in the data normalisation for the removal of outliers. With outliers removed,
bed levels are scaled to values between 0 and 1 based on a range of -3.64 to 3.64m+NAP,
as opposed to the wider range in the original data of -10.00 to 3.64m+NAP. Differences
between the predicted and observed bed levels are therefore higher penalised in the loss
function. Noticeably, the maximum bed level error did increase from 0.92m to 1.03m with
the removal of outliers, whilst visually the location of the maximum bed level got closer to
the observation with the removal of outliers (Figure 23b-c and 23e).
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The coordinate transformation, wavelet reconstruction and consistent time interval experi-
ments (Figure 23h-j) show negligible visual changes compared to the removal of outliers. The
MAE and RMSE metric scores support this observation, as these remain relatively similar
between these experiments. However, the maximum bed level error does show quite a reduc-
tion from 1.03m to 0.95m for the wavelet reconstruction location. The predicted location of
the maximum bed level (Figure 23h-e) neither improved nor deteriorated.

Overall, the model trained on the wavelet reconstructed data is considered to perform the
best of all experiments. The model scores single best on the maximum bed level error,
whilst predicting the riverbed patterns relatively well. The wavelet reconstructed data was
therefore further used for the evaluation of the loss functions. The wavelet reconstructed data
includes the successive modifications by the sample selection, removal of outliers, coordinate
transformation and the wavelet reconstruction.

3.3 Loss function experiments

The original machine learning model by HKV applied the Mean Square Error loss func-
tion (LMSE) for training. The three tested loss functions are the Root Mean Square Error
(LRMSE), a combination of the MSE and Structural Similarity Index Measure (LMSE+SSIM)
and the Wasserstein loss (Lwass). The machine learning model was trained on each loss func-
tion separately. An example prediction of each trained model is provided in Figure 24. The
performance metric scores are summarised in Table 3.

The spread in the bed levels increased considerably with the implementation of the RMSE
loss and Wasserstein loss (Figure 24d and 24h). As the spread in bed levels increased, the
maximum bed level error reduced from 0.95m to 0.77 and 0.78m (Table 3). Between the two
loss functions, the RMSE loss resulted in a more accurate prediction of the bedform patterns.
The implementation of the RMSE loss showed a similar bedform pattern prediction as the
MSE loss, but with a larger spreading in the bed levels and a more accurate prediction on the
locations of the maximum bed levels (Figure 24d). The MAE and RMSE scores between the
MSE and RMSE loss remain similar. The Wasserstein loss resulted in a generic reconstruc-
tion of the second input frame, giving the worst RMSE and MAE metric scores among all
loss function experiments. Also, the location of the maximum bed level was visually captured
worst of all losses (Figure 24h).

The implementation of the SSIM loss visually shows little changes to the MSE loss. Contrasts
in the prediction are slightly more accentuated with the SSIM loss, and the maximum bed
level error has reduced from 0.95 to 0.90m.

Concluding, the implementation of the RMSE loss function resulted in the best model per-
formance. The bed level spread increased considerably, resulting in the lowest maximum bed
level error (0.77m) of all loss function experiments. Furthermore, the location of the maxi-
mum bed levels was visually captured best of all experiments, whilst bedform patterns were
also predicted relatively well. Therefore, the model including the wavelet reconstructed data
(Section 3.2) and the RMSE loss was used for comparison with the dune migration model.
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Figure 24: Example bed level prediction for the TrajGRU wavelet model trained on four loss
functions: (c) MSE, (d) RMSE, (e) MSE+SSIM and (h) the Wasserstein loss. (a) represents the
real-time bathymetry measurement, used as the second input frame for TrajGRU. Note that 80m
upstream of the input frame is excluded for visual inspection purposes. (b) represents the observed
bathymetry for the next time step. The red plus and red dot indicate the location of two maximum
bed levels.

Table 3: Performance metric scores of the TrajGRU machine learning model for the four loss
functions on the test sample set. The lowest metric scores are indicated in bold.

LMSE LRMSE LMSE+SSIM Lwass

MAEb [m] 0.95 0.77 0.90 0.78
MAE [m] 0.28 0.28 0.29 0.32
RMSE [m] 0.35 0.35 0.36 0.39
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3.4 Comparison dune migration model and machine learning

Here, the best performing machine learning model, using the wavelet reconstructed data
and the RMSE loss, is compared with the dune migration model for predicting bed levels
in the Waal River. As the machine learning model still provided highly blurred predictions,
a blown-up model prediction was added for comparison. This blown-up prediction is simi-
lar to the machine learning prediction, but with the bed level standard deviation manually
increased in the prediction to match the standard deviation in the bed level measurement
(input t).

Figure 25a and 25b illustrate an example prediction of both the machine learning model pre-
diction and the blown-up model prediction. The blown-up model prediction visually shows
a substantial improvement in the bed level prediction. Contrasts in the bed levels are more
accentuated and the maximum bed level error reduces from 0.77m to 0.47m (Table 4). Based
on Figures 25a-d, the locations of the maximum bed levels in the observations are relatively
well captured in the machine learning prediction, with a locational error of 25m.

Comparing the machine learning dune migration model predictions, the dune migration model
outperforms the machine learning model both visually and on the metric scores. Visually,
the dune migration model predicts the locations of the higher and lower bed levels more ac-
curately than the machine learning model (Figure 25c-d). Figure 25g does indicate relatively
large differences in predicted and observed bed levels, but these are more on a local scale
compared to the machine learning predictions (Figure 25e-f). The larger patches of over-
prediction in bed levels, observable in Figures 25e-f, are less recognised. The distribution in
bed level spread (Figure 25j) also follows the observed distribution better. The performance
metric scores support all the above observations, as all performance metrics score lowest for
the dune migration model (Table 4). Especially the maximum bed level error is substantially
smaller by the dune migration model predictions (0.30m) compared to the machine learning
predictions. Also, the location of the maximum bed levels was more accurately predicted
by the dune migration model, as the error in the location was 15m instead of 25m for the
machine learning predictions.
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Figure 25: Example bed level predictions by (a) the machine learning model, (b) the machine
learning model, with a manual increase in bed level spread, and (c) the dune migration model.
(d) shows the observed bed levels for the predicted time step. In (a-d), the red dot and red plus
indicate two maximum bed levels. (e-g) depict the bed level difference between the predictions and
the observation. (h-k) are the histograms showing the spread in bed levels.

Table 4: Performance metric scores for the machine learning model and the dune migration model
on the test sample set. The lowest metric scores are indicated in bold.

Machine learning
Machine learning

blown up
Dune migration

model
MAEb [m] 0.77 0.47 0.30
MAE [m] 0.28 0.33 0.26
RMSE [m] 0.35 0.41 0.34
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4 Discussion

This chapter discusses the dune migration model, the machine learning model, the practical
implications and research limitations. First, the advantages and disadvantages of the dune
migration model and the machine learning model are discussed upon. For the machine
learning model, also a comparison is done between the loss function experiment results of
this study and studies that similarly evaluated the effect of these loss functions. The practical
implications and research limitations follow upon this.

4.1 Dune migration model

A data-driven dune migration model was developed, which predicts the horizontal displace-
ment of the river bed via the raster shifting method described in Section 2.2. The model
can provide a good prediction of the bedform patterns and the locations of the maximum
bed levels. One of the main advantages of this model is that it can easily be adapted for
applications with different prediction lead times and can easily be applied for larger sections
of the Waal River than currently considered.

A limitation regarding this model, is that this model only predicts the horizontal displacement
of bed features. The vertical changes in the maximum bed level are not included, which are of
primary interest to dredging companies and Rijkswaterstaat. Also, the empirical relation for
the dune celerities (equation 2) is based on a 16.5km river section of the Waal River upstream
of Tiel. The study area of this study is located within this section. However, for river sections
further downstream or upstream, the empirical relation might not be as accurate anymore.
Lastly, raster shifting currently shifts stationary bed features, whilst these remain stationary
in place. For example, a stationary bed feature was found in the study area at coordinates
[X=166160m, Y=434720m] or [rkm=907.25km, n=110m]. This bed feature would be shifted
in place with raster shifting, whilst the observation indicates no horizontal displacement (e.g.
Figure 22).

4.2 Machine learning model

The second data-driven approach applied in this study, was the machine learning model
TrajGRU. An advantage to this model compared to the dune migration model is that the
machine learning model predicts both the horizontal and vertical displacement of the bed
levels. However, the maximum bed level error remained relatively large (0.47m) and model
predictions showed little accuracy in capturing the locations of the overall higher and lower
bed level patches. Regarding the model structure itself, the machine learning model is rel-
atively little flexible. The prediction window of the machine learning model is tied to the
time intervals in the data and the model requires two sequential bed level measurements. If
either of these measurements is missing as input, the model cannot provide a prediction.

4.2.1 Loss function experiments

The adaptation of loss functions showed to have a larger effect upon the model results than
the data preprocessing steps. Primarily the spreading in the bed level prediction was in-
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creased more in the loss function experiments than in the data preprocessing experiments.
Other studies have evaluated the effect of these loss functions in the TrajGRU machine learn-
ing model as well, but then for the precipitation forecasting application (Dekker et al., 2022;
van der Kooij et al., 2021). Below, the findings of this research regarding loss functions are
compared with those of the aforementioned studies.

The implementation of the Root Mean Square Error (RMSE) loss function increased the bed
level prediction accuracy most of all adopted loss functions. The RMSE loss resulted in a
similar bedform pattern prediction as for the Mean Square Error (MSE) loss, but with a sub-
stantially larger spread in bed levels. Consequently, the maximum bed level error decreased
from 0.95m to 0.77m. These improvements upon the maximum bed level error contradict
the findings by van der Kooij et al. (2021), who observed that while the RMSE loss function
improved the estimation of low rainfall intensities, it led to further underestimation of peak
rainfall intensities. However, in this study, both the overall bed level errors and maximum
bed level errors were reduced.

The implementation of the Structural Similarity Index Measure (SSIM) improved model re-
sults slightly, as the maximum bed level error decreased from 0.95m to 0.90m and contrasts
in the visual inspection were slightly more accentuated. This is in accordance with the ob-
servations by Dekker et al. (2022) and Tran and Song (2019). Additionally, Ma et al. (2022)
mentioned that the SSIM implementation is designed for the overall clarity of the image,
which just plays an auxiliary role. The MSE loss generally plays a leading role in the losses,
which is also seen back in the results of this study as model results change very slightly with
the implementation of the SSIM.

The Wasserstein loss implementation resulted in a general reconstruction of the second input
frame for TrajGRU, resulting in worse model performance compared to the use of the original
mean square error loss. This is in accordance with the study by Dekker et al. (2022), which
also showed the worse performance of the Wasserstein loss implementation in TrajGRU for
precipitation forecasting.

4.3 Practical implications

This study demonstrates that the machine learning model TrajGRU is far from applicable for
implementation in short-term decision-making processes for dredging. The model predictions
remain highly blurred, resulting in a high maximum bed level error of 0.77m. Even with a
manual increase in the spread of the bed level prediction, the machine learning predictions
kept a relatively large maximum bed level error of 0.47m. Also, the model structure is little
flexible to iterate upon. Therefore, further improvements on the TrajGRU machine learning
model are unlikely to yield a functional model for dredging purposes.

The dune migration model provides a more promising approach for predicting bed levels in
the Waal River. The bedform patterns were better captured and the maximum bed level
error was substantially smaller (MAEB = 0.30m). Also, this model can more easily be
adapted for applications with differentiating prediction lead times and can easily be applied
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for larger sections of the Waal River. However, this model only predicts the horizontal
displacement of bed features. The vertical changes in the maximum bed level are not included,
which is essential for identifying future bottlenecks for navigation. To include the vertical
displacement as well, a combination of the developed dune migration model and a machine
learning or numerical modelling approach could be sought. The dune migration model can
give a preliminary prediction on the location of the bedforms, whilst the other approach
predicts the change in vertical displacements. For example, the 2DV numerical model of
Paarlberg et al. (2009) captures the growth and decay of the highest dunes well (Lokin
et al., 2024). The model generally tends to underestimate the horizontal displacement of
river dunes, but this can be overcome by implementing the raster shifting method of the
dune migration model. Thus, both model limitations of the developed dune migration model
and the model by Paarlberg et al. (2009) could be overcome by seeking a relation between
the two. However, the model by Paarlberg et al. (2009) provides a 2DV prediction of the
bed levels, whilst raster shifting can provide a 3D prediction. By combining the two, the
three-dimensionality in the raster shifting prediction would therefore be lost. Other than a
combination with a numerical model, a machine learning model could be combined with raster
shifting. A machine learning model could be trained on predicting the vertical displacements
based on relevant features such as discharge, river curvature and grain size. Note that this
machine learning model could either be a simple regression analysis, coupling the discharge
and dune height variations, or a complicated machine learning algorithm like TrajGRU. The
combination with a machine learning algorithm could ensure a 3D prediction, with no loss
of data. In conclusion, combining the raster shifting method with either a numerical model
or machine learning model could result in a functional model for dredging purposes, capable
of both predicting the maximum bed level and the spatial configuration of the bedforms
accurately.

4.4 Research limitations

Four research limitations have been identified and are discussed here. Firstly, the raster shift-
ing method of the dune migration model was applied on a measured discharge time series
to derive the shifting distance. In reality, the predicted daily discharges will be provided,
introducing relatively high uncertainties, thereby impacting the accuracy of the raster shift-
ing distance. Consequently, the dune migration model predictions might perform less well in
practice than currently shown in this research.

Regarding the machine learning model application, the main limitation is the limited avail-
ability of data. For example, Singh et al. (2017) and Tian et al. (2019) applied 7000 or more
training samples for training the TrajGRU machine learning model, whilst this study applied
only 162 to 226 training samples. By increasing the dataset, machine learning performance
generally improves (e.g. B. Liu et al., 2023).

Also, interventions in the data preprocessing experiments were accumulated under the as-
sumption that each intervention would improve the prediction accuracy of the TrajGRU
machine learning model. However, the sample selection intervention slightly reduced the
model performance compared to the use of the original data. This is likely due to the de-
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creased number of training samples in the sample selection. Skipping the sample selection
intervention for the resulting wavelet model could have resulted in a slightly better perform-
ing machine learning model.

Furthermore, the current study area was chosen such that it represents a simple situation to
test the suitability of the data-driven approaches. It is located in a section where no dredg-
ing and ploughing activities occur. However, in practice, the data-driven approaches would
mainly be relevant to areas requiring frequent dredging and ploughing. In such locations,
the bed level data can contain disturbances in the bed due to dredging. For the machine
learning model, this can complicate the learning of bed developments, possibly decreasing
the model performance further. The dune migration model is relatively little sensitive to
dredging activities. The prediction is only influenced if the original measurement was iter-
ated by dredging or ploughing.

Lastly, the locational error in the maximum bed level indicated a relatively low error of 25m
for the machine learning model predictions. However, the locational error considered the
80x80m regions as shown in Appendix C, whilst the machine learning predictions predicted
extra patches of high bed levels outside the range of these 80x80m regions. These patches were
therefore not included in the evaluation of the locational error, meaning that the locational
error would be larger for the machine learning model than currently stated in this thesis. For
the dune migration model, most high bed levels in the predictions are captured within the
80x80m regions. The locational error of 15m would therefore remain the same.
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5 Conclusion

This research aimed to obtain a two-weekly bed level prediction in 3D for the Waal River by
developing and comparing two data-driven approaches: a dune migration model and machine
learning. Below, the findings of this research are presented for each research question, with
the main conclusion of this research summarised at the end.

RQ1: What is the bed level prediction accuracy of the dune migration model?
The dune migration model predicts the bed levels by applying raster shifting, for which, a
bed level measurement is shifted downstream along the channel axis based on empirically
derived dune celerities. The bed level predictions visually showed relatively accurate pre-
dictions on the bedform plan. The location of maximum bed levels and overall higher and
lower bed level patches were accurately captured. The point-wise metrics showed errors of
MAE=0.26m and RMSE=0.34m, and the maximum bed level error (MAEb) was 0.30m.

RQ2: How can data preprocessing be implemented to improve the bed level prediction accuracy
of the TrajGRU machine learning model for the Waal River?
Five data preprocessing experiments were conducted to improve the machine learning model
performance: sample selection, removal of outliers, coordinate transformation, wavelet recon-
struction and consistency in time intervals. Each experiment builds upon the interventions
introduced in the preceding one. The model trained on the wavelet reconstructed data, and
thus also sample selection, outlier removal and coordinate transformation, performed the
best of all experiments. The bedform patterns were better captured compared to the model
trained on the original data. However, model results remained highly blurred with a slight
increase in the maximum bed level error of 0.92 to 0.95m.

RQ3: How can the loss function be adapted to improve the bed level prediction accuracy of
the TrajGRU machine learning model for the Waal River?
Three loss function adaptations were tested to improve the machine learning model perfor-
mance. The tested loss functions were the Root Mean Square Error (RMSE), a combination
of the Mean Square Error (MSE) and the structural similarity, and the Wasserstein loss.
The original model applied the MSE loss function only. Of all experiments, the RMSE loss
improved model predictions the most. The bed level spread increased considerably, reducing
the maximum bed level from 0.95m to 0.77m, and the location of the maximum bed levels
was captured best of all experiments. Still, the model produced highly blurred results.

RQ4: How well does the improved TrajGRU machine learning model perform compared to
the dune migration model for predicting bed levels for the Waal River?
The best performing machine learning model, using the wavelet constructed data and the
RMSE loss function, was tested against the dune migration model. It resulted that the dune
migration model performed better on both predicting the bedform patterns and the maximum
bed levels. The maximum bed level error was substantially smaller for the dune migration
model (0.30m) than for the machine learning model (0.77m), with a locational error of only
15m instead of 25m. Even with extra spreading manually induced in the machine learning
bed level prediction, the dune migration model outperformed the machine learning model.
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Summarising, the potential of a complicated machine learning algorithm like TrajGRU is
small for predicting bed levels in the Waal River. The dune migration model proves a more
promising approach for predicting bed levels in the Waal River. Future research could focus
more on the dune migration model and could combine its method with an approach suitable
for predicting vertical bed level changes as well.

6 Recommendations

In this section, recommendations are given on the outcomes of this research. The two main
recommendations of this research are to delve deeper into the dune migration model and to
have a consultation with dredging companies and Rijkswaterstaat on their requested model
requirements for bed level predictions. Also, recommendations are given upon future machine
learning studies focussing on bed level predictions.

6.1 Dune migration model

Four recommendations for future research on the dune migration model were identified.
Firstly, it is recommended to search for a combination between the raster shifting method
of the dune migration model and a numerical or machine learning approach for predicting
bed levels in rivers. The vertical changes in the maximum bed level are not included in the
current raster shifting methodology, which is essential for identifying future bottlenecks for
dredging. Therefore, raster shifting could be used to predict the horizontal displacement of
bed features, whilst the numerical or machine learning approach could focus on predicting
the vertical displacement. As discussed in Section 4.3, the 2DV numerical model of Paarl-
berg et al. (2009) could be suitable to combine with raster shifting, taking into account the
limitation of the prediction becoming in 2DV rather than 3D. Regarding a machine learning
approach for vertical bed level developments, a simple regression method could be used, cou-
pling the discharge and dune height variations, or a complicated machine learning algorithm
like TrajGRU. An advantage of the machine learning approach to the numerical approach is
that the three-dimensionality in the bed level prediction can be maintained.

Secondly, future research could focus on the effect of the uncertainty in discharge predictions
for the dune migration model predictions. As mentioned in Section 4.4, this study applied
the measured discharge time series to obtain the shifting distance. However, in practice, the
predicted discharge will be provided, introducing more uncertainties in the shifting distance,
impacting the model prediction.

Thirdly, it would be recommended to include a method for filtering stationary bed features
before shifting the raster. These stationary bed features are currently shifted in location,
whilst these bed features remain stationary in place.

Lastly, the empirical relation for deriving the dune celerities from the river discharge (equation
2) is based on measurements of a 16.5km river section of the Waal River upstream of Tiel
(Lokin et al., 2022). For river sections outside of this range, it would be recommended to
test the accuracy of the dune migration model with the current coefficients of equation 2 and
recalibrate these coefficients if the model predictions do not accurately capture the horizontal
displacement of the river bed.
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6.2 Consultation with key users

It is recommended to have a consultation with the key users of the bed level prediction model.
The understanding of the model requirements by the dredging companies and Rijkswaterstaat
was limited in this study. By conducting a consultation with the key users, a better under-
standing can be obtained of e.g. the required prediction lead time and desired prediction
accuracy.

6.3 Future machine learning approaches for predicting bed levels

During this study, five main recommendations were derived for future studies applying similar
machine learning models for bed level predictions. Firstly, it is recommended to increase the
dataset by finding similar river sections and combining these datasets to create extra training
samples. By increasing the dataset, machine learning performance generally improves (e.g. B.
Liu et al., 2023). Before combining datasets of separate river sections, careful considerations
should be taken on similarities based on e.g. river curvature, groyne locations and shipping
intensities. An other method that could be considered to obtain more training data is by
considering a 2DV machine learning model for predicting bed levels in the Waal River. More
training data can be generated by providing several longitudinal profiles of the Waal River
as input to the model. However, this removes the three-dimensional dynamics of river dunes
and can result in a loss of data in the prediction as the model does not capture the entire
riverbed. Lastly, CoVadem data could be used, which contains a large bathymetry dataset of
daily measurements of the Waal River bathymetry in 3D for the past several years. However,
the uncertainty in the CoVadem bed level measurements has shown to be substantially high
(van Middendorp, 2020). This uncertainty should be reconsidered before applying such data
for machine learning applications.

Secondly, it is recommended to decrease the grid resolution from 1x1m to 10x10m or larger.
A lower grid resolution of 10x10m or larger could also suffice to capture both the bed fea-
ture dynamics like river dunes and maximum bed levels. This reduces the number of model
weights in the model, as the number of grid cells in the model domain reduces. Therefore,
model predictions will likely improve for the same amount of training data.

Thirdly, it is recommended to focus more towards a correct choice in the loss function, rather
than to change data preprocessing steps. This study has shown that the choice of loss func-
tion improved model results more than data preprocessing. Two loss functions that have not
been tested in this research, but also show potential for improving image predictions are the
balanced loss function by Shi et al. (2017) and the use of adversarial losses. Especially, the
use of adversarial losses has shown much potential for providing accurate predictions (Jing
et al., 2019; Singh et al., 2017; Tian et al., 2019). However, these types of loss functions
require a thousand or more training samples before they provide good model results (Karras
et al., 2020; B. Liu et al., 2023). Thus, the bed level dataset should increase before adver-
sarial losses become attractive to apply.

33



6.3 Future machine learning approaches for predicting bed levels6 RECOMMENDATIONS

Furthermore, it would be recommended to provide extra data on relevant features/variables
to the machine learning model. This could enhance model performance, as more information
about the system is given. For example, the discharge could be added to the model as this
highly influences river dune dynamics (Lokin et al., 2022). However, it should be noted
that the machine learning model applied in this study is not suitable to include such extra
features. The model accepts raster inputs only and generally looks at spatial structures and
relations, whilst features such as discharge are spatially invariant (Shi et al., 2017). This was
also tested by implementing the discharge as extra feature, which resulted in worse model
performance (Appendix D). Nevertheless, alternative machine learning approaches, which
are more suitable for implementing features such as discharge, may improve in their results.

34



REFERENCES REFERENCES

References

Beygipoor, G., Shafai Bajestan, M., & Nazari, S. (2013). The effects of submerged vane
angle on sediment entry to an intake from a 90 degree converged bend. Advances in
Environmental Biology, 7 (9), 2283–2292. https://www.researchgate.net/publication/
288109917

Bosboom, J. (2019). Quantifying the quality of coastal morphological predictions [Doctoral
dissertation, Delft University of Technology]. https://doi.org/10.4233/uuid:e4dc2dfc-
6c9c-4849-8aa9-befa3001e2a3

Bradley, R. W., & Venditti, J. G. (2021). Mechanisms of Dune Growth and Decay in Rivers.
Geophysical Research Letters, 48 (20). https://doi.org/10.1029/2021GL094572

Buitink, J., Tsiokanos, A., Geertsema, T., ten Velden, C., Bouaziz, L., & Sperna Weiland, F.
(2023). Implications of the KNMI’23 climate scenarios for the discharge of the Rhine
and Meuse (tech. rep.). Deltares.

Cisneros, J., Best, J., van Dijk, T., Almeida, R. P. d., Amsler, M., Boldt, J., Freitas, B.,
Galeazzi, C., Huizinga, R., Ianniruberto, M., Ma, H., Nittrouer, J. A., Oberg, K.,
Orfeo, O., Parsons, D., Szupiany, R., Wang, P., & Zhang, Y. (2020). Dunes in the
world’s big rivers are characterized by low-angle lee-side slopes and a complex shape.
Nature Geoscience, 13 (2), 156–162. https://doi.org/10.1038/s41561-019-0511-7

Dekker, D. D., Schleiss, M. A., Fioranelli, F., Taormina, R., Basu, S., & van Hoek, M. (2022,
July). Perceptual losses in precipitation nowcasting (MSc Thesis). Delft University of
Technology. http://resolver.tudelft.nl/uuid:5e61e2a7-bf04-41cd-a66a-68d1ceeb3c99

de Ruijsscher, T. V., Naqshband, S., & Hoitink, A. J. F. (2020). Effect of non-migrating bars
on dune dynamics in a lowland river. Earth Surface Processes and Landforms, 45 (6),
1361–1375. https://doi.org/10.1002/esp.4807

Dietrich, W. E., & Dungan Smith, J. (1984). Bed Load Transport in a River Meander. Water
Resources Research, 20 (10), 1355–1380.

Giri, S., & Shimizu, Y. (2006). Numerical computation of sand dune migration with free sur-
face flow.Water Resources Research, 42 (10). https://doi.org/10.1029/2005WR004588

Goll, A., & Kopmann, R. (2012). Dune simulation with TELEMAC-3D and SISYPHE: A
parameter study. (tech. rep.). Federal Waterways Engineering and Research Institute.
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Learning for Time Series Forecasting: A Survey. Big Data, 9 (1), 3–21. https://doi.
org/10.1089/big.2020.0159

Tran, Q. K., & Song, S. K. (2019). Computer vision in precipitation nowcasting: Apply-
ing image quality assessment metrics for training deep neural networks. Atmosphere,
10 (5). https://doi.org/10.3390/atmos10050244

van der Kooij, E., Schleiss, M. A., Fioranelli, F., Taormina, R., Lugt, D., & van Hoek,
M. (2021, July). Nowcasting heavy precipitation in the Netherlands: a deep learning
approach (MSc Thesis). Delft University of Technology. http://resolver.tudelft.nl/
uuid:536b1a77-625c-4476-9354-4d5b259a1080

van der Mark, C. F., Blom, A., & Hulscher, S. J. M. H. (2008). Quantification of variability
in bedform geometry. Journal of Geophysical Research: Earth Surface, 113 (3). https:
//doi.org/10.1029/2007JF000940

38



REFERENCES REFERENCES

van Denderen, R. P., Kater, E., Jans, L. H., & Schielen, R. M. (2022). Disentangling changes
in the river bed profile: The morphological impact of river interventions in a managed
river. Geomorphology, 408. https://doi.org/10.1016/j.geomorph.2022.108244

van Dijk, T. A. G. P., van der Mark, C. F., Doornenbal, P. J., Menninga, P. J., Keppel, J. F.,
Rodriguez Aguilera, D., Hopman, V., & Erkens, G. (2012). Onderzoek Meetstrategie
en Bodemdynamiek (tech. rep.). Deltares.

van Duin, O. J. M., Hulscher, S. J. M. H., & Ribberink, J. S. (2021). Modelling Regime
Changes of Dunes to Upper-Stage Plane Bed in Flumes and in Rivers. Applied Sci-
ences, 11 (23). https://doi.org/10.3390/app112311212

van Middendorp, D. C. (2020). Using CoVadem to increase the value of Rijkswaterstaat’s
least sounded depth in the river Waal (MSc Thesis). University of Twente.

van Rijn, L. C. (1984). Sediment Transport, Part III: Bed forms and Alluvial Roughness.
Journal of Hydraulic Engineering, 110 (12), 1733–1754.

Vinke, F., van Koningsveld, M., van Dorsser, C., Baart, F., van Gelder, P., & Vellinga, T.
(2022). Cascading effects of sustained low water on inland shipping. Climate Risk
Management, 35. https://doi.org/10.1016/j.crm.2022.100400

Wang, Y., Smola, A., Maddix, D. C., Gasthaus, J., Foster, D., & Januschowski, T. (2019).
Deep Factors for Forecasting. In C. Kamalika & R. Salakhutdinov (Eds.), Proceedings
of the 36th international conference on machine learning (pp. 6607–6617). PMLR.

Wang, Z., Simoncelli, E. P., & Bovik, A. C. (2003). Multi-Scale Structural Similarity for Image
Quality Assessment. The Thirty-Seventh Asilomar Conference on Signals, Systems &
Computers, 2003, 1398–1402. https://doi.org/10.1109/ACSSC.2003.1292216

Wilbers, A. W. E., & ten Brinke, W. B. M. (2003). The response of subaqueous dunes to
floods in sand and gravel bed reaches of the Dutch Rhine. Sedimentology, 50 (6), 1013–
1034. https://doi.org/10.1046/j.1365-3091.2003.00585.x

Zeng, Q., Li, H., Zhang, T., He, J., Zhang, F., Wang, H., Qing, Z., Yu, Q., & Shen, B. (2022).
Prediction of Radar Echo Space-Time Sequence Based on Improving TrajGRU Deep-
Learning Model. Remote Sensing, 14 (19). https://doi.org/10.3390/rs14195042

Zhang, T., Liew, S. Y., Ng, H. F., Qin, D., Lee, H. C., Zhao, H., & Wang, D. (2023).
GraphAT Net: A Deep Learning Approach Combining TrajGRU and Graph Attention
for Accurate Cumulonimbus Distribution Prediction. Atmosphere, 14 (10). https://doi.
org/10.3390/atmos14101506

Zomer, J. Y., Naqshband, S., Vermeulen, B., & Hoitink, A. J. F. (2021). Rapidly Migrating
Secondary Bedforms Can Persist on the Lee of Slowly Migrating Primary River Dunes.
Journal of Geophysical Research: Earth Surface, 126 (3). https://doi.org/10.1029/
2020JF005918

39



A TRAJGRU MODEL STRUCTURE

Appendices

A TrajGRU model structure

The TrajGRU model structure, for predicting bed levels, combines two deep learning tech-
niques, a convolutional neural network, and a recurrent neural network. Convolutional Neural
Networks (CNN) are designed to extract local features from image datasets, which are in-
variant over spatial dimensions (features can be recognised regardless of their position in the
input) (Mehta et al., 2019; Torres et al., 2021). Predefined filters are moved across the image
and the recognition of the filters is quantified and stored in a convolution matrix. This matrix
is reduced in dimension via ’max pooling’, which simplifies and summarizes the information
extracted by the convolutional layers. With max pooling, the convolution matrix is split into
smaller regions and for each region, the maximum value is outputted. Features such as river
dunes can be extracted by the CNN, which are fed to the recurrent neural network to provide
predictions for. A schematisation of a CNN is depicted in Figure 26.

Figure 26: Schematisation of a convolutional neural network (Torres et al., 2021)

Recurrent Neural Networks (RNN) have specifically been designed to deal with sequential
data such as time series for forecasting (Torres et al., 2021), and have been widely used in
forecasting applications (Lim et al., 2020; Salinas et al., 2019; Y. Wang et al., 2019). At
their core, RNN cells have an internal memory state, containing a compact summary of past
information. This memory state is continually updated with new observations at each time
step (Lim & Zohren, 2021). Recurrent neural networks therefore show the ability to capture
temporal dependencies well (Torres et al., 2021). A schematisation of the RNN structure, as
applied in the TrajGRU model by HKV, is shown in Figure 27.

Figure 27: Schematisation of the recurrent neural network in the TrajGRU by HKV. x depicts the
input frame and x̂ the predicted frame.

40



A TRAJGRU MODEL STRUCTURE

Recurrent neural networks generally have problems regarding their infinite lookback window,
causing a vanishing gradient to find their optimal solution. Therefore, a Gated Recurrent
Unit (GRU) is implemented. A GRU controls the information flow between input and out-
put via a gating mechanism. It consists of a reset gate, which controls what information
from the previous inputs should be kept or disregarded, and an update gate which controls
what information from the new input should be used. The reset gate controls the short-term
memory of the model, and the update gate the long-term memory (van der Kooij et al., 2021).

The model uses an encoder-forecaster structure, where downsampling of the input data is
performed in the encoder, and upsampling in the forecaster. A schematisation of the model
structure is depicted in Figure 28 and Table 5.

Figure 28: Figure of overview TrajGRU model structure. R: represents the resolution of the matri-
ces, Ch: represent the number of matrices (channels). e denotes the encoder and f the forecaster.
conv is a convolutional layer including pooling, and rnn a recurrent neural network cell. Please refer
to Table 5 for more information on the figure.
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A TRAJGRU MODEL STRUCTURE

Table 5: Encoder forecaster structure of the employed TrajGRU model

Kernel Stride Padding
Channels
In/Out

Res In Res Out Type

econv1 4x4 2x2 1x1 2/16 256x256 128x128 Convolution
ernn1 3x3 1x1 1x1 16/32 128x128 128x128 RNN
econv2 4x4 2x2 1x1 32/32 128x128 64x64 Convolution
ernn2 3x3 1x1 1x1 32/64 64x64 64x64 RNN
frnn1 3x3 1x1 1x1 64/32 64x64 64x64 RNN
fup1 - - - 32/32 64x64 128x128 Upsample
fconv1 3x3 1x1 1x1 32/32 128x128 128x128 Convolution
frnn2 3x3 1x1 1x1 32/32 128x128 128x128 RNN
fup2 - - - 32/32 128x128 256x256 Upsample
fconv2 3x3 1x1 1x1 32/16 256x256 256x256 Convolution
fconv3 3x3 1x1 1x1 16/8 256x256 256x256 Convolution
fconv4 1x1 1x1 0x0 8/1 256x256 256x256 Convolution

A.1 Model hyperparameters

Hyperparameters are parameters that dictate the learning process. They are set before
training the model and remain constant during the training of the model. In Table 6, hyper-
parameter values of the TrajGRU model are summarised. The batch size of 2 indicates that
each batch contains two samples. An epoch refers to the one entire passing of training data
through the machine learning algorithm. Generally, model training of TrajGRU ends after
2-8 epochs, due to stopping the validation criterion (see Section 2.3.3). The learning rate
controls the rate of learning or speed at which the model learns. It regulates the amount of
allocated error with which the model’s weights are updated each time they are updated. A
learning rate of 0.0001 is commonly used for TrajGRU applications (Shi et al., 2017; Tran &
Song, 2019; Zeng et al., 2022). Lastly, a constant random seed was set for all experiments.
The seed determines the initial set of model weights in the neural network. By keeping this
constant between experiments, the difference between experiments is visible without the in-
terference of randomness. The model is implemented using PyTorch and is trained on an 8
GB Nvidia GeForce RT2080 GPU.

Table 6: The hyperparameter values used in this study

Parameter value
Batch size 2

Maximum epochs 15
Learning rate 0.0001

Seed 3547236857
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B OUTLIER LOCATIONS IN THE BED LEVEL DATA

B Outlier locations in the bed level data

Figure 29: The locations of the identified outliers in the multibeam echosounder bed level measure-
ments, based on the threshold deviation of 3m from the median bed (see Section 2.4.2). Plotted in
the RD new coordinate system.

Figure 30: The locations of missing data in the multibeam echosounder bed level measurements.
Plotted in the RD new coordinate system.
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C Example predictions of the two data-driven approaches

Figure 31: Example predictions by (a) the machine learning model using the wavelet reconstructed data
and RMSE loss function, (b) the machine learning model with an extrapolation in the bed levels and (c)
the dune migration model. (d) depicts the observed bed levels. The red dot and red plus indicate the
location of the maximum bed levels in the black dotted regions.



D DISCHARGE FEATURE IMPLEMENTATION

D Discharge feature implementation

To see if the TrajGRU machine learning model picks up the relation between relevant features
and bathymetry developments, a two-weekly averaged discharge was added as feature into
the model. This discharge represents the mean discharge expected for the next two weeks
and was obtained from actual discharge measurements. In practice, the predicted discharge
should be provided, which would introduce more uncertainties in the bed level prediction.
The two-weekly averaged discharge was implemented as an extra 256x256 raster frame con-
taining a spatially constant discharge value.

Figure 32 depicts a prediction by the TrajGRU model with and without discharge imple-
mentation. The implementation of discharge shows little visual changes compared to the
TrajGRU model without discharge implementation. Bedforms do not change shapes and
model predictions are further blurred, with the maximum bed level error increasing from
0.77m to 0.86m (Table 7). Thus, including extra features into the TrajGRU model does not
show potential to further improve the bed level prediction accuracy.

Figure 32: Example bed level prediction of (a) the TrajGRU machine learning model, using the
wavelet reconstructed data and RMSE loss function and (b) the same model, but with the discharge,
Q, implemented as extra feature. (c) depicts the observed bed level.

Table 7: Performance metric scores for the TrajGRU machine learning model with and without
discharge implementation

TrajGRU
TrajGRU

(+ discharge)
MAE [m] 0.77 0.86
MAE [m] 0.28 0.29
RMSE [m] 0.35 0.35
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Short-term bed level predictions for the Waal River: 

a machine learning approach

Problem context Machine learning model (TrajGRU)

• 2 input bathymetry frames 

• 256x256m

• Δt = 14days

• Predicts bathymetry 14 days ahead

Objective

“The objective is to improve the accuracy of the TrajGRU bed level predictions for the Waal River”

Method Results

Discussion 

• Raster shifting VS machine learning

• Machine learning technology is showing some potential in 

predicting bed levels and progress should be made for practical 

application. Is more data needed? Or a different modelling 

approach?

• Possible further iterations TrajGRU:

• Increase raster size (currently 1x1m)

• Further down- and upsampling within model structure

• Include relevant features (discharge, ship movements etc.)

• Remains highly 

smoothed

• Few observable 

changes between 

experiments

• Largely 

reconstructs 

input frame

• Few bedform 

characteristics 

are captured
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Data preprocessing:

(1.1) Selection data based on discharge 

(Q<2000m3/s) 

(1.2) Outlier removal

(1.3) Coordinate transformation

(1.4) Removal of bedform noise (wavelet)

(1.5) Raster shifting

Loss function adaptation (to be continued):

(2.1) RMSE

(2.2) MSE + SSIM

(2.3) Wasserstein loss

• Extensive dredging is taking place in the Waal River

• More extreme low-water periods are expected

• Requires more frequent dredging → demand for efficient 

dredging strategies.

• Current method:

• Real-time data on bed levels

• If bed levels exceed the dredging reference

level → dredging required

• Improvement:

• Short-term bed level prediction

• Machine learning - TrajGRU
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