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Abstract—Mission-critical systems are of vi-
tal importance and their failure may result
in catastrophic outcomes. Therefore, applying
cloud-native technologies such as container or-
chestration to support them is no trivial task;
even more so when the environment greatly
differs: while usually cloud-native focuses on a
geographically disperse scenario, with servers
hosted in distant data-centres, and thousands of
clients, the mission-critical systems at hand are
restricted to only 2 Availability Zones (AZ), as
exemplified by mission-critical systems in the
naval domain. Specifically, when AZs are lim-
ited, the commonly used consensus protocols of
the cluster state store of container orchestrators
fail to address the requirements of such vital
systems: if one node fails, the cluster can never
achieve consensus and no further changes can
be made on its state.

This thesis considers a solution to the
problem by the use of a publish-subscribe
database. A benchmark comprised of four
metrics, namely latency, throughput, consis-
tency and partition tolerance, is described. In
a prototype system, results are gathered and
analysed by themselves and in comparison with
proven cluster state stores (i.e. etcd and rela-
tional databases, specifically PostgreSQL). The
final results indicate that a pub-sub data store
should be capable of addressing the needs of
cluster state stores for mission-critical systems,
thereby opening a new avenue of research not
thoroughly explored before.

Index Terms—Distributed systems, dis-
tributed databases, container orchestration,
publish-subscribe, cluster state store.

I. INTRODUCTION

Failure in mission-critical systems may re-
sult in catastrophic outcomes: destruction of
property or even the loss of lives. Take, for
instance, the case of Ariane 5, in which the
failure of its flight control system resulted
in the self destruction of a rocket merely 40
seconds after take-off, causing the loss of ap-
proximately 370 million USD [1]. Although
this example is one of the most infamous

ones, it is not an isolated accident, and others
have succeeded it, like the 2019 crash of
the Israeli Beresheet, which sadly ended up
crashing against the moon due to a reboot
induced by the failure of one of its two
redundant accelerometers [2]. Despite the two
mentioned cases being limited to spacecraft
errors, mission-critical systems are present in
many other areas, such as the naval domain.

Thales Nederland is a company that devel-
ops naval mission-critical systems as part of
its core business. Thales considers that the use
of cloud-native technologies can greatly ben-
efit its Combat Management Systems (CMS),
particularly the use of containerisation, one of
the foundational pillars of these technologies
[3]. However, failures in such system could
easily result in tragedy, and it is a fact that the
usual cloud-native environment greatly differs
from the naval one. Cloud-native is related
to a scenario in which thousands of clients
access a service, usually located in multiple,
geographically-distributed servers, as noted in
Gannon et al. [4]. Furthermore, these servers
are often not hosted in-house, but at a cloud
service provider’s servers (such as Amazon,
Google or Microsoft) [4]. In Thales’ case, due
to strict security reasons, servers need to be
installed on-premise (i.e. on the vessel itself).
Therefore, spatial limitations exist that re-
strict the number of Availability Zones (AZs).
Where in usual container orchestration 3 AZs
exist, there are only 2 in the most common
naval scenario, in the form of two separate
server rooms equipped with several racks and
redundant mechanisms to protect the mission-
critical systems from failure. Nevertheless,
this is not the only difference: while in typi-
cal cloud-native situations thousands of geo-
graphically distributed clients need to access
the system, in the naval domain that number
is much lower; in fact, users are limited to
the officers using the Multifuctional Operator
Consoles (MOCs) located in the ship’s Com-
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bat Information Centre.

A. Problem Statement

As aforementioned, the differences be-
tween the usual cloud-native environment and
that of a limited AZs domain (e.g. naval do-
main) are many. Issues arise when only 2 AZs
exist. In order to understand the problem at
hand, it is necessary to talk about Kubernetes
(K8s); originally developed by Google and
maintained by the CNCF as an open source
project, Kubernetes is the most widely used
container orchestrator [5] and regarded as the
most mature. However, K8s can only use the
Key-Value Store (KVS) etcd as its cluster
state store1. etcd guarantees strong consis-
tency by using the Raft consensus algorithm:
in order to write into the store, be it a change
of value or to introduce or delete a key, a quo-
rum among etcd nodes needs to be reached.
Considering any cluster with n nodes, quorum
is achieved with a minimum of ⌊n/2⌋+1 node
votes in favour [6]. This means that to achieve
fault tolerance of one node, a minimum of
three nodes are needed. Then, if only 2 AZs
exist (n = 2), and one was to fail, the
minimum quorum of ⌊2/2⌋+1 could never be
reached. Effectively, that means that even if
one node is still alive, the etcd cluster cannot
log any writes, thus making the state of the
K8s cluster unchangeable. The use of vanilla
K8s in limited AZs domains is not a suitable
solution, even less when robustness is of the
essence, as is the case of the CMS example:
if a projectile where to hit a server room, the
whole CMS could be rendered inoperative,
leaving the ship defenceless.

1Database in which K8s stores the state of the cluster.
Any change in the state, such as the creation of a node
or the allocation of resources, needs to be logged into
the cluster state store for it to take effect. Refer to the
appendix for a diagram depicting etcd in a default K8s
cluster.

B. Consensus Protocols

As explained previously in subsection I-A,
the problem lies on the Raft algorithm etcd
uses. These sort of algorithms, usually known
as consensus protocols, are of vital impor-
tance to ensure consistency in distributed
databases (DB), be they a KVS, like etcd, or
even for a much simpler state machine.

As detailed in Mullender [7], consensus
protocols first appeared to keep consistency
for distributed state machines. Afterwards,
they were implemented on more complex
systems, usually using them to define a leader
on a cluster of replicas, a model also known as
primary-backup systems. With apparently the
first protocol defined on 1976 by Alsberg and
Day [7], new developments appeared shortly
after, such as the 2-Phase Commit protocol
in 1979 [8] or the Oral Message protocol
in 1982 [9]. It was with the definition of
the consensus-based Paxos by L. Lamport in
his mythical paper The Part- Time Parliament
[10] (and its subsequent simpler explanation
in [11]) that the scene really changed. With
Paxos becoming the state of the art for con-
sensus protocols, many improvements have
been published on it, such as Fast Paxos [12]
(which reduces message delays compared
to the original Paxos), Vertical Paxos [13]
(which focuses on improving changes in the
cluster configuration considered by the proto-
col), Leaderless Byzantine Paxos [14] (which
improves Paxos’ resilience against Byzantine
failures), or Multi-Paxos [15] (which allows
the use of multiple leaders concurrently),
to name some. It is necessary to note that
the Paxos protocol has been implemented in
systems such as Google Spanner, ZooKeeper
(as a consensus algorithm named Zab [16])
and Azure Cosmos [8], albeit with pertinent
variants and modifications for each case.

Even after the many years it has been in
use, Paxos is still notorious for its complex-
ity. With this as a main trigger and with
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the purpose of becoming an alternative to
Paxos, Raft was created in 2014 [17]. Raft
is a consensus-based protocol and equivalent
to its predecessor in terms of performance
and fault-tolerance, while being simpler to
comprehend [18]. A key feature of Raft is
its persistent storage with a historic log, that
ensures that no data is lost even in the pres-
ence of failures, as well as a mechanism for
log compaction to avoid storage exhaustion.
Another feature which introduces a refine-
ment over Paxos is Raft’s dynamic reconfig-
uration, one of the pillars of the protocol. All
these features make Raft capable of ensuring
strong consistency even in unfavourable envi-
ronments, and its advantages have fostered the
development of many Raft implementations,
with the etcd/raft being one of them. In any
case, Raft, as well as Paxos, still requires 3
AZs in order to guarantee failure tolerance,
which makes them unsuitable for limited AZs
domains.

But Paxos and Raft were not created to deal
with Byzantine attacks. In fact, one of the as-
sumptions made by Raft is that no Byzantine
failures can occur [18]. This kind of failures
are typically induced by malicious nodes that
intentionally deliver false messages in order
to disrupt the system, although they can also
be caused by failures in software [7]. To face
this problem, the Practical Byzantine Fault
Tolerance (PBFT) protocol was created in
1999 [19]. The main objective of this protocol
is to provide consensus even in the presence
of Byzantine attacks, which previously had
been done in an unpractical manner, usually
relying on synchrony among nodes.

Finally, with the emergence of cryptocur-
rency and blockchain, new consensus proto-
cols have appeared which are also Byzantine-
tolerant. Some of them are widely known,
such as Proof of Work (the consensus mech-
anism behind Bitcoin), or Proof of Stake,
as explained in [8]. However, most of these

protocols have been created to deal with pub-
lic blockchains in highly Byzantine environ-
ments, which have and require characteristics
widely different to those of a closed network
with limited AZs, such the example at hand.

C. Related Work

The naval domain is not the only envi-
ronment in which mission-critical systems
are subjected to spatial constraints. The au-
tomotive and aviation worlds face a similar
problem, with systems sometimes relying on
2 computers. With the aim of overcoming the
strict constraints of distributed real-time sys-
tems in vehicles, the Time Triggered Protocol
(TTP) was defined in [20]. Extensive litera-
ture exists on TT architectures, with current
real-life implementations and uses, such as in
the case of flight control systems on airplanes
[21] [22]. Although it can be seen that a TT
Architecture could be applied in the subject
treated in this thesis, the cluster state store of
a container orchestrator system is neither tied
to strong real-time needs nor is considered to
be a large real-time application comprised of
several nearly autonomous clusters and nodes,
as opposed to the situation defined in [22].

The fact that K8s can only use etcd as its
cluster state store has prompted some research
on its replacement. Specially, etcd’s perfor-
mance has been questioned in regard to the
use of the Raft algorithm, as it requires more
communication and confirmation from other
nodes to achieve a quorum. As explored in
[23], latency increases together with the num-
ber of etcd nodes, even more so when a write
operation is performed. Similarly, bigger clus-
ters are affected by a degradation of through-
put. Research analysing the impact etcd has
in performance has also been published, such
as in [24] and [25], which also comment on
etcd’s scalability limitations. Although both
[23] and [25] propose solutions to said issues,
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they are aimed towards edge architectures in
the typical cloud-native environment.

Still considering the criticism of K8s de-
pendency on etcd, it is necessary to take into
account the existence of the lightweight Ku-
bernetes distribution K3s2. Said distribution
actually tries to decouple etcd from Kuber-
netes, by offering a shim capable of translat-
ing etcd calls to SQL queries, thus allowing
the use of relational databases as cluster state
store. In spite of this, the main K3s archi-
tecture does not directly consider the use of a
distributed relational database, which requires
the use of additional mechanisms.

Other databases that could be potentially
used as cluster state store for K8s exist,
although they offer no native support. There
is interest in KVS in the research commu-
nity, as well as on other types of distributed
databases, for which several designs have
been published. Notwithstanding, according
to the PACELC theorem3 [26] not every de-
sired property can be achieved: apart from
having to choose between availability and
consistency in the case of network partitions,
one must choose between latency and consis-
tency during normal working conditions.

Some of the designs examined focus on
cloud environments in which they must serve
a high amount of petitions in the lowest time
possible, thus choosing to improve availabil-
ity and latency while sacrificing strong con-
sistency. For instance, this is the case of Riak,
which was built based on [27] (although it
offers strong consistency, for which consensus
is required [28]), as well as that of Anna
[29] (which focuses on allowing scalability
in order to meet the needs of rapidly growing
cloud systems).

2More details on K3s are provided in subsubsec-
tion II-E1.

3Extension of the CAP theorem that also considers
the properties of the network under normal working
conditions, when no partitions occur.

Other stores were built with consistency
in mind. One of them is CockroachDB [30],
which implements a KVS on top of which
an SQL layer is used for user interfacing
purposes. But CockroachDB also uses the
Raft algorithm for consistent replication over
its nodes. Another example of a consistent
database is Google’s Spanner [31], which
started as a KVS but eventually evolved into
a distributed relational DB capable of using
SQL syntax [32]. Spanner backs Google’s
mission-critical systems and uses Paxos for
consensus, but it is restricted to hosting on
Google’s infrastructure. Even though all these
mentioned databases are diverse, there is one
characteristic common for all of them: they
have been designed with a globally distributed
cloud environment and data centres in mind,
with many of them using Raft in order to
ensure consistency.

As seen in [33], the implementation of
etcd in a two-node cluster has been consid-
ered before, explicitly proposing that etcd’s
mirror functionality could be used to repli-
cate data from a master node into a slave
node. Nonetheless, apart from requiring the
development of a custom loadbalancer, this
functionality cannot offer ordering guarantees
and the order of updates should not be re-
garded as reliable [34]. Furthermore, also in
[33], the developer team indicates that there is
no interest in implementing any solution that
could introduce inconsistency in the store and
explicitly discards a 2-node implementation.

For these reasons seen above, it has been
decided to focus the research on replacing the
default cluster state store of Kubernetes, etcd,
with a different store.

D. Preliminary Considerations

Considering everything mentioned in sub-
section I-B and subsection I-C, a series of
considerations have been made. First, it is
apparent that no consensus protocol exists
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that directly addresses the needs of container
orchestration in limited AZs domains. Sec-
ondly, it has been seen that ensuring strong
consistency is often achieved using Raft or
Paxos, which are not applicable when only
2 AZs exist. Thus, it has been decided to
explore the use of eventually consistent stores
as cluster state store for Kubernetes and,
more precisely, the use of Publish-Subscribe
architectures.

E. Publish-Subscribe Systems

Publish-Subscribe (Pub/Sub) is a common
communication schema for distributed sys-
tems, a step ahead from the earlier mes-
sage queue paradigm. Even though many ap-
proaches exist, the basis of a Pub/Sub system
is common: a set of publishers send messages
that are then received or retrieved by those
subscribers interested in them, which need
not have explicit knowledge of each other
[35]. They were originally developed as a
middleware in order to provide support to
large-scale settings, decoupling time, space
and synchronisation among publishers and
subscribers [36]. By using common trans-
port layer protocols (e.g. TCP), this sort of
systems are usually flexible and easy to de-
ploy in any network, provided firewalls and
other security measures have been configured
accordingly [37]. Additionally, although not
originally intended with this purpose, many
implementations of Pub/Sub provide the pos-
sibility of keeping persistent logs and can sub-
sequently be used as a data stores. Because of
this, considering the constricted environment
of limited AZs domains, it has been deemed
relevant to explore these systems to overcome
the difficulties introduced by the need of
consensus of the etcd store.

Taking into account that Pub/Sub systems
have been a topic of interest for distributed
architectures since the nineties, a number of

different implementations of the model ex-
ist. Among them, one of the most widely
known is Apache Kafka. Originally devel-
oped by LinkedIn employees before being
open sourced, the main purpose of Kafka was
log processing while combining the capabili-
ties of log aggregators and Pub/Sub message
systems, based on a distributed log [38].
Nowadays, the functionalities Kafka offers
are wider: apart from being a log aggregator,
it is also used as a message broker, for metrics
collection and for data streams processing,
to name some of its uses [39]. A versatile
system, Kafka is designed to be horizontally
scalable, durable and fault tolerant, which
makes it ideal to act as a central data hub
for organisations [40]. It has been shown
to be suitable for the management of high
amounts of data with high throughput and
low latency, for applications such as fast data
analytics and big data [41][42]. Everything
considered, it would be theoretically possible
to use Kafka as cluster state store for K8s in
a limited AZs domain. Although Kafka pro-
vides high throughput with low latency, the
latter is in the order of milliseconds, which
could compromise meeting the requirements
of the system4 [43]. As such, it has been
disesteemed as an option for the case at hand.

Other systems usually capable of imple-
menting the Pub/Sub schema are Message
Oriented Middleware (MOM) systems. In
fact, Kafka itself can be classified as a MOM.
RabbitMQ is usually mentioned as the pre-
ferred open source alternative to Kafka and
it offers similar functionalities, albeit with
different architecture, as shown in [44]: Rab-
bitMQ relies on a network of exchanges
where routing of messages to a specific queue
is decided. It is from the queues that the
messages eventually reach the subscribers,
whereas Kafka focuses on a topic-specific,

4Refer to subsection III-B, more specifically to re-
quirement R5.
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indexed log, from which consumers can re-
trieve messages. RabbitMQ has been shown
to be particularly useful in situations where
complex routing is needed and it is capable
of achieving high scalability [41]. However,
as shown in [44], RabbitMQ initially did not
provide long term storage capabilities. Newer
versions allow for the use of a persistence
layer, although it may underperform when
a high number of queues need simultaneous
disk access [45]. Therefore, considering the
persistence limitations, RabbitMQ is consid-
ered suboptimal to be used as cluster state
store.

Nevertheless, it needs to be highlighted that
RabbitMQ is an implementation of the Ad-
vanced Message Queuing Protocol (AMQP),
one of the MOM standard protocols. Other
protocols exist, such as the older Java Mes-
saging Service (JMS, which only supports
Java), the eXtensible Messaging and Presence
Protocol (XMPP), MQ Telemetry Transport
(MQTT), and the Data Distribution Service
(DDS). Each of these protocols has differ-
ent purposes: AMQP is used by industries
that require high reliability, such as finance
[44]; MQTT is used on low-power devices
with small message payloads [46]; XMPP is
oriented towards instant messaging [47]; and
DDS targets real-time, dependable systems
[48]. Not all protocols, then, can meet the
needs of a cluster state store, where persistent
storage, consistency and reliability are key.

While MQTT could be an option, it has
been shown in [49] that most implementations
favour availability and performance over com-
munication integrity, and ensuring resiliency
is a challenge. Because of this, with AMQP
having been explored with RabbitMQ, JMS
being dependant on Java and XMPP’s focus
on instant messaging purposes, DDS seems to
be the best suited choice5.

5Refer to subsection I-F for further elaboration on the
decision.

Finally, apart from the systems mentioned
above, major cloud providers also offer
Pub/Sub solutions, such as Google’s Pub/Sub
and Pub/Sub Lite [50], Amazon’s Simple
Notification Service (SNS) [51], or IBM’s
MQ [52]. However, all these Pub/Sub imple-
mentations are not open source and need to
run on their respective vendors’ infrastructure,
as well as being oriented towards the most
common cloud-native environment, thus be-
ing unsuited for the requirements of limited
AZs domains.

F. Solutions Considered

Considering the results of the literature
research, the use of a pub/sub DDS-based
cluster state store is considered as a possible
solution to implement the cluster state store
for K8s in domains with limited AZs. First
of all, the DDS standard has been used in
demanding fields such as defence, automo-
tive, finance and medical [53], and has a
wide presence in mission-critical distributed
real-time systems, such as air traffic control
systems [54]. Also, according to [55], the US
Navy sees DDS as the choice for cyber-secure
and cohesive communications. In addition,
in [56], it has also been demonstrated that
DDS works well in small wired networks,
a scenario that closely resembles the naval
domain example. Even though DDS provides
eventual consistency, as opposed to etcd’s
strong consistency, the fact that it is a sys-
tem oriented towards real-time applications
promotes that the distribution of the data is
as fast as possible, thus limiting the incon-
sistency time to a minimum during normal
operation conditions. Finally, DDS has been
shown capable of meeting strict requirements
of mission-critical systems’ stores, as it is
used in Thales Nederlands’ current system.
Because these reasons, DDS seems to be a
suitable solution for container orchestration in
domains with limited AZs.
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Nonetheless, in order to determine whether
the use of a DDS-based cluster state store is
feasible, it is necessary to test it. In order to
do so, it is first needed to create a prototype as
explained in subsection II-G, and then deter-
mine how it compares against other proven
cluster state stores. Among those, the most
evident is etcd, which needs to be taken into
account as the base for comparing any cluster
state store different from the default (leaving
aside the fact that this system requires an
auxiliary witness node capable of voting to
reach consensus, which makes it unfeasible as
a solution in the context of limited AZs). Fi-
nally, as briefly mentioned in subsection I-C,
another possibility is the one provided by the
Kubernetes distribution K3s; it allows using
an external relational database as cluster state
store out of the box, thanks to its Kine shim.
Notwithstanding, additional mechanisms are
needed to distribute the DB among the 2
AZs6.

G. The Data Distribution Service

In this section, a general understanding
of the Data Distribution Service (DDS) is
provided, with the aim to better introduce the
reader to the inner workings of the system
and to the terms used in subsequent sections.

As detailed in [48], DDS is a MOM stan-
dard maintained by the Object Management
Group. The DDS model is build around a
fully distributed Global Data Space, acces-
sible by the publishers and subscribers. Do-
mainParticipants are used by the processes to
connect to a particular communication plane,
the so called domain. In order for a process
to become a publisher, it needs at least one
DataWriter object, while subscribers require
at least one DataReader. DataWriters and
DataReaders are linked to a particular topic

6The distributed SQL solution is out of the scope of
this thesis.

they are interested in. Topics in DDS consist
of a triad of a unique name, a data type and
a series of Quality of Service (QoS) policies.
These QoS are used to specify the behaviour
of any DDS entity: for example, the behaviour
of a publisher is defined by the QoS of the
topic it is associated to, together with the QoS
of the topic’s DataWriter and the QoS of the
domain participant itself.

DDS uses a specific protocol: the DDS
Interoperability Wire Protocol or Real-Time
Publish-Subscribe Protocol (DDSI-RTPS or
RTPS for short), specified in [57]. Said pro-
tocol is strongly regulated by the QoS of
the system and was created in order to meet
the requirements of DDS applications. Out of
the four modules composing RTSP, the most
important aspects of the Structure module are
presented first, followed by an overview of the
Behaviour module, as they are most relevant
for this paper7.

Within RTSP, publishers and subscribers
are considered endpoints of the system, which
map to corresponding DDS entities (e.g.
RTSP’s Participants map to DDS’ Domain-
Participants). In RTSP, both publishers and
subscribers maintain a HistoryCache, the el-
ement responsible of forming the interface
between DDS and RTSP. The content of
HistoryCaches differs for writers and read-
ers: for writers they contain the partial his-
tory of changes to data-objects needed to
service existing and future matched readers,
whereas for the readers they keep a partial
superposition of changes to data-objects made
by their matching writers. Therefore, writ-
ers first log changes in their HistoryCache,
which can then be published together with a

7The other two modules are the Message module,
which defines the structure of RTSP messages, and
Discovery, which deals with how RTSP is capable of
discovering relevant participants and their endpoints.
In the appendix, a diagram showing such structure is
included. Do refer to the complete specification [57]
for more detail.
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heartbeat. Whenever a corresponding reader
receives the message, it then logs the change
in its HistoryCache and then responds with an
AckNack message indicating that the change
has been placed in the HistoryCache8. Thus,
retrieving previously received messages is an
operation that can be done independently by
readers from the data contained in their His-
toryCache, which corresponds with the data
kept by writers.

II. METHODOLOGY AND APPROACH

A. Research Questions

In order to determine how the problem
explained in subsection I-A can be solved,
the following main research question has been
defined:

How can the cluster state store in container
orchestration technologies meet the
resilience and reliability needs of

mission-critical systems when limited by
having only two availability zones?

To aid in answering the main research ques-
tion, several sub-questions have been ab-
stracted from it:

RQ1. What are the four most important
properties that must be considered
when evaluating the cluster state
store of a container orchestrator for
a mission-critical system with only
2 availability zones?

RQ2. Which method is suitable in order
to quantify latency, throughput,
consistency and partition tolerance
for a cluster state store of a
container orchestrator system within
the context of a mission-critical
system with only 2 AZs?

8Refer to Figure 2 for a simplified sequence diagram
of a DDS write.

RQ3. How does a DDS-based cluster state
store compare to an SQL cluster
state store and to an etcd cluster state
store in terms of latency, throughput,
consistency and partition tolerance?

B. Hypothesis

From the research questions, the following
hypothesis has been formulated:

A DDS-based cluster state store for
container orchestration is a viable

alternative to an etcd and to an SQL cluster
state store in terms of latency, throughput,

consistency and partition tolerance.

C. Contributions

This work aims to shed some light on
the use of cloud-native technologies, namely
container orchestration, in constrained envi-
ronments. The first contribution of this work
is the definition of metrics that enable the
comparison of a cluster state store for con-
tainer orchestrators when applied in mission-
critical systems in a limited AZs domains.
Such comparison benchmark can be used in
further research on the field. Secondly, a
prototype system has been built9 in order to
allow the use of a DDS-based DB as cluster
state store for Kubernetes, which has finally
been evaluated according to the benchmark.
This system can be used as a first prototype
to kickstart the study on pub/sub standards
for container orchestration purposes, an area
in which research is currently scarce.

D. Methodology

As per [58] and considering that one of
the necessary parts of this work involves
the creation of an artefact, a design sci-
ence methodology is considered to be the

9For more details refer to subsection II-G.
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most adequate choice. Many design science
methodologies exist, ranging from detailed
ones, such as [59] or [60], as well as more
concise options, like [61]. The methodology
defined in [62], is oriented towards industry-
academia collaborations, which is the case of
this research. Moreover, it originates as the
synthesis of previous frameworks, all while
being less restrictive and extensive than other
options.

Following the research process proposed
by Offermann et al. [62], the first part of
the project focuses on literature research and
interviews with experts within Thales Ned-
erland in order to identify the most relevant
properties to consider when evaluating cluster
state stores for mission-critical systems, thus
focusing on answering RQ1. After this step,
a method suitable to measure the properties
considered is decided upon, thus answering
RQ2. Afterwards, an artefact is created to
allow the usage of a DDS-based database
as cluster state store for K8s, during the
solution design phase. Finally, once the nec-
essary cycles have been completed, during the
evaluation phase, the solutions are compared
according to the previously defined bench-
mark, giving answer to RQ3 and to the main
research question.

E. Design Decisions

1) Kubernetes Distribution: Even though
vanilla K8s is the state of the art in container
orchestration, it has been modified and several
distributions exist: as of April 2024, CNCF
certifies over 90 K8s distributions, several of
which are open source [63]. One of those is
K3s, a lightweight distribution which allows
the usage of relational databases (SQLite,
MySQL, PostgreSQL and MariaDB) as clus-
ter state data store, apart from etcd. It requires
less storage when compared to vanilla K8s
as studied in [64], thanks to the removal
of certain components which are also not

necessary in this context. Note that this distri-
bution is not only highly valued by the cloud-
native community, but it is also comparable to
vanilla Kubernetes in terms of performance
and resource consumption, as shown in [65],
[66], [67] and [68]. Furthermore, K3s imple-
ments a standalone shim named Kine. It emu-
lates the behaviour of etcd, making the chosen
relational database implement intrinsic etcd
mechanics and translating K8s’ etcd calls into
SQL queries. As Kine is open source as well
and can be adapted, K3s can be used to
analyse both DDS and SQL, thus improving
the comparability of measurements. K3s has
been chosen as the Kubernetes distribution
used in this project.

2) DDS Implementation: Different imple-
mentations of the DDS standard exist, such
as RTI’s Connext, eProsima’s Fast-DDS and
ZettaScale’s10 OpenSplice and CycloneDDS,
with the latter backed by the Eclipse Founda-
tion. Although literature on them is scarce,
there is research that compares the imple-
mentations, mostly related to the use of the
DDS standard as the de facto communica-
tion layer in ROS2 (which officially supports
CycloneDDS, Fast-DDS, RTI Connext and
the commercial GurumDDS [69]). In [70],
three distributions are compared in the con-
text of ROS2, namely Connext, CycloneDDS
and Fast-DDS. Even though the focus of
the paper is on security measures, latency is
also measured, with the results showing that
CycloneDDS performs slightly better than
the other two distributions. However, when
security options are enabled, the difference
between CycloneDDS and Fast-DDS narrows
and no recommendation can be made. The
same three distributions are also compared
within ROS2 in [71], with results showing
that CycloneDDS has a lower latency than
Connext and Fast-DDS, and that Connext

10Part of ADLINK, before it became a spin out.
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performs sub-optimally when more nodes are
added. Results in [72] also coincide on the
fact that the latency of CycloneDDS is lesser
to that of Fast-DDS, but also under the con-
text of ROS2.

If the licenses of the different distributions
are taken into account, Connext only provides
commercial and research licenses; however,
CycloneDDS is subject to Eclipse Public Li-
cense v2.0 and Fast-DDS to Apache 2 [69],
which are permissive free software licenses.
Everything considered, the possible choices
are narrowed down to CycloneDDS and Fast-
DDS. The following points have been taken
into account to make the final decision:

• In terms of maturity, Fast-DDS has
an advantage; even more so when
considering its curated documentation,
more extensive and detailed than Cy-
cloneDDS’. In spite of this, Fast-DDS
lacks QueryConditions, a critical func-
tionality of the standard indispensable
for the implementation of a database.
Without this, it is not possible to effi-
ciently search through the messages in
the system for specific characteristics,
such as a particular name or an id greater
than a certain number, simple queries
extensively used by Kine. Furthermore,
this vital functionality is not included in
Fast-DDS’ roadmap [73]. On the other
hand, QueryConditions do exist in Cy-
cloneDDS11, as well as the other re-
quired functionalities.

• The current system used by Thales Ned-
erland uses OpenSplice. CycloneDDS
is the direct successor of OpenSplice,
which makes it a more meaningful
choice. There is extensive knowledge
in Thales Nederland about OpenSplice,

11Although they are not yet directly wrapped by the
C++ API and without support for SQL-like syntax, as
of June 2023.

which can be easily extrapolated into
CycloneDDS, as opposed to Fast-DDS.

• If the communities behind both imple-
mentations are examined, Fast-DDS’ is
larger than CycloneDDS’12. However,
CycloneDDS offers more direct com-
munication channels apart from GitHub,
such as Discord, thus providing eas-
ier approach to the developers, which
greatly improves support enquiries.

All the previous items evaluated, with spe-
cial attention to the first point, and cou-
pled with the slightly better performance of
CycloneDDS, have laid the foundation for
the selection of CycloneDDS over Fast-DDS.
Notwithstanding, it is crucial to understand
that all of the products evaluated are still in
development and not all features specified by
the standard are yet fully implemented.

F. Experimental Setup

The test setup consists on 2 Virtual Ma-
chines (VM) running on VMware Player. The
host runs Fedora 37 Workstation and has the
following specifications:

• CPU: Intel Core i5-8365U13.
• Memory: 16GB DDR4.
• Disk: Samsung Electronics NVMe SSD

Controller SM981/PM981/PM983 with
476GB.

The specifications of the VMs, which run
Ubuntu Server 22.04, are:

• Memory: 6044MB.
• Disk: 50GB.
• Processors: 4.

The versions of the software used are listed
below:

• CycloneDDS 0.10.3 (Lettres Dansantes).
• K3s version v1.29.0, with Metric Server

and Traefik deactivated.
12As shown by the amount of GitHub contributors

and stars [74] [75]
13Full CPU specifications available at [76].
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• Kine version 0.10.3.
• PostgreSQL version 14.2 (latest version

supported by K3s [77]).
• Nginx 1.14.2, as pod application (follow-

ing the examples from K8s documenta-
tion [78]).

G. Prototype

Given that no DDS-based store is available
to be used as cluster state store for any
Kubernetes distribution, it has been necessary
to develop a prototype in order to conduct
the measurements. Because of the similarity
between SQL and a DDS-based DB14, K3s’
Kine’s source code (available in [79]) has
been modified so that etcd calls are translated
into DDS queries. This prototype has enabled
the use of DDS as cluster state store for K8s
and has made it possible to obtain the results
presented in this paper.

As Kine is written in Go and the
CycloneDDS-based DB in C++, it is not
possible to directly request the Queries to
the DB. To allow that functionality, gRPC
has been used to establish a communication
channel between Kine and the Database. With
the DB acting as a server, Kine can request
all necessary queries to DDS. In Figure 1, the
prototype system with 2 AZs is shown, which
represents the scenario with limited AZs.

III. REQUIREMENTS, ASSUMPTIONS AND

METRICS

To determine the content of the following
subsections, interviews have been conducted
with key personnel within Thales Nederland,
namely system architects and cloud-native ex-
perts. Consequently, the information collected
mainly refers to the specific naval context
with which Thales deals. Nevertheless, most
aspects have been generalised in order to refer

14In fact, the DDS specification lists a subset of SQL-
syntax DDS queries should be able to use.

to mission-critical systems in domains limited
by having only 2 AZs.

A. Requirements

R1. The system has to be able to operate
on only 2 AZs.

R2. The system has to be capable of con-
tinuing operation upon failure of one
of the two AZs.

R3. The system only modifies the Ku-
bernetes’ or Kubernetes distribution’s
cluster state store.

R4. The system has to supports Kubernetes
clusters containing up to 100 pods.

R5. The cluster state store replicas have to
achieve consistency under 0.5 seconds.

B. Assumptions

Considering the specific environment faced
by Thales, a series of assumptions have been
made. Those are used in order to frame the
tests and measurements conducted on the
system, and are the following:

A1. No network partitions can happen15.
A2. The system works in a completely

secure network and failures caused by
network attacks cannot happen.

A3. The system performance is not af-
fected by the resources consumed by
the applications running on the con-
tainers.

A4. Only one application runs per pod and
all applications running on the pods
are the same.

A5. The system never runs out of re-
sources.

A6. Loss of messages in the gRPC com-
munication are not considered system
failures.

15This assumption stems from the example use case
of Thales Nederland, where networks are susceptible
to physical attacks and strong redundancy measures are
used to counter failures.
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Figure 1: Overview of the Prototype System with 2 AZs.

C. Failures

Given that the system is distributed over
different AZs, it is possible that failures ex-
ist that make communication impossible. In
Figure 2, the simplified sequence diagram
of a DDS reliable write is shown, taking
into account the particularities of the RTPS
protocol. With said diagram as reference, the
following main failures are identified:

Figure 2: Simplified sequence diagram of a
DDS write [57][80].

F1. In step 3, the data and heartbeat fails to
reach the DataReader and the message
is not received by the subscriber.

F2. In step 4, the DataReader is forced to
drop the message instead of logging
it into its HistoryCache (e.g. due to a
lack of resources).

F3. In step 5, the AckNack16 fails to reach
the DataWriter.

F4. The node is rendered completely inop-
erative for any reason at any step.

Note that both failure F1 and failure F3,
when caused by network infrastructure issues,
are not considered system failures due to
assumption A1. Furthermore, in the event of a
failure F1, messages would be automatically
re-sent when the failure is detected, as speci-
fied by the DDS RELIABLE QoS. Similarly,
failure F2 can be prevented by an adequate
configuration of QoS. Finally, failure F4 de-
picts the scenario explained in subsection I-A,
when one of the two nodes dies. It is this
failure that establishes the foundation for this
research.

Finally, Figure 3 shows the simplified se-
quence diagram of the execution of a query
considering the whole prototype system (de-
tailed in subsection II-G). As per assumption
A6, note that a failure in the gRPC service
is not considered a system failure. Therefore,
the only failures considered in the whole
system have been listed before (failures F1,
F2, F3 and F4).

16An AckNack is an acknowledge message which can
signify either a positive or a negative acknowledge.
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D. Metrics

Metrics have been selected through the
previously mentioned interviews with Thales
experts. Additionally, existing literature has
been considered. First of all, during inter-
views, the CAP theorem has been used as
reference to determine which of the three
characteristics are more relevant, while re-
jecting the remaining one. Due to the fact
that losing one of the AZs is one of the
possible outcomes of combat, considering the
specific Thales case, partition tolerance is a
the most relevant property to consider. Fur-
thermore, the K8s Scheduler uses the data
available in the cluster state store in order
to distribute workloads among nodes, so in-
consistencies within the store could lead to
unfavourable situations (e.g. deploying appli-
cations on resource-starved nodes). This leads
to make Consistency a critical property. Other
metrics mentioned multiple times during the
interviews have been latency and throughput.

On [81], several methods of comparing
databases are explored. Out of 9 different
methods, 7 consider latency as a relevant met-
ric, while 3 consider the throughput. Looking
into other papers consulted during the liter-

ature research ([44], [41], [70] and [30], for
instance), latency and throughput are used as
common metrics for comparison. Because of
this, and their mention during interviews, both
metrics are considered relevant. Other metrics
are mentioned multiple times in literature,
namely scalability and availability. However,
none are relevant in this case, as only 2 AZs
exist and partition tolerance and consistency
take priority over availability.

Therefore, answering the first research
question, the metrics taken into account are
the following:

M1. Latency: latency can be defined as
the time between making a request
and beginning to see a result [82].
Considering the whole prototype sys-
tem, latency is the time elapsed from
step 1 until step 7 has finalised, fol-
lowing Figure 3; additionally, writes
also consider latency from step 1 to 4
(where 4 is the entirety of steps shown
in Figure 2), thus measuring the la-
tency since the start of a publish query
until the database logs the message.

M2. Throughput: throughput is defined as
the items processed per time unit and
is inversely related to the latency [82].

Figure 3: Simplified execution of a query in the whole prototype system.
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In this case, throughput is defined
as the number of queries requested
per second. Considering the commu-
nication as depicted in Figure 3, one
single query represents the execution
of the entire process, from step 1 to
step 7. Throughput is differentiated
according to the type of request: read
requests and write requests (i.e. pub-
lications).

M3. Consistency: given that DDS is
an eventually consistent system,
this metric focuses on determining
whether a message published is
logged by all subscribers in a time
lesser than or equal to 0.5 seconds.
If the message is logged after 0.5s
have elapsed, it is considered an
inconsistency. The time is determined
by requirement R5, with 0.5s
considered as a safe margin during
which inconsistencies in the cluster
state store should not affect the
K8s scheduler. The result of this
measurement is binary: the system is
either consistent or not.

M4. Partition Tolerance: given that the
system runs only on 2 AZs, this met-
ric considers whether the system op-
eration can continue after the total
failure of one of the two AZs (i.e.
when a failure F4 occurs), as speci-
fied by requirement R2. Therefore, the
system is considered partition toler-
ant if entities running on the defunct
AZ (e.g. pods and deployments) are
restarted in the healthy AZ and if new
entities can be added to the resulting
1-node cluster. This metric is binary,
the system is partition tolerant or it is
not.

IV. SYSTEM EVALUATION

In the previous section the metrics were
defined. As per the second research question,
it is necessary to define the measurement
method. This is included in this section, as
well as the results gathered, necessary to
answer the third research question.

A. Preliminary Considerations

Before moving on to the results of the
measurements, there are a few key points that
need to be mentioned:

1) Given that the two nodes run as guests
on the same host, as explained in sub-
section II-F, time needs to be synchro-
nised among the VMs. The underlying
Time Stamp Counter (TSC) of the host’s
CPU17 has been used for this purpose.
Even though reading the real TSC of
the host can introduce overhead caused
by trapping mechanisms used by the
VM manager [83], this method has been
considered the most accurate to mea-
sure time consistently in the experimen-
tal setup. Another alternative considered
was the use of the Network Time Proto-
col (NTP) with reduced synchronisation
time and higher adjustment frequency.
However, given that VMs are susceptible
to time drifts, this NTP method was
dismissed.

2) In the DDS DB, two different topics
have been used. The Main topic, which
consists of the data equivalent to etcd
content (in a KVS, the key and all
its information, value included), and the

17Pseudoperformance counters have been employed.
In practise, the rdpmc 0x10000 instruction has been
employed, as specified in [83]. For DDS, a plain inline
assembly instruction has been used due to the database
being written in C++. In the case of Kine, which is
written in Go, extra assembly instructions have been
needed in order to move the result into the stack so that
it can be retrieved and used.

Classification:
Open



15

MaxId topic, which has been specifically
used to track the maximum id in the
DB (i.e. the last key created). Whenever
possible, measurements have been per-
formed separately for each topic. While
the size of the MaxId topic is fixed, that
of the Main topic is variable18.

3) Read queries usually translate into sev-
eral reads on the DDS DB, spanning the
two topics. Therefore, a system read or
write does not necessarily translate into
one single DDS DB read or write19.

4) Due to the high multithreading
introduced by gRPC, measurements
are subjected to overhead caused
by multithreading-safe mechanisms. In
essence, that means that there are critical
sections delimited by locks which may
block certain queries for a period
of time, which makes measurements
susceptible to the state of the system.

5) Finally, the frequency of the processor
needs to be used in order to offer a
TSC to time conversion (necessary in
subsubsection IV-C2). Given that the fre-
quency of modern processors is not fixed
and can greatly vary according to the
workload, it has been calculated on the
VMs and established to be 2.24GHz20.

B. Limitations

The results presented in the next subsection
are limited by the following factors:

1) The first limitation to consider derives
from assumption A1: the prototype sys-
tem cannot tolerate network partitions.

2) Following the last point, and according
to assumption A2, no network attacks
can occur. Because of this, the system

18More details on this are explained in the appendix.
19Refer to the appendix for a detailed explanation.
20Refer to the appendix for an in-depth explanation.

does not implement any mechanisms that
would make it resistant to such attacks.

3) As aforementioned, the available DDS
distributions are not yet completely ma-
ture. This has caused the necessity of
using certain workarounds to ensure the
persistency of data, as well as precluding
the use of SQL-like syntax for queries,
for instance. Further development of the
DDS distribution would improve the
overall quality of the prototype system.

4) The use of Kine as a base shim, instead
of developing a shim specifically tailored
for the system, has limited the approach
to the implementation of the cluster state
store to a particular way of translating
calls to etcd.

5) Finally, the limitations of the experimen-
tal setup itself need to be taken into
account. Using VMs in order to simulate
a 2 AZs environment is not as realistic
as using a physical environment with
two separate nodes. The use of a real
scenario would not only allow for a
more accurate data collection, but would
also introduce other factors (e.g. network
latency) which have been disregarded in
this work.

C. Latency

Latency has been measured on the 2-node
setup shown in Figure 1, during 40 5-minute
runs of the system. Note that the initial boot-
strapping of the system is not considered for
the evaluation of the latency, as it is only per-
formed at the setting up of the system and has
no meaningful effect during normal working
conditions. Additionally, the throughput dur-
ing that period is unusually high, as shown in
subsection IV-D, and would possibly increase
the overall latency of the results.

The results on the measurements are shown
in subsubsection IV-C1. In order to com-
pare the results with PostgreSQL and etcd,
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latency has also been measured for those
data stores. These results are presented in
subsubsection IV-C2.

1) DDS System Results: Given that Kine
communicates with the cluster state store in
in its same node, measurements for the query
roundtrip (i.e. from steps 1 to 7 in Figure 3,
roundtrip latency from now on) only consider
the one node. These are shown in Table I, dis-
tinguishing reads from writes. Additionally,
in Table II, the measurements for the latency
considering steps 1 to 4 in Figure 3 are shown
(subscriber latency from now on). In this case,
a distinction on nodes is made. Take into
account that, due to the inner workings of
Kine, queries need to read and write on the
two topics21.

R/W Metric Thousands of ticks
Read Median 19704

Mean 21011
std 7611

Write Median 3242
Mean 3654
std 2163

Table I: Numerical analysis of the read and
write roundtrip latency results for the whole
system.

AZ Metric Thousands of ticks
Leader Median 1889

Mean 2219
std 1768

Other Median 2364
Mean 2824
std 6386

Table II: Numerical analysis of the write sub-
scriber latency results for the whole system.

In Figure 4, results for the roundtrip latency
are shown graphically, as a distribution and as
a boxplot. In Figure 5, the same is depicted
for the subscriber latency.

21Refer to Preliminary Considerations for an intro-
duction on the topics. The multiple access is better clari-
fied in subsection IV-D, when exploring the throughput.

The results have been obtained by log-
ging the TSC timestamp in Kine just before
issuing each query, and again immediately
after receiving a response. In the case of
the subscriber latency for writes, the second
timestamp has been recorded in the DDS DB
upon reception. The difference of ticks has
resulted in the latency.

2) DDS compared with PostgreSQL and
etcd: To put the results presented previously
in perspective, measurements have also been
taken on a PostgreSQL-based K3s and on an
etcd-based cluster. Only results considering
the roundtrip have been examined, as measur-
ing the latency within those DBs is not part
of the scope of this research, and literature
already exists on the topic.

PostgreSQL measurements have followed
the same method for the same number of
runs as the DDS-based system, adding TSC
timestamps that log whenever a query is
launched until the response is returned. When
using etcd as cluster state store, K3s does not
use Kine. Therefore, a different method has
been used in order to quantify etcd’s read
and write latency. Although etcd provides a
metrics service, it does not log said metrics.
For this reason, it has been decided to use the
etcd benchmark tool [84], performing a total
of 100000 measurements 40 times and cal-
culating their average22. In order to simulate
the use of an auxiliary node as explained in
subsection I-F, 3 nodes have been used. De-
tails on the PostgreSQL and etcd experiment
setups can be found in the appendix.

The roundtrip latency results for Post-
greSQL an etcd are shown in Table III, to-
gether with the DDS results shown in the
previous section. Finally, the calculated time
in microseconds is included for DDS and
PostgreSQL, calculated using the aforemen-
tioned frequency of 2.24GHz.

22Configuration used for the measurements is ex-
plained in the appendix.
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Figure 4: Distribution and boxplot of the roundtrip latency for system reads and writes in
the publishing node, with ticks in logarithmic scale. Note the higher latency for reads as
compared to writes, as well as the proportionally higher deviation for writes.

Figure 5: Distribution and boxplot of the system write queries, considering the subscriber
latency, with ticks in logarithmic scale. Note the increase of latency and deviation added by
the network communication on the other node.
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Rear/Write Metric PostgreSQL DDS etcd
TSC Ticks µs TSC Ticks µs µs

Read Mean 1,843,000 820 21,011,000 9380 2810
std 778,000 350 7,611,000 3400 1610

Write Mean 1,627,000 730 3,654,000 1630 5651
std 459,000 200 2,163,000 970 3034

Table III: Numerical analysis of the read and write roundtrip latency results for PostgreSQL
and etcd, contrasted with the DDS results. Compare the low latency shown by the PostgreSQL
system, evidence of using an SQL-tailored shim. Although slower in reads than the other two
cluster state stores, DDS outperforms etcd on writes, while showing less difference on reads
than with the SQL counterpart.

D. Throughput

Measurements for the throughput consider
the whole system, given that the DDS DB
does not make any requests by itself; in fact,
all requests are generated by Kine. Given that
a system using PostgreSQL would also have
the same throughput, as it also uses Kine, and
etcd implements all the mechanisms emulated
by Kine internally, what has been analysed
for this metric is how the throughput changes
according to the number of nodes and pods.
The conditions of the measurements have
been decided according to:

• The number of nodes contemplated fol-
lows the problem statement. A maximum
of 2 nodes and a minimum of 1 is used.

• To observe how the metric changes
when introducing more pods, deploy-
ments with 1, 5 and 10 pods have been
launched in different runs, experiment
that stems from requirement R4.

Measurements of the throughput have been
performed taking into account the kind of
query (i.e. whether it reads or writes) and the
topic, as well as the number of nodes and
pods. In Figure 6 and Figure 7, the number
of queries of each kind against time is plotted,
starting with the bootstrapping of the cluster.
Furthermore, considering that queries within
the DDS DB usually execute several reads
and writes, the DDS DB throughput has been

considered too23.
To get the throughput measurements, a

TSC timestamp has been logged every time a
query has been launched. Note that the results
represent the average throughput of reads and
writes per 1 billion (109) TSC ticks. The DDS
results have been obtained by mapping the
internal DDS reads and writes per specific
Kine query.

As distinct phases can be observed in Fig-
ures 6 and 7, the throughput analysis focuses
on the 3 parts separately: 1) the stable phase,
2) the addition of a new node to the cluster
and 3) when new pods are launched. The
reason behind this choice is: for 1), under
a normal production environment the state
of the cluster would stay stable; for 2), the
main failure considered is failure F4 (the
disappearance of one of the two AZs), there-
fore the throughput of adding an AZ to the
cluster is measured; and finally, for 3), if new
applications need to be added to the system,
new pods have to be created. The result of
the measurements is shown in Table IV. Even
though the count of queries plotted in the
figures considers both AZs, results in the
table are only measured in the Leader AZ,
to consider the worst case scenario, given its
higher throughput.

23Refer to the appendix for a detailed explanation on
the DDS throughput.

Classification:
Open



19

Figure 6: Average number of queries in time of a 1-node system. Notice the initial peak
in throughput caused by the bootstrapping of the system, followed by a stable phase only
disrupted by the creation of pods. Additionally, compare the higher amount of reads as opposed
to writes.

Figure 7: Average number of queries in time of a 2-node system. Although similar in base to
Figure 6, especially during the bootstrapping, note how adding a node increases throughput
mainly on the node added, and how adding pots balances the thoughput between the 2 nodes
in the cluster.
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Nodes Pods R/W Topic Average queries DDSa

Stable + AZ + pods Stable + AZ + pods
1 node 0 pods Read Both 4.68 - - - - -

Read Main - - - 8.55 - -
Read MaxId - - - 5.50 - -
Write Both 1.21 - - 1.21 - -

1 pod Read Both 4.57 - 6.84 - - -
Read Main - - 0.09 8.55 - 12.95
Read MaxId - - 0.13 5.49 - 8.61
Write Both 1.21 - 2.05 1.21 - 2.05

5 pods Read Both 4.55 - 11.19 - - -
Read Main - - 0.09 8.52 - 21.62
Read MaxId - - 0.13 5.47 - 15.02
Write Both 1.21 - 4.13 1.21 - 4.13

10 pods Read Both 4.56 - 16.25 - - -
Read Main - - 0.09 8.54 - 31.81
Read MaxId - - 0.13 5.48 - 22.65
Write Both 1.22 - 6.66 1.22 - 6.66

2 nodes 0 pods Read Both 4.72 5.38 - - - -
Read Main - - - 8.77 17.66 -
Read MaxId - - - 5.61 11.28 -
Write Both 1.22 1.42 - 1.22 2.45 -

1 pod Read Both 4.62 5.39 6.24 - - -
Read Main - - 0.08 8.61 17.38 12.05
Read MaxId - - 0.13 5.51 11.13 7.95
Write Both 1.21 1.42 1.84 1.21 2.43 1.84

5 pods Read Both 4.62 5.38 8.79 - - -
Read Main - - 0.08 8.60 17.33 17.15
Read MaxId - - 0.13 5.50 11.10 11.87
Write Both 1.21 1.43 3.21 1.21 2.43 3.21

10 pods Read Both 4.63 5.37 12.2 - - -
Read Main - - 0.08 8.61 17.39 23.92
Read MaxId - - 0.13 5.51 11.14 17.08
Write Both 1.21 1.42 5.03 1.21 2.44 5.03

a Throughput of writes in DDS is the same for Main and MaxId topics. That is, 1 Main write also implies 1
MaxId write.

Table IV: Throughput of reads and writes per topic per billions of TSC ticks during the Stable
phase and when an AZ or pods are added to the cluster. Note the similarity of throughput
during the stable phase for the 1 and 2-nodes system, as well as the low increase in the Leader
node when another node is added. Additionally, consider the balancing of throughput when
new pods are added in the 2-node system, as shown by the higher throughput in the 1-node
counterpart.

It is necessary to mention that occasional
gRPC message loss has been observed during
periods of abnormally high throughput. Such
events have not been seen during the measure-
ments presented in this section, but in tests
with deployments with more than 50 pods.
Due to Assumption A6, these message losses

are not considered system failures but they
do affect requirement R4, in the sense that
launching 100 pods at once has no guaranteed
success.

E. Consistency
Consistency is measured using the whole

system spanning over two nodes, as shown

Classification:
Open



21

in Figure 1. Two different periods have been
measured: when queries are at its peak (i.e.
during the bootstrapping phase) and when the
cluster stabilises. Consistency measurements
during the moment of maximum through-
put span the creation of the cluster in the
leader node and the addition of the other
node, followed by 2 more minutes afterwards.
These measurements run during 3 minutes
and 15 seconds, with variations of at most
7 seconds depending on how long the setup
takes. Measurements during the stable phase
are taken 1 minute after the second node is
added to the cluster and span 1 minute.

In order to assert the consistency of the
system among nodes, the process is: 1) first, a
message is sent from the leader; 2) when the
subscriber in the leader AZ receives said mes-
sage, it logs all the contents of the database
with an id lesser or equal to the message; and
finally 3) when the subscriber on the other
AZ receives the message, it waits 0.45s and
annotates all messages in the database up to
the message id. Then, the content of the leader
database is compared with the other node’s.
The waiting time has been set at 450ms to
take into account the latency. Note that only
the Main topic has been considered, as it is
the one that constitutes the database.

The results of the worst case scenario (i.e.
bootstrapping process), as well as the stable
phase, show that the nodes are consistent
within the safe bound of 0.5s. Therefore, it
can be said that the system is consistent as
per the given definition of the metric.

F. Partition Tolerance

Partition tolerance has been measured start-
ing on the 2-node setup, as shown in Figure 1,
on which the failure of one node (failure F4)
has been simulated, thus ending with only one
functional node.

The simulation of the failure has been done
by uninstalling K3s altogether, as well as

killing the Kine and the DDS DB processes24.
As that CycloneDDS does not implement the
TRANSIENT durability QoS as of January
2024, TRANSIENT LOCAL durability has
been used instead. Such QoS causes the in-
validation of messages whose DataWriter is
not alive, which results in entries from the DB
not being resent when the defunct node recon-
nects. In order to circumvent such behaviour,
once the failure of a DB node is detected by
the reception of invalid messages, the remain-
ing node is tasked with the republication of
all messages issued by the recently defunct
node25. Once the TRANSIENT durability is
implemented, this work-around, which adds
additional overhead, will not be necessary.

To determine whether the system is parti-
tion tolerant, a simple experiment has been
used: with the system running normally with
2 pods deployed (one on each node), the
system in one of the nodes is killed; after
6 minutes, the information of the nodes and
pods is retrieved. Then, the system in the
defunct node is restarted and the cluster state
is logged 4 minutes afterwards. To asses both
the death of the leader node, as well as the
non-leader, 40 independent runs have been
used for each situation.

This results of the test show that the system
is completely capable of withstanding the
death of an entire AZ, with the entities that
ran on the defunct node being restarted on
the healthy node in every run. Furthermore,
entries in the cluster state store are not lost
when a node dies and, when it reconnects,
they are all resent again, maintaining consis-
tency in the system.

24This method has been chosen instead of directly
powering off the VM as it makes automatising of the
measurements smoother.

25In practise, that means messages whose instance
state is NOT_ALIVE_NO_WRITERS. More details are
provided in the appendix.
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V. DISCUSSION

In this section, the results presented in the
previous section are evaluated for each metric.

A. Latency

1) DDS System Latency: Looking into the
results for the DDS system latency, it can
be seen how the latency for reads is con-
siderably higher to that of writes. One of
the main reasons for this is the fact that
queries requested from kine are designed for
relational databases instead. This causes inef-
ficient searches in the store. Furthermore, this
needs to be coupled with the need of using
critical zones in order to make the system
multi-threading safe. In the case of writes,
comparing the roundtrip with the subscriber
latency show how the extra communication
layer introduced by gRPC impacts the latency
negatively.

2) DDS Compared with PostgreSQL and
etcd: By comparing the results achieved on
PostgreSQL with those of DDS, is evident
that Kine is a shim specifically designed to
translate etcd queries into SQL. DDS shows
a clear increase on read latency, which is more
than 10 times higher than Postgres’. Whereas
PostgreSQL exploits efficiency mechanisms
available to relational databases, the DDS sys-
tem simply implements the same queries on a
non-SQL architecture. In the case of writes,
however, it can be seen how the difference
is much lower, with DDS latency only being
slightly higher than twice Postgres’. If the
subscriber latency is to be considered, that
difference is reduced even further. As with the
reads, this increased latency is caused again
by Kine: where SQL is capable of seamlessly
increasing the id of new rows added to the
database, DDS needs to do so using another
topic that requires retrieval of the value before
applying the increment.

For the comparison between PostgreSQL
and DDS, even though measurements have

only been conducted on the leader AZ in
both cases, the SQL system lacks any dis-
tribution or synchronisation mechanism, as
the DB only resides in the leader. That is
not the case for DDS, thus having its load
increased. It also needs to be mentioned that,
while SQL counts with a dedicated scheduler
for queries, the DDS-based system does not,
which implements multi-threading safety with
much simpler critical zones, thus increment-
ing latency.

Finally, comparing the DDS latency with
etcd’s, it can be seen how the communication
among nodes of the Raft consensus protocol
increases write latency as well as deviation
among measurements, with DDS’ results be-
ing more than 3 times lower than etcd’s. etcd
reads are shown to be faster than DDS but the
difference is lesser than that of SQL, slightly
above 3 times higher.

Seeing the results, it can be said that
the DDS performance is suitable to meet
the needs of the cluster state store for con-
tainer orchestration for mission-critical sys-
tems, presenting a low difference with the
default etcd database and even outperforming
it on write queries. However, the creation of
a new, DDS-oriented shim is a possibility
that needs to be explored, as shown by the
difference with PostgreSQL performance, as
well as the prototype’s higher read latency
compared to both other systems. Finally, the
use of a distributed PostgreSQL cluster state
store appears to be an option worth consider-
ing, albeit out of scope in this research.

B. Throughput

If the phases are to be analysed separately,
the following is observed:

• During the stable phase, which can be
considered as a representation of the sys-
tem during normal working conditions,
the throughput is lower than in any other
phase. It also shows little variation with
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the addition of nodes and no difference is
observed by the addition of pods. There-
fore, it can meet the need of deploying
bigger clusters suffering a minimal im-
pact on the overall performance of the
system.

• The addition of an extra AZ does not
entail a significant increase in write
throughput, and it is minimal for reads,
on the leader node. As depicted in Fig-
ure 7, the increase of throughput is most
significant on the node that is added. In
the event of the failure of an AZ, the
consequences of adding it again would
be low on the healthy node, on which the
system depends completely until load-
balancing mechanisms come into place.
This is due to the fact that the increase on
requests on the leader during the addition
of the AZ compared to the stable phase
is lesser than 1 per million TSC ticks
for reads and roughly 0.2 for writes, as
shown in Table IV.

• Adding multiple pods at the same time,
causes a considerable increase in the
system’s throughput, for reads as well as
for writes. Although, when the cluster
consists of 2 AZs, the throughput is
balanced among the nodes. Due to the
use of gRPC, launching a high amount
of pods causes high spikes in throughput,
which may cause missing gRPC dead-
lines. Although such occurrences are
non-existent with the number of pods
applied in the measurements, applying
bigger deployments at once should be
done with caution, as the higher through-
put may cause said losses.

From the results shown in subsection IV-D,
it can be seen that the system is read intensive
in every of the three phases during which
the throughput has been evaluated. However,
looking at DDS’s latency in Table I, which is
considerably higher for reads than for writes,

an approach less dependent on reads would be
more suitable for a DDS-based cluster state
store. Nevertheless, the DDS cluster state
store has shown to be capable of withstanding
the higher read throughput.

C. Consistency

First of all, note that comparison with
PostgreSQL and etcd for this metric is not
meaningful, due to the different approach
to consistency. PostgreSQL and etcd enforce
strong consistency, be it by using the ACID
properties or by requiring quorum to accept
any write in the database, while DDS is even-
tually consistent, thus allowing for a period in
which inconsistencies can occur.

Notwithstanding, the results show that the
database is consistent, as per the given defini-
tion of the metric. This holds during the initial
bootstrapping process, when the throughput
is at is highest, as well as during the stable
phase, which represents normal work con-
ditions. To sum up, it can be said that a
DDS-based cluster state store is capable of
satisfying the consistency needs of mission-
critical systems when limited to 2 AZs.

D. Partition Tolerance

Partition tolerance is arguably the most
relevant property the proposed system tries to
satisfy. As explained in subsection I-A, etcd
cannot withstand the failure of 1 node in 2-
node systems. In the case of SQL, it should
be theoretically possible to achieve partition
tolerance by using a distributed SQL mecha-
nism; nonetheless, this is out of scope of this
paper and would require further research.

Focusing on the results achieved by the
system, it has been seen that it is capable of
continuing normal operation after the death of
an entire AZ, as well as detecting the failure
and restarting the entities that were running
on the defunct node. However, as pointed out,
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the DDS database cannot achieve partition
tolerance by itself due to the lack of the
TRANSIENT durability QoS. Nonetheless,
with the implemented resending mechanism,
the desired behaviour has been replicated and
it can be said that a DDS-cluster state store
meets the criteria to be considered partition
tolerant.

VI. CONCLUSIONS AND FUTURE WORK

The primary objective of this thesis has
been to determine how the cluster state store
in container orchestrators can meet the needs
of mission-critical systems when they are lim-
ited to 2 availability zones. It has been shown
that a pub/sub cluster state store, using the
DDS standard in specific, is capable of sus-
taining the failure of 1 AZ while still allowing
changes on the cluster state, as opposed to
the default etcd store. Furthermore, it has
also been shown that such DDS-based system
achieves the required consistency to ensure
the Kubernetes scheduler is not affected by
the lack of strong consistency. Additionally,
analysis of the throughput of the prototype
indicates that the system could support the
required number of pods26 even when only
1 AZ exists, albeit with limitations to the
number of deployments launched at once.
Launching a high number of pods needs to be
managed to limit punctual throughput spikes
that can cause gRPC package loss. Finally,
regarding the latency, the prototype system
has shown worse read and write performance
than that of an SQL-based system, but better
write performance than an etcd one. Despite
of this, the latency is still acceptable for the
purpose of the system.

While K8s and DDS are a suitable so-
lution for the naval domain, taken from
Thales Nederland’s example, mission-critical
systems have specific requirements tied to

26See the requirements.

their own domains and may require a more
detailed exploration of other options. K8s is
a wide purpose container orchestrator and, as
such, it includes many functionalities that are
possibly not required in most mission-critical
systems and K8s’ performance may not be ad-
equate27. The DDS-based cluster state store,
on the other hand, has shown favourable re-
sults and studying its behaviour under other
container orchestrators could prove to be an
interesting avenue of research. Apart from
this, the following items have been considered
relevant for future research:

• As stated in subsection IV-B, the pro-
totype system has been based on a
shim designed for an SQL system. Even
though DDS is capable to execute SQL-
like queries and would eventually be
able to use SQL-like syntax with that
objective, it has been shown that its
performance has been hampered due to
Kine. Therefore, a creation of a DDS-
specific shim would better explore the
full potential of the solution; it could
exploit the advantages of DDS’ writes
while attenuating the impact of reads,
which are more abundant despite their
higher latency. Moreover, particularities
of the DDS standard could be imple-
mented (e.g. easiness of data overwriting
or the possibility to use multiple topics
as one would indexes in SQL).

• In line with the previous point, the cre-
ation of a full system that circumvented
the need for additional communication
through gRPC would give more mean-
ingful measurements, unhindered by an
unnecessary layer.

• Running the experiments in a realistic
environment (i.e. in a truly distributed
system, without simulating AZs with

27For example, if a system requires restarting a con-
tainer under 1s, K8s would not be the most suitable
solution.
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VMs on a same machine) would result
in better insight to the capabilities of the
solution, even though it would require a
revised consistent time measurement.

• Additionally, this work has mainly fo-
cused on the exploration of pub/sub sys-
tems, while other kinds of distributed ar-
chitectures could be suitable for the same
purpose. Research on this path could
result in beneficial findings. Finally, as
the results of PostgreSQL have shown, it
would be relevant to explore the possibil-
ity of using it as cluster state store, with
the pertinent distribution mechanisms.
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Figure A.1: Components of a Kubernetes cluster. Reproduced from [85].

APPENDIX A
KUBERNETES COMPONENTS

Figure A.1 depicts the components of a
default Kubernetes cluster. Note the API com-
munication channel with etcd in the Control
Plane.

APPENDIX B
RTPS MODULE STRUCTURE

In Figure B.2, a diagram showing the four
modules composing RTPS is depicted.

Figure B.2: RTPS modules. Reproduced from
[57].

APPENDIX C
INSTANCE STATE CHART FLOW

In Figure C.3, a simplified fragment of
the instance state flow of a DDS message is
shown, when using the TRANSIENT LOCAL
QoS in the context of the prototype system.
Note how, once no live writers for the mes-
sage remain, its state transitions from ALIVE
to NOT_ALIVE_NO_WRITERS. With the
workaround implemented, when a writer dies,
the change of state in the messages is detected
and they are republished by the remaining
writer, thus effectively keeping them ALIVE
and ensuring persistency in the DDS database.

APPENDIX D
FREQUENCY CALCULATION

The frequency of the processor used,
whose specifications are explained in subsec-
tion II-F, has a base frequency of 1.60 GHz
and a maximum turbo frequency of 4.10 GHz
[76]. However, during the execution of the
system, the real frequency can vary within
that range and it is even less predictable
within the VMs. Therefore, in order to offer
an acceptably accurate estimate, the TSC has
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Figure C.3: Simplified instance state chart. Adapted from [48].

been used to determine the frequency. In order
to do so, while the system is running, the TSC
value has been logged at the beginning and
end of a fixed period of 1000µs. With the
values gathered in such way, the following
formula has been used to calculate the fre-
quency:

f =
TSCF − TSC0

1000µs
A total of 100000 runs have been per-
formed, which has given a mean frequency
of 2.24GHz.

APPENDIX E
etcd BENCHMARK TOOL CONFIGURATION

In order to simulate the conditions of the
DDS prototype system on etcd and the con-

ditions of using etcd with a witness node, the
following configuration has been used:

1) Global configuration
a) Clients has been set at 3, one per node.
b) Connections set at 3, one per node.

2) Write-specific configuration
a) Key size set at 4B (size of a uint32_t

in C++).
b) Value size set at 953, average size of

messages calculated for 40 2-minute
runs of the system, ignoring Kine spe-
cific messages without value.

c) Rate of writes should have been set at
3 requests per second (rps), as per the
measured stable throughput. However,
such low throughput requires a con-
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siderable amount of time to complete
and, after observing very little differ-
ence in results using 3 rps and others
using 100 rps, the rate has been set at
100.

3) Read-specific configuration
a) Rate of reads set at 10 reads per

second, extracted from the stable
throughput. As with write measure-
ments, 10 rps results in long measure-
ments with little to no difference to the
latency measured. Rate has also been
set at 100 reads per second.

APPENDIX F
POSTGRESQL AND etcd EXPERIMENTAL

SETUPS

The testing setup used for PostgreSQL is
the same 2-node setup as for DDS, as ex-
plained in subsection II-F. However, there is
one main difference: the PosgreSQL database
is limited to the leader AZ, with no replica on
the secondary node.

In the case of etcd, an auxiliary node has
been added to the 2-node setup. This node has
the same characteristics as the other 2 nodes
aforementioned, with the difference that its
RAM memory has been reduced to 3072MB
due to the limitations of the host’s hardware.
Given that the measurements have been taken
with the etcd benchmark tool, as explained in
Table III, the etcd latency has been measured
without the creation of a K3s cluster.

APPENDIX G
DDS TOPIC DATA

In Table G.1, the data structures of both
topic messages are shown. Note the difference
of size of messages of both topics: the Main
Topic is already over six times bigger than the
other when considering empty name, value
and old_value. Furthermore, the Maximum
Id topic size is fixed given that a C++ type

uint32_t has always the same size of 32bit
[86], while the Main topic has fields of vari-
able size, namely those using std::string and
std::vector<uint8_t>.

Topic Field name C++ Data Type
Main id uint32_t

name std::string
created int32_t
deleted int32_t
create_revision int32_t
prev_revision int32_t
lease int32_t
value std::vector<uint8_t>
old_value std::vector<uint8_t>

MaxId maxid uint32_t

Table G.1: Field names and data types of the
DDS topics.

APPENDIX H
DDS QUERIES

In order to create the prototype, Kine
queries have been translated into DDS. In
essence, that means that SQL queries have
been translated into C++. In Table H.2, all
DDS queries accessed by Kine are listed. In
the two last columns, the equivalent of DDS
reads and writes on each topic is specified.
As it can be seen, most Read queries need
to read in both topics, except for the last 2
of them, which indicates that a better method
should be devised to query the DDS database.
Finally, in the case of Write queries, note how
they also require to perform a read, in the first
case to retrieve the MaxId to create a message
with a consecutive Id and in the second case
to find the message that needs to be disposed
through its id. Nevertheless, since they are the
only queries that perform a write, they are
considered only as Write queries.

Classification:
Open



35

Query Read/Write DDS Main Topic DDS MaxId Topic
Query Generic 01 Read 2 1
Query Generic 04 Read 2 1
Query Generic 09 Read 3 1
Query Generic 11 Read 2 1
Query Three Read 2 1
Query Compact Revision Read 1 -
Query Max Id Read - 1
Publish Write 1 1

Read - 1
Dispose Write 1 -

Read 1 -

Table H.2: Queries and their corresponding DDS reads and writes per topic.
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