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Chapter 1

Introduction

The primary report of this thesis is presented as a research paper, following an agreement
with my supervisory team. This introductory chapter provides an overview of the research
process and demonstrates how this work satisfies the quality requirements for a Master
thesis. While Chapter 2 delves into the technical specifics, this chapter focuses exclusively
on the procedural aspects, tracing the project from its inception to the completion of the
final paper.

The research paper presented in Chapter 2 is prepared for submission to the ACM
Internet Measurement Conference (IMC) in 20241. The paper explains the methodology
and results of my research work within the 13-page limit set by the IMC. While the research
outlined in Chapter 2 is a product of my independent effort, it is expected to undergo
further refinements by my supervisors before the final submission to the conference.

The rest of this chapter will describe how all the key criteria2 for meeting the require-
ments of a Master thesis have been fulfilled in this thesis.

Interpreting the initial problem and translating it to more concrete re-
search questions

The project began by exploring the Common Crawl’s3 web crawl dataset to identify po-
tential biases in data or gaps in coverage. This exploratory phase did not start with a
well-defined problem statement; instead, the initial goal was to understand the structure
of the dataset and assess the design and functionality of the Common Crawl project, look-
ing out for potential drawbacks.

The research direction evolved during the Research Topic phase, following an extensive
literature review on Internet scanning and web measurements. Initially, we considered the
idea of identifying gaps in Common Crawl’s data by analyzing variations in web content
that a different crawler technology or vantage point than those of Common Crawl would
cause. However, the dynamic nature of the web posed challenges in attributing content
differences solely to the crawler or vantage point. This insight led us to focus on instances
where access by Common Crawl was explicitly blocked by websites. The research questions
were eventually formulated as:

1. What is the prevalence of refusals in a Common Crawl web crawl snapshot?
1https://conferences.sigcomm.org/imc/2024/
2This list is extracted from the information page of the course "192199978 - Final Project CS" on

University of Twente’s Osiris system.
3https://commoncrawl.org/
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2. What types of refusals are most common?

3. How can Common Crawl avoid or mitigate these refusals?

Identifying and using relevant literature and tools

This criterion was met during the Research Topics course where I identified and reviewed
literature from a broad spectrum of studies related to active measurements, including
works on Internet-wide scanning and web measurements, with a focus on coverage and
completeness.

In the section dedicated to Internet-wide scanning, I examined the fundamentals of
such scans as a foundation for active measurement studies in general. I then identified
and explored several key dimensions of scanning that are commonly addressed in the
literature: the scope of the scan (methods to generate target address list), the order of
scan, improving accuracy (factors such as timing intervals between probes), and the origin
of scans, which influences overall scan coverage. The findings from related works concerning
these dimensions were thoroughly analyzed and documented.

Regarding web crawling and measurements, I explored the basic mechanics of web
crawlers, focusing on web content acquisition, data storage strategies, and web search
techniques. Then, the Common Crawl project was introduced, detailing its operational
policies, including prioritization, revisiting, politeness, and parallelisation methods. Addi-
tionally, I discussed various studies in the field of web measurements, from security-focused
crawls to research assessing the effectiveness of different crawling technologies. I also ex-
amined works on website unavailability and server-side blocks to understand the methods
used to identify such blocks.

With regard to the relevant tools, the most challenging aspect of this project was
acquiring the necessary skills to manage and analyze big data, which was a field I was
unfamiliar with. To tackle this, I dedicated several months to learning and experimenting
with Apache Spark4 and gradually improved my PySpark skills to handle and analyze
terabytes of raw crawling data efficiently. These efforts resulted in creating a robust data
processing pipeline that could download, parse, pre-process, filter, and analyze approxi-
mately 561 million records from 3.43 TB of compressed data on a personal physical server
I set up for this task.

Furthermore, I identified and utilized several other tools to enhance the data gathered
from the crawls. For instance, I conducted active DNS measurements for a subset of
domains to extract and analyze their NS and PTR records, which helped me identify their
hosting providers. Additionally, I employed a variety of other tools to transform HTML
source codes into a textual format, extract fully qualified domains and registered domains
from page addresses, and obtain autonomous system numbers of website IP addresses.

Working systematically and with an academic attitude

The project unfolded in a series of systematic steps using a rigorous academic approach.
Initially exploratory, the project began with a thorough review of existing literature on
web measurements. This initial phase was crucial as it laid the groundwork, highlighting
key challenges and existing gaps in the field of web crawling. The insights gained from this
comprehensive literature review informed the adjustments made to the initially designed
research questions, allowing for a more targeted investigation into explicit web refusals
encountered in web content.

4https://spark.apache.org/
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Following this, the project transitioned into the data analysis phase, where specific
methodologies were employed to gather and analyze data related to server-side blocks sys-
tematically. The use of semantic analysis to categorize refusal types was both novel and
aligned with academic standards. In addition, each methodological step was carefully doc-
umented and continuously refined based on ongoing findings and feedback from academic
supervisors.

Moreover, regular presentations and discussions of the findings in weekly meetings with
supervisors ensured that the project maintained a high academic standard. These meetings
facilitated a critical examination of the work completed and reinforced the systematic
research approach.

Using skills and insights learned during the Master programme

The skills I acquired during the Master programme were instrumental in structuring this
work, particularly in two key areas. First, the insights I gained from studying research
papers in the domain of Internet measurement in various courses in this programme helped
me design the methodology and interpret the results of this research. Second, the big
data management skills I learned during this programme equipped me with the ability
to manage and process large-scale data efficiently. These competencies were crucial for
developing the methods, synthesizing information and drawing comprehensive conclusions
from the results.

Producing work of sufficient depth and quality

The paper produced for this thesis provides valuable insights into server-side blocks within
a large-scale web crawl dataset. It advances the current state-of-the-art by thoroughly
investigating the frequency and nature of web refusals observed in a public web crawl
data set. Furthermore, this study improves upon the server-side block detection method
of previous research, which mostly relied on HTTP status codes and Cloudflare errors,
by introducing a method of semantic analysis to identify and categorize refusal messages
encountered by Common Crawl.

The study reveals a significant occurrence of web refusals, particularly noting a sub-
stantial cluster of websites managed by subsidiaries of a major hosting company. It also
evaluates the persistence of these blocks and the effectiveness of various strategies used by
Common Crawl. Based on these observations, the paper proposes recommendations to en-
hance Common Crawl’s back-off strategies for better handling and avoidance of server-side
blocks, aiming to broaden its coverage.

Working independently and goal-oriented under the guidance of a super-
visor and benefiting from the guidance of the supervisor by setting the
agenda for meetings and taking suggestions on board

The work on this project was carried out independently, with consistent, targeted guidance
provided through weekly meetings with my supervisors. Each meeting was planned with
a structured agenda to ensure that discussions were productive and focused. This struc-
tured approach enabled the effective communication of the latest methodologies, emerg-
ing results, and any challenges encountered. Additionally, it ensured that strategic de-
cisions aligned with the overarching objectives of the project, fostering a coherent and
goal-oriented development process.
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Preliminary analysis and findings were routinely examined during these sessions, with
the supervisors providing critical feedback that shaped the direction and execution of sub-
sequent phases of the project. These results were visually presented through well-prepared
slide decks each week to facilitate clearer and more efficient communication. This enhanced
the clarity of the discussions and allowed for more dynamic and informed feedback. The it-
erative process of analysis, presentation, and refinement through these weekly interactions
ultimately led to the development of a robust methodology. The insights gleaned from this
process were instrumental in compiling the comprehensive final report, encapsulating the
depth and breadth of the research conducted.
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Research Paper
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Understanding Web Crawl Refusals:
Insights from Common Crawl

Mostafa Ansar
ABSTRACT
This study investigates server-side blocks encountered by
Common Crawl, a major web crawling project. Unlike pre-
vious studies that rely on HTTP status codes or Cloudflare
errors to identify server-side blocks, this research utilizes
semantic analysis of page contents to cover a broader range
of refusals. By constructing and utilizing 147 fine-grained
regular expressions crafted to identify various refusal pages
precisely, we found that approximately 1.68% of websites in
a Common Crawl snapshot exhibit some form of explicit re-
fusal. Significant contributors to these refusals include large
hosting providers and website builders. Our analysis cate-
gorizes the diverse forms of refusal messages, ranging from
outright blocks to challenges and rate-limiting responses
across multiple HTTP status codes. The study also examines
the temporal dynamics of refusals, offering insights into the
persistence of these blocks and the effectiveness of Common
Crawl’s retry strategies. Our findings highlight the diversity
of server-side blocks and suggest using tailored approaches
to navigate and mitigate them.

1 INTRODUCTION
Web crawlers are recognized as valuable tools for system-
atic data collection for various research purposes. One chal-
lenge for web crawlers that could affect their coverage and
accuracy is server-side blocking. Websites may block web
crawlers for various reasons, such as protecting against ma-
licious bots, enforcing geo-blocking, or preventing unautho-
rized information extraction and excessive resource usage.
Previous research has often concentrated on server-side

blocking stemming from geo-blocking or compliance with
regulations, primarily by assessing the availability of web-
sites from different geographic locations [1, 9, 12]. However,
to the best of our knowledge, no research has specifically
examined server-side blocks encountered by web crawlers
in large-scale web crawl datasets such as Common Crawl1.
Given its comprehensive nature as one of the largest publicly
accessible web crawl archives, Common Crawl provides a
valuable resource for characterizing server-side blocks en-
countered by web crawlers.
This research utilizes the Common Crawl dataset to ex-

plore the extent and nature of server-side blocks and aims
to enhance understanding of how these blocks impact web

1https://commoncrawl.org/

crawlers. Unlike prior work that relies on HTTP status codes
or errors generated by Cloudflare to identify blocks [12], our
approach includes a semantic analysis of page contents. This
method allows for identifying a broader range of server-side
blocks, providing a more detailed understanding of the rea-
sons behind server-side blocks and enhancing the granularity
of our analysis.

We have identified 3.4 million explicit refusal pages using
147 fine-grained regular expressions that we built to capture
various types of refusal pages in the entire set of fetching
failures encountered by Common Crawl. Our analysis in-
dicates that about 1.68% of websites present in a Common
Crawl snapshot explicitly reject the Common Crawl’s bot at
least once, with major hosting providers and website builder
platforms being the primary sources of server-side blocks.
Later, we put forward some recommendations for treating re-
fusals, namely adapting back-off patterns based on the status
codes received and also distributing requests to individual
domains across all fetcher nodes.

The paper is organized as follows: Section 2 provides back-
ground on Common Crawl. In Section 3, we discuss related
works, followed by a detailed description of our methodology
in Section 4. Our main findings are presented in Section 5,
and Section 6 delves into the implications of these findings,
offering recommendations based on our analysis. The paper
concludes by acknowledging the current study’s limitations
and suggesting directions for future research in Section 7
before drawing final conclusions in Section 8.

2 COMMON CRAWL
The Common Crawl project is a non-profit initiative that
compiles and publishes public web crawl datasets every few
months. Common Crawl uses a custom version of Apache
Nutch2, which means it does not process dynamic content,
such as non-HTML elements like images, CSS stylesheets,
and JavaScript files.
Common Crawl is designed to be polite and adheres to

robots.txt files and other web directives, such as nofollow
tags. It waits for at least five seconds between requests to
the same host and employs an exponential back-off strategy
when encountering fetching errors. Additionally, it identifies
itself clearly to web servers by sending a unique user-agent
string ("CCBot") and contact information with each request.

2https://nutch.apache.org
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The fetching process is structured into 100 segments, pro-
cessed sequentially over 14 days. These segments are subdi-
vided into 40 partitions, each assigned to a single fetcher task.
All URLs from a single host are assigned to the same parti-
tion, and hosts from the same domain are typically grouped
in the same partition to reduce DNS resolution and robot.txt
processing load. Fetching is then handled by twenty AWS
EC2 spot nodes located in N. Virginia [10].
Common Crawl provides datasets in the Web Archive

(WARC) format [6]. If the fetching process is successful, the
record is added to the warc subset. However, if the fetching
process fails, the record is added to the non-200 responses
subset. All records are indexed in a columnar index, and
each entry points to a specific WARC file path, offset, and
record length. Every WARC file contains a warcinfo record
that includes metadata about the file, such as the hostname
of the machine that created the WARC resource.

3 RELATEDWORK
There is a large body of work on coverage of active measure-
ments. In the context of Internet-wide scanning, Leonard
and Loguinov utilized a multi-origin scanning approach to
distribute the scanning load and improve coverage [8]. An-
other study demonstrated geographic biases and the impact
of scanning origin on host visibility [13]. With respect to cov-
erage and visibility of web measurements, studies typically
discuss variations in website contents when obtained by dif-
ferent crawling technologies and vantage points. One study
showed how cloaking services deceive web crawlers [7].
Other researchers compared what real users experience on
high-traffic websites and compared it with what those web-
sites present to automated crawlers and found significant dis-
crepancies in tracking and fingerprinting activities[15]. They
also found the type of IP address used for crawling (e.g. cloud-
based or residential) a key factor in this regard. Another work
classified web crawler tools into three categories based on
their capability to process dynamic content or mimic real
browsers for circumventing anti-bot measures[2].
A group of studies specifically investigated the reasons

behind website unavailability, most of which focused on cen-
sorship [5, 11]. Server-side blocking has mostly been studied
in relation to geo-blocking [1, 9]. One relevant study, how-
ever, explores other reasons behind website unavailability as
well by loading websites from various locations[12]. Using
the status codes returned by Cloudflare as a proxy for the
reason for the block, Tschantz et al. identified three causes of
server-side blocking: GDPR compliance, geo-blocking, and
ones returned due to security reasons. Our work is differ-
ent from theirs since our work involves a web-scale dataset,
while theirs was limited to websites that used Cloudflare.
Secondly, we do not rely on HTTP status codes to identify

blocks and their reason. Instead, we perform a semantic
analysis of the page contents, which allows us to identify
a much wider range of refusals. Finally, we provide a more
detailed breakdown of the reasons for blocking based on the
information provided within the page contents.

4 METHODOLOGY
4.1 Datasets
This work employs the CC-MAIN-2023-50 snapshot, which
was compiled between the 28th of November and the 12th
of December 2023 [4]. We use two pieces of this snapshot:
Columnar URL index and non-200 responses. The non-200 re-
sponses archive contains all unsuccessful fetching attempts
and contains 90000 WARC files and 3.43 TB of compressed
data. The columnar index (cc-index-table) contains 900 par-
quet files and has a size of 0.28 TB.
Since our research focuses on analyzing and identifying

refusals, we will only consider response records. Although
cc-index-table provides an index for non-200 responses, we
chose to download and parse all the WARC files within the
non-200 responses set instead of locating and fetching indi-
vidual records. We chose this because we are interested in
page contents, and parsing the files sequentially provides
better performance than iteratively locating and fetching
individual WARC files. The index, however, is still used to
identify successful fetching attempts for combining the suc-
cess/failure records for each host.

4.2 Processing WARC files
We process records of type response and extract hostname,
WARC-Date,WARC-IP-Address,WARC-Target-URI, and the
raw response received from theweb server. The raw response
encompasses HTTP status codes, HTTP headers, and the
page contents. We use the BeautifulSoup library to extract
the page’s textual content (lowercase) and PyASN (using
BGP data from RouteViews project34) to obtain the ASN
number ofWARC-IP-Address. Finally, we use the tldextract
library to extract the registered domain and also the Fully
Qualified Domain Names (FQDN) from WARC-Target-URI.
The resulting schema of the records is given in Table A1 of
the Appendix.

4.3 Preliminary analysis and data pruning
Parsing the entire set of non-200 responses yields as many
as 561 million records. Table 1 gives this set’s breakdown of
status codes. The preliminary exploratory analysis shows
3https://www.routeviews.org/routeviews/
4For Simplicity, we used the latest snapshot of the RIB archive of RouteViews
when this stage of analysis was conducted. That was the snapshot with
the date 2024-01-12, approximately a month after the last crawl day by
Common Crawl for the respective snapshot.
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Table 1: No. of status codes before and after pruning

Code Description All non200s % Pruned %

301 Moved Permanently 235,772,654 41.97% - -
404 Not Found 175,006,242 31.16% - -
302 Found* 114,777,210 20.44% - -
307 Temporary Redirect 6,003,819 1.07% - -
403 Forbidden 5,855,588 1.04% 5,855,588 26.87%
308 Permanent Redirect 4,905,497 0.87% - -
410 Gone 4,338,335 0.77% 4,338,335 19.91%
500 Internal Server Error 3,379,744 0.60% 3,379,744 15.51%
303 See Other 3,344,468 0.60% - -
406 Not Acceptable 1,676,200 0.30% 1,676,200 7.69%
400 Bad Request 1,528,691 0.27% 1,528,691 7.02%
401 Unauthorized 1,190,637 0.21% 1,190,637 5.46%
429 Too Many Requests 708,933 0.13% 708,933 3.25%

Other - 3,143,206 0.56% 2,854,781 13.11%

Total - 561,631,224 100.00% 21,790,009 100.00%
* Previously named 302 Moved temporarily

us that certain status codes are unlikely to contain refusal
content. Therefore, we prune the dataset in the first step to
make the subsequent analysis less computationally intensive.

Table 1 indicates the most common status codes are among
3XX, 4XX or 5XX ranges and that the top three codes account
for 93.57% of the total. Given that 3XX status codes generally
signify redirection, which inherently does not imply a refusal
but facilitates automatic redirection to a new location, we
opted to exclude all entries with 3XX status codes.

The second most common status code among the non-200
response dataset is 404 (Not Found). Although this status
code is not generally associated with refusals, we investigate
potential refusals in this set to ensure that by discarding all
records with status code 404, we will not miss a significant
number of refusals. To do so, wemanually inspect the records
that contain keywords such as blocked or banned and find
that HTTP status code 403 is the most common code used
on pages containing some block. Next, we analyze the most
common N-grams of length four among all records with code
403 and then manually sift through these N-grams to create
a list of regular expressions (REs) that includes frequently
used bigrams in 403 pages containing blocking content. After
that, we search for these REs in 404 records and find about
4K records out of 25M. We argue that if 404 had been widely
used for web refusals with human-readable messages, we
would have expected the numbers to be significantly higher.
Thus, we exclude those records from this analysis and are
left with 21.7M records as shown in Table 1. Table A2 of
the Appendix provides a more extensive breakdown of the
pruned set.

4.4 Defining labels
We define refusals as any content returned by a website
specifically intended to prevent the crawler from accessing

the actual content. We specify three groups of labels to char-
acterize the refusal content: type, who, and reason. Table 2
provides the first three labels, their descriptions and their
values. The label tag will specify a provider’s name (content
delivery network, web application firewall, website builder,
WordPress plugin, etc.) such as Cloudflare.

Table 2: Description and Possible Values for Labels

Label Description Values

Type The type of refusal content block, challenge, checking,
require_js, other429s, none

Who If type is block, indicates who is
blocked

ip, you,
request, none

Reason The reason for refusal provided in
the contents

security/malicious,
excessive/suspicious, geo-block

ip/asn reputation, none

If a website requests a user to complete a challenge like
a captcha, we label the record as challenge. When the con-
tents indicate a block with no option provided for getting
unblocked, it will be labelled as block. Checking is assigned
to cases where a website responds with a page that asks
the user to wait while it checks the browser or connection,
and require_js is when a website asks the visitor to enable
JavaScript or disable ad-blockers. Finally, other429s is a type
of block where the status code (429 Too many requests)
signals that the access request is refused due to excessive
requests or traffic.

Regarding reason, security/malicious is assigned to a record
if page content implies that a security solution has blocked
a request or if preventing harmful activities is cited as the
reason for refusal. The excessive/suspicious label is used when
content mentions spamming, scraping or information extrac-
tion or when a website rejects due to excessive hits. The
geo-blocking label is allocated to contents where access de-
nials are caused by the geographical location of the visitor.
IP/ASN reputation is used for contents that mention nega-
tive IP history or its presence on a block list. Also, if page
contents contain a reference to proxies, VPNs, or cloud IP
addresses as the source of block, the record will receive an
IP/ASN reputation label.

4.5 Extracting Regular Expressions
In this step, we build a set of long and precise regular ex-
pressions (REs), each capturing a specific cluster of similar
refusal messages. Each regular expression will be manually
assigned the type, reason, tag labels, if available.

We follow a two-stage process to create REs for capturing
blocking and refusal messages. In the first stage, we begin
by searching for common keywords like "blocked," "banned,"
"restricted," "limited," "denied," and "your ip" that are typically
associatedwith suchmessages.We thenmanually inspect the
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records found and build loose REs that can capture various
forms of refusals. This list is then supplemented in multiple
cycles by adding new loose REs or modifying previously
built ones to capture similar or slightly different strings.
In the second stage, we create more specific and longer

REs using the ones built in stage one. If a secondary RE
captures less than 50 records, we discard it and filter out
the records found. Otherwise, we determine its labels (type,
who, reason, tag) and filter the matching records out. We
repeat this step until our manual inspection does not yield
large clusters (more than 50 records). Finally, we add some
less-fine-grained REs to the list to capture less common but
diverse refusal messages.
We only create REs for contents that explicitly indicate

server-side blocks. This means that pages without such a
message or those that imply a path-specific refusal will not
be included. However, there is one exception to this rule,
which is a case with status code 406. In this case, more than
a million records with a "Not acceptable" message generated
byModSecurity are considered a block in our method despite
not containing semantically explicit refusal.

We built 147 REs, 141 fine-grained and specific to a certain
class of refusal messages, and six loose REs. A breakdown of
the labels (type and reason) of these REs is given in Tables
A3 and A4 of the Appendix.

4.6 Analysis of the remaining records
We follow a two-step process to ensure that we do not miss a
significant number of explicit refusals. First, we identify and
label the most common non-refusal content. Then, we take
a sample of the remaining records to estimate the number of
uncaptured refusals.
First, we conduct an N-gram analysis to identify high-

frequency word combinations that do not occur with refusals
and then create REs for each combination to capture similar
contents, e.g. those containing internal server errors. As this
work focuses on refusals, we stop our manual analysis when
the clusters found have less than 50 thousand occurrences.
Eventually, we built 176 REs for non-refusal content, each
annotated with a label. The details of these labels, their de-
scriptions, and the number of REs in each set are provided
in Table A9 of the Appendix.

In step two, we take a small sample from the remaining set.
The sample is small enough for us to semantically analyse
the records manually. The analysis focuses on language and
content type. This allows us to estimate any explicit refusals
that our method may have missed. The output of this process
is an estimation of the number of explicit refusals that were
not identified by our method.

4.7 Labelling records
While the REswe built for capturing refusals and non-refusals
do not have considerable overlap, we process them in an or-
dered way to find refusals before capturing non-refusals.
Moreover, the refusal REs are also applied in a certain order,
with more fine-grained ones given higher priority for better
precision. Once all refusals that fit the previous description
are captured, we apply non-refusal REs and finally identify
blank pages. The order of process is provided in Table A5 of
the Appendix.

4.8 Augmenting tags by header analysis
We noticed that some refusal contents can be associated with
a specific provider, such as Cloudflare or a particular web ap-
plication firewall, even if the provider’s name is not explicitly
mentioned in the contents. To cover these cases, we analyse
the Server headers of records captured by each regular ex-
pression. If we find an association between a refusal RE and
a Server header, we assign a tag to that RE based on what
the Server header implies. This association is only made if
two conditions are both met: if 99% of all records captured by
that RE have the Server header in question, and if there are
more than a thousand FQDNs associated with those records.
We use online sources to infer the provider’s name from the
Server header when it is not self-explanatory. For example,
if we find Pepyaka in the Server header, we tag it as Wix5.

4.9 Joining refusals with successful fetches
Once we have identified the records containing refusals, we
analyze themixture of successes and failures for eachwebsite.
We made two choices to ensure high precision of analysis.
First, we identify unique websites using FQDNs rather than
registered domains since a single registered domain could
encompass multiple subdomains hosted at multiple providers
or running distinct web applications, resulting in divergent
behaviours. Second, we source successful fetches for each
FQDN from the cc-index because we are only interested
in the occurrence of successful fetches and not what was
fetched. The timestamp and the URI of a successful fetch
can easily obtained from the index without fetching the full
records. Finally, we employ a left join operation between
the refusals and cc-index-table on equal FQDNs. This means
that if an FQDN does not have success records, it will still
be included in the joined set.

4.10 Failure Rate Analysis
After compiling the set of successes and failures for all FQDNs
with at least a refusal, we proceed to calculate the percentage
of failures for each FQDN. This metric is chosen because it

5https://webtechsurvey.com/technology/pepyaka
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provides a consistent measure of failure frequency across
all Uniform Resource Identifiers (URIs) and throughout the
entire duration of the data set for each FQDN.
When the failure percentage is obtained for all FQDNs,

we create failure percentage distributions to determine the
proportion of websites that always reject Common Crawl’s
bot. Then, we refine our analysis by obtaining the same
distribution per each status code, type, reason and tag.

A crucial requirement for the above analysis is assigning
each FQDN a distinct status code, type, reason, and tag. Ini-
tially, we confirm that for almost all FQDNs, refusal records
are associated with no more than one status code, type, rea-
son, and tag. Then, we exclude FQDNs with multiple associa-
tions from the analysis so the failure percentage of an FQDN
can be attributed to the corresponding category.

4.11 Temporal analysis
In the next phase, we quantify the length of time in which
Common Crawl’s access is denied. To do this, we define a
metric called first failure to next success. This metric mea-
sures the time between a failed attempt to access a website
(after a success) and the next successful attempt. Common
Crawl uses an exponential back-off strategy to deal with
access denials [10], but the details of this strategy are not
documented. Using this metric, we can understand Common
Crawl’s back-off and retry patterns and determine howmany
back-offs (roughly corresponding to time spans) are required
before access is granted following an initial denial. Since an
FQDN may experience multiple instances of access refusal,
we calculate this metric for all occurrences and then find the
minimum time span for each FQDN.

We conduct the analysis for a time period of 0 to 3600 sec-
onds. The reason behind choosing this time frame is twofold.
Firstly, it covers the time length in which the majority of
FQDNs see their next success record. Secondly, it ensures
that all requests made to each FQDN are routed through a
single IP address (see Section 5.6).

4.12 Analysis of Common Crawl’s public IP
In this part of our analysis, we analyze the pattern of public
IP addresses that are used to crawl websites. The goal is to
determine how many public IP addresses were used in total
and whether IP rotation was used to visit single FQDNs. To
this end, we search for visitors’ IP addresses reflected in page
contents in the entire non-200 responses archive consisting
of 561 million records. We first discard IPs that do not belong
to Amazon (AS14618) and then accept only those IPs that
were reflected in the highest number of FQDNs. Finally, we
manually check the top IPs found to ensure that they are
indeed visitor IP addresses reflected in page contents. Finally,
we analyze one-hour windows of consecutive hits to each

FQDN to determine whether the visitor’s IP changes over
that one hour.

5 RESULTS
5.1 General statistics
Table 3 summarizes the number of labelled and unlabeled
records after the pruning stage (see Sections 4.3 and Section
4.7). In terms of the number of FQDNs, out of approximately
47.5 million FQDNs present in the Common Crawl’s tabular
index, about 31 million FQDNs have at least one record in the
non-200 responses set. Upon pruning, the remaining FQDNs
amount to 3.5 million, of which about 800k FQDNs were
found to have at least one refusal.

Table 3: General Statistics of labels

Description Count Percentage (%)
Refusal 3,430,207 15.74
Non-refusal 9,817,878 45.06
Empty 4,222,824 19.38
Unlabeled 4,319,100 19.82
Total 21,790,009 100.00

5.2 Breakdown of refusals
5.2.1 By status code. Figure 1 outlines the distribution

of top status codes used for refusals, broken down by the
number of records and FQDNs linked to each status code.
Status code 403 (Forbidden) is the most frequently used code
by the number of records. However, 406 (Not acceptable) is
almost as prevalent in record count yet used in significantly
more FQDNs, representing about 70% of all FQDNs with
refusals. Further analysis in later sections will reveal that 406
(Not acceptable) is predominantly returned by ModSecurity
(a web application firewall), with a single regular expression
capturing the majority of these records.

Furthermore, the data shows that the third most common
status code used to deny access is 429. It is important to note
that our method interprets all records with status code 429
as refusals, which may explain the high record count for
this code. It is also interesting to note the long tail of status
codes employed for refusals (see Table A6 of the Appendix),
indicating a wide range of codes used to deny Common
Crawl’s access.

5.2.2 By type. Table 4 shows the distribution of refusal
types by the total number of records and the FQDNs asso-
ciated with each type. The most common type of refusal
is "block", which includes around 2.7M records and 740K
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Figure 1: Frequency of top status codes in refusals
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FQDNs. More than half of these refusals are related toModSe-
curity. However, with ModSecurity refusals excluded, "block"
would still be the most prevalent form of refusal.

5.2.3 By reason. Table 5 categorizes the reasons for web-
site refusals based on the number of records and FQDNs.
The majority of the records do not specify a reason for de-
nial. This is particularly common for refusals with a 406
status code from ModSecurity, which typically does not pro-
vide a detailed reason. The next most frequent reason is
excessive/suspicious, which covers several cases, including
contents indicating a server-side block due to too many re-
quests or bot-like behaviour, as well as records with a 429
status code. The security/malicious category follows, cov-
ering refusals generated for security reasons or to prevent
malicious activities. Other reasons like IP/ASN reputation
and geo-blocking are less common, each representing less
than one per cent of the records.

Table 4: Frequency of types by records and FQDNs

Type Records FQDNs

Count Percentage (%) Count Percentage (%)

Block 2,717,399 79.22 739,602 92.48
Other 429s 428,031 12.48 30,043 3.76
Checking 143,194 4.17 22,969 2.87
Challenge 78,678 2.29 4,996 0.62
Require JS 59,772 1.74 1,888 0.24
(None) 3,133 0.09 276 0.03

Total 3,430,207 100.00 799,774* 100.00
* FQDNs with more than one type have been excluded.

Figure 2: Frequency of top tags in refusals

(None) Modsecurity Blogvault/m. Cloudflare Wix Shopify Others
Tag

0

10

20

30

40

50

60

70

Pe
rc

en
ta

ge
 (

%
)

1.3M

1.2M

342K

184K 168K 137K 118K

98K

557K

23K 29K
56K

25K
12K

Frequency of Tags in the Refusal Set

Records %
FQDNs %

5.2.4 By tag. The distribution of top tags is shown in
Figure 2. ModSecurity is the most common tag with respect
to the number of records and FQDNs, indicating that many
domains exhibit ModSecurity-generated refusals. The sec-
ond most common tag, in terms of the number of records,
is Blogvault/Malcare, a WordPress plugin. However, when
it comes to the number of domains, Wix, Cloudflare, and
Shopify have higher numbers than Blogvault/Malcare. The
complete list of tags and their frequencies is given in Table
A7 of the Appendix.

5.3 Case of Modsecurity
A regular expression targeting ModSecurity’s refusal mes-
sage identified over a million refusal records from 556K
FQDNs and 488K registered domains, all returning a 406
status code. Analysis of theWARC-Target-IP indicates that
these sites predominantly reside on four ASNs, pointing to
the involvement of a few major hosting providers. Further-
more, examination of the Server headers shows that 93% of
these domains were hosted on Apache, with the remainder
using Cloudflare, further suggesting a possible connection
between them in terms of their hosting provider.

Table 5: Frequency of reasons by records and FQDNs

Reason Records FQDNs

Count Percentage (%) Count Percentage (%)

(None) 1,741,041 50.76 651,251 81.43
Excessive/suspicious 859,309 25.05 89,145 11.15
Security/malicious 803,538 23.43 56,180 7.02
Ip/asn reputation 19,047 0.56 2,248 0.28
Geo-block 7,272 0.21 917 0.11

Total 3,430,207 100.00 799,741 100.00
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Table 6: Top ASNs hosting ModSecurity-labeled FQDNs
and major hosting companies operating on them

ASN Name FQDN No. Percentage
46606 Unified Layer 351,390 63.11%

Major hosters: 55.78% Bluehost, 18.47% Hostgator, 6.13% Hostmonster
4.27% ResellerClub, 3.88% Justhost, 1.63% Domain.com, 1.00% Site5

19871 Network Solutions 143,041 25.69%
Major hosters: 83.72% Hostgator

13335 Cloudflare 40,681 7.31%
394695 PDR 16,815 3.02%

Major hosters: 55.02% ResellerClub, 12.05% HostGator,
11.12% BlueHost, 9.26% BigRock

Others - 4,096 0.88%
Total - 556,833 100.00%

To investigate this matter further, we set out to identify
the hosting providers responsible for this group of refusals.
We used the following sources for this purpose: Caida AS-to-
organization data set [3] to find the organization associated
with each ASN, whois information from Hurricane Electric
BGP toolkit6, and DNS records of a sample of ModSecurity-
labelled FQDNs.
Table 6 lists the four autonomous system numbers and

their names. From the Caida AS-to-organization data set,
we found that Unified Layer is owned by a company called
BlueHost7. Whois information for the other two (Network
Solutions and PDR) indicates they are both associated with
a company called Newfold8, formerly known as Endurance
International Group, a conglomerate hosting company with
many subsidiaries9 including BlueHost, HostGator, Host-
Monster10, ResellerClub11, Domain.com, Network Solutions,
BigRock, JustHost12, Site513, etc.

Aiming to determine whether they were indeed hosted by
companies associated with Newfold, we conducted a retroac-
tive analysis of DNS records of a sample of FQDNs. Random
samples were from each ASN as follows: 4096 FQDNs from
Unified Layer, 4028 from Network Solutions, and 3325 from
PDR. As this analysis was done four months after Common
Crawl’s snapshot was compiled, some domains could have
expired or moved to other hosting companies. Thus, we only
selected FQDNs whose first A record14 still pointed to the
respective ASN on which it was hosted before. Then, we

6https://bgp.he.net/
7www.bluehost.com
8https://newfold.com
9https://newfold.com/brands
10Endurance International Group is mentioned in
https://www.hostmonster.com/privacy_policy
11webhostbox.net used as name server[14]
12Endurance I.G. is mentioned in https://www.justhost.com/terms/user-
agreement
13site5.com, owned by web.com
14By firstA record wemean the first record obtained from domain resolution.
While the order may change with every attempt, what mattered to us was
selecting domains that still were using the same hosting provider.

extracted NS records of FQDNs and DNS pointer records
(PTR) of their first A records. If either contained the name
of a company of interest, we considered the FQDNs to be
hosted at that hosting company.
Table 6 presents the results of this analysis. At least 92%

of FQDNs sampled for Unified Layer, 83% of FQDNs from
Network Solutions, and at least 87% of FQDNs on PDR were
found to be hosted with companies associated with Newfold.
This suggests that the ModSecurity configuration is possibly
consistent across all these domains and has been centrally
adopted by the parent company as an anti-bot security mea-
sure.

5.4 Failure percentage
5.4.1 All FQDNs. The graph illustrated in Figure 3 rep-

resents the ECDF of failure percentages across all FQDNs.
It shows that nearly 80% of FQDNs always block Common
Crawl as their failure percentage is recorded at 100%. This
indicates that for this group of FQDNs, all the requests were
rejected immediately, suggesting that crawling behaviour
had not been a factor in the refusal decision.

Figure 3: ECDF of failure percentage per FQDN
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5.4.2 By status code. Table 7, provides the average failure
rate and standard deviation for commonly encountered sta-
tus codes, sorted by FQDN frequency. The table highlights
that status codes 406, 405, 444, 418, 510, and 451 have failure
rates close to 100%, indicating a non-transient nature, while
status codes 430, 555, 500, and 403 have the lowest average
failure rates, indicating a transient refusal pattern for these
codes.
Figure 4 presents an ECDF of failure rate categorized by

status codes. Only status codes with over 1000 FQDNs and
less than 99% failure are included for clarity. Clearly, refusals
with status code 430 (as also seen in the table) have the most
transient refusal behaviour. Nearly 80% of the FQDNs with
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Figure 4: ECDF of failure % per FQDN by status code
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this status code have about 30% of failure or less. Status code
430 is seemingly an unofficial client error specific to Shopify
and is returned by the server to indicate that too many HTTP
requests are being made15. Further analysis confirmed this as
this status error was predominantly associated with Shopify,
and the description of the error also matches the pattern
seen in the graph (transient refusal).

Table 7 shows that code 555 has the second-lowest failure
rate at 33.58%. However, the graph reveals that code 403 has
more FQDNs with less than 33% failure. This is because a
third of all FQDNs with code 403 always refuse, while the
same figure for code 555 is just over 10%. Therefore, exclud-
ing FQDNs with 100% failure, code 403 is more transient.
Another observation is that status code 429 had a 100%

failure rate in 40% of FQDNs, which was unexpected. A closer
look at the data revealed that code 429 was not exclusively
15https://http.dev/430

Table 7: Average and standard deviation of failure per-
centage for top status codes

Code Avg. Failure % Std. Dev. FQDN Count

406 99.76 4.22 557,618
403 39.89 41.70 144,347
429 53.16 43.16 62,418
430 24.38 38.83 24,697
503 70.02 39.86 3,919
405 95.18 20.48 2,558
444 99.24 7.47 1,562
555 33.58 32.31 1,071
401 87.57 27.32 342
500 34.58 44.12 198
418 97.83 13.07 173
510 98.45 9.66 141
451 99.24 8.73 131
400 65.25 46.12 125

Figure 5: ECDF of failure % per FQDN by type
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used for rate limiting. In many FQDNs, it was returned right
away with the first request, which contradicts the behaviour
expected for rate limiting.

5.4.3 By type. Figure 5 shows an ECDF of failure rate
for different refusal types. The "Require JS" category has
the highest failure rate. We attribute it to Common Crawl’s
inability to process JavaScript. The "Block" category has the
second-highest failure rate, largely influenced by FQDNs as-
sociated with the 406 status code from ModSecurity. Notably,
"Checking" and "Other 429s" exhibit a similar failure pattern
across FQDNs and are more transient than other types. The
average and standard deviation for failure rates can be found
in Table A10 of the Appendix.

5.4.4 By reason. Table 8 shows the average failure rate
for each reason for refusal. Geo-blocking has the highest
average failure rate but is not as high as expected. Further
investigation revealed that for certain websites, geo-blocking
messages appear for specific URIs, while other URIs within
the same website successfully load, which leads to a seem-
ingly transient refusal behaviour. The second highest average
failure rate is associated with refusals labelled as IP/ASN rep-
utation. Further investigation into these instances showed
these refusals sometimes resolve when Common Crawl visits
the same FQDN days later, suggesting these refusals could
be triggered by specific public IPs used by Common Crawl,
and changing the IP would potentially resolve them. Finally,
security/malicious refusals are seemingly less persistent than
excessive/suspicious ones, which might be unexpected. Fig-
ure A1 of the Appendix provides an ECDF of failure rate
broken down by refusal reason.

5.4.5 By tag. Table 9 shows the failure rates for different
categories of tags. It seems that FQDNs tagged as ModSe-
curity tend to deny Common Crawl’s access almost all the
time, indicating that the blockage may not be caused by the
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Table 8: Average and standard deviation of failure per-
centage for reasons

Reason Avg. F. % Std. Dev. FQDN No.

Excessive/suspicious 45.65 44.10 89,643
Security/malicious 33.64 40.32 56,295
IP/ASN reputation 56.83 39.43 2,258

Geo-block 87.37 29.45 917

Table 9: Average and standard deviation of failure per-
centage for tags

Tag Avg. F. % Std. Dev. FQDN No.

Modsecurity 99.76 4.19 556,751
Wix 34.10 38.26 56,176

Cloudflare 51.89 43.26 29,411
Shopify 24.38 38.83 24,696

Blogvault/Malcare 30.16 38.75 23,228
Cleantalk 74.92 33.12 3,951
Cloudfront 81.58 37.43 2,869
Wordfence 60.32 43.51 2,215

behaviour of the crawler. To determine whether the user
agent or Amazon’s IP address is triggering the block, we ac-
cessed some of these FQDNs from the University of Twente’s
campus network using "CCBot" as the user agent. In all cases,
the websites returned the same refusal message generated
by ModSecurity. We then retried accessing the same FQDNs,
this time with a real browser-like user agent 16, and all of
them loaded successfully. Further, we tried fetching the same
websites using cURL, and all opened. This suggests that ei-
ther a bot-like user agent is triggering the block or "CCBot"
is specifically blocked.

Except for ModSecurity, other tags seem to evaluate visitor
behaviours before refusing, as their failure rates are not
close to 100%. As mentioned earlier, the figures for Shopify
match those of status code 430 (refer to Table A6), as Shopify
exclusively uses code 430. The ECDF of the failure percentage
by tags can be found in Figure A2 in the Appendix.

5.5 Temporal analysis
In this section, we will analyze how quickly a refusal disap-
pears. It is important to note that since we are only dealing
with transient failures in this section, all figures regarding
the fraction of FQDNs refer to the fraction of FQDNs with a
non-100% failure rate, not the entirety of them.

Figure 6 presents the minimum time from the first failure
to the next success exclusively for FQDNs with a failure rate
below 100%, as noted before. For this graph, we calculated

16Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML,
like Gecko) Chrome/124.0.0.0 Safari/537.36

Figure 6: Minimum T from first failure to next success
(<3600 seconds)
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the minimum duration from an initial failure to the first
subsequent success for each FQDN. These FQDNs are then
grouped together based on this minimum duration. Only in-
stanced with a duration of less than 3600 seconds are shown.
The graph displays peaks at certain intervals, indicating

that there are certain times when large groups of FQDNs
allow access to Common Crawl again. The size of a spike
seen at time T indicates the number of FQDNs that allowed
Common Crawl’s access after T seconds had elapsed since a
refusal. The timing of the spikes is likely related to the back-
off and retry pattern used by Common Crawl. Moreover, the
vertical dispersion of data points around peaks on the graph
suggests that Common Crawl does not reattempt at exactly
the same intervals after seeing a failure.
The graph shows that the largest peaks occur at around

100 and 2900 seconds, meaning that a larger fraction of do-
mains allow Common Crawl access after these intervals. It
is interesting to note that Common Crawl appears to wait
for approximately 100 seconds and makes four retries be-
fore backing off and retrying again after around 700 seconds,
which clearly shows an exponential pattern.

The graph also displays an ECDF, where the right X-axis
represents the cumulative fraction of FQDNs with transient
behaviour. From the graph, we can see that around 85% of
FQDNs with transient refusals are covered within a 3600-
second period. Furthermore, the spikes on the bar graph are
reflected by the jumps in the ECDF.

5.5.1 By status code. The graph displayed in Figure 7
shows the ECDF of the shortest time duration between the
first failure and the next success by refusal status code having
less than 90% failure rate. The graph shows that status code
430, if transient, is the quickest to disappear. Over half of
FQDNswith status code 430 (excluding the 100% failure ones)
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Figure 7: ECDF ofminimumT from first failure to next
success (<3600 seconds) by status code
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Figure 8: ECDF ofminimumT from first failure to next
success (<3600 seconds) by type
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are accessible within 15 minutes from the first failure. Status
code 503 is the second quickest to resolve, and refusals with
status code 555 are found to be the slowest status code to
resolve, where less than 10% of FQDNs with this status code
become accessible after an hour.

5.5.2 By type. The ECDF of the minimum time length
between the first failure and the next success, broken down
by refusal type (those with <90% failure rate), is shown in
Figure 8. Refusals labelled as "block" are seen to take the
longest time to resolve. After one hour, only 20% of domains
with this label allow access. In contrast, "Challenge" FQDNs
are the quickest group to unblock, with half of the domains
successfully fetched after only 15 minutes.

Figure 9: ECDF ofminimumT from first failure to next
success (<3600 seconds) by reason
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5.5.3 By reason. Figure 9 shows that transient geo-block
refusals are often resolved quickly, and nearly 80% of them
are resolved within 1000 seconds. This could be due to geo-
blocks specific to certain website paths, as discussed in Sec-
tion 5.4. A rather unexpected observation from Figure A1 is
that close to half of FQDNs with transient IP/ASN reputa-
tion refusals become accessible after one hour of the initial
block. This is surprising because, as we will see in Section
5.6, Common Crawl does not visit a single FQDN with more
than one IP over an hour span. There are two possible ex-
planations. First, the IP/ASN reputation messages may not
be generated solely on the basis of the IP used, but rather
excessive hits may also contribute to their occurrence. Sec-
ond, refusals that cite IP/ASN/VPN/Proxy in their refusal
message could be path-specific, where only certain paths of
websites are protected. In such cases, subsequent hits might
fetch unprotected paths and result in successful fetches.

5.5.4 By tag. Figure 10 shows that CloudFront is the
quickest to permit access, with more than half of FQDNs
allowing access after only 500 seconds. Blogvault/Malcare
is the slowest, with less than one-fifth of domains allowing
Common Crawl access after one hour of the first refusal.
Shopify is not the fastest until 500 seconds, yet after one
hour, Shopify has the highest percentage of FQDNs that un-
blocked Common Crawl. Cloudflare is the second slowest,
with just over 60% of domains becoming accessible after an
hour. It is important to note that all the FQDNs considered
for this plot eventually allow access again, although it may
take longer, anywhere between one hour and 14 days.

5.6 Public IP addresses used for crawling
Out of 561M records extracted from the non-200 responses
archive, a total of 1.2M recordswithin 154K FQDNs contained
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Figure 10: ECDF of minimum T from first failure to
next success (<3600 seconds) by tag
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IP addresses belonging to Amazon. As described in Section
4.12, we determined the most frequent IP addresses in terms
of the number of reflecting FQDNs to distinguish between
visitor IPs and other strings, such as version numbers which
still could be mistaken for Amazon IPs. Figure 11 shows
the top candidate IPs (labelled with letters for anonymity)
reflected in page contents. Out of a total of 662 Amazon IPs
found, eighteen have significantly higher frequencies. The
IP with the lowest frequency (3.5.21.16 labelled as U) was
ruled out as it was found to be a version number, while the
rest (twenty items) were actual IP addresses reflected in page
contents. The total number of reflecting FQDNs for each IP
and their prefixes is presented in Table A12 of the Appendix.
According to Common Crawl’s documentation, twenty

AWS EC2 spot instances are used as fetching nodes [10],
which may correspond to the public IP addresses identified.
At first, we assumed that the hostname field (refer to Section
4.2) could be used as a unique identifier for each fetcher host.

Figure 11: Top extracted IPs by number of reflecting
FQDNs
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Figure 12: Heatmap of extracted IPs
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However, we found no one-to-one relationship between the
hostname and the reflected public IP addresses. Therefore,
to understand IP usage patterns, we generated a heatmap,
shown in Figure 12, that shows the frequency of encounter-
ing these addresses in one-hour time slots over 14 days. The
heat map reveals that the sixteen IPs were consistently used
throughout fourteen days. However, two IPs stopped appear-
ing on pages at a certain point in time and were replaced by
two other IPs the following day. This pattern suggests that
each public IP may correspond to a single fetcher node, as
most are used continuously for the entire 14-day period.

Finally, we examined whether IP rotation is used to access
a single FQDN. We found that public IP address changes
occur only in around 0.6% of FQDNs within an hour. Thus,
Common Crawl does not seem to switch its public IP address
for accessing an FQDN within one-hour windows.

5.7 Rest of the records
5.7.1 Non-refusal records. In total, 9.8M records, which

account for 45% of the pruned set, were found to contain
non-refusal contents. A breakdown of the status codes and
labels assigned to the non-refusal records set are given in
Tables A8 and A9 of the Appendix, respectively.

5.7.2 Unlabeled records. We took a random sample of 385
records to estimate the number of missed refusals in the 4.3M
unlabeled records. The frequency of status codes seen in the
entire unlabeled and sampled sets are shown in Figure A3 of
the Appendix.
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We first analyzed the language of the contents in our sam-
ple set and then determined the category of page contents.
Table 10 shows the distribution of content categories broken
down by English and non-English pages. For a detailed break-
down of content language, see Table A11 of the Appendix.

Table 10: FrequencyDistribution of Content Categories
in Sampled Unlabeled Records

Category English Non-English Total Missed

Standard 403 Forbidden 144 0 144 0
Item not found 15 43 58 0
Internal Error 25 27 52 0
General Access Denial 20 20 40 0
Business-specific text 9 16 25 0
Log-in Required 11 11 2 0
Site down/Maintenance 4 7 11 0
Unknown 2 8 10 0
Invalid request format 2 5 7 0
Not Acceptable 0 3 3 0
Explicit Bot refusal 2 1 3 2
Expired Subscription 0 2 2 0
Require JS 2 0 2 2
Challenge 1 1 2 1
CDN Errors 1 0 1 0
Rate-limiting 0 1 1 0
Geo-block 0 1 1 0
Implicit Bot refusal 1 0 1 0

Total 239 146 385 5

Table 10 indicates that the most common pages found in
the sample set were standard 403 forbidden pages in English.
Upon manual inspection, all general access denials were
found to be not exclusively targeting Common Crawl. Also,
none of the URLs containing "Not acceptable" messages was
server-side blocks intended for crawlers.
However, we found three bot refusals in our sample set

that our method had missed: two in English and one in Rus-
sian. A closer inspection revealed that one was present in 514
records with only one FQDN, while the other was found in
4,744 records across 17 FQDNs. This suggests that although
there might be missed refusals, they are likely specific to
particular websites and do not occur frequently enough to
be detected by our method.

We also found two "Require JS" instances in the sample set.
Identifying this type of refusal can be challenging as many
pages contain text about enabling JavaScript as a recom-
mendation and it is hard to distinguish between recommen-
dations and mandatory requirements for accessing website
contents. In addition, our method missed two "Challenge"
pages, one in English and one in Russian. The English cases
were found to be using unusual keywords that our method
did not cover. Furthermore, our approach missed cases such
as one "Rate-limiting" case in Chinese and a "Geo-block" in
French. We also observed an implicit bot refusal where the
website responded with the same format of response when

visited by curl, indicating a user-agent-based blocking being
in place, which was impossible to detect using our method.

In summary, out of 385 records sampled, five (1.3%) could
have been detected assuming an exhaustive Latin alphabet-
based method. Extrapolating the findings to the complete
dataset suggests that about 56,000 refusal records may have
been missed, which would have increased the refusal set
by about 1.63%. Considering refusals in other languages, a
total of nine records (2.33%) were not identified, projecting
to about 101k records and a 3% increase in the size of refusal
records. Although these figures are not insignificant, they
fall within an acceptable margin of error for this scale of data
analysis.

6 DISCUSSION
Our findings indicate that 1.68% of all examined FQDNs dis-
play refusal behaviours. ModSecurity accounts for 1.17% of
these cases, where a few sister hosting companies adopt ag-
gressive anti-bot measures. This observation showcases the
large impact of centralized security measures implemented
by hosting providers and platforms such as Wix, Cloudflare,
and Shopify on crawler visibility.

In addition, the results indicate that a wide range of HTTP
status codes are used to reject crawlers. This variety poses
a challenge for Common Crawl and similar web crawlers,
as there is no standard way to signal refusals consistently
across the web. Notably, the misuse of status code 429 and
the employment of an unofficial 430 code by Shopify exem-
plify the need for clearer, universally accepted standards for
crawler interactions. Such a standard could formulate sta-
tus codes for certain signals, such as asking bots to stop or
proceed at a lower rate.

We also found that about 80% of the refusal cases were not
triggered by crawling behaviour, suggesting that dynamic
crawling behaviour has a less pronounced impact on Com-
mon Crawl’s visibility than its static characteristics, such as
user agent. At least 556K websites (tagged with ModSecu-
rity) would not have blocked Common Crawl had it used
a browser-like user agent, although this would negatively
affect Common Crawl’s good Internet citizenship in identi-
fying itself. An alternative could be for Common Crawl to
negotiate with the hosting companies to allow its bot access.
Our analysis also highlights the potential benefits of em-

ploying IP rotation strategies. The current configuration
of Common Crawl does not support extensive IP rotation
within short intervals for single FQDNs, limiting its ability
to circumvent blocks applied to IP addresses. An alternative
approach could involve distributing requests across differ-
ent fetchers to minimize the probability of being blocked by
leveraging all IP addresses simultaneously for each FQDN.
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Based on our findings, one enhancement for web crawlers,
in general, could be using an adaptive back-off strategy based
on encountered status codes. For instance, immediate halt-
ing of attempts upon encountering status codes prone to
persistent blocks (such as 406, 444, 510, or 451) would avoid
unnecessary resource allocation. Moreover, our analysis of
refusal temporal patterns indicates that domains typically
grant access either shortly after initial denial or after a sig-
nificant delay, around 2900 seconds later. This suggests that
retrying after 100 seconds and then resuming attempts af-
ter a 30-minute interval could be effective. Tailoring this
approach based on specific status codes could potentially
further optimize performance. For instance, shorter back-off
periods could be applied for codes like 430 and 503, while
longer waits may be more suitable for codes like 555 and
403. Additionally, reattempting requests after encountering
transient but slow-disappearing status codes could involve
assigning tasks to different fetcher machines to incorporate
IP rotation into the back-off mechanism. This optimization
maximises resource utilisation and reduces unnecessary load
and retries.

7 LIMITATIONS AND FUTURE RESEARCH
Uneachability level. Web crawlers may fail to access a web-

site due to network-level or application-level unreachability.
Our research focuses on application-level unreachability as
Common Crawl does not record network failures.

Sampling Bias in Common Crawl. Common Crawl’s al-
gorithm for prioritizing domains (Harmonic centrality [10])
may introduce bias in the analysis due to over-representation
of high-ranking domains. Additionally, central domains may
have more records, making it difficult to accurately identify
failure rates for FQDNs with fewer records.

Methodological Constraints. Our method of identifying
refusals requires a manual analysis that concentrates mainly
on messages written in English or related languages. This
approach is not comprehensive as it does not detect refusals
written in other languages, as discussed in Section 5.7.

Content-Based Analysis Limitations. Our analysis was lim-
ited to explicit refusals. However, we came across instances
where the content was blank, but HTTP headers indicated
some form of block. Since our method relied exclusively on
explicit content, we did not consider these cases. There were
also instances where it was difficult to distinguish between
standard access denials and explicit refusals. However, since
verification of these refusals would need live interaction with
the website, we did not take these cases as refusals.

Path-specific refusals. Our method assumes that all paths
of an FQDN exhibit the same refusal behaviour. However,

in some instances, refusals may only happen at a specific
path and not in others. Due to the limited number of records
available for most FQDNs, we were unable to distinguish
paths, as some paths had only one record. Therefore, we as-
sumed that all paths of an FQDN exhibit a consistent refusal
pattern and do not differ, which may not always be the case.

Reasons for Refusals. We assigned a reason tag to each RE
used for refusal to identify the reason behind the refusal
clearly. However, it is possible that the actual reason for the
refusal may differ from what was stated on the website.
In future, employing automated approaches for content

analysis could be advantageous. One approach could be using
Large Language Models (LLMs) or other natural language
processing methods to analyze page contents’ semantics
across various languages. Additionally, incorporating HTTP
header examination in refusal identification could be an im-
provement. Moreover, in cases where the contents or other
indicators, such as HTTP headers, are insufficient to deter-
mine if an access denial is targeted at Common Crawl, con-
ducting active scanning of the URL could be useful to verify
that the refusals Common Crawl faced would not happen
with a crawler that mimics a real browser.

8 CONCLUSION
This study aimed to examine the refusals that the Common
Crawl project encountered while crawling the web. Our
work revealed that 1.68% of Fully Qualified Domain Names
(FQDNs) displayed refusal behaviours, with some large host-
ing providers being a significant contributor. It also revealed
the different shapes and forms of refusal responses used
by websites to deny crawler access. Understanding these
patterns, such as the relationship between status codes and
blocking persistence, can improve crawler efficiency. Ad-
ditionally, the findings show that in the majority of cases,
blocking Common Crawl happens irrespective of its crawl-
ing behaviour, suggesting that refusals are predominantly
triggered by the properties of the crawler.

However, the study has its limitations, particularly in the
methodology adopted for refusal identification, which pri-
marily focuses on analyzing page content semantics. Future
research could leverage natural language processing tech-
niques and consider a broader array of features, including
HTTP headers, to enrich the analysis and understanding of
web access refusals.

Overall, the study provides a deeper understanding of the
refusals faced by web crawlers and highlights the importance
of this knowledge in enhancing the tools essential for inter-
net research and measurement. This study serves as a step
towards optimizing web crawling practices in a constantly
evolving web landscape.
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APPENDIX
Table A1: Description of constructed fields in parsing

Field Name Field Description

fetch_time Record’s timestamp extracted from WARC-
Date

hostname Hostname of machine which generated the
WARC file

WARC-IP-Address IP address of target webserver
WARC-Target-URI URL of the recorded page
status_code HTTP code extracted from raw payload
http_headers HTTP headers extracted from raw payload
html_text Textual contents of the received page
asn AS number of WARC-IP-Address
registered_domain Registered domain extracted from WARC-

Target-URI
fqdn FQDN extracted from WARC-Target-URI.

Figure A1: ECDF of failure percentage per FQDN by
reason
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Figure A2: ECDF of failure percentage per FQDN by tag
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Table A2: Frequency of status codes in pruned set

Status Code Record Count Percentage (%)
403 5,855,588 26.87
410 4,338,335 19.91
500 3,379,744 15.51
503 1,812,300 8.32
406 1,676,200 7.69
400 1,528,691 7.02
401 1,190,637 5.46
429 708,933 3.25
502 343,984 1.58
522 152,643 0.70
430 137,609 0.63
504 116,847 0.54
520 112,555 0.52
402 97,097 0.45
444 41,874 0.19
405 39,872 0.18
409 30,404 0.14
202 30,097 0.14
423 28,483 0.13
521 24,316 0.11
508 14,296 0.07
204 12,850 0.06
412 12,168 0.06
418 7,772 0.04
555 7,506 0.03
Others 89,208 0.41
Total 21,790,009 100.00
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Table A3: Freq. of Types

Type Freq.

block 123
checking 11
challenge 8
require_js 3
(No Type) 2

Table A4: Freq. of Reasons

Reason Freq.

(No Reason) 49
excessive/suspicious 49
security/malicious 33
ip/asn reputation 9
geoblock 7

Table A5: Order of Processing of refusal REs

Order Type Who Reason
1 Block IP Provided
2 Block You Provided
3 Block Request Provided
4 Block IP Not provided
5 Block Not provided Provided
6 Challenge - -
7 Checking - -
8 Block Not provided Not provided
9 Loose REs - -
10 Require_js - -
11 Other 429s - -
12 Non-refusals - -
13 Empty text - -

Figure A3: Frequency of status codes in the unlabeled
set
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Table A6: Frequency of status codes in refusals

Type Records FQDNs

Count Percentage (%) Count Percentage (%)

403 1,296,614 37.80 144,247 18.03
406 1,181,016 34.43 557,610 69.72
429 708,933 20.67 61,911 7.74
430 137,389 4.01 24,696 3.09
503 29,731 0.87 3,907 0.49
202 23,721 0.69 964 0.12
405 17,448 0.51 2,557 0.32
401 10,131 0.30 342 0.04
410 6,433 0.19 67 0.01
400 5,858 0.17 125 0.02
555 5,544 0.16 1,070 0.13
444 3,878 0.11 1,547 0.19
418 998 0.03 173 0.02
493 497 0.01 14 0.00
451 390 0.01 131 0.02
500 354 0.01 197 0.02
510 352 0.01 141 0.02
501 294 0.01 3 0.00
201 216 0.01 40 0.01
424 165 0.00 53 0.01
509 93 0.00 6 0.00
422 83 0.00 2 0.00
508 21 0.00 16 0.00
484 12 0.00 2 0.00
456 11 0.00 2 0.00
420 8 0.00 2 0.00
455 7 0.00 2 0.00
409 5 0.00 2 0.00
502 2 0.00 2 0.00
203 2 0.00 1 0.00
522 1 0.00 1 0.00

Total 3,430,207 100.00 799,833 100.00
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Table A7: Frequency of tags in refusals

Type Records FQDNs

Count Percentage (%) Count Percentage (%)

(None) 1,302,997 37.99 98,124 12.26
Modsecurity 1,177,945 34.34 556,751 69.58
Blogvault/malcare 342,060 9.97 23,228 2.90
Cloudflare 184,387 5.38 29,411 3.68
Wix 167,808 4.89 56,176 7.02
Shopify 137,389 4.01 24,696 3.09
Cloudfront 38,115 1.11 2,869 0.36
Cleantalk 30,089 0.88 3,951 0.49
Wordfence 16,955 0.49 2,215 0.28
Shieldpro 8,634 0.25 878 0.11
Deflect.ca 8,338 0.24 285 0.04
Google 4,550 0.13 76 0.01
Defender 2,932 0.09 320 0.04
Bitninja 2,482 0.07 583 0.07
Wexbo 2,440 0.07 184 0.02
Crowdsec 1,276 0.04 90 0.01
Tiger protect 944 0.03 105 0.01
Zb block 239 0.01 81 0.01
Virusdie 126 0.00 19 0.00
Cachewall 115 0.00 15 0.00
Ninjafirewall 98 0.00 25 0.00
Spamfirewall 89 0.00 25 0.00
Link11 42 0.00 4 0.00
Cidram 36 0.00 8 0.00
Zero spam 35 0.00 6 0.00
Blockscript 34 0.00 7 0.00
Security pro 27 0.00 3 0.00
Sysadminok 14 0.00 0 0.00
Aapenal 11 0.00 4 0.00

Total 3,430,207 100.00 800,139 100.00

Table A8: Frequency of status codes in non-refusals

Status Code Record Count Percentage (%)
410 2,533,661 25.81
500 1,815,199 18.49
503 1,388,313 14.14
400 1,237,856 12.61
403 932,536 9.50
401 674,589 6.87
406 381,823 3.89
502 309,285 3.15
522 152,342 1.55
520 112,210 1.14
504 89,158 0.91
402 74,727 0.76
409 23,467 0.24
423 23,135 0.24
521 22,566 0.23
508 13,837 0.14
523 6,877 0.07
525 4,785 0.05
526 3,564 0.04
405 2,998 0.03
424 2,306 0.02
414 1,631 0.02
905 1,359 0.01
530 1,060 0.01
451 1,009 0.01
Others 7,585 0.08
Total 9,817,878 100.00
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Table A9: Frequency of Non-refusal Labels with Descriptions

Description RE count Record Count Percentage

Internal/application/server errors 45 2,200,717 22.42
Not existing page/resource/etc. 11 1,914,100 19.50
High-frequency keywords irrelevant to refusal 22 1,359,222 13.84
such as “skip to contents”,
“forgot your password”,
“please renew your subscription”
Invalid request, invalid link, bad request, etc. 7 944,237 9.62
Page or post being removed or deleted, etc. 15 877,183 8.93
Need for authentication, login, etc. 15 711,936 7.25
Path- or resource-specific forbidden messages 16 512,973 5.22
Service unavailable, maintenance, etc. 7 437,080 4.45
Cloudflare error pages 18 338,878 3.45
Bad gateway errors 3 291,976 2.97
Not acceptable errors 3 151,088 1.54
CDN-related errors 5 58,972 0.60
such as "unable to reach the origin server"
Payment required errors 1 17,614 0.18
Censorship-related (such as Russian censorship) 6 1,158 0.01
Bandwidth limit exceeded errors 1 744 0.01

Total 175 9,817,878 100.00

Table A10: Average and standard deviation of failure percentage for types

Type Avg. Failure % Std. Dev. FQDN Count

Block 84.26 34.14 739,728
Other 429s 60.16 42.8 30,525
Checking 60.71 42.88 23,062
Challenge 79.80 37.73 5,006
Require Js 96.48 15.68 1,888

Table A11: Frequency Distribution of Content Languages in Sampled Unlabeled Records

Language Count Each Count Total

English 239 239
German 28 28
Chinese 18 18
French, Russian 15 30
Spanish 12 12
Italian 8 8
Japanese, Dutch 7 14
Korean, Czech, Unknown 4 12
Turkish 3 3
Arabic, Catalan, Estonian, Vietnamese,
Romanian, Polish, Bulgarian 2 14
Portuguese, Swedish, Thai, Basque,
Persian, Croatian, Lithuanian 1 7

Total - 385
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Table A12: Candidates for Common Crawl’s public IPs, their prefixes and number of reflecting FQDNs

IP Label Prefix No. of reflecting FQDNs

A 3.224.0.0/12 11495
B 44.192.0.0/11 11474
C 35.168.0.0/13 11471
D 3.224.0.0/12 11310
E 3.80.0.0/12 11132
F 3.224.0.0/12 11109
G 34.224.0.0/12 11084
H 3.224.0.0/12 11082
I 44.192.0.0/11 11055
J 35.168.0.0/13 11041
K 44.192.0.0/11 11037
L 18.204.0.0/14 10946
M 34.224.0.0/12 10901
N 18.204.0.0/14 10892
O 18.204.0.0/14 10836
P 18.204.0.0/14 10459
Q 18.204.0.0/14 9561
R 44.192.0.0/11 9272
S 35.168.0.0/13 507
T 44.192.0.0/11 464
U 3.5.21.0/24 212
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