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Optimizing geriatric care capacity from a system
perspective

By A. E. Beursgens
April 26, 2024

Abstract

Driven by the enormous costs of bed-blocking days in hospitals, this research develops mathematical models
to determine the optimal capacity of the Verpleeg-, Verzorgingshuizen en Thuiszorg (VVT) organisations in
the region of Enschede. Bed-blocking occurs when a patient is ready to leave the hospital, but appropriate
care in the geriatric aftercare institutions is not immediately available. The optimal capacity minimizes the
total costs of bed-blocking days, unused VVT beds and used VVT beds, in which the financial objectives of
the hospital and the VVT are combined. The situation is modelled as an overflow system with immediate call
packing. In addition to the formula for the exponential call packing system by Van Dijk and Schilstra (2022),
approximations for a call packing system with general service times are studied. In addition to a stationary
analysis, a time dependent analysis based on the Modified Offered Load approximation is performed as well.
The performance measures obtained from the queueing analysis are the input to the optimization phase.
A Mixed Integer Program is introduced which allows the time dependent behaviour of the capacity to be
constrained. Moreover, possible interactions between the capacities of multiple VVT types are considered,
like shared capacity. A simulation is used to evaluate the performance of the outcomes of the mathematical
models. A numerical analysis is performed based on the data of the geriatric rehabilitation care division of
a VVT organisation. The optimal capacity is shown to decrease when the time in overflow contributes more
to a reduction in the residual length of stay in the VVT organisation. Moreover, it is influenced by the ratio
between the cost of an overflow bed and the cost of an unused bed. The mathematical models and choice of
financial objective function allow for a comparison between two situations: the situation in which the VVT
organisations individually decide on their capacity and the situation in which the financial incentives of the
hospital are taken into account as well. The results suggest that cooperation between the hospital and the
VVT would be beneficial and that it would be reasonable to compensate the VVT organisations for increasing
their capacity.
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Management summary

Driven by the enormous costs of bed-blocking days in hospitals, this research has developed mathematical mod-
els to determine the optimal capacity of the Verpleeg-, Verzorgingshuizen en Thuiszorg (VVT) organisations
in the region of Enschede.

Context
Elderly people who are ready to leave the hospital often need a form of additional (after) care. Depending on
their situation, they can go home to receive care there or they should move to, for example, a nursing home.
In the Netherlands, the collective name for all care concerning elderly people who cannot live on their own
anymore is the VVT (Verpleeg- en Verzorgingshuizen en Thuiszorg). When appropriate care in the VVT is not
immediately available, the elderly people need to stay at the hospital until the appropriate care is available.
During this time, they block a hospital bed that could otherwise be used to treat new patients. The (limited)
capacity of VVT organisations thus influences the number of so-called bed-blocking days.

Modelling approach
In this research, mathematical models are developed to determine the optimal capacity of aftercare institutions.
Optimal is here defined as minimizing the total costs of bed-blocking days, unused VVT beds and used VVT
beds. The financial objectives of the hospital and the VVT are combined, that is, a system perspective is
used. This research is performed on a strategic and tactical level. The mathematical analysis is based on
average performance measures. The performances of the outcomes of these analytical models are evaluated
using a simulation model. The results can serve as guidelines for the average capacity that should be available
and show possible daily adaptations to the capacity level based on the predictable fluctuations in the arrival
process.

Results
A numerical analysis is performed based on the data of the geriatric rehabilitation care division of a VVT
organisation. The optimal stationary capacity ranges between 30 and 27 for this care division under the used
parameter values. A capacity of 30 would be optimal if the time waiting in the hospital would not contribute
to a reduction in the residual length of stay in the VVT organisation, whereas a capacity of 27 would be
optimal if it would make no difference to the patients’ length of stay whether they are in a hospital bed or a
VVT bed. The optimal capacity is influenced by the ratio between the cost of an overflow bed and the cost
of an unused bed: a relative increase in the cost of an overflow bed means a higher optimal capacity, while a
relative increase in the cost of an unused bed results in a lower optimal capacity.

The data showed that the number of patients arriving on weekdays is around three to six times higher
than on Saturdays and Sundays, respectively. To benefit from this predictable variation in the daily number
of arrivals, a time dependent capacity is considered. The fewer arrivals on Saturday and Sunday relate to
a lower capacity on Wednesday, so there is a shift between the dips and peaks in the arrival process and
those in the daily capacity level. Due to the quickly varying number of arrivals per day, varying the capacity
over the week is only beneficial when the cost of changing capacity is rather low. The downside of a time
dependent capacity is that a decrease in capacity may be planned while all beds are occupied. Depending on
how undesired the resulting overbeds are, the monetary benefits of allowing the capacity to vary over the week
might be outweighed by the robustness of a stationary capacity.

The mathematical models and choice of financial objective function allowed for a comparison between two
situations: the situation in which the VVT organisations individually decide on their capacity and the situation
in which the financial incentives of the hospital are taken into account as well. For the used parameter settings,
the optimal stationary capacity in the first situation is 19, while the optimal stationary capacity from a system
perspective would be 29. The costs for the system would decrease from 6446 euros per day in the first situation
to 812 euros per day in the second situation and the expected number of bed-blocking days would decrease
from 17.71 days to 0.81 days. On the other hand, the costs for the VVT are expected to increase by 688
euros. Although the precise values heavily depend on the parameters that are chosen, they serve to illustrate
the difference between the two situations. These results clearly suggest that cooperation between the hospital
and the VVT would be beneficial and that it would be reasonable to compensate the VVT organisations for
increasing their capacity.
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1 INTRODUCTION

1 Introduction

The title of an analysis by a Dutch national newspaper de Volkskrant from October 2023 is clear: Elderly
care can no longer be ignored [71]. The analysis shows that the costs of elderly care are skyrocketing and
the waiting list for nursing homes continues to grow. Meanwhile, the minister voor Langdurige Zorg en Sport
(minister of Long Term Care and Sport) published in 2022 a vision in which they want to freeze the number
of beds in the nursing homes [54]. In a report of the Nederlandse Zorgautoriteit (2023), an independent Dutch
governing body that monitors the Dutch healthcare system, also from October 2023, it was concluded that the
way the long-term care is currently organized can not be maintained much longer, partly in response to this
freeze. A very recent article in the Tubantia, the regional newspaper of the eastern part of the Netherlands,
revives the discussion about the decision to freeze the number of beds as two of the main hospitals of region
Twente appear to miss out on almost nine thousand euros daily due to patients needing to wait in the hospital
for a place in geriatric care [45]. Only in these two hospitals, there are on average sixteen patients per day
unnecessarily in the hospital since they are waiting for their geriatric care. In a succeeding article, a politician
says that the decision to freeze the number of nursing home beds will lead to higher healthcare costs and he
urges to find out how many beds there should be to prevent blocking the outflow from the hospital [69].

This research aims to develop mathematical models to determine the optimal capacity of the Verpleeg-,
Verzorgingshuizen en Thuiszorg (VVT) organisations in the region of Enschede, but the models could be
applied to all kinds of aftercare situations. The VVT organisations provide care for the elderly, both in the
form of nursing homes or geriatric facilities as well as home care for elderly people who can still live on their
own. Since this research is applied to the Dutch health care system, we will use the corresponding Dutch
naming, or abbreviation, in the remainder of this report. The use of the mathematical models is illustrated
by a numerical analysis of one type of VVT care in one organisation, due to limited data available. This
research is performed on a strategic and tactical level. The analysis is based on the long-run behaviour of the
system and the results could therefore serve as guidelines for the average capacity that should be available
and the predictable possible weekly fluctuations. This is in contrast to operational planning, which concerns
day-to-day decisions on the staffing of the beds which is highly determined by short-term fluctuations.

As the news article [45] mentioned, elderly people need to wait in the hospital until they can go to a bed in
the VVT. These bed blocking days cost the hospital a lot of money since they can not use the blocked bed for
new patients. The hospital receives a fixed amount of money per care request [2] and thus benefits financially
from optimizing its throughput. The VVT, on the other hand, gets money for the occupancy level [6], which is
particularly high if the capacity is close to the demand which in turn causes high waiting times. From a financial
perspective, the VVT has little incentive to change the current situation, while the hospital might be willing to
pay money to solve the bed-blocking problem. Therefore, this research will act as if the hospital and VVT are
shared problem owners with their combined financial situation. Since not only bed blocking but also unused
capacity can cost a lot of money, the desired optimal capacity will be the capacity that minimizes the total
combined costs of bed blocking and unused VVT beds. Although a financial objective is used to determine the
optimal capacity, the resulting system will also be an improvement from the perspective of care provision since
a decrease in the number of bed-blocking days is expected as hospital beds are more expensive than VVT beds.

To compare the performance of several capacity levels in the VVT, an objective function will be set up
and expressions for the necessary performance measures will be derived. The derivation of the performance
measures, being the mean number of patients in the queue for the VVT and the mean number of unused
VVT beds, will be based on an overflow system with call packing. Since the steady state distribution of this
system is only in a convenient form for exponentially distributed service times, and since the infinite server
system is a special boundary case of the call packing system, an Adapted Service Time Approach is introduced
for the infinite server system. The adapted service time is the fixed point of a system of two equations,
for which existence and uniqueness are proven. We conjecture, and numerically substantiate, that an infinite
server system with this adapted service time provides a stricter insensitive lower bound on the mean number of
patients in an overflow system with call packing than the unadapted infinite server system. No such insensitive
bound on the call packing system could be found in literature before.

Next to a stationary analysis, time dependent capacity is considered in the case of a time-dependent arrival
process. The performance measures for the infinite server system are made time dependent by using the time
dependent offered load. This time dependent offered load is also used to replace the stationary load in the
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1 INTRODUCTION

formulas for the exponential call packing system. Such a Modified Offered Load approximation simplifies
the time dependent capacity decision significantly as the values of the performance measures, and thus the
objective function, only depend on the choice of capacity at that time point. To determine the optimal time
dependent capacity, a Mixed Integer Program will be introduced. Optimization via a Mixed Integer Program
enables us both to incorporate constraints on the time dependent behaviour of the capacity as well as to study
shared capacity or relabeling of beds between different types of patients. Using a Mixed Integer Program to
solve the time dependent staffing problem adds to the theory on this topic as it offers more possibilities than
the commonly used squared staffing rule.

With data from a VVT organisation, a numerical analysis based on these analytical models is performed.
Since the real situation could not be captured exactly in the analytical analysis, the capacities obtained with the
analytical analysis are verified with a simulation and compared to the costs of neighbouring capacity solutions.

This report is structured as follows. First, results from the field of queueing theory are explained in Section
2, both for the stationary as well as the time dependent case. Theory on specifically time dependent staffing
is discussed and the contributions of this research to the existing theory are stated. Moreover, the structure
of the VVT and its financials are explained in more depth. Then, the models for the analytic analysis are
explained in Section 3. This section consists of two parts. In Section 3.1, the situation is modelled as an
overflow system and the necessary performance measures are derived. Moreover, the Adapted Service Time
approach is introduced and theoretically founded. Section 3.2 covers the optimization part by constructing
an objective function and introducing the Mixed Integer Program and several possible constraints. The data
for the numerical analysis and the parameter estimation from the data is explained in Section 4. The results
from the numerical analysis are discussed in Section 5. This section also contains a simulation study and
compares the simulation outcomes to the analytic results. Limitations and possibilities for further research
are finally stated in Section 6. Section 7 concludes this report by giving the highlights of this research and
recommendations based on the results of this research.
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2 THEORETICAL BACKGROUND

2 Theoretical Background

In this section several concepts and results from the field of queueing theory are gathered that will form the
basis for the discussions and derivations in Section 3.1. The first part of this section discusses the well-known
infinite server model (Section 2.1.1) and finite server model (Section 2.1.2). The formulas for these models
can be found in most textbooks on queuing theory, for example, Shortle et al. (2018) and Adan and Resing
(2015). Then, results for the less well-known overflow model are given (Section 2.1.3). The topic of the second
part of this section is the concept of time dependence of the arrival process. An overview of results for a time
dependent arrival process is given, both for the case of infinite servers (Section 2.2.1) and a finite number of
servers (Section 2.2.2). The application to staffing is kept in mind while writing the latter but is also explicitly
discussed in Section 2.3. The contribution of this research to the existing theory is discussed in Sections 2.1.4
and 2.3.5 for the stationary case and the time dependent case, respectively. The last part of this section
(Section 2.4) covers different types of the VVT and its financial incentives.

2.1 Stationary models

2.1.1 Infinite server models

Infinite server models are considered easy models to analyse because the infinite availability of resources leads
to independence between all individuals in the system. It is well-known that the steady-state distribution of
the number of customers in an infinite server model with Poisson arrivals happening at rate λ and general
service distribution (M/G/∞) with mean E[S] = 1

µ is Poisson distributed with mean ρ = λE[S] = λ
µ , that is,

π(n) =
ρn

n!
e−ρ. (1)

A derivation of this formula can be found in textbooks on Queueing Theory, among which Section 6.2.2. of
Shortle et al. (2018).

Although most real-life systems have a finite number of resources, which leads to interesting concepts such
as waiting and blocking, infinite server models can be of great use when analysing these systems. Several
useful applications of the infinite server model are listed in Whitt (2012) and Whitt (2017). In general, infinite
server models can serve as remarkably good approximations of multiserver queueing systems. For systems with
time dependent arrival rates, infinite server models can furthermore give important insights into the global
behaviour or physics of the corresponding multiserver models. In such systems, infinite server models form the
basis for the analysis of the offered load, which is the load of the system when no waiting or blocking would
take place. The latter, Whitt (2017) states to be ‘arguably of greatest importance’ and will be explained in
Section 2.2.2.

A recent review of the applications of infinite server models in healthcare is given in Worthington et al.
(2020) for both time-homogeneous and time-inhomogeneous models. Time-homogeneous, or stationary, infinite
server models are often used to analyse capacity issues. A common approach to approximate the steady-state
blocking probability, that is, the probability a patient is blocked due to all beds being full, is by simply
truncating the steady-state distribution of the number of patients in the system for the equivalent infinite
server system.

The strength and popularity of the infinite server model lie in its simplicity. By using infinite server
models, we deliberately do not model what might happen after exceeding capacity which could overcomplicate
the model and hinder the understanding of the global process, as argued by Gallivan et al. (2002). Exactly
this property is the reason why Worthington et al. (2020) sees great usefulness of the infinite server model
as the low fidelity model for multi-fidelity modelling. Multi-fidelity modelling exploits the benefit of the low
computational cost of a low fidelity model by narrowing down the solution space of interest such that the higher
computational costs of a high fidelity model are partly circumvented, while still being able to obtain a solution
with high accuracy. Multi-fidelity modelling can be applied in queueing theory by having an analytical (infinite
server) model as low fidelity model to obtain a rough guess for the optimal capacity, and a simulation model as
high fidelity model to analyse the system for capacities ranging around the capacity obtained by the analytical
model. One of the most important challenges of multi-fidelity modelling is that well (and bad) performing
solutions in the low fidelity model should also perform well (and bad) in the high fidelity model. Since infinite
server models behave the same as their corresponding finite server model until capacity is reached, and since
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2 THEORETICAL BACKGROUND

when looking for optimal capacity the number of times capacity is exceeded should be limited, the required
relation between the infinite model and the more complex simulation is likely to hold.

2.1.2 Finite server model

As stated above, most real systems do not have infinite capacity, but a finite capacity c. The offered load ρ is
then commonly defined as ρ = λ

cµ . Unfortunately, the insensitivity property of the infinite server system does
not hold for a system with a finite number of servers and infinite waiting room, that is, the distribution of the
service time influences its steady state distribution. An exact formula for the steady-state distribution is only
available for the case of an exponential service distribution (M/M/c/∞),

π(n) =

{
(cρ)n

n! π(0), n ≤ c

ρ(n−c) (cρ)
c

c! π(0), n > c,
(2)

where π(0) follows from normalization, π(0) =
(∑c−1

n=0
(cρ)n

n! + 1
1−ρ

(cρ)c

c!

)−1.
The blocking probability in a M/G/c/c queue, B(c, cρ), defined as

B(c, cρ) =
(cρ)c/c!∑c−1

n=0(cρ)
n/n! + (cρ)c/c!

,

for which the recurrence relation
B(c, cρ) =

ρB(c− 1, cρ)

c+ ρB(c− 1, cρ)
, (3)

holds with initialization B(0, ρ) = 1, can be used to obtain a recursive equation for the delay probability in a
M/M/c/∞ queue,

ΠW =

∞∑
k=0

π(c+ k) =
ρB(c− 1, cρ)

1− ρ+ ρB(c− 1, cρ)
, (4)

which appears to be quite useful when determining the mean queue length in Section 3.1.1.

The results for this special case of exponentially distributed service times can be used to approximate the
mean waiting time and the mean number of people in the queue for general service time distributions by
multiplying the value of the corresponding performance measure for M/M/c/∞ with 1+C2

S

2 , where C2
S = σ2

µ2

is the squared coefficient of variation of the service time distribution,

E[L(M/G/c)
q ] ≈ 1 + C2

S

2
E[L(M/M/c)

q ]. (5)

Whitt (2009) states that this use of the Kingsman’s formula or this Allen-Culleen approximation usually yields
an excellent heavy-traffic approximation and is exact for c = 1.

2.1.3 Overflow system with call packing

The study of overflow models has its roots in telecommunication and more specifically circuit switched net-
works. In this application area, the overflow process known as grading is important: there are two independent
arrival streams to two finite server queues, where arrivals to the first queue who find all servers busy are of-
fered to the second queue (overflow). According to Hordijk and Ridder (1987), no closed form expressions
exist for general service time distribution. Several papers, e.g. Hordijk and Ridder (1987), van Dijk (1987)
and Van Dijk and Van Der Sluis (2009), therefore study insensitive lower and upper bounds to this system.
One of the main product form modifications, i.e. modifying the system in such a way that the steady-state
distribution has a product form by ‘repairing’ the initial violation of local balance, is known in teletraffic
literature as call packing. In a call packing system, an overflowed type 1 call is switched back (repacked) to
the first queue once a server at that queue becomes available. Although the main references for call packing
used in this paper, use call packing as an approximation or bound, call packing on its own is in this research
of practical use.

8
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Van Dijk and Schilstra (2022) overcome an important shortcoming of earlier research by enabling the
service rate of overflow jobs and type two jobs at the second station to be different. They prove the product
form formula for the steady-state distribution of a two-station overflow model with immediate call packing,

π(n1, n2,m) = CF (m)
∏
i=1,2

1

ni!

(λi
µi

)ni

, with (6)

F (m) =

{
λm1 /

∏m
k=1(N1µ1 + kγ) m > 0

1 m = 0

where ni ≤ Ni are the number of (non-overflow) jobs in station i, m the number of overflow jobs, µi and γ the
service rates of the type i jobs at station i and overflow jobs at station 2 respectively, and C the normalization
constant. For non-exponential service times with unequal service rates, their simulation results show that
there is no strict insensitivity and thus no product form solution. This formula thus does not hold for general
service times.

Van Dijk and Schilstra (2022) note that in case of non-exponential service times, the (residual) service
time at the first station in the case of repacking can be determined in two ways: the service can be resumed
or resampled. In the case of the latter the service completely starts over, while in the case of the first, the
‘residual service time’ at the first station is the service time that was left at the moment of repacking multiplied
with a factor γ

µ to account for the difference in service speed.
Even though overflow models were developed for telecommunication, the idea that a person is (temporarily)

served by an auxiliary facility when the primary service facility is congested and the corresponding mathemat-
ical modelling can also be applied to health care as pointed out by Litvak et al. (2008). Although the use of
the terms ‘call packing’ and ’repack’ give a detached feeling when used for the transfer of patients in health
care in the authors’ opinion, we will keep using them throughout this paper as it is the common term in the
mathematical theory of overflow system.

2.1.4 Contribution of this research

Since the overflow system with call packing has a product form solution, its main appearance in literature is
its use to approximate the grading overflow system. Little research could be found that has the callpacking
system itself as the main focus. This research concerns a real-life situation that can be modelled directly as a
call packing system, showing a practical use of the call packing system.

Van Dijk and Schilstra (2022) showed that in the case of distinct service rates for overflow jobs and the
other jobs, the product form solution only holds for exponential service times. To the best of our knowledge,
no literature has been published on how this call packing system with distinct service time itself can be
approximated or bounded analytically for general service times, other than of course by the exponential
product form formula. This research makes the first step to fill this literature gap.

2.2 Time dependence
A lot of the research on queueing theory, and especially textbooks, (only) treats the case of a stationary
arrival process. However, in reality, it is quite common that the arrival intensity varies over time; think of
rush hours on the highway or seasonal influences on ice cream sales. In various hospital departments, the
demand is shown to depend on the time-of-day and the day-of-week, with in general a difference between
weekdays and weekends, as remarked by, among others, Green (2006) and de Bruin et al. (2007). Since time
dependency in the arrival process causes a predictable variability in the arrival pattern, it is beneficial, even
crucial, to take this time dependency into account when determining the capacity, especially when flexible
capacity is considered. Several studies have already been performed on the impact of time dependency of the
arrival pattern on the system performance and capacity as listed by Bekker and de Bruin (2010). According
to Massey (2002), one of the only textbooks that devote a complete chapter to non-stationary queues is Hall
(1990). A reader interested in more extensive reading on the basics of the topic of non-stationary arrivals
is therefore referred to Section 6 of that book. An extensive survey and classification of the literature on
single-stage queueing systems with time dependent parameters is given by Schwarz et al. (2016).
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2.2.1 Infinite server system

If the arrival rate at time t is a function of t, λ(t), a non-homogeneous Poisson process is obtained. In Section
5.4 of Ross (2007) it is proven that every non-homogeneous Poisson process, with a bounded intensity function,
can be thought of as being a time sampling of a Poisson process. That is, an arrival at time t occurring in a
Poisson process with rate λ is counted with probability p(t). With this characterisation in mind, the reader
might not be surprised that the number of customers in a time dependent M(t)/G/∞ system, N(t), follows
a Poisson distribution just like the stationary variant. Already around the middle of the previous century, it
was shown by Palm (1943) and A.Ya.Khinchine (1955) that N(t) has a Poisson distribution with mean m(t),
where m(t) depends on the arrival rate function λ(t) and the service time distribution. These and more basic
results for the M(t)/G/∞ are summarized in Theorem 1 of Eick et al. (1993), among which the fact that, for
each t, N(t) has a Poisson distribution with mean

m(t) = E[

∫ t

t−S
λ(u)du] = E[λ(t− Se)]E[S], (7)

where S is a random variable for the service time and Se is a random variable for the associated stationary-
excess or equilibrium-residual lifetime. The underlying assumptions are that the M(t)/G/∞ system started
empty at t = −∞ and that the arrival rate function is non-negative, measurable, and integrable over any
bounded interval. These assumptions will hold throughout this report as well. Given the cumulative dis-
tribution function G(t) of the service times, the equilibrium-residual lifetime has a cumulative distribution
function

Ge(t) = P (Se ≤ t) =
1

E[S]

∫ t

0

1−G(u)du, t ≥ 0.

Using this definition in formula (7) yields an often given third expression for m(t), as in formula (2.2) in
Feldman et al. (2008) and in formula (4.1) in Green et al. (2007), or stated differently in formula (3) in Bekker
and de Bruin (2010),

m(t) =

∫ t

−∞
(1−G(t− u))λ(u)du =

∫ ∞

0

(1−G(v))λ(t− v)dv. (8)

Each of the three expressions for m(t) has its own interpretation as clearly described in Section 4.2 of Green
et al. (2007).

Moreover, the moments of Se can be expressed via the moments of S via

E[Ske ] =
E[Sk+1]

(k + 1)E[S]
, k ≥ 1. (9)

The mean residual service time is thus given by E[Se] =
E[S2]
2E[S] = E[S]

c2S+1
2 , where c2S = V ar(S)

E[S]2 is the squared
coefficient of variation of the service time. So, for a squared coefficient close to 1, the mean residual service time
is close to the mean service time. This observation is in line with the theory of the exponential distribution;
the exponential distribution has a c2S of one and due to the memoryless property the residual service time
indeed equals the complete service time.

It should be clear to the reader that the time-dependent infinite server queue is not insensitive anymore,
since the offered load m(t) depends on the (residual) service time through more than only its mean.

Simplified expressions for offered load for specific arrival rate functions

For specific arrival rate functions, the offered load m(t) can be calculated more straight-forward, avoiding the
integral definition (8). Eick et al. (1993, 2000) derive several simple formulas for m(t) in case the arrival rate
function is quadratic, the step function or a spike function and a sinusoidal function, respectively. The spike
function may not be interesting on its own, but in combination with theorem 8 of Eick et al. (1993), which
broadly says that a linear decomposition of λ(t) is inherited by m(t), it enables us to model traffic surges
and piecewise constant (approximations of general) arrival rate functions. Analysis with piecewise constant
arrival rate functions appears to be quite useful since λ(t) is often estimated through counting the arrivals
over short intervals as noted by Hall (1990). Due to the flexibility and tractability that this choice of arrival
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rate function offers, Bekker and de Bruin (2010) assume a piecewise constant arrival rate function. They note
that a sinusoidal function fails to cover cyclic periods that do not have some kind of symmetry, which makes
it hard to cover the weekday-weekend pattern often observed in healthcare applications. To model such a
weekday-weekend pattern, the cycle length of one periodic cycle is seven days which could be divided into
seven intervals (a daily arrival rate) or two intervals (working days and weekends) in which the arrival rate is
said to be constant. Bekker and de Bruin derive a convenient closed-form expression for the time-dependent
offered load in case of a hyper exponential service time distribution (a mixture of k exponentials with rates
µk).

Approximations for offered load

In case no simple expression for the time-dependent offered load exists and the integral definition 8 is not
desired or can not be solved satisfactorily, several approximations for the offered load are available. First
of all, it is important to realise that the (time dependent) offered load m(t) is defined by formula 7 and
does in general not equal the instantaneous offered load ρ(t) = λ(t)E[S]. Equality would only hold if the
arrival process would be homogeneous with a constant arrival rate, and therefore the expression λ(t)E[S] is
well-known as the pointwise stationary approximation (PSA) for m(t). Feldman et al. (2008) quantifies the
difference between the PSA offered load and the time dependent offered load m(t),

m(t)− λ(t)E[S] =
1

2
E[λ′(t− (Se)e)]E[S2],

in which (Se)e is a random variable with the twofold stationary-excess cdf (Ge)e. This expression shows that
the PSA offered load λ(t)E[S] will not be a good approximation when the arrival rate varies rapidly in time
(since λ′ will be large) or when the service time has a large variance.

Comparing the PSA to formula 7, the difference is the occurrence of a random time lag in λ(t). As the
time shift is especially important according to Feldman et al. (2008), a better approximation is obtained by
the lagged PSA,

m(t) ≈ λ(t− E[Se])E[S] = λ(t)E[S]− λ′(t)E[S2]

2
, (10)

where the equality follows from relation (9) [24]. Since the time shift depends on the second moment of
the service distribution, Massey (2002) warns that especially service distributions with heavy tails can have
reasonable means but enormous time lag between the peaks in arrivals and in offered load. Whitt (2007)
relates the PSA and the lagged PSA to the three defining equations of the offered load m(t).

The lagged PSA originates from the first-order Taylor-series approximation for the arrival rate function
centred at t. If instead a second-order approximation is used, a more refined approximation is obtained,

m(t) ≈ λ(t− E[Se])E[S] +
λ

′′
(t)

2
V ar(Se)E[S] = λ(t)E[S]− λ

′
(t)E[S2]

2
+
λ

′′
(t)E[S3]

6
, (11)

where the equality again follows from relation (9) [24]. This quadratic approximation contains next to the time
shift also a space shift. As noted by Feldman et al. (2008), the space shift acts as a smoothing operator since
the second derivative λ

′′
is negative at a peak, and thus the behaviour of m(t) will be less extreme than that

of λ(t). This damping property is also noted by Massey (2002) but then concluded from the Fourier transform
of E[N(t)]. According to Green et al. (2007), experience shows that the space shift does not matter much for
service times that are not too long.

In simulation

According to Hall (1990), the interarrival times of a time dependent Poisson process are, in contrast to the
stationary variant, not exponentially distributed anymore. So, one can not simply draw at time t the time
to the next arrival from an exponential distribution with mean λ(t). Instead, we draw candidate interarrival
times from an exponential distribution with mean λ∗ = suptλ(t) and accept these at time t with probability
λ(t)
λ∗ . The working of this method is substantiated by Ross (2007) by the fact that a non-homogeneous Poisson

process actually is a time-sampled Poisson process.
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2.2.2 Finite server system

Time dependent analysis of finite server systems is in general extremely more difficult than the infinite server
case since the number of people in the system is not Poisson distributed anymore. As mentioned before,
Schwarz et al. (2016) contains a clear extensive survey of the literature on single-stage queueing systems
with time dependent parameters. They classify the approaches in three main categories of which the last
two are relevant for this research. One of these two categories contains approaches that assume piecewise
constant parameters. The time horizon is divided into intervals which are studied separately. The two simplest
subgroups of methods assume constant parameters during each interval and apply a steady-state formula to
these parameters; the piecewise stationary models. The first subgroup of models furthermore assumes that
there is no dependence between the intervals. The earlier described PSA is among these methods, just like
the Simple Stationary Approximation (SSA) which used the average arrival rate taken over the complete time
horizon. Jennings et al. (1996) show a specific M(t)/M/s(t) scenario for which these methods perform badly.
They note that the shortcoming of these models is the way the effective arrival rate at time t is determined.
Although one naturally would like to average the arrival rate over an appropriate interval before time t,
the PSA takes the arrival rate at time t, meaning an interval length of zero, while the Simple Stationary
Approximation (SSA) uses the long-run average arrival rate, meaning an interval of infinite length. A small
improvement is therefore the Stationary Independent Period-by-Period approximation (SIPP) of Green et al.
(2001) in which the arrival rate is averaged over the according interval. Intuitively, these methods can only
work satisfactorily if the change in the arrival rate function is limited and if there is little build-up of the queue
preventing carry-over of congestion between consecutive intervals. Furthermore, Green et al. (2007) emphasize
the importance of the length of the service times. For middle to long service times, it is important to take
into account the time lag of the offered load by using the lagged refinements of PSA and SIPP in which the
arrival rate is shifted to the right by the mean service time. However, for reasonably long service time, they
advocate using the Modified Offered Load approximation, which will be discussed in more detail below.

The other subgroup of methods is still piecewise stationary but does take into account dependencies between
intervals. In the Stationary Backlog-Carryover approximation (SBC) introduced by Stolletz (2008, 2011), the
queue at the end of one interval is carried over to the succeeding interval by using an appropriately calculated
modified arrival rate.

The last subgroup with piecewise constant parameters studies the transient behaviour within each interval.
In the approaches based on transient models (BOT), as named by Schwarz et al. (2016), the system state at
the end of an interval serves as the initial condition for the transient analysis of the subsequent interval. It
is evident that few publications are available on this topic, and it strikes that the mentioned literature only
considers single-server systems. Although Yoo uses a transient analysis per period to determine the opti-
mal flexible staffing, as summarized and lowerbounded by Assad et al. (1997) and theoretically substantiated
by Michael C. Fu and Wang (2000), this research is not mentioned by Schwarz et al. (2016). Uniformiza-
tion/randomization is a common approximation technique for the transient analysis of a queuing system but
is unfortunately characterized by high computation times [70].

The other category concerns approaches in which the number of servers (or properties of processed jobs)
are modified to obtain approximations for the desired performance measures. From this category, we will focus
on the Modified Offered Load approximation.

Modified Offered Load approximation

In 2.2.1, it was stated that the number of people in an infinite server system is Poisson distributed with a
time dependent mean m(t), for which an exact integral definition (and several simplifications in special cases)
is known. Jagerman (1975) decided in 1974 to use the solution to such an infinite server system to obtain
approximations for several performances of the finite server variant, laying the basis for the Modified Offered
Load (MOL) approximation. With the MOL approach, the time dependent offered load in a non-stationary
system with a finite number of servers is approximated by that of the same system but with an infinite number
of servers, that is, the offered load in a finite server system is ‘modified’ to that of the corresponding infinite
server system. Using this offered load of the infinite server system, an estimation for the desired performance
measures of the finite server system can be calculated. After Massey and Whitt (1994) showed that such
substitution of the infinite server offered load performed well when calculating the blocking probability for
a M(t)/G/c/c, MOL has become a common approach to determine the impact of a time dependent arrival
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process, see for example Bekker and de Bruin (2010). According to Whitt (2007), this approach furthermore
generalizes well to M(t)/GI/st/rt +GI.

2.3 Staffing
So far, several approaches to analyse the performance of (time dependent) queueing systems are discussed.
Although this discussion was done with the application of (time dependent) staffing in mind, this section will
consider staffing in specific. A review of the use of time dependent queueing models for staffing decisions in
service systems can be found in e.g. Feldman et al. (2008) Green et al. (2007) and Whitt (2007).

2.3.1 Staffing based on steady-state analyis

First of all, Green et al. (2001) mentions several scenarios in which stationary staffing over the time horizon
could be inappropriate, among which healthcare settings with long service times. The convenience of then
using a piecewise stationary approach, like SIPP, to determine staffing levels is that a time dependent staffing
problem is reduced to a series of independent staffing problems for stationary models, according to Green et al.
(2007). However, as mentioned before, several authors showed that MOL outperforms piecewise stationary
methods for time dependent staffing, among which Jennings et al. (1996) and Green et al. (2007). For situations
in which SSA, PSA and lagged PSA worked well, the MOL approximation was shown to behave approximately
the same as those methods, while it performed significantly better in situations with longer service times. This
should not be surprising as Thompson (1993) points out that with the piecewise stationary methods patients
arriving towards the end of an interval are not taken into account in the next interval, while it is likely that
their service is still continuing (especially with relatively long service times). Since MOL accounts for the time
shift between the arrival process and the offered load, it is taken into account that an arrival can have an
influence on multiple periods.

Square root staffing rule

Halfin and Whitt (1981), and later Jennings et al. (1996) for time dependent staffing, continue on the idea
to approximate a finite server system by an infinite server system by introducing the so-called square root
staffing rule. This square root staffing rule follows directly from the normal distribution by which a Poisson
distribution can be approximated. The rule therefore originates from the observation that the mean number of
busy servers in an infinite server system is Poisson distributed. The time dependent staffing rule is commonly
given as

c(t) = m(t) + β
√
m(t), (12)

where m(t) is the offered load of the infinite server system and β is a parameter reflecting the quality of
service. According to Whitt (2007), experience suggests that an offered load of at least five already suffices
for appropriate use of the square root staffing rule. The Quality of Service parameter β is in most literature
determined based on a target delay probability. To deal with the trade-off between service level and efficiency,
Bekker and de Bruin (2010) mention that β could also be determined with

β =
c∗ − ρ
√
ρ
, (13)

where c∗ is the desired capacity level and ρ is the average offered load over the complete period. Green et al.
(2007) advises β = 2 as a simple rule of thumb to avoid congestion while limiting excessive capacity since β = 2
corresponds to a probability of delay of approximately 0.02. A more involved term to replace β is suggested by
Borst et al. (2004). To obtain from (12) an actual staffing policy, most literature, e.g. Jennings et al. (1996)
and Green et al. (2007), takes at every time t the least integer greater than or equal to the obtained s(t), while
Bekker and de Bruin (2010) round the obtained s(t) to the nearest integer.

Interesting to mention is that Whitt (2007) explains how the time-dependent square root staffing rule can
be useful within simulations. The search over staffing functions, as needed in every iteration of the simulation
based Infinite Server Algorithm (ISA), is improved by limiting the candidate staffing functions to the ones
satisfying the square root staffing rule. Using the service parameter β to range over, results in a one-dimensional
search. The simulation based ISA is introduced by Feldman et al. (2008) for a M(t)/G/s(t)+G system in their
attempt to achieve targeted time-stable performance. They remark that the staffing and performance obtained
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with ISA closely agree with the MOL approach in case of no customer abandonment. Starting with an infinite
server system, they estimate in every iteration for a given staffing function the distribution of the number
of customers in the system at time t by performing multiple independent realisations over the full planning
period. They then use the estimated distribution to determine the staffing function for the next iteration such
that the desired delay probability is met. This iterative process stops when the change in consecutive staffing
function is negligible.

2.3.2 Transient staffing

During the discussion of transient models, we already briefly mentioned that Assad et al. (1997) applies a
transient model to solve a flexible staffing problem. His research is, to the best of our knowledge, one of
the only that perform an analytic transient analysis per period to tackle a time dependent staffing problem.
Buyukkaramikli et al. (2013) note this as well and speculate that the unpopularity of periodic capacity control
might be due to the complexity of the necessary transient queueing behaviour. Nevertheless, Yoo sets up a
finite horizon dynamic program in which the cost function is evaluated every period using a transient analysis.
Due to the transient analysis, it can be studied what the influence of fixing a capacity in a certain period is
on the build-up and spillover of congestion to the next period and thus on the capacity decision.

2.3.3 Using a cost function to determine the staffing level

The best staffing levels are often determined based on a specific performance measure, like the blocking or
delay probability. For example Bekker and de Bruin (2010) and Li et al. (2016) select the minimum capacity
for which a target delay probability is met. Less research focuses on the capacity for which minimal costs are
obtained. Examples that do have the minimization of a cost function as main objective are Jennings et al.
(1997) and Zychlinski et al. (2020). Zychlinski et al. (2020) also consider the topic of bed blocking in hospitals
due to scarce capacity in geriatric facilities, especially geriatric institutions. In their analysis, they assume
that there is a single organization that operates both the hospitals as well as the geriatric institutions and they
aim to find the optimal number of beds for each geriatric ward such that the long-term total cost of care is
minimized. This total cost is simply the sum of the underage costs multiplied by the bed shortage and overage
cost multiplied by the bed surplus at every time t integrated over the planning horizon. They describe the
underage cost as ‘the amount that could have been saved if the level of geriatric beds had been increased by
one unit in the event of an underage’ (Section 4, p. 403) and is thus the difference in cost of hospitalization in
the hospital compared to a bed in the geriatric institution, where hospitalization costs also include risk costs
like expected costs for medical deterioration of the patient. Similarly, the overage costs are ‘the amount that
could have been saved if the level of geriatric beds had been reduced by one unit in the event of an overage’
(Section 4, p. 403) and set to the daily cost of having staffed a geriatric bed. The cost components in this
research will be similar to the underage and overage costs of Zychlinski et al. (2020). In addition to these
two cost components, this research will consider profit (negative costs) on used beds to make the financial
incentives of the VVT more apparent. The main difference between this research and Zychlinski et al. (2020)
is how the proxy for the bed shortage, or the number of overflow beds, and the bed surplus, or the number
of unused beds, that appear in the objective function are determined. Zychlinski et al. use a fluid model in
which the hospital is explicitly modelled to capture the blocking effects. We refrain from explicit inclusion of
the hospital, but instead use an overflow model with call packing to incorporate the blocking. The overflow
model allows the time spent in overflow to influence the residual service time in the VVT organisation, which
relation was not present in Zychlinski et al. (2020). Furthermore, Zychlinski et al. (2020) focuse on stationary
capacities that can be reallocated periodically, whereas this research considers time dependent capacity for
which, among other things, the constraint that capacity can only be changed at predetermined time points is
implemented as well.

2.3.4 Practical remarks on the application of staffing results

Most papers on flexible staffing refrain from comments on the practicable feasibility of switching, especially
decreasing, capacity, mostly because practical issues when decreasing capacity are part of operational decisions
while setting capacity guidelines belongs to the tactical, or even strategical, level. Bekker and de Bruin (2010)
do remark that opening and closing beds multiple times during the week may not be desirable so their staffing
results should merely serve as guidelines. They have some more practical relevant observations, like that
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the range between the minimum and the maximum offered load gives an indication of the variability in the
required number of beds. Furthermore, they give the rule of thumb that the fluctuations in arrival rate have
limited impact on the staffing if the average service time exceeds five times the cycle length of the arrival rate
function.

2.3.5 Applicability to and contribution of this research

Due to the lack of literature on transient analysis, the high computational time of transient analysis, and the
fact that there are good alternatives for staffing available, we will address the time dependent staffing problem
in this research by approaches based on steady-state analysis. Because the analytical model should serve as
low fidelity model for multi-fidelity modelling, an approximation in low computational time is preferred. Since
the Modified Offered Load approximation is shown to outperform piecewise stationary methods, the idea of
approximating the offered load at time t by the time dependent offered load of an infinite server system, m(t),
will form the basis for the time dependent staffing analysis. Most research that considers time dependent
staffing based on an infinite server approach, falls back on the time dependent staffing rule. The downside
of the time dependent staffing rule is that the variety of constraints on the time dependent behaviour of the
capacity that can be taken into account is limited. In this research, the infinite server approximation will serve
as input for a Mixed Integer Program such that capacity constraints can be taken into account. Furthermore,
the Modified Offered Load approximation will be applied to the call packing system. The resulting values of
the performance measures will be used in combination with the Mixed Integer Program as well.

2.4 Structure of the VVT
The Verpleeg-, Verzorgingshuizen en Thuiszorg (VVT) organisations provide care for the elderly in the Nether-
lands, both in the form of nursing homes or geriatric facilities as well as home care for elderly people who can
still live on their own. There are several types of care provided by VVT organisations. However, there is no
clear general list of these types of care, and their possible subtypes. The types used in this research are based
on a categorisation made in association with Medisch Spectrum Twente (Medical Spectrum Twente). This led
to the following types: Crisis, ELV High Complexity, ELV Low Complexity, ELV Palliative, GRZ, Hospice,
Psychogeriatric, Somatic, Thuiszorg (Home care). We will restrict ourselves to the three types of ELV, the
GRZ and the three types of WLZ (Hospice, Psychogeriatric and Somatic). This will be discussed in more detail
in the remainder of this section. The information given in this section is mostly based on information that
can be found on the government site of the Dutch National Health Care Institute (Zorginstituut Nederland)
[7], and a meeting that we have had with a finance director of the VVT organisation that provided the data
for the numerical analysis in this research [6].

ELV (eerstelijnsverblijf, a stay in primary care) provides care and housing for patients who can temporarily
not live at home for medical reasons. These patients do not need medical specialistic care. The main focus of
ELV is providing time and space to recover in contrast to intensive therapy [1]. A stay via ELV is in general
short. Care in ELV can either be of low complexity, of high complexity or palliative. The latter focuses on
providing relief from the pain of other symptoms caused by a serious illness.

Just like ELV, GRZ (geriatrische revalidatiezorg, geriatric rehabilitation) provides care and housing in-
tending to help the patient return to their home and participate in society as well as possible. However, the
type of care that GRZ provides differs strongly from the care ELV provides. GRZ provides more complex
care to vulnerable patients who deal with multiple illnesses or handicaps (multimorbidity) and have decreased
learnability. Most patients receive GRZ after they undergo surgery or have been hospitalized for a stroke.

Both the ELV and GRZ are financed from the Zorgverzekeringswet (Health Insurance Act), which everyone
in the Netherlands is legally obliged to take out. However, the coverages are determined in different ways. For
the ELV, there is a fixed maximum coverage per day during the complete stay of the patient, which depends
on the type of ELV care (LC, HC, palliative). In the GRZ, the coverage is specified for each care process. The
realised length of stay of the patient only partially influences the amount of coverage: there is a fixed coverage
for a range of days. For example, for two patients who received GRZ for two and seven days for the same care
request, a VVT organisation gets the same coverage, namely the one corresponding to that care request with
a length of stay of 1-7 days. So, depending on whether the realised length of stay of a patient is in the lower
or upper part of such range, the VVT organisation can make a profit or a loss, respectively. The maximum
coverages by the Zorgverzekeringswet are quite close to the costs that the care organisations make, meaning
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that the profit margin on care that is financed from the Zorgverzekeringswet is rather small.

The three other categories covered in this Section (Hospice, Psychogeriatric and Somatic) are all financed
by the WLZ (Wet Langdurige Zorg, Long-Term Care Act). In this research, we will only refer to the collection
of these types by their financing system WLZ. Patients in the WLZ need 24-hour supervision or care close-by
and they will need this until the end of their lives. The coverage for providing care that is part of the WLZ is
per day. The profit margins on WLZ care are larger than those on ELV and GRZ.

In contrast to most VVT care, hospital care is financed based on performance-based financing (prestatiebekostig-
ing): a hospital gets a fixed amount of money for all care that they provide within one care request. The
amount of money depends on the care request. The billing of such care activities is done via so-called DBCs
(diagnosebehandelcombinaties, diagnosis-treatment combinations). A DBC contains all relevant care activities
for a specific care request, like the diagnosis, treatments and possible follow-ups, as explained in [2]. Hospital
care is in general significantly more costly than VVT care due to, for example, the presence of more advanced
medical equipment and staff and a more complex infrastructure. In case a patient has to stay in the hospital
perforce due to insufficient spots at a WLZ institution, the hospital can get a maximum coverage of 526.01 or
384.20 for each bed blocking day (verkeerde beddag), depending on the type of aftercare, according to Article 7
of [3] by the Nederlandse Zorgautoriteit (NZa). Interesting to note is that this compensation per bed blocking
day is only applicable when the patient is waiting for a spot care financed by the WLZ, and thus not when
they are waiting for a spot in GRZ or ELV. Nevertheless, the use of the NZa prices or DBC prices for valuing
care activities is advised against in Section 3.3 of a report commissioned by the National Health Care Institute
(2024) due to possible influences of macrobudgetting and incomes policy.
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3 Models

In this section, the mathematical models developed to solve the staffing problem at the VVT are discussed.
The first part of this section concerns the derivation of the relevant performance measures for the objective
function, being the mean number of patients in overflow and the mean number of unused beds. This part
(Section 3.1) starts with a detailed description of the situation that is modelled in this research. After that,
several possibilities for stationary models are discussed (Section 3.1.1) and an approximation method for the
call packing model with general service times is introduced (Section 3.1.3). The validity of this method is
theoretically analysed. The second part of this section (Section 3.2) covers the minimization of the cost
function to obtain the optimal capacity. The cost function is explained for both the stationary as well as
time dependent case (Section 3.2.1). To take into account constraints on the time dependent behaviour of the
capacity in the time dependent staffing problem, a Mixed Integer Program is set up and explained (Section
3.2.2).

3.1 Queueing models
After treatment in the hospital, some patients have to go to a VVT institute. However, there may not be a
place in the VVT institute immediately. In that case, the patient stays in the hospital until a spot at the VVT
comes free. During this period of waiting, they block a hospital bed.

Remark 1. We would like to make clear that there is an important difference between the patient blocking a
hospital bed due to limited capacity at the VVT, and the patient being blocked from the VVT from a queueing
theoretical perspective. In queueing theory, the term blocking is namely used to indicate that the patient is
not able to enter the system and therefore leaves the system or, at least, does not wait for their service in the
queue. The latter is not the case in this research, since we assume that all patients who can not enter the VVT
immediately, will keep waiting (queueing) for VVT care, where the queue is situated in the hospital in reality.
To avoid possible confusion about the use of blocking, we will refer to patients not being able to enter VVT as
overflow and the beds they occupy in the hospital in that case as overflow beds.

Since we are only interested in the overflow caused by the VVT and not in the characteristics of the hospital,
and to avoid unnecessary complexity, the hospital will not explicitly be modelled. Although the service and
the waiting take place at two distinct locations (VVT and hospital respectively), the complete ‘VVT model’
will be said to have infinite waiting room where the reader should keep in mind that all patients in the queue
for the VVT in the model occupy in reality a bed in the hospital. An arrival to the VVT refers to a patient at
the hospital being ready to go to the VVT, and it thus does not refer to a patient physically arriving at the
VVT. Although arrivals to the VVT come from the hospital which can influence the arrival process, we will
assume that the arrival process to the VVT is a Poisson process for tractability reasons. This assumption is
checked with the available data in Section 4.

The capacity of all VVT organisations in the neighbourhood is considered to be pooled, where only a
distinction in beds between different types of VVT care is made. The VVT organisations can therefore be
modelled as R parallel VVT stations, one for each type of care. The capacity of a VVT station r will be
denoted by cr being the number of staffed beds. Patients that find all cr beds occupied ‘on arrival’, will wait
in the hospital if they just ended treatment in the hospital or will wait at home if they did not come from
the hospital, i.e. if they were an external arrival. Under the assumption that external arrivals follow the same
arrival and service distribution as arrivals from the hospital, the distinction between an arrival being from
the hospital or external is only relevant for the optimization model. The inclusion of external arrivals will
therefore be discussed more elaborately in Section 3.2.1. We will comment on the validity of the assumptions
in the Discussion.

Due to the assumption of infinite capacity at the hospital, underlying the infinite waiting room for the
‘VVT model’, and the beds for each type of VVT being distinct, different types of VVT patients do not notice
the existence of other types. The system therefore consists of R independent stations with infinite waiting
room. During the remainder of this subsection, the analysis can therefore be limited to a single station.

Remark 2. When stating that the system that we are concerned with has infinite waiting room, we implicitly
assume that the influence of overflow patients on the working of the hospital is negligible. This is approximately
the case if the hospital is sufficiently large and the number of overflow days is small. The latter is reasonable
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when studying the optimal capacity for the VVT organisations. Furthermore, the implicit assumption is made
that the hospital itself is never at its full capacity. In the real world, the finiteness of capacity may come into
play by the fact that elective patients are rejected when there is a lot of overflow from the VVT, which may in
turn result in fewer arrivals later on to the VVT.

In case the mainstream of patients goes to VVT after their current care or if the overflow time is substantial,
the arrival rate to the VVT can not be assumed to be independent of the number of patients in overflow anymore.
In that case, one might want to consider a state-dependent arrival rate to the VVT, or more precisely, an arrival
rate that depends on the total number of patients in the queue. A short overview of an initial analysis of this
case is given in Appendix A.7. Insights from this analysis can be of interest either in practice for a situation as
described above, which might be realistic for flow from one specific VVT type to another, or just for theoretical
purpose on its own, namely conditions for the existence of a product form distribution.

So far, we have narrowed down the modelling of the situation to the analysis of a station with a finite
number of servers and infinite waiting room. However, due to the application area, the time in overflow will
likely have an influence on the ‘service time’ in the VVT. Over time, especially under hospital supervision,
most health statuses will naturally improve, although not as fast as in the presence of specialised VVT care.
One could say that the patient thus receives some sort of service while waiting with a service rate lower than
the service rate at the VVT, but higher than zero.

3.1.1 Overflow model and boundary cases

From a mathematical view, the situation just described is an overflow system with call packing with distinct
service rates between overflow and ‘normal service’. As elaborated on in the theoretical background, Van Dijk
and Schilstra (2022) give a product form solution for the case of exponential service times, see formula (6).
We should remark that in this analysis the call packing is assumed to be immediate, that is, at the moment a
server comes free at the service station, an overflow job, if present, is instantaneously moved from the overflow
station to the service station. As one can imagine, this is not entirely the case in reality due to administrative
and logistical reasons.

Van Dijk and Schilstra (2022) analyse a two-station overflow system. This means that both stations provide
regular service to jobs of their own type (station 1 serves jobs of type I and station 2 serves jobs of type II)
and jobs of type I that arrive when all servers at station 1 are occupied are overflowed to station 2. Thus, the
station to which jobs from the first station overflow serves regular (type II) jobs as well. In our research, no
‘regular’ jobs are served at the overflow station. So, formula (6) for a two-station overflow is simplified to a
single-station overflow by simply removing the term belonging to the second station and noting that N1 = c,

π(n,m) = π(0, 0)F (m)
1
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where we set ρ = λ
µ and σ = λ

γ .
It is important to realize that in the general theory about overflow, a service rate in overflow γ is used,

as also appears in formula 14. However, for the application to this research, it does not make sense to have
a known service rate in overflow, since patients in overflow are located in the hospital and receive no specific
care there. It will depend on the patient and the type of VVT care they need, how much this ‘normal’ hospital
care will contribute to their (natural) recovery. So, instead of a service rate in overflow γ, it is more natural
to talk about a fraction κ ≤ 1 that represents how much the time spent in overflow contributes to a reduction
in service time in the VVT. For example, if every three days in overflow would reduce the expected time in
the VVT by one day, we will say κ = 1

3 . From another view, the fraction κ represents how the service rates
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in VVT and overflow relate to each other. In the same example, the amount of service that is provided in
three days in overflow is the same as in one day in the VVT and thus the service rate in VVT is three times
the service rate in overflow. This illustrates the relation κ = γ

µ , which is not surprisingly the factor Van Dijk
and Schilstra give in the case of ‘resume of service’ to account for the difference in service speed. Due to this
relation, the theory of overflow can be applied to this research with γ = κµ. The steady-state distribution for
exponential service times with this notation becomes

π(n,m) = π(0, 0)F (m)
1

n!
ρn, with (16)

F (m) =

{
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∏m
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1 m = 0,

where
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In the case of general service distribution, we stated in the theoretical background that there is a difference
between resuming and resampling the service in the case of repacking. Since the time in overflow is assumed
to contribute to the improvement of the patient’s health, and thus to cause a reduction in residual service
time, the service time is resumed when the patient is repackaged. Consistency can be shown between the
mathematical overflow analysis with overflow rate γ and resume of service and the intuitive reasoning with κ.
In general call packing analysis, a job in overflow has a service time with mean 1

γ . Given a time in overflow x,
the residual service time in VVT after being repacked would (in expectation) be γ

µ (
1
γ −x) =

1
µ −

γ
µx = 1

µ −κx.
The same residual service time is obtained when an arriving patient gets a service time drawn from a distri-
bution with mean 1

µ , to which their time in overflow Wi contributes a fraction κ.

From the steady-state distribution (16) with normalization constant (17), an exact formula for the average
number of patients in overflow can be found,
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where the complete gamma function is defined as Γ(x) = (x− 1)! and the upper incomplete gamma function
Γ(c+ 1, ρ) satisfies the recurrence relation

Γ(c+ 1, ρ) = cΓ(c, ρ) + ρce−ρ with Γ(1, ρ) = e−ρ. (19)

In case 1
κ is integer, the recurrence of the incomplete gamma function can be exploited. Otherwise, the built-in

function calculation of the gamma function in programming languages can be used.
The derivation of the expected number of unused beds is simpler since it only depends on the steady-state

probabilities of the states n ≤ c,

E(Uoverflow) =

c∑
n=0

(c− n)π(n)

= c

c∑
n=0

π(n)−
c∑

n=0

nπ(n)

= π(0, 0)
ρc+1 + eρ(c− ρ)Γ(c+ 1, ρ)

c!
. (20)

In the explanation of the model, we argued that the time in overflow will contribute to the patient’s health,
leading to a reduction in residual service time when the patient is repacked, i.e., the fraction κ is between zero
and 1. It is interesting what happens at the boundary cases: κ = 0 and κ = 1.
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Special case: M/M/c/∞. When κ equals zero, the time in overflow does not contribute to the patient’s
health at all. This could be the case for very specialised VVT care in which only time without the presence
of this specialised care, e.g. in a hospital bed, does not cause significant improvements in the condition of the
patient. The system then simplifies to a normal finite server system with infinite waiting room: M/G/c/∞.
For this system, a product form solution exists only in the case of exponentially distributed service times given
by formula (2). Formula (5) gives an approximate relation between the queue length of the exponential case
and in case of a general service distribution.

The expected number of patients in overflow can easily be derived from the steady-state distribution (2),
and put in a more convenient form using the recurrence relation for the delay probability in a M/M/c/∞
queue (4),

E(L(M/M/c)
q ) =

∞∑
k=0

kπ(c+ k) =
(cρ)c

c!
π(0)

∞∑
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kρk =
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ρ
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=
ρ

(1− ρ)

ρB(c− 1, cρ)

1− ρ+ ρB(c− 1, cρ)
. (21)

Note that although ρ is defined as λ
cµ , which depends on c, the recursion in the function B(c, cρ) has fixed

term cρ = λ
µ . The latter is very convenient when calculating E(Lq) for a range of different capacities c, since

the computation E(Lq) for c + 1 only requires a single computation of B(c, cρ) via formula (3) instead of a
complete summation or recursion from start.

Since ρ is the fraction of time each server is working, each server is expected to be empty (1− ρ) fraction
of time. The expected number of unused beds is thus simply

c(1− ρ) = c− λ

µ
. (22)

That is, the difference between the capacity and the mean number of busy servers in a finite server system.

Special case: M/G/∞. If the time in overflow has the same influence on the service time as the time in
the VVT, the fraction κ = 1. This might sound remarkable, but it is approximately the case for VVT type
WLZ (Wet Langdurige Zorg, Long-Term Care Act) in which almost all patients only end service when they
die. For their service time, it does not matter if they lie in an overflow bed in the hospital or in a VVT
bed. The indifference between being in service in the VVT or in the queue yields a M/G/∞ queue. Besides
a practical application of this special case, this special case is relevant due to its general applicability. First
of all, the infinite server system is insensitive, i.e. holds for general distributed service times, while the call
packing system only holds for exponential service times. Secondly, the analysis of infinite server systems with
time dependent arrival rates is relatively straightforward, in contrast to that of a call packing system.

Let the offered load be denoted by ρ = λ
µ . We will use the steady state distribution given in formula (1),

the result that its expectation equals ρ and the fact that a probability distribution sums up to one, to derive
a convenient form for the expected number of patients in overflow E(L

(M/G/∞)
q ).
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= ρ− c− e−ρ
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where the incomplete gamma function Γ(c+ 1, ρ) satisfies the recurrence relation (19). Again the recurrence
eases the computational complexity of calculating the expected number of patients in overflow for a range of
capacities c, as Γ(c+ 1, ρ) follows from Γ(c, ρ) for a fixed arrival rate and mean service time.

For the expected number of unused beds, note that the steady state probabilities of the states n ≤ c in
the call packing system and infinite server system are the same up to the normalization constant. Since the
normalization constant for an infinite server system is e−ρ, it follows from formula (20) that

E(U (M/G/∞)) =
ρc+1e−ρ + (c− ρ)Γ(c+ 1, ρ)

c!
. (24)

Remark 3. A close reader might have recognized that the expression for E(U (M/G/∞)) in (24) appears in the
expression for E(L

(M/G/∞)
q ) in (23). The latter can thus be rewritten to

E(L(M/G/∞)
q ) = ρ− (c− E(U (M/G/∞))).

Noting that subtracting the mean number of unused beds from the capacity yields the mean number of used
beds, we see that the mean number of patients in overflow equals the offered load ρ minus the mean number
of used beds. This result holds specifically for the M/G/∞ queue since for this queuing type the offered load
equals the mean number of patients in the system. The general relation between E(Lq) and E(U) is

E(L) = E(Lq) + (c− E(U)),

that is, the mean number of patients in the system is simply the sum of the mean number of patients in the
queue and the mean number of unused beds, which can be derived from the definitions of the expectations,

E(L) =
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nπ(n) =
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nπ(n) +
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=
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kπ(c+ k) + c−
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(c− n)π(n)

= E(Lq) + c− E(U).

Remark 4. We argued that the M/M/c/∞ and M/G/∞ are special cases of the call packing problem for κ = 0
and κ = 1, respectively. Indeed, it can be shown that for κ = 0, formula (14) simplifies to the steady state
distribution of an M/M/c/∞ queue. Setting κ = 1 in that same formula yields the steady state distribution
of an M/G/∞ queue. Moreover, the formula for average number of patients in the queue E(Loverflow

q ), (18),
can be shown to simplify to formula (23) for E(L

(M/G/∞)
q ) when κ = 1 by first noting that (15) simplifies to

π(0, 0) = e−ρ.
Interestingly, the product form solution for the call packing system is said to only hold for exponential service
times, while the formulae for the infinite server system hold for general service times. This observation is in
line with the remark by Van Dijk and Schilstra (2022) that strict insensitivity only holds for the special case
γ = µ1.
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3.1.2 Bounds on the call packing system

The M/M/c and M/G/∞ systems are special cases of the overflow system with call packing resume. The
advantage of the infinite server system is that it is easy to compute and holds for general service distributions.
Since the service times are often not exponential in reality, such insensitive approximations or bounds are of
great importance. However, the expressions obtained for a M/M/c or a M/G/∞ might not be accurate for
values of κ other than zero and 1, respectively.

Approximating the call packing system by a system with a finite number of servers (M/M/c) neglects the
fact that the patient’s health improves during their time in overflow, which would in expectation result in a
shorter residual service time in the VVT than the modelled E[S] = 1

µ . The computed expected number of
patients in overflow will therefore intuitively yield an upper bound for the true mean number of patients in
overflow. On the other hand, approximating the call packing system by a M/G/∞ system means that the
improvement in health during the time in overflow is overestimated, resulting in an underestimation of the
residual service time at the VVT. Thus, this will yield a lower bound on the expected number of patients in
overflow. So far, intuitive arguments have been provided as to why the mean number of patients in overflow
in the corresponding M/G/c and a M/G/∞ system are an upper bound and lower bound, respectively, on
the mean number of patients in an overflow system. Below, formal proofs for these statements are provided.

Remark 5. In the paragraph above, we switched from M/M/c to M/G/c to denote the finite server system.
The computations for the finite server system, and the call packing system, in this report are limited to the
case of exponential service distribution since product form solutions are only available for those. The proof of
Theorem 1, however, holds for general service times.

Let the call packing system with resume be denoted by ΣC and the M/G/∞ system and the M/G/c
system with the same arrival and service distribution as this call packing system be denoted by ΣA and ΣE ,
respectively. Comparison of the systems will be done via a sample path approach in a coupling argument,
which is a common method to compare two different queueing systems, for example in Jouini and Dallery
(2007). In this method, a sample path is studied in two coupled queueing systems, meaning that we look
at what happens if patients arrive at the same moments with the same service requirement to each queueing
system. In some cases, the queueing systems will behave the same, while for other patients a difference between
the systems can be observed. The idea is that a general conclusion can be drawn from this different behaviour,
for example, that the mean number of patients in one system is always larger than (or equal to) the mean
number of patients in the other system. Formally, a sample path in coupled systems means that identical
successive arrival epochs are created and identical realisations of service times are used. The latter is possible
since the service rate at the VVT is equal to µ in all three systems.

Throughout this section, the term ‘residual service time’ will be used to refer to the time that it will cost
to serve the residual service requirement of a patient at the service rate of the VVT, µ, determined at the
moment the patient goes into service at the VVT. That is, the residual service time of patient i is (Si−κWi)

+,
where Si denotes their initially drawn service time (when service would take place at rate µ) and Wi the time
patient i had to wait in overflow.

Theorem 1. E(Lq)
(ΣC) ≤ E(Lq)

(ΣE)

Proof. A sample path will be used to make sure that comparisons of service times are well-defined and not
subject to the stochasticity of drawing service times from a distribution. So, both systems have identical
successive arrival epochs and identical realisations of initial service times S1, S2, · · · . Let ΣC̃ be a slightly
adapted version of ΣC in which patients can not leave from overflow. That is, if a patient i is waiting in overflow
for more than 1

κSi, they stay there (instead of leaving) until it is their turn to go to a server in the VVT, from
where they then can immediately leave since their residual service time is 0. Clearly, E(Lq)

(ΣC) ≤ E(Lq)
(ΣC̃).

This auxiliary system ΣC̃ is more convenient to compare to ΣE , since in both systems no patient can now
leave from overflow. The residual service times of patients in both systems will be compared.

Since ΣE is a normal M/G/c system, the residual service times of each patient i is simply their initial
service time Si. In ΣC̃ , the initial service time Si is reduced by the positive fraction κ of the time in overflow
to obtain the residual service time of patient i, (Si − κWi)

+. Since the time in overflow Wi ≥ 0, each patient
in ΣC̃ has a (not necessarily strictly) smaller residual service time than its coupled patient in ΣE . So, the
mean amount of work that arrives per unit time to the VVT (ρ) in ΣC̃ is smaller than or equal to that
in ΣE . Since the mean queue length is increasing in ρ, E(Lq)

(ΣC̃) ≤ E(Lq)
(ΣE). By construction of ΣC̃ ,

E(Lq)
(ΣC) ≤ E(Lq)

(ΣC̃), and thus E(Lq)
(ΣC) ≤ E(Lq)

(ΣE).
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Unfortunately, the same line of reasoning does not hold for the comparison of ΣA and ΣC , since the residual
service time depends in both systems on the waiting time. Where we could conclude that the residual service
time of a specific patient in ΣC is always smaller than or equal to their residual service time in ΣE independent
of the value of their waiting time, such an ordering of the residual waiting time is not possible for ΣA and ΣC .
If after a waiting time Wi > 0, a patient goes into service in both systems at the same time, their residual
service time is strictly smaller in ΣA than in ΣC . However, if patient i can go into service in ΣA upon arrival,
while they have to wait in ΣC , their residual service time in ΣA (when going into service) is strictly larger
than in ΣC .

Intuitively, the fact that this patient could enter the VVT in ΣA earlier than in ΣC compensates for the
smaller reduction in residual service time by the waiting time, but it would make the approach of the above
proof invalid. Instead, the proof for E(Lq)

(ΣA) ≤ E(Lq)
(ΣC) will revolve around the observation that a patient

arriving to both systems at the same time can never go into service in system ΣC before they went into service
in system ΣA.

Theorem 2. E(Lq)
(ΣA) ≤ E(Lq)

(ΣC)

Proof. A sample path approach in coupled systems will be used, i.e. both systems have identical successive
arrival epochs, resulting in a sequence of predetermined arrival times t1, t2, · · · and identical realisations of
initial service times S1, S2, · · · . The subscript i is used to refer to the characteristics of the ith patient, for
example, ti is their arrival time and Wi their waiting time.

We will prove in a moment that the service in VVT of each patient starts in ΣC only after (or at the same
time as) it has started in ΣA. Since each patient i arrived at the same time ti to both systems due to the
sample path approach, they have spent equal or more time in overflow. Taking the average of these individual
times in overflow, it is obvious that the average time spent in overflow is then bigger in ΣC than in ΣA. It
now follows from Little’s law that the mean number of patients in overflow is bigger in ΣC than in ΣA, i.e.
E(Lq)

(ΣA) ≤ E(Lq)
(ΣC).

Left to prove is the statement that the service in VVT of each patient starts in ΣC only after or at the
same time as it has started in ΣA. First, it is important to realize that since ΣA is an infinite server model,
a patient i will always spend Si time in system ΣA which is clearly independent of the amount of time the
patient was in overflow. In ΣC , a patient spends after Wi time in overflow still Si − κWi in the VVT, under
the condition that Wi <

1
κSi, else they can leave from overflow after 1

κSi time in overflow. A patient spends
thus in total min(Si + (1− κ)Wi,

1
κSi) time in system ΣC . Note that both expression are larger than Si, the

time spent in ΣA, since 0 < κ < 1.
Let us now look at a specific patient which we call patient i = X, who arrives at time tX to both systems.

If patient X arrives when there are less than c patients in the system, they can immediately go into service in
the VVT. Thus, the service in the VVT clearly starts in ΣC at the same time as in ΣA.

If upon arrival of patient X, there are n ≥ c patients in the system, all c VVT spots are occupied and thus
patient X is in overflow. Let us refer to the n patients that were already present upon arrival of patient X
by i1, i2, · · · , in. Let it be clear to the reader that these n patients do not have to be patients that arrived
consecutively in the sample path, but that it can very well be that patient i = 6 and patient i = 8 are still
in the system while patient i = 7 already left, due to the stochasticity of the service time, i.e. ij + 1 is not
necessarily equal to ij+1. Since patients are served in order of arrival, patient X can go into service in the
VVT if n − c patients of the patient set {i1, i2, · · · , in} have left the system. Each patient j of this set will
leave system ΣA at time tj + Sj and system ΣC at time tj +min(Si + (1− κ)Wj ,

1
κSj) ≥ tj + Sj , which holds

independently of how long patient j has to wait as argued earlier. Denote the departure time of patient j in ΣA
and in ΣC by t̃j and t̄j respectively. Let [t̃̃i1 , t̃̃i2 , · · · , t̃̃in ]ΣA

be a list of the departure times of {i1, i2, · · · , in}
in ΣA ordered from low to high, and similarly [t̄̄i1 , t̄̄i2 , · · · , t̄̄in ]ΣC

for ΣC . So, patient X can go into service in
the VVT at time t̃n−c in ΣA and at time t̄n−c in ΣC . Due to the ordering of the list of departure times and
the individual relation t̄j ≥ t̃j∀j, we obtain t̄n−c ≥ t̃n−c. That is, patient X goes into service in the VVT in
ΣA earlier than or at the same time as in ΣC .

This completes the proof of E(Lq)
(ΣA) ≤ E(Lq)

(ΣC).

3.1.3 Adapted Service Time Approach

Since it is clear why the M/G/c system and the M/G/∞ system respectively overestimates and underestimates
the mean number of patients in overflow, it is interesting if this knowledge could be used to adapt those systems
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in such a way that the resulting systems better mimic the call packing system. To approximate or bound the
call packing system more accurately by aM/G/c system or aM/G/∞ system, we want to capture the influence
of the overflow service in the service time of the VVT. This will be done through an effective, or adapted,
service time.

Effective service times are common in literature on queueing theory to deal with the effect of blocking,
for example Hunt (1956); Hillier and Boling (1967); Perros and Altiok (1986); Koizumi et al. (2005); Osorio
and Bierlaire (2009). Blocking after service occurs when the next station on the route is full. The additional
time a job spends at station i due to being blocked by station i + 1 is added to the normal service time
at station i to constitute the effective service time of station i. However, another form of the concept of
effective service is necessary for application to the situation dealt with in this research, since the influence
of overflow/blocking at the hospital (station i) due to reached capacity limit at the VVT (station i + 1)
should now be incorporated in the service time at the VVT (station i + 1), instead of the hospital (station
i). To avoid confusion, the adapted service time will be referred to as such, and not as an effective service time.

Recall that µ is the service rate in the VVT and that a fraction κ captures the influence of the time in
overflow on the reduction in service time in the VVT. Suppose that, in steady-state, a patient spends on
average some known time x in overflow. By definition of κ, they thus still need to spend on average

1

µ
− κx (25)

time in the VVT, given an overflow time x. Using (25), the patient is expected to have spent in total

x+
1

µ
− κx =

1

µ
+ (1− κ)x (26)

time in the system, defined as the moment of wanting to transfer to the VVT up until leaving the VVT.
To understand what a suitable adapted service time for the M/M/c and M/G/∞ systems would be, it is

important to once again point out which simplifying assumptions these systems make compared to the overflow
system. With the M/M/c system, patients do not receive any service in overflow. If it is known that a patient
has spent x days in overflow before ‘starting’ to service at the VVT, their expected service time is reduced to
1
µ − κx. So, in the M/M/c system it is better to use an adapted service time of (25). For κ = 0, the adapted
service time simplifies to 1

µ , as it should since a call packing system without service in overflow is simply a
M/M/c system.

A M/G/∞ system, on the other hand, acts as if patients receive the same service in overflow as they get
in the VVT. The expected total time in the system should match with the call packing case, and therefore
an adapted service time of (26) should be used. The second expression immediately shows that the patient
expected adapted service time, which is assumed to happen completely at a rate µ in an M/G/∞, is a normal
service time lasting 1

µ in expectation and a compensation factor for the fact that in reality a time x is executed
at a lower rate in overflow. The M/G/∞ system is a special case of the call packing when κ = 1, so when we
take κ = 1 the effective service time indeed simplifies to 1

µ .

So far, we assumed that x, the time that a patient spends on average in overflow in steady-state, was
known. By Little’s Law [84], the mean time in overflow (waiting time) is the mean queue length divided by
the arrival rate λ,

E(Wq) =
1

λ
E(Lq). (27)

Remark 6. One could argue that when applying Little’s Law to overflow, the proper arrival rate is the arrival
rate to overflow which is λP (overflow). In this way, the mean overflow time given that someone is in overflow
is obtained, namely E[Lq ]

P (overflow)λ . However, for x we are interested in the mean time in overflow of a general

patient. Conditioning on the fact that this patient is in overflow or not gives an overflow time of E[Lq ]
P (overflow)λ

or zero, respectively. Since the probability of overflow is P (overflow), deconditioning yields a mean overflow
time of P (overflow) E[Lq ]

P (overflow)λ+(1−P (overflow))0 =
E[Lq ]
λ . Thus, conditioning and deconditioning show that

it is not necessary to take P (overflow)) explicitly into account since it cancels out.
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The problem we are left with is determining the mean number of patients in overflow E(Lq), after which
x = 1

λE(Lq). The unknown mean number of patients in overflow could simply be estimated by the number of
patients in overflow in the M/M/c or M/G/∞ system, given by formulae (21) and (23) respectively. However,
we can go somewhat further by repetitively applying the formula for the mean number of patients in an
M/M/c (M/G/∞) system to the resulting system until the value does not change anymore. Formally, we are
looking for the fixed point to the set of equations which consists of the formula for the mean queue length
given an offered load (and capacity) and the formula for the adapted offered load given a queue length. That
is, we are interested in the solution E(Lq) of the fixed point equation E(Lq) = T (E(Lq)), which we will write
shorthand as L = T (L), where T (L) = (Q ◦ R)(L) = Q(R(L)) with Q(ρ) the function to calculate the mean
queue length given an offered load ρ and R(L) a function to calculate the adapted offered load based on the
mean queue length L. The precise formulas for Q(ρ) and R(L) depend on the type of queueing system. We
will use subscripts 1 and 2 to refer to the M/G/∞ system and M/M/c system respectively. The formulas for
the adapted offered loads were not stated explicitly yet, but are for the M/G/∞ system,

R1(L) = λVVT(
1

µ
+ (1− κ)

1

λ
L) =

λVVT

µ
+ (1− κ)

λVVT

λ
L, (28)

and for the M/M/c/∞ system,

R2(L) = λVVT(
1

µ
− κ

1

λ
L) =

λVVT

µ
− κ

λVVT

λ
L. (29)

Please note that the offered load for the M/M/c/∞ with this definition should be lower than c for stability.
This is in contrast to the earlier definition in which it is divided by c and therefore had to be below one. Since
the offered load ρ in formula (21) for the mean queue length in the M/M/c system was defined as λ

cµ < 1,
while we would like to use R2(L) < c as input, we reformulate formula (21) to

Q2(ρ) = E(L(M/M/c)
q ) =

ρ

(c− ρ)

ρB(c− 1, cρ)

c− ρ+ ρB(c− 1, cρ)
, (30)

where ρ = λ
µ . The precise formulas for Q(ρ) and R(L) are given by formulas (23) and (28) for the M/G/∞

queue and by formulas (30) and (29) for the M/G/c queue.
To calculate the offered load, an arrival rate of λVVT is used, which is the arrival rate to the VVT. Note that

this is not necessarily the same as λ, since λ is defined as the arrival rate of patients that want to go to the VVT
(regardless if they can enter immediately or should go in overflow) and it can happen that a patient already
ends their service in overflow after which they leave without entering the VVT itself. Remarkable, Van Dijk
and Schilstra (2022) do not mention this possible deviation in arrival rates. Since for most applications, the
probability that a patient can leave from overflow is small, we assume for tractability and simplicity that
λVVT ≈ λ during the numerical application, see also Remark 7.

Remark 7. An exact expression for λVVT can be derived, from the relation to several factors appears. A
fraction 1 − P (in overflow) of the arriving patients can go in service in the VVT immediately while the rest
will go into overflow. From the latter group, only the patients that do not finish their service while being in
overflow, flow through to VVT. This yields the following formula for the true arrival rate to VVT,

λVVT = (1− P (in overflow))λ+ P (in overflow)(1− P (finish service in overflow))λ
= λ(1− P (in overflow)P (finish service in overflow)))
= λ(1− P (n > c)P (service time < κ waiting time)).

It is clear that if the probability of ending service in overflow is reasonably small, i.e. if both the probability of
going to overflow as well as the time in overflow are small, it is reasonable to assume λVVT ≈ λ. Since the
goal of this study is to find the optimal capacity, we are most interested in situations in which the capacity is
close to optimal meaning little overflow and short overflow times. Moreover, the defining formula for λVVT
shows that a small value of κ can also help to have λVVT ≈ λ.

We must remark that in reality, it does happen that patients leave from overflow, mostly by dying or
transferring them to another hospital. We did not account for this in the formula above. This could affect
the validity of λVVT ≈ λ, and more specifically, of the assumption that the fraction of patients leaving from
overflow is small. Suggestions for further research are made in the Discussion.
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Intending to approximation the mean number of patients in overflow in a call packing system, we studied
the adaptation of service times in a M/G/∞ and M/M/c system and derived a fixed point equation L = T (L)
yielding the mean number of patients in the adapted systems. For this approach to make sense, it is important
to establish the existence and uniqueness of these fixed points. After that, we will comment on the usefulness
of this approximation.

Existence and uniqueness of fixed point for the M/G/∞ queue

An important observation in order to prove the existence and uniqueness of a solution to the fixed point
equation L = T1(L), for the M/G/∞, is that the mean queue length is increasing in the load. Although we
can imagine that this is intuitively straightforward, a formal proof is given using the derivative.

Lemma 1. The function Q1(ρ), as given in 23, is monotone increasing in ρ.

Proof. The derivative of Q1(ρ) with respect to ρ is strictly positive for all ρ,

Q′
1(r) = 1 +

rce−r − Γ(c+ 1, r)

c!
= 1− Γ(c, r)

Γ(c)
> 0, (31)

where it is used that ∂Γ(c,r)
∂r = −rc−1e−r, Γ(c+1, r) = cΓ(c, r)+ rce−r and (c−1)! = Γ(c). The last inequality

follows from the fact that the gamma function Γ(c) = Γ(c + 1, r) + γ(c + 1, r), where γ(c + 1, r) is the lower
incomplete gamma function which is positive for c, r > 0, and thus Γ(c) > Γ(c+ 1, r).

Remark 8. Since the probability of going into overflow
∑∞
n=c π(n) =

∑∞
n=c e

−ρ ρn
n! can be rewritten to 1−Γ(c,r)

Γ(c) ,
we see that the derivative of the mean number of patients in overflow in a M/G/∞ queue equals the probability
of being in overflow. A directer proof starting from

∑∞
n=c π(n) can be found in Appendix A.6.

The existence and uniqueness of a fixed point L = T1(L) will now be proven by Banach’s fixed point theorem,
based on the observation that T1 is a contraction mapping. First, the necessary definitions and theorem will
be stated which can be found in almost all basic textbooks on Scientific Computing, for example, Granas and
Dugundji (2003).

Definition. Let F : (X, d) → (X, d) be a mapping of metric spaces. The smallest fixed constant M for which
d(F (x), F (y)) ≤ Md(x, y), ∀x, y is the Lipschitz constant KF of F . If KF < 1, the mapping F is called a
contraction, and if KF ≤ 1, it is said to be nonexpansive. For any given x ∈ X, define the nth iterative of x
under F , Fn(x), inductively by F 0(x) = x and Fn+1(x) = F (Fn(x)).

The Banach contraction principle, or Banach fixed point theorem, now states

Theorem (Banach fixed point theorem). Let (X, d) be a complete metric space and F : X → X be a contrac-
tion. Then F has a unique fixed point u, and Fn(x) → u for each x ∈ X.

Note that for this application the space X is the space of real numbers and the metric d is the absolute value.
Since T1 is a composition of two mappings, we will study the Lipschitz constant separately and combine the
results using the following proposition.

Proposition 1. On the metric space (X, d), the composition (B ◦ A) : X → X of a contraction mapping
A : X → X and a nonexpansive mapping B : X → X is a contraction mapping.

Proof. Since A is a contraction mapping, there exists a real number 0 ≤ KA < 1 such that for all x, y ∈ X,
d(A(x), A(y)) ≤ KAd(x, y). Since B is a nonexpansive mapping, it holds for all x, y ∈ X that d(B(x), B(y)) ≤
d(x, y). All x, y ∈ X thus satisfy d(B(A(x)), B(A(y))) ≤ d(A(x), A(y)) ≤ KAd(x, y), proving that B ◦ A is a
contraction mapping.

Theorem 3. The fixed point equation L = T1(L) has a unique solution. Moreover, the sequence of iterates
L(n) = T1(L

(n−1)) resulting from repeated substitution of the operator T1 converge to this unique fixed point
L∗, independent of the starting point L(0).
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Proof. Recall that T1(L) = Q1(R1(L)). Clearly, R1 is a contraction mapping as

|R1(x)−R1(y)| = |λVVT

µ
+
λVVT(1− κ)

λ
x− λVVT

µ
+
λVVT(1− κ)

λ
y|

= |(1− κ)
λVVT

λ
(x− y)|

≤ (1− κ)|x− y|,

where KR1
= (1− κ) satisfies 0 ≤ KR1

< 1 since 0 < κ ≤ 1.
To show thatQ1 is a nonexpansive mapping, the Mean Value Theorem is used, which states that

∣∣∣Q1(x)−Q1(y)
x−y

∣∣∣ =
|Q′

1(η)| for some point η in the domain. From equation (31) it can be concluded that Q′
1(ρ) < 1 for all ρ > 0,

since Γ(c, r) > 0 for c, ρ > 0. Therefore, |Q′
1(η)| < 1 for all η in the domain. By the Mean Value Theorem∣∣∣Q1(x)−Q1(y)

x−y

∣∣∣ < 1, i.e. |Q1(x)−Q1(y)| < |x− y|. So, Q1 is a nonexpansive mapping.
It now follows from Proposition 1 that T1 is a contraction mapping. Since the metric space (R, |.|) is

complete, the conditions for Banach fixed point theorem are met. So, the fixed point L∗
1 = T (L∗

1) exists and
is unique. Moreover, convergence to this fixed point is guaranteed when iteratively applying the mapping T1
starting from any point in the domain.

Existence and uniqueness of the fixed point for the M/M/c system

The proof for the existence and uniqueness of a solution to the fixed point equation L = T2(L), for the
M/M/c system, is inspired by the proof of Ross (2011) for a fixed point blocking probability in the reduced
load approximation for single-service networks. Ross first shows existence by Brouwer’s fixed point theorem
for the Euclidean space.

Theorem. (Brouwer’s fixed-point theorem) Every continuous function from a nonempty convex compact subset
X of a Euclidean space to X itself has a fixed point

Uniqueness is then proven by showing that all solutions to the fixed-point equation minimize a convex opti-
mization problem. By uniqueness of the minimum of a convex optimization problem, all solutions are the same.

Since the quantity of interest here, the mean queue length, has no clear upper bound, the domain of
the mapping T2 is not a compact set and thus Brouwers theorem does not apply directly to the mapping
T2. Note that the offered load ρ = λ

µ , on the other hand, does have a clear bounded interval, namely [0, c],
assuming stability. Since T2 is a composition of Q2(ρ) and R2(L), we will define another composite mapping
U2(ρ) = R2(Q2(ρ)). In Lemma 2, this latter mapping is proven to have a fixed point. In Lemma 3, a fixed
point of this latter mapping is shown to imply a fixed point of the original mapping T2. The existence of a
fixed point L = T2(L) in Theorem 4 then follows naturally from these Lemmas, after which the uniqueness of
this fixed point will be proven.

Lemma 2. The equation ρ = U2(ρ) has a solution, where U2(ρ) := R2(Q2(ρ))

Proof. Since the mean queue length Q2(ρ) and the fraction κλVVT
λ are non-negative, U2(ρ) ≤ λVVT

µ . Since we
assumed that the system is stable, the initial offered load ρ = λ

µ is smaller than c. So, the function U2(ρ) maps
a convex set [0, c] to itself. Furthermore, U2(ρ) is continuous by continuity of the two composed functions. It
therefore follows from Brouwer’s fixed point theorem that there exists a solution to ρ = U2(ρ).

Lemma 3. The existence of a fixed point ρ∗ = U2(ρ
∗) implies the existence of a fixed point L = T2(L)

Proof. Let ρ∗ be the solution to the fixed point equation ρ∗ = U2(ρ
∗). Let L∗ be the queue length resulting

from the fixed point ρ∗, i.e. L∗ = Q2(ρ
∗). We then have,

L∗ = Q2(ρ
∗) = Q2(U2(ρ

∗)) = Q2(R2(Q2(ρ
∗))) = T2(Q2(ρ

∗)) = T2(L
∗),

where the second equality follows from the fact that ρ∗ is a fixed point of U2 and the fourth equality from
the associativity of the composite function. So, the mean queue length L∗ = Q2(ρ

∗) satisfies the fixed-point
equation L = T2(L). The existence of ρ∗ implies the existence of L∗, and thus of the existence of a fixed point
of L = T2(L).
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Theorem 4. The fixed point equation L = T2(L) has a unique solution.

Proof. The existence of a solution follows directly from Lemmas 2 and 3.
To prove uniqueness, define the function Q−1

2 (L) as the inverse of formula (21) (for fixed capacity c). That
is, Q−1

2 (L) is the value of the load ρ such that L = Q2(ρ). Note that since (21) is strictly increasing in ρ,
the function Q−1

2 (L) is a strictly increasing function of L. The integral
∫ L
0
Q−1

2 (z)dz is thus a strictly convex
function of L, based on the fact that the derivative of a strictly increasing function is positive, and the fact
that a twice differentiable function is convex if its second derivative is positive.

Applying Q−1
2 (L) to both sides of the fixed point equation L = T2(L) yields

Q−1
2 (L) = Q−1

2 (Q2(R2(L))) = R2(L) = λVVT(
1

µ
− κ

1

λ
z). (32)

So, all solutions to the fixed point equation will also satisfy (32). Define for all L ≥ 0, the auxiliary function

ψ(L) =

∫ L

0

Q−1
2 (z)dz + (−λVVT(

1

µ
z − κ

1

2λ
z2)).

Note that ψ(L) is strictly convex since it is the sum of two strictly convex functions. The first term is strictly
convex by monotonicity of Q−1

2 (L), and the second term has strictly positive second derivative κλVVT
λ . Let L∗

be a solution to the stationary condition dψ(L)
dL = 0. Since ψ(L) is strictly convex, the minimizer L∗ is unique.

By construction of ψ(L), all points satisfying the stationary condition dψ(L)
dL = 0 will satisfy (32), and thus

will be a fixed point, and vice versa. Since the minimizer L∗ of ψ(L) is unique, the solution to the fixed point
equation is unique as well.

Computation of the fixed point

The existence and uniqueness of the fixed points are shown, both for M/G/∞ and M/M/c system. However,
this does not tell us how to numerically compute the values of the fixed points. Unfortunately, no closed-form
expression for these fixed points could be derived, so another approach is necessary.

A common method to find a (unique) fixed point is repeated substitution. In repeated substitution, as
the name suggests, the outcome of a function is repeatedly substituted in the same function until consecutive
outcomes do not change too much. It was precisely this intuition that led to the definition of the adapted
service times through a system of fixed point equations. For the M/G/∞ system, the fact that the sequence
converges to the unique fixed point already followed from the Banach fixed point theorem. For the M/M/c
system, the sequence is shown to have two convergent subsequences, where one sequence converges to L− and
the other to L+ with L− ≤ L∗ ≤ L+. That is, the complete mapping of which we want to find the fixed
point has a periodic orbit of size 2. The proof of this convergence can be found in Appendix A.1. Numerical
analysis shows that these two subsequences converge to the same value (L∗) for some parameter settings while
for other parameter settings the points of convergence L− and L+ are different, as illustrated for ranging over
κ in Figure 1. We hypothesize that a decrease in κ leads to L− = L∗ = L+ due to the changes in adapted
service time being less extreme. Moreover, an increase in µ also results in L− = L∗ = L+ more often. This
is illustrated by the fact that when µ is increased from 1

20 to 1
15 for the parameter settings of Figure 1, we

observe L− = L+ for every 0 < κ < 1. Due to limited time for this research and limited practical added
value, no further research into this 2-cycle behaviour is done. Further research could be done to determine
what constraints on the set of parameters would guarantee the two convergent sub-sequences to converge to
the same value.
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Figure 1: The values of the two convergence points L− and L+ with respect to κ. We see that for
κ < 0.35, L− = L+

.

Bounds of adapted service time system

In this section, we already provided the intuition and formally proved that analysis with the normal M/G/∞
and M/G/c will yield a lower and upper bound, respectively, on the mean number of patients in overflow in
the call packing system. To substantiate that the Adapted Service Time Approach yields a better bound on
the call packing system, a necessary condition is that its mean queue length is respectively higher and lower
than the mean queue length obtained by the corresponding M/G/∞ and M/M/c system. The comparison of
the mean number of patients in overflow in the normal M/G/∞ and M/M/c systems and in their respective
variants with adapted service times is rather straightforward. In line with Theorems 1 and 2, we will refer to
the normal M/G/∞ and M/M/c system by ΣA and ΣE respectively and to their corresponding systems with
adapted service time by ΣB and ΣD.

Theorem 5. E(Lq)
(ΣA) ≤ E(Lq)

(ΣB)

Proof. Observe that ΣA and ΣB are both M/G/∞ queues that only differ in their mean service rate. The
mean service rate in ΣB , µ̃1

∗ = 1
1
µ+ 1−κ

λ L∗ , is smaller than the service rate in ΣA, µ = 1
1
µ

, since 1−κ
λ L∗ ≥ 0.

The desired inequality now follows from the fact that the mean queue length is increasing in the load ρ and
thus decreasing in the service rate.

Theorem 6. E(Lq)
(ΣE) ≥ E(Lq)

(ΣD)

Proof. Observe that ΣD and ΣE are both M/M/c queues that only differ in their mean service rate. The
mean service rate in ΣD, µ̃2

∗ = 1
1
µ−κ

λL
∗ , is bigger than the service rate in ΣE , µ = 1

1
µ

, since κ
λL

∗ ≥ 0. The
desired inequality now follows from the fact that the mean queue length is increasing in the load ρ and thus
decreasing in the service rate.

Referring to the call packing system by ΣC , we showed so far that E(Lq)
(ΣA) ≤ E(Lq)

(ΣC) ≤ E(Lq)
(ΣE) and

that E(Lq)
(ΣA) ≤ E(Lq)

(ΣB) and E(Lq)
(ΣD) ≤ E(Lq)

(ΣE). Of course, the most interesting is the comparison
of the mean number of patients in overflow in the call packing system ΣC and the mean number of patients in
the adapted service systems. Based on a numerical study that can be found in Appendix A.2, we hypothesize
that the infinite server system with adapted service time ΣB gives a lower bound to the call packing system
for every service distribution and that the adapted M/M/c system ΣD yields an upper bound in case of an
exponential service time distribution. Unfortunately, the sample path approach in coupled systems as used in
Section 3.1.2 does not work for the comparison of ΣB (and ΣD) with ΣC . Due to the adapted service rate in
ΣB , the two systems have different mean service times implying that we can not have the same sample path
with identical service time realisations for the two systems. The fact that the service time in ΣB (and ΣD)
depends on the fixed point L∗, for which no closed form expression is available and for which the relation to
(the mean of) individual waiting times in the call packing system is not known, makes it impossible to split
the draw of service time in a part which has mean equal to that in the call packing system and a part that
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has the (possibly negative) additional service time. Although several attempts were made, we were not able
to provide a formal proof for the relation between the mean number of patients in overflow in ΣB , ΣD and ΣC
within the period of this research. Therefore, we will state our hypotheses based on the numerical analysis as
conjectures.

Conjecture 1. E(Lq)
(ΣB) ≤ E(Lq)

(ΣC) for general service distributions

Conjecture 2. E(Lq)
(ΣC) ≤ E(Lq)

(ΣD) for exponential service distributions

Especially, Conjecture 1 can have great importance since it provides an insensitive lower bound to the call
packing system which is tighter than the one obtained from the normal M/G/∞ system by Theorem 5.

Mean number of unused beds

So far, we only focussed on the mean number of patients in overflow. The mean number of unused beds in
both a M/M/c system as well as in a M/G/∞ system can be expressed solely in terms of the mean queue
length, the offered load and the capacity, as given by formulas (22) and (3), respectively. The offered load
belonging to the adapted system is given by ρ∗ = R(L∗), in line with Lemma 3. The mean number of unused
beds of the adapted systems is thus E(U)(ΣB) = E(Lq)

(ΣB) + c − ρ∗1 for the adapted M/G/∞ system and
E(U)(ΣD) = c− ρ∗2 for the adapted M/M/c system.

3.1.4 Time dependence

As explained in Section 2.3.5, the time dependent analysis in this research will be based on the Modified
Offered Load approximation. The MOL approximation uses the time dependent offered load m(t) as defined
in Section 2.2.1. Since the offered load in the infinite server system loses its insensitivity property when made
time-dependent, m(t) depends on the complete service time distribution. Since only the mean is changed in
the Adapted Service Time Approach, this approach can not naturally be extended to time dependent analysis
without rigorous assumptions, as will be pointed out in the Discussion.

We have already proven that in steady state the mean number of patients in overflow in the call packing
system is bounded below by that in the corresponding infinite server system. Since both the number of patients
in an M(t)/G/∞ with time dependent arrival rate as well as the number of patients in the stationary case are
Poisson distributed with mean m(t) and ρ, respectively, the stationary derivation for the expected number of
patients in overflow and number of unused beds remains valid at each time point t when ρ is replaced by m(t).
The expected number of patients in overflow at time t and the expected number of unused beds at time t are
therefore obtained by simply replacing ρ by the time dependent offered load m(t) in formulas (23) and (24),
respectively,

E(L(M/G/∞)
q (t)) = m(t)− c+

(m(t))c+1e−m(t) + (c−m(t))Γ(c+ 1,m(t))

c!
, (33)

E(U (M/G/∞)(t)) =
(m(t))c+1e−m(t) + (c−m(t))Γ(c+ 1,m(t))

c!
. (34)

where m(t) is defined by formula (7). That is, the MOL approach is exact for the infinite server system. Note
that Remark 3 also holds in the case of time dependence.

Thanks to the introduction of κ, the results for the call packing system can straightforwardly be extended
to time dependence through the MOL approximation. Since both the mean number of unused beds (formula
(20)) as well as the mean number of people in overflow (formula (18)) do not depend directly on the arrival
rate, but only through the offered load, a time-dependent approximation for these values can be obtained by
substituting m(t) for ρ. Although formulas (20) and (18) only hold for the case of the exponential call packing,
we will determine m(t) via formula (7) for the desired (non-exponential) distribution.

The time dependent case for the finite server system will not be considered in research, since no exact
method is available and some preliminary numerical analyses showed limited added value of the finite server
system.
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3.2 Optimization model
In the previous subsection, expressions for the mean number of patients in overflow E(Lq) and the mean
number of unused beds E(U) were derived for the different systems discussed. These performance measures,
together with the time dependent offered load m(t), will serve as the basis for determining the optimal capac-
ity in this section. First, the objective function is introduced for the stationary case and its cost parameters
are explained. The minimization of this stationary case is straightforward. The objective function is then
extended to the time dependent case. To be able to incorporate constraints on the capacity function and facil-
itate interaction between the capacity of different patient types, the problem is formulated as a Mixed Integer
Program (MIP). Then, several possibilities for constraints on the time dependent behaviour of the capacity
are introduced, including their MIP formulation. Moreover, the MIP is extended to take into account multiple
patient types enabling interesting concepts as shared capacity between patient types and the relabeling of beds
from one patient type to the other.

It is important to realize that the values of the performance measures are obtained via an infinite server
analysis, and thus that the underlying distribution of the number of patients in the system is independent of
the capacity. The benefit of this is that the values of the performance measures at time t for capacity c are
independent of the selected capacity before that time. In this way, there is a strict distinction between the
results from the queueing analysis, which serves as input for the optimization model, and the optimization
process itself. The downside is that neglecting the influence of having limited capacity on the performance
measures means that inaccuracies can occur when switching capacities, as will be elaborated on in the Dis-
cussion. Nevertheless, the literature on the Modified Offered Load approximation indicates that performance
measures based on the offered load of an infinite server system should still give a reasonable approximation
for the case of a finite number of servers.

Before we solve the staffing problem, we should make clear that in this research we assume that the hospital
and the VVT act as one decision-maker that wants to minimize their total costs. In this way, the total cost that
gets spent on the capacity at the VVT and their overflow beds is minimized, and thus both parties could profit
from this new situation. However, the costs and profit for implementing more capacity are not automatically
distributed well over the two parties; the VVT will likely face an increase in costs due to facilitating more
capacity while the hospitals benefit by having less costs for overflow. It is important that the two parties are
aware of this and that agreements are made about a fair division of the costs and profits. To illustrate how
substantial the individual loss and the shared profit could be, the optimal situation for the VVT on its own is
also studied in Sections 5.1.3 and 5.4.

3.2.1 Objective function

When determining the optimal capacity, a lot of different factors come into play, but they can mostly be
divided in costs due to having too few beds or too many beds, in line with Zychlinski et al. (2020). All
the costs for having overflow (too few beds) and all the costs for having unused beds (too many beds) are
gathered into two cost parameters per patient type r, Co,r and Cu,r, respectively. Costs include here actual
monetary costs as well as things like inconvenience or deterioration in health, to which a certain cost reflecting
its importance should be assigned. In line with the view of Zychlinski et al. (2020), Co,r and Cu,r are the costs
which could have been avoided if there would have been one bed more or less, respectively, in the VVT. With
this view, it is clear that for the overflow cost Co,r the cost of having a VVT bed should be deducted from the
cost of having a hospital bed, since this is the amount that could have been saved by having an extra VVT
bed. Moreover, Co,r may contain costs to represent the missing out on the appropriate care, which may lead
to a deterioration (or less improvement) in health. This cost factor can vary a lot depending on the patient
type. For some patient types, like WLZ, it will not matter too much if they lie in the hospital or in the VVT,
while other patient types, like GRZ, will miss out on specialized care. Other costs that can be included in Co,r
are opportunity costs, which account for the loss of profit for the hospital caused by the fact that having an
overflow patient in a hospital bed prevents a new patient being served, which would yield more money. In case
no good estimate of the values of these extra cost components of Co,r can be made, it is good that the reader
is aware that exclusion or underestimation of these cost components will lead to the found capacity being a
lower bound.
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In addition to these common cost parameters, Co,r and Cu,r, we choose to explicitly include the profit that
the VVT makes by treating patients. As explained in Section 2.4, most VVT types receive money per patient
per day. This will be modelled by a fixed profit (negative cost) per used bed for each patient type, Cb,r < 0.
By including this profit on used beds explicitly, we want to make the trade-off of the VVT as an individual
decision-maker apparent. The VVT on its own can neglect the costs of overflow in the hospital, but will not
have an optimal capacity of zero to minimize the costs of unused beds due to the profit they can make on used
beds. The individual decision of the VVT thus follows from setting the loss per overflow bed, Co,r, to zero.

Remark 9. Since the VVT would miss out on the profit for a used beds when there is one bed ‘too few’ in the
VVT, i.e. one person in overflow, the profit on used beds could have been included implicitly in the opportunity
costs of overflow, and thus in Co,r. In that case, the VVT on its own does notice ‘cost’ of overflow by missing
out on possible profit. When studying the optimal decision for the VVT on its own, the correct value for Co
would not be zero but exactly this lost profit. Cb,r Since the profit for treating patients in the VVT is explicitly
captured in Cb,r in this research, it should not be included in (the opportunity cost component of) Co.

In this research, we assumed that the beds for different types of VVT care are distinct. In combination
with the assumption of infinite waiting room, the different types of patients will not note the existence of
the other types. For determining the optimal capacity, this means that each patient type can be optimized
separately. The optimal solution is then simply the optimal capacity found for each patient type concatenated
with as cost the sum of the optima for each patient type. Since the analysis for each patient type can be done
separately, the objective function and mathematical program will be explained for a single patient type, thus
dropping the subscript r referring to the patient type and the summation over the patient types. Only in
section (3.2.2), the assumption of distinct capacity for each patient type will be dropped so that interesting
options as shared capacity and relabeling of bed types can studied by implementation in the Mixed Integer
Program.

At the start of Section 3.1, we already briefly mentioned the possibility of arrivals that do not come from
the hospital, so-called external arrivals. With the application to the VVT type GRZ and the limited avail-
ability of data in mind, the external arrivals are assumed to follow the same arrival distribution and service
distribution as the arrivals originating from the hospital, to which we will refer as internal patients in this
section. In case all VVT beds are full upon an external arrival, the external patient will wait at home until it
is their turn. There is just one (virtual) queue for the external and internal arrivals, with no priority for one
type or the other. We will elaborate on the assumptions and their validity in the Discussion. Let ξ be the
fraction of patients that come from the hospital. Since internal and external patients behave identically and
are served in order of arrival, the performance measures can be determined from the system without taking
into account the former location of a patient (hospital or external). The ‘type’ of the patient comes into play
when evaluating the costs of a situation since only internal arrivals occupy an overflow bed in the hospital
in case of overflow. Since external and internal patients have identical system characteristics, a fraction ξ
of the number of patients in overflow is internal. So, we only charge the cost for overflow Co for a fraction
ξ of the expected number of patients in overflow. Although external patients do not occupy a hospital bed
while waiting for VVT care, one might still want to charge a (lower) cost for each external patient waiting,
for example, to reflect possible deterioration in health. Similar to the cost for overflow, the cost for external
waiting should be charged to a fraction 1− ξ of the expected number of patients in overflow.

The cost parameters Co, Cu and Cb,r are the cost per bed per day, so they should be multiplied by the
number of patients in overflow, the number of unused beds and the number of used beds, respectively, weighted
by the probability that this occurs (in steady state) and, in case of time dependence, these expressions should
be summed over time. We assume that there is a fixed cost for each overflow (or unused) bed, that is, the cost
of having ten overflow beds is exactly ten times the cost of having one overflow bed. This enables us to take
Co out of the summation,

∞∑
n=c

Co(n− c)π(n) = Co

∞∑
k=0

kπ(c+ k) = Co[E(Lq)](c). (35)

Similarly, for the costs for unused beds, we obtain Cu[E(U)](c), and for the costs of used beds Cb(c−[E(U)](c)).
The necessary expressions for [E(Lq)](c) and [E(U)](c) were derived in the previous section, where its depen-
dence on the capacity c is now explicitly shown.
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Remark 10. In Remark 9, we already noted that the profit for used beds could have been implicitly included
in Co. We will now argue that the choice to explicitly include the profit on used beds, Cb, does not change
the optimal capacity but that it does change the objective value. Since the offered load ρ as inputted to the
MIP is based on the infinite server approach, its value is fixed for one parameter set, i.e. independent of
the choice of capacity. From Co[E(Lq)](c) = Co([E(U)](c) − c) + Coρ, we then see that the cost (lost profit)
on used beds is linear with gradient ([E(U)](c) − c) if the profit on used beds would be included in the cost
of overflow. Since the profit for used beds is negative (Cb ≤ 0), the ‘cost’ for used beds is also linear with
gradient ([E(U)](c) − c). The difference in objective value between these two modelling scenarios comes from
the nonzero term Coρ, causing the objective value of the implicit modelling to be larger than that of the explicit
modelling. This matches the intuition that with the implicit modelling an opportunity cost (missed profit) is
charged only in case of an overflow bed, while with the explicit modelling profit for every used bed is earned.

The sensitivity of the objective value to the implicit or explicit modelling of profit on used beds, as ex-
plained in Remark 10, illustrates that caution is necessary when dealing with the objective value. One should
not attach too much meaning to the exact objective value for a single capacity, but the objective values cor-
responding to several capacities can be compared to get an impression of their relation.

For the stationary analysis, the performance measures have a fixed value for each capacity c. Since there
is no difference between days, minimization over one day will yield the same capacity result as minimization
over a time period. The objective is thus simply minimizing the total cost per day over the possible capacities
c,

TC(c) = ξCo[E(Lq)](c) + Cu[E(U)](c) + Cb(c− [E(U)](c)). (36)

Time dependence

When the arrival rate is inhomogeneous, the offered load and thus the mean number of overflow patients and
unused beds differ per day. The total cost over the complete time period T , instead of a single day, should
therefore be considered. We can simply sum (36) over all days and take the average, where the mean number
of overflow patients and unused beds are now time dependent,

TC(c) =
1

T

T∑
t=1

[
ξCo[E(Lq(t))](c(t)) + Cu[E(U(t))](c(t)) + Cb(c(t)− [E(U(t))](c(t)))

]
. (37)

By using the time dependent formulas (33) and (34) for [E(Lq(t))](c(t)) and [E(U(t))](c(t)), respectively, the
system is approximated by an infinite server system. Since we showed in the previous subsection that the
infinite server system yields a lower bound on the mean number of patients in overflow, the capacity results
obtained in this way can serve as an indication of the minimal capacity. Alternatively, the MOL approximation
for the time dependent callpacking can be used by using formulas (18) and (20) with ρ replaced by m(t).

Since the offered load per day is not constant anymore, it is likely beneficial to be able to change the
capacity to prevent peaks in overflow or unused beds when there are predictable peaks or low points in the
offered load but constant capacity. Therefore, we will consider time dependent capacity. As mentioned at the
beginning of this subsection, the performance measures are obtained via an infinite server analysis making
their values measures at time t for capacity c independent of the selected capacity before that time. Therefore,
we can simply change c to c(t) in the expressions (33) and (34) for the mean number of patients in overflow
and unused beds, respectively.

Of course, changing the capacity daily is not desirable as it is practically inconvenient and likely costly.
This behaviour of c(t) should therefore be discouraged by charging a cost for changes in capacity, Cc. This
leads to the following objective function

TC(c) =
1

T

T∑
t=1

[
ξCo[E(Lq(t))](c(t))+Cu[E(U(t))](c(t))+Cb(c(t)−[E(U(t))](c(t)))+Cc∗|c(t)−c(t−1)|

]
, (38)

where |.| denotes the absolute value such that a cost Cc,r is charged for each bed that is either added or removed.
Instead of an absolute value, an indicator function could be considered such that a fixed cost is incurred for
changing capacity independent of the size of this change. One could also consider charging different costs for
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the increase and decrease in number of beds. Moreover, constraints on the behaviour of capacity over time
could be set, for example, capacity may only change at set capacity-change points, as suggested by Green
et al. (2007), or the capacity level should stay fixed for at least x days after a change, and the capacity can
not change by too much.

In line with the observation made in Remark (3), objective (37) for the M/G/∞ can be rewritten as

TC(c) =
1

T

T∑
t=1

[
ξCom(t)− (ξCo − Cb)c(t) + (ξCo + Cu − Cb)[E(U(t))](c(t))

]
, (39)

to which the objective term for changing capacity can of course also be included.

3.2.2 Mixed Integer Program

The stationary analysis can simply be solved by calculating for each possible capacity c the value of the
objective function (36), after which the minimum value can just be selected. This approach can be extended
to the time dependent case by repeating this procedure at every timepoint t, where the time dependent
objective is the summand of (37), and concatenating the capacity solutions. Recall that this independent
analysis of each timepoint is possible thanks to the infinite server analysis for determining of the values the
performance measures. However, the time dependent capacity vector obtained with this approach will likely
just mimic the behaviour of the offered load m(t), changing capacity regularly, since it lacks the ability to
take the days around t into account. For example, if the time dependent offered load increases only for a
single day after which it drops again, it might be better not to change capacity (by too much) for that single
day, depending on the costs for changing capacity Cc. Therefore, it is better to determine the capacity for
all days at once based on the objective function (38), which can be done with a Mixed Integer Program. Of
course, one could just range over all capacity vectors and select the one for which the objective function (38)
is minimal, and even speed up the search over the capacity vectors by implementing some neighbourhood
search or decent method initialised by the optimal solution obtained from the independent analysis at each
time point. However, a Mixed Integer Program (MIP) is in general faster and can easily be extended to study
more specific scenarios, like when there are certain constraints on the capacity or when capacity can be shared
between multiple patient types. Again, the reader should be aware that also the MIP approach relies on the
fact that the performance measures [E(Lq(t))](c(t)) and [E(U(t))](c(t)) are determined from an infinite server
system and therefore independent of the choice of capacity c(t̄) for t̄ ̸= t. Dependency between the capacity
decision per day is only present due to the introduction of the cost for changing capacity in the objective
function and, later on, the constraints on the behaviour of the time dependent capacity.

So, a Mixed Integer Program will be set up to determine the optimal capacity. First, the framework of the
MIP to solve the simplest case of unconstrained optimization of (38) is explained. Then, several improvements
and extensions are treated which are divided into constraining the behaviour of the capacity over time and
into the sharing of capacity between different patient types. For the latter, it is explained how the MIP can
take into account multiple patient types and the assumption of independence between VVT types is dropped.

As mentioned before, expressions for [E(Lq(t))](c(t)) and [E(U(t))](c(t)) are derived earlier in this report
and their values are fixed given c(t) and t. This means that their values can be calculated before the opti-
mization process and stored in a look-up table. A reduction in both computational time in the preparation
phase as well as storage in the optimization phase can be made by using objective function (39), based on
the observation in Remark (3). In this way, the vector of m(t) replaces the lookup table for [E(Lq(t))](c(t)),
making both the construction and storage of this second lookup table unnecessary. A matrix U will contain
the values of [E(U(t))](c(t)) with rows corresponding to capacities and columns to time points, U [c][t]. In case
[E(Lq(t))](c(t)) and [E(U(t))](c(t)) are determined with the MOL approximation for the call packing system,
the observation of Remark (3) does not hold and thus both a look up table for the mean number of unused
beds, U [c][t], as well as a look up table L[c][t] for the mean number of patients in overflow are necessary. This
influences only the objective function of the Mixed Integer Program derived below. By comparing objective
functions (37) and (39) and implementing [E(Lq(t))](c(t)) similar to [E(U(t))](c(t)), the necessary adaptation
to the MIP should be straight forward.

Remark 11. It might feel more intuitive to let time belong to rows and capacities to columns since for each
time point (row) only one capacity should be selected. However, the construction of [E(U(t))](c(t)) happens
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per capacity over the complete time horizon due to time dependence via m(t), leading to a format with rows
corresponding to capacities.

In order to optimize over an objective function with a Mixed Integer Program, decision variables need to
be introduced. In this MIP, binary decision variables xc,t are used to indicate if capacity c is selected at time
t. Naturally, only one capacity can be selected at each time point leading to the MIP constraint∑

c

xc,t = 1.

Due to this constraint, the decision variables uniquely define the capacity at time t via the relation

c(t) =
∑
c

cxc,t. (40)

The basis MIP for one patient type therefore is

min
x

1

T

∑
t

[
ξCom(t)− (ξCo − Cb)c(t) +

∑
c

(ξCo + Cu + Cb)U [c][t]xc,t

]
s.t.

∑
c

xc,t = 1 ∀t ∈ T

c(t) =
∑
c

cxc,t ∀t ∈ T

xc,t ∈ {0, 1} ∀t ∈ T, ∀c ∈ C

where T = {0, 1, · · · , tend} is the set of time points within the time horizon and C = {cmin, · · · , cmax} is the
set of all capacities considered at each day.

The next step is to include the cost of capacity change in the objective. It is important to realize that the
absolute value of the capacity change in (38) is not linear and can thus not be put directly in the objective
function. A standard technique, as described by for example Bertsimas and Tsitsiklis (1997), is to replace
the expression in the absolute value (cr(t) − cr(t − 1)) by an auxiliary variable z(t) which should satisfy the
constraints

c(t)− c(t− 1) ≤ z(t) ∀t ∈ T \ {0},
−(c(t)− c(t− 1)) ≤ z(t) ∀t ∈ T \ {0}, (41)

z(0) = 0.

The objective function then becomes

1

T

∑
t

[
ξCom(t)− (ξCo − Cb)c(t) +

∑
c

[(ξCo + Cu + Cb)U [c][t]xc,t] + Ccz(t)
]
. (42)

In (38), the same cost for an increase and decrease in capacity is charged, namely Cc. One could argue
that the cost of increasing capacity is higher than of decreasing capacity. To implement this in the model,
auxiliary integer variables i(t) and d(t) are introduced to capture the increase and decrease, respectively, in
the number of beds at time t. Both variables are thus non-negative and satisfy the constraints

c(t)− c(t− 1) = i(t)− d(t) ∀t ∈ T \ {0}, (43)
i(0) = 0, d(0) = 0.

Interestingly, one could recognise this model implementation as the alternative approach for dealing with
an absolute value as described by Bertsimas and Tsitsiklis (1997). The introduced auxiliary variables replace
the auxiliary variable z(t) and constraints (43) replace constraints (41). Furthermore, the term Ccz(t) in the
objective function should be replaced by Cii(t) + Cdd(t). The non-negativity of the costs for increasing and
decreasing capacity guarantees that either i(t) or d(t) is set to zero when satisfying constraints (43), which
explains why constraints (43) suffice.
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Constraints on behaviour c(t)

Being the big advantage of using a MIP for determining time dependent capacity, the behaviour of the capacity
over time can be regulated in certain ways by introducing appropriate constraints. Here, three possible
requirements are explained, of which only one of the first two should be selected, whichever fits best to the
situation.

Capacity may only change at set time points. Having fixed staffing intervals is common in healthcare
practices Feldman et al. (2008). The case in which capacity may only change at timepoints (t̃1, t̃2, · · · , t̃n) is
therefore considered. In other words, the capacity for the time between t̃i−1 and t̃i is fixed. This is captured
in the constraints

c(t) = c(t̃i−1) ∀t̃i−1 ≤ t < t̃i ∀i ∈ [n],

where [.] denotes the set of first integers {1, 2, · · · , n} and t0 = 0.

Capacity should stay fixed for a minimum time span. If instead the capacity is allowed to change at
any time point, bounds on the frequency of change might be desirable: after a change in capacity, the capacity
can not change for the next q time units. To model this constraint, an auxiliary variable s(t) is introduced
to indicate if there is a change in capacity at time t or not. It is sufficient to only model that s(t) is binary
and can not be zero when there has been a change in capacity at time t, which is achieved by lower bounding
s(t) by |c(t)−c(t−1)|

M . The denominator M is a number at least as large as the maximum capacity considered
such that the fraction is always smaller than one. Since the absolute value is not linear, s(t) is defined by the
constraints

c(t)− c(t− 1)

M
≤ s(t) ∀t ∈ T \ {0},

−c(t)− c(t− 1)

M
≤ s(t) ∀t ∈ T \ {0},

s(0) = 1,

s(t) ∈ {0, 1} ∀t ∈ T \ {0}.

Using this auxiliary variable s(t), a new change in capacity within q time steps after t is then prevented with
the constraint

q∑
k=0

s(t+ k) ≤ 1 ∀0 ≤ t ≤ tend.

Remark 12. Only a lower bound on the binary variable s(t) is necessary for s(t) to behave as the desired
indicator, since s(t) = 1 puts a restriction on the values of s(t∗) for t∗ in a radius q from t via above constraint,
while s(t) = 0 does not. So, setting s(t) = 1 when no change in capacity takes place at t only limits the number
of solutions and will therefore not happen at time points where it matters.

Capacity can change only by a limited amount. Due to logistical reasons, it might not be possible to
change the capacity by more than b beds per time. Since a bound on the possible change in capacity involves
an absolute value, two simple constraints for each time step should be added to the MIP,

c(t)− c(t− 1) ≤ b ∀t ∈ T \ {0},
−(c(t)− c(t− 1)) ≤ b ∀t ∈ T \ {0}.

Different patient types

Until this point, we acted as if there is only one patient type. In the remainder of this section, we will consider
multiple patient types and drop the assumptions of strictly distinct beds per type. The extension to multiple
patient types is quite straightforward. All variables are made dependent on patient type r, for example, the
decision variables become xr,c,t, the look-up matrix becomes three dimensional, U [r][c][t], and the implied
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capacities become cr(t). The objective function will be summed over all VVT types. Lastly, all constraints
should hold ∀r ∈ R, where R is the set of all VVT types. Without additional constraints, the optimal solution
of this model is simply the optimal capacity per VVT type found by optimizing for each VVT type separately.
However, parallel optimization of multiple VVT types makes incorporation of interaction between capacities
of different types possible. The simplest interaction is that the total capacity available for all VVT types is
fixed at (or upper bounded by) N , which is implemented by introducing the constraints∑

r

cr(t) = N ∀t ∈ T (
∑
r

cr(t) ≤ N ∀t ∈ T ).

Naturally, a bound on the available capacity for a subset R̃ of VVT types is set by only summing over r ∈ R̃.

Shared capacity. It can be the case that some beds can be used by multiple patient types r ∈ R̃. Besides
this general or shared capacity, each type can have some extra specific beds for their type only. Suppose that
the number of general beds is fixed at G. Let variables gr(t), r ∈ R̃, be the number of general beds that are
used by type r at time t. Naturally, ∑

r∈R̃

gr(t) ≤ G ∀t ∈ T.

The decision variables xr,c,t will still indicate the total number of beds c that are used by type r at time t.
However, the total number of beds in use by type r consists now of the number of general beds occupied by
type r, gr(t), and the number of (possibly additional) type-specific beds, for which the variable cr(t) are used.
The dependence of the type-specific capacity c(t), as initially given by (40), now thus changes to

cr(t) =
∑
c

cxr,c,t − gr(t),

where gr(t) = 0 ∀t ∈ T by default for all types that are not eligible for the general beds, that is, for r /∈ R̃.
In the first term in objective function (42) the total capacity is of interest. This term Co,r(mr(t)− cr(t))

therefore changes to Co,r(mr(t) − (gr(t) + cr(t))). It is assumed that it does not matter how the general
beds are distributed between patient types over time, and thus both the cost for changing capacity, given by
Cc,rzr(t) in the objective, as well as the constraints in Section 3.2.2 are still applicable to cr(t). If a cost for
switching general beds between patient types is desired, the implementation will be similar to charging costs
for a change in c(t), but now for the variables gr(t). Furthermore, a cost for the total number of general beds
in use could be charged by simply introducing a cost term depending on

∑
r gr(t) in the objective function.

Lower costs for relabeling existing beds than for new beds. It might be possible that VVT beds
currently for a certain patient type r̄ could be made suitable for patient type r∗ by some easy actions. In such
case, this relabeling of existing beds could be cheaper than the alternative of realizing extra (new) beds for
patient type r∗. Let the integer variable lr(t) be the number of beds that are relabeled from patient type r
to another patient type at time t. A negative value of lr(t) means that there are beds relabeled from other
patient types to patient type r, which leads to more beds for patient type r. Clearly, there should be no net
change in the number of beds due to relabeling, that is,∑

r

lr(t) = 0 ∀t ∈ T.

Besides relabeling, the number of beds assigned to a certain type can still change due to an increase (or
decrease) in total capacity, that is, by introducing (or removing) a completely new bed. Earlier the auxiliary
variable ir(t) (dr(t)) represented the increase (decrease) in number of beds of type r at time t. When relabeling
is possible, ir(t) (dr(t)) will represent the increase (decrease) in number of beds of type r due to introduction
(removal) of a new bed, and will thus exclude a change in capacity due to relabeling. The following relation
between the mentioned variables is obtained,

cr(t)− cr(t− 1) = −lr(t) + ir(t)− dr(t) ∀r ∈ R ∀t ∈ T \ {0},
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and will replace constraints (43).
For relabeling capacity of type r, a cost Cl should be charged per relabeled bed instead of the regular cost

Ci (Cd) for increase (decrease) of capacity. Since ir(t) (dr(t)) now only represents the increase (decrease) in
number of beds of type r due to introduction (removal) of a new bed, the objective term Ciir(t) + Cddr(t)
summed over all r and t is unchanged. An extra term to capture the cost of relabeling should be introduced.
Since the relabeling of one bed from patient type r̄ to r∗, causes the value of two auxiliary variables to change,
lr̄(t) = 1 and lr∗(t) = −1, while the relabeling cost should be charged only once, the costs for relabeling at
time t are

∑
r Cl max(0, lr(t)). To preserve linearity of the objective function, the term

∑
t

∑
r Cl l̄r(t) is added

to the objective function where the auxiliary variables l̄r(t) satisfy

l̄r(t) ≥ lr(t) ∀r ∈ R ∀t ∈ T,

l̄r(t) ≥ 0 ∀r ∈ R, ∀t ∈ T.

If only the beds within a limited set R̄ of patient type are suitable for relabeling, the variables lr(t) for
r /∈ R̄ are simply forced to equal zero ∀t ∈ T .
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4 Data for numerical analysis

This section covers the estimation of the parameters needed for the numerical capacity analysis. First, we will
comment on the available data. Then, the estimation of the different parameters is discussed per parameter.
The time step in this research is days.

4.1 Available data
Although this research aims to study the optimal capacity per patient type for a collection of VVT organi-
sations, the numerical analysis will only be performed for one specific patient type of one VVT organisation
due to the lack of appropriate data available. Two distinct data files were needed to determine the parameter
estimations: POINT data about the transfer of patients from hospitals to VVT organisations and data from
the specific VVT organisation. Unfortunately, it was not possible to link information from these data sets
in order to have both information on the arrival and overflow process as well as on the service process of an
individual patient.

The data files. The first data file is the POINT data. POINT is a system in which the transfer of patients
from hospitals to VVT organisation can be organised. It contains per patient a lot of information on the
transfer. For example, from which hospital department to which VVT location the transfer took place,
when the transfer request was created, the date the hospital initially thought the patient would be ready to
transfer and the date on which the transfer was realised. The oldest transfer in this data file was created on
17 March 2021 and the most recent transfer was created on 30 December 2022. The file is filtered on the
receiving department name to match the organisation and patient type analysed in this numerical research.
This filtered file contains 384 patients. The second data file contains data about the length of stay in the
VVT for a specific patient type, GRZ (geriatrische revalidatiezorg, geriatric rehabilitation), at a specific VVT
organisation. The oldest starting date of care is 1 March 2021 and the most recent is 14 December 2023. The
file contains 562 patients. We received both data files on 14 December 2023.

The POINT data file contains a lot of date entries on the (request for) transfer. In discussion with the
main hospital involved in this research, the best estimate for the number of overflow days (bed-blocking days
in the hospital) should be obtained by subtracting the Initial discharge date from the Realized discharge date.
We will comment on possible shortcomings of the use of the Initial discharge date in the Discussion.

4.2 Parameter estimation

4.2.1 Arrival process

In line with the advice to use the Initial discharge date as the starting moment of the overflow period, this
date is also the arrival moment of the patient to the VVT. Recall that the arrival to the VVT system is namely
defined as the moment the patient is ready to transfer to the VVT.

Taking the average over the number of arrivals per day yields an average arrival rate of 0.58 arrivals per
day. However, there is a significant difference between the number of arrivals per day, especially on weekdays
versus weekends. Figure 2 shows the total number of all arrivals per day of the week over the period of the
data set (18 March 2021 to 30 December 2022).

Since the period over which the sum of the arrivals is taken is 93 weeks (and 2 days), dividing the total
number of arrivals per day by 93 (or 94) yields an estimate for the average arrival rate per day of the week as
given in Table 1.

Table 1: The average arrival rate from the hospital per day of the week.

Weekday Mon Tue Wed Thu Fri Sat Sun
Arrival rate 0.74 0.80 0.77 0.65 0.73 0.26 0.13

Important to note is that the arrival rates obtained from the POINT data are only the arrivals from the
hospital. Since we assumed that only a fraction ξ of the arrivals came from the hospital, the total arrival rate
to the VVT is higher. Including external arrivals, who were assumed to have the same arrival process, the
total arrival rate is λ

ξ .
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Figure 2: The total number of arrivals per day of the week over a period of 653 days.

Fraction ξ. The fraction ξ of patients that came from the hospital could not be estimated based on the
available data. The data from the POINT system only contains requests for VVT care made by hospitals;
we do not have data on VVT requests by external arrivals. We compared the number of patients that have
the correct GRZ institution as the receiving organisation in the VVT file with the number of patients that
arrived to that GRZ location in the same period to obtain a rough estimate for the fraction of internal arrivals.
However, the number of patients in the POINT file was higher than the number of arrivals according to the
data of the VVT institution. This inconsistency could be caused by patients ending up in a (temporary)
different bed than planned. Regardless of the cause, a good estimate could therefore not be obtained from the
data. The fact that the observed inconsistency could occur does indicate that the fraction of internal patients
is likely to be rather high. It is also known from practice that most GRZ patients come from the hospital
since recovery from surgery is the main reason for entering GRZ. We will therefore set the fraction of internal
arrivals to ξ = 0.95.

Including external arrivals by setting ξ = 0.95, a total average arrival rate of 0.58
0.95 = 0.61 per day is obtained.

The corrected total arrival rates per day can be found in Table 2.

Table 2: The average total arrival rate per day of the week for ξ = 0.95.

Weekday Mon Tue Wed Thu Fri Sat Sun
Arrival rate 0.78 0.84 0.81 0.68 0.77 0.27 0.14

Arrival distribution. In Section 3.1, the arrival process is assumed to be a Poisson process. This assumption
is checked here. In a Poisson process, the number of arrivals per day is Poisson distributed. We count how
many arrivals occur per day on each day between the first Initial discharge date and the last Initial discharge
date in the data set. Then, we count the number of days that have 0 arrivals, 1 arrivals etcetera. This yields
an observed frequency per number of arrivals on a day given in Table 3. Since the mean number of arrivals
per day is 0.58, we hypothesize that the data is generated from a Poisson distribution with mean 0.58. The
expected frequencies that belong to this distribution are given in Table 3 as well.

Table 3: The frequency table of the observed and the expected number of days on which a specific
number of arrivals occurred. The expected frequency is based on a Poisson distribution with mean 0.58.

Number of arrivals on a day 0 1 2 3 4 5 6 ≥ 7
Observed frequency 380 193 52 21 4 1 0 0

Expected frequency if Poisson(0.58) 362.58 212.20 62.10 12.11 1.77 0.21 0.02 ≈ 0

Figure 3 visualises the comparison of the observed and expected frequency. The observed frequency of
both 0 arrivals per day and 3 to 5 arrivals per day is higher than what would be expected from a Poisson
distribution with mean 0.58, while the frequency of 1 and 2 arrivals per day is lower. A Chi-square test is used
to determine the goodness of fit. The test statistic χ2 has a value of 16.58. With 5−1 = 4 degrees of freedom,
we have c = 9.49 taken from the χ2

4 table with significance level 0.05. Since χ2 = 16.58 > 9.49 = c, the null
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hypothesis is rejected at 5% significance level. So, we have to conclude from this goodness of fit test that it is
likely that the number of arrivals per day is not Poisson distributed with mean 0.58. Since Figure 2 already
showed that the number of arrivals per day depends on the day, this is not surprising. The assumption that
the arrival process is a Poisson process is necessary for the analysis, but it is good that the reader is aware of
the extent to which this assumption fits the data.

Figure 3: The observed and the expected frequency of each number of arrivals per day. The expected
frequency is based on a Poisson distribution with mean 0.58.

In the time dependent analysis, a distinct arrival rate per day is used. The assumption of the number of
arrivals on a specific day of the week being Poisson distributed with the corresponding arrival rate reported in
Table 1, can be evaluated as well with the goodness of fit analysis described. For example, for the number of
arrivals taking place on Tuesdays, we obtain a test statistic of χ2

3 = 2.84. Since χ2
3 = 2.84 < 7.82 = c, the null

hypothesis that the number of arrivals on Tuesdays is Poisson distributed with mean 0.80 can not be rejected.

4.2.2 Service process
To determine the distribution of the service process, the length of stay (LOS) of the patients in the GRZ data
file is determined. It is important to realize that we deal with so-called censored data here. Some patients
were still receiving care at the moment the data files were generated and therefore their LOS is unknown. The
observations of their LOS are right-censored, since only a lower bound on their LOS is known. The right-
censored LOS of these patients is the number of days between their starting date and 14 December 2023, which
is the day we received the data files. The LOS of the other patients is simply the number of days between their
starting date and their end-of-care date. A survival analysis is performed on the censored LOS data to obtain
an empirical cumulative distribution function (cdf) of the service times for which Kaplan-Meier is a common
method [60]. To find an appropriate description of the service time distribution, several distributions are
fitted to this cdf. The Python class scipy.stats.CensoredData in combination with the scipy.stats.fit function
is used to deal with the fact that the data is censored. The best fits for the exponential, lognormal and gamma
distribution can be found in Figure 4.

Figure 4: The fitted distributions to the empirical cumulative distribution function of the LOS.
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The lognormal distribution shows a good fit to the empirical cdf, and is a common choice for modelling
LOS in healthcare settings. The one-sample Kolmogorov-Smirnov test, which is a common goodness of fit
test, gives a p-value of 0.070. Since this p-value is above the threshold of 0.05, the null hypothesis of the
empirical cdf being lognormal with the fitted parameters can not be rejected with 95 percent confidence. The
fitted lognormal has parameters (shape, location, scale) = (0.50,−10.64, 44.51). A lognormal distribution with
these parameters has mean 39.79 and variance 722.29. To these values corresponds a coefficient of variation
of σ

µ = 0.68. We note that the mean LOS of the fitted distribution is satisfactorily close to the average LOS
of 39 days as reported in 2018 by ActiZ (2018).

4.2.3 Fraction κ

Since the information about the (time before) transfer and the time in the VVT are obtained from separate
data files, between which there is no clear connection on individual patient level, we have no data to base an
estimate for κ on. Moreover, since we can not see the influence of the time in overflow on the service time in
VVT, we do not know how the service times that we use from the data are possibly already influenced by the
time in overflow.

Remark 13. An attempt was made to link the two data files to each other by a combination of the birth year
of a patient and on one side the initial discharge date or date on which the transfer was closed in the POINT
file and on the other side the starting date in the VVT data. Only a limited number of matches were found.
Moreover, we can not be sure that found ‘matches’ indeed refer to the same person in reality. In general, (too)
little information is known on the relation between the dates in the POINT data and those in the VVT data.
Therefore, we can not match the two data files to obtain insight into the possible influence of time spent in the
hospital and overflow on the length of stay in the VVT.

4.2.4 Base set of parameter values

The parameters obtained from the data will be used to perform the numerical analysis in the next Section.
Moreover, values for κ and the cost parameters will be selected that will be used to generate the results if
not stated otherwise, like when ranging over another parameter. We will refer to this set of values of the
parameters as the ‘base set’.

The system characteristics in the ‘base set’ are a Poisson arrival process with either a stationary rate of
0.61 or time dependent rate given by Table 2, a fraction of internal arrivals η = 0.95 and a lognormal service
distribution with a mean of 39.79 days and a variance of 722.29, which yields a coefficient of variation of
0.68. To this combination of arrival rate and mean service time corresponds an (infinite server) offered load
of ρ = λE[S] = 24.27. For the fraction κ a base value of 0.3 will be used.

Since the costs for a hospital and VVT bed are influenced by a lot of factors and are hard to find out, as
illustrated by the list of different possible sources for valuing care units with several upsides and downsides
as given in Section 3.3 in van Roijen et al. (2024), we have little information to base the cost parameters
on. According to a recent news article, the hospitals in region Twente miss out on roughly 550 euros per
day per bed due to patients in overflow [45]. With a cost of 150 euros per day in a VVT bed, as given in
te Meerman (2017), we obtain Co = 550−150 = 400. Interestingly, the ratio between Co, = 400 and Cu = 150
is 400

150 = 2.67, while Zychlinski et al. reported a ratio of 2.67 between their two cost parameters for geriatric
rehabilitation. Since the margins for care financed from the Zorgverzekeringswet are rather small, we use a
profit of 10 euros on each used VVT bed. A close reader might have noticed that we did not try to include
‘costs’ for the unavailability of proper care that could result in the deterioration of the patients’ health. As
Section 3.2.1 points out, excluding such cost components will lead to the resulting capacity underestimating
the true capacity. In the case of time dependent capacity, we additionally have cost parameters for the increase
and decrease in capacity. These costs should be larger than zero to capture the fact that changing capacity
both costs time as well as brings a certain inconvenience, but not too high since it should still allow for
fluctuations in capacity so that there is an added value in analysing a time dependent capacity. Therefore,
the cost of decreasing capacity is set at 5 euros per bed and the cost of increasing at 10 euros per bed. In
summary, the cost parameters in the base set are set at Cu = 150, Co = 400 and Cb = −10. For the time
dependent analysis, we additionally have Cd = 5 and Ci = 10.
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5 Numerical analysis

In this section, numerical results are given to illustrate the application of the mathematical models developed
in this research. First, a stationary analysis is performed to study the difference in numerical outcomes between
the different models of Section 3.1 and the influence of the fraction κ on this (Section 5.1.1). Moreover, the
sensitivity of the optimal capacity to variations in the different cost parameters is visualised (Section 5.1.2).
The stationary analysis is used to draw a preliminary conclusion on the difference in optimal capacity and
associating cost between the situation in which the VVT is the individual decision maker and the situation
in which the hospital and VVT have a common objective (Section 5.1.3). Second, the influence of a time
dependent arrival rate is discussed. The time dependent analysis allows for fluctuations in capacity over time,
so the influence of κ on the time dependent behaviour of the capacity is studied (Section 5.2.1). Since the time
dependency of the capacity leads to the introduction of extra cost parameters, the influence of the change in
these extra parameters on the optimal time dependent capacity is analysed (Section 5.2.2). The time depen-
dent results are compared to the square root staffing rule (Section 5.2.3). It is shown how the constraints of
the Mixed Integer Program affect the optimal solution (Section 5.2.4). Third, the performances of the analytic
solutions in reality are mimicked through a simulation, both for the stationary capacity (Section 5.3.1) and
the time dependent capacity (Section 5.3.2), and neighbouring solutions are analysed. Lastly, a conclusion is
drawn on the difference between the optimal situation for the VVT and the system optimal.

Although the value of the objective function is used to determine which capacity is optimal, the use of
the exact value of the objective function is limited. Its value is more sensitive to parameter changes than the
corresponding optimal capacity. Since the values of some parameters are uncertain, this higher sensitivity is
inconvenient. The objective value is also strongly influenced by certain modelling choices, like the explicit
incorporation of the profit for used beds as argued in Remark 10. For these reasons, the influence of the
varying parameters on the optimal capacity decision is studied and not their influence on the objective value.

The numerical analysis in this research is limited to a specific VVT type GRZ at a specific institution.
The data that is used as input for this numerical study is discussed in Section 4. If not stated otherwise, the
results are generated with the parameter values from the base set as summarized in Section 4.2.4.

5.1 Stationary analysis
In the first analysis, the arrival rate is assumed to be stationary and therefore its value is 0.61 arrivals per
day. We would like to point out that all the systems discussed in this research are either insensitive to the
service time distribution in the stationary case or limited to the case of exponentially distributed service times.
Therefore, only the mean service time of 39.79 days, corresponding to a service rate µ = 1

39.79 , is taken into
account from the service characteristics fitted in Section 4.2.2. Since the values of κ and the cost parameters
are uncertain, sensitivity to these parameters is discussed later in this section. The influence of the arrival
rate and service time are as expected and can be found in Appendix A.3.

The total cost comprises several cost components, as should be apparent from objective function (36).
Figure 5 shows how these cost components are influenced by the capacity, and make up the total cost, for
each system. The total cost of each system over the capacity is also plotted in Figure 6 so that the behaviour
of the total costs with respect to the capacity can be compared between systems. The total cost curve of the
adapted infinite server system behaves over the capacity similar to that of the call packing. Especially for
lower capacities, the different behaviour of the unadapted infinite server system and the adapted infinite server
system is noticeable. Figures 5a to 5c show that the overflow component is the main difference between the
unadapted infinite server system and both the adapted infinite server system and the call packing system. A
better approximation of the mean number of overflow in the call packing systems is thus the likely cause that
the adapted infinite server system better mimics the call packing system than the unadapted version.

The computations for the M/M/c are only given for a capacity of 25 and higher since the stability condition
λ
cµ < 1 is not met for lower capacities. For the adapted M/M/c, reasonable results could only be given for
capacity 26 and higher since the repeated substitution to determine the fixed point mean number of patients
in overflow did not converge to a single value for a capacity of 25. This inability to determine the appropriate
cost for a capacity of 25 will also be apparent in some later results. The evaluation of the performance of the
Adapted Service Time Approach for the M/M/c in its current form compared to the call packing system is

43



5 NUMERICAL ANALYSIS

therefore limited. The available results do suggest that, just like for the infinite server systems, the adapted
variant better mimics the total cost of the call packing system for decreasing capacities.

(a) M/G/∞ (b) Adapted M/G/∞ (c) Callpacking

(d) Adapted M/M/c (e) M/M/c

Figure 5: The value of the cost components against the capacity, given for each system in this research.

Figure 6: The behaviour of the total cost of each system over the capacity. The cross marks the
minimum of the cost curve for each system.

Figure 6 shows that the total cost in each system becomes the same for increasing capacity. This is as
expected since in the case of abundant capacity, the system is rarely saturated and thus the influence of the
finiteness of the capacity is limited. In Sections 3.1.2 and 3.1.3, we either proved (≤pr) or conjectured (≤conj)
the following ordering of the mean queue length in the distinct system: E(Lq)

(ΣA) ≤pr E(Lq)
(ΣB) ≤conj

E(Lq)
(ΣC) ≤conj E(Lq)

(ΣD) ≤pr E(Lq)
(ΣE), where systems ΣA to ΣE refer to the M/G/∞, adapted M/G/∞,

call packing, adapted M/M/c and M/M/c system in that order. Figure 6 suggests that this ordering is almost
preserved for the cost function. Remarkably, the total cost for the adapted infinite server system is slightly
below that for the unadapted version for capacity 28 and higher. This does not undermine Theorem 5 as the
mean number of patients in overflow in the unadapted M/G/∞ system is still lower than that in the adapted
system. The number of unused beds in the unadapted system is apparently sufficiently higher than in the
adapted system for capacities above 28 such that the total cost in the unadapted system exceeds that in the
adapted system.

44



5 NUMERICAL ANALYSIS

In Figure 6 the minimum of the cost curve is marked with a cross for each system. The corresponding
capacity (value on the x-axis) is the optimal capacity in that system. The minimum cost of each system
satisfies the ordering of the systems as given above, and the optimal capacity for this ordered list of systems
is non-decreasing.

5.1.1 Influence of κ

From Figure 6, the optimal capacity in each system could be determined for the base parameters, among which
the fraction κ was set at 0.3. Since this choice for κ could not be based on the data, it is important to know
how the value of κ influences the optimal capacity in each system, as is shown in Figure 7.

Figure 7: The optimal capacity of each system over different values of κ.

Since the unadapted systems do not depend on κ, the optimal capacity is a straight line over κ. The
optimal capacity in the other systems decreases when κ increases. Since κ indicates how much the time in
overflow reduces the residual service times, a higher value of κ means a shorter residual service time in the
VVT and thus a decrease in offered load, which is generally known to lead to lower capacities. In line with the
boundary cases, the optimal capacity for the call packing equals that for the M/M/c and M/G/∞ for κ = 0
and κ = 1, respectively. The optimal capacity satisfies the ordering of the systems given above for every value
of κ. Thus, the optimal capacity in the adapted systems is at least as close to the optimal capacity of the
call packing system as the optimal capacity in their respective unadapted versions. However, it does depend
on the value of κ if the adapted finite server system (low values of κ) or adapted infinite server system (high
values of κ) yields a capacity closer to that in the call packing system. We would like to stress that the optimal
capacities of the call packing system, and finite server systems, given here hold for the case of exponentially
distributed service times. Results for the call packing system with the fitted lognormally distributed service
times are obtained through simulation and are given in Figure 20.

5.1.2 Influence of different cost parameters

Since the appropriate values for the cost parameters are not straightforward, it is important to study the
sensitivity of the optimal capacity to the cost parameters.

Overflow cost Co

First, the influence of the overflow cost Co is studied. In Figure 8 we see that the optimal capacity increases
as the cost for overflow increases which makes sense as the system aims to limit the amount of overflow. The
influence of the overflow cost on the optimal capacity is apparent. Especially when the overflow cost drops
below Cu = 150, the optimal capacity in most systems drops faster. For an overflow cost of zero, we note
three things. Firstly, the capacity in the call packing system and infinite server systems drops, but not to zero.
Since there is no cost for overflow while the cost for unused beds is significant, the main concern is minimizing
the number of unused beds. However, the small profit on used beds prevents a drop to zero capacity, since
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guaranteed used beds will be beneficial. The M/M/c system drops to the minimum capacity possible; a lower
capacity yields an unstable system. The second thing we note for Co = 0 is that the adapted M/M/c system
stays at 26. This is due to the inability to calculate the appropriate cost of having capacity 25, as mentioned
earlier. Lastly, the optimal capacity in the call packing system is lower than in the adapted M/G/∞ system
for Co = 0. This will be discussed later in relation to Figure 10b.

Figure 8: The optimal capacity over different values of the cost parameter for overflow, Co.

Cost for unused beds Cu

We will now study the influence of the cost of unused beds Cu. Figure 9a shows how the optimal capacity
behaves when Cu is ranged while Co is kept fixed, where a capacity of 34 was the maximal capacity considered.
The information contained in Figure 9a is similar to that in Figure 8, since the ratio between Co and Cu
determines mostly the optimal capacity. The optimal capacity for each system in Figure 8 for, for example,
Co = 200 and Co = 600 is the same as in Figure 9a for, respectively, Cu = 300 and Cu = 100. Since Cu was
fixed at 150 in Figure 8 and Co was fixed at 400 in Figure 9a, these were the optimal capacities corresponding
to a ratio of Co : Cu of 4:3 and 4:1, respectively. Although Cb was kept fixed at -10, and thus not scaled
accordingly, it did not influence the capacity decision, as we will also see later. So, for the capacity decision
only the ratio between the cost parameters is of importance. Please be aware that the objective value, on the
contrary, is influenced by the exact values of the cost parameters.

(a) Overflow costs fixed at Co = 400. (b) Costs for hospitalization fixed at Co+Cu = 550.

Figure 9: The optimal capacity over different values of the cost parameter for unused beds, Cu.

The reader should be aware that the analysis of variable Cu for fixed Co, as in Figure 9a, can not be used
to draw conclusions on the influence of the cost of unused beds on its own. Recall that the cost for overflow
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Co is the difference between the cost of hospitalization in the hospital and the cost of a VVT bed, Cu. That
is, the cost of hospitalization is the sum of Co and Cu. So, if we range Cu while keeping Co fixed, not only
the cost for unused beds, but also the cost for hospitalization in the hospital varies. To study the influence
of different costs for unused beds compared to the cost of hospitalization better, the cost of hospitalization
Co + Cu is kept fixed at 550 while ranging Cu in Figure 9b. Since Co + Cu is fixed at 550, Cu can only be
ranged from 0 to 550. The influence of a change in Cu is now bigger than in Figure 9a. When Cu = 550,
and thus Co = 0, we again see that the optimal capacity in the call packing system is lower than that in the
adapted infinite server system and that the capacity in the systems does not drop to zero likely due to the
small profit on used beds.

Although the cost parameters Co and Cu clearly influence the optimal capacity in all systems, they have
limited influence on the accuracy of each system as an approximation for the call packing system, for the used
κ = 0.3. The difference between the optimal capacity in the call packing system and the adapted systems is
mostly one, and one to three between the call packing system and the unadapted systems, for most reasonable
parameter combinations. Only when the cost for overflow is smaller than the cost for an unused bed, the
difference in optimal capacity in each system becomes worse. This is especially the case when the cost for
overflow is set at zero, since then the adapted systems perform badly.

Profit on used beds −Cb

We already noted that the ratio between Cu and Co, even when Cb is fixed at -10, is (most) decisive for the
optimal capacity. Figure 10 confirms the impression that the profit for used beds does not strongly influence
the capacity decision. Although the almost complete absence of influence of Cb on the optimal capacity might
be striking at first, it can be explained using the dependencies of the cost components in the objective function
on the used beds on [E(Lq)](c). If we study the value [E(U)](c) for each c, we note that, roughly, for little
capacity it is close to zero while for reasonable capacity it increases with approximately 0.9 per increase in
the capacity, and for abundant capacity it increases with almost 1. That is, (c − [E(U)](c)) either increases
by almost one per capacity for relatively low c and is almost constant for reasonable capacities. In case of
relatively little capacity, the cost of overflow is so significant that the objective value for those capacities will
be too far from optimal for the specific value of Cb to make a difference. For capacities close to the optimal
capacity, the cost component for used beds, Cb(c− [E(U)](c)), decreases with slope close to zero, while the cost
component for unused beds, Cu[E(U)](c), increases with slope close to one. So, even for Cb close to Cu, the
objective function is not likely to be significantly decreased by the profit on used beds to change the optimal
capacity.

(a) Base parameters (Cu = 150 and Co = 400). (b) Overflow costs are set to zero (Co = 0).

Figure 10: The optimal capacity over different profits for used beds, -Cb.

So far, we reasoned that the possible influence of the value of Cb on the objective value for low capacities
is nullified by the high costs for overflow. The insensitivity of the optimal capacity to Cb as observed for the
base parameters might therefore not hold for a significantly low value of Co. The situation with zero costs for
overflow is interesting when studying what happens if the VVT would decide on their own on their optimal
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capacity. The influence of the profit per used VVT bed on the optimal capacity when Co = 0 is therefore
studied in Figure 10b. We note that both the M/M/c system and the adapted M/M/c system stay at the
minimum capacity for which it was reasonable to calculate the objective function. For the other systems, the
optimal capacity is now more sensitive to Cb, as expected. Remarkably, the optimal capacity in the adapted
M/G/∞ system is larger than that in the call packing system for all values of Cb. We already observed this
behaviour at the other moments the overflow cost Co equalled zero, in Figures (8) and Figures (9b). Since the
objective function, and thus the decision on the optimal capacity, depends only on the performance measure
number of unused beds when Co = 0, the result is caused by the calculated mean number of unused beds
in the M/G/∞ system being smaller than that in the call packing system for a given capacity. In Figure 6,
we observed that the line for the adapted M/G/∞ lay below the unadapted version for which we concluded
that the mean number of unused beds in the normal M/G/∞ system was sufficiently higher than that in
the adapted system. In other words, the mean number of unused beds in the adapted system was rather low
compared to that in the normal M/G/∞ system. So, based on the numerical analysis, we conclude that the
mean number of unused beds in the adapted M/G/∞ system is rather low compared to both the normal
M/G/∞ system as well as the call packing system, but so far no reasonable explanation could be found.

5.1.3 Difference in optimal for VVT and optimal for system

We will use the stationary results for the call packing system to illustrate the difference in optimal capacity from
a system perspective, in which the hospital and the VVT have a shared objective, and the optimal capacity
if the VVT would decide on their own. Although the objective values should not be taken as absolute values,
as pointed out earlier in this section, significant differences in their value for similar parameter combinations
can indicate a reasonable difference in costs in reality. The main purpose of giving the objective value is thus
to illustrate the influence of monetary incentives in the two scenarios.

For the set of base parameters, the optimal capacity from a system perspective is according to the call
packing system 29 with an objective value of 812.32, as could also be concluded from Figure 6. The scenario
in which the VVT decides on its own is best modelled by setting Co = 0. The costs for overflow are, after all,
on the hospital’s account and not that of the VVT. With Co = 0, the optimal capacity is 19, see Figure 8, with
a corresponding objective value of -183.48 (a profit). The optimal capacity if the VVT decides is lower than
if the hospital and the VVT decide together, as expected. From a financial perspective for the VVT, limited
capacity will only limit the possible profit that could be made but will not bring losses as the VVT does not
bear the overflow costs. More capacity, on the other hand, increases the risk of having a lot of unused beds
that does result in losses for the VVT. The VVT on its own is therefore expected to be more conservative in
their capacity than the system as a whole. The objective values provided so far can not be compared fairly,
since one is the cost for the complete system (812.32 for a capacity of 29) while the other is the cost for the
VVT (-183.48 for a capacity of 19). For a proper comparison of the costs of each scenario, both the costs for
the system as well as the costs for the VVT are needed for each scenario. The cost for the VVT for a capacity
of 29 is the objective value for c = 29 when Co = 0: 505.28. The cost for the system for a capacity of 19 is
the objective value for c = 19: 6445.79. The optimal capacity decision and costs per scenario are summarized
in Table 4. The calculated mean number of patients in overflow per scenario is included as well.

Table 4: The optimal capacity and associated cost from both the system perspective and the VVT
on its own. The situation in which only the VVT is considered is modelled by setting Co = 0.

Hospital & VVT decide VVT decides
Optimal capacity 29 19

Cost for system 812.32 6445.79
Cost for VVT 505.28 -183.48

Mean number of overflow 0.81 17.71

So, the VVT on its own can minimize their expected costs to -183 euros by having a capacity of 19. This
decision is expected to cost the hospital and VVT together 6446 euros. From a system perspective, this total
cost could be reduced to 812 by having a VVT capacity of 29. However, that would increase the costs for
the VVT to 505 euros, which is 688 euros more than if the VVT would decide individually on their capacity.
This numerical analysis illustrates that it would be reasonable (and necessary) to compensate the VVT for
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increasing their capacity since it is expected to pay off for the system as a whole, both financially as well as
in the availability of proper care.

The analysis performed here for the base parameters is expected to extend to other parameter combinations
as well, since the drop in capacity when Co = 0 in Figures 8 and 9b is significant compared to all other values
of Co and Cu, respectively. Furthermore, Figure 10 shows the influence of Cb is limited as the optimal capacity
when Co = 0 is reasonably smaller than when Co = 400 even for a significant increase in the profit for a used
bed. Moreover, the optimal capacity as a function of κ in Figure 7 ranges between 30 and 27 while the optimal
capacity when Co = 0 ranges between only 23 and 17. Indeed, the results for κ = 0.8 as given in Table 5 are
similar to that for κ = 0.3.

Table 5: The optimal capacity and associated cost from both the system perspective and the VVT
on its own when κ = 0.8.

Hospital & VVT decide VVT decides
Optimal capacity 27 17

Cost for system 702.09 3232.00
Cost for VVT 301.45 -157.69

Mean number of overflow 1.05 9.18

5.2 Time dependent analysis
In the numerical analysis so far, the arrival process was assumed to be stationary. Since Figure 2 shows that
the number of arrivals per day is not steady over the week, an analysis with a time dependent arrival rate is
performed as well. Since the time dependent offered load m(t) is not insensitive to the service distribution,
the time dependent analysis takes into account the fitted lognormal distribution. The time dependent analysis
is performed for the time dependent infinite server system and with the Modified Offered Load approximation
for the call packing system, as discussed in Section 3.1.4. Please note that for the time dependent analysis,
a cost for increasing capacity (Ci = 10) and a cost for decreasing capacity (Cd = 5) are included in the base
parameters, as explained in Section 4.2.4.

Since the arrival rate, and thus the time dependent offered load, has a period of 7 days and we perform an
analysis using the steady-state expected values of performance measures, we expect that a time horizon of 21
days suffices to find the optimal time dependent capacity. The effect of freely choosing a capacity towards the
boundaries of the timeframe is observed to stay limited to only the first few days and the last few days, see for
example the green lines in Figures 13c and 13b respectively. The middle week of the three weeks, therefore,
yields the optimal time dependent capacity for the parameter combination under consideration.

Stationary capacity. Firstly, if an arrival rate of 0.61 per day is used, the offered load m(t) = 24.27 ∀t
equals the stationary offered load and thus the results match those in the stationary analysis. Before allowing
the capacity to change over time, it is good to know how the time dependency of the arrival rate influences the
optimal stationary capacity. We observe that the optimal (stationary) capacity found in the case of stationary
arrival rates is also the optimal stationary capacity in the case of a time dependent arrival rate. The graph
with the cost of each stationary capacity in case of a time dependent arrival rate looks the same as Figure 6
for both the infinite server system and (the MOL approximation of) the call packing system. The minimum
objective value for the time dependent infinite server system is 668.85 compared to the stationary 663.61 and
for the time dependent MOL approximation of the call packing system 821.02 compared to the stationary
812.32. Furthermore, the graph with the optimal stationary capacity in the MOL approximation of the call
packing system per value of κ is the same as the stationary call packing system in Figure 7. So, when looking
for a stationary capacity, there is little added value of a time dependent analysis compared to the stationary
analysis for the base set of parameters. This conclusion is in line with the rule of thumb stated by Bekker
and de Bruin (2010) that the impact of fluctuations in the arrival rate is relatively small if the average service
time exceeds five times the cycle length at which the fluctuations occur. The mean service time is 39.79 days
while the cycle length of the arrival rate is 7 days and thus we have 39.79 > 5 ∗ 7 = 35.
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Shift in offered load The analysis with time dependent arrival rates allows for the evaluation of more
advanced capacity vectors. By allowing the capacity to change over the week, knowledge about peaks and
dips in the arrival process can be used to our advantage. The influence of the time dependency of the arrival
rate is taken into account via the time dependent offered load m(t). Figure 11a shows a clear time shift of the
time dependent offered load with respect to the instantaneous offered load λ(t)

µ at time t. Furthermore, the
fluctuation in the time dependent offered load are less extreme than in the instantaneous offered load. Both
the observed time shift as well as the damping are in line with the literature discussed in 2.2.1.

(a) For the full range of the load. (b) Zoomed in on the time dependent offered load.

Figure 11: The time dependent offered load and capacity compared to the instantaneous offered load.

Figure 11a also contains the optimal capacity for the base parameters as obtained with the infinite server
approach and with the MOL approximation on the call packing system. Figure 11b is zoomed in on the offered
load and the capacity vectors. Except for start-up behaviour, the time dependent behaviour of the optimal
capacity for the infinite server approach and for the MOL approximation on the call packing system is the
same. Analogous to the stationary results, the main capacity in the two system are 27 and 29, respectively.
We observe a single drop in the optimal capacity on the same day as in the modified offered load (Wednesday).
This drop in capacity is thus shift compared to the drop in the arrival rate (Saturday and Sunday). The
offered load is plotted in the upcoming figures in this section as a reference line. It is important to keep in
mind that this time dependent offered load is shifted with respect to the instantaneous offered load, and thus
arrival rate. So, behaviour of the capacity that makes perfect sense when compared to this time dependent
offered load might feel counterintuitive in reality when compared to the daily arrival rates.

5.2.1 Influence of κ

In the stationary analysis we observed that the optimal capacity in the (exponential) call packing system
depends on κ. Using the time dependent MOL approximation of the call packing system, Figure 12 shows the
influence of κ on the time dependent behaviour of the optimal capacity. The time dependent behaviour for
κ = 0.3 and κ = 1 is the same, which we already saw in Figure 11 as the case κ = 1 corresponds to the infinite
server system. Morover, the shapes for κ = 0.2, κ = 0.5 and κ = 0.9 are the same and have more fluctuations
than κ = 0.3. In addition to the decrease in capacity at Wednesday, on which the drop of the modified offered
load takes place, there is an increase in capacity on Thursday to Saturday. These capacity vectors thus mimic
the time dependent offered load more closely. Concluding, κ influences the time dependent behaviour to a
certain extent, where we observe reoccurring shapes over different values of κ. No analysis is performed based
on the infinite server approach because the infinite server system does not depend on κ.
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Figure 12: The optimal time dependent capacity for different values of κ.

5.2.2 Influence of different cost parameters

The influence of the cost parameters Co, Cu and Cb on the stationary capacity level was already studied in
detail in the stationary analysis. We observed that the ratio between Co and Cu was leading in the capacity
decision. For the time dependent analysis, we will therefore only study the influence of Co on the time
dependent behaviour of the optimal capacity. In addition to these three cost parameters, the time dependency
of the capacity asks for the introduction of a cost for changing capacity. After the analysis concerning Co, the
influence of the cost of changing capacity is studied in more detail by studying distinct values of the cost of
increasing capacity Ci and of decreasing capacity Cd.

Although a Modified Offered Load approximation for the time dependent call packing system was intro-
duced, the influence of the cost parameters is studied on the time dependent infinite server system. Based
on our numerical experiments, similar results are expected for the MOL approximation of the call packing
system.

Overflow cost Co

Since we expect the time dependent behaviour of the capacity to be influenced by the cost of changing capacity,
the influence of the cost of overflow Co on the capacity vector is studied for different costs of changing capacity
in Figure 13. The different lines in each subfigure correspond to different values of Co for a fixed cost of
increasing and decreasing capacity, Ci = Cd. There is no clear relation between the value of Co and the time
dependent behaviour of the optimal capacity for a given cost of changing capacity since the same shape of
capacity vector occurs for different values of Co. More specifically, for each cost of changing capacity the shape
of the line corresponding to the base value Co = 400 matches that of other values of Co. It is therefore likely
that the patterns that we will observe from now for Co = 400 will hold for other overflow costs as well. The
most noticeable differences in time dependent behaviour are between the subfigures 13a to 13c, that is, for
different costs of changing capacity. This will be discussed in the next paragraph.

(a) Ci = Cd = 0. (b) Ci = Cd = 10. (c) Ci = Cd = 20.

Figure 13: Optimal time dependent capacity for different overflowcosts Co, for three different values
of costs for changing capacity Ci and Cd.
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Cost of increasing capacity Ci and decreasing capacity Cd

The difference in shape of the optimal capacity vectors in Figures 13a to 13c indicate that the cost of changing
capacity influences the time dependent behaviour of the optimal capacity strongly. In Section 3.2.2, we argued
that the naive time dependent approach of concatenating the separately computed optimal capacity at each
time point would just mimic the behaviour of the offered load m(t). This corresponds to having no cost for
changing capacity, as in Figure 13a. Indeed, we see the same pattern in the optimal capacity as in the time
dependent offered load. Figures 13b and 13c show that increasing the cost of changing capacity flattens out
the change in capacity. This illustrates the benefits of decision-making in which the complete time horizon is
taken into account over the naive approach of an independent decision per time point. The observation that
the fluctuations in time dependent capacity are the largest when there are no costs for changing capacity and
that it then mimics the time dependent offered load, are in line with the observation of Bekker and de Bruin
(2010) that the difference between the minimum and the maximum offered load m(t) gives a good indication of
the extent to what the capacity may vary. Although the increase in the cost of changing capacity is relatively
small compared to the cost of unused beds or overflow, its influence on the fluctuation in capacity is significant.
Due to the rapidly varying offered load and its short cycle time, a change in capacity is only useful for one or
a few days and is thus rather expensive.

For the subfigures of Figure 13, one cost of changing capacity was used, regardless of it being an increase
or a decrease. Figure 14 allows us to study the case in which the cost of increasing capacity Ci and the cost of
decreasing capacity Cd are different. The cost of decreasing capacity is fixed at a certain value (per subfigure),
after which we range the cost of increasing capacity. Quite some lines overlap in Figure 14, that is, the optimal
capacity vectors for multiple values of Ci are the same. In Figure 14a, that is, for Cd = 0, the lines for Ci = 5
to Ci = 20 overlap. In Figure 14b, the lines for Ci = 0 to Ci = 15 overlap and the lines for Ci = 20 and
Ci = 25 overlap. Since the plots for Cd = 10 to Cd = 20 look the same as Figure 14b, except that with every
increase of Cd by 5, the optimal capacity of first Ci = 15, then Ci = 10 and lastly Ci = 5 become stationary
at 27. Since the lines in the graphs overlap, this is not apparent from the graphs and therefore they are not
included in this report.

(a) Cd = 0. (b) Cd = 5.

Figure 14: The optimal capacity for different costs of changing capacity

We observe the same decrease in variability of the capacity vectors as in Figure 13 when either ranging
Ci (within one subfigure) or ranging Cd (between subfigures). Indeed, the parameter combinations (Cd = 0,
Ci = 20), (Cd = 5, Ci = 15) and (Cd = 10, Ci = 10) yield the same optimal capacity vector that can be found
in, respectively, Figure 14a (olive line), Figure 14b (cyan line) and Figure 13b (purple line). This observation
indicates that the separate values of Cd and Ci do not matter, but only their sum. This makes sense as an
increase in capacity always implies a decrease in capacity, and vice versa, for a cyclic capacity vector. So, in
the case of cyclic offered loads, there is no added value of having separate costs of increasing and decreasing
capacity compared to one cost for changing capacity.
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5.2.3 Comparison to the square root staffing rule

In Section 2.3, we discussed the square root staffing rule c(t) = m(t)+β
√
m(t) which is a well-known heuristic

for time dependent staffing. Bekker and de Bruin (2010) determine the quality of service parameter β via
β = c∗−ρ√

ρ , where c∗ is the desired average number of beds and ρ is the average offered load over the complete
period. The outcome of this staffing rule is compared to the analytic time dependent results of both the infinite
server system as well as the MOL approximation of the call packing system. These results are given in Figure
11 for the base parameters and in Figure 15 when there are no costs for changing capacity.

(a) Infinite server system. (b) MOL approximation of callpacking system.

Figure 15: The optimal capacity when Ci = Cd = 0 for the two time dependent systems. The
capacity vector obtained from the square root staffing rule, when the desired average capacity c∗ equals
the optimal stationary capacity of the system under consideration, is plotted as well.

For c∗, we take the optimal capacity found in the stationary analysis of the corresponding system. The
average offered load is ρ = 0.61 ∗ 39.79 = 24.27. For the infinite server system, which has c∗ = 27, we obtain
β = 0.55. The square root staffing rule then gives a capacity vector [26.6, 26.8, 25.8, 27.4, 27.5, 27.5, 27.0].
If we round each c(t) to the nearest integer, we obtain [27, 27, 26, 27, 28, 28, 27]. This is the same optimal
capacity vector as in Figure 15a. Since the square root staffing rule is derived from the infinite server system
and does not take into account costs for changing capacity, the reader might not be surprised by this result.
However, the costs of the other parameters have been shown to influence the optimal capacity decision while
the selected values of these parameters do not influence the outcome of the square root staffing rule.

The stationary analysis of call packing with base parameters gave an optimal capacity of 29. Setting
c∗ = 29, for which β = 0.96, gives a square root staffing vector of [28.6, 28.8, 27.8, 29.4, 29.5, 29.6, 29.0], which
is just two higher than for the M/G/∞ system. Interestingly, the optimal capacity vector resulting from the
MOL approximation of the call packing system for Ci = Cd = 0 as given in Figure 15b fluctuates less.

In conclusion, the analytic results in this research align with the square root staffing rule. In addition, the
analytic analysis in this paper can be customized by setting the appropriate parameter values.

5.2.4 Additional analysis with the Mixed Integer Program

This research introduced a Mixed Integer Program in the optimization phase. The MIP enables easy incorpo-
ration of constraints on the behaviour of the capacity. Moreover, parallel optimization over multiple patient
types allows for interesting concepts such as shared capacity or relabeling of capacity. The influences of these
additions to the optimization phase on the optimal capacity are shown here. The analysis is based on the
infinite server system. The optimal capacity vector for the base parameters is given in Figure 16a.
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(a) Base parameters, includes Cd = 5 and Ci = 10. (b) Base parameters, but with Ci = Cd = 0.

Figure 16: A reference picture of the optimal solution in the time dependent infinite server system
when no constraints on capacity and only one patient type.

Constraints on the behaviour of the time dependent capacity

Three possibilities for constraining the time dependent behaviour of the capacity have been introduced in
Section 3.2.2. Every constraint will be analysed separately. Since the change in capacity over time is very
limited, constraining the time dependent behaviour of the capacity vector in Figure 16a will yield either the
same vector or a stationary capacity of 27. In order to demonstrate the working of the constraints, the case
in which there is no cost for changing capacity is selected as ‘standard’ case instead. Figure 16b shows the
optimal capacity for this scenario.

Capacity should stay fixed for a minimum number of days. Figure 17 shows the optimal capacity
for different numbers of days on which the capacity should stay fixed. If the capacity should stay fixed for at
least two days, both the peak as well as the drop in time dependent offered load are still visible in the optimal
capacity. Having a fixed capacity for four or more days results in a stationary optimal capacity. Changing
capacity under such a condition would conflict with the periodicity of 7 days and is thus not expected.

Figure 17: The optimal capacity when the capacity should stay fixed for a minimum number of days.

Capacity may only change at set time points. To study what happens if the capacity is only allowed
to change at set time points, several sets of two days per week are selected on which the capacity may change.
The optimal capacity for each set of days is given in Figures 18a to d separately and in Figure 18e combined.
The dots indicate the days before which the capacity was allowed to switch. Please be aware that day 0
refers to Monday when interpreting the legend. Taking a capacity of 27 as reference, the optimal capacity
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adapts either to the peak in time dependent offered load at day 3 to 5 or to the drop in offered load at day 2.
Depending on which days the capacity is allowed to switch, the option is selected that leads to the smallest
number of days of capacity unequal to the reference capacity 27.

(a) Can change at day 1 and 3 (b) Can change at day 3 and 5 (c) Can change at day 3 and 6

(d) Can change at day 3 and 7
(or 0) (e) Collection of the individual plots.

Figure 18: The optimal capacity when the capacity can only change at two fixed days of the week.

Capacity can change only by a limited amount. Since the capacity does not change by more than one
bed per time, this constraint has no added value in this numerical analysis.

Different patient types

Since the Mixed Integer Program can decide on the optimal capacity for multiple VVT types at once, de-
pendencies between the capacity of the different types could be incorporated. In order to demonstrate this,
parameters for a second VVT type are needed. Based on the POINT data set, the arrival process to the
ELV (eerstelijnsverblijf, a stay in primary care) of the VVT organisation from which the GRZ data originates
is determined. With ξ = 0.95, a total arrival rate vector [0.20, 0.25, 0.31, 0.15, 0.27, 0.05, 0.03] is obtained.
Unfortunately, we have no data on the length of stay of patients in this ELV care. Therefore, a mean length
of stay of 35.77 days is used which is the weighted average of the mean length of stay of low complexity ELV
care and high complexity ELV care in 2018 as reported by ActiZ [9]. The coefficient of variation is set equal
to that of the GRZ.

Shared capacity. Figure 19 shows the optimal capacity for both types when there is shared capacity avail-
able. The maximum shared capacity available is 1 or 2 in Figures 19a and 19b, respectively. We observe
that a stationary type-specific capacity is optimal for both types. With a maximal shared capacity of 2, the
capacity for both types can already freely accommodate to the offered load by only using the shared capacity.
When there is only a shared capacity of 1 available, that capacity is used on days 7 and 14 for the ELV to
accommodate the peak in the modified offered load of the ELV as a result of which the total capacity in the
GRZ decreases on that day by one.
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(a) The shared capacity is at most 1. (b) The shared capacity is at most 2.

Figure 19: The optimal capacity for the GRZ and ELV when a shared capacity is available.

5.3 Simulation
An analytical analysis generally requires some simplifications or assumptions that can influence the direct
applicability of the result to reality. In this research, this is both the time dependency of the arrival process
as well as the nonexponentiality of the service time distribution. If the analytic outcomes are appropriately
close to the optimal solution in reality, the analytic models can be used to obtain an easy reference value
or approximation of the optimal solution or as a low-fidelity model for multi-fidelity modelling, as discussed
in Section 2.1.1. A simulation model can be used to study the validity of the analytic outcomes and as a
high-fidelity model to find the optimal solution for the realistic scenario by a neighbourhood search on the
analytic result.

In this section, a simulation is used to study how well the capacity (vectors) found with the analytical
analysis would perform in reality. Moreover, a neighbourhood search on the time dependent capacity vector
is performed.

The simulation model. A simulation should mimic reality as well as possible. As explained at the start of
Section 3.1, each patient type has its own station with cr servers and infinite waiting room to which patients
arrive in a Poisson process with an arrival rate that depends on the day of the week. The service time of a
patient is lognormally distributed with the fitted mean and variance, but is reduced by the time they spent
in overflow weighted by a fraction κ. The realisation of the service time of a patient, Si, is determined upon
arrival since they may leave the system from overflow when they are in overflow for at least 1

κSi days. The
simulation is a Discrete Event Simulation with three events: Arrival, EndService and EndOverflowService.
The idea of a Discrete Event Simulation is that it suffices to study the system only when an event occurs since
that is the only moment that the state of the system changes. In the case of time dependent capacity, an
additional event at the start of each day guarantees that the capacity is increased or decreased if applicable.
In case of an increase in capacity, someone from the queue is taken into service. However, if the capacity
is decreased, it would not be realistic to move a patient in service back to the queue. Instead, a cost Cc is
charged for every patient more in service than the current capacity, i.e. for every overbed. Based on a small
study on varying Cc when the time dependent capacity vector is [29,28,29,29,29,29,29] as obtained from the
analytic analysis, we conclude that there is no significant influence of the exact value of Cc. The simulation
results in this section are obtained with Cc = 300 fixed, as an overbed is expected to be more expensive than
the scheduled VVT capacity but less than an overflow bed in the hospital. By performing multiple simulation
runs, a confidence interval for the average total cost per day is obtained from the simulation. More details on
the collection of statistics are given in Appendix A.4.

5.3.1 Stationary capacity

Firstly, the simulation with exponential service times and a stationary arrival rate yields for a stationary
capacity of 29 a cost of 811.61 [806.608, 816.617]. With these properties, the simulation matches an exponential
call packing system for which the optimal stationary capacity of 29 had an objective value of 812.31. Then,
the simulation is used to study how well each of the five systems in the stationary analysis approximates a call
packing system with lognormal service times. This is done both for stationary arrivals as well as the specific
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time dependent arrival rates. Since it depends strongly on κ by which system the exponential call packing
system is best approximated, as was shown in Figure 7, the optimal capacity is determined for different values
of κ. To ease the comparison with the analytic results, the optimal stationary capacity as obtained from the
simulation for each value of κ is added to the analytic plot using a star in Figure 20. This is first done for the
case of stationary arrivals in Figure 20a and then for the case of time dependent arrivals in Figure 20b. For
some values of κ, the confidence intervals of the total cost per day for two capacities overlap. In such cases,
the number of simulation runs is increased to 1000. If the confidence intervals still overlap, both the capacities
are marked with a star as the optimal capacity can not uniquely be determined.

(a) Stationary arrival rate. (b) Time dependent arrival rate.

Figure 20: The optimal stationary capacity obtained with simulation for different values of κ plotted
in combination with the analytic stationary results.

Figure 20a shows that the optimal capacity from simulation equals the analytic optimal capacity of the
exponential call packing system. In case the optimal capacity cannot be uniquely determined, the possibilities
for the optimal capacity are the optimal capacity of the exponential call packing system and one higher. This
occurs every time at the first single-decimal value of κ after the analytic call packing result decreases by
one. These observations imply that the lognormal service times likely require a little more capacity than the
exponential service times. Remarkably, the lognormal service distribution has a coefficient of variation of 0.68
compared to the coefficient of variation of 1 of the exponential distribution. Based on the fact that a lower
variation allows for less capacity and the observation in Figure 22 in Appendix A.2 that the overflow result for
the lognormal distribution with a coefficient of variation of 0.5 is approximately in the middle between that
of the call packing system and that of the adapted infinite server system, it is remarkable that the optimal
capacity is possibly higher (instead of lower) than that of the exponential call packing system. We note that
the cost corresponding to the optimal capacity from the simulation is significantly higher than that of the
analytic exponential call packing system for most values of κ. For example, the simulation gives a cost of
892.13 ([887.01, 897.243]) for a capacity of 29 for κ = 0.3 while the exponential call packing has an objective
value of 812.32. The difference between the cost values decreases over κ until the analytic objective value is
within the confidence interval obtained by the simulation for κ = 1.

To study the influence of the time dependency of the arrival rate on the optimal capacity, we first look at
the case κ = 1. Since the call packing system with κ = 1 is simply the M/G/∞ system and is thus insensitive
to the service distribution, the only difference between the analytic result and the call packing system is the
time dependency of the arrival process. For κ = 1, the simulation gives an optimal capacity of 27 for cost
666.61 ([663.327, 669.894]). Although the analytic objective value of 663.61 is close to the lower bound of
the confidence interval, there is no significant difference. Figure 20b is similar to Figure 20a with as main
difference that an optimal capacity of 28 for κ = 0.8 is now significant, which is one higher than the optimal
capacity of the exponential call packing. Furthermore, the confidence intervals belonging to a capacity of 29
and 30 overlap for κ = 0.3. Since κ = 0.3 is a base parameter, the lack of a unique result on the optimal
capacity for this parameter value is unfortunate. In general, it seems like the influence of the time dependency
of the arrival rate on the stationary capacity results is small.

Based on the results concerning the stationary capacity, the system is best approximated by the analytic
exponential call packing system.
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5.3.2 Time dependent capacity

For the time dependent analysis, we have only two models compared to the five in the stationary case. Since
the capacity is allowed to change over time in the time dependent analysis, a planned decrease in capacity
may not be possible in reality due to all initial capacity being occupied. Recall that the simulation takes into
account the overbeds that result from this through the cost parameter Cc, as mentioned at the beginning of
Section 5.3.

Evaluation of the analytic solutions

The simulation is first used to determine how the optimal time dependent capacity vectors of the two models,
which were given in Figure 11, would perform in reality.

The first model is the infinite server approach. The analytically determined optimal capacity is 27 on each
day, except on day 2 on which it is 26. An objective value of 667.83 belonged to this time dependent capacity
vector. The capacity vector [27, 27, 26, 27, 27, 27, 27] brings in the simulation a cost of 1043.73 ([1035.587,
1051.879]). It is not surprising that the infinite server approach does not perform well in reality. From the
stationary results in Figure 20, we already concluded that the optimal capacity based on an infinite server
system underestimates the necessary capacity for κ = 0.3.

The second model is the Modified Offered Load approximation of the call packing system. The optimal
analytic capacity vector [29, 29, 28, 29, 29, 29, 29] costs in the simulation 889.70 ([884.526, 894.869]) compared
to its objective value of 816.99. The simulated cost of the capacity vector obtained via the MOL callpacking
system is thus closer to the objective value. There are several differences between the analytic analysis and
the simulation that could cause a difference in the analytic objective value and the cost obtained by the
simulation. Although the lognormal service distribution is used to determine the time dependent offered load,
the formulas (20) and (18) for the performance measures in the call packing system only hold for exponential
service distributions. However, in the stationary analysis we concluded that the results of the exponential
call packing system match the simulation results quite well, so we expect the influence of the nonexponential
service times to be limited. The main inaccuracy is expected to be caused by the fact that the performance
measures (of the finite server model) are based on the offered load of an infinite server system. Especially in
the case of a time dependent capacity, this means that the values of the performance measures on the next
days are not influenced by the choice of capacity on the previous days. Since limited capacity can lead to
overflow and thus a higher load in the next period, the inability to take the limited capacity into account can
lead to an underestimation of the optimal capacity (on some days), or put differently, to an underestimation
of the cost of capacity vectors that have less capacity than the real optimal capacity vector. In addition to the
shortcoming of the analytic model to take the influence of limited capacity into account, the analytic model
can not account for overbeds since it is based on steady-state behaviour. The extra costs of having overbeds
are present in the simulation which can lead to an increase in cost obtained by the simulation.

Comparison to neighbouring vectors

To judge the performance of the analytically found capacity vector [29, 29, 28, 29, 29, 29, 29] better, we will
compare its costs to that of neighbouring vectors. Table 6 contains the simulated costs for some vectors in the
neighbourhood of [29, 29, 28, 29, 29, 29, 29].

Table 6: The costs of several neighbouring vectors of the optimal analytic capacity vector obtained
with the simulation.

Capacity vector Cost per day (Confidence interval)
[29, 29, 28, 29, 29, 29, 29] 892.73 ([887.625, 897.835])
[29, 29, 29, 29, 29, 29, 29] 892.13 ([887.01, 897.243])
[29, 29, 28, 30, 29, 29, 29] 874.15 ([869.231, 879.077])
[29, 29, 28, 29, 30, 29, 29] 879.43 ([874.561, 884.298])
[29, 29, 28, 30, 30, 29, 29] 870.54 ([865.995, 875.075])
[29, 29, 28, 29, 30, 30, 29] 891.36 ([885.587, 895.13])
[29, 29, 28, 30, 30, 30, 29] 888.07 ([883.472, 892.662])
[30, 30, 29, 30, 30, 30, 30] 894.54 ([890.048, 899.034])
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First of all, it performs the same as the stationary capacity of 29. This is not surprising as the simulation
results for the stationary capacity already showed that the optimal capacity in the simulation might be higher
than in the analytical system. Moreover, an overbed, which is likely to occur due to the single drop in capacity,
is expensive. Based on the behaviour of the offered load, more capacity on day 3 or day 4 or both might be
beneficial. The costs for these capacity vectors are indeed significantly lower. Among these vectors, there is no
significantly cheaper one. Furthermore, the vectors [29, 29, 28, 29, 30, 30, 29] and [29, 29, 28, 30, 30, 30, 29]
are considered as we notice that in Figure 15a, the increased capacity for the infinite server model happened
on day 4 and 5, instead of day 3 and 4. Interstingly, these capacity vectors perform significantly worse than the
previous ones. Lastly, based on the fact that the optimal stationary capacity could be 30 for the case of time
dependent arrivals instead of 29, as shown in Figure 20b, the vector [30, 30, 29, 30, 30, 30, 30] is considered.
The cost corresponding to this capacity is significantly higher than those for options like [29, 29, 28, 30, 30,
29, 29], but is comparable to the cost of [29, 29, 28, 29, 29, 29, 29]. Therefore, the optimal capacity vector is
likely in the neighbourhood of these two vectors.

Earlier, we reasoned that the analytic time dependent result based on the MOL call packing system might
underestimate the optimal capacity (on some days) due to the shortcoming of the analytic model to take the
influence of limited capacity into account. Based on Table 6, we conclude that there is an underestimation of
capacity on some days, but not extreme.

Extensive neighbourhood search

In addition to the comparison with some neighbouring vectors, we would like to know how the optimal
analytic capacity performs compared to the real optimal capacity vector. To find this optimal capacity vector,
we perform a neighbourhood search. The cost for a large set of capacity vectors is determined via simulation.
Based on the stationary results, a reference capacity of 29 is used, which is tweaked based on the time dependent
behaviour of the offered load.

As shown in Figure 11, the offered load is middle to low on days 0 to 2 and high on days 3 to 6. We
will therefore consider all capacity vectors that have a capacity of 29 or 28 on days 0 to 2 and a capacity of
29 or 30 on days 4 to 6. Moreover, a capacity of 30 on day 0 and a capacity of 31 on day 4 is allowed as
well. Due to the large amount of capacity vectors, the cost for each capacity vector will be calculated based
on 100 simulation runs. Although this causes the width of the confidence intervals to increase, it allows the
evaluation of a large amount of vectors in reasonable computation time. With these results, we can see if there
is a pattern in vectors that perform well or badly.

An overview of the vectors and their costs as obtained from the simulation can be found in Appendix A.5. A
colour scale is used on the mean cost, where dark green indicates the lowest cost, and thus the best-performing
capacity vectors in their simulation runs. The vectors in the three columns have respectively a capacity of 28, 29
and 30 on Monday. In general, the vectors with a capacity of 30 on Monday perform the best, which is surprising
as there is no increase in offered load around that day and the capacity is lower on the neighbouring days. We
observe a repeating pattern of capacity vectors with low means. These vectors are outlined in black in Appendix
A.5. These vectors have capacities on Thursday till Sunday corresponding to one of the following subvectors:
{[29, 30, 29, 29], [29, 31, 29, 29], [30, 29, 29, 29], [30, 30, 29, 29], [30, 30, 29, 30], [30, 31, 29, 29], [30, 31, 29, 30]}. Note
that all these vectors have a capacity of 29 on Saturday. This is in line with the comparison made in Table
6, but remarkable as the time dependent offered load is still high on Saturday. The capacity on Tuesday
and Wednesday does not seem to matter. Since the size of the confidence intervals makes it hard to draw
conclusions on which vector is optimal, the outlined vectors are analysed again using 500 simulation runs
to construct the confidence interval of their cost. The results are given in Figure 21. No vector performs
significantly better than the other vectors. However, a collection of vectors performs significantly worse than
the vector with the lowest mean, [30, 28, 29, 30, 29, 29, 29]. The background of these vectors is made light grey.

We see again that the influence of the capacities on Tuesday and Wednesday is limited, while the com-
bination of capacities on the remainder of the week is leading. The subvectors for Thursday till Sunday
[30,30,29,30] and [30,31,29,30] perform badly for all combinations of capacities on Tuesday and Wednesday.
This would indicate that a capacity of 29 on Sunday would be beneficial. If the capacity on Wednesday is 29,
the subvectors [29,30,29,29] and [29,31,29,29] perform badly as well. Thus, we observe that increasing capacity
from Wednesday to Thursday outperforms staying at a capacity level of 29.
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Figure 21: The costs corresponding to the capacity vectors outlined in black in Appendix A.5, based
on 500 simulation runs. The vectors that have significantly higher cost than [30, 28, 29, 30, 29, 29, 29]
are coloured light grey.

Since the extra analysis is only performed for the capacity vectors that satisfied the pattern of well-
performing vectors, and since the confidence intervals of the costs of a reasonable number of vectors in this
extra analysis still overlap, no guaranteed optimal time dependent capacity vector is found. The overlapping
confidence intervals of the capacity vectors with low means suggest that multiple capacity vectors could perform
well. One could choose a capacity vector from this collection that fits certain preferences, like changing capacity
as little as possible or having less capacity on a certain day due to the availability of personnel.

Square root staffing rule

In the time dependent analytic analysis, we compared the results to the square root staffing rule. Most often
the quality of service parameter β is determined based on the desired maximum probability of delay. Although
Bekker and de Bruin (2010) gave a formula for β based on the average number of beds decided upon, this
formula is not found in other literature. To validate the choice of β, which had for c∗ = 29 a value of 0.96, the
simulation is used to determine the cost of the vectors originating from different values of β. Simulations were
performed for β ranging from 0.2 to 2.0 with steps of 0.2. Since the lowest costs were obtained when β = 0.8
and β = 1.0, the values 0.7, 0.9 and 1.1 were simulated as well and can be found in Table 7.

Table 7: The simulated cost for the best-performing values of β and the corresponding capacity vector
as obtained by the square root staffing rule when rounding to the nearest integer.

β Capacity vector Cost per day (Confidence interval)
0.6 [27, 27, 26, 28, 28, 28, 27] 988.34 ([981.163, 995.514])
0.7 [27, 28, 27, 28, 28, 28, 28] 943.87 ([937.454, 950.288])
0.8 [28, 28, 27, 29, 29, 29, 28] 906.65 ([901.222, 912.087])
0.9 [28, 28, 27, 29, 29, 29, 29] 900.71 ([895.126, 906.298])
1.0 [29, 29, 28, 30, 30, 30, 29] 880.48 ([875.847, 885.112])
1.1 [29, 29, 28, 30, 30, 30, 30] 882.02 ([877.482, 886.555])
1.2 [30, 30, 29, 31, 31, 31, 30] 909.94 ([905.872, 914.008])

The capacity vectors corresponding to β = 1.0 and β = 1.1 have the lowest cost. This is rather close to
β = 0.96, which yields capacity vector [29,29,28,29,30,30,29], that resulted from the formula of Bekker and
de Bruin (2010) with c∗ = 29 based on the stationary analysis. The performance of this capacity vector was
already studied in Table 6 and had cost 891.36 ([885.587, 895.13]). The vectors obtained from the square
root staffing rule are outperformed by the best-performing vectors from the simulation study in Figure 21.
For example, the capacity vector [30, 28, 29, 30, 29, 29, 29] had a cost of 856.14 ([851.605, 860.667]). The best-
performing vectors in Figure 21 differ from the vectors obtained from the square root staffing rule mainly by
having an increased capacity on Monday and not having an increased capacity on the weekends.
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Conclusion

In conclusion, the results of the simulation study in Appendix A.5 and in Figure 21 show that well-performing
vectors have a base capacity of 29, corresponding to the stationary result for the exponential call packing
system, with a lower capacity on Tuesday or Wednesday or both and a higher capacity on Monday and
Thursday or Friday or both. Except for the increase in capacity on Monday, the decrease and increase in
capacity are in line with the time dependent behaviour of the offered load. The time dependent behaviour of
the optimal capacity is thus shifted with respect to the arrival rate function, as Figure 11a already suggested.
The objective value of the optimal time dependent capacity as found by the analytic analysis is significantly
higher than the cost of the vectors found with the simulation study in Figure 21. Since we already reasoned
that the analytic result would give an underestimation, increasing the capacity on some days based on the
offered load as was done in Table 6 yields capacity vectors that are reasonably close to the expected optimum.
The analytic optimal vector performs approximately the same as the optimal vector obtained by the square
root staffing rule with c∗ = 29. It is outperformed by the vector obtained by the square root staffing rule
with β optimised through simulation. However, the vector with increased capacity on Thursday and Friday
outperforms this optimal square root staffing rule vector. So, for the researched parameter combination, the
approximations based on the call packing system performed best compared to the simulated reality. The result
from the stationary analysis with the call packing system performs rather well with a cost of 892.13 ([887.01,
897.243]). No improvement in simulated cost (892.73 ([887.625, 897.835])) was obtained by the result from
the time dependent analysis. However, the capacity vectors resulting from the simulation study significantly
decreased the cost to, for example, 856.14 ([851.605, 860.667]) for [30, 28, 29, 30, 29, 29, 29].

5.4 Difference in optimal for VVT and optimal for system
The situation in which the VVT decide their capacity on their own was compared to the optimal capacity from
a system perspective for the stationary case in Section 5.1.3. Since the results show limited added value of the
time dependent analysis, the conclusion based on the stationary analysis is expected to hold for the case of
time dependent capacity as well. The time dependent MOL approximation of the call packing system is used to
determine the optimal time dependent vectors and their costs are determined via the simulation. The results
in Table 8 are comparable to those based on the stationary analysis in Table 4. Instead of the analytic results,
a well-performing vector in the simulation study like [30,28,29,30,29,29,29] could have been used. This gives a
cost for VVT of 526.16 ([521.887, 530.435]). One would like to compare that to the equivalent best-performing
vector in simulation for the scenario in which the VVT would decide. However, that would require a complete
simulation study, while the result would not add to the message that is already clear from Table 8. The time
dependent results support the stationary results: it would be reasonable (and necessary) to compensate the
VVT for increasing their capacity since it is expected to pay off for the system as a whole.

Table 8: The optimal analytic time dependent capacity and associated cost from both the system
perspective and the VVT on its own. The situation in which only the VVT is considered is modelled
by setting Co = 0.

Hospital & VVT decide VVT decides
Analytic optimal capacity [29, 29, 28, 29, 29, 29, 29] [19, 19, 19, 19, 19, 19, 19]

Cost for system 892.73 ([887.625, 897.835]) 6661.49 ([6629.89, 6693.097])
Cost for VVT 483.55 ([479.572, 487.536])) -187.82 ([-188.034, -187.614])

Mean number of overflow 1.06 ([1.042, 1.076]) 18.03 ([17.947, 18.116])
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6 Discussion

Several assumptions made in this research are questioned or explained in this section. Directions for further
research are mentioned and more ideas are proposed. The discussion topics can roughly be categorized as
belonging to a section of this research: Sections 6.1.1 and 6.1.2 cover some theoretical gaps and relate the ap-
plication to the theory for the queueing models and the optimization model, respectively, Section 6.2 discusses
the challenges of the data and Section 6.3 adds to the discussion of the results. Section 6.4 concludes with
some remarks about the application of this research.

6.1 Models

6.1.1 Queueing models

For the stationary case, we tried to approximate the call packing system using an infinite server system and
a system with c servers by properly adapting the service time in those systems. Based on the numerical
comparison in Appendix A.2, we formulated Conjectures 1 and 2 that state that the mean number of patients
in overflow in the call packing system is bounded from below and above by that obtained from the Adapted
Service Time Approach applied to the M/G/∞ system and M/M/c system, respectively. Unfortunately, we
were not able to prove these bounds during this research. This could be a topic for future research. For
another direction of future research, we note that the Adapted Service Time Approach was only introduced
for the mean number of people in overflow. The other performance measure, the mean number of unused
beds, was determined from its simple relation to the mean number of people in overflow for an infinite and
finite server system. It would be interesting to study if the mean number of unused beds could be determined
directly by a similar Adapted Service Time Approach. Since we concluded from the results that the number
of unused beds in the adapted M/G/∞ system is rather low, extra research into determining the number of
unused beds is advisable. A third topic for future research arises from the Adapted Service Time Approach
applied to the M/M/c system. When determining the fixed point L∗, we observed the two-cyclic behaviour of
the repeated substitution. This raised two questions: can we relate the occurrence of two-cyclic behaviour to
the parameter values, so that we know when it converges to a single value, and how could a reasonable guess
for L∗ be made based on L− and L+ in case it does not converge to one value?

The Adapted Service Time Approach was performed on both boundary cases of the call packing system.
Since the product form formula for the call packing system only holds for exponentially distributed service
times, the insensitivity of the adapted infinite server system makes the conjectured lower bound very useful.
The conjectured upper bound provided by the adapted finite server system is less useful since its applicability
is, just like the call packing system, limited to the case of exponential service times. In Section 2.1.2, we men-
tioned that an accurate approximation for the mean queue length of a general M/G/c can be obtained from
the exponential case by Kingsman’s formula. Due to the low coefficient of variation of the fitted lognormal and
the high accuracy of the exponential call packing system itself, we did not look further into the possibilities
that Kingsman’s formula offers in this research. Further research could be done on how Kingsman’s formula
applied to the adapted finite server system performs as an approximation or a bound for call packing systems
with general service times. Taking this idea even one step further, one could try to come up with a formula
like Kingsman’s formula to approximate the mean queue length in a call packing system with general service
times based on the result for the exponential call packing system. To do this, one could first evaluate how
Kingsman’s formula applied to the call packing system performs and then adapt it, possibly by incorporating
κ, based on the results.

In the Adapted Service Time Approach, λVVT was approximated by λ. The influence and validity of the
approximation would be interesting for further research. Firstly, research could be done into the difference
between the arrival rate of requests for the VVT (λ) and the true arrival rate to the VVT (λVVT) in real life,
and how that can be found back in the data. We would like to know if there are factors that have a significant
influence on the difference in arrival rates. For example, the care type, via the probability of dying, or the
availability of other care in the region, via the probability of transfer. Secondly, more research should be done
on how a better approximation for λVVT could be incorporated into the Adapted Service Time Approach,
since λVVT and, for example, the probability of overflow influence each other. Thirdly, it would be important
to know how sensitive the Adapted Service Time Approach, and call packing system in general, is to the value
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of λVVT compared to λ.

To make the call packing system, and its interpretation, more suitable for our application, we introduced
a fraction κ which multiplied by the service rate in the VVT µ, replaced the rate of the overflow service γ.
This faction κ represents how much the time spent in overflow contributes to a reduction in service time in
the VVT, which can differ per type of VVT care. However, the contribution of the time in overflow on the
residual service times might differ over the service period. After an operation, there might be little difference
between spending the first day in overflow or in a VVT organisation as time is the most important factor
for recovery. This would indicate a high value of κ. However, such a high value would be inappropriate if
the patient would be in overflow for a long time, since later the presence of specialised care will be the most
important factor for the speed of recovery. In this example, the contribution of the time in overflow decreases
per day. Instead of the stationary parameter κ, a (decreasing) function κ(t) of the time in overflow could be
more accurate. Please note that this shortcoming is not caused by the introduction of κ, but was present in
the call packing system of Van Dijk and Schilstra (2022) as well due to the rate of the overflow service γ being
a fixed value. An interesting topic for future research would thus be a call packing system with a service rate
in overflow that depends on the time in overflow.

The inclusion of external arrivals in this research was done based on limiting assumptions. External arrivals
are assumed to follow the same arrival distribution and service distribution as arrivals originating from the
hospital. The choice for such easy, but also limited, implementation of external arrivals was made based on the
fact that this research is applied to the VVT type GRZ and the availability of data. Since GRZ has very few
external arrivals, the influence of these external arrivals was expected to be small and thus the incorporation
of external arrivals had a low priority. A simple implementation outweighed a very accurate one. Moreover, an
implementation that allowed the external arrivals to have a distinct arrival or service distribution would not
necessarily increase the accuracy of the model in the numerical analysis due to the necessary data on external
VVT requests not being available to us. A more general inclusion of external arrival would, therefore, have
mostly theoretical value and limited added practical value to this research. Future research could focus on
how external arrivals could be implemented for more general cases. Before this, it would be good to analyse
if there is a significant difference in arrival distribution or service distribution of external arrivals and internal
arrivals. The reader should be aware that for a different arrival rate of the external arrivals, the convenient
form in the optimization model of charging overflow cost for only a fraction ξ of the mean queue length will
not apply anymore. The influence of a distinct arrival process could be studied via the simulation as well.

At first, the time dependent analysis was only performed for a M(t)/G/∞ system. Since we proved that
the infinite server system provides a general lower bound on the call packing system, and is exact for κ = 1,
this time dependent analysis already gave an impression for the time dependent behaviour of the true system.
Later a Modified Offered Load approximation based on the call packing formula was studied as well. Since
the formulas for the call packing system only hold for exponentially distributed service times, it would be
interesting to study the accuracy of this MOL approximation for a general time dependent call packing system
in more detail. To the best of the authors’ knowledge, no literature on the MOL approximation on the call
packing system has been published. As stated in Section 3.1.4, the lognormality of the service distribution is
used for determining the time dependent offered load, while the formulas (20) and (18) for the performance
measures in the call packing system only hold for exponential service distributions. The choice was made to
use the lognormal service distribution for m(t) so that the time dependent (infinite server) offered load was
as accurate as possible. We reasoned that a time dependent offered load that better reflected reality, could
lead to better results. Further research could look into the difference in accuracy of the MOL approximation
between using an exponential distribution when determining m(t) or the true nonexponential distribution. In
general, more research should be done on the MOL approximation of the call packing system.

Another approach for a time dependent analysis could arise from using the M/G/∞ with adapted service
time to approximate a call packing system and making it time dependent. The challenge for this approach
is that the method of the fixed point adapted service should be extended to the time dependent scenario.
Whereas adapting the mean service time works well for the stationary case since the system characteristics
only depend on the service time through the mean, the time dependent offered load depends on the complete
distribution of the service time. This means that assumptions about the influence of adapting the service time
on the service distribution should be made and validated.
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6.1.2 Optimization model

The optimization phase is based on pre-calculated performance measures. For the time dependent capacity,
this entails that the chosen capacity on one day does not influence the value of the performance measures on
the next days. Independent of whether a very low or high capacity is selected on day t, the value of the per-
formance measures on day t+1 are the same. In reality, the low capacity will lead to a build-up of queue, that
is, a higher number of patients in overflow, for which a higher capacity on day t+1 may be better. Since both
the time dependent infinite server system and the Modified Offered Load approximation of the call packing
system are based on the time dependent offered load of an infinite server system, the possible underestimation
is linked to the approach of calculating the performance measures. In addition to possibly underestimating
the optimal capacity, the independence between days might unintentionally ‘reward’ switching capacity more
or more extremely by remitting accumulated overflow (unused beds) when increasing (decreasing) capacity.
By incorporating a dependence between the choice of capacity on one day and the value of the performance
measures on the next day, these consequences of an infinite server approach might be tackled. Our idea is to
adapt the offered load at day t + 1 based on the choice of capacity on day t. Suppose the capacity on day t
is c, to which a mean number of patients in overflow of [E(Lq(t))](c) corresponds. The offered load that is
used to calculate the performance measures on day t + 1 for a capacity c̃, will be increased by the difference
between the overflow if capacity c would have been kept and if there is switched to capacity c̃, i.e. increased by
[E(Lq(t+1))](c)− [E(Lq(t+1))](c̃). Note that this expression is positive when c̃ > c and negative when c > c̃,
in which case the adapted offered load is lower than the offered load. The implementation and evaluation of
this idea could be a topic for further research. Interestingly, this idea to adapt the offered load based on the
queue shows resemblance to the Stationary Backlog-Carryover approximation (SBC) of Stolletz (2008, 2011)
in which the blocked customers of a period are carried over to the next period through an artificial arrival
rate. The applicability of the SBC approximation to the optimization phase of this research could be studied.

Although most types of VVT care receive money per day a patient stays in their organisation, the GRZ
is the only VVT type for which the amount of received money depends mostly on the type of care request,
as explained in Section 2.4. This only became clear to us during the meeting with the financial director of a
VVT organisation [6], which took place rather late in this research. The optimization model is based on the
fixed payment per patient per day. Further research is necessary to incorporate the financing system of the
GRZ.

The introduction of a Mixed Integer Program for determining the optimal capacity enabled us to incorporate
several constraints on the time dependent behaviour of the capacity and shared capacity between patient
types. The list of constraints implemented in this research is of course not exhaustive. The MIP allows for
easy implementation of additional constraints.

6.2 Data
The biggest discussion point regarding parameter estimation from the data is the lack of clarity on how the
current overflow situation affected the data. First of all, the difference between the Initial discharge date
and the Realized discharge date is defined as the number of overflow days. Besides Initial discharge date, the
POINT file contains the entry First Initial Discharge Date that contains the initial guess for the discharge
date. This initial guess can be changed to another date, the Initial discharge date, if the patient is not ready
to be discharged at the estimated date. A reason for such delay could be complications in the recovery process
of the patient. However, the reason for the change in date is not known and might as well be influenced by the
unavailability of a bed in the VVT. In case of the latter, the limited capacity of the VVT influenced the Initial
discharge date as a result of which the number of overflow days is underestimated. Moreover, the analysis of
the arrival process is influenced as well since the Initial discharge date is also used as the arrival moment of
the patient. Secondly, the limited capacity of other VVT organisations might influence the observed length
of stay. For example, some patients go after their stay in GRZ to WLZ. Thus, the observed time that such a
patient spent in the GRZ organisation consists of both their service time as well as their overflow time for the
WLZ. Lastly, it is unknown how the current length of stay obtained from the data is already influenced by the
time the patient has spent in overflow. Based on the idea that the time in overflow reduces the residual service
time when entering the VVT, the length of stay taken from the data is officially the residual service time.
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However, since it was not possible to match the two data sets to study the influence of the time in overflow,
this is the best approximation for the service time that we could obtain. The underestimation of the service
time leads to an underestimation of the optimal capacity. More research should be done into the influence of
the time in overflow on the service time. In this way, a more accurate service time estimation can be obtained
as well as an estimate for κ.

For the arrival process, it should be taken into account if a patient already had a bed in the VVT. Espe-
cially in WLZ care, a patient might need to go to the hospital after which they return to their ‘own’ WLZ
bed. We should be able to recognize these patients in the data so that they are not counted double.

It is important to note that the numerical analysis in this research is performed based on historical data,
while the number of vulnerable elderly is expected to grow [4]. The capacity obtained based on historical data
is thus an underestimation of the necessary capacity.

Since the data mainly concerns 2021 and 2022, it is important to mention that, especially in 2021, the
coronavirus Covid-19 was still very much present in Netherlands [5]. It is unknown how much the data is
influenced by Covid-19.

6.3 Numerical analysis
In the numerical analysis, the influence of several parameters was studied. However, the sensitivity analysis
with respect to one parameter was mostly executed for only one combination of values of the other parameters.
More specifically, the influence of the cost parameters was only studied for κ = 0.3. A more extensive analysis
could be done to study if κ affects the influence of the cost parameters. Such an analysis is advised because the
value of κ is unknown in this research and, with more general applications in mind, it is the most characteristic
parameter of the call packing system.

Earlier in this section we mentioned that the time dependent analysis was first performed for only the
infinite server system, and that the Modified Offered Load approximation based on the call packing formula
was added only later. Due to this, the study on the influence of the cost parameters on the time dependent
behaviour was based on the infinite server system. Since the optimal time dependent capacity in the MOL call
packing system is just shifted compared to the one of the infinite server system, the results obtained on the
infinite server system are expected to generalize rather well. Nevertheless, the influence of the cost parameters
on the time dependent behaviour of the capacity should be studied with the MOL call packing system as well,
especially since the optimal capacity vector did look different for Ci = Cd = 0 in Figure 15.

The simulation introduced the concept of overbeds, i.e. more patients in service than the selected capacity
level would indicate. At the start of Section 5.3, we noted the influence of the cost of an overbed Cc is limited
based on a preliminary study with the analytic optimal vector, [29,29,28,29,29,29,29]. The value of Cc was
therefore fixed at 300 for the remainder of the analytic analysis. In the neighbourhood search, capacity vectors
with considerably more fluctuations than the analytic optimal vector were considered. By accident, the results
were first obtained for Cc = 30 instead of Cc = 300. We noted that some vectors that performed well for
Cc = 30 did not perform well for Cc = 300. Based on these observations, a sensitivity analysis with respect to
Cc is still advised.

The neighbourhood search performed in this research can be considered brute-forced. Since a cyclic capac-
ity of seven days was considered and the difference between the lowest and highest daily capacity was small, it
was feasible to consider a large amount of vectors in the neighbourhood. However, we can not guarantee that
the optimal capacity vector was found. For example, the best-performing capacity vectors had a capacity of
30 on Monday, but 30 was also the highest capacity level considered for that day. A more elaborate neigh-
bourhood search would thus be necessary to guarantee the optimal solution. A more advanced neighbourhood
search based on sophisticated heuristics would be advised for such case. Moreover, since the confidence in-
tervals of the best-performing capacity vector overlap, more simulation runs would be necessary to exclude
more vectors from being possibly optimal. Nevertheless, the current neighbourhood search sufficed for this
research to give an impression of the near-optimal time dependent behaviour under the used parameter settings.
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We could not explain all the observations made in the numerical analysis. For example, why capacity
vectors with an increased capacity of 30 on Monday perform well. More research would be necessary to
understand such outcomes. Moreover, an attentive reader might have noticed that no numerical results were
provided for the case in which beds can be relabeled from one VVT type to another. We observed that the
possibility of relabeling beds from one type to another for lower costs is not used, even when there were no costs
for relabeling beds. The Mixed Integer Program simply outputted an optimal capacity for GRZ stationary at
27 and for ELV stationary at 8. Since the optimal capacity for GRZ is not stationary for the base parameters
when analysed on its own, there is likely an implementation error in the additional constraints.

6.4 Application related
The data showed a significant difference in arrival rates on weekdays and weekends. To benefit from the
predictable change in offered load throughout the week, the capacity was allowed to fluctuate over the week.
The question of what to do when all beds are occupied on a day on which a decrease in capacity was planned,
is normally dealt with on an operational level and not a tactical level. However, on a tactical level, one could
question the reasonability of daily varying capacity when the mean length of stay is almost 40 days. Combined
with the observation that the optimal capacity of 29 or 30 is lower than the length of stay, overbeds could occur
frequently in practice. This may result in the VVT organisation working at a capacity close to the maximum
capacity throughout the week. If overbeds are observed more often than desired, change in capacity could
be discouraged by increasing the cost for changing capacity in the analytic analysis or the cost for overbeds
in the simulation. We indeed observed that already for relatively low costs of changing capacity a stationary
capacity was optimal. As advised earlier in this section, the influence of the cost of overbeds should still be
studied.

In the numerical analysis, we studied the optimal capacity given a certain time dependent arrival rate. It
would be interesting to study if a certain capacity performs better when the number of arrivals on certain
days is slightly different. Future research could study if small tweaks in the arrival rate function can lead
to substantially lower costs of the optimal capacity. Especially for GRZ, it might be possible to realize a
small change in arrival pattern when the financial benefits are substantial. Most arrivals to the GRZ namely
originate from the hospital where the patients received surgery. The scheduling of surgeries is thus expected
to influence the arrival rate to the VVT. If substantial improvements can be shown, the hospital has a di-
rect incentive to adapt the scheduling of the surgeries since they benefit from the decrease in costs for overflow.

In Section 2.3, we noted that Zychlinski et al. (2020) deals with the optimal capacity in geriatric facilities
to prevent bed blocking in hospitals as well. Several similarities and differences between our research and the
research of Zychlinski et al. were already mentioned in that section. It would be interesting to perform a
numerical analysis with our models based on the data that Zychlinski et al. used and compare the results.
Based on these results and the difference in what the models can account for, recommendations could be made
on which model could best be used when. Perhaps certain aspects of the two studies could be combined to
obtain a more sophisticated model.

The numerical analysis showed a clear difference in cost between the situation in which the VVT would
decide on their own capacity and the situation from a system perspective. Based on this, it would make sense
that the VVT receives money to increase their capacity to the systems’ optimal capacity. It is not within the
scope of this research to advise on who is paying for this and on what terms. The financing of the health care
system is quite complex and the authors have currently too little knowledge or expertise to judge how much
each involved party would profit from the optimal capacity. Clearly, the hospital benefits from the reduction
in overflow days. However, the health insurance companies are expected to receive less claims for such overflow
days, and thus save money. Moreover, there is likely a time difference between when the money is necessary to
increase the capacity and when the financial benefits from the increased capacity are available. So, the roles of
all involved parties and their financial incentives should be mapped out. At the same time, more information
should be gathered on the costs of overflow beds and VVT beds for each party. In this way, more clarity is
obtained about the values of the parameters for each involved party so that the optimal situation for different
parties can be examined.

From a mathematical perspective, a game theoretic analysis could be considered to give better advice on
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the division of the increased VVT cost and the profit. For example, Kverndokk and Melberg (2021) studies how
the introduction of a fee to reduce bed-blocking in hospitals influences the strategic decisions of the hospitals
and the long-term care providers by using a Stackelberg game.

Due to the limited availability of appropriate data and the limited time of this research, the numerical
analysis is only performed for one specific VVT organisation and type. It would give more information about
the total capacity available per type in the region to perform the numerical analysis on all relevant VVT or-
ganisations. Firstly, pooling the arrivals and capacity of all VVT organisations of each type shows if the total
available capacity would suffice. By also performing, per type, the analysis on each distinct organisation using
the fraction of patients that currently go to that organisation, it can be studied for which specific organisation
the current capacity would be insufficient. Based on these results, either the division of patients to the VVT
organisations could be adapted, or the capacity of those specific organisations could be increased in case the
total current capacity was shown to be insufficient. Thus, such analyses would help to locate demand and
capacity best. Considering the enormous increase in the shortage of skilled nurses predicted [4], research on
the best possible use of available personnel is key.

In this research, we wanted to reduce the bed-blocking days by determining the optimal capacity. The
question remains what part of the bed-blocking days could indeed be reduced by the optimal VVT capacity,
and what part is unrelated to the availability of beds in the VVT. For example, Armony et al. (2015) found
that patients often have to wait even when there are beds available. This implies that there are more causes
for delay in a transfer process than only bed unavailability. The financial director of a VVT organisation [6]
indicated as well that the current overflow situation is caused by both limited VVT capacity as well as by
logistical and administrative complications. Gaughan et al. (2015) devoted a complete paper to the extent
to which the bed blocking in the hospital can be reduced by more capacity in nursing homes. So, adequate
capacity of the VVT organisations on its own will not solve the complete problem of bed blocking. In addition,
the transfer process needs to be improved, for which the introduction of Zorgschakel Twente is a step in the
right direction [6].

During the meeting with the financial director of a VVT organisation [6] the idea of a transfer department
(schakelafdeling) was discussed. If a patient is ready to leave the hospital, but there is no place in the VVT,
the patient goes to the transfer department. The transfer department is less expensive than the hospital
and the hospital bed comes free for a new patient. Introducing capacity in the transfer department is not
the same as increasing the capacity of the VVT as studied in this research. VVT capacity is specific for a
certain type, while the transfer department is not type-specific. So instead of increasing the VVT capacity
of multiple types in the long term, which can lead to a high number of unused beds, (unrelated) accidental
increase in demand for a certain VVT type can be accommodated on a higher level by the transfer department.
A trade-off should be made between the capacity assigned to this transfer department and the normal VVT
types. Since the transfer department is available to all VVT types, the introduction of shared capacity in the
Mixed Integer Program could be used to help decide on this trade-off. However, depending on the level of
care that is provided in this transfer department and the VVT type, the influence of the time that a patient
spends in this department on their residual service time differs. If time in the transfer department does not
contribute as much to the service time as time in the normal VVT, a complicated relation between the time
in the transfer department, the residual service time and the capacity in VVT takes place. The phase in
which the performance measures are determined and the optimization phase are not distinct anymore. Other
research methods would be necessary to evaluate the idea of a transfer department. For this, one may start
by looking at studies that look into the Step Down Unit, which is a department in the hospital between the
Intensive Care and the general wards and which existence and optimal capacity are much discussed.
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7 Conclusion

This research was motivated by the question of what the optimal capacity of the Verpleeg-, Verzorgingshuizen
en Thuiszorg (VVT) organisations in region Enschede would be. This question arose from the desire to reduce
the bed blocking days in the hospital, which costs two of the main hospitals in region Twente already almost
nine thousand euros per day [45].

Determining the capacity was divided into two phases. In the first phase, the appropriate queueing models
were analysed to determine the values of the necessary performance measures. The obtained mean number of
patients in overflow and mean number of unused beds were the input to the second phase: the optimization
phase. By separating the calculation of the performance measures and the optimization into two phases, the
process of determining the time dependent capacity was simplified. The values of the performance measures
on one day did not depend on the choice of capacity on other days.

In the first phase, discussed in Section 3.1, the system was modelled as an overflow system with immediate
call packing, in which the fraction κ represented how much the time spent in overflow contributed to a reduction
in service time in the VVT. The boundary cases corresponding to κ = 1 and κ = 0 were the M/G/∞ system
and M/M/c system, respectively. The mean queue length in these systems was shown to provide a lower and
upper bound, respectively, of that in the corresponding call packing system. By adapting the service time
in these systems appropriately, we conjectured that stricter bounds on the call packing system are obtained.
Since the infinite server system is insensitive to the service distribution, this Adapted Service Time Approach
yielded an insensitive lower bound to the mean queue length in the call packing system, for which a convenient
form exists only for exponentially distributed service times. In addition to the stationary analysis, a time
dependent analysis of the models was discussed. By replacing the stationary offered load ρ in the formula for
the performance measures by the time dependent offered load m(t), a time dependent infinite server approach
and a Modified Offered Load approximation for the call packing system were obtained. The latter could
not be found in literature before. Thus, Section 3.1 contained important theoretical contributions to the
approximation of the call packing system both in the stationary and the time dependent case.

Section 3.2 discussed the optimization phase. The financial incentives of both the hospital and the VVT
were taken into account by having three components in the objective function: overflow costs, costs for unused
beds and costs for used beds. In the case of a time dependent capacity, costs for changing capacity were
included as well. A Mixed Integer Program was introduced through which the time dependent behaviour of
the capacity could be constrained. The ability to choose the values of the cost parameters and the possibility
to include constraints have an added value to the frequently used square root staffing rule. Moreover, the
Mixed Integer Program allowed for interaction between the capacity of several VVT types by incorporating
shared capacity and the relabeling of beds.

The derived models were used in a numerical analysis in Section 5 and the performances of the different
queueing models were compared. The system characteristics and parameters used for this analysis were based
on the data of a specific VVT type of one VVT organisation, as discussed in Section 4.

The stationary analysis in Section 5.1 showed that the proven and conjectured ordering of the mean
queue length in the five queueing systems considered in this research almost holds for the objective value
corresponding to each capacity as well. The adapted M/G/∞ system was the only exception, for which we
observed that the mean number of beds is low compared to that in the unadapted M/G/∞ system and that
in the call packing system. The capacity decision was observed to be influenced by the fraction κ and the
ratio between the cost of overflow Co and the cost of unused beds Cu. Comparing the stationary analytic
results to the simulation results for a stationary capacity showed that the exponential call packing system best
approximated the true system.

The time dependent analysis of the infinite server system and the Modified Offered Load approximation
of the call packing system allowed for the consideration of a time dependent capacity in Section 5.2. The
behaviour of the time dependent capacity was similar to that of the time dependent offered load. Since the
time dependent offered load was shown to be shifted compared to the arrival rate function, peaks and dips
in the capacity are shifted compared to those in the arrival rate as well. The biggest influence on the time
dependent behaviour of the capacity was the cost of changing capacity. Even for a relatively small cost of
changing capacity compared to the cost of unused beds or overflow, the optimal capacity did not change over
time. The main reason for this was that a change in capacity was only useful for one or a few days due to the
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rapidly varying offered load and its short cycle time. The real cost of the analytic optimal solution was judged
using a simulation and compared to that of neighbouring vectors in Section 5.3. The best-performing vectors
from the simulation study had a base capacity of 29, corresponding to the stationary result for the exponential
call packing system, around which they fluctuated to adapt for predictable changes in the time dependent
offered load. The best-performing vectors in the simulation study outperformed the analytic optimal time
dependent solution, for which we already reasoned that it would underestimate the capacity on some days.
The result from the stationary analysis with the call packing system performed rather well in the simulation
since no improvement in simulated cost was obtained by the result from the analytic time dependent analysis.

Due to conflicting monetary incentives, as outlined in Section 2.4, and the fact that the expensive overflow
of the VVT takes place in the hospital, the VVT was expected to select a lower capacity than what would be
optimal from a system perspective. The situation in which the VVT would decide on their own was studied
by setting the cost for overflow Co to zero. The results in Sections 5.1.3 and 5.4 confirmed that the optimal
capacity when the VVT would decide on its own is lower than the optimal capacity from a system perspective.
The decrease in total cost that is expected when the capacity at the VVT equals the optimal capacity from
the systems perspective instead of the VVT’s optimal, is significantly larger than the increase in costs for the
VVT. These results suggest that it would be reasonable to compensate the VVT for increasing their capacity.

Several topics for future research were described in Section 6. Most importantly, the numerical study
should be performed for other VVT types and other organisations since these are likely to have different
system characteristics. The goal of this extra research is two-fold. On the one hand, it will become clear
how well the theoretical results and sensitivity analyses hold in general. On the other hand, a more complete
picture of the current status and the optimal situation in region Enschede is obtained and a better allocation
of demand and capacity could be researched. Outside of this research, more insight into the involved parties
and their financial contributions must be obtained.

69



REFERENCES

References

[1] ELV at de Posten. URL https://www.deposten.nl/eerstelijnsverblijf#:~:text=Het%20verschil%
20is%20vooral%20dat,en%20rust%20om%20te%20herstellen.

[2] Prestatiebekostiging ziekenhuizen. URL https://www.rijksoverheid.nl/onderwerpen/kwaliteit-
van-de-zorg/prestatiebekostiging-ziekenhuizen.

[3] Beleidsregel prestatiebeschrijvingen en tarieven verkeerde bed Wlz 2024 - BR/REG-24119. URL https:
//puc.overheid.nl/nza/doc/PUC_743477_22/1/.

[4] ActiZ infographic Ontwikkeling Arbeidsmarkt VVT. URL https://www.actiz.nl/sites/default/
files/2021-02/ActiZ_Infographic-Ontwikkeling-Arbeidsmarkt-VVT.pdf.

[5] Coronavirus tijdlijn. URL https://www.rijksoverheid.nl/onderwerpen/coronavirus-tijdlijn.

[6] Discussed in a meeting with the financial director of a VVT organisation.

[7] Website of the Dutch National Health Care Institute. URL https://www.zorginstituutnederland.nl/.

[8] Actiz infographic Geriatrische revalidatiezorg, 2018. URL https://leden.actiz.nl/cms/
streambin.aspx?documentid=24421.

[9] Actiz infographic Eerstelijnsverblijf (ELV), 2019. URL https://
www.google.nl/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=
2ahUKEwjOw_icp9uFAxV2gf0HHQKcACAQFnoECBgQAQ&url=https%3A%2F%2Fleden.actiz.nl%2Fcms%
2Fstreambin.aspx%3Fdocumentid%3D24420&usg=AOvVaw3RUmeqNUL5KRH0ROwSzv1A&opi=89978449.

[10] I. Adan and J. Resing. Queueing Systems. Eindhoven University of Technology, Mar. 2015. URL
https://www.win.tue.nl/~iadan/queueing.pdf.

[11] M. Armony, S. Israelit, A. Mandelbaum, Y. N. Marmor, Y. Tseytlin, and G. B. Yom-Tov. On Patient
Flow in Hospitals: A Data-Based Queueing-Science Perspective. Stochastic Systems, 5(1):146–194, June
2015. ISSN 1946-5238, 1946-5238. doi: 10.1287/14-SSY153. URL https://pubsonline.informs.org/
doi/10.1287/14-SSY153.

[12] A. Assad, M. Fu, and J.-S. Yoo. A lower bounding result for the optimal policy in an adaptive staffing
problem. 1997.

[13] A.Ya.Khinchine. Mathematical methods in the theory of queueing. Trudy Mat Inst. Steklov 49, 1955. (in
Russian).

[14] F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios. Open, Closed, and Mixed Networks of Queues
with Different Classes of Customers. Journal of the ACM, 22(2):248–260, Apr. 1975. ISSN 0004-5411.
doi: 10.1145/321879.321887. URL https://dl.acm.org/doi/10.1145/321879.321887.

[15] R. Bekker and A. M. de Bruin. Time-dependent analysis for refused admissions in clinical wards. Annals
of Operations Research, 178(1):45–65, July 2010. ISSN 1572-9338. doi: 10.1007/s10479-009-0570-z. URL
https://doi.org/10.1007/s10479-009-0570-z.

[16] D. Bertsimas and J. N. Tsitsiklis. Introduction to linear optimization. Athena Scientific series in opti-
mization and neural computation. Athena Scientific, Belmont, Mass, 1997. ISBN 978-1-886529-19-9.

[17] S. Borst, A. Mandelbaum, and M. I. Reiman. Dimensioning Large Call Centers. Operations Research, 52
(1):17–34, 2004. ISSN 0030-364X. URL https://www.jstor.org/stable/30036558.

[18] R. J. Boucherie and N. M. Van Dijk. Spatial Birth-Death Processes with Multiple Changes and Ap-
plications to Batch Service Networks and Clustering Processes. Advances in Applied Probability, 22(2):
433–455, 1990. ISSN 0001-8678. doi: 10.2307/1427544. URL https://www.jstor.org/stable/1427544.

70

https://www.deposten.nl/eerstelijnsverblijf#:~:text=Het%20verschil%20is%20vooral%20dat,en%20rust%20om%20te%20herstellen.
https://www.deposten.nl/eerstelijnsverblijf#:~:text=Het%20verschil%20is%20vooral%20dat,en%20rust%20om%20te%20herstellen.
https://www.rijksoverheid.nl/onderwerpen/kwaliteit-van-de-zorg/prestatiebekostiging-ziekenhuizen
https://www.rijksoverheid.nl/onderwerpen/kwaliteit-van-de-zorg/prestatiebekostiging-ziekenhuizen
https://puc.overheid.nl/nza/doc/PUC_743477_22/1/
https://puc.overheid.nl/nza/doc/PUC_743477_22/1/
https://www.actiz.nl/sites/default/files/2021-02/ActiZ_Infographic-Ontwikkeling-Arbeidsmarkt-VVT.pdf
https://www.actiz.nl/sites/default/files/2021-02/ActiZ_Infographic-Ontwikkeling-Arbeidsmarkt-VVT.pdf
https://www.rijksoverheid.nl/onderwerpen/coronavirus-tijdlijn
https://www.zorginstituutnederland.nl/
https://leden.actiz.nl/cms/streambin.aspx?documentid=24421
https://leden.actiz.nl/cms/streambin.aspx?documentid=24421
https://www.google.nl/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjOw_icp9uFAxV2gf0HHQKcACAQFnoECBgQAQ&url=https%3A%2F%2Fleden.actiz.nl%2Fcms%2Fstreambin.aspx%3Fdocumentid%3D24420&usg=AOvVaw3RUmeqNUL5KRH0ROwSzv1A&opi=89978449
https://www.google.nl/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjOw_icp9uFAxV2gf0HHQKcACAQFnoECBgQAQ&url=https%3A%2F%2Fleden.actiz.nl%2Fcms%2Fstreambin.aspx%3Fdocumentid%3D24420&usg=AOvVaw3RUmeqNUL5KRH0ROwSzv1A&opi=89978449
https://www.google.nl/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjOw_icp9uFAxV2gf0HHQKcACAQFnoECBgQAQ&url=https%3A%2F%2Fleden.actiz.nl%2Fcms%2Fstreambin.aspx%3Fdocumentid%3D24420&usg=AOvVaw3RUmeqNUL5KRH0ROwSzv1A&opi=89978449
https://www.google.nl/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjOw_icp9uFAxV2gf0HHQKcACAQFnoECBgQAQ&url=https%3A%2F%2Fleden.actiz.nl%2Fcms%2Fstreambin.aspx%3Fdocumentid%3D24420&usg=AOvVaw3RUmeqNUL5KRH0ROwSzv1A&opi=89978449
https://www.win.tue.nl/~iadan/queueing.pdf
https://pubsonline.informs.org/doi/10.1287/14-SSY153
https://pubsonline.informs.org/doi/10.1287/14-SSY153
https://dl.acm.org/doi/10.1145/321879.321887
https://doi.org/10.1007/s10479-009-0570-z
https://www.jstor.org/stable/30036558
https://www.jstor.org/stable/1427544


REFERENCES

[19] N. C. Buyukkaramikli, J. W. M. Bertrand, and H. P. G. van Ooijen. Flexible hiring in a make to order
system with parallel processing units. Annals of Operations Research, 209(1):159–178, Oct. 2013. ISSN
1572-9338. doi: 10.1007/s10479-011-0958-4. URL https://doi.org/10.1007/s10479-011-0958-4.

[20] K. Chandy. Analysis and solutions for general queueing networks. Oct. 2002.

[21] Y. Dallery and Y. Frein. On Decomposition Methods for Tandem Queueing Networks with Blocking.
Operations Research, 41(2):386–399, 1993. ISSN 0030-364X. URL https://www.jstor.org/stable/
171785. Publisher: INFORMS.

[22] A. M. de Bruin, A. C. van Rossum, M. C. Visser, and G. M. Koole. Modeling the emergency cardiac
in-patient flow: an application of queuing theory. Health Care Management Science, 10(2):125–137, June
2007. ISSN 1572-9389. doi: 10.1007/s10729-007-9009-8. URL https://doi.org/10.1007/s10729-007-
9009-8.

[23] S. Eick, W. Massey, and W. Whitt. Mt/G/\infty Queues with Sinusoidal Arrival Rates. Management
Science, 39:241–252, Aug. 2000.

[24] S. G. Eick, W. A. Massey, and W. Whitt. The Physics of the Mt/G/ Queue. Operations Research,
Aug. 1993. doi: 10.1287/opre.41.4.731. URL https://pubsonline.informs.org/doi/abs/10.1287/
opre.41.4.731. Publisher: INFORMS.

[25] Z. Feldman, A. Mandelbaum, W. Massey, and W. Whitt. Staffing of Time-Varying Queues to Achieve
Time-Stable Performance. Management Science, 54:324–338, Feb. 2008. doi: 10.1287/mnsc.1070.0821.

[26] S. Gallivan, M. Utley, T. Treasure, and O. Valencia. Booked inpatient admissions and hospital capac-
ity: mathematical modelling study. BMJ, 324(7332):280–282, Feb. 2002. ISSN 0959-8138, 1468-5833.
doi: 10.1136/bmj.324.7332.280. URL https://www.bmj.com/content/324/7332/280. Publisher: British
Medical Journal Publishing Group Section: Information in practice.

[27] J. Gaughan, H. Gravelle, and L. Siciliani. Testing the Bed-Blocking Hypothesis: Does Nursing and Care
Home Supply Reduce Delayed Hospital Discharges? Health economics, 24 Suppl 1:32–44, Mar. 2015. doi:
10.1002/hec.3150.

[28] W. J. Gordon and G. F. Newell. Closed queuing systems with exponential servers. Operations Research,
15(2):254–265, 1967. ISSN 0030364X, 15265463. URL http://www.jstor.org/stable/168557.

[29] A. Granas and J. Dugundji. Elementary Fixed Point Theorems, pages 9–84. Springer New York, New
York, NY, 2003. ISBN 978-0-387-21593-8. doi: 10.1007/978-0-387-21593-8_2. URL https://doi.org/
10.1007/978-0-387-21593-8_2.

[30] L. Green. Queueing Analysis in Healthcare, pages 281–307. Springer US, Boston, MA, 2006. ISBN 978-0-
387-33636-7. doi: 10.1007/978-0-387-33636-7_10. URL https://doi.org/10.1007/978-0-387-33636-
7_10.

[31] L. V. Green, P. J. Kolesar, and J. Soares. Improving the SIPP Approach for Staffing Service Systems
That Have Cyclic Demands. Operations Research, 49(4):549–564, 2001. ISSN 0030-364X. URL https:
//www.jstor.org/stable/3088586. Publisher: INFORMS.

[32] L. V. Green, P. J. Kolesar, and W. Whitt. Coping with Time-Varying Demand When Setting
Staffing Requirements for a Service System. Production and Operations Management, 16(1):13–39,
Jan. 2007. ISSN 1059-1478, 1937-5956. doi: 10.1111/j.1937-5956.2007.tb00164.x. URL https:
//onlinelibrary.wiley.com/doi/10.1111/j.1937-5956.2007.tb00164.x.

[33] S. Halfin and W. Whitt. Heavy-traffic limits for queues with many exponential servers. Operations
Research, 29:567–588, June 1981. doi: 10.1287/opre.29.3.567.

[34] R. Hall. Queueing Methods—For Services and Manufacturing. Oct. 1990. ISBN 978-0-13-744756-5.

[35] F. S. Hillier and R. W. Boling. Finite Queues in Series with Exponential or Erlang Service Times-A
Numerical Approach. Operations Research, 15(2):286–303, 1967. ISSN 0030-364X. Publisher: INFORMS.

71

https://doi.org/10.1007/s10479-011-0958-4
https://www.jstor.org/stable/171785
https://www.jstor.org/stable/171785
https://doi.org/10.1007/s10729-007-9009-8
https://doi.org/10.1007/s10729-007-9009-8
https://pubsonline.informs.org/doi/abs/10.1287/opre.41.4.731
https://pubsonline.informs.org/doi/abs/10.1287/opre.41.4.731
https://www.bmj.com/content/324/7332/280
http://www.jstor.org/stable/168557
https://doi.org/10.1007/978-0-387-21593-8_2
https://doi.org/10.1007/978-0-387-21593-8_2
https://doi.org/10.1007/978-0-387-33636-7_10
https://doi.org/10.1007/978-0-387-33636-7_10
https://www.jstor.org/stable/3088586
https://www.jstor.org/stable/3088586
https://onlinelibrary.wiley.com/doi/10.1111/j.1937-5956.2007.tb00164.x
https://onlinelibrary.wiley.com/doi/10.1111/j.1937-5956.2007.tb00164.x


REFERENCES

[36] A. Hordijk and A. Ridder. Stochastic Inequalities for an Overflow Model. Journal of Applied Probability,
24(3):696–708, 1987. ISSN 0021-9002. doi: 10.2307/3214100. URL https://www.jstor.org/stable/
3214100. Publisher: Applied Probability Trust.

[37] G. C. Hunt. Sequential Arrays of Waiting Lines. Operations Research, 4(6):674–683, 1956. ISSN 0030-
364X. Publisher: INFORMS.

[38] J. R. Jackson. Jobshop-like Queueing Systems. Management Science, 10(1):131–142, 1963. ISSN 0025-
1909. URL https://www.jstor.org/stable/2627213. Publisher: INFORMS.

[39] D. L. Jagerman. Nonstationary Blocking in Telephone Traffic. Bell System Technical Journal, 54
(3):625–661, Mar. 1975. ISSN 00058580. doi: 10.1002/j.1538-7305.1975.tb02858.x. URL https:
//ieeexplore.ieee.org/document/6774097.

[40] O. Jennings, W. Massey, and C. Mccalla. Optimal profit for leased lines services. Proceedings of the 15th
International Teletraffic Congress - ITC 15, pages 803–814, Aug. 1997.

[41] O. B. Jennings, A. Mandelbaum, W. A. Massey, and W. Whitt. Server Staffing to Meet Time-Varying
Demand. Management Science, 42(10):1383–1394, 1996. ISSN 0025-1909. URL https://www.jstor.org/
stable/2634372. Publisher: INFORMS.

[42] O. Jouini and Y. Dallery. Monotonicity properties for multiserver queues with reneging and finite waiting
lines. Probability in The Engineering and Informational Sciences, 21:335–360, July 2007. doi: 10.1017/
S0269964807000010.

[43] F. Kamoun and L. Kleinrock. Analysis of Shared Finite Storage in a Computer Network Node Environment
Under General Traffic Conditions. Communications, IEEE Transactions on, 28:992–1003, Aug. 1980. doi:
10.1109/TCOM.1980.1094756.

[44] F. P. Kelly. Networks of Queues. Advances in Applied Probability, 8(2):416–432, 1976. ISSN 0001-8678.
doi: 10.2307/1425912. URL https://www.jstor.org/stable/1425912. Publisher: Applied Probability
Trust.

[45] J. Kodde. MST en ZGT raken hun patiënten niet kwijt en lopen daardoor miljoenen aan omzet mis.
Tubantia, Jan. 2024. URL https://www.tubantia.nl/enschede/mst-en-zgt-raken-hun-patienten-
niet-kwijt-en-lopen-daardoor-miljoenen-aan-omzet-mis~a0e85487/.

[46] N. Koizumi, E. Kuno, and T. E. Smith. Modeling Patient Flows Using a Queuing Network with Blocking.
Health Care Management Science, 8(1):49–60, Feb. 2005. ISSN 1572-9389. doi: 10.1007/s10729-005-5216-
3. URL https://doi.org/10.1007/s10729-005-5216-3.

[47] S. Kverndokk and H. O. Melberg. Using fees to reduce bed-blocking: a game between hospitals and
long-term care providers. The European Journal of Health Economics, 22(6):931–949, Aug. 2021. ISSN
1618-7601. doi: 10.1007/s10198-021-01299-9. URL https://doi.org/10.1007/s10198-021-01299-9.

[48] S. S. Lam. Queuing networks with population size constraints. IBM Journal of Research and Development,
21(4):370–378, July 1977. doi: 10.1147/rd.214.0370.

[49] A. Li, W. Whitt, and J. Zhao. Staffing to stabilize blocking in loss model with time-
varying arrival rates. Probability in the Engineering and Informational Sciences, 30(2):185–
211, Apr. 2016. ISSN 0269-9648, 1469-8951. doi: 10.1017/S0269964815000340. URL https:
//www.cambridge.org/core/journals/probability-in-the-engineering-and-informational-
sciences/article/staffing-to-stabilize-blocking-in-loss-models-with-timevarying-
arrival-rates/B22F61E8B47DE34664494AF87715932D.

[50] N. Litvak, M. van Rijsbergen, R. J. Boucherie, and M. van Houdenhoven. Managing the overflow of
intensive care patients. European Journal of Operational Research, 185(3):998–1010, Mar. 2008. ISSN
0377-2217. doi: 10.1016/j.ejor.2006.08.021. URL https://www.sciencedirect.com/science/article/
pii/S0377221706005819.

72

https://www.jstor.org/stable/3214100
https://www.jstor.org/stable/3214100
https://www.jstor.org/stable/2627213
https://ieeexplore.ieee.org/document/6774097
https://ieeexplore.ieee.org/document/6774097
https://www.jstor.org/stable/2634372
https://www.jstor.org/stable/2634372
https://www.jstor.org/stable/1425912
https://www.tubantia.nl/enschede/mst-en-zgt-raken-hun-patienten-niet-kwijt-en-lopen-daardoor-miljoenen-aan-omzet-mis~a0e85487/
https://www.tubantia.nl/enschede/mst-en-zgt-raken-hun-patienten-niet-kwijt-en-lopen-daardoor-miljoenen-aan-omzet-mis~a0e85487/
https://doi.org/10.1007/s10729-005-5216-3
https://doi.org/10.1007/s10198-021-01299-9
https://www.cambridge.org/core/journals/probability-in-the-engineering-and-informational-sciences/article/staffing-to-stabilize-blocking-in-loss-models-with-timevarying-arrival-rates/B22F61E8B47DE34664494AF87715932D
https://www.cambridge.org/core/journals/probability-in-the-engineering-and-informational-sciences/article/staffing-to-stabilize-blocking-in-loss-models-with-timevarying-arrival-rates/B22F61E8B47DE34664494AF87715932D
https://www.cambridge.org/core/journals/probability-in-the-engineering-and-informational-sciences/article/staffing-to-stabilize-blocking-in-loss-models-with-timevarying-arrival-rates/B22F61E8B47DE34664494AF87715932D
https://www.cambridge.org/core/journals/probability-in-the-engineering-and-informational-sciences/article/staffing-to-stabilize-blocking-in-loss-models-with-timevarying-arrival-rates/B22F61E8B47DE34664494AF87715932D
https://www.sciencedirect.com/science/article/pii/S0377221706005819
https://www.sciencedirect.com/science/article/pii/S0377221706005819


REFERENCES

[51] W. A. Massey. The Analysis of Queues with Time-Varying Rates for Telecommunication Models. Telecom-
munication Systems, page 173–204, 2002. doi: 10.1023/A:1020990313587. URL https://doi.org/
10.1023/A:1020990313587.

[52] W. A. Massey and W. Whitt. An Analysis of the Modified Offered-Load Approximation for the Nonsta-
tionary Erlang Loss Model. The Annals of Applied Probability, 4(4):1145–1160, 1994. ISSN 1050-5164.
URL https://www.jstor.org/stable/2245085. Publisher: Institute of Mathematical Statistics.

[53] S. I. M. Michael C. Fu and I.-J. Wang. Monotone optimal policies for a transient queueing staffing
problem. Operations Research, 48(2):327–331, 2000.

[54] Ministerie van Volksgezondheid, Welzijn en Sport. Programma Wonen, Ondersteuning en Zorg voor
Ouderen, July 2022.

[55] Nederlandse Zorgautoriteit. Stand van de zorg 2023, Oct. 2023.

[56] W. Oniszczuk. Tandem Models with Blocking in the Computer Subnetworks Performance Analysis.
In K. Saeed, J. Pejaś, and R. Mosdorf, editors, Biometrics, Computer Security Systems and Artificial
Intelligence Applications, pages 259–267, Boston, MA, 2006. Springer US. ISBN 978-0-387-36503-9. doi:
10.1007/978-0-387-36503-9_24.

[57] C. Osorio and M. Bierlaire. An analytic finite capacity queueing network model capturing the propagation
of congestion and blocking. European Journal of Operational Research, 196(3):996–1007, Aug. 2009. ISSN
0377-2217. doi: 10.1016/j.ejor.2008.04.035.

[58] C. Palm. Intensity variations in telephone traffic. Ericsson Technics, 44:1–189, 1943. (in German).

[59] H. G. Perros and T. Altiok. Approximate analysis of open networks of queues with blocking: Tandem con-
figurations. IEEE Transactions on Software Engineering, SE-12(3):450–461, Mar. 1986. ISSN 1939-3520.
doi: 10.1109/TSE.1986.6312886. URL https://ieeexplore.ieee.org/document/6312886. Conference
Name: IEEE Transactions on Software Engineering.

[60] J. T. Rich, N. J. Gail, R. C. Paniello, C. C. J. Voelker, B. Nussenbaum, and E. W. Wang. A practical guide
to understanding Kaplan-Meier curves. Otolaryngology–head and neck surgery: official journal of Amer-
ican Academy of Otolaryngology-Head and Neck Surgery, 143(3):331–336, Sept. 2010. ISSN 0194-5998.
doi: 10.1016/j.otohns.2010.05.007. URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3932959/.

[61] K. W. Ross. The Reduced Load Approximation for Single-Service Networks, chapter 5.5, pages 181–187.
Springer-Verlag, Dec. 2011. ISBN 978-1447121282.

[62] S. M. Ross. Introduction to Probability Models. Academic Press, 2007. ISBN 978-0-12-598062-3.

[63] J. A. Schwarz, G. Selinka, and R. Stolletz. Performance analysis of time-dependent queueing systems: Sur-
vey and classification. Omega, 63:170–189, Sept. 2016. ISSN 0305-0483. doi: 10.1016/j.omega.2015.10.013.
URL https://www.sciencedirect.com/science/article/pii/S0305048315002170.

[64] J. F. Shortle, J. M. Thompson, D. Gross, and C. M. Harris. Fundamentals of queueing theory. John
Wiley and Sons, Jan. 2018. ISBN 9781118943526. doi: 10.1002/9781119453765.

[65] R. Stolletz. Approximation of the non-stationary m(t)/m(t)/c(t)-queue using stationary queueing models:
The stationary backlog-carryover approach. European Journal of Operational Research, 190(2):478—-493,
2008. doi: 10.1016/j.ejor.2007.06.036. URL https://doi.org/10.1016/j.ejor.2007.06.036.

[66] R. Stolletz. Analysis of passenger queues at airport terminals. Research in Transportation Business
Management, 1(1):144–149, 2011. ISSN 2210-5395. doi: https://doi.org/10.1016/j.rtbm.2011.06.012.
URL https://www.sciencedirect.com/science/article/pii/S2210539511000198.

[67] W. te Meerman. Verpleeghuis minder duur dan het lijkt. Skipr, Sept. 2017. URL https://www.skipr.nl/
blog/verpleeghuis-minder-duur-dan-het-lijkt/.

73

https://doi.org/10.1023/A:1020990313587
https://doi.org/10.1023/A:1020990313587
https://www.jstor.org/stable/2245085
https://ieeexplore.ieee.org/document/6312886
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3932959/
https://www.sciencedirect.com/science/article/pii/S0305048315002170
https://doi.org/10.1016/j.ejor.2007.06.036
https://www.sciencedirect.com/science/article/pii/S2210539511000198
https://www.skipr.nl/blog/verpleeghuis-minder-duur-dan-het-lijkt/
https://www.skipr.nl/blog/verpleeghuis-minder-duur-dan-het-lijkt/


REFERENCES

[68] G. M. Thompson. Accounting for the multi-period impact of service when determining employee re-
quirements for labor scheduling. Journal of Operations Management, 11(3):269–287, Sept. 1993. ISSN
0272-6963, 1873-1317. doi: 10.1016/0272-6963(93)90004-9. URL https://onlinelibrary.wiley.com/
doi/10.1016/0272-6963%2893%2990004-9.

[69] F. Timmer. Opheldering gevraagd over opstopping in Twentse ziekenhuizen: ‘Toch meer bed-
den in verpleeghuizen?’. Tubantia, Jan. 2024. URL https://www.tubantia.nl/enschede/
opheldering-gevraagd-over-opstopping-in-twentse-ziekenhuizen-toch-meer-bedden-in-
verpleeghuizen~aa6337b6/?cb=af9201e5c0fd065a9754b8410451efee&auth_rd=1.

[70] S. van Brummelen, W. de Kort, and N. van Dijk. Queue length computation of time-dependent queueing
networks and its application to blood collection. Operations Research for Health Care, 17:4–15, June 2018.
ISSN 22116923. doi: 10.1016/j.orhc.2018.01.006. URL https://linkinghub.elsevier.com/retrieve/
pii/S2211692316301217.

[71] M. van der Geest. De ouderenzorg is niet lang meer te negeren: de grootste problemen in drie grafieken.
de Volkskrant, Oct. 2023. URL https://www.volkskrant.nl/wetenschap/de-ouderenzorg-is-niet-
lang-meer-te-negeren-de-grootste-problemen-in-drie-grafieken~b498ad47/?referrer=https:
//www.google.nl/.

[72] N. Van Dijk and B. Schilstra. On two product form modifications for finite overflow systems. Annals of
Operations Research, 310(2):519–549, Mar. 2022. ISSN 0254-5330, 1572-9338. doi: 10.1007/s10479-021-
03940-5. URL https://link.springer.com/10.1007/s10479-021-03940-5.

[73] N. M. van Dijk. Simple and insensitive bounds for a grading and an overflow model. Operations Research
Letters, 6(2):73–76, May 1987. ISSN 0167-6377. doi: 10.1016/0167-6377(87)90033-2. URL https:
//www.sciencedirect.com/science/article/pii/0167637787900332.

[74] N. M. Van Dijk and E. Van Der Sluis. Call packing bound for overflow loss systems. Performance
Evaluation, 66(1):1–20, Jan. 2009. ISSN 01665316. doi: 10.1016/j.peva.2008.06.003. URL https://
linkinghub.elsevier.com/retrieve/pii/S0166531608000564.

[75] N. M. Van Dijk and E. Van Der Sluis. Call packing bound for overflow loss systems. Performance
Evaluation, 66(1):1–20, Jan. 2009. ISSN 01665316. doi: 10.1016/j.peva.2008.06.003. URL https://
linkinghub.elsevier.com/retrieve/pii/S0166531608000564.

[76] J.-K. van Ommeren. Stochastic Simulation. June 2020.

[77] L. H. van Roijen, S. Peeters, and T. Kanters. Kostenhandleiding voor economische eval-
uaties in de gezondheidszorg: Methodologie en referentieprijzen. 2024. URL https:
//www.zorginstituutnederland.nl/over-ons/publicaties/publicatie/2024/01/16/richtlijn-
voor-het-uitvoeren-van-economische-evaluaties-in-de-gezondheidszorg.

[78] W. v. d. Weij, N. M. v. Dijk, and R. D. v. d. Mei. Product-form results for two-station networks
with shared resources. Performance evaluation, 69(12):662–683, 2012. ISSN 0166-5316. doi: 10.1016/
j.peva.2012.08.002. URL https://research.utwente.nl/en/publications/product-form-results-
for-two-station-networks-with-shared-resourc. Publisher: Elsevier.

[79] W. Whitt. What you should know about queueing models to set staffing requirements in service systems.
Naval Research Logistics (NRL), 54(5):476–484, Aug. 2007. ISSN 0894-069X, 1520-6750. doi: 10.1002/
nav.20243. URL https://onlinelibrary.wiley.com/doi/10.1002/nav.20243.

[80] W. Whitt. Approximations for the gi/g/m queue. Production and Operations Management, 2(2), 2009.

[81] W. Whitt. The infinite-server queueing model: The center of the many-server queueing uni-
verse. Operations Research Letters, Feb. 2012. URL https://www.columbia.edu/~ww2040/8100S12/
ISqueue021412.pdf.

[82] W. Whitt. Queues with Time-Varying Arrival Rates: A Bibliography. Apr. 2017. URL https://
www.columbia.edu/~ww2040/TV_bibliography_091016.pdf.

74

https://onlinelibrary.wiley.com/doi/10.1016/0272-6963%2893%2990004-9
https://onlinelibrary.wiley.com/doi/10.1016/0272-6963%2893%2990004-9
https://www.tubantia.nl/enschede/opheldering-gevraagd-over-opstopping-in-twentse-ziekenhuizen-toch-meer-bedden-in-verpleeghuizen~aa6337b6/?cb=af9201e5c0fd065a9754b8410451efee&auth_rd=1
https://www.tubantia.nl/enschede/opheldering-gevraagd-over-opstopping-in-twentse-ziekenhuizen-toch-meer-bedden-in-verpleeghuizen~aa6337b6/?cb=af9201e5c0fd065a9754b8410451efee&auth_rd=1
https://www.tubantia.nl/enschede/opheldering-gevraagd-over-opstopping-in-twentse-ziekenhuizen-toch-meer-bedden-in-verpleeghuizen~aa6337b6/?cb=af9201e5c0fd065a9754b8410451efee&auth_rd=1
https://linkinghub.elsevier.com/retrieve/pii/S2211692316301217
https://linkinghub.elsevier.com/retrieve/pii/S2211692316301217
https://www.volkskrant.nl/wetenschap/de-ouderenzorg-is-niet-lang-meer-te-negeren-de-grootste-problemen-in-drie-grafieken~b498ad47/?referrer=https://www.google.nl/
https://www.volkskrant.nl/wetenschap/de-ouderenzorg-is-niet-lang-meer-te-negeren-de-grootste-problemen-in-drie-grafieken~b498ad47/?referrer=https://www.google.nl/
https://www.volkskrant.nl/wetenschap/de-ouderenzorg-is-niet-lang-meer-te-negeren-de-grootste-problemen-in-drie-grafieken~b498ad47/?referrer=https://www.google.nl/
https://link.springer.com/10.1007/s10479-021-03940-5
https://www.sciencedirect.com/science/article/pii/0167637787900332
https://www.sciencedirect.com/science/article/pii/0167637787900332
https://linkinghub.elsevier.com/retrieve/pii/S0166531608000564
https://linkinghub.elsevier.com/retrieve/pii/S0166531608000564
https://linkinghub.elsevier.com/retrieve/pii/S0166531608000564
https://linkinghub.elsevier.com/retrieve/pii/S0166531608000564
https://www.zorginstituutnederland.nl/over-ons/publicaties/publicatie/2024/01/16/richtlijn-voor-het-uitvoeren-van-economische-evaluaties-in-de-gezondheidszorg
https://www.zorginstituutnederland.nl/over-ons/publicaties/publicatie/2024/01/16/richtlijn-voor-het-uitvoeren-van-economische-evaluaties-in-de-gezondheidszorg
https://www.zorginstituutnederland.nl/over-ons/publicaties/publicatie/2024/01/16/richtlijn-voor-het-uitvoeren-van-economische-evaluaties-in-de-gezondheidszorg
https://research.utwente.nl/en/publications/product-form-results-for-two-station-networks-with-shared-resourc
https://research.utwente.nl/en/publications/product-form-results-for-two-station-networks-with-shared-resourc
https://onlinelibrary.wiley.com/doi/10.1002/nav.20243
https://www.columbia.edu/~ww2040/8100S12/ISqueue021412.pdf
https://www.columbia.edu/~ww2040/8100S12/ISqueue021412.pdf
https://www.columbia.edu/~ww2040/TV_bibliography_091016.pdf
https://www.columbia.edu/~ww2040/TV_bibliography_091016.pdf


REFERENCES

[83] P. Whittle. Equilibrium distributions for an open migration process. Journal of Applied Probability, 5(3):
567–571, 1968. ISSN 00219002. URL http://www.jstor.org/stable/3211921.

[84] W. L. Winston and J. B. Goldberg. Operations research: applications and algorithms. Thom-
son/Brooks/Cole, Belmont, CA, 4th ed edition, 2004. ISBN 978-0-534-38058-8. OCLC: 52815313.

[85] D. Worthington, M. Utley, and D. Suen. Infinite-server queueing models of demand in healthcare: A
review of applications and ideas for further work. Journal of the Operational Research Society, 71(8):
1145–1160, Aug. 2020. ISSN 0160-5682. doi: 10.1080/01605682.2019.1609878.

[86] N. Zychlinski, A. Mandelbaum, P. Momčilović, and I. Cohen. Bed Blocking in Hospitals Due to Scarce
Capacity in Geriatric Institutions—Cost Minimization via Fluid Models. Manufacturing & Service Op-
erations Management, 22(2):396–411, Mar. 2020. ISSN 1523-4614. doi: 10.1287/msom.2018.0745. URL
https://pubsonline.informs.org/doi/10.1287/msom.2018.0745. Publisher: INFORMS.

75

http://www.jstor.org/stable/3211921
https://pubsonline.informs.org/doi/10.1287/msom.2018.0745


Appendices
A.1 Proof of 2-periodic convergence of repeated substitution for M/M/c system
In Section 3.1.3, we stated that the sequence of iterates obtained by repeated substitution of T2(L) :=
Q2(R2(L)) has two convergent subsequences, where one sequence converges to L− and the other to L+ with
L− ≤ L∗ ≤ L−. The proof for this statement is provided in this section.

First, we note that adapted offered load R2(L) decreases in the queue length L and that Q2(ρ) increases in
ρ, the adapted mean queue length switches each iteration between high and low values. Let L(n) denote the
nth iterate defined iteratively by L(n) = T2(L

(n−1)) resulting from repeated substitution of the operator T2
with initialization L(0) = 0. Note that after one iteration L(1) = T2(0), the mean queue length of the related
M/M/c is obtained. Since T2 is a composition mapping, repeated substitution will also yield a sequence of
intermediate adapted offered loads ρ(n). For convenience in the proof below, the offered load which corresponds
to the nth mean queue length L(n) is named ρ(n), i.e. L(n) = Q2(ρ

(n)) = Q2(R2(L
(n−1))). So, the non adapted

offered load λ
µ is defined as ρ(1), which yields the queue length L(1).

We will show below that L(0) ≤ L(2) ≤ · · · ≤ L(2n) ≤ L∗ ≤ L(2n+1) ≤ · · · ≤ L(3) ≤ L(1). This would mean
that L(2n) → L− and L(2n+1) → L+ with L− ≤ L∗ ≤ L+, due to the monotonocity of the sub sequences.

Theorem 7. 0 = L(0) ≤ L(2) ≤ · · · ≤ L(2n) ≤ L∗ ≤ L(2n+1) ≤ · · · ≤ L(3) ≤ L(1)

Proof. Clearly, L(0) = 0 ≤ L∗. Since ρ(1) = λVVT
µ , while the load corresponding to the fixed point ρ∗ satisfies

ρ∗ = λVVT
µ − κλVVT

λ L∗ = ρ(1) − κλVVT
λ L∗, we have ρ∗ ≤ ρ(1). Since the composite function for the mean queue

length Q2(ρ) is increasing in ρ, L∗ ≤ L(1). Thus, L(0) ≤ L∗ ≤ L(1).
Left to show is L(2(n+1)) ≥ L(2n) and L(2(n+1)+1) ≤ L(2n+1), which will be done by induction. Similar

relations are shown to hold for the related offered loads, after which the desired relations follow by the fact
that Q2(ρ) is increasing in ρ.

Base cases k = 0:
L(2) ≥ L(0) = 0 is trivial by non-negativity of the mean queue length.
L(3) ≤ L(1) follows from r̃(3) = R2(L

(2)) = λVVT
µ − κλVVT

λ L(2) = r̃(1) − κλVVT
λ L(2) ≤ r̃(1).

We now assume that the desired statements hold for some n = k − 1.
For n = k, it then follows from the induction hypothesis (L(2k+1) ≤ L(2(k−1)+1)) that r̃(2(k+1)) =

R2(L
(2k+1)) = λVVT

µ − κλVVT
λ L(2k+1) ≥ λVVT

µ − κλVVT
λ L(2k−1) = R2(L

(2k−1)) = r̃(2k). Since Q2(ρ) is increasing
in ρ, L(2(k+1)) ≥ L(2k).

From this statement it follows that r̃(2(k+1)+1) = R2(L
(2(k+1))) = λVVT

µ − κλVVT
λ L(2(k+1)) ≤ λVVT

µ −
κλVVT
λ L(2k) = R2(L

(2k)) = r̃(2k+1). From Q2(ρ) being increasing in ρ, it follows L(2(k+1)+1) ≥ L(2k+1).
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A.2 Numerical comparison of Adapted Service Time Approach
In Section 3.1.3, we hypothesized that the infinite server system with adapted service time gives a lower bound
to mean number of patients in overflow in the corresponding call packing system for every service distribution
(Conjecture 1) and that the adapted M/M/c system yields an upper bound in case of an exponential service
time distribution (Conjecture 2). The numerical analysis on which these conjectures were based is provided
in this section.

Figure 22 contains the mean number of patients in overflow in a system with call packing, calculated with
formula (18), in an unadapted M/M/c system (21), in an unadapted M/G/∞ system (23) and the fixed points
from the Adapted Service Time Approach as explained in section (3.1.3), for a specific set of parameters. Note
that the results for the call packing system and the finite server system only hold for exponentially distributed
service times, while the results for the infinite server system hold for general service time distributions. Besides
these analytic results, the mean number of patients in overflow in a call packing system is therefore also
determined in the case of lognormal service times via a simulation. In line with Van Dijk and Schilstra (2022),
the analysis for the lognormal service times is done for the coefficients of variations 0.1, 0.5, 1, 2 and 10. These
are marked with stars. In each plot, one parameter is of interest while the rest are kept fixed at λ = 0.58,
µ = 1

39 , κ = 1
2 and c = 26, if not stated otherwise.

(a) Ranging over the arrival rate λ. (b) Ranging over κ.

Figure 22: The mean number of patients in overflow in the different systems over different parameters.

First of all, the numerical results are consistent with the bounds proven in Theorems 1, 2, 5 and 6. That is,
the mean number of patients in overflow in the call packing system with exponential service times is between
that of the M/G/∞ system and that of M/M/c system, and the Adapted Service Time Approaches are higher,
resp. lower than that of their unadapted M/G/∞ system, resp. M/M/c system.

The influence of the offered load is studied in Figure 22a by ranging over the arrival rate λ while µ and
c are kept fixed. The Adapted Service Time Approach of the infinite server system yields a stricter lower
bound on the mean number of overflow patients in the call packing system than their respective unadapted
systems. The lower bound remains valid for call packing systems with lognormal service time distributions,
underpinning Conjecture (1). For high arrival rates, the repeated substitution to determine the fixed point for
the M/M/c system with adapted service times yielded two subsequences converging to two different values.
For these parameter combinations, we can not determine the value of the fixed point. The results at least do
not contradict Conjecture (2).

The dependency on κ is shown in Figure 22b. Since an increase in κ results in a shorter residual service
time once admitted to the VVT, the throughput of the system will increase and thus a decrease in the mean
number of patients in overflow is expected. It can be seen that the mean number of overflow patients in the
call packing system approaches that in the M/G/∞ system and in the M/M/c system when κ approaches
1 and 0, respectively, as expected. The unadapted M/G/∞ and M/M/c systems do not depend on κ. The
mean number of patients in overflow in these systems is therefore constant when ranging over κ. For every
value of κ, the adapted infinite server system provides a lower bound on the mean number of patients in the
call packing system for all researched service distributions, in line with Conjecture (1). Note that for large
coefficients of variation, the mean number of patients in overflow in the call packing system with lognormal
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service times can be larger than in the M/M/c system (with adapted service times). The reader should not
be surprised by this as the latter only holds for exponential service time. It is therefore not in contradiction
with Conjecture 2.
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A.3 Sensitivity with respect to mean service rate and arrival rate
The capacity in each system behaves as expected with respect to a change in service rate and arrival rate.
Figure 23 shows that the capacity increases rapidly for decreasing service rates, which should be the case as
the capacity should go to infinity when µ tends to zero. Figure 24 shows that the optimal capacity increases
almost linear with the arrival rate. The remarkable behaviour of the adapted M/M/c at λ = 0.3 is due to the
repeated substitution for determining L∗ having the two subsequences not converge to the same value, and
should thus be considered as not being able to produce a reliable result for λ = 0.3. Most importantly, the
ordering of the systems concerning the optimal capacity is maintained both when ranging the service rate as
well as when ranging the arrival rate.

(a) Mean service time ranges from 100 to 25 days. (b) Mean service time ranges from 45 to 35 days.

Figure 23: The optimal capacity for different service rates.

Figure 24: The optimal capacity when ranging arrival rate from 0.3 to 0.9 per day.
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A.4 Collection of statistics in simulation
During the simulation, several performance measures are kept track of. In this way we collect for each
simulation run the time-weighted average number of patients in overflow, number of unused beds, number of
used beds and, in case of time dependent capacity, number of overbeds. These values are used to calculate the
average total cost per day in that simulation run. The statistical analysis of the total cost per day of a certain
situation (parameters and capacity) is based on the replication method as described in, among others, Section
9.3.4 of [64]. Denote the average total cost per day in simulation run j by zj . The mean and variance of these

independent observations are z̄ =
∑m

j=1 zj

m and sz̄ =
√∑m

j=1(zj−z̄)2
m−1 where m is the number of simulation runs.

The 100(1− α)% confidence interval (CI) for the cost per day of a certain situation is then given by

[z̄ − t(m− 1, 1− α/2)sz̄)√
m

, z̄ +
t(m− 1, 1− α/2)sz̄)√

m
], (44)

where t(m−1, 1−α/2) is the inverse of the Student t-distribution with (m−1) degrees of freedom at 1−α/2.
At the start of a simulation run, all beds are empty. To prevent an underestimation of the performance

measure, this start-up behaviour should be neglected, i.e. we only want to measure the steady-state behaviour
of the system. The relevant statistics are therefore only collected after a warm-up period of D days. Besides
trial and error, several methods for determining an appropriate warm-up period can be found in literature.
Based on [76], we study when the change in observations of a performance measure is sufficiently small. We
are interested in the first integer B for which∣∣∣∣∣ 1

2B

∑2B
i=1 w̄.i

1
B

∑B
i=1 w̄.i

− 1

∣∣∣∣∣ ≤ 0.05,

where w̄.k =
∑m
j wji is the point estimator for the expectation of the i-th observation of the overflow time

in an arbitrary run. This yields B = 592. Since the average arrival rate is 0.61 per day, this corresponds to
592
0.61 = 970 days. Therefore, a warm-up period of 1000 days is used. To determine when to terminate the
simulation run, the rule of thumb to take a length of 4D = 4000 is used as suggested in [76].

The confidence interval 44 relies on the central limit theorem. By using this, we implicitly assume that
the number of simulation runs m is sufficiently large. Since the width of the confidence interval scales with
one over the square root of m, a high number of simulation runs decreases the size of the confidence interval.
However, a trade-off with the simulation time must be made. In this research, the confidence intervals are
constructed based on 500 simulation runs if not stated differently. It is checked that 500 observations of zj
suffice to meet a relative accuracy of δ = 0.1 by verifying that the half-width of the confidence intervals satisfies
t(m−1,1−α/2)sz̄)√

m
≤ δx̄

(1+δ) .
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A.5 Results extensive neighbourhood search

Figure 25: The cost per capacity vector of the extensive simulation study. The repeating pattern of
well-performing capacity vectors is indicated by the bordered cells. The list continues on the next page.

81



Figure 26: The cost per capacity vector of the extensive simulation study. The repeating pattern of
well-performing capacity vectors is indicated by the bordered cells. This is a continuation of the list on
the previous page.

82



A.6 Alternative proof that Q1(ρ) equals probability of overflow
In Section 3.1.3, we noted that the derivative of the mean number of people in overflow in an infinite server
system equals the probability of being in overflow. If we take the derivative directly from the summation
originally defining Q1(r) =

∑∞
n=c+1(n − c)π(c), and assume we can switch derivative and summation (series

converges), we see that the derivative of the mean number of people in overflow in a M/G/∞ queue equals
the probability of being in overflow,

Q′
1(r) =

d

dr

∞∑
n=c+1

(n− c)π(n) =
d

dr

∞∑
n=c+1

(n− c)e−r
rn

n!

=

∞∑
n=c+1

(n− c)
d

dr
(e−r

rn

n!
)

=

∞∑
n=c+1

(n− c)(−e−r r
n

n!
+ e−r

nrn−1

n!
)

=

∞∑
n=c+1

(n− c)e−r
rn−1

(n− 1)!
−

∞∑
n=c+1

(n− c)e−r
rn

n!

=

∞∑
n=c

(n+ 1− c)π(n)−
∞∑

n=c+1

(n− c)π(n)

=

∞∑
k=1

kπ(c+ k − 1)−
∞∑
k=1

(k − 1)π(c+ k − 1)

=

∞∑
k=1

π(c+ k − 1)

=

∞∑
n=c

π(n).

83



A.7 Queue length dependent arrival process
In this research, we assumed that the influence of overflow patients on the working of the hospital is negligible.
As noted in Remark 2, if the influence of overflow is substantial, the number of patients in overflow will
influence the arrival rate to the VVT. This can be modelled by a state-dependent arrival rate to the VVT, or
more precisely, an arrival rate that depends on the total number of patients in the queue. At the beginning of
the period in which this research took place, we have studied this scenario. Since there are situations in which
such state-dependent arrival rates are applicable and since theoretical insights were obtained, we share our
analysis here. Our analysis aimed for a product form solution for the steady-state distribution of the number
of patients in a system with parallel queues with a state-dependent arrival process and shared buffer space.

A.7.1 Literature

The concept of product form solutions was first introduced by Jackson (1963) and Gordon and Newell (1967)
for First Come First Served stations with exponential service times and one customer class. Kelly (1976)
extended this to multiple customer classes. Baskett et al. (1975) extended the general product form solution
as to include multiple customer classes and (a specific type of) general service time distributions. The well-
known collection of networks that satisfy that product form formulation is named after them: BCMP networks.
The proof of the product form is based on the technique of ‘independent balance equations’ as introduced by
Whittle (1968), or ‘the principle of local balance’ as formulated by Chandy (2002). Unfortunately, the service
time distribution in the BCMP network is restricted to have a rational Laplace transform for the service types
Last Come First Serve and Processor Sharing and is even further restricted to negative exponential in case of
FCFS.

Baskett et al. (1975) consider two types of state-dependent arrival processes. In the first type, the total
arrival rate to the network is Poisson with a mean that depends on the total number of customers in the
network. In the second type, each subchain has a Poisson arrival stream that depends on the number of
customers in that subchain.

Lam (1977) proves that the product formula for the BCMP network holds for more advanced population
size constraints than treated by Baskett et al. (1975). The choice of Lam to base his proof on local balance as
introduced by Chandy (2002) enabled him to show that the product form also holds in case of state-dependent
loss and trigger functions. In these state-dependent loss and trigger functions, population constraints on the
total population as well as on each individual class can be captured. Interestingly, Kamoun and Kleinrock
(1980) also derived the product form solution for the same application, the store-and-forward networks for
packet switching, around the same year. However, Kamoun and Kleinrock consider specifically a system of
R parallel M/M/1 queues with shared finite storage space, while Lam looks at a broader class of networks.
Kamoun and Kleinrock explicitly state some possible constraints on the shared buffer space, among which
the sharing with a minimum allocation and the sharing with maximum queue length. The latter matches the
population constraints posed by Lam (1977) in his Example 1. Although most literature on product form
networks seems to consider single server stations, they can be applied to stations with multiple servers by
observing that the working of a multiserver station is captured by a single server with state-dependent service
rate min(c, n)µ.

A.7.2 Model design

We are interested in the situation in which the patients waiting for a place in a Verpleeg-, Verzorgingshuizen
en Thuiszorg (VVT) organisation block a bed in their prior care organisation. Contrary to our main research
described in the rest of this report, this bed blocking now has a substantial influence on the working of the
prior care organisation.

The prior care organisation is not explicitly modelled, but the influence of bed blocking on the prior care
organisation is captured in the arrival process to the VVT. One can picture that as follows. If a substantial
part of the beds in the prior care organisation are blocked by patients waiting for VVT care, the prior care
organisation has less room to accept new patients. If the organisation schedules fewer people for surgery, there
will be fewer people who need rehabilitation afterwards, and thus less demand for the VVT. Since the patients
that block a bed are the patients waiting for the VVT, the arrival rate to the VVT depends on the number of
patients in the queue for the VVT. Please note that the situation described mainly applies to elective patients.
The arrival rate of emergency patients is not expected to be influenced strongly by the queue length of the
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VVT. In Section 2.4, several types of VVT care were discussed. Let R denote the number of VVT types.
These R VVT types are assumed to be independent in the VVT organisations. Several possibilities for their
interaction in the prior care organisation are considered. The easiest case is when they are independent in the
prior care organisation as well, for example when distinct prior care is applicable. The most interesting case
is when patients for different VVT types come from the same department of the prior care organisation, since
then the queue length of one VVT type influences the arrival rate of another type. These different interactions
in the prior care organisation correspond to different constraints on the shared buffer space of Kamoun and
Kleinrock (1980). In summary, the situation of interest is modelled as a system with R parallel queues with
a state-dependent arrival rate and shared buffer space. The goal is to find the steady-state distribution of
the number of patients in this system, for which a product form expression is desired. Since a product form
expression is desired, both the interarrival times as well as the service times are assumed to be exponentially
distributed.

A.7.3 Model formulation

Let cr be the capacity of VVT type r ∈ [R] and c0 be the capacity of the prior care organisation. The states
are denoted by n = (n1, n2, .., nR) where nr is the number of patients that want VVT care of type r. Since the
capacity of VVT type r is cr, there are nr− cr patients in the queue when nr > cr. So, the number of patients
in service at VVT type r is min(nr, cr) and the number of patients in the queue for type r is (nr− cr)+. Since
the capacity in the prior care organisation limits the possible number of patients in the queue and is shared
by all types, the state space contains all states that satisfy the total capacity available,

S = {n = (n1, n2, .., nR)| 0 < nr < cr + c0 ∀r ∈ [R],

R∑
r=1

(nr − cr)
+ ≤ c0}.

The most interesting case in which all patients for the VVT organisations come from the same department
of the prior care organisation is considered. The arrival rate to each type r is assumed to be a fixed fraction
pr of the total arrival rate from the prior care organisation, λ0. Let λ denote the arrival rate from the prior
care organisation when no bed blocking takes place. The total arrival rate from the prior care organisation
is assumed to decrease linearly in the number of occupied beds in that organisation. Thus, we have a state
dependent arrival rate λ0(n) = (1 −

∑R
r=1(nr−cr)+

c0
)λ from the prior care organisation. The state-dependent

arrival rate λr to VVT type r is thus given by

λr(n) = prλ0(n) = pr(1−
∑R
r=1(nr − cr)

+

c0
)λ. (45)

The service rate for one patient of type r is µr. The departure rate in state n is thus min(nr, cr)µr.

A.7.4 Two VVT types

Figure 27 shows the transition state diagram for the case R = 2. Let π(n) be the probability that the system is
in state n in steady state. Per state, the sum of the rates into the state can be set equal to the rates out of the
state. The system of these balance equations, supplemented with

∑
n∈S π(n) = 1, can be solved numerically.

However, the number of states grows significantly when the number of VVT types increases. A product form
for the steady state probabilities is therefore desired.
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Figure 27: The transition state diagram for the case R = 2.

A.7.5 Product form solution

First, we note that the state space S corresponds to the sharing with a minimum allocation (SMA) scheme of
Kamoun and Kleinrock (1980). Since this differs from their sharing with maximum queue length (SMXQ) only
in the determination of the normalization constant, and the SMXQ is a special case of the systems considered
by Lam (1977), we will focus on the results from Lam. To limit the material in this Appendix, the reader is
advised to familiarise themselves with Lam (1977) first.

The introduction of loss and trigger functions allows Lam to derive a sufficient condition for the existence
of a product form in their Theorem on page 373. They note that the condition in this theorem means that
in the graphical representation neighbouring points in an irreducible subset of states must either be "doubly
connected" or not connected at all. We note that in Figure 27, the states (n1, c2 + c0) with n1 ≤ c1 are
connected by a single edge. Similarly for (c1 + c0, n2) with n2 ≤ c2. It is thus likely that no product form
exists for the system depicted in Figure 27.

Interestingly, results that a certain system does not have a product form do not seem to appear often in
literature. Weij et al. (2012) note this as well. They stress in Remark 3.10 the importance of the observation
that a model does not have a product form. Our proof that a product form can not hold for the system with
arrival rates given by (45) is based on Lemma 2.2 (Equivalent Adjoint Reversibility Conditions) of Weij et al.
(2012). We will show that there exists a cycle p := n0 → n1 → · · · → nt → nt+1 = n0, with reverse cycle
p̄ := n0 = nt+1 → nt → · · · → n1 → n0, for which θ(p) ̸= θ(p̄), where θ(p) is defined as the products of the
transitions rates θ(p) := q(n0,n1)q(n1,n2) · · · q(nt,n0).

In the system of our interest, q(n,n+ er) = λr(n) as given by (45) and q(n,n− er) = min(nr, cr)µr. We
will take a path containing states in which nr = cr and nr = cr+1 for some types r. Without loss of generality,
we will show the existence of such a path for the case of R = 2. The path can be extended to the general case
by keeping nr̃ fixed for r̃ > 2. Consider path p = (c1, c2 − 1) → (c1, c2) → (c1, c2 + 1) → (c1 + 1, c2 + 1) →
(c1 + 1, c2) → (c1 + 1, c2 − 1) → (c1, c2 − 1). This path is shown in red in the state diagram in Figure 28.
Its reverse cycle p̄ is shown in blue. Calculating θ(p) and θ(p̄), or comparing the red and blue transitions in
Figure 28, yields that θ(p)(1− 1

c0
) = θ(p̄), and thus θ(p) ̸= θ(p̄). Thus, a product form does not exist for the

system in which the arrival rate to the VVT depends on the queue length of all VVT types.
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Figure 28: Path p and path p̄ are visualised in the state diagram by respectively red and blue.

There are simplifications to the system that do yield a product form solution. Lam (1977) provides two
state-dependent arrival processes for which a product form exists. In his first option, the total arrival rate
λ0 depends on the mean number of patients in the system, i.e. λ0(n) =

∑R
r=1 nr, in contrast to the desired

dependence on the number of patients in the queue. The second option corresponds to an arrival rate per
VVT type that depends only on the number of patients of that type, i.e. λr(nr). For specific VVT types that
have distinct care paths in prior care organisations, the latter simplification likely yields good results.

So, we proved that for the state-dependent arrival rate λr(n) = pr(1 −
∑R

r=1(nr−cr)+
c0

)λ no product form

existed, while for λr(n) = λr(nr) = pr(1 − (nr−cr)+
c0

)λ a product form solution would exist. This begs the
question for what functions g(n) in the state dependent arrival rate λr(n) = pr(1− g(n)

c0
)λ, the system has a

product form.
Boucherie and Van Dijk (1990) provide a very general expression for transition rates such that a product

form exists ((3.1) in combination with (3.2) of Boucherie and Van Dijk (1990)). Applying their general
expression to our situation yields the following sufficient condition on the arrival rate function,

g(n+er)−1∏
k=0

(1− k

c0
) =

g(n)∏
k=0

(1− k

c0
) ∀r, (46)

and thus g(n+er)−1 = g(n) for g(n) ≥ 0. A reader interested in the derivation of this condition is encouraged
to contact the authors. First, we note that (46) is not satisfied for g(n) =

∑R
r=1(nr − cr)

+ when nr > cr.
Second, condition (46) is satisfied for g(n) =

∑R
r=1 nr and g(n) = nr − cr, that is, the state-dependent arrival

processes for which Lam (1977) showed that a product form distribution exist. Condition (46) could form a
starting point for further research; either for finding arrival functions for which a product form exists or for
proving that a product form distribution can not exist for a bigger class of arrival rate functions.

A.7.6 Discussion

The model corresponding to the situation in which the arrival rate to a certain VVT type is influenced by the
queue length of all VVT types was proven not to have a product form solution. Systems that do not contain
a product form solution are often modified to or approximated by models for which a product form solution is
known to exist [Weij et al. (2012), Van Dijk and Van Der Sluis (2009)]. For the system of interest, a product
form exists for a state-dependent arrival rate that only depends on the total number of patients or the number
of patients of one type. Further research could be done into the accuracy of approximating the system with a
queue length dependent arrival rate by these two product form systems.

Blocking in the prior care organisation by the patient waiting for VVT care, was modelled implicitly by a
state-dependent arrival rate. Although several papers also use this approach, among which Dallery and Frein
(1993) and Oniszczuk (2006), we could find little research that studies the accuracy of this modelling choice.
One could study for example how certain state-dependent arrival functions, other than linear, influence the
accuracy. Ideas for appropriate state-dependent arrival functions could be obtained from analysing the de-
parture process of a station in which blocking occurs. In general, approximating blocking by state-dependent
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arrivals is reported to work well if the prior care organisation is close to saturation. This condition is reason-
able for our application since hospitals and VVT organisations classically operate under high load and since
the consequence of the assumption of a saturated hospital is an overestimation of the arrival rate and thus an
overestimation of the necessary capacity in contrast to too little capacity.

The capacities of all VVT organisations were pooled per type of VVT care. The arrival rate to a certain
department of each VVT organisation thus depended only on the type of VVT care. However, some patients
might refrain from going to an organisation that is located further from Enschede. Thus, the fraction of
patients that go to a specific VVT organisation might decrease with the distance of that organisation from
Enschede. On the other hand, if the waiting list for this organisation further away is significantly shorter than
more patients might be tempted to go there. It would be interesting to incorporate such dependencies on the
location of an organisation and its waiting list into the state-dependent arrival rate.
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