
Faster Mutation Testing through
Simultaneous Mutation Testing

Mart de Roos

Supervisors: Arend Rensink, Rinse van Hees

May , 2024

Abstract

Mutation testing is a powerful fault-based testing technique, which can be used
to evaluate the quality of a test suite for a specific program. This is done by
injecting faults into the program, called mutations. Programs injected with mu-
tations are called mutants and will typically behave differently from the original
program, and hence (given that the original program supposedly implements the
desired functionality) are faulty by construction. The idea is that an adequate
test suite of high quality would be able to detect these mutants by means of a
failing test, whereas a low quality test suite would not.

Unfortunately, mutation testing is costly in terms of time as it needs to run
the test suite for each generated mutant. Although many optimisations already
exist, most of them come with a trade-off between improving performance and
reducing quality. This project attempts to improve performance while retaining
quality, by testing mutants as a group, as opposed to individually, which is
called simultaneous mutation testing. For this purpose, a theoretical view on
the cost of mutation testing is presented alongside the theoretical performance
benefit of using simultaneous mutation testing over regular mutation testing.
Additionally, two algorithms for grouping mutants were explored, one of which
is rather pragmatic while the other uses a constraint solver.

We implemented simultaneous mutation testing in StrykerJS. To validate the
theory and explore the difference in performance between various groups, an
experiment was set up. The experiment shows that simultaneous mutation
testing can improve the performance of the mutation testing tool StrykerJS by
3%. This minor improvement can be explained by the fact that the time spent
creating test sessions in StrykerJS is relatively small. The follow-up experiment,
in which we increase the time spent creating test sessions, shows a performance
improvement of 27%. Simultaneous mutation testing retains over 99.9% of the
quality of mutation testing. Overall, the pragmatic algorithm performs better
than the solver algorithm.

Contents

1 Introduction 4

2 Related work 7
2.1 Equivalent Mutants . 7
2.2 Second-order Mutation . 7
2.3 Higher-order Mutation . 8
2.4 Mutant Subsumption . 9
2.5 Selective Mutation . 9
2.6 Test Prioritization and Reduction 10
2.7 Summary . 10

3 Background 12
3.1 Mutation Testing . 12

3.1.1 Process . 12
3.1.2 Equivalent and Redundant Mutants 13
3.1.3 Mutation Results . 14
3.1.4 Mutation Operators . 15
3.1.5 Strong And Weak Mutation Testing 15
3.1.6 Source-code and Byte-code Mutators 16
3.1.7 Cost Optimisations . 16

3.2 Stryker . 20
3.2.1 Mutation Operators . 20
3.2.2 Mutation Results . 21
3.2.3 Static Mutants . 22
3.2.4 Cost Optimisations . 22

4 Simultaneous Mutation Testing 24
4.1 Concept . 24
4.2 Preliminary Research . 25
4.3 Research Questions . 26

5 Theory 27
5.1 Mutation Testing . 27

1

5.2 Simultaneous Mutation Testing 30
5.2.1 Performance Benefit . 30
5.2.2 Timeouts with Mutant Groups 30
5.2.3 Amdahl’s Law . 31
5.2.4 Smart Bail . 31

5.3 Runtime Specification: StrykerJS 32

6 Formation of Mutant Groups 34
6.1 Constraints . 34
6.2 Objective . 34
6.3 Concept . 35
6.4 Example Scenario . 36
6.5 Pragmatic Algorithm . 38
6.6 Constraint Solver Algorithm . 40

6.6.1 Input . 40
6.6.2 Axioms . 40
6.6.3 Variables . 40
6.6.4 Constraints . 41
6.6.5 Objective . 43
6.6.6 Output . 43
6.6.7 Implementation Particularities 43

7 Implementation of Simultaneous Mutation Testing for Stryk-
erJS 45
7.1 Simultaneous Mutant Schemata 45
7.2 Simultaneous Infinite Loop Detection 46
7.3 Timeouts & Live Reporting . 46
7.4 Smart Bail . 48
7.5 Configuration Options . 49

8 Validation 50
8.1 Gathering test subjects . 50
8.2 Evaluating performance . 51
8.3 Evaluating quality . 52
8.4 Evaluating Grouping Algorithms 52

9 Experimental Setup 53

10 Results 57
10.1 Performance . 57
10.2 Quality . 61
10.3 Strategy for Grouping Mutants 63
10.4 Summary of Findings . 64

11 Discussion 66
11.1 Threats to Validity . 66

11.1.1 Threats to Internal Validity 66

2

11.1.2 Threats to External Validity 67
11.2 Future Work . 67

11.2.1 Timeouts and Simultaneous Testing 67
11.2.2 Simultaneous Mutation Testing for Other StrykerJS Test-

runners . 68
11.2.3 Smart Mutation Switching 68
11.2.4 Comparison with Stryker.NET 68

11.3 Recommendation . 69
11.4 Conclusion . 69

A Google Form 74

B Automated Scripts 77
B.1 automate-stryker.sh . 77
B.2 automate-solver.sh . 80
B.3 automate-both.sh . 82

3

Chapter 1

Introduction

The typical software development lifecycle starts with an idea and then cycles
through the following phases: requirements analysis & planning, design, devel-
opment, testing, deployment and maintenance, as illustrated in Figure 1.1. In
order to guarantee a certain level of quality within each phase, software quality
policies, processes and standards are determined that describe how certain tasks
should be done and how quality should be measured [21].

Figure 1.1: Software development lifecycle.

There exist many definitions as to what it means for software to be of good
quality [7], but for the remainder of this report software quality is defined as the
degree to which a software product behaves as intended under certain conditions,
where the intended behaviour (under the specified condition, if any) is imposed
by the set requirements. Conditions are a description of the state of the envi-
ronment in which the system runs, such as high or low load. Of the software
development lifecycle, the test phase exists to assess the correctness, and thus

4

the quality, of a program. The test phase may consist of numerous test suites,
which are a collection of tests, and can be used to assess the quality of a piece
of software. Hence, it is desirable to have high-quality test suites. Quality of a
test suite is defined as the degree to which a test suite is able to find deviations
from the software’s intended behavior. Writing high-quality test suites is hard.
Many testing techniques, like equivalence class partitioning and boundary value
analysis [11], could be enforced in a tester’s workflow in order to improve the
quality of test suites. However, these techniques do not guarantee high-quality
test suites as they are prone to human error.

It is impossible to determine the quality of a test suite simply by looking at it.
Instead, quality is quantified through metrics derived from an execution of the
test suite. The most common metrics used are method, branch, statement and
line coverage [22]. However, a better but less common metric is mutation score.
Mutation score is derived through mutation analysis, which is an extension of
the test phase in order to properly assess the quality of a test suite.

Mutation testing, or mutation analysis, is a fault-based testing technique used
to evaluate the quality of a test suite of a specified program. It does so by mak-
ing small changes to the source code of the original program, called mutations,
which may cause the program to behave differently than intended, essentially
simulating a possible fault. These mutant programs are generated by so-called
mutation operators which map certain syntactic tokens to others, introducing
a possible fault. The newly mutated program will then be tested by the orig-
inal test suite. A mutant is considered killed whenever at least one test fails.
Conversely, that same mutant is considered to have survived when the mutant
passes all the tests. Practitioners should consider specifying new tests whenever
a mutant survives. In order to assess the quality of a test suite, a mutation
score is calculated. The mutation score is the ratio of killed mutants to the
total number of mutants generated. A high mutation score indicates that the
test suite is of high quality, capable of detecting many bugs in the code, whereas
low scores may indicate that the test suite is not adequate for detecting most
bugs in the code. In practice, the aim is to have a mutation score of approxi-
mately 80% since it is often impossible to get a score of 100% due to equivalent
mutants, which will be elaborated on in section 3.1.2.

Mutation score is the superior metric compared to traditional statement and
branch coverage [32]. This is because the traditional metrics do not give any
indication on whether the semantics or behaviour of a piece of code has been
tested for correctness, it only indicates that the piece of code was executed. A
surviving mutant could be an indication that the behaviour of a piece of code
was not tested for correctness. To illustrate this, a (rather useless) test suite
that executes about half of the source code but has no assertions of any kind
will have approximately 50% statement and branch coverage. The mutation
score, on the other hand, would be 0%.

Mutation testing is deemed to be one of the best strategies when it comes to
program validation and assessing test quality [14]. Unfortunately, mutation

5

testing is also one of the most, if not the most, expensive form of test quality
assurance compared to traditional (coverage-based) forms of test quality assur-
ance in terms of resources. As a result, it has not been widely adopted by the
industry. A project may generate thousands of mutants and running the entire
test suite for every single mutant is time consuming. A project with about 7000
lines of code (which is not especially large) may easily generate 2500 mutants1.
If it takes one second to test a single mutant on average, then it will take over
40 minutes for mutation testing to be finished. Even then, after running all
mutants, time needs to be invested into analysing the surviving mutants. Con-
sequently, a lot of research has been done with the goal being to reduce the cost
of mutation testing [35].

Most of the research aiming to improve the performance of mutation testing
comes with a trade-off, namely sacrificing mutation testing quality for a reduc-
tion of costs. Here, mutation testing quality means how well the mutation score
reflects the actual quality of a test suite. Hence, sacrificing mutation testing
quality is undesired as it decreases the trust one can have in a system. More-
over, it is fairly hard to quantify to what extent this sacrifice to quality will
have on the overall quality of one’s test suites [34] because the creation of new
tests is driven by the survival of mutants.

The solution to the resource-demanding nature of mutation testing investigated
in this report, called simultaneous mutation testing, attempts to reduce the
time it takes to perform mutation testing without loss of quality. However, the
correctness of simultaneous testing could be too complex to guarantee as it relies
on imperfect coverage analysis, which will be elaborated on in chapter 4.

This report is structured in the following way. The next chapter is dedicated
to related work, which is mostly about other optimisations in mutation testing
(chapter 2). Then, background information is provided such as the (technical)
details of mutation testing (chapter 3). Afterwards, the concept of simultaneous
mutation testing is explained and includes the research questions we wish to an-
swer (chapter 4). This is followed by an extensive theoretical view on the cost of
both regular and simultaneous mutation testing (chapter 5). Then, an investiga-
tion into the formation of simultaneous mutant groups is presented (chapter 6),
followed by: the implementation of simultaneous testing specifically for Stryk-
erJS (chapter 7), how simultaneous mutation testing is evaluated (chapter 8)
and describing the experimental setup (chapter 9). Finally, conclusions of the
results are presented (chapter 10) followed by a discussion (chapter 11).

1Derived from StrykerJS’s core package from Github.

6

Chapter 2

Related work

This chapter discusses other works that may prove useful in finding ways to
reduce the cost of mutation testing. Note that the works described do not
necessarily belong to only one category (indicated by the title of the subsection),
it is possible that there is some overlap between categories in some of the works.

2.1 Equivalent Mutants
Kintis et al. [17] developed a method that can classify whether survived mutants
are equivalent or not. They propose the HOM Classifier that can categorize
mutants based on the impact they have on each other. The idea is that since
equivalent mutants have little to no impact on the state of the program, they
should also not have an effect on the state of another mutant. The classifier
they have created is called I-EQM and has a precision of 71% and a recall of
82% for identifying whether mutants are equivalent and is a combination of the
Coverage Impact Classifier, which classifies equivalence based on the number
of methods that deviate from execution frequency compared to the original
program’s execution frequency, proposed by Schuler and Zeller [38] and the new
HOM Classifier.

2.2 Second-order Mutation
Second-order mutants are mutants that are formed of two first-order mutants.
Papadakis et al. [31] have made an empirical evaluation of first and second-
order testing strategies. In this study, the strength (fault rate), cost and benefit
are compared between 14 variants of first and second-order mutation strategies.
The study only tests on programs that have been identified to be faulty in order
to properly determine strength, being the ability to detect real faults. There are
three strategies in particular that are interesting, namely: (i) StrongMutation,

7

which means no special strategy; (ii) SameNode, which combines two mutants
from the same basic block to form a single mutant (2nd-order strategy); and
(iii) Rand60%, which means that only 60% of the mutants are executed (1st-
order strategy). They find that StrongMutation has the highest fault rate, as
expected, and that Rand60% scores similar. For all second-order strategies,
SameNode performs best. In terms of cost SameNode and all first-order strate-
gies require many more tests than the second-order strategies. Additionally,
all but one second-order strategy created 80-90% fewer equivalent mutants, the
exception being SameNode with 60% fewer equivalent mutants. They conclude
that first-order strategies are better at detecting faults and that second-order
strategies are less costly.

Polo et al. [36] have introduced three second-order mutation strategies, namely:
(i) LastToFirst, which combines the first and last first-order mutant (FOM) in
the list of mutants to form a second-order mutant (SOM); (ii) DifferentOper-
ators, which combines two FOMs from different mutation operators with each
other; and (iii) RandomMix, which combines any two FOMs to form a SOM.
They find that the number of equivalent mutants is reduced by approximately
73% and that there is a risk of 21% that killing a SOM does not kill both FOMs
from which they were formed.

2.3 Higher-order Mutation
Jia and Harman [12, 13] have introduced the concept of subsuming higher-
order mutants (SHOM). A HOM is considered subsuming whenever the ratio
of fragility between the HOM and the FOMs from which it is created is less
than 1, where fragility of a mutant is equal to the number of test cases that
kill that mutant. They find that about 15% of HOMs are also subsuming.
Additionally, they find that the genetic algorithm used finds the most SHOMs,
that the hill climbing algorithm finds the highest fitness SHOMs and that the
greedy algorithm finds the highest order SHOMs. Unfortunately, in order to
find SHOMs it is necessary to analyse the mutation results, which means it is
required to have performed complete mutation testing on all FOMs before one
can make use of the established SHOMs.

Ghiduk et al. [6] have done a systematic literature review on higher order
mutation testing. They conclude that there are three tactics for reducing the
number of HOMs, namely: (i) reduce the number of mutation operators as less
FOMs mean less HOMs, (ii) selecting a subset of HOMs instead of all mutants
such as subtle set and (iii) reduce mutated locations in original programs using
techniques such as data flow analysis. Research is still needed to quantify the
realism of the generated HOMs.

8

2.4 Mutant Subsumption
Kurtz et al. [18] define mutant subsumption as: when all tests that kill mutant
a also kill mutant b, then a subsumes b. This is represented in so-called mutant
subsumption graphs (MSG). Subsumption relationships identify redundancy of
subsumed mutants. Subsumed mutants need not be tested for as they are cov-
ered by the subsuming mutant, reducing the number of mutants to test. In
the paper, they distinguish between dynamic and static mutant subsumption
graphs (DMSG and SMSG). In a subsumption graph, nodes represent maximal
sets of indistinguishable mutants and edges represent a subsumption relation in
which the source subsumes the sink. Subsumption relations of DMSGs are iden-
tified by executing all mutants and analysing the results, whereas subsumption
relations are identified by hand for SMSGs. In the example program used, they
find that 7 mutants subsume all other 127 mutants generated by muJava [23]
based on only the DMSG. They conclude that DMSGs tend to be optimistic
about subsumption relationships whereas SMSGs tend to be pessimistic. An-
other work by Kurtz et al. [19] extends on this by automating the generation of
SMSGs with directed incremental symbolic execution (DiSe). The results show
that SMSG has higher precision and accuracy than DMSG but a low recall. It
appears that static analysis tools are not strong enough to find subsumption
relationships on their own which is unfortunate as being able to find subsump-
tion relationships without running test cases, as with the dynamic approach, is
highly desirable. Having to perform dynamic analysis in order to find subsump-
tion relationships defeats the purpose of finding them in the first place, as the
work has then already been done.

2.5 Selective Mutation
A paper from 1996 by Offutt et al. [26] presents an empirical evaluation of
selective mutation for Fortran. They conclude that only five operands (ABS,
AOR, LCR, ROR and UOI) out of all 22 MOTHRA [5] operands are sufficient
for effective mutation testing. Although the results of this research cannot be
applied to modern programming languages, it is a good indicator that selective
mutation can be efficient without loss of too much quality.

A recent study by Smits [39] defines mutation levels for the JavaScript flavour
of Stryker. For this, the tool Callisto was created which automates the analysis
of mutation operators’ quality. The output of Callisto is used to determine the
quality metric resolution. Resolution is a new metric introduced in the paper
that is defined as follows: “It describes the degree to which mutation opera-
tors generate subtle, hard-to-kill mutants, such that the creation of high-quality
test suites is encouraged”. Resolution is then used to create mutation levels.
The mutation levels were chosen by intuition and compared with each other.
In order to properly compare mutation levels, effectiveness and performance
are compared. Effectiveness is the proportion of the minimal test suite that is
required to kill all mutants of a mutation level to the minimal test suite that

9

is required to kill all mutants when no mutation level is used. Performance
is defined as the percentage of test case executions that were removed. Of
interest are the created mutation levels custom 1 and custom 2. Compared
to the default set of mutation operators in StrykerJS [41], custom 1 excludes
the following mutators: BlockStatement, StringLiteral, ObjectLiteral, Regex,
Unary and all mutators that work on the token ’===’. Custom 1 has an ef-
fectiveness of 69% and a performance of 49%. Custom 2 excludes all mutators
that custom 1 excludes and additionally excludes the following mutators: Con-
ditionalExpressionEmptyCase, ConditionalExpressionConditionTofalse, Condi-
tionalExpressionConditionTotrue and BooleanLiteralRemoveNegation. Custom
2 has an effectiveness of 48% and removed 71% of all test case executions.

2.6 Test Prioritization and Reduction
Zhang et al. [48] introduce a technique that consists of both test prioritization
and reduction, called ’Faster Mutation Testing’ (FaMT). For test prioritization
they have two phases, an initial and a dynamic one. The initial phase is based
on coverage. They consider the odds of killing a mutant by a certain test to be
higher when the test executes the mutated statement more often and when the
test executes the mutated statement more closely to the test’s exit statement.
The dynamic phase reorders tests during mutation testing, favouring tests that
tend to kill neighbours of the mutant under test. There are four levels for deter-
mining whether two mutants are considered neighbours, namely: statement-level
(mutants share the statement), method-level (mutants share the method), class-
level (mutants share the class) and global-level (any two mutants are considered
neighbours, globally well-performing tests are prioritized). Only one level is se-
lected during the dynamic phase. For reduction they simply halt testing when a
certain percentage of tests are run. The idea is that the more powerful tests have
already been executed and thus should have had a higher chance to kill them.
This does mean that it is possible that we do not kill a mutant because the
test that would have killed the mutant is not executed. Reduction techniques
can reduce all executions for all mutants by around 50.0% while only causing
error rates around 0.50%, and some FaMT reduction techniques can reduce all
executions for all mutants by more than 63.0% while causing error rates smaller
than 1.22%. Unfortunately, no data has been provided on improvements of total
execution time. The number of test executions is not a clear indicator for more
efficient mutation testing, it is possible that the initial phase favours integration
tests, which tend to run longer than unit tests.

2.7 Summary
A lot of research has been put into decreasing the cost of mutation testing. Un-
fortunately, a decrease in cost is often paired with a decrease in quality, espe-
cially with second and higher order mutation. Additionally, a lot of the optimi-

10

sations can only be used after having already done the work of mutation testing
(post-optimisations) in its entirety by analysing the mutation results, defeating
the purpose of optimising in the first place. Furthermore, post-optimisers can
mostly be replaced by incremental mutation testing which skips certain mutants
completely instead of re-evaluating with a more optimised set of mutants.

11

Chapter 3

Background

3.1 Mutation Testing
Mutation testing was first introduced in 1978 by DeMillo et al. [4] and is a
means to evaluate the effectiveness of one’s test suite, and as such is a way to
evaluate the behaviour of the system under test. In their paper, the empirical
principle of the coupling effect is introduced. This principle hypothesizes that
complex faults are often the cause of relatively simple faults. Consequently, the
detection of complex faults is often assured by the detection of simple faults.
The coupling effect is supported in the paper by the idea of the competent
programmer, which states that programmers write programs that are close to
correct, indicating that many bugs are caused by trivial syntactic mistakes.

3.1.1 Process
Mutation testing, or mutation analysis, is a white-box testing technique which
works by injecting simple faults, or bugs, into a program, which are called
mutations. The mutated programs that result from the injection are called
mutants. Once all mutants have been created, the test suite will be run on
the original non-mutated program to ensure that the original program actually
abides to the test specification. Next, the mutants are tested by the same test
suite and afterwards the test results are analysed. This process is illustrated by
Figure 3.1. In the case that at least one test fails for a specific mutant, then
we say that this mutant has been killed (or detected). When no tests fail for a
specific mutant, we say that this mutant has survived and is still alive (or has
gone undetected).

Listing 3.1 shows a Java program which finds the minimum of two integers and
includes two tests. A possible mutation is to replace the less-than operator
(’<’) on line 2 by a greater-than operator (’>’). This injected fault changes the
output of the program for many inputs and can, in this case, be caught by a

12

Figure 3.1: Mutation analysis workflow.

single test. For example, the test t1 where x = −1 and y = 2 which should
return −1 will fail. We say that t1 has killed the mutant. A test case in which
x is equal to y (t2) would never be able to detect or kill this mutant.

1 i n t min (i n t x , i n t y) {
2 i f (x < y) // mutant : i f (x > y)
3 re turn x ;
4 re turn y ;
5 }
6
7 void testMin () {
8 a s s e r tEqua l s (−1 , min(−1 , 2)) ; // t1 : x=−1, y=2
9 as s e r tEqua l s (4 , min (4 , 4)) ; // t2 : x= 4 , y=4

10 }
Listing 3.1: Example Java program for finding the minimum of two numbers
accompanied by a test method.

3.1.2 Equivalent and Redundant Mutants
Whenever a mutant survives, there are two possibilities. The first is that the test
suite is not effective enough in order to detect this specific mutant and that new
tests should be created that will kill the mutant. The second is that the mutant is

13

an equivalent mutant, meaning that the mutant behaves semantically equivalent
to the original program. It is impossible to kill equivalent mutants and no effort
should be put into creating new tests. In Listing 3.1, the mutant where ’<’ is
replaced with ’<=’ is an example of such an equivalent mutant. There exists no
test that can distinguish between this mutant and the original program as the
output is the same for all values of x and y. The detection of equivalent mutants
is in general impossible as determining whether two programs are equivalent is
undecidable [27]. The proportion of equivalent mutants is hard to determine
but it is estimated to be about 8.6% on average. This value is derived from the
work by Schuler and Zeller [38] and is close to the 9.1% equivalence reported by
Offutt and Pan [28]. Note, however, that the proportion of equivalent mutants
depends heavily on the mutation operators (see section 3.1.4) used and thus
could vary per programming language.

Some mutants are redundant. Redundant mutants are semantically equivalent
to other mutants, but not to the original program. If two mutants are considered
to be redundant with respect to each other, then it is sufficient to only kill one
of them, as killing one guarantees killing the other. In Listing 3.1, the mutants
where ’<’ is replaced by ’>’ and ’>=’ are redundant with respect to each other.
The proportion of redundant mutants is expected to be similar to the proportion
of equivalent mutants, so approximately 9%.

3.1.3 Mutation Results
Once all mutants have been tested against the test suite, a mutation score is
calculated. The mutation score S is the percentage of mutants that were killed,
which is equivalent to the the number of killed mutants over the number of
non-equivalent mutants generated times a hundred percent, as shown in Equa-
tion 3.1.

S =
#killed-mutants

#generated-mutants−#equivalent-mutants
∗ 100% (3.1)

S′ =
#killed-mutants

#generated-mutants
∗ 100% (3.2)

Since determining whether a survived mutant is equivalent is undecidable, cal-
culations of mutation score in mutation testing frameworks do not take mutant
equivalence into account, as indicated by Equation 3.2. This means that the
actual mutation score S might be higher than the calculated score S′. It also
means that the maximum achievable mutation score (S′) is probably less than
a 100%.

In addition to calculating the mutation score, mutation testing frameworks often
generate a mutation report. With mutation reports, one can find information
such as the status (e.g., survived and killed) of a mutant, reason for the as-
sociated mutant status and which test(s) were responsible for killing a specific

14

mutant in the form of a kill matrix. Note, however, that the information avail-
able in mutation reports can be different between mutation testing tools.

3.1.4 Mutation Operators
Mutation operators are responsible for generating mutants. They work by re-
moving, replacing or injecting one or more syntax tokens in a program. A com-
mon mutation operator is the Relational Operator Replacement (ROR) mutator
which mutates a relational operator, which can be any of ’<’, ’<=’, ’>’, ’>=’,
’==’ and ’! =’, to all other relational operators. This means that for every re-
lational operator used, there are five more mutants to kill. It is possible that a
mutation operator makes for an invalid mutant. An invalid mutant is a mutant
that cannot be tested, for instance a mutant that produces a compile time error,
and is not included into the mutation score.

Many defined mutation operators can be applied to multiple programming lan-
guages, such as the ROR mutator since most programming languages contain re-
lational operators. There also exist language-specific mutation operators, which
only apply to a few or a single programming language and sometimes may even
be tailored to the domain. An example would be a mutation operator that re-
moves a call to ’Distinct()’ or ’Unique()’ on a collection, possibly resulting in a
collection that contains duplicate values. Although less commonly used, there
also exist interface mutation operators, which evaluate how well the interactions
between two units are tested [3, 2].

3.1.5 Strong And Weak Mutation Testing
The original idea of mutation testing as defined by DeMillo et al. [4] only
considered strong mutation. That is, a form of mutation testing where only the
output of a mutant is compared to the output of the original program. In order
to be able to detect a fault, it is required that the fault causes an abnormal
state within the program that propagates through the entire program, affecting
the final output. The output of the program can only be tested with integration
tests. Integration tests test the behaviour of two or more modules that should
work together and tend to run longer than unit tests.

Only four years after the inception of mutation testing, weak mutation test-
ing was introduced [9]. During weak mutation, the internal program state is
immediately compared to the expected program state after the execution of a
mutated statement. Weak mutants do not necessarily propagate through the
entire program. Weak mutants are killed mostly by unit tests, which test the
individual components within a module. Weak mutation is, in general, faster
than strong mutation because unit tests execute a smaller part of the entire
program.

Weak mutation testing is used more often in the industry than strong mutation
testing because it is faster. Hence, the remainder of this report should be viewed

15

Figure 3.2: Control flow diagram of source-code and byte-code test-runners.

in context of weak mutation testing.

3.1.6 Source-code and Byte-code Mutators
There exist two ways by which mutation testing can be done. One is called
a source-code mutator, the other is called byte-code mutator. The difference
between the two is that a source-code mutator mutates the source files and then
recompiles the mutants whereas a byte-code mutator mutates the compiled byte-
code or machine code of the original program. Byte-code mutators are faster in
performing mutation testing compared to non-optimised source-code mutators.
On the other hand, source-code mutators tend to generate more suitable or
representative mutants than byte-code mutators. This is due to the fact that
compiled code may be optimised by the compiler, blurring the relation with
the original source code. Even more importantly, it can be hard to explain
where a mutant originates from in byte-code mutators, which makes it harder
to kill surviving mutants [33]. Figure 3.2 illustrates the course of action of
(non-optimised) source-code and byte-code test-runners within the action "Run
TS on every mutant in M" from the mutation analysis process diagram (see
Figure 3.1). From this illustration it should be clear that source-code mutators
are generally slower due to the parsing and (JIT) compilation phase, which
byte-code mutators do not have.

3.1.7 Cost Optimisations
As briefly mentioned in the introduction, mutation testing is a relatively costly
technique compared to traditional testing. Many mutants could be derived from
a single source file. It is not uncommon to have thousands of mutants in an entire
project. The entire test suite needs to be run against every single mutant, which
is a lengthy process. For example, if a project contains 5000 mutants and a test
suite that requires 1 second to finish on average, it will take approximately 83

16

minutes to finish the entire mutant execution process. After the execution, the
testers need to analyse the result to determine whether they need to synthesize
new tests in order to kill the surviving mutants. This iterative process can also
be quite time-consuming as many surviving mutants may need to be analysed
for equivalence.

Consequently, a lot of research has been put into reducing the cost of mutation
testing, summarized by Pizzoleto et al. [35]. Offutt et al. [29] have identified
three main categories by which most research can be characterized, namely
"do fewer", "do smarter" and "do faster". The following optimisations may be
applied to speed up mutation testing:

• "Do fewer" tries to reduce the total number of mutants that are being
generated and executed. Optimisations in this category usually come with
a trade-off between cost and quality.

– Selective mutation is a technique where only a subset of mutation
operators is used to generate mutations. Selective mutation has vary-
ing impact on performance and quality as it is completely dependent
on the selected subset of mutators. Additionally, performance and
quality measurements for a specific subset of mutation operators may
not be consistent between different programming languages or even
domains within a programming language [39, 26].

– Higher-order Mutation makes for fewer mutants by combining
two or more mutations into a single higher-order mutant (HOM) [6,
12, 13, 20, 25]. Instead of executing all first-order mutants (FOMs),
one could decide to execute higher-order mutants, reducing the total
number of mutants to test. Preferably, the formed HOMs are rep-
resentative for all the FOMs in a program but this cannot be guar-
anteed because any HOM may behave drastically different from the
behaviours of its constituent FOMs. Second-order Mutation is a
form of higher-order mutation, but it restricts itself to only form mu-
tants from two first-order mutations [31, 16]. Many algorithms exist
for creating higher-order mutants and the performance and quality
differs for each. See section 2.2 for more details on some of the algo-
rithms used.

– Mutant Subsumption makes for fewer mutants by identifying sub-
sumption relations that signify redundancy between mutants [18, 19].
The idea is that subsumed mutants need not to be tested for since
testing the subsuming mutant should be sufficient. Note the use of
’should’: killing the subsuming mutant does not always guarantee
that the test suite also kills the subsumed mutant [15].

Take for example the C++ program defined in Listing 3.2. The com-
mented lines 2 and 3 are both valid mutants, respectively named m1

and m2, that may be generated to replace the original statement
in line 4. m1 is generated by the ’FunctionBodyRemoval’ mutator,

17

which serves as a form of method coverage in mutation testing by
emptying the body of a function. m2 is generated by the ’Addition-
Negation’ mutator. In this case mutant m2 subsumes mutant m1

because all tests that kill m2 are guaranteed to also kill the mutant
on linem1. In fact, any mutant within the body subsumes the mutant
generated by the ’FunctionBodyRemoval’ mutator.

1 void increment (i n t &i) {
2 // m1: re turn ;
3 // m2: i = i − 1 ;
4 i = i + 1 ;
5 }

Listing 3.2: Example C++ function that increments an integer passed by refer-
ence with two mutants that have a subsumption relation.

Subsumption can be combined with higher-order mutation [12, 13]
to automatically detect subsumption relations. For more details, see
section 2.3 and 2.4.

• "Do smarter" attempts to reduce the cost by skipping certain operations
through clever deductions and by splitting the workload. Optimisations
in this category usually retain the quality of mutation testing.

– Parallelization is a common technique in software where certain
calculations are done in parallel in order to reduce the total time it
takes to perform a certain task. Parallelization in mutation testing
means to execute the generated mutants in parallel [10, 24]. This
can be done locally on one’s computer by creating more test runners,
where every runner only executes a (proper) subset of the mutants
to test. More optimal would be to allow the mutation analysis to run
distributively in the cloud if such resources are available.

– Test Prioritization and Reduction is a means to reduce the num-
ber of test executions for each mutant [48]. Test prioritization comes
down to reordering test cases in such a way that tests that have a
higher likelihood to kill a mutant are executed first. Test reduction
involves executing only a subset of the entire test suite based on some
rules. A trivial example of such a reduction rule is to stop testing
after a certain percentage of test-cases of a test suite have been ex-
ecuted. This works well in combination with test prioritization. A
consequence of test reduction is that the calculated mutation score
is an underestimation of the actual mutation score.

– Mutant Coverage Analysis is a technique where only a subset
of tests is executed. Instead of executing every mutant against the
entire test suite, a coverage analysis is performed in order to trace
reachability of mutants by all test cases. Through this analysis, one
can run only those tests that can reach a specific mutant since the

18

execution of tests that can never reach this mutant is useless. This al-
lows mutation testing tools to skip most unit tests for many mutants.
This technique could be considered a form of test reduction.

– Bail or fail-fast is a technique where test runners abort execution
of additional tests whenever any test has failed. Since the goal of
mutation testing is to kill a mutant by failing at least 1 test, it is not
necessary to continue running tests when a mutant has been killed
by another test. There do exist other optimisation techniques, such
as dynamic test prioritization where the continuation of testing may
be desired in order to properly evaluate the likelihood of a test killing
a specific mutant.

– Incremental Mutation Testing or testing with baseline is a tech-
nique similar to traditional incremental testing but for mutations
[1, 49]. Mutation testing tools will take information from a previous
mutation report and deduce whether mutants or tests have changed.
If a change has been detected for a certain mutant, it will be tested
again, otherwise the results for that mutant are copied from the pre-
vious report. Note that the definition of ’change’ may be different
among mutation testing tools. This optimisation is a big improve-
ment for practitioners as they now can write tests to kill mutants
that previously survived without the need to wait for all mutants of
which the results are already known.

– Automated Equivalence Detection decreases the time spent by
developers deciding whether mutants are equivalent. Deciding equiv-
alence takes about 15 minutes per mutant [38], which can be quite
time-consuming for large projects. Being able to automatically detect
equivalence improves productivity. Detection of equivalence can be
integrated into the compiler [30] or can be done through techniques
such as second-order mutation [17]. Once equivalence has been de-
tected for a mutant, it can then be excluded from mutation testing
for future runs.

• "Do faster" comes down to reducing the time it takes to generate and
execute mutants individually. Optimisations in this category should never
impact the quality of mutation testing.

– Mutant Schemata, meta-mutants or mutation-switching is a tech-
nique where all found mutants are compiled into a single program,
the ’meta-mutant’ [46]. The different mutants can be enabled by dy-
namic environment variables or flags. This technique eliminates the
need to recompile the entire project for every single mutant gener-
ated. This is a significant improvement as larger projects may take
a relatively long time to compile. This optimisation is really only
applicable to source-code mutators, since byte-code mutators work
with the compiled byte-code directly.

19

– Hot Reload is an optimisation where certain test-runners are adapted
in such a way that sequentially executing multiple mutants (or pro-
grams for that matter) does not require a full restart of the envi-
ronment. In Java, the initialization of the JVM, which takes about
70 milliseconds [47], dominates the total runtime for small programs,
adding 70 seconds to mutation testing for every thousand mutants.
For large programs, the JIT compilation may take even more time
than the initialization of the JVM. With hot reload, one can eliminate
startup times as well as retain JIT compiled code.

For hot reload to take full effect, it is best that one has also im-
plemented mutant schemata. Retaining JIT compiled code is near
impossible when there is no mutant schemata. When a source-code
mutator has both optimisations, it means that the source-code test-
runner (see Figure 3.2) can skip the file I/O, parsing and (JIT) com-
pilation phases for subsequent mutant runs. For byte-code mutators,
this optimisation is relatively simple to implement since it does not
require mutant schemata. With hot reload, the file I/O phase can be
skipped in byte-code test-runners for subsequent mutant runs.

3.2 Stryker
Stryker is an open-source mutation testing framework that originates from a
graduation project, mutation testing in JavaScript, at Info Support [40, 43].
Due to its enormous success, Info Support has been sponsoring the develop-
ment for Stryker for years now and it has become a well-known mutation testing
framework. Stryker is a source-code mutator and as such tends to create more
realistic faults than byte-code competitors, however at the cost of some perfor-
mance as previously stated in section 3.1.6. At this moment in time, Stryker
consists of three ’flavours’, namely: StrykerJS for JavaScript and TypeScript
[42], Stryker.NET for C# [45] and Stryker4s for Scala [44].

3.2.1 Mutation Operators
Stryker uses a common set of mutation operators between their flavours in order
to make it easy to switch and compare between them. Because every program-
ming language is different, some mutators are not supported or cannot be sup-
ported at all because they are not applicable in the language. For example, the
operator ’optional chaining’ that mutates foo?.bar1 to foo.bar is implemented
in Stryker4JS, not implemented (yet) in Stryker.NET and not implemented in
Stryker4s because Scala does not support optional chaining in their language
definition (in Scala, optional chaining is supported with the Option[T] type).
The full list of supported mutation operators (16 in total) can be found on the
Stryker website [41].

1This code snippet illustrates optional chaining, where bar is only referenced from foo
whenever foo is not null.

20

Interesting to note is that Stryker has made a few pragmatic choices when it
comes to the mutation operators they have defined. The original ROR mutator,
as mentioned in section 3.1.4, generates five more mutants to kill for every
relational operator used. Most of these mutations do not make sense when
considering the principle of the competent programmer. It is unlikely that when
a developer was supposed to use the less-than operator, that they used the not-
equal operator instead. As such, Stryker only mutates to likely mistakes. For
example, ’<’ is only mapped to ’<=’ and ’>=’, and ’==’ is mapped to ’! =’
and vice versa.

3.2.2 Mutation Results
Besides the states killed and survived, Stryker has some other states for specify-
ing the result of a mutant 2. The state no coverage indicates that no tests can
reach the mutant and is as such considered to be a survivor. The state timeout
indicates that the mutant’s execution duration exceeded the configured time-
out duration or that the amount of times the mutated statement was executed
exceeded the configured amount of executions. Timed out mutants are consid-
ered detected mutants. The idea here is that the mutant most likely caused
an infinite loop, which can be detected by a CI build since the tests will never
complete. The states runtime and compile error speak for themselves; these
mutants are excluded from mutation score calculations. The final state ignored
indicates that the mutant was ignored, either by configuration or some other
reason, and is not included for calculating the mutation score. These mutant
states are also summarised in Table 3.1 for convenience. For clarity, Stryker
thus calculates the following metrics3:

#detected = #killed+#timeout (3.3)

#undetected = #survived+#no-coverage (3.4)

Sstryker =
#detected

#detected+#undetected
∗ 100% (3.5)

Stryker will aggregate the results from the mutation testing session into a mu-
tation report. This report includes the information described in section 3.1.3.
Additionally, Stryker will upload the report to the Stryker Dashboard4 when
configured to do so.

2For further reference on mutant states, see https://stryker-mutator.io/docs/
mutation-testing-elements/mutant-states-and-metrics/#mutant-states.

3For further reference on metrics, see https://stryker-mutator.io/docs/
mutation-testing-elements/mutant-states-and-metrics/#metrics

4Stryker reports are uploaded to https://dashboard.stryker-mutator.io/.

21

https://stryker-mutator.io/docs/mutation-testing-elements/mutant-states-and-metrics/#mutant-states
https://stryker-mutator.io/docs/mutation-testing-elements/mutant-states-and-metrics/#mutant-states
https://stryker-mutator.io/docs/mutation-testing-elements/mutant-states-and-metrics/#metrics
https://stryker-mutator.io/docs/mutation-testing-elements/mutant-states-and-metrics/#metrics
https://dashboard.stryker-mutator.io/

Status Description Included in
mutation score

Killed At least 1 test failed for this mutant Yes
Survived All tests passed for this mutant Yes
No coverage No tests cover this mutant and is as such considered a survivor Yes

Timeout This mutant exceeded the configured timeout limit,
or this mutant exceeded the maximum number of executions allowed Yes

Runtime error Attempts to run tests for this mutant resulted in an error No
Compile error This mutant could not compile No
Ignored This mutant was ignored, either by configuration or some other reason No

Table 3.1: Overview of Stryker’s mutant states.

3.2.3 Static Mutants
Aside from specifying the status of a mutant, Stryker also differentiates between
whether a mutant is a regular (non-static) mutant or a static mutant. Static mu-
tants are mutants that are only executed once, namely during startup. Usually,
static mutants are derived from global constants and singleton classes. Once a
static mutant is loaded, it is not possible to enable or disable them later during
testing. Static mutants have a big impact on performance since (i) coverage
analysis is inaccurate (or not possible at all) for static mutants, resulting in
Stryker executing the complete test suite against static mutants; and (ii) in
order to enable or disable a static mutant, a reset of the entire environment is
required, which takes time.

3.2.4 Cost Optimisations
Stryker has employed many optimisation techniques already into their tool,
namely: selective mutation, local concurrent test-runners (local parallelization),
mutant coverage analysis, bail, incremental mutation testing, mutant schemata
and hot reload. StrykerJS in particular has also implemented an optimisation
that we will call static reload, which was not presented before as part of the list
of optimisations in section 3.1.7 because it exists specifically for static mutants.
Static reload allows a test-runner to unload a previously loaded static mutant,
which means that a test-runner can execute multiple static mutants in succes-
sion without the need to reset the entire environment. Table 3.2 provides an
overview of the optimisations implemented by Stryker per flavour. In addition
to excluding mutation operators, Stryker’s implementation of selective muta-
tion is extended with the ability to exclude entire files from mutation as well as
being able to exclude certain mutations by annotations in the source file with
comments.

5The nature of JavaScript allows for this out of the box, no explicit implementation was
necessary

6Only supported for some test-runners.

22

optimisation Stryker4JS Stryker.NET Stryker4s
Selective Mutation Y Y Y
Local Concurrent Test Runners Y Y Y
Mutant Coverage Analysis Y Y Y
Bail Y Y Y
Incremental Mutation Testing Y Y N
Mutant Schemata Y Y Y
Hot Reload Y5 N N
Static Reload Y6 N N

Table 3.2: Overview of employed optimisations by Stryker per flavour.

Note that there may be differences in how (well) an optimisation is implemented
across the different flavours. For example, with incremental mutation testing we
have that StrykerJS simply compares with the previous mutation report that
resides in the project without regard as to what produced it. In Stryker.NET
there are options for selecting the baseline mutation report that will be used
for incremental mutation testing. The baseline can even be selected based on
the version control branch currently worked on, making it easier to perform
mutation analysis for different branches.

23

Chapter 4

Simultaneous Mutation
Testing

4.1 Concept
In order to reduce the cost of mutation testing, the solution we propose will
decrease the time it takes to perform mutation analysis without loss of quality.
In comparison to higher-order mutation, this optimisation should not affect the
mutation score. The general idea is that we enable multiple mutants within
a meta-mutant (recall mutant schemata from section 3.1.7), henceforth to be
referred to as simultaneous (mutation) testing. This allows testing multiple
mutants during a single test session. This could, in theory, reduce the number
of test sessions by quite an amount. Most of the performance gain would come
from not having to re-instantiate the entire environment for every mutant.

For purposes of consistent terminology, we will define a mutant group to be a
set of mutants that will be enabled simultaneously, where the size of the mutant
group is the number of mutants within that mutant group. A mutant that is a
member of a mutant group is a simultaneous mutant. A mutant group that con-
tains only 1 simultaneous mutant is called a singleton mutant group. Similarly,
a simultaneous mutant within a singleton mutant group is called a singleton
mutant. Additionally, we say that a simultaneous mutant has a properly de-
fined result/status within its group when it is possible to derive a mutant status
from the test results gathered up until the time of evaluation. For example, if
at least 1 test from a simultaneous mutant has failed then it is considered killed
and if all tests that cover a simultaneous mutant have been executed (and all
these tests passed) then it is considered to be a survivor. Simultaneous mutants
who have a properly defined status may also be referred to as being complete.

Only mutants that are disjoint in terms of test coverage will be grouped together

24

during simultaneous testing. Two mutants are considered disjoint when no single
test executes at least 1 mutated statement of both mutants. For convenience, if
some test t executes any of the mutated statements that belong to some mutant
m, we say that t can reach m or that t covers m. Note that there can be different
meanings to reachability, but in this case, we only consider a mutated statement
to be reachable by a given test when the original statement was executed by
that test. Enabling mutants that are not disjoint from each other may result in
a collateral, killing a mutant only because the other mutant was enabled, which
reduces the quality of mutation testing.

There is a conceptual difference between simultaneous testing and higher-order
mutation. Higher-order mutation combines first-order mutations into a single
higher-order mutant and is treated as if it were a single mutant. Killing any
of the first-order mutations will mean that the higher-order mutant was killed.
With simultaneous testing, the mutant group is executed as if it were a single
mutant, but the individual mutants from which the group was formed have their
own status.

4.2 Preliminary Research
Simultaneous testing already exists in Stryker.NET since 20201. However,
no scientific research has been reported on what it does exactly, how well it
works in terms of performance and correctness, nor how it is implemented.
Since Stryker.NET already contains simultaneous testing, we would like to
research simultaneous testing for StrykerJS. Although there could be minor im-
provements to be made to Stryker.NET’s variant of simultaneous testing, there
is more to be gained from designing and implementing it for a Stryker flavour
that does not have it yet.

Preliminary investigation revealed the following problems regarding simultane-
ous mutation testing for StrykerJS:

• When multiple mutants are enabled, we need to figure out which test
killed which mutant. It is unclear to what extent this will impact the
testing result. It may be that the result requires post-processing in order
to properly identify which test killed which mutant;

• There also exist static mutants in StrykerJS as explained in section 3.2.3.
Coverage analysis is not accurate for static mutants, meaning that de-
termining whether a static mutant and another (non-)static mutant are
disjoint cannot be done reliably. It is unclear whether it is possible to
include static mutants for simultaneous testing.

1Created by dubdob, see also https://github.com/stryker-mutator/stryker-net/pull/
936.

25

https://github.com/stryker-mutator/stryker-net/pull/936
https://github.com/stryker-mutator/stryker-net/pull/936

4.3 Research Questions
The main research question is formulated as follows: How can simultaneous
testing be implemented into StrykerJS such that the cost of mutation testing,
in terms of time, is reduced without loss of quality? The proposed solution
will be validated and supported by finding answers to the following research
questions:

1. How much impact will simultaneous testing have on the performance of
Stryker in terms of execution time?

The total runtime durations of StrykerJS will be measured with and with-
out simultaneous testing enabled. This will be compared in order to derive
a performance metric.

2. How much impact will simultaneous testing have on the quality of muta-
tion testing?

In order to validate the correctness of simultaneous testing, the results
of simultaneous mutation testing and regular mutation testing should be
compared. If the results differ for a specific mutant, then it means that
there is a complex underlying issue with simultaneous testing which could
be problematic for practitioners. These issues could arise due to poor
coverage analysis, static mutants and (hidden) test dependencies. It could
even be the case that two mutants that were originally considered disjoint
in terms of test coverage actually have overlapping tests when grouped
together. This is possible because one mutant might influence the control
flow of the original program entirely. If the mutation scores of regular and
simultaneous mutation testing differ too much, then the impact on the
quality of mutation testing could be considered too drastic.

3. What is the best strategy for grouping mutants together in terms of per-
formance?

There are many ways by which disjoint mutants can be combined to form
mutant groups. This is a computationally hard problem and may require
a search strategy. A simple approach would be to just group the first
found disjoint mutants together. A more advanced approach would be
to make use of, for example, a SAT solver. The results of performing
simultaneous mutation testing with the groups formed by each algorithm
should be captured and then compared to figure out which strategy works
best for increasing performance.

The validation as well as the performance and quality comparisons will be done
by testing the implementation on multiple real-world applications that make
use of StrykerJS. The Stryker community has a lot of members which should
make it possible to gather numerous projects of different sizes.

26

Chapter 5

Theory

This chapter provides a theoretical view on the cost of (simultaneous) mutation
testing. It provides a way to explain where the cost of mutation testing comes
from. This is done for both regular and simultaneous mutation testing. The
derivations for the cost of mutation testing that are provided in the following
sections assume that coverage analysis and bail have been implemented. This
is assumed because i) coverage analysis is required for the formation of mutant
groups during simultaneous testing and because ii) bail is relatively simple to
implement when compared to simultaneous mutation testing. Additionally, the
existence of static mutants will be ignored completely because coverage analysis
is inaccurate for static mutants.

This chapter is structured, as follows. The cost derivations for simultaneous
mutation testing in section 5.2 build upon the foundation provided in section 5.1.
Finally, a runtime specification is made for StrykerJS in section 5.3.

5.1 Mutation Testing
We can identify three stages in the general process of mutation testing as de-
scribed in section 3.1.1, namely: program validation, mutant generation and
mutation testing. The program validation stage entails running the test suite
on the original program before continuing the process. If the test suite does not
pass for the program, then it makes no sense to perform mutation testing. The
generation stage includes the generation of mutant programs by the mutation
operators. In the mutation testing stage, the test suite is run on all mutant
programs.

In terms of cost, meaning the time it takes for a stage to complete, mutation
testing is by far the most demanding stage. The cost of program validation
and mutant generation is negligible compared to the cost of mutation testing.
The cost of program validation can be thought of as being similar to performing

27

mutation testing for a single (surviving) mutant. The generation of mutants may
take some time, depending on the efficiency of the algorithms used. Efficient
algorithms should have linear complexity in the size of the program as well as
in the number of mutation operators to be applied, meaning that the entire
program only needs to be traversed once in order to generate all mutants.

There are many aspects to determining the cost of mutation testing. For con-
venience, the legend below is provided. For any set S, cardinality is denoted as
|S|.

TS: the entire test suite, which is a set of tests. Members of TS are typically
denoted t

Tt: time it takes to finish test t (for the original program, assumed to be the
same for all mutants)

M : the set of mutants. Members of M are typically denoted m

G: the set of simultaneous mutant groups. A Member of G is typically denoted
g, which is a set of mutants that are contained within the group

TSm: the set of tests that is used to test mutant m, which is a subset of TS

Tm: time it takes for executing the test suite against mutant m

Ttimeout: the maximum amount of time a mutant may run before being con-
sidered timed out

TTR: time it takes to create a new test-runner

TCTS : time it takes to create a new test session within a test-runner (time
spent up until the first execution of any test, which includes setting up
the entire environment)

Note that Ttimeout is a variable that should be determined by the mutation
testing tool. It should always be larger than the duration it takes to execute the
entire test suite against the original program. This duration can, for example,
be measured during the check “Does P pass TS” illustrated in Figure 3.1.

With coverage analysis, we can determine reachability of a mutant by a test,
which can be used to only execute a subset of the tests in the entire test suite
for that mutant. Coverage analysis has an impact on the variable TSm. It
should be clear that TSm is equal to TS when no coverage analysis has been
done. With bail, we can stop executing tests whenever a test has failed. Bail
only influences the time it takes to execute mutants that will be killed. The
following runtime cost derivation can be made:

Tm =


1
2 ∗

∑
t∈TSm

Tt, mi has been killed∑
t∈TSm

Tt, mi has survived
Ttimeout, mi has timed out

(5.1)

28

The derivation for mutants that will be killed is a worst case average scenario.
Since the mutant is assumed to be killed, there should be at least 1 test in
TSmi

that can kill the mutant. When there exists exactly 1 test that can kill
the mutant, the fraction of tests that need to be run on average is half the
number of tests in TSmi

(assuming random test execution order). However, it
is likely that more than 1 of the tests in TSmi can actually kill the mutant,
reducing the total number of test executions even further.

Mutants are tested by test-runners, as described in section 3.1.6, which need
to create a unique test session for every mutant. The variables time spent cre-
ating test sessions (TCTS) and test-runners (TTR) are called process variables.
Without any optimisations to the process, killed, surviving and timed-out mu-
tants will all require a newly created test session. Additionally, for timed-out
mutants, a new test-runner must be created. The following derivation can be
made;

With process variables:

Tm =


TCTS + 1

2 ∗
∑

t∈TSm
Tt, mi has been killed

TCTS +
∑

t∈TSm
Tt, mi has survived

TCTS + Ttimeout + TTR, mi has timed out
(5.2)

Since all options in the system of equations just provided contain TCTS exactly
once, and because this system of equations holds for any mutant, it means that
the total amount of time spent creating test sessions is equal to |M | ∗ TCTS .

For completeness let us also define the system of equations for when the optimi-
sation hot reload is present. Hot reload reduces the time it takes to set up the
environment for a mutant. It has a direct impact on TCTS . How much impact
the optimisation has on TCTS may differ drastically between implementations.
When a timeout occurs, hot reload does not provide any benefit since the entire
environment will be purged and therefore cannot be reused. Hence, TCTS will
be divided into two special groups, namely Treset and Treload, where Treset is
essentially equal to the original definition of TCTS and Treload is the improved
variant of TCTS , meaning that Treload ≤ Treset. In a system of equations that
would be;

With hot reload and updated process variables:

Tm =


Treload +

1
2 ∗

∑
t∈TSm

Tt, mi has been killed
Treload +

∑
t∈TSm

Tt, mi has survived
Treset + Ttimeout + TTR, mi has timed out

(5.3)

It should be clear from this system of equations that the total time spent creating
test sessions is dependent on the proportion of mutants that will lead to a
timeout. It should also be clear that the total time spent creating test sessions
is less than or equal to |M | ∗ TCTS as opposed to being equal to |M | ∗ TCTS as
with Equation 5.2.

29

5.2 Simultaneous Mutation Testing
For simultaneous mutation testing, the duration of running a group of mutants
is roughly equal to the sum of the time it takes to create a single test session
and the time it takes to execute (a part of) the test suite for every simultaneous
mutant from that group individually. With simultaneous testing, the total time
spent creating test sessions is dependent on the number of groups |G| that were
created. So, instead of creating |M | test sessions, you would only need to create
|G| test sessions. Hence, simultaneous testing should always be as fast or faster
than regular mutation testing, since |G| ≤ |M |. Note, however, that this is not
always the case when the implementation of simultaneous testing comes with
too much overhead, or when it conflicts with other optimisations, as will be
shown later.

5.2.1 Performance Benefit
The duration of running a group of mutants g is equal to the sum of the time it
takes to create 1 test session, the sum of testing simultaneous mutants individ-
ually (excluding process variables) and the overhead O, which is an unknown
function subject to g, which simultaneous testing will introduce. The overhead
of simultaneous mutation testing may vary per group and has a direct impact on
the time it takes to create a new test session and the time it takes to formulate
a result based on the outcome of the test session. In formula1:

Tg = TCTS +
∑
m∈g

(Tm − TCTS) +O(g) (5.4)

Note that Tm in this formula relates to the cost derivation without hot reload
(see Equation 5.2), hence the use of TCTS over Treload. Also note the subtraction
of TCTS within the summation. This is done because Tm contains TCTS exactly
once for all paths in the system of equations.

It should be clear from this formula that, in terms of time, the maximum pos-
sible gain of running a group of mutants with size |g|, compared to running
the simultaneous mutants from which this group is comprised of individually,
is equal to (|g| − 1) ∗ TCTS . This implies that when hot reload is available,
simultaneous mutation testing will have a lower possible gain since TCTS will
be smaller. Additionally, the actual gain is partially lowered by the overhead.

5.2.2 Timeouts with Mutant Groups
Actually, the formula just provided is only correct when the group will not time
out. The moment a group times out, all the uncompleted simultaneous mutants
from which it was comprised must be rerun individually. Every rerun will re-
quire a new test session, which partially diminishes the benefit of simultaneous

1This formula is correct when the simultaneous mutants in g do not lead to a time-out.
This will be elaborated on in section 5.2.2.

30

mutation testing. For example, take the group g = {m1, t1,m2}, where m1 and
m2 are mutants that will not time out and t1 is a mutant that will time out.
Here, the maximum possible gain would be 2 ∗ TCTS if there were no timeouts.
However, this particular group will actually require 2 test sessions, as opposed
to just one, because the timeout of t1 makes it impossible to determine the sta-
tus of m2 (as it will never complete its tests) and thus will need to be rerun in
an individual test session. As a consequence, it may be beneficial to set a limit
on the maximum size of the groups being formed, especially when there exists
many mutants that will time out.

5.2.3 Amdahl’s Law
The maximum possible gain from not having to create as many test sessions in
terms of percentages of the overall duration of the process can be approximated
by using Amdahl’s law. Amdahl’s law states the following: “the overall perfor-
mance improvement gained by optimizing a single part of a system is limited by
the fraction of time that the improved part is actually used”[37]. The theoreti-
cal possible gain from simultaneous mutation testing for a certain group can be
computed with the following formula:

Sg =
1

(1− p) + p
|g|

(5.5)

Where:

Sg = the theoretical speedup by testing the simultaneous mutants in g as a
group as opposed to running them separately;

p = the proportion of time spent creating test sessions for the
simultaneous mutants of g if they were tested separately;

|g| = the size of the group.

For example, if the average time spent creating test sessions is 20% of the total
duration of the average test session duration (p = 0.2), then the maximum
possible performance gain of a group with 2 mutants (|g| = 2) is equal to

1
1−0.2+ 0.2

2

≈ 1.111. Meaning a theoretical performance improvement of 11.1%.
See Table 5.1 for some more calculations with different values of p and |g|.

5.2.4 Smart Bail
Smart bail is an adaptation to the optimisation bail, specifically meant for si-
multaneous testing, which only bails the tests associated with a killed simulta-
neous mutant. The effect of smart bail on the duration of testing simultaneous
mutants in a group should have the same effect that bail has on the duration
of testing singleton mutants. If an implementation of simultaneous mutation
testing does not support smart bail, a trade-off must be made between the per-
formance gained from creating fewer test sessions and performance lost from

31

p |g| Performance increase
0.2 2 11.1%
0.5 2 33.3%
0.8 2 66.7%
p |g| Performance increase
0.2 3 15.4%
0.5 3 50.0%
0.8 3 114.3%
p |g| Performance increase
0.2 →∞ 25%
0.5 →∞ 100%
0.8 →∞ 400%

Table 5.1: Calculation of the theoretical performance gain of using groups of
certain sizes, based on Amdahl’s law

not being able to bail any mutant after failing a test. The idea is that the odds
of killing a mutant are higher when also more tests can reach that mutant. As a
result, not being able to bail on a mutant that is reachable by a relatively large
proportion of the test suite will likely increase the duration of mutation testing.
When TCTS is larger than the duration of running the tests for a mutant, then
the benefit of performing simultaneous testing is higher than losing the ability
to bail.

5.3 Runtime Specification: StrykerJS
StrykerJS consists of 4 stages, namely:

1. Prepare, which includes loading/validating configuration options, loading
plugins, resolving input files, starting the logging server and initialising
reporters;

2. Instrument, which includes parsing the input source files, finding possible
mutations, instrumenting the code (injecting mutations), pre-processing
the meta-mutant (recall the optimisation mutant schemata from section 3.1.7)
formed (disables type checking, rewrites configuration files) and writing
the output files to a sandboxed environment;

3. Dry-run, which includes testing validity of the meta-mutant without en-
abled mutants and performing a configurable coverage analysis strategy;

4. Mutation test, which includes creating mutation test plans (based on an
incremental mutation test report), executing configured checkers and ex-
ecuting test suites of mutants that are covered by at least 1 test.

Compared to the generalized theory’s stages described in section 5.1, the prepare

32

stage is new, the instrument stage is similar to mutant generation stage, the dry-
run stage does program validation as well as coverage analysis and the mutation
test stage does some checks, if configured to do so, before the actual mutation
testing.

In terms of cost, the prepare, instrument and dry-run stages are negligible com-
pared to the mutation test stage. The prepare stage does not depend on the
size of the project, and is relatively small. Just as with the generalized mutant
generation stage, the instrumentation stage’s cost depends on the efficiency of
the algorithms used. StrykerJS uses an algorithm of linear complexity. The cost
of the dry-run stage can be thought of as being similar to performing mutation
testing for a single (surviving) mutant. The mutation test stage has the highest
cost and consists of two phases, namely:

1. Checker phase: consists of verifying the validity of a generated mutant. If
a configured checker decides that a generated mutant is invalid, then the
mutant will not be executed during the testing phase.

There exists one official StrykerJS checker, namely the TypeScript checker.
This checker verifies the validity of a mutant by enforcing the type con-
straints imposed by the typescript code. For example, the mutant gen-
erated by the ’FunctionBodyRemoval’ mutator, which empties the body
of a function, in a function that must return a concrete value (i.e. not
void nor undefined) will not pass the TypeScript checker. This mutant
will show up as ’compile error’ and is not included in the calculation of
mutation score.

2. Testing phase: consists of running the tests for a specific mutant, i.e.
actual mutation testing. Mutants that reach this phase will have passed
all configured checkers.

The optional checker phase, or more specifically the TypeScript checker, usually
takes more time than the testing phase. The TypeScript checker will not be used
during experiments since the goal of simultaneous mutation testing is to reduce
the time needed to perform the testing phase.

StrykerJS may choose to short-circuit certain mutants, like skipping mutants
based on an incremental mutation report as well as not executing mutants that
are not reachable by any test at all. Only mutants that are not being short-
circuited are used during simultaneous testing and behave the same as provided
by Equation 5.3.

33

Chapter 6

Formation of Mutant Groups

The formation of mutant groups can be done in many ways. This chapter
explains how to form acceptable groups in terms of constraints and provides
two implementations that are able to form proper groups from a set of mutants.
It also describes the main objective during the formation of mutant groups,
which will all have an impact on the performance of simultaneous testing. For
consistency, some symbols from the legend of section 5.1 are reused throughout
this chapter.

6.1 Constraints
All algorithms that intend to form groups to be used during simultaneous mu-
tation testing must satisfy the following constraints:

1. Invariant: each mutant must be present in exactly 1 group;

2. Invariant: for each mutant in a group, no tests may overlap with another
mutant in that group.

The first constraint makes sure that every mutant is assigned to a group and
not assigned to multiple groups. This is necessary because we wish to test
each mutant at least once in order to retain the quality of mutation testing.
However, we should not use any mutant twice as that would be a waste of time.
The second constraint makes sure that only mutants that are disjoint in terms
of test coverage can be assigned to the same group, which is also required to
retain the quality of mutation testing.

6.2 Objective
Based on the theory of simultaneous mutation testing (see section 5.2), it is
expected that some feasible set of mutant groups G1 will perform better than

34

another feasible set of mutant groups G2 if |G1| < |G2|. Hence, for an optimal
solution, algorithms should consider prioritizing solutions with the least number
of mutant groups to be the main objective.

6.3 Concept
This problem can be simplified by first introducing the reachability matrix. A
reachability matrix is an |M | × |TS| Boolean matrix (each cell can only have
the value 0 or 1). Consider an |M | × |TS| reachability matrix R, then each
cell Rm,t in R indicates that mutant m is reachable by test t when Rm,t is 1.
Mutant m is not reachable by test t when Rm,t is 0. The reachability matrix
is provided to the solver as factual input. For readability purposes, the binary
relation overlaps(m1,m2) is derived from R, which returns true when m1 has
any overlapping tests with m2, false otherwise.

The formed groups can be interpreted as a |G| × |M | Boolean matrix, which is
called a group matrix. Consider a |G|× |M | group matrix G, then each cell Gg,m
in the matrix indicates that mutant m is contained within group g whenever
the cell has the value 1. Any group matrix represents a feasible solution when
it adheres to the invariants provided before. In the worst case scenario, the
solution to the group matrix is equivalent to the identity matrix I|M |.

To ensure that every mutant is in exactly 1 group, the following propositions
must be satisfied:

∀m ∈M.∃g ∈ G.Gg,m (6.1)

∀m ∈M.∀g1, g2 ∈ G.Gg1,m ∧ Gg2,m =⇒ g1 = g2 (6.2)

Where the first proposition (Equation 6.1) ensures that every mutant is grouped
and the second proposition (Equation 6.2) ensures that every grouped mutant
is not in any other group. To ensure that no tests overlap by mutants within a
group, the following proposition must hold:

∀g ∈ G.∀m1,m2 ∈M.Gg,m1
∧ Gg,m2

∧ overlaps(m1,m2) =⇒ m1 = m2 (6.3)

Additional constraints can be imposed to have more control over the size of
the formed groups. As was explained in section 5.2.2, setting a limit on the
maximum size of mutation groups could be beneficial if many mutants lead
to timeouts. Limiting the size of mutation groups to L could be enforced by
including the following proposition:

∀g ∈ G.|{m ∈M |Gg,m}| ≤ L (6.4)

It is also possible to fix the size of mutation groups. Fixing the size of the
mutant groups is only useful for research purposes, as it allows the researcher to

35

Mutant Tests Mutant Tests
m0 0,1,2 m1 3,4,5
m2 6,7,8 m3 0,1,9
m4 2,4,6 m5 3,5,7
m6 7,8,9 m7 1,2,9
m8 9 m9 4,7
m10 5,7 m11 1,2,4,7,9
m12 2,3 m13 0

Table 6.1: Scenario coverage data.

figure out which groups of certain sizes perform the best. Unlike the size limit
just provided, this forces the groups to be of a certain size S. Fixing the size of
a group to just S is not that useful as it is unlikely that such a solution exists
(unless S = 1). As such, we also allow the size of a group to equal 1. If combined
with the main objective provided in the introduction of this chapter, it will try
to find as many groups of size S as possible and form singleton groups for all
the remaining mutants. This can be expressed by the following proposition:

∀g ∈ G.|{m ∈M |Gg,m}| ∈ {1, S} (6.5)

6.4 Example Scenario
A system is being tested with a mutation testing tool and 14 mutants (m0 to
m13) were generated. The test suite contains a total of 10 tests (t0 to t9) and
all tests in the suite are useful, in the sense that each test can reach at least
1 mutant. Coverage data is shown in Table 6.1. In the table, mutants are
paired with a comma-separated list of test identifiers that indicate which tests
can reach that specific mutant. For example, mutant 9 (m9) is reachable by
tests 4 and 7. Based on the coverage data, the 14× 10 reachability matrix R is
determined:

36

R =



t0 t1 t2 t3 t4 t5 t6 t7 t8 t9
m0 1 1 1 0 0 0 0 0 0 0
m1 0 0 0 1 1 1 0 0 0 0
m2 0 0 0 0 0 0 1 1 1 0
m3 1 1 0 0 0 0 0 0 0 1
m4 0 0 1 0 1 0 1 0 0 0
m5 0 0 0 1 0 1 0 1 0 0
m6 0 0 0 0 0 0 0 1 1 1
m7 0 1 1 0 0 0 0 0 0 1
m8 0 0 0 0 0 0 0 0 0 1
m9 0 0 0 0 1 0 0 1 0 0
m10 0 0 0 0 0 1 0 1 0 0
m11 0 1 1 0 1 0 0 1 0 1
m12 0 0 1 1 0 0 0 0 0 0
m13 1 0 0 0 0 0 0 0 0 0


Then, the 14×14 group matrix G is initialized. Starting with all zeros, indicating
that no mutants are assigned to any group yet1:

G =


m0 · · · m13

g0 0 · · · 0
...

...
. . .

...
g13 0 · · · 0


Finally, the solver is executed to solve this problem, obeying the constraints.
The following solution can be found:

G =



m0 m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13

g0 0 0 0 1 0 0 0 0 0 0 1 0 1 0
g1 0 0 0 0 1 0 1 0 0 0 0 0 0 1
g2 0 0 0 0 0 1 0 1 0 0 0 0 0 0
g3 0 0 0 0 0 0 0 0 0 0 0 1 0 0
g4 0 1 1 0 0 0 0 0 0 0 0 0 0 0
g5 1 0 0 0 0 0 0 0 1 1 0 0 0 0
g6 0 · · · 0
...

...
. . .

...
g13 0 · · · 0


The solution consists of six non-empty groups and eight empty groups. As it
turns out, this solution is actually optimal in terms of the number of groups that
were formed, due the following observation. Based on the reachability matrix,
one can find the test that can reach the most mutants. In this case, t7 can reach
the most mutants, namely 6, meaning that the minimum number of groups that
we must form is six, otherwise it is not possible to abide to the second invariant

1The group matrix can also be initialized to be equivalent to the identity matrix (I14),
indicating that every mutant is assigned to a group of its own.

37

(no overlapping tests).

6.5 Pragmatic Algorithm
The first algorithm is relatively simple. The basic idea is to group the first found
disjoint mutants together until all mutants have been grouped. However, before
doing so, the mutants are sorted based on the number of tests that can reach
the mutants such that the process of finding disjoint mutants is more efficient.

We have implemented the pragmatic algorithm in TypeScript for StrykerJS. It
is an adaptation from Stryker.NET’s grouping algorithm. The pseudocode is
shown in algorithm 1. First, the input M , a set of mutants, is split into two
partitions, namely: mutantsToGroup and singletonMutants (lines 6-7). The
conditions for a mutant to be grouped in one of the partitions may differ between
implementations for different mutation testing tools. For StrykerJS specifically,
the condition for a mutant to be part of mutantsToGroup is that coverage data is
available for the mutant (this is not reflected in the pseudocode). A new group is
created for each singleton mutant, which is stored in singletonMutantGroups.
The partition of mutants to group is first sorted, in increasing order, based on
the number of tests that can reach that mutant. Then, we keep iterating over
all mutants to group and put them in the same group (nextGroup) as long as
they have no overlapping tests with the other mutants’ test suites already in the
group (simultaneousTestSet). An iteration is terminated early when the size
of the currently formed group’s test suite plus the size of a candidate mutant’s
test suite is greater than the size of the entire test suite, since that would mean
that the candidate must have overlapping tests with the formed group so far. It
also means that all subsequent candidates must have overlapping tests, hence
we can halt this iteration (lines 17-18). Once a mutant is assigned to a group,
they are removed from mutantsToGroup, ensuring that every mutant belongs
to exactly one group. The groups formed from both partitions are then merged
and returned.

38

Algorithm 1 Pragmatic algorithm for forming simultaneous mutant groups.
1: M ← set of mutants ▷ Mutants within the set contain

the property ts, indicating the test suite that can reach the mutant (TSm).
For some mutant m, this property is accessed by the dot notation m.ts

2: |TS| ← the size of the entire test suite
3: satisfiesConditionsForGrouping ← a function that determines whether

a specific mutant satisfies the conditions for it to be grouped with other
mutants

4: sortBasedOnTestSize← a function that is able to sort a set of mutants in
increasing order based on the size of the tests that can reach the mutants

5: function formSimultaneousGroups(M , |TS|)
6: mutantsToGroup← {m ∈M | satisfiesConditionsForGrouping(m)}
7: singletonMutants← {m ∈M | ¬satisfiesConditionsForGrouping(m)}
8: singletonMutantGroups← {{m}|m ∈ singletonMutants}
9: mutantsToGroup← sortBasedOnTestSize(mutantsToGroup)

10: G← ϕ
11: while |mutantsToGroup| > 0 do
12: firstSimultaneousMutant← mutantsToGroup[0]
13: simultaneousTestSet← ϕ ∪ firstSimultaneousMutant.ts
14: nextGroup← {firstSimultaneousMutant}
15: mutantsToGroup← mutantsToGroup\firstSimultaneousMutant
16: for candidate ∈ mutantsToGroup do
17: if |simultaneousTestSet|+ |candidate.ts| > |TS| then
18: break
19: else if ∃t1 ∈ candidate.ts, t2 ∈ simultaneousTestSet.t1 = t2

then
20: continue
21: end if
22: nextGroup← nextGroup ∪ {candidate}
23: mutantsToGroup← mutantsToGroup \ candidate
24: simultaneousTestSet← simultaneousTestSet ∪ candidate.ts
25: end for
26: G← G ∪ {nextGroup}
27: end while
28: return G ∪ singletonMutantGroups
29: end function

39

6.6 Constraint Solver Algorithm
Finding the optimal solution based on a set of mutants with their coverage data
is (in general) a computationally hard problem. To do that we need a tool that
can work with the constraints as provided in section 6.3. For this purpose we
chose Google OR-Tools’ [8] constraint programming solver. This solver finds
feasible solutions to problems that are expressed by a set of constraints. The
source code of the implementation can be found here2. Unfortunately, the con-
straint solver used does not support universal quantifiers directly. As such, the
propositions provided in section 6.3 need to be rewritten slightly, which is done
in section 6.6.4.

6.6.1 Input
The input to the solver may contain the fields ’mutants’, ’fixedGroupSize’ and
’maximumGroupSize’. The field ’mutants’ is an array of Mutant objects, which
contains the fields ’id’ and ’tests’. See Table 6.2 and Table 6.3 for a description
of these fields.

6.6.2 Axioms
The solver cannot work with the provided input directly, it must first be con-
verted to axioms with which it can work. To do this, the reachability matrix R
is constructed from the input, as described in section 6.3. Then, another matrix
is pre-calculated which serves as the binary relation overlaps. This overlaps
relation is provided to the solver as a fact.

6.6.3 Variables
The variables, which are also the solution to the problem, are encoded through
the group matrix G, as described in section 6.3. Note that the dimension of
the group matrix is chosen to be |M | × |M | because it covers the worst case
scenario, one where no disjoint mutants exist.

2https://github.com/mcdr2k/simultaneous-mutant-grouping

Field Description Optional
Mutants Array of Mutants (see Table 6.3) False

FixedGroupSize If provided, forces the solver to only accept
groups of the provided size True

MaximumGroupSize If provided, adds a constraint that enforces a
maximum number of mutants in a group True

Table 6.2: Description of the SMT expected input JSON object.

40

https://github.com/mcdr2k/simultaneous-mutant-grouping

Field Description Optional
Id Unique identifier of the mutant (string) False

Tests The set of tests that can reach this specific mutant
as an array of test ids (strings) False

Table 6.3: Description of the Mutant object.

6.6.4 Constraints
Constraints in this solver are expressed by a model (CpModel in this case). The
model contains methods for creating specific constraints that take an expression,
in the form of a Java object. For example, the method addLessOrEqual(e1, e2)
adds the constraint that the value of the first expression must be less or equal
to the second expression, or simply e1 ≤ e2. The propositions as defined in sec-
tion 6.3 make use of universal quantifiers, which the CpModel does not support
directly, but can be imitated with programming constructs. In particular, the
forall universal quantifier’s behavior is imitated with (nested) for-loops. The
propositions are rewritten slightly to make it work, as follows:

• Recall from section 6.3 that each row is a group and each column is a
mutant in the matrix G. To ensure that every mutant belongs to exactly
one group a constraint can be made on each column of the group matrix.
For every column in G, the sum of all values in the column should equal
1. In code:

1 f o r (i n t m = 0 ; m < M; m++) {
2 List<L i t e r a l > mutant = new ArrayList <>(M) ;
3 f o r (i n t g = 0 ; g < M; g++) {
4 mutant . add (groupMatrix [g] [m]) ;
5 }
6 model . addExactlyOne (mutant) ;
7 }

This essentially means that the propositions from Equation 6.1 and Equa-
tion 6.2 have been rewritten to:

∀m ∈M.∀g ∈ G.|{g|Gg,m}| = 1 (6.6)

• To ensure that every mutant that is part of the same group does not have
overlapping tests a constraint is added between every 2 different mutants
for every group. The constraint expresses that the sum of any two mutants
within the same group must be less or equal to 1, unless they have no
overlapping tests. Whether two mutants have no overlap is determined
through the pre-calculated overlaps matrix. In code:

1 f o r (i n t g = 0 ; g < M; g++) {
2 f o r (i n t m1 = 0 ; m1 < M; m1++) {

41

3 var l 1 = groupMatrix [g] [m1] ;
4 f o r (i n t m2 = 0 ; m2 < M; m2++) {
5 i f (m1 == m2) cont inue ;
6 var l 2 = groupMatrix [g] [m2] ;
7 var hasOverlap = ove r l ap s [m1] [m2] ;
8 // i f two mutants have over lapp ing t e s t s ,
9 // then at most 1 o f them can be true

10 model . addLessOrEqual (
11 LinearExpr . sum(
12 new LinearArgument [] { l1 , l 2 }) ,
13 1
14)
15 . on l yEn fo r c e I f (hasOverlap) ;
16 }
17 }
18 }

This essentially means that the proposition from Equation 6.3 has been
rewritten to:

∀g ∈ G.∀m1,m2 ∈M.m1 ̸= m2 ∧ overlaps(m1,m2) =⇒ Gg,m1 + Gg,m2 ≤ 1 (6.7)

• Setting a limit on the maximum size of the groups can be achieved through
the less or equal constraint, where the value to test is the sum of a row
of G. This is equivalent to the proposition described by Equation 6.4. In
code:

1 f o r (i n t g = 0 ; g < M; g++) {
2 model . addLessOrEqual (
3 LinearExpr . sum(groupMatrix [g]) ,
4 input . maxGroupSize
5) ;
6 }

• Fixing the size of the groups can also be achieved by a test on the sum of
a row of G. This is done through half-reified linear constraints, with any
row g and an independent Boolean variable b, in code:

1 f o r (i n t g = 0 ; g < M; g++) {
2 var groupSize = LinearExpr . sum(groupMatrix [g]) ;
3 var b = model . newBoolVar (" re i fyFixedGroup " + g) ;
4 model . addLessOrEqual (groupSize , 1) . on l yEn fo r c e I f (b) ;
5 model . addEqual ity (groupSize , input . f ixedGroupSize)
6 . on l yEn fo r c e I f (b . not ()) ;
7 }

42

This essentially means that the proposition described by Equation 6.5 has
been rewritten to:

∀g ∈ G :

bg =⇒ (
∑

g) = 1, and

¬bg =⇒ (
∑

g) = fixedSize

(6.8)

6.6.5 Objective
The primary goal of this optimization problem is to group mutants together in
such a way that we have as few groups as possible. The objective function is
defined over the group matrix G. For every group in G, a new Boolean variable
gHasMutants is introduced that states whether group g contains any mutants.
The sum over all these variables indicates how many groups were formed. This
sum is then added to the model with the minimization objective, forcing the
model to search for solutions with as few non-empty groups as possible.

6.6.6 Output
The output of the constraint solver consists of the result and a timer. The result
consists of a status and the actual solution found. The status indicates whether
the solution is simply any feasible solution or an optimal solution. If any other
status was returned then there is no solution, likely due to malformed input.
The solution is a 2 dimensional array of mutant groups, derived from the group
matrix G. Where the outer array is an array of groups and the inner arrays are
arrays of mutant ids that belong to the same group. For example, the solution
[[1, 2], [3]] indicates that two groups were found, where g1 contains m1

and m2 and g2 contains m3. Empty groups are not included in the solution.
See Table 6.4 for an overview of the data included in the result. Finally, the
timer consists of numerous fields that indicate how much time certain tasks take,
including the total time spent creating a model of the problem and solving the
problem. See Table 6.5 for an overview of the durations included in the output.

6.6.7 Implementation Particularities
Finding the optimal solution to large problems with a constraint solver is infea-
sible as there exist many solutions, meaning that it will simply take too much
time. Because of that, an arbitrarily chosen timeout of 90 seconds was set on
the solver, which causes the solver to return the best solution that it could find
within 90 seconds.

After testing it was found that large problems causes the program to run out of
memory. When the JVM was given 8GB of memory, it would crash on inputs
greater than 225 mutants and a test suite size of 100. When it was given 50GB
of memory, the maximum input size could be increased to about 325 mutants

43

Field Description

Status Status indication of the solution. Can be any of the following:
feasible, infeasible, optimal, unknown, invalid

Solution The formed mutant groups presented as a 2-dimensional array
of mutant ids

Table 6.4: Description of the SolverResult object.

Field Description
SetupAxiomsDurationNanos Time spent setting up the model’s axioms
SetupVariablesDurationNanos Time spent setting up the model’s variables
SetupConstraintsDurationNanos Time spent setting up the model’s constraints
CreateObjectiveDurationNanos Time spent creating the objective function
SolveDurationNanos Time spent solving the model
TotalDurationNanos Total time spent on all operations

Table 6.5: Description of the Timer object.

and a test suite size of 140. This shows that the space complexity of the solver is
highly exponential. This is problematic as many projects generate much larger
input than the solver can handle. As a consequence, the solver was modified to
split the provided input into multiple parts. After solving for each part of the
input, the results will be combined. Even though all the individual results of
the different parts may be optimal, the result may not be optimal. Also note
that the solver will be given at most 90 seconds for each part of the input as
opposed to being given 90 seconds for the whole input.

44

Chapter 7

Implementation of
Simultaneous Mutation
Testing for StrykerJS

This section discusses some aspects of how we implemented simultaneous mu-
tation testing for the mocha test-runner for StrykerJS. Understanding the im-
plementation is important for some parts of the process. The implementation
details should help in understanding the semantic differences with regards to
regular mutation testing. It should also help in clarifying why simultaneous
testing would perform better or worse than regular mutation testing. The im-
plementation can be found here1.

7.1 Simultaneous Mutant Schemata
StrykerJS supports mutant schemata, which means that StrykerJS is able to
dynamically change whether a certain mutant is active. The original implemen-
tation (simplified) would store the so-called active mutant in a global variable.
Every time a mutated statement would be executed by the original program,
it instead checks first whether the global active mutant variable is equal to the
mutant’s identifier. If true, it would continue executing the mutated statement,
otherwise it would execute the original non-mutated statement. Since we need to
enable multiple mutants at the same time, this global variable has been changed
to be a set of active mutant ids.

1https://github.com/mcdr2k/stryker-js/tree/simultaneous-mutation-testing-experiment1.
This link points to the branch used during the experiment in chapter 9.

45

https://github.com/mcdr2k/stryker-js/tree/simultaneous-mutation-testing-experiment1

7.2 Simultaneous Infinite Loop Detection
StrykerJS also supports infinite loop detection. This allows for Stryker to ter-
minate, for example, while (true){} loops early. Although it cannot detect all
such cases, it works most of the time. This loop detection is supported by yet
two more global variables, namely hitcount and hitlimit. If the hitcount exceeds
the hitlimit, then Stryker terminates early by throwing an error. Hitcount is
increased by 1 every time the mutated statement is executed, hitlimit on the
other hand is determined during the dry-run and will be fixed throughout the
test run. To support this for simultaneous testing, both hitlimit and hitcount
have been converted to a map, which maps a mutant’s identifier to the current
hitcount or hitlimit.

7.3 Timeouts & Live Reporting
During implementation it was found that simultaneous mutation testing was
completely useless if it were unable to detect which mutant of a group caused
a timeout. A timeout would mean that we should rerun all simultaneous mu-
tants from the timed-out group individually to produce a proper result. That
would include the mutant that caused the timeout in the first place, which
would impact the performance greatly. However, the current implementation
of StrykerJS had nothing in place to detect which test caused a timeout. The
original implementation would just terminate the child process that is running
the tests for a certain mutant if it did not return a result after the configured
timeout. In order to be able to detect which test caused the timeout, it was nec-
essary to implement ’live reporting’. Live reporting entails that child-processes
report back all results of all tests that are about to be executed and have been
executed to the parent process. Upon timing out, it is possible to determine
which test never finished executing by the updates sent by the child-process and
is assumed to be the timed-out test. The process of live reporting is illustrated
in Figure 7.1.

This does bring us to another major change revolving timeouts, which is when
does one decide a mutant (group) has timed out? As of now, simultaneous
testing considers a group to be timed out when the parent process has not re-
ceived any updates within configured timeout duration. The configured timeout
durations are the same for regular and simultaneous testing. This means that
simultaneous testing allows each test to run for the duration of the configured
timeout, whereas the original implementation only allows the entire test run to
run for the duration of the configured timeout. As a result of live reporting and
the differences in timeout, comparisons between regular mutation testing and
simultaneous mutation would be unfair. It is expected that simultaneous mu-
tation testing takes longer because of this change. These differences are taken
into account during the experiments in chapter 9.

46

Figure 7.1: Process of live reporting during the execution of a mutant.

47

7.4 Smart Bail
We implemented smart bail for the mocha test-runner, however it is not as effec-
tive as the original bail. In Mocha, programmers can describe suites2 (groups of
tests) with the ’describe’ function. Tests within suites are created with the ’it’
function. The idea is that programmers can group the individual tests logically
in a test suite. It also provides some guarantees to the execution order of the
tests. For instance, the tests within the suites will always execute in the order
they are defined while the test suites themselves do not provide any guarantee to
the execution order other than being deterministic between multiple executions.

The current implementation of smart bail loops over all tests in a suite the
moment it has started executing and checks for each test whether they are
associated with a mutant that has already been killed. If so, then the test
is skipped, otherwise do nothing (allowing it to run). This implementation of
smart bail thus works between different suites but does not work between tests
within the same suite. Take for example the following JavaScript test snippet:

1 d e s c r i b e (’ s u i t e ␣1 ’ , () => {
2 i t (’ t e s t ␣1 ’ , () => {
3 // t e s t that cannot k i l l mutant m1
4 }) ;
5 i t (’ t e s t ␣2 ’ , () => {
6 // t e s t that k i l l s mutant m1
7 }) ;
8 i t (’ t e s t ␣3 ’ , () => {
9 // t e s t that even tua l l y k i l l s mutant m1

10 }) ;
11 }
12
13 de s c r i b e (’ s u i t e ␣2 ’ , () => {
14 i t (’ t e s t ␣1 ’ , () => {
15 // t e s t that t imes out on mutant m1
16 }) ;
17 }

Let us assume that the tests are executed in the exact same order as they
are described. With the current implementation of smart bail, mutant m1 will
execute all three tests in suite 1 because it cannot bail on tests in the same suite.
At least, in this particular example, it will not execute suite 2 at all, which is
great because it would lead to a time-out. Ideally, smart bail would also be able
to bail right after test 2 has completed execution such that the relatively long
running test 3 is not executed at all.

2Mocha suites should not be confused with the general term of a ’test suite’ used throughout
this report. All Mocha suites described are part of the test suite TS during mutation testing.

48

7.5 Configuration Options
Numerous new configuration options have been added to StrykerJS to customise
the behavior to some extent. Most of these options will be used during the
experiment in chapter 9. The following configuration options were added:

• enableSimultaneousTesting: Enables mutation testing with simultane-
ous mutants. When true, runs all mutants in disjoint groups in terms
of test coverage where possible. This will increase performance but may
decrease accuracy of the results. Defaults to false.

• exportMutantsOnly: Mutates the project and runs the configured check-
ers, then exports the remaining mutants to a file (only exports mutants
that are not killed by the checker). After the mutants have been exported,
the program terminates. Defaults to false.

• exportMutantsFile: Target file where the generated valid mutants should
be exported to. Defaults to ’reports/generated-mutants.json’.

• measureMetrics: Indicates whether Stryker should measure metrics and
export them to a file, defaults to false.

• measureMetricsOutputFile: Target file where the metrics should be ex-
ported to, default to ’reports/metrics.json’.

• maximumGroupSize: Sets the maximum size of the simultaneous mutant
groups formed when simultaneous testing is enabled. Does nothing when
importing mutant groups from a file. Defaults to 0.

• importMutantGroups: Indicates whether the program should import mu-
tant groups from a file. These groups will be used for simultaneous testing.
Defaults to false.

• importMutantGroupsFile: Source file from which mutant groups are im-
ported. Defaults to ’reports/grouped-mutants.json’.

• fakeTestSessionCreationDuration: Artificially introduces work for cre-
ating a test session to increase the time spent creating test sessions. De-
faults to 0.

49

Chapter 8

Validation

To evaluate the performance, quality and correctness of simultaneous mutation
testing, it is necessary to test the implementation on numerous real-world ap-
plications. The following sections describe how test projects are gathered, how
performance and quality are evaluated and which metrics are required for said
evaluation.

8.1 Gathering test subjects
A Google form was created to gather real-world applications that make use of
StrykerJS. The content of the form can be found in Appendix A. The form was
published in Stryker’s Slack channel and later tweeted on X. Unfortunately, no
responses were recorded. Due to the lack of responses, we instead inquired the
maintainer from the Stryker dashboard (see section 3.2.2) to retrieve a list of
popular Stryker projects. The list contained 135 projects but after removing
duplicates, projects that do not use StrykerJS (PHP projects were included in
the list) and projects that do not make use of explicitly the mocha test-runner,
only four projects remained. These four projects contained a total of six modules
that can be used as test subjects for validation purposes. Table 8.1 shows an
overview of the test subjects’ characteristics, sorted alphabetically, including the
total lines of code (LOC), number of non-static mutants (|M |) and the mutation
score. A description of the projects’ capabilities can be found below:

1. Cucumber expressions: provides an alternative to regular expressions. The
idea is that the syntax used for cucumber expressions is more intuitive than
the syntax used by regular expressions. For example, to parse an integer
one can simply insert "{int}" into the cucumber expression as opposed
to inserting "0|-?[1-9][0-9]*" for a regular expression.

2. Mutation testing elements: streamlines the display of mutation testing re-
sults by producing html from mutation reports. It includes the calculation

50

Project Module LOC |M | Mutation Score
cucumber-expressions1 cucumber-expressions 1573 984 83.2%
mutation-testing-elements2 metrics 641 288 70.5%
stryker-js3 instrumenter 2205 1411 83.9%
stryker-js mocha-runner 521 250 71.3%
stryker-js typescript-checker 617 364 83.9%
typed-inject4 typed-inject 331 120 96.7%

Table 8.1: Characteristics of test subjects.

of metrics, such as the mutation score, for which the module metrics is
responsible.

3. StrykerJS: mutation testing tool for JavaScript and TypeScript. The first
test subject of this project is instrumenter, which is responsible for gen-
erating all the mutants. The second test subject is mocha-runner, which
is a test-runner implementation specifically created for the test framework
Mocha. The final test subject in this project is typescript-checker, which
is responsible for checking whether generated mutants adhere to the type
constraints in the context of the code they are generated in.

4. Typed inject: type-safe dependency injection framework for TypeScript
with which one can inject classes, interfaces and values.

8.2 Evaluating performance
Certain operations need to be timed for evaluating the performance during reg-
ular and simultaneous mutation testing. Since the goal of simultaneous testing
is to improve the performance of mutation testing, only that stage of the en-
tire process will be measured, in isolation. The time it takes for executing the
test suite against each mutant individually is measured during regular mutation
testing (Tm). Similarly, the time it takes for executing the test suite against
each mutant group is measured during simultaneous mutation testing (Tg). To
explain differences in performance, we are also required to measure, or derive,
the time spent creating test sessions (TCTS) and the overhead (O). From the re-
sults, a difference in performance will be derived in terms of percentages, where
0% would mean no difference, less than 0% would mean a gain in performance
and greater than 0% would mean a loss in performance.

1Git version hash: 501114b58e31e3b172b6aa65786a2d29ef04fe94
2Git version hash: c2a76e49614ec0165175b6f71081b3cf53e367ec
3Git version hash: 905889797e913291319645f49a1a99a762671781
4Git version hash: b865c8433c9ec101c1f51e16921519dd14cc7446

51

Expected status Acceptable status
Killed Killed, timeout
Survived Survived
Timeout Killed, timeout
No coverage No coverage
Ignored Ignored
Runtime error Runtime error, killed, timeout
Compile error Compile error

Table 8.2: Table mapping indicating acceptable status differences. See Table 3.1
for an overview on mutant states.

8.3 Evaluating quality
The output of (simultaneous) mutation testing will be recorded and then com-
pared. To quantify the difference in quality, we need to compare the result of
each mutant individually. More specifically, we need to compare the status of
each mutant. Mutants that are killed by regular mutation testing should also be
killed by simultaneous mutation testing. Likewise, mutants that survive regular
mutation testing should also survive during simultaneous mutation testing.

Some of the results for the mutants depend on the order of execution of the test
suite. The killed and timeout status are an example of that. If the test that
will lead to a timeout is executed before a test that can kill the mutant, the
result will be a timeout. Even more so, if smart bail has not been implemented,
more simultaneous mutants will lead to a timeout even though they may have
already been killed by another test before executing the test that causes a time-
out. See Table 8.2 for an overview of these special cases. The expected status,
or original status from regular mutation testing, may correspond to multiple ac-
ceptable statuses during simultaneous testing. As long as simultaneous testing
has resulted in one of the acceptable states, then we consider the result of the
mutant to be equal.

8.4 Evaluating Grouping Algorithms
Two grouping algorithms were introduced in chapter 6, namely: the pragmatic
and the constraint algorithm. Both algorithms should be evaluated and com-
pared. It is expected that the pragmatic algorithm is faster than the constraint
algorithm, in terms of the total time it takes to form groups. It is also expected
that the pragmatic algorithm yields a result with more groups than the con-
straint algorithm. To do this comparison, the total runtime for both algorithms
will be recorded as well as the groups that are formed.

52

Chapter 9

Experimental Setup

To carry out the validation as described in chapter 8, a proper setup is required.
Running StrykerJS on a test subject will be done in four stages, namely:

1. Baseline: The baseline stage entails running StrykerJS without simulta-
neous testing. The results of each mutant will be captured by the baseline
run and will be assumed to be the correct result. This allows us to verify
whether the other runs have the same output as the baseline.

2. Verification: The verification run will have simultaneous testing enabled
but every group formed by the pragmatic algorithm will be forced to be of
size 1. The results of the mutants should then be equivalent to the results
of the baseline since the mutants are run in isolation. If the verification
run has different results for the mutants, then it would mean that there
is a fundamental issue with the implementation of simultaneous testing in
StrykerJS.

3. Pragmatic: The pragmatic run has simultaneous mutation testing enabled
and will make use of the pragmatic grouping algorithm to form simulta-
neous mutant groups.

4. Solver: The (constraint) solver run has simultaneous mutation testing
enabled and will make use of the constraint solver grouping algorithm to
form simultaneous mutant groups. As explained in section 6.6.7, the solver
might run out of memory if the input is large. For that reason, we split
the input into multiple parts of 200 mutants. If that still causes the solver
to run out of memory, then we retry it once more, but with a split size of
150 mutants instead.

Due to the semantic differences between regular and simultaneous mutation
testing, as explained in section 7.3, it is unfair to compare their performances
directly. In particular, it would be unfair to compare the pragmatic and solver
runs’ performance with the performance of the baseline directly. Instead, the

53

verification run’s performance is compared to the baseline’ performance, allow-
ing us to determine the introduced overhead. The pragmatic and solver runs’
performance are compared to the verification run’s performance.

Stryker uses configuration files that allows us to have some control over what it
does exactly. This includes options that may have an impact on the performance
of Stryker. As such, all test subjects will make use of the same configuration
for options that may impact performance or quality. The initial configuration
for all stages is as follows:

• enableSimultaneousTesting: false. Initial run will not use simulta-
neous testing. The results of this first run will be used as a baseline.

• disableBail: false. Bail will be enabled for all runs (may they be
simultaneous or not).

• ignoreStatic: true. Static mutants will be ignored since coverage data
is inaccurate for these mutants and because they require a full reset of
the environment (meaning that simultaneous testing cannot improve the
performance for static mutants anyway).

• measureMetrics: true. For performance validation it is necessary to
measure the duration of operations. Should have little to no impact on
the performance. Additionally, the amount of performance measurements
done is similar between regular and simultaneous mutation testing.

• concurrency: 1. This setting sets the maximum amount of concurrent
test-runners that StrykerJS may use. For consistent measurements it is
required that not too many things are working at the same time.

In (technical) detail: JavaScript is single-threaded by nature and the main
process of StrykerJS measures almost everything. In the case that the
main process has a lot of other work to do, like processing the updates
sent by the child-processes during live reporting (see section 7.3), measure-
ments for functions that return a promise will not be accurate. To reduce
these inaccuracies, the workload of the main process should be kept to a
minimum.

• checkers: []. No checkers. StrykerJS supports checkers as plugins,
such as the TypeScript checker. It is not required and not including check-
ers would lead to more mutants that can be tested. See section 5.3 for
more details on the checker phase.

• logLevel: info. The log levels debug and trace would have too much
of an impact on performance. Additionally, non-simultaneous and simul-
taneous testing have vastly different amount of logging which would mean
that a comparison between the two is not fair.

• fileLogLevel: off. Same reasons as with logLevel. Initially it will be
set to off. If the console shows errors/warning it will be enabled and rerun
for further investigation (manually).

54

• coverageAnalysis: perTest. This coverage analysis strategy is the
most accurate, which is necessary for grouping disjoint mutants.

• testRunner: mocha. Simultaneous testing is only implemented for Mocha,
hence required.

• reporters: [json, progress]. The json reporter exports the result of
the mutation run to a file, which is necessary for validating the quality.
The progress reporter simply provides updates on the progress.

• plugins: [/stryker-js/packages/mocha-runner/dist/src/index.js].
The mocha test-runner to use. Contains the implementation for simulta-
neous testing.

Options not listed here will either take the default values of Stryker or be set
by the (original) configuration of the test subject. To run Stryker on a test
subject, the command ’npm run stryker’ will be used. Variations on the default
configuration will be effected by modifying the Stryker run command on the
command line. Command line arguments may override values from the initial
configuration file just provided. See section 7.5 for a detailed description of
the commands used. For each stage, the following additional command line
arguments will be provided:

1. Baseline: no changes need to be made, the default configuration is specif-
ically built for the baseline.

2. Verification: command is extended with
--enableSimultaneousTesting --maximumGroupSize 1.

3. Pragmatic: command is extended with
--enableSimultaneousTesting.

4. Solver: command is extended with
--enableSimultaneousTesting --importMutantGroups.

To automate the process of running all the aforementioned stages on a test sub-
ject, three bash scripts were created, namely: automate-stryker.sh, automate-
solver.sh and automate-all.sh. The scripts used can be found in Appendix B.
The first script, automate-stryker (section B.1), handles running the aforemen-
tioned Stryker commands on the command line 5 times for each stage for every
test subject. Meaning that there will be a total of 20 runs for each test sub-
ject. The second script, automate-solver (section B.2), first runs the Stryker
command extended with --exportMutantsOnly to export the mutants to a file
(skips the entire mutation testing phase), which is then fed into the Java solver
as input to form simultaneous mutant groups. The last script, automate-both
(section B.3), makes use of both automate-stryker and automate-solver to fully
automate the process. The test subjects are hard-coded in this script. Addi-
tionally, the test subject typescript-checker will be run by this script with a
concurrency of 4, as opposed to a concurrency of 1 like the other test subjects,

55

OS Version Windows 11 Enterprise, 22H2
Processor 12th Gen Intel(R) Core(TM) i7-12800H 2.40 GHz
Installed RAM 32,0 GB (31,7 GB usable)
System type 64-bit operating system, x64-based processor

Table 9.1: Host machine specification.

OS Version Ubuntu 22.04.3
available RAM 15GB (+4.1GB swap)
Kernel release 5.15.146.1-microsoft-standard-WSL2

Table 9.2: WSL specification.

because this particular test subject would run for over 10 minutes for a single
Stryker run with a concurrency of 1.

The experiment will be performed on a Windows 11 laptop in the Windows
Subsystem for Linux (WSL). See tables 9.1 and 9.2 for the specifications. Ad-
ditionally, the laptop’s security will be disabled entirely and airplane mode will
be enabled during the experiment.

56

Chapter 10

Results

A lot of data has been captured and the result will be presented in this chap-
ter. This will be done in the same order as the research questions defined in
section 4.3. The last section (see section 10.4) summarises the findings and the
conclusions.

10.1 Performance
An important question to ask is whether simultaneous testing has better per-
formance compared to regular mutation testing. For this reason, the durations
of certain operations have been captured. Table 10.1 shows some performance
statistics from the baseline runs, namely: the total number of test sessions
(#test-sessions), the total time spent creating test sessions (TCTS), the total
time spent running tests (Ttests) and the total time spent in all test sessions
(Tsession, which includes TCTS , Ttests and the time spent formulating a re-
sult). The change in percentages (∆) of these statistics of the verification run
compared to the baseline run are shown in Table 10.2. In particular, the deltas
provide an indication of the introduced overhead by simultaneous mutation test-
ing. The last column ∆Tsession shows a clear overhead of at least 50%. Most of
the overhead comes from the increase in time spent running tests, which is the
result of the necessary feature live reporting (see section 7.3).

Table 10.3 shows the derivations of change in percentages for all test subjects
for the groups formed by the pragmatic (signified by the P sub-columns) and
solver (signified by the S sub-columns) algorithm compared to the verification
run. The last row shows the average of the values in the rows above. From the
last column, we may conclude that simultaneous testing for StrykerJS is not
really useful. It only shows a small increase in performance of 2.9% on average
for the pragmatic runs and it even shows a slowdown of 0.2% on average for the
solver runs.

57

Module #test-sessions TCTS (ms) Ttests (ms) Tsession (ms)
cucumber-expressions 984 718 7192 8093
metrics 288 97 284 429
instrumenter 1411 1230 9247 10752
mocha-runner 250 147 13864 14055
typescript-checker 364 2736 681214 683999
typed-inject 120 48 72 140

Table 10.1: Performance statistics for each project from the baseline run (all
values are averages over 5 runs).

Module ∆#test-sessions ∆TCTS ∆Ttests ∆Tsession

cucumber-expressions 0.0% -0.7% 64.9% 55.6%
metrics 0.0% 18.8% 117.8% 72.1%
instrumenter 0.0% -0.02% 61.5% 50.5%
mocha-runner 0.0% 167.7% 157.1% 176.0%
typescript-checker 0.0% 14.0% 52.2% 52.9%
typed-inject 0.0% -2.5% 156.1% 67.2%

Table 10.2: Change in performance statistics of the verification runs compared
to the baseline (all values are derived from averages over 5 runs).

∆#test-sessions ∆TCTS ∆Ttests ∆Tsession

Module P S P S P S P S
cucumber-expressions -33.2% -28.4% -9.0% 37.7% -0.2% 6.0% -0.7% 7.8%
metrics -42.0% -41.7% -30.6% -20.1% -2.9% -4.9% -7.3% -7.3%
instrumenter -80.9% -55.6% -42.4% -8.9% -0.7% 2.9% -3.9% 1.9%
mocha-runner -76.0 -60.4% -11.6% -6.3% 0.2% 0.5% -0.03% 0.5%
typescript-checker -26.6% -31.9% 5.3% 8.4% 2.4% 5.8% 2.5% 5.8%
typed-inject -35.0 -44.2% -13.2% -9.0% -5.7% -6.3% -7.8% -7.5%
averaged -49.0% -43.7% -16.9% 0.3% -1.2% 0.7% -2.9% 0.2%

Table 10.3: Change in statistics of the pragmatic and solver runs compared to
the verification run (all values are derived from averages over 5 runs).

58

Proportion p avg(|g|) Maximum gain
Module P S P S
cucumber-expressions 0.06 1.50 1.40 1.9% 1.6%
metrics 0.16 1.72 1.71 7.0% 7.0%
instrumenter 0.08 5.23 2.25 6.5% 4.4%
mocha-runner 0.01 4.17 2.60 0.8% 0.6%
typescript-checker 0.003 1.48 1.48 0.1% 0.1%
typed-inject 0.20 1.54 1.79 7.5% 9.7%

Table 10.4: The theoretical maximum performance gain per project per group-
ing algorithm.

Overall the small difference in performance, as opposed to the huge decrease
in the number of test sessions, which is about 49% and 44% for the pragmatic
and solver algorithm respectively, can be explained by the fact that the time
spent creating test sessions is relatively small. Table 10.4 shows the maximum
performance gain for all test subjects for both grouping algorithms. Following
Amdahl’s law, the maximum gain is computed from the proportion and the
average group size as explained in section 5.2.3. Note that the proportions are
derived from the test subjects’ verification runs. This table indicates that the
maximum gain from simultaneous testing is only about 4% on average, which
is not that significant. Simultaneous mutation testing improves on having to
create fewer test sessions as shown in the theory. But for StrykerJS specifically,
creating test sessions simply does not take that much time. Hence, the benefit
of simultaneous testing is small or even non-existent.

An interesting observation that can be made when comparing the actual change
in performance (see Table 10.3) with the maximum performance gain (see Ta-
ble 10.4 is that for some test subjects the actual gain exceeds the theoretically
calculated maximum gain. The test subjects in question are metrics and typed-
inject. However, this is not due to the reduction of test sessions but it has to
do with the reduction in time spent running tests. Why the time spent running
tests changes for any of the test subjects is not exactly clear, but it could be
caused by changes to the order in which the tests are executed (see section 8.3).
It could also be caused by JavaScript’s JIT compiler, which optimises pieces of
code that are executed often, which is more likely to happen when sessions run
for a longer period due to having to test more mutants within one session.

A small follow-up experiment was set up to prove the effectiveness of simultane-
ous mutation testing and the impact on performance by the duration of creating
test sessions. In this experiment, only the cucumber-expressions test subject
was used. In addition to the command line arguments as described in chapter 9,
--fakeTestSessionCreationDuration 100 was added. This argument adds a
delay of 100 milliseconds to creating a test session. The results of this run are
shown, in a similar fashion as before, in Table 10.5, Table 10.6 and Table 10.7.

59

Type #test-sessions TCTS (ms) Ttests (ms) Tsession (ms)
baseline 984 101335 9013 110743

Table 10.5: Performance statistics for the cucumber-expressions test subject’s
baseline run with an artificial delay of 100ms to creating a test session (average
over 5 runs).

Type ∆#test-sessions ∆TCTS ∆Ttests ∆Tsession

verification 0.0% -0.1% 55.6% 4.1%

Table 10.6: Change in performance statistics for the cucumber-expressions
test subject’s verification run compared to the baseline run with an artificial
delay of 100ms to creating a test session (all values are derived from averages
over 5 runs).

The results in Table 10.7 show a performance increase for the groups formed
by both the pragmatic and solver algorithms. Using the pragmatic algorithm
improves performance by 30% when compared to the verification run (27% com-
pared to baseline). Using the solver algorithm improves performance by 24%
when compared to the verification run (21% compared to baseline). Even with
the overhead introduced by live reporting, simultaneous testing still performs
better. Do note that in this particular scenario, the time spent creating test
sessions is about 90% of the sum of the durations spent in all test sessions.

Change in performance compared to baseline run:
Type ∆#test-sessions ∆TCTS ∆Ttests ∆Tsession

pragmatic -33.2% -33.0% 47.5% -26.7%
solver -28.4% -27.3% 47.7% -21.4%
Change in performance compared to verification run:
Type ∆#test-sessions ∆TCTS ∆Ttests ∆Tsession

pragmatic -33.2% -32.9% -5.2% -29.6%
solver -28.4% -27.2% -5.1% -24.5%

Table 10.7: Change in performance statistics for the cucumber-expressions test
subject’s pragmatic and solver run compared to the baseline and verification run
with an artificial delay of 100ms to creating a test session (all values are derived
from averages over 5 runs).

60

10.2 Quality
Another important question to ask is whether simultaneous mutation testing
produces the same results as regular mutation testing, as discussed by the second
research question (see section 4.3). Recall from section 8.3 that we do not
require the results of each mutant to be equivalent to the baseline but that we
also accept slightly different outputs for certain mutants, due to test execution
order, as indicated by the status mapping in Table 8.2. Table 10.8 shows an
overview of the amount of (non-acceptable) mismatched results produced on
average during simultaneous testing for the verification, pragmatic and solver
runs compared to the baseline. As can be seen in this table, there are some
non-acceptable mismatched results. These mismatched results are caused by
the test subjects instrumenter, mocha-runner and typescript-checker. The
mismatched results of these test subjects are shown in tables 10.9, 10.10 and
10.11 respectively. The other test subjects (cucumber-expressions, metrics
and typed-inject) did not have any mismatched results.

The first thing to note is that the verification run produces non-acceptable
mismatched results for the mocha-runner and typescript-checker test sub-
jects. That could mean that either the implementation of simultaneous testing
is incorrect or that the original implementation of regular mutation testing is
incorrect (or has become incorrect during the support of simultaneous testing).
It could even mean that (some of) the test suites used by the test subjects
are flawed in the sense that consecutive test runs in a test-runner yields differ-
ent results. More specifically, most of the non-acceptable mismatched results
were false positives, meaning that regular mutation testing killed the mutants
whereas the verification run deemed the same mutants to be a survivor. Even
more so, for verification purposes, one of the mismatched mutants was run in
isolation during regular mutation testing, which then also indicated that mutant
to be a survivor.

A second thing to note is that the verification run of the typescript-checker
test subject shows a decimal value, which indicates that the verification run
produces different results for consecutive runs with the exact same input. This
strengthens the suspicion that consecutive mutant runs in a single test-runner
may influence the results of each other, which is a problem that exists within

Type #misses %misses #non-acceptable
misses

%non-acceptable
misses

verification 3.5 < 0.01 2.5 < 0.01
pragmatic 4.5 < 0.01 3.3 < 0.01
solver 2.2 < 0.01 1.2 < 0.01

Table 10.8: Overview of the average amount of mismatched results and average
percentage of (non-acceptable) mismatched results over the total number of
mutants for each run.

61

Project Type #misses %misses #non-acceptable
misses

%non-acceptable
misses

instrumenter verification 0.0 0.0 0.0 0.0
instrumenter pragmatic 6.0 < 0.01 6.0 < 0.01
instrumenter solver 1.0 << 0.01 1.0 << 0.01

Table 10.9: Mismatched results for the instrumenter test subject compared to
the baseline results.

Project Type #misses %misses #non-acceptable
misses

%non-acceptable
misses

mocha-runner verification 5.0 0.01 1.0 < 0.01
mocha-runner pragmatic 5.0 0.01 1.0 < 0.01
mocha-runner solver 4.0 0.01 0.0 0.0

Table 10.10: Mismatched results for the mocha-runner test subject compared
to the baseline results.

StrykerJS and is not a problem caused by simultaneous mutation testing. No
further investigations have been done into this problem.

The results of both the mocha-runner and typescript-checker test subjects
will be excluded from analysis for the remainder of this section due to the issues
with the verification run. Overall the results indicate almost no difference in
terms of results. In particular, the test subjects typed-inject, metrics and
cucumber-expressions have the same results compared to regular mutation
testing. For the instrumenter project, the pragmatic run had a non-acceptable
mismatch of 6 whereas the solver run had a non-acceptable mismatch of 1.
That is a mismatch of less than 0.01% over all mutants. Of the mismatches
in the pragmatic run, two of them were false negatives (mutants that were
survivors in the baseline but killed by simultaneous testing) and four of them
were false positives (mutants that were killed in the baseline but survived during
simultaneous mutation testing).

As shortly discussed in research question 2 (see section 4.3), it was expected that
simultaneous testing would cause for both false positives and false negatives.
This is due to the fact that a mutant is able to change the control flow of a
program completely, meaning that it is possible that two simultaneous mutants
that were initially disjoint in terms of test coverage actually have overlapping
tests when enabled simultaneously. Due to the high mutation scores of the
test subjects (see Table 8.1), it is likely that we find more false positives than
false negatives because there are a relatively small number of non-equivalent
mutants that survive, meaning that false negatives are less likely to happen.
Although the results also seem to lean towards that conclusion, it is hard to make
a definitive conclusion because of the limited number of mismatched results.
Further investigation is necessary using test subjects with lower mutation scores.

62

Project Type #misses %misses #non-acceptable
misses

%non-acceptable
misses

typescript-checker verification 16.2 0.04 14.2 0.04
typescript-checker pragmatic 16.0 0.04 13.0 0.03
typescript-checker solver 8.0 0.02 6.0 0.01

Table 10.11: Mismatched results for the typescript-checker test subject com-
pared to the baseline results.

|M | #groups #simultaneous mutants avg(|g|) min(|g|) max(|g|) Duration (ms)
Project P S P S P S P S P S
cucumber-expressions 984 125 196 452 475 3.616 2.423 2 39 10 24.4 371991
metrics 288 39 90 160 210 4.103 2.334 2 12 5 7.8 97977
instrumenter 1411 259 371 1400 1156 5.405 3.116 2 84 12 54.8 336407
mocha-runner 250 55 69 245 223 4.455 3.232 2 23 9 2.6 83926
typescript-checker 364 65 87 183 205 2.815 2.356 2 19 8 10.4 107940
typed-inject 120 29 46 71 99 2.448 2.152 2 7 3 2.0 93010

Table 10.12: Statistics of non-singleton simultaneous mutation groups formed
by the pragmatic and solver algorithm.

10.3 Strategy for Grouping Mutants
The third research question we wish to answer is: What is the best strategy for
grouping mutants together in terms of performance? In order to answer this
question properly, some statistics were gathered on the groups that were formed
by the pragmatic and solver algorithm. The statistics for each test subject are
shown in Table 10.12 and includes the following: the total number of gener-
ated mutants (|M |), the number of (non-singleton) groups formed (#groups),
the number of (non-singleton) simultaneous mutants (#simultaneous mutants),
the average (avg(|g|)), minimum (min(|g|)) and maximum (max(|g|)) size of
the (non-singleton) simultaneous groups formed and the time it takes for the
algorithm to form the groups (duration). The sub-columns P and S indicate
whether the value relates to the pragmatic or solver algorithm respectively. If
there are no sub-columns, then the results were equivalent for both algorithms.
As stated in section 6.6.7, please note that the solver algorithm is constrained
by time and memory, meaning that it may not perform well on large inputs.

The pragmatic algorithm is quite efficient in forming mutation groups compared
to the solver. The maximum time spent forming groups by the pragmatic algo-
rithm is 55 milliseconds for the instrumenter test subject, while the minimum
time spent by the solver algorithm was almost 84 seconds for the mocha-runner
test subject. In fact, just creating the constraints in the solver takes longer than
the time it takes for the pragmatic algorithm to form groups.

The results also show that the pragmatic algorithm tends to create fewer (and

63

Project Pragmatic reruns Solver reruns
cucumber-expressions 0 0
metrics 0 0
instrumenter 0 0
mocha-runner 0 3
typescript-checker 21 2
typed-inject 0 0

Table 10.13: Number of reruns for each test subject per grouping algorithm.

therefore also larger) groups, this is true for all test subjects (see #groups and
avg(|g|). Since the main objective of the algorithms was to create as few groups
as possible (see section 6.2), we may conclude that the groups formed by the
pragmatic algorithm are superior to the groups formed by the solver. This is
supported by the performance tables 10.3 and 10.4.

Another aspect to forming groups to take into account is the consequence of
mutants that will cause a timeout. If the group leads to a timeout before all
simultaneous mutants within that group have a properly defined result, then the
mutation testing tool needs to rerun all mutants that do not have a properly
defined result yet individually. The odds that a group will cause a timeout
grows with the size of the group as the odds of it containing at least 1 mutant
that causes a timeout increases. This would mean that since the pragmatic
algorithm produces larger groups, it is expected that it also requires more reruns.
Even more so, the sizes of the groups formed by the pragmatic algorithm varies
drastically as the column on maximum size of non-singleton mutation groups
indicate (max(|g|)). For example, the pragmatic algorithm formed a group of 84
mutants in the instrumenter test subject, whereas the solver algorithm’s largest
group is only 12. Table 10.13 shows the number of reruns for the pragmatic
and solver algorithm for each test subject. The impact of this is especially
noticeable in the typescript-checker test subject. Here, the pragmatic run
required 21 reruns, whereas the solver run only needed 2 reruns. However, due
to the limited number of cases where reruns occur, no definitive conclusion can
be made on whether it is desirable to have relatively large or small groups.

10.4 Summary of Findings
To summarise, simultaneous mutation testing for StrykerJS introduces an over-
head of at least 50% due to the necessary feature live reporting. If we were to
ignore the impact of the overhead, then simultaneous mutation testing increases
the performance by 2.9% on average (when using the pragmatic grouping al-
gorithm). The time spent creating test session in StrykerJS is not that high,
meaning that there is little benefit to performing simultaneous mutation test-
ing. The follow-up experiment shows that simultaneous testing can improve
the performance by almost 27% under certain conditions, even with the over-

64

head introduced by simultaneous testing. Additionally, simultaneous testing
produces the same results as regular mutation testing. Only 0.01% of the mu-
tants that have been tested produce a different result. Concerning the grouping
algorithms, the solver algorithm is in all ways inferior to the pragmatic algo-
rithm. The pragmatic algorithm is more efficient in terms of time spent forming
the groups and it also produces a smaller set of simultaneous mutant groups.

65

Chapter 11

Discussion

In the upcoming sections, we will examine potential threats to the research’s
validity, explore potential directions for future research, and ultimately wrap up
the report with a recommendation, followed by a conclusion.

11.1 Threats to Validity
In this section we will discuss potential threats to the validity of the research.
Threats to internal validity may have an impact on the conclusion drawn from
the observed results due to the variables that have been changed. It is mainly
concerned with whether the observed results are truly caused by the presumably
independently changed variables. It is also concerned with whether the results
are consistent as to enhance the reproducibility of the research. Threats to
external validity are mainly concerned with the applicability of the research’s
results in the real world.

11.1.1 Threats to Internal Validity
• Memory limit of group solver: As stated in section 6.6.7, the solver

algorithm runs out of memory when attempting to solve for ’large’ inputs.
This meant that we had to split the input into multiple parts. The splits
themselves have a huge impact on the groups that are being formed. This
has the consequence that comparing the pragmatic and solver algorithm’s
results is unfair. Although attempts were made to decrease the impact
of the lack of memory available (by increasing the amount of memory
the solver may use), it was not sufficient for the solver to really compete
against the pragmatic algorithm.

• Inconsistent performance metrics measurements: Because comput-
ers do many things in parallel, it is possible that two executions of the

66

same program measure vastly different durations for the same operations.
To minimise this threat, the average was taken of five iterations of the
same program. Additionally, the device on which the experiment was per-
formed had its security disabled and airplane mode enabled. Furthermore,
the concurrency configuration option in Stryker was set to 1 to prevent
overloading the main process, as explained in the description of configu-
ration options for Stryker in chapter 9.

11.1.2 Threats to External Validity
• High quality test subjects: The test subjects used during the experi-

ment all have adequate test suites as the mutation scores indicate. It could
be the case that the results of the experiment are only representative for
other projects in the real world with high quality test suites. To be more
precise, it is possible that the quality of simultaneous testing is impacted
more than the 0.01% found in the experiments. The last paragraph in
section 10.2 touches on this issue briefly.

• Restricted to StrykerJS: We implemented simultaneous testing in the
mutation testing tool StrykerJS. This means that the observed results,
most notably the observed change in performance, may not be the same for
other mutation testing tools. The potential gain of simultaneous mutation
testing heavily depends on the time it takes to create a test session, which
is different for every mutation testing tool.

• Restricted to JavaScript and friends: StrykerJS is a source-code mu-
tator for JavaScript, TypeScript and alike. As such, the projects used
during the experiments are written in JavaScript/TypeScript. The types
of mutations generated in these projects may differ drastically in fre-
quency between other programming languages. This indirectly influences
the types of mutations that are grouped to be run simultaneously, which
may influence performance and quality.

11.2 Future Work
In this section we discuss potential starting points for further research on the
topic of simultaneous testing.

11.2.1 Timeouts and Simultaneous Testing
As explained in section 7.3, when a group of mutants times out, all the mutants
within that group that do not have a properly defined result yet need to be
rerun individually. This partially nullifies the benefit of simultaneous mutation
testing, which is undesired. On the one hand, larger groups will impact perfor-
mance more on timeout than smaller groups. On the other hand, smaller groups
provide less of a performance gain in the first place. A more fine-grained theory

67

on the cost of simultaneous mutation testing (see section 5.2) that includes the
effects of timeouts more precisely should help with determining how to deal with
timeouts within mutation groups.

Additionally, the odds of a group timing out increases as the size of the group
increases when assuming that every mutant is just as likely to timeout as any
other. For example, consider the groups G1 = {{m1, t,m2,m3}} and G2 =
{{m1, t}, {m2,m3}}, where m1,m2 and m3 are mutants that will not time out
and t is a mutant that will timeout. In this example, group G1 will perform
worse than G2 even though |G1| < |G2|. This is because G1 will require 3 test
sessions when accounting for the additional test sessions created to rerunm1 and
m2, whereas G2 only requires 2 because it does not need to rerun any mutants.
To combat this issue, an investigation into the odds of a mutant timing out is
necessary. More specifically, it could be the case that certain types of mutants
produced by certain mutation operators have the tendency to time out more
often than others. From the results, one could decide to not group any mutants
with any other mutants that are likely to time out.

11.2.2 Simultaneous Mutation Testing for Other
StrykerJS Test-runners

Simultaneous mutation testing has been implemented for the mocha test-runner
specifically. It is possible that other test-runners spend more time creating
test sessions, which could mean that these test-runners may see a performance
increase if simultaneous mutation testing was implemented for them. Before
implementing simultaneous mutation testing for any other test-runner, it is
advised that developers measure the average time it takes to create test sessions
first to decide whether it is beneficial.

11.2.3 Smart Mutation Switching
The current implementation used for simultaneous testing in the mocha test-
runner will enable all mutants from a group simultaneously at all times. In-
terestingly enough, Mocha’s application programming interface would allow us
to switch (enable/disable) mutants in between tests. This should improve the
quality of simultaneous mutation testing since the simultaneous mutants would
be guaranteed to have no impact on each other. This should not have an impact
on the performance.

11.2.4 Comparison with Stryker.NET
A comparison in performance and quality with Stryker.NET could be interest-
ing. It may provide more insights into why simultaneous mutation testing works
better or worse in other programming languages and/or other mutation testing
tools.

68

11.3 Recommendation
For StrykerJS in particular, we recommend not implementing simultaneous mu-
tation testing, at least not for the Mocha test-runner. The overhead introduced
by simultaneous mutation testing simply outweighs the benefit of reducing the
number of test sessions required. However, it is possible that simultaneous test-
ing would perform better on other test-runners that need more time to create
test sessions as discussed in section 11.2.2.

In general, simultaneous mutation testing can be a good optimisation if the
time it takes to create test sessions is relatively large as was shown during the
follow-up experiment. In order to implement simultaneous testing, it is required
that the optimisations coverage analysis and mutant schemata have been im-
plemented. Developers of mutation testing tools should first investigate the
time it takes to create test sessions before considering to implement simultane-
ous mutation testing as to figure out whether simultaneous testing would prove
beneficial. Amdahl’s law can be used to determine the maximum possible per-
formance gain once the proportion of time spent creating test sessions has been
measured1.

11.4 Conclusion
In this thesis we have investigated a novel approach to decrease the cost of
mutation testing, called simultaneous mutation testing. The theory presented
is used as a means to explain why mutation testing is costly in general, including
the impact of certain optimisations, while also showing where the performance
gain from simultaneous mutation testing should come from. Additionally, two
algorithms are provided that are capable of forming acceptable mutant groups
to be used during simultaneous testing.

The theory has been validated through a controlled experiment and shows that
simultaneous mutation is effective when the average time spent creating test ses-
sions is higher than the overhead introduced by simultaneous mutation testing.
Although simultaneous testing could only improve the performance of StrykerJS
by 3%, the follow-up experiment has shown that simultaneous testing can re-
duce the total time it takes to perform mutation testing up to 27%. Compared
to many other optimisations, such as higher-order mutation, simultaneous mu-
tation testing improves performance while also retaining the quality. In fact,
less than 0.01% of the mutants had mismatched results compared to regular
mutation testing. It is advised that developers measure the time it takes to
create test sessions first before considering to implement it as the maximum
possible performance gain relies entirely on that metric.

1For computing the maximum possible performance gain, one can let |g| → ∞.

69

Bibliography

[1] M. A. Cachia, M. Micallef, and C. Colombo. Towards incremental mutation
testing. Electronic Notes in Theoretical Computer Science, 294:2–11, Mar.
2013.

[2] M. Delamaro and J. Maldonado. Interface mutation: assessing testing qual-
ity at interprocedural level. In Proceedings. SCCC'99 XIX International
Conference of the Chilean Computer Science Society. IEEE Comput. Soc,
1999.

[3] M. Delamaro, J. Maldonado, and A. Mathur. Integration testing using
interface mutation. In Proceedings of ISSRE '96: 7th International Sympo-
sium on Software Reliability Engineering. IEEE Comput. Soc. Press, 1996.

[4] R. DeMillo, R. Lipton, and F. Sayward. Hints on test data selection: Help
for the practicing programmer. Computer, 11(4):34–41, 1978.

[5] R. Demillo and E. Spafford. The mothra software testing environment, 01
1987.

[6] A. S. Ghiduk, M. R. Girgis, and M. H. Shehata. Higher order mutation
testing: A systematic literature review. Computer Science Review, 25:29–
48, Aug. 2017.

[7] A. Gillies. Software quality: Theory and management (3rd edition).
Lulu.com, Barking, England, Jan. 2011.

[8] Google. Or-tools | google for developers. https://developers.google.
com/optimization. [Online; accessed January 29th 2024].

[9] W. Howden. Weak mutation testing and completeness of test sets. IEEE
Transactions on Software Engineering, SE-8(4):371–379, July 1982.

[10] D. Jackson and M. R. Woodward. Parallel Firm Mutation of Java Pro-
grams, page 55–61. Springer US, 2001.

[11] P. Jalote. An Integrated Approach to Software Engineering. Springer New
York, 1997.

70

https://developers.google.com/optimization
https://developers.google.com/optimization

[12] Y. Jia and M. Harman. Constructing subtle faults using higher order mu-
tation testing. In 2008 Eighth IEEE International Working Conference on
Source Code Analysis and Manipulation, pages 249–258, 2008.

[13] Y. Jia and M. Harman. Higher order mutation testing. Information and
Software Technology, 51(10):1379–1393, Oct. 2009.

[14] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser.
Are mutants a valid substitute for real faults in software testing? In Pro-
ceedings of the 22nd ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering, FSE 2014, page 654–665, New York, NY,
USA, 2014. Association for Computing Machinery.

[15] G. Kaminski, G. Williams, and P. Ammann. Reconciling perspectives
of software logic testing. Software Testing, Verification and Reliability,
18(3):149–188, Sept. 2008.

[16] M. Kintis, M. Papadakis, and N. Malevris. Evaluating mutation testing
alternatives: A collateral experiment. In 2010 Asia Pacific Software Engi-
neering Conference. IEEE, Nov. 2010.

[17] M. Kintis, M. Papadakis, and N. Malevris. Isolating first order equivalent
mutants via second order mutation. In 2012 IEEE Fifth International
Conference on Software Testing, Verification and Validation. IEEE, Apr.
2012.

[18] B. Kurtz, P. Ammann, M. E. Delamaro, J. Offutt, and L. Deng. Mutant
subsumption graphs. In 2014 IEEE Seventh International Conference on
Software Testing, Verification and Validation Workshops. IEEE, Mar. 2014.

[19] B. Kurtz, P. Ammann, and J. Offutt. Static analysis of mutant subsump-
tion. In 2015 IEEE Eighth International Conference on Software Testing,
Verification and Validation Workshops (ICSTW). IEEE, Apr. 2015.

[20] W. B. Langdon, M. Harman, and Y. Jia. Efficient multi-objective higher
order mutation testing with genetic programming. Journal of Systems and
Software, 83(12):2416–2430, Dec. 2010.

[21] C. Y. Laporte and A. April. Software Quality Assurance. John Wiley &
Sons, Nashville, TN, Dec. 2017.

[22] J. Lee, S. Kang, and P. Jung. Test coverage criteria for software prod-
uct line testing: Systematic literature review. Information and Software
Technology, 122:106272, June 2020.

[23] Y.-S. Ma, J. Offutt, and Y.-R. Kwon. MuJava. In Proceedings of the 28th
international conference on Software engineering. ACM, May 2006.

[24] P. R. Mateo and M. P. Usaola. Parallel mutation testing. Software Testing,
Verification and Reliability, 23(4):315–350, Mar. 2012.

71

[25] Q. V. Nguyen and L. Madeyski. Addressing mutation testing problems
by applying multi-objective optimization algorithms and higher order mu-
tation. Journal of Intelligent & Fuzzy Systems, 32(2):1173–1182, Jan. 2017.

[26] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf. An exper-
imental determination of sufficient mutant operators. ACM Trans. Softw.
Eng. Methodol., 5(2):99–118, apr 1996.

[27] A. J. Offutt and J. Pan. Automatically detecting equivalent mutants and
infeasible paths. Software Testing, Verification and Reliability, 7(3):165–
192, 1997.

[28] A. J. Offutt and J. Pan. Automatically detecting equivalent mutants and
infeasible paths. Software Testing, Verification and Reliability, 7(3):165–
192, 1997.

[29] A. J. Offutt and R. H. Untch. Mutation 2000: Uniting the Orthogonal,
pages 34–44. Springer US, Boston, MA, 2001.

[30] M. Papadakis, Y. Jia, M. Harman, and Y. L. Traon. Trivial compiler
equivalence: A large scale empirical study of a simple, fast and effective
equivalent mutant detection technique. In 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering. IEEE, May 2015.

[31] M. Papadakis and N. Malevris. An empirical evaluation of the first and
second order mutation testing strategies. In 2010 Third International Con-
ference on Software Testing, Verification, and Validation Workshops. IEEE,
Apr. 2010.

[32] A. Parsai and S. Demeyer. Comparing mutation coverage against branch
coverage in an industrial setting. International Journal on Software Tools
for Technology Transfer, 22(4):365–388, May 2020.

[33] Pitest. Java mutation testing systems. https://pitest.org/java_
mutation_testing_systems/. [Online; accessed October 3rd 2023].

[34] R. Pitts. Mutant selection strategies in mutation testing. In 2023 Interna-
tional Conference on Code Quality (ICCQ). IEEE, Apr. 2023.

[35] A. V. Pizzoleto, F. C. Ferrari, J. Offutt, L. Fernandes, and M. Ribeiro. A
systematic literature review of techniques and metrics to reduce the cost of
mutation testing. Journal of Systems and Software, 157:110388, 2019.

[36] M. Polo, M. Piattini, and I. García-Rodríguez. Decreasing the cost of
mutation testing with second-order mutants. Software Testing, Verification
and Reliability, 19(2):111–131, June 2009.

[37] M. Reddy. Chapter 7 - performance. In M. Reddy, editor, API Design for
C++, pages 209–240. Morgan Kaufmann, Boston, 2011.

72

https://pitest.org/java_mutation_testing_systems/
https://pitest.org/java_mutation_testing_systems/

[38] D. Schuler and A. Zeller. (un-)covering equivalent mutants. In 2010 Third
International Conference on Software Testing, Verification and Validation.
IEEE, 2010.

[39] J. Smits. Callisto - selecting effective mutation operators for mutation
testing, 2022.

[40] Stryker. Stryker mutator. https://stryker-mutator.io/. [Online; ac-
cessed October 5th 2023].

[41] Stryker. Supported mutators: Stryker mutator. https:
//stryker-mutator.io/docs/mutation-testing-elements/
supported-mutators/. [Online; accessed October 5th 2023].

[42] Stryker. Strykerjs github. https://github.com/stryker-mutator/
stryker-js, 2016. [Online; accessed October 5th 2023].

[43] Stryker. Stryker github. https://github.com/stryker-mutator, 2018.
[Online; accessed October 5th 2023].

[44] Stryker. Stryker4s github. https://github.com/stryker-mutator/
stryker4s, 2018. [Online; accessed October 5th 2023].

[45] Stryker. Stryker.net github. https://github.com/stryker-mutator/
stryker-net, 2018. [Online; accessed October 5th 2023].

[46] R. H. Untch, A. J. Offutt, and M. J. Harrold. Mutation analysis using
mutant schemata. In Proceedings of the 1993 ACM SIGSOFT international
symposium on Software testing and analysis. ACM, July 1993.

[47] C. Wimmer, C. Stancu, P. Hofer, V. Jovanovic, P. Wögerer, P. B. Kessler,
O. Pliss, and T. Würthinger. Initialize once, start fast: application initial-
ization at build time. Proceedings of the ACM on Programming Languages,
3(OOPSLA):1–29, Oct. 2019.

[48] L. Zhang, D. Marinov, and S. Khurshid. Faster mutation testing inspired by
test prioritization and reduction. In Proceedings of the 2013 International
Symposium on Software Testing and Analysis. ACM, July 2013.

[49] L. Zhang, D. Marinov, L. Zhang, and S. Khurshid. Regression mutation
testing. In Proceedings of the 2012 International Symposium on Software
Testing and Analysis. ACM, July 2012.

73

https://stryker-mutator.io/
https://stryker-mutator.io/docs/mutation-testing-elements/supported-mutators/
https://stryker-mutator.io/docs/mutation-testing-elements/supported-mutators/
https://stryker-mutator.io/docs/mutation-testing-elements/supported-mutators/
https://github.com/stryker-mutator/stryker-js
https://github.com/stryker-mutator/stryker-js
https://github.com/stryker-mutator
https://github.com/stryker-mutator/stryker4s
https://github.com/stryker-mutator/stryker4s
https://github.com/stryker-mutator/stryker-net
https://github.com/stryker-mutator/stryker-net

Appendix A

Google Form

74

Faster Mutation Testing with StrykerJS
In order to validate the optimisation being made, it is required that it is tested on real-world
applications that make use of Stryker. This form tries to capture the most important
information of projects.

Sign in to Google to save your progress. Learn more

* Mandatory question

Link to project on Github *
The link to your project on Github (or other version control websites that work with git).
May refer to a different branch or specific commit but it should be stable.

Number of mutants *
The total number of mutants that are generated and tested.

Lines of source code
Total number of lines of source code in the project. Excluding comments, blank lines and
code that is not mutated (like html, the body of script elements within the html should be
included).

What is your (current) mutation score (in %)? *

Cucumber

Jasmine

Karma

Mocha

Tap

Vitest

Command runner

Page 1 of 1

Never send passwords through Google Forms.

This content is not created or approved by Google. Report Abuse - Terms of Service - Privacy Policy

Which test-runners does your project use? *
It could be the case that projects use different test-runners for different
modules/packages. You can select all test-runners used here.

Which test-runner does your project use mainly? *
The main test-runner would be considered the one that tests the largest proportion of the
code base.

Choose

Remarks
Here you can put some remarks about your project (setup). Such as: which test-runner is
used for which module/package (when using more than 1 test-runner), and whether you
have disabled specific mutation operators through 'excludedMutations' in the
configuration.

Send Clear form

 Forms

Jest

Appendix B

Automated Scripts

B.1 automate-stryker.sh
1 #!/ bin /bash
2
3 ARGC=$#
4 DIR=$ (pwd)
5
6 i f [$ARGC −l t 1]
7 then
8 echo "miss ing ␣ source / p r o j e c t ␣ d i r e c t o r y " ;
9 e x i t 10 ;

10 f i
11
12 i f [$ARGC −l t 2]
13 then
14 echo "Miss ing ␣output␣ d i r e c t o r y ␣where␣ the ␣ r e s u l t s ␣ should ␣be␣ s to r ed " ;
15 e x i t 10 ;
16 f i
17
18 SRC=$ (rea lpa th "$1")
19 OUTPUT=$ (rea lpa th −m "$2")
20 echo " source : ␣$SRC"
21 echo " ta r g e t : ␣$OUTPUT"
22
23 execute_so lver=f a l s e
24 so lver_input="undef ined "
25
26 i f [$ARGC −l t 3]
27 then

77

28 echo "Miss ing ␣ th i rd ␣argument␣ f o r ␣−−importMutantGroupsFile , ␣ i f ␣ i n t e n t i o n a l ␣you␣can␣ ignore ␣
t h i s ␣message . ␣However , ␣ t h i s ␣ does ␣mean␣ that ␣we␣ w i l l ␣ sk ip ␣ the ␣ s o l v e r . ␣Continuing ␣ a f t e r ␣5 s
. . . "

29 s l e e p 5
30 e l s e
31 i f [! −f "$3"] ; then
32 echo " F i l e ␣ does ␣not␣ e x i s t : ␣ ’ $3 ’ "
33 e x i t 10 ;
34 f i
35
36 execute_so lver=true
37 so lver_input="$ (r ea lpa th ␣$3) "
38 f i
39
40 CONCURRENCY=1
41
42 i f [$ARGC −ge 4]
43 then
44 CONCURRENCY=$4 ;
45 f i
46
47 echo " concurrency : ␣$CONCURRENCY"
48
49
50 TIMEOUT="2 s "
51 i f [$ARGC −ge 5]
52 then
53 TIMEOUT=$5 ;
54 echo "Timeout␣ s e t ␣ to ␣$TIMEOUT" ;
55 f i
56
57 i f ! cd "$SRC" ; then
58 e x i t 10 ;
59 f i ;
60
61 i f [! −d "$OUTPUT"] ; then
62 echo "Output␣ d i r e c t o r y ␣ ’$OUTPUT’ ␣does ␣not␣ e x i s t ␣yet , ␣ i t ␣ w i l l ␣be␣ c reated "
63 mkdir −p "$OUTPUT"
64 f i ;
65
66 s l e e p 3
67
68 func t i on i t e r a t e {
69 f o r ((i = 1 ; i <= 5 ; i++)) ;
70 do
71 l o c a l RUN_OUTPUT_DIRECTORY="${OUTPUT}/$2/ run$ i "

78

72 mkdir −p "$RUN_OUTPUT_DIRECTORY"
73 l o c a l RUN_LOG_FILE="${RUN_OUTPUT_DIRECTORY}/run . l og "
74 l o c a l RUN_METRICS="${RUN_OUTPUT_DIRECTORY}/metr i c s . j s on "
75 l o c a l RUN_MUTATION="${RUN_OUTPUT_DIRECTORY}/mutation . j son "
76 l o c a l FULL_COMMAND="$1␣−−measureMetr icsOutputFi le ␣${RUN_METRICS}␣−−jsonReporterOpt ions

. f i leName␣${RUN_MUTATION}␣−−concurrency ␣$CONCURRENCY"
77 s e t −o p i p e f a i l
78 #eva l "$FULL_COMMAND | tee $RUN_LOG_FILE" ;
79 i f ! eva l "$FULL_COMMAND␣ | ␣ tee ␣$RUN_LOG_FILE" ; then
80 #i f ! eva l "$FULL_COMMAND" ; then
81 s e t +o p i p e f a i l
82 echo "An␣ i s s u e ␣ occurred ␣ execut ing ␣ ’$FULL_COMMAND’ ␣on␣ i t e r a t i o n ␣ $ i . ␣Terminating␣

s c r i p t . . . "
83 e x i t 10 ;
84 e l s e
85 s e t +o p i p e f a i l
86 echo " I t e r a t i o n ␣ $ i ␣ completed␣with␣command␣ ’$FULL_COMMAND’ , ␣wai t ing ␣ ’$TIMEOUT’ ␣

be f o r e ␣ cont inu ing . . . "
87 s l e e p "$TIMEOUT"
88 f i ;
89 done
90 }
91
92 func t i on ba s e l i n e {
93 i t e r a t e "npm␣run␣ s t r yke r ␣−−" " ba s e l i n e "
94 }
95
96 func t i on v e r i f i c a t i o n {
97 i t e r a t e "npm␣run␣ s t r yke r ␣−−␣−−enableS imultaneousTest ing ␣−−maximumGroupSize␣1" "

v e r i f i c a t i o n "
98 }
99

100 func t i on pragmatic {
101 i t e r a t e "npm␣run␣ s t r yke r ␣−−␣−−enableS imultaneousTest ing " "pragmatic "
102 }
103
104 func t i on s o l v e r {
105 i t e r a t e "npm␣run␣ s t r yke r ␣−−␣−−enableS imultaneousTest ing ␣−−importMutantGroups␣−−

importMutantGroupsFile ␣${ so lver_input }" " s o l v e r "
106 }
107
108 ba s e l i n e
109 echo "Fin i shed ␣ ba s e l i n e ␣ runs "
110 s l e e p 1
111
112 v e r i f i c a t i o n

79

113 echo "Fin i shed ␣ v e r i f i c a t i o n ␣ runs "
114 s l e e p 1
115
116 pragmatic
117 echo "Fin i shed ␣pragmatic ␣ runs "
118 s l e e p 1
119
120 i f [" $execute_so lver " = true] ; then
121 s o l v e r
122 echo "Fin i shed ␣ s o l v e r ␣ (imported) ␣ runs "
123 e l s e
124 echo "No␣ s o l v e r ␣ runs ␣were␣ executed "
125 f i
126
127 cd $DIR

B.2 automate-solver.sh
1 #!/ bin /bash
2
3 ARGC=$#
4 DIR=$ (pwd)
5
6 i f [$ARGC −l t 1]
7 then
8 echo "miss ing ␣ source / p r o j e c t ␣ d i r e c t o r y " ;
9 e x i t 10 ;

10 f i
11
12 i f [$ARGC −l t 2]
13 then
14 echo "Miss ing ␣output␣ d i r e c t o r y ␣where␣ the ␣ r e s u l t s ␣ should ␣be␣ s to r ed " ;
15 e x i t 10 ;
16 f i
17
18 i f [$ARGC −l t 3]
19 then
20 echo "Miss ing ␣name␣ o f ␣ the ␣ to ␣be␣ exported ␣ f i l e " ;
21 e x i t 10 ;
22 f i
23
24 i f [$ARGC −l t 4]
25 then
26 echo "Miss ing ␣path␣ to ␣ s o l v e r ␣ j a r " ;
27 e x i t 10 ;

80

28 f i
29
30 SPLIT_SIZE=200
31 i f [$ARGC −ge 5]
32 then
33 SPLIT_SIZE="$5" ;
34 f i
35
36
37 SRC=$ (rea lpa th "$1")
38 OUTPUT_DIR=$ (rea lpa th −m "$2")
39 OUTPUT_FILE="$3"
40 SOLVER=$ (rea lpa th "$4")
41
42 echo " source : ␣$SRC"
43 echo "output ␣ d i r e c t o r y : ␣$OUTPUT_DIR"
44 echo "output ␣ f i l ename : ␣$OUTPUT_FILE"
45 echo " s o l v e r : ␣$SOLVER"
46 echo " s p l i t S i z e : ␣$SPLIT_SIZE"
47
48 i f ! cd "$SRC" ; then
49 e x i t 10 ;
50 f i ;
51
52 i f [! −d "$OUTPUT_DIR"] ; then
53 echo "Output␣ d i r e c t o r y ␣ ’$OUTPUT_DIR’ ␣does ␣not␣ e x i s t ␣yet , ␣ i t ␣ w i l l ␣be␣ c rea ted "
54 mkdir −p "$OUTPUT_DIR"
55 f i ;
56
57 s l e e p 3
58
59 EXPORTED_FILE="${OUTPUT_DIR}/${OUTPUT_FILE}"
60 i f ! npm run s t r yk e r −− −−exportMutantsOnly −−exportMutantsFi le "$EXPORTED_FILE" −−

measureMetr icsOutputFi le /dev/ nu l l ; then
61 echo "Exporting ␣mutants␣ f a i l e d , ␣ te rminat ing ␣ s c r i p t . . . " ;
62 e x i t 10 ;
63 f i
64
65 echo "Mutants␣have␣been␣ exported ␣ to ␣${EXPORTED_FILE}"
66
67 i f ! java −Xmx8g −j a r "$SOLVER" "$EXPORTED_FILE" "" $SPLIT_SIZE ; then
68 echo "An␣ i s s u e ␣ occurred ␣ in ␣ the ␣ so lve r , ␣ attempting ␣ to ␣ r e t r y ␣with␣ s p l i t ␣ s i z e ␣150" ;
69 i f ! java −Xmx8g −j a r "$SOLVER" "$EXPORTED_FILE" "" 150 ; then
70 echo "An␣ i s s u e ␣ occurred ␣ in ␣ the ␣ s o l v e r ␣with␣ s p l i t ␣ s i z e ␣ 150 , ␣ terminat ing ␣ s c r i p t . . . " ;
71 e x i t 10 ;
72 f i

81

73 f i

B.3 automate-both.sh
1 #!/ bin /bash
2
3 TEST_SUBJECTS=(
4 " te s t−p r o j e c t s /cucumber−exp r e s s i on s / j a v a s c r i p t "
5 " te s t−p r o j e c t s /mutation−te s t i ng −elements /packages /metr i c s "
6 " te s t−p r o j e c t s /typed−i n j e c t "
7 " te s t−p r o j e c t s / s t ryker−j s / packages / inst rumenter "
8 " te s t−p r o j e c t s / s t ryker−j s / packages /mocha−runner "
9 " te s t−p r o j e c t s / s t ryker−j s / packages / type s c r i p t −checker "

10)
11
12 i f [$# −l t 1]
13 then
14 echo "Miss ing ␣ t a r g e t ␣ d i r e c t o r y ␣where␣ the ␣ r e s u l t s ␣ o f ␣ the ␣ runs ␣ should ␣be␣ s to r ed " ;
15 e x i t 10 ;
16 f i
17
18 # de f au l t to doing both
19 SHOULD_SOLVE=true ;
20 SHOULD_STRYKER=true ;
21
22 i f [$# −eq 2]
23 then
24 i f ["$2" = " so l v e "] ; then
25 SHOULD_STRYKER=f a l s e ;
26 echo "Found␣ ’ so lve ’ ␣ as ␣ secondary ␣argument . ␣This ␣means␣ that ␣we␣ w i l l ␣ only ␣run␣ the ␣ s o l v e r

. ␣Continuing ␣ a f t e r ␣5 s . . . "
27 s l e e p 5 ;
28 e l i f ["$2" = " s t r yk e r "] ; then
29 SHOULD_SOLVE=f a l s e ;
30 echo "Found␣ ’ s t ryker ’ ␣ as ␣ secondary ␣argument . ␣This ␣means␣ that ␣we␣ w i l l ␣ only ␣run␣ s t r yk e r .

␣Assumes␣ s o l v e r ␣has␣been␣used␣ be f o r e ␣on␣ the ␣same␣ ta r g e t ␣ d i r e c t o r y ␣ (f i r s t ␣argument) ␣
to ␣ proper ly ␣ s e t ␣up␣ the ␣use ␣ o f ␣ the ␣ s t r yke r ␣command . ␣Continuing ␣ a f t e r ␣5 s . . . "

31 s l e e p 5 ;
32 e l s e
33 echo "Unknown␣ second␣argument␣ ’ $2 ’ , ␣ expected ␣ ’ so lve r ’ ␣ or ␣ ’ s t ryker ’ ␣ (second␣argument␣ i s

␣ op t i ona l) " ;
34 e x i t 10 ;
35 f i
36 e l s e

82

37 echo "No␣ second␣argument␣provided , ␣ w i l l ␣ run␣ s o l v e r ␣and␣ s t r yk e r ␣ c on s e cu t i v e l y ␣on␣each␣ t e s t ␣
sub j e c t . ␣Continuing ␣ a f t e r ␣5 s . . . " ;

38 s l e e p 5 ;
39 f i
40
41 i f [$# −gt 2]
42 then
43 echo "Too␣many␣arguments␣were␣provided , ␣ expected ␣ at ␣most␣2␣but␣ got ␣$#" ;
44 e x i t 10 ;
45 f i
46
47 echo "Test ␣ sub j e c t s : "
48 f o r sub j e c t in "${TEST_SUBJECTS[@]} "
49 do
50 echo $sub j e c t
51 i f [! −d " $sub j e c t "] ; then
52 echo "Test ␣ sub j e c t ␣ ’ $subject ’ ␣ i s ␣not␣a␣ va l i d ␣ d i r e c t o r y "
53 e x i t 10 ;
54 f i ;
55 done
56
57 EXPORTED_MUTANTS=exported−mutants . j son
58 IMPORTED_MUTANTS=grouped−mutants . j son
59 RESULT_DIR="$1"
60
61 # https : // s tackove r f l ow . com/ que s t i on s /8352851/ sh e l l −how−to−ca l l −one−sh e l l −s c r i p t −from−another−

sh e l l −s c r i p t
62 s o l v e () {
63 current_dir=$ (pwd)
64 source automate−s o l v e r . sh "$1" "$2" "$EXPORTED_MUTANTS" s o l v e r . j a r
65 cd " $current_dir "
66 }
67
68 s t r yk e r () {
69 current_dir=$ (pwd)
70 # th i s t e s t sub j e c t i s r e a l l y slow without a concurrency o f 4 (~10 minutes)
71 i f ["$4" = " te s t−p r o j e c t s / s t ryker−j s / packages / type s c r i p t −checker "] ; then
72 source automate−s t ryke r . sh "$1" "$2" "$3" 4 ;
73 e l s e
74 source automate−s t ryke r . sh "$1" "$2" "$3" 1 ;
75 f i
76 cd " $current_dir "
77 }
78
79 f o r sub j e c t in "${TEST_SUBJECTS[@]} "
80 do

83

81 current_dir=$ (pwd)
82 rea l_sub j e c t=$ (r ea lpa th " $ sub j e c t ")
83 OUTPUT_DIR="${RESULT_DIR}/ $sub j e c t "
84 i f ["$SHOULD_SOLVE" = true] ; then
85 s o l v e " $rea l_sub j ec t " "$OUTPUT_DIR"
86 f i
87
88 i f ["$SHOULD_STRYKER" = true] ; then
89 s t r yke r " $rea l_sub j ec t " "$OUTPUT_DIR" "${OUTPUT_DIR}/${IMPORTED_MUTANTS}" " $sub j e c t "
90 f i
91
92 cd " $current_dir "
93 done

84

	Introduction
	Related work
	Equivalent Mutants
	Second-order Mutation
	Higher-order Mutation
	Mutant Subsumption
	Selective Mutation
	Test Prioritization and Reduction
	Summary

	Background
	Mutation Testing
	Process
	Equivalent and Redundant Mutants
	Mutation Results
	Mutation Operators
	Strong And Weak Mutation Testing
	Source-code and Byte-code Mutators
	Cost Optimisations

	Stryker
	Mutation Operators
	Mutation Results
	Static Mutants
	Cost Optimisations

	Simultaneous Mutation Testing
	Concept
	Preliminary Research
	Research Questions

	Theory
	Mutation Testing
	Simultaneous Mutation Testing
	Performance Benefit
	Timeouts with Mutant Groups
	Amdahl's Law
	Smart Bail

	Runtime Specification: StrykerJS

	Formation of Mutant Groups
	Constraints
	Objective
	Concept
	Example Scenario
	Pragmatic Algorithm
	Constraint Solver Algorithm
	Input
	Axioms
	Variables
	Constraints
	Objective
	Output
	Implementation Particularities

	Implementation of Simultaneous Mutation Testing for StrykerJS
	Simultaneous Mutant Schemata
	Simultaneous Infinite Loop Detection
	Timeouts & Live Reporting
	Smart Bail
	Configuration Options

	Validation
	Gathering test subjects
	Evaluating performance
	Evaluating quality
	Evaluating Grouping Algorithms

	Experimental Setup
	Results
	Performance
	Quality
	Strategy for Grouping Mutants
	Summary of Findings

	Discussion
	Threats to Validity
	Threats to Internal Validity
	Threats to External Validity

	Future Work
	Timeouts and Simultaneous Testing
	Simultaneous Mutation Testing for Other StrykerJS Test-runners
	Smart Mutation Switching
	Comparison with Stryker.NET

	Recommendation
	Conclusion

	Google Form
	Automated Scripts
	automate-stryker.sh
	automate-solver.sh
	automate-both.sh

