
Migrating a monolithic system to Event-Driven Microservices - A
case study in Philips

Course: 192399979, Submission Date: May 10, 2024

Yanchuan Zhang - s2888629
University of Twente

Netherlands
y.zhang-24@student.utwente.nl

ABSTRACT
The transition from monolithic systems to cloud-based, event-
driven microservices architectures represents a significant shift
in the software engineering landscape. This project explores the
intricacies of such a migration within the context of Philips’
Harmonized Business Case (HBC), a critical financial modeling tool.
The monolithic nature of HBC, reliant on Excel and VBA, limits
its scalability and integration with contemporary technologies.
By applying an event-driven microservices architecture, the
business processes in which HBC is involved are automated.
These microservices can also be reused by other departments at
Philips that have similar models. Additionally, the loose coupling
feature of this event-driven microservices architecture increases its
interoperability.

Employing the Design Science Methodology, this project begins
with a thorough investigation into the current state, followed by
the design and validation of a novel software migration approach
tailored for Agile and DevOps environments. This approach
advocates for the emergence of a satisfactory software architecture
through continuous small refactoring—a principle aligned with
Agile practices.

The proposed event-driven microservices system facilitates
decoupled interactions and enhances system modularity, which
promotes flexibility and scalability. Validation through software
testing and quality analysis further substantiates the effectiveness
of the migration approach.

While the project concludes with a functional and validated
architecture, limitations due to the incomplete user interface
design and lack of deployment in a production environment are
acknowledged. Future work suggests a focus on refining the
migration process and expanding the research to encapsulate a
complete design cycle, including production deployment and user
feedback analysis.

This research contributes to the field by providing a framework
for successful migration to microservices within the constraints
of modern software development practices like Agile and DevOps,
ultimately improving business processes through enhanced system
design.

1 INTRODUCTION
The use of microservices is rising not only in large companies,
such as Amazon1, Netflix2, and Spotify3, but also in small and
medium-sized companies like SoundCloud4[38]. Microservices are
a software architecture that has emerged from Service-Oriented
Architecture. It comprises several independent microservices, each
of which can be developed, tested, and deployed individually by
different teams, even using different programming languages.

For companies still using a monolithic system, re-architecting or
migrating the pre-existing system to a microservices-based system
is becoming popular. This shift facilitates scalability, maintainability,
and fault tolerance[9]. Moreover, combining microservices and
event-driven architecture also constitutes an emerging trend(See,
e.g., [10], [24], [23], [35], [33] , and [37]). In event-driven system,
since microservices exchange event information, they do not
require detailed information of each other’s inner workings. Thus,
the system will benefit from further reduced coupling and also near
real-time latency[37].

In this project, we explore the challenges and intricacies of
transforming Philips’ Harmonized Business Case (HBC). HBC is a
critical financial modeling tool, currently operating in a monolithic
system and integral for consolidating various deliverables across
Philips’ diverse business sectors. However, its reliance on Excel
and VBA presents scalability challenges, integration issues with
modern technologies, and inefficiencies in processing large volumes
of data input. Additionally, certain manual business processes
associated with the HBC are inefficient and could benefit from
automation to enhance overall productivity. Moreover, the existence
of tools with similar functions in other Philips departments leads
to unnecessary resource expenditure. These limitations lead to the
need for migrating HBC towards a more dynamic, cloud-based,
event-driven microservices architecture. Such a migration aims
to enhance performance, foster real-time data processing, and
improve user and development experience, aligning with Philips’
evolving business needs and technological advancements.

1.1 Methodology
The Design Science Methodology[40] is selected for this project
due to its pragmatic and iterative approach to problem-solving

1https://gigaom.com/2011/10/12/419-the-biggest-thing-amazon-got-right-
theplatform/
2http://nginx.com/blog/Microservices-at-netflix-architectural-best-practices/
3www.infoq.com/presentations/linkedin-Microservices-urn
4https://developers.soundcloud.com/blog/building-products-at-soundcloud-part-1-
dealing-with-the-monolith



Conference’17, July 2017, Washington, DC, USA Yanchuan Zhang - s2888629

in information systems. It divides design science into two parts,
namely design and investigation. Design corresponds to design
problems which "call for a change in the world", while investigation
aligns with knowledge questions that "ask the knowledge about the
world". For this project, HBC aims to migrate their financial model
to a cloud application, aligning with the nature of design problems.
Thus, a design cycle that contains Problem Investigation, Treatment
Design, and Treatment Validation is most suitable for this project.
However, Wieringa[40] also states that the word ’treatment’ can
be misleading, as the artifact cannot solve all problems. Therefore,
in this paper, we use the term ’solution’ instead.

By applying this methodology, this project aims to not only
propose solutions for the problems of context, but also empirically
validate its effectiveness.

1.2 Research Questions
Main Research Question. According to Wieringa[40], a technical

research question needs to have four elements, namely an artifact,
requirements, stakeholder goals, and problem context. However,
the requirements, stakeholder goals, and problem context in this
project cannot be summarized by one sentence. Thus, in Chapter 2
we will detail the requirements, stakeholder goals, and problem
context separately. We formulate the main research question as:

How to migrate a monolithic system to a cloud-based event-
driven microservices architecture system?

Sub-Research Questions.

• Why does the current system need to be transformed into a
cloud application?

• What is the software migration approach?
• What challenges will be faced to apply event-driven

architecture on microservices?
• What technologies can be used to improve the quality of the

migration?
• How to ensure the data integrity and consistency in the new

system?
• What benefits would this migration bring?

1.3 Contributions
This project first proposes a software migration approach
that is suitable for a migration project which adapts DevOps
practices and has an Agile team. Compared with existing software
migration approaches, it can shorten the system’s development
life cycle by kicking off with a working architecture skeleton,
which could save the upfront effort to construct a complete
architecture. Then a satisfactory software architecture would
emerge through continuous small refactoring[13]. Following the
migration approach, we propose an event-driven microservices
system. In the end, the system’s architecture is validated to justify
our proposed migration approach.

1.4 Paper structure
The structure of this paper is in accord with design cycle which
is mentioned in Chapter 1.1. Chapter 2 will first introduce several
concepts and existing works that relates to this project. The problem
content, stakeholders and their goals will also be identified. Thus,
this chapter is the first phase in design cycle. Chapter 3 represents
the Treatment Design phase by proposing both migration approach
and event-driven microservices system. Chapter 4 will validate the
design qualitatively and quantitatively. Chapter 5 will discuss the
limitation and future work of this project. Finally in Chapter 6, we
will conclude this project and presents the main findings.

2 BACKGROUND
Wieringa[40] define design science as the "design and investigation
of artifacts in context". This chapter shows the first phase in the
design cycle which is Problem Investigation. We first identify and
investigate the problem context by recovering the business process
and designing the desired architecture. Then, we recognize the
stakeholders and their goals. Then we introduce several crucial
concepts that relate to the artifacts in this project.

2.1 Problem Investigation
In this chapter, HBC and its functions are first introduced to gain a
better understanding of the problem context. After that, the first
research question is answered through the analysis of the current
business processes in which HBC participates. Then, stakeholders
and their goals are identified based on functional limitations. Lastly,
the business requirements of this project are formulated.

2.1.1 Harmonized Business Case. The Harmonized Business Case
(HBC), at Philips is a versatile tool designed for broad applicability
across various business sectors and markets. It systematically
consolidates all deliverables and performance obligations from
contracts, ensuring pricing aligns with the customer’s perceived
value. Especially in Long Term Strategic Partnerships (LSPs), which
require specialized pricing, quoting, and financial management
mechanisms, the HBC plays a crucial role. The current solution for
LSP is shown in Figure 1. Currently, the HBC solution processes
approximately 10% of the sales of Philips.

Figure 1: Current Solution for LSP



Migrating a monolithic system to Event-Driven Microservices - A case study in Philips Conference’17, July 2017, Washington, DC, USA

HBC Functional Overview: HBC enables the generation of various
customer-facing scenarios, utilizing master data for accuracy
and efficiency. It also facilitates the creation of an integrated
Profit & Loss (P&L), Relative Fair Value (RFV), and Cashflow
by amalgamating data from various quoting tools, as well as
solutions and Long-term Strategic Partners’ (LSP) specific inputs,
subsequently calculating the Total Contract Value (TCV) which
is crucial for the approval of projects. HBC also incorporates
indexation and ongoing RFV calculations. These are crucial
for financing calculations, such as inflation rates and business
assessments over time. It supports the approval and updating of
deals throughout their execution phase, and offers benchmarking
and dashboard tools for monitoring deal performance during
the delivery stage. Lastly, HBC assists in financial optimizations,
potentially paving the way for offloading, alongside the recognition
and derecognition of revenue and assets, thereby enhancing fiscal
management and reporting practice.

HBC Workflow: The current Harmonized Business Case (HBC)
is a financial model which is encapsulated in an Excel file. In the
Excel file, the user inputs data into the input sheet and executes
calculations through VBA code in the calculation sheet. The results
are then presented in output sheets. A more detailed description of
HBC workflow is shown in Appendix B.

2.1.2 Business Processes Analysis. Business Process Model and
Notation (BPMN)[18] is a standardized graphical notation that
depicts the steps of a business process from end to end. We
utilize BPMN to map out and analyze the processes in which
the Harmonized Business Case (HBC) is involved. This visual
representation facilitates a clearer understanding and identification
of potential improvements.

The Business Process Model, as shown in Figure 2, outlines the
sequence of events and activities that constitute the HBC process.
It details each step, from the initiation of the process, such as
downloading quotation information, to decision points like the
approval of the project.

The model reveals several critical manual flows: the download
and import of quotation information into HBC for calculation,
subsequent approval requirement, and order processing. These
manual steps are bottlenecks that reduce the efficiency of
the process, presenting security risks and inconsistency in
standardization.

The identified manual flows represent opportunities for
enhancement through automation. By leveraging cloud services,
these steps can be transformed into automated processes. This
automation would streamline operations, increase data security,
and ensure standardization and interoperability across the business
process.

Figure 2: HBC Process

Figure 3: Enterprise Architecture of HBC After Automation

2.1.3 Enterprise Architecture Model. To show the automated flow
and the overall architecture, ArchiMate[21] is selected as the
modeling language due to its ability to clearly communicate
complex architectures across business, application, and technology
layers. It provides a standardized framework that enhances
understanding among stakeholders from various backgrounds.

The model shown in Figure 3 automates every manual
flow depicted in Figure 2 into a cloud service. Note that from
Figure 1 it become clear that the business events associated
with the services shown in Figure 3 are owned by different
departments of Philips. Thus, each service should be developed by
different development teams and deployed individually, making
a microservices architecture[1] the ideal solution due to its
characteristics. However, the microservices need to interact with
each other, either through REST API calls or event messages. In this
case, an event-driven architecture is considered superior in terms of
both performance and interoperability[20]. Additionally, external
services like Salesforce also employ an event-driven architecture,
which could simplify integration.

Even though the scope of this project only focuses on Calculation
Service, it is beneficial to gain a comprehensive overview of the
architecture so that, according to the components within the
architecture, different design patterns can be used to maximize
efficiency and avoid cumulative rework in the future[30].



Conference’17, July 2017, Washington, DC, USA Yanchuan Zhang - s2888629

2.1.4 Stakeholders. According to Wieringa[40], stakeholders of
a problem are people who "will be affected by treating the
problem". The most important stakeholder of this project is the
HBC team. On the other hand, stakeholders interacting with
the artifact are identified previously in Chapter 2.1.1, including
the groups shown in Figure 1, namely sales, quoting, financing,
approval, and accounting team. For convenience, we refer to these
stakeholder groups as "users" of HBC. Besides, with Philips there
are other departments such as Enterprise Monitor As A Service
(EMAAS) and Enterprise Informatics (EI) need to perform similar
financing calculations like HBC. Currently, they operate their tools
independently. The artifact in this project may have a potential
effect on them by consolidating the existing calculation tools.

2.1.5 Functional Limitations. These are the functional limitations
within the current system that prevent stakeholder goals from being
met. FLs are identified according to the HBC functional overview
and workflow.

No. Description
FL1 When salesperson trying to have approval for a project,

they need to manually present the HBC P&L result
in teams meetings to grant permission. Similarly in
Figure 1, all the arrows represent a manual flow which
is inefficient and would possibly hinder the profitability.

FL2 When users trying to use Current HBC, the user
interface consists of not only necessary data input cells
but also optional data input cells, which would confuse
and overwhelm users.

FL3 When project input contains hundreds of items, the
excel needs more than 10 seconds to calculate the output
and response.

FL4 When the current HBC tool fails, it is hard to debug.
FL5 When HBC need to show different content to different

user groups, it is difficult to restrict user permissions in
current excel file.

FL6 When other departments within Philips want to reuse
existing calculation function in HBC, they cannot
directly reuse it and have to make an individual tool.

FL7 When making a change to excel file, the existing rigid
monolithic style of the system makes changes and
updates cumbersome.

FL8 When HBC team doing collaborative work, it can
achieve is hard to do version control in Excel side.

FL9 When there is the need to scale up, the current set up
doesn’t support it.

FL10 When adapting modern technologies, it could be
problematic because of compatibility.

FL11 When testing a new version of the Excel file, it is not
feasible to do test automation.

Table 1: Functional Limitations

2.1.6 Stakeholder Goals. Stakeholder goals are the high-level
objectives or outcomes that stakeholders wish to achieve through
the project, aligning with the overall mission and vision of the

HBC initiative. We identify stakeholder goals based on stakeholder
groups, previous description of HBC functional overview, workflow
and functional limitations. In Table 2, each stakeholder goal is linked
to a functional limitation.

No. Description Functional
Limitation

Stakeholder

G1.1 Automation Efficiency FL1 HBC Users
G2.1 Enhance access control FL5 HBC

Development
team

G2.2 Streamlined
development

FL7 HBC
Development
team

G2.3 Scalability FL9 HBC
Development
team

G2.4 Version control
improvement

FL8 HBC
Development
team

G2.5 Economical
technological
adaptation

FL10 HBC
Development
team

G2.6 Maintainability FL4 FL11 HBC
Development
team

G2.7 User experience
excellence

FL2 HBC
Development
team

G2.8 Performance
Optimization

FL10 HBC
Development
team

G2.9 Robust FL4 HBC
Development
team

G2.10 Real-time processing FL3 HBC
Development
team

G3.1 Organizational
standardization and
reusability

FL6 Other Philips
departments

Table 2: Stakeholder Goals

2.1.7 Business Requirements. According to the stakeholder goals in
Chapter 2.1.6, twelve business requirements are initiated, discussed,
and refined with the project owner. The BRs are shown in Table
3. BR stands for Business Requirement, numbered from 1-15.
The BRs use Easy Approach to Requirements Syntax (EARS)[27].
The Goals correspond to the stakeholder goals of each business
requirement. The priority is added to each business requirements
using MoSCoW[14].



Migrating a monolithic system to Event-Driven Microservices - A case study in Philips Conference’17, July 2017, Washington, DC, USA

No. Goal Description MoSCoW
BR1 G1.1

G2.2
G2.3
G3.1

The new system shall be a cloud
application.

Must

BR2 G2.10 The new system shall process
real-time data and provide
a response in less than 500
milliseconds.

Must

BR3 G2.9 The new system shall handle
faults effectively without
system failure.

Should

BR4 G2.8
G2.5

The new system shall be able to
interoperate with other Philips
applications.

Should

BR5 G2.8 The new system shall ensure
data integrity and consistency.

Must

BR6 G3.1 The new system shall be reused
and be able to integrated by
other Philip departments.

Could

BR7 G2.7 The system shall take input
from and return output to user
interfaces.

Must

BR8 G2.10 The new system shall save
the calculation result into a
database.

Must

BR9 G2.10 The new system shall read from
data tables.

Must

BR10 G2.6 The new system shall log user
operation record.

Must

BR11 G2.5 The new system shall be budget
friendly to maintain and adapt
new technologies.

Should

BR12 G2.1 The new system shall show
different content to different
user groups.

Could

BR13 G2.8 The new system shall produce
the same output as the current
Excel calculation.

Must

BR14 G2.2 The design cycle should be
short.

Must

BR15 G2.7
G2.8

The system should be able
to handle requests from 1,000
users within a 16-hour period
each day.

Must

Table 3: Business Requirements

Additionally, the HBC group has transformed the existing system
into a detailed design, outlined in a PowerPoint presentation. An
illustrative slide from this presentation is shown in Figure 12.
This presentation will henceforth be referred to as the ’design
PowerPoint’. The project objective is to adhere to the guidelines
set forth in the design PowerPoint, and to redevelop the existing
Excel-based functionalities into a Java-based cloud application.

As a financial model for calculation, the functions can be
recovered and categorized by their calculation outputs. However,
only basic calculations have been chosen for this migration. As
shown in Table 14 and Table 15, all calculations are divided into
three categories: equipment, customer Service and management
service.

2.1.8 Constraints. While requirements would capture feature and
functions of the system, constraints defines non-functional aspects
of the system. Before this design cycle has started, the HBC group
has already first initiated the microservices framework. Towards
an IT project, Philips has the following constraints:

• ITAAP(IT as a Platform) department will provide support
and supervision.

• The project utilizes Git for version control, hosted in a
GitHub repository within Philips’ internal resources. The
code cannot be directly merged into main branch. Instead,
any change must be first made in a branch.

• Utilizes Java as the programming language.
• Employs Spring Boot as the framework.
• Secure application access with OAuth 2.0.
• It uses Azure CI/CD pipeline.
• It uses Docker container managed by Kubernetes.
• It uses test automation and Infrastructure as Code(IaC).

2.2 Monolithic
The word "monolith" is used to describe a single-process application
that gets over-complicated[3]. Single-process means the application
where its core functionalities like presentation, business logic, and
storage, are intertwined and packed in a singular deployment unit.
Characteristically, in a monolithic design, which usually contains a
client-side user interfaces (HTML pages with JavaScript running on
user machine), databases (normally a relational database containing
many tables), and server-side applications (where all the business
logic is at) are intricately linked. The server-side application
manages HTTP interactions, carries out the core operational logic,
interfaces with the database for data retrieval and modification, and
chooses HTML pages for transmission to the web browser. This
server-side application can be called a monolith, functioning as a
single logical executable.[1].

Due to its cohesive nature, such a consolidation of all elements
into one executable structure ensures ease of development,
deployment, and operations. However, it presents inherent
challenges. Even minor changes mean that you have to update
and deploy the whole system. A single-process approach also
implies that it may not meet all the feature requirements for the
newest technology. Eventually, it will become over-complicated
due to difficulty in scaling. On a human resource management
perspective, multi-teams working on a unitary code base require
extra synchronization management to avoid conflicts[31].

Yet, despite its limitations, monolithic applications have been
historically successful and represent a natural initial approach to
system development. It is only with the advent and proliferation of
cloud-based deployments, coupled with evolving demands, that the
constraints of monolithic systems have become more pronounced.



Conference’17, July 2017, Washington, DC, USA Yanchuan Zhang - s2888629

2.3 Microservice
Microservice is a software architectural style by developing a
suite of independent services that can be developed, tested, and
deployed individually. Each microservice is built on a single
business capability and runs its own process and communicates
with other microservices using light weight mechanisms like
HTTP resource API[1]. In other words, changes happens in one
microservice on the server side will not affect another microservice.

Based on these features, the advantages of microservices could
be summarized as:

• Loose-coupling: Individual service are decoupled and can
be developed and maintained by different teams and even
using different programming languages[1].

• Scalability: Independence of each microservice makes it
possible to scale only the necessary services. Moreover,
the independence of each microservice allows them to
be deployed across multiple servers or even in different
data centers, enhancing scalability by more effectively
distributing loads. [1].

• Robustness: The system won’t fail even if some of the
microservices fail[41].

• Continuous Delivery: It is easier to achieve continuous
delivery because of its light weight compared with monolith.
The short deployment cycle also makes it easier to adapt
new technologies[41].

2.4 Event-driven
Event-driven microservices architecture refers to a system, which
consists of loose-coupled microservices that communicate by
exchanging event messages. In an event-driven architecture, three
main components are involved: the producer, the consumer, and the
event bus. The microservice which produces the message is called
a "producer" and the microservice that consumes this message is a
"consumer". The producer sends event messages to the event bus,
and the consumer listens to the event bus for new event messages.
The event messages are also replayable[20].

2.4.1 Event-Driven Topology. There are two main topologies for
event bus: mediator and broker.

Figure 4: Event-driven architecture mediator topology [34]

Mediator. Mediator consists of four main components: event
queue, event mediator, event channel and event processor. The
event queue transports the event sent from the client to the
mediator, whereas additional asynchronous events are sent to event
channels. Event processors listen to event channels, and process
the event by executing business logic[34][41]. The architecture of
a mediator is shown in Figure 4.

Figure 5: Event-driven architecture broker topology [34]

Broker. As shown in Figure 5, there are two components in the
broker topology: the event processor and theevent broker. Inside
the broker, it provides event channels that are either message
queues, message topics, or a combination of both. The processors
are responsible for processing and publishing events[34][41].

2.5 Software Migration
Software migration, also known as software modernization, refers
to a re-engineering process of migration or adaption that applies a



Migrating a monolithic system to Event-Driven Microservices - A case study in Philips Conference’17, July 2017, Washington, DC, USA

specific method[12]. Strangler and Horseshoe approaches, which
are two well-documented migration solutions are outlined below.

2.5.1 Strangler. The Strangler approach[4] suggests a gradual
transition from an old system to a new one. Instead of attempting a
direct and risky replacement of the entire system, the new system
is developed incrementally around the edges of the existing system.
As new components are built and integrated, they begin to replace
the corresponding parts of the old system. This process continues
until the new system has entirely strangled the old one.

Figure 6: The horseshoe approach[22]

2.5.2 Horseshoe. The CORUM II model[22], commonly known
as the horseshoe model, provides a metaphorical framework for
integrating code-level and architectural reengineering perspectives
in software systems. The horseshoe is divided into three related
processes, operating across four levels of software representation.
The three processes are described below:

• I: Code and Architecture Recovery and Conformance
Evaluation: This involves recovering the architecture of an
existing system from its source code artifacts.

• II: Architectural Transformation: Given a desired new
architecture based on specific system requirements, the
existing architecture is reengineered to match the desired
new architecture.

• III: Architecture-Based Development: The high-level
architectural design detailed in the second process is initiated
and entails various low level transformations.

As for the four levels of software representation, they are:
• Architectural
• Functional
• Code-Structure
• Source-Text

The horseshoe represents transitions from code-level facts
to an understanding of software architecture (Code and
Architecture Recovery and Conformance Evaluation), manipulation
of architectural concepts (Architectural Transformation),
and architecture-based development (Architecture-Based
Development).

Horseshoe approach is particularly relevant for tasks like
updating core technologies, incorporating new technologies,

moving to object-oriented architectures, distributing systems using
modern architectures, and more. The horseshoe model provides a
structured way to approach these complex reengineering tasks.

Figure 7: Migration to microservices[17]

Adapted horseshoe: To have a distinctive view on how to migrate
towards microservices, Francesco et al.(2018)[17] present a model
shown in Figure 7 which is an adaption of the horseshoe model
specifically for the purpose of migrating to microservices. They also
conducted a survey with 18 practitioners that provide information
about migrations towards microservices architecture in industry.
For each process, the activities carried out by the practitioners can
be concluded as:

Reverse engineering: The practitioners first obtain
knowledge from both low-level and high-level sources:
• low-level: For details of the pre-existing system, they

would directly go into source code and tests.
• high-level: At a higher level of abstraction, sources such as

textual documents, slides, architectural documents, data
models, and insights from developers within the company
are utilized.

Architecture transformation: The activities in designing
the new microservices architecture involves:
• Divide the domains into sub-domains.
• Identify services for the new system.
• Divide the pre-existing system into several modules.
Following these activities, a step to demonstrate the
migration’s feasibility is necessary. This could be realized
through a service that validates the migration’s feasibility or
through developing Minimum Viable Products (MVPs),
which are artifacts that, despite being incomplete in
functionality or quality, exhibit characteristics that help
to determine their business value[29].

Forward engineering: Depending on the features of the pre-
existing system, some practitioners start the migration by
directly adding new functionalities as microservices, while
others reengineer the functionalities of the pre-existing
system into microservices. It is also noticeable that in
some cases the practitioners would start the migration by
implementing the existing functionalities into microservices
system.



Conference’17, July 2017, Washington, DC, USA Yanchuan Zhang - s2888629

2.6 Challenges
Based on the stakeholder goals and BR, we can conclude that the
HBC team is searching for a cloud application that is easy to scale
to handle potential user growth, can be incrementally developed,
leverages the power of DevOps practices like the CI/CD pipeline to
accelerate the design cycle, is reusable across other departments
within Philips, and is easy to maintain. This combination of
requirements makes microservices architecture an ideal fit, as
it inherently supports scalability, incremental development, and
seamless integration with DevOps practices, effectively meeting
the diverse needs of the HBC team.

Additionally, by implementing an event-driven architecture,
the microservices are able to communicate with each other and
integrate into a larger system more efficiently than with REST API
calls.

As for the software migration approaches, the Strangler approach
emphasizes gradually ’strangling’ the pre-existing system by
incrementally building around it. However, this approach is not
suitable for this project, where microservices are built individually
as a new system. As for horseshoe and the adapted horseshoe
mentioned in Francesco et al (2018)[17], they are suitable to be used
for migrating a monolithic system to microservices.

However, the HBC team employs the Scrum methodology[36],
which means the work is done incrementally through sprints,
each lasting ten working days. Moreover, the constraints listed
in Chapter 2.1.8 indicate that this project adopts DevOps practices.
In contrast, the horseshoe and adapted horseshoe methods do
not align with Agile and DevOps practices, particularly during
the Architectural Transformation phase. This phase contradicts
the Agile principle of avoiding extensive up-front design and
a waterfall process, which could potentially slow down the
design and deployment cycles of microservices. Furthermore,
according to a systematic literature review on migrating to
microservices[7], no existing software migration approach fully
integrates DevOps practices. This review also notes that there is no
documented application of event-driven or message broker patterns
in microservices under DevOps practices.

Glen[2] identifies "finding where to break up monolithic
components" as the most challenging aspect faced during the
migration of legacy systems. Francesco et al[17] also highlight
’High coupling among parts of the pre-existing system’ and
’Setting up the initial infrastructure for microservices to work’
as common challenges during the architecture transformation
and forward engineering phases, respectively. As mentioned
previously in Chapter 3, HBC team has broken down HBC Excel
model into a design PowerPoint. Nevertheless, the individuals
responsible for breaking down the HBC model are not software
engineers. Thus, during the "Architecture Transformation" phase
of the horseshoe and adapted horseshoe model, setting up the
microservices architecture could pose a significant challenge.

Meanwhile, business requirement BR14 mandates shortening the
design cycle due to business considerations. In Agile methodology,
it is generally considered that extensive upfront effort in
architecture planning delivers little value to stakeholders[8].
However, neglecting software architecture can not only affect

the performance of the system but also increase the amount of
rework required[30]. Thus, it is challenging to satisfy stakeholders’
needs while maintaining a good software architecture with existing
software migration approaches.

In short, the first artifact of this project is the software
migration approach. It could be improved in the context of
DevOps and Agile practices. The second artifact, the event-driven
microservices system, addresses two primary problem contexts:
the existing business processes and the Excel file. By creating a
cloud application, the existing business processes can be automated,
and the performance of the Excel file can be enhanced through
migration to an event-driven microservices architecture.

3 DESIGN
This chapter presents the design phase of the design cycle, where
we propose two solutions: a software migration approach and an
event-driven microservices system. These are aimed at addressing
parts of the problem context identified previously in Chapter 2.1.

3.1 Migration Approach
As discussed in Chapter 2.6, existing migration approaches are not
fully compatible with DevOps practices and may hinder the Agile
properties inherent in microservices architecture. Additionally,
the complexity and high coupling of the pre-existing monolithic
system present significant challenges in setting up a microservices
architecture.

3.1.1 Emergence of Architecture through Continuous Refactoring.
The adoption of Agile methodologies has significantly influenced
the practices of software development in the industry. Proponents
of Agile methods often perceive minimal benefit to customers from
the initial design and assessment of a system’s architecture[8].
Meanwhile, advocates of architecture-centric approaches argue
that neglecting architecture at any stage of a system’s lifecycle can
lead to severe repercussions.

As a result, one of the most fundamental debates, which is
“whether or not a satisfactory architecture emerges from continuous
small refactoring in agile software development”[19] is answered in
Chen and Barba[13], by identifying 20 key factors, which is shown
in Table 16. The result shows that for the projects which satisfies the
contexts characteristics, it is likely that a satisfactory architecture
would emerge from continuous small refactoring.

Thus, we use 20 key factors to evaluate whether this project is
suitable for a satisfactory architecture to emerge by continuous
small refactoring. However, some of the 20 key factors involve
aspects like knowledge, culture, and mindset, which cannot be
measured directly. Thus, a survey with seven questions is designed
and conducted within the development team for the purpose of
measuring these aspects. The questions are defined according to
the answers in Chen and Barbar[13]’s survey. Questions of the
survey is shown in Table 4. The participants of this survey are
HBC development team members, in total five person. They are
asked whether they would agree with the questions in the survey
by choosing from 1-5:

• 1: Strongly Disagree
• 2: Disagree
• 3: Neutral



Migrating a monolithic system to Event-Driven Microservices - A case study in Philips Conference’17, July 2017, Washington, DC, USA

• 4: Agree
• 5: Strongly Agree

This scale, developed by Rensis Likert[25], allows for a nuanced
understanding of participants’ levels of agreement or disagreement
with the survey questions. The result of the survey is the average
of participants’ responses to each question.

Questions Average
Points

Do you think this team is mature in
knowledge of reference architectures,
design patterns, and tactics?

4

Do you think change should be
acknowledged as a part of the
development process?

5

Are you willing to learn technology and
try to adapt to it?

5

Do you think within this team there are
good communication channels?

5

Do you think the culture within
this team encourages people to take
ownership and commitment, be open,
and blame-free?

5

Do you think the organization structure
is embracing the openness of Agile
approach?

4.2

Do you think the team would provide
effective governance on software
architecture?

4

Table 4: Survey Questions

• Rate of Change: While significant implementation has not
occurred before and the business requirements are defined
(as mentioned in Chapter 3), changes in software architecture
and technical details may occur during the project.

• Size of a project: This project does not involve external groups.
Given that the team consists of fewer than six people, all
located in the Netherlands, it qualifies as a relatively small
project.

• Type of Project: As described in Chapter 2, this project
involves a series of functions that can be incrementally built
and released.

• System Age: The system for this project is newly designed
using contemporary principles and technologies, unlike
older systems that may be overly complex and coupled.
This makes it easier to achieve a unified and integrated
architecture.

• Type of ASRs (Architecturally Significant Requirements)
and Their Criticality: The Architecturally Significant
Requirements (ASRs) for this project, outlined in Chapter 3,
are in compliance with Philips IT standards

• Safe Net: A safety net is provided through the integration
of test automation within the Azure Continuous Integration
Pipeline.

• Continuous Integration: Continuous Integration is facilitated
by an Azure pipeline, automatically triggered by any Git pull
request.

• Good Design Principles: Contemporary design principles,
which are employed in this project, will be discussed in
more detail in Chapter 3.2.

• Management: The team employs a SCRUM methodology,
which is well-suited to accommodating changes.

Consequently, considering the survey results and the detailed
analysis provided above, it is determined that this project is well-
suited for developing a satisfactory architecture through the process
of continuous small refactoring.

3.1.2 Proposed Migration Approach. As a result, Figure 8 presents
the proposed migration approach.

There are in total four phases in this approach:

Reverse Engineering. Similar to the horseshoe and adapted
horseshoe approaches discussed in Chapter 2.5, this phase involves
recovering and documenting the pre-existing system, ranging from
high-level documents to low-level code.

Architectural Transformation. This phase is inspired by the
’Walking Skeleton’ strategy, which refers to a small implementation
that links together the main architectural components. While the
final architecture may not be used initially, the goal is to create
a working architecture skeleton. This minimizes initial effort on
architectural issues and accelerates project kickoff, leading to early
success and increased team confidence[15].

Forward Engineering. Unlike existing migration approaches,
the "Forward Engineering" phase follows "Reverse Engineering".
It encompasses code implementation, continuous integration
and delivery, and continuous small refactoring, allowing
the architecture to evolve incrementally alongside system
functionality[15]. This phase will cycle until the satisfactory
architecture of microservices emerges during the continuous small
refactoring process.

Satisfactory Architecture Development. In the final phase, the
satisfactory architecture emerges from the continuous small
refactoring during forward engineering. This involves recovering
and documenting the architecture of the new system.

As the Reverse Engineering phase was completed before this
design cycle began, this project follows the proposed migration
approach starting from the Architecture Transformation phase.

In this project, the walking skeleton is presented in Chapter 2.1.3.
Additionally, the microservices architecture is employed within the
calculation service, organizing the functions outlined in the design
PowerPoint presentation into distinct microservices. Continuous
small refactoring occurs throughout the Forward Engineering phase,
with the emergent architecture detailed in Chapter 3.2.



Conference’17, July 2017, Washington, DC, USA Yanchuan Zhang - s2888629

Figure 8: Proposed Migration Approach

3.2 Event-Driven Microservices
3.2.1 Design Principles and Quality Control. During the design of
each microservice, the principles outlined below are followed:

DRY (Don’t Repeat Yourself). The DRY (Don’t Repeat Yourself)
principle is implemented through the use of Service and Repository
layers. This approach centralizes business logic in the Service layer
and data access logic in the Repository layer, effectively avoiding
code repetition across different parts of the application[39].

KISS (Keep It Simple, Stupid). In adherence to the KISS (Keep It
Simple, Stupid) principle, the architecture features a clear separation
of concerns across different layers. This organizational strategy
keeps the architecture straightforward and manageable, with
each layer handling specific operations, thereby simplifying both
development and maintenance[16].

Single Responsibility Principle. Consistent with the Single
Responsibility Principle, each layer in the architecture is designed
with a singular focus, ensuring that it has only one reason to
change. This approach enhances the system’s modularity and
maintainability[26].

Open/Closed Principle. The Open/Closed Principle is applied to
ensure that while the system remains open to extension, it is closed
to modification. This design philosophy allows for the expansion
and adaptation of the system’s functionalities without altering
existing code[28].

This approach ensures that when the HBC team continues
development in the future, there will be a smooth transition
to production. Additionally, it minimizes the need for extensive
refactoring and aligns with the success conditions listed in the
Table 16.

Figure 9: Overview of microservices architecture

3.2.2 Microservices Architecture. Following the proposed
migration approach in Chapter 3.1, overall architecture of the
microservices is emerged and shown in Figure 9. There are five
components in this architecture: UI (user interface), API Gateway,
Microservices, Event Broker and database.

UI. The User Interface (UI) of this project, developed using React,
is designed for capturing user inputs and subsequently displaying
the outputs generated by the microservices.

API Gateway. The API Gateway serves as the central entry point
for all client interactions. It uses the NGINX Ingress controller
to efficiently route requests to appropriate microservices. The
Gateway also handles OAuth 2.0 authentication by verifying tokens
from Microsoft Azure’s identity platform, thus ensuring secure
access. Additionally, it is configured for load balancing to enhance
performance and reliability.

Microservices. The microservices architecture is based on the
Spring Model-View-Controller (MVC) pattern, consisting of several
distinct layers:

• The Controller Layer manages client requests, translating
user inputs into actions to be performed by the Service Layer.

• The Service Layer contains core business logic and rules,
generating responses according to user inputs.

• The Repository Layer directly interacts with the database,
handling data persistence and retrieval.

• The Entity Layer represents the data model, mirroring the
structure of the database entities.

• The DTO (Data Transfer Object) Layer serves as a means to
transfer data between layers, especially from the Controller
to the Service Layer, ensuring that only necessary data is
communicated.

This is a common structure in Spring applications, where
each layer has a distinct responsibility, enhancing maintainability,
scalability, and clarity.



Migrating a monolithic system to Event-Driven Microservices - A case study in Philips Conference’17, July 2017, Washington, DC, USA

Figure 10: Reusable Classes

As initially outlined in the architecture skeleton in Chapter 3.1,
each slide in the design PowerPoint was to represent an individual
microservice. However, following continuous small refactoring
cycles, the team decided to design certain calculations from the
PowerPoint slides as reusable classes. This decision aligns more
closely with the design principles discussed in Chapter 3.2.1. Table 5
details these classes, explaining their functions and uses. Figure 10
illustrates how these reusable classes are integrated within the
microservices architecture.

Name Description
ReplacementDate Calculate the replacement date

of equipment and customer
service depends on contract
information, equipment, and
customer services information.

FindIndexation Find the multipliers according
to project information and each
replacement date.

CustomPrice Change price according to user
need.

ServiceDeliveryPeriod Calculate service delivery
period of management cost
(MCost) according to the
project input.

CustomerCTP Calculate the country target
price according given threshold.

Table 5: Reusable Classes

Table 14 and Table 15 display the calculations designated to
become individual microservices. Furthermore, Table 6 details
the complete list of microservices in the proposed event-driven
system. In alignment with the event-driven architecture discussed

in Chapter 3.2.3, each microservice is specifically designed for
asynchronous processing.

Equipment Customer
Services

Management
Services

Others

Indexed price Indexed
price

Indexed price Dashboard

Indexed CTP Indexed
CTP

Indexed CTP IGM
Calculation

Indexed icost
prices

Indexed
icost price

Indexed icost
prices

IGM
Percentage
Calculation

Indexed
mcost prices

Indexed
mcost price

Inflation

Sales Sales Sales
ICoS ICoS
MCoS MCoS MCoS
GPOFees GPOFees GPOFees
Table 6: List of Microservices in the Proposed System

3.2.3 Event-Driven Architecture. In this event-driven architecture,
the Broker topology is selected due to its lightweight nature and
strong decoupling capabilities, which are essential for enhancing
system scalability and flexibility. The event-driven structure is
depicted in Figure 11 Regarding the event broker, two viable options
were considered, each with its own set of advantages and aligning
with different aspects of the system’s requirements.

Figure 11: Event-driven Architecture

Apache Kafka. Apache Kafka is a distributed streaming platform
primarily used in event-driven architectures. Its core abstraction is
a topic, a feed where records are published and stored. Topics are
split into partitions for scalability and parallel processing. Producers
publish messages to topics, then it will evenly distribute messages
among all available partitions. Only one consumer in a consumer
group will receive message due to load balancing. However, the



Conference’17, July 2017, Washington, DC, USA Yanchuan Zhang - s2888629

partitioning mechanism in Kafka presents a challenge for this
project, especially since all calculation outputs need to be saved
for the dashboard and some microservices produce intermediate
results. Thus some of the microservices need to produce messages
for multiple services.

To mitigate these challenges: First, placing each listener in a
different consumer group ensures message distribution without
overlap. Second, introducing message headers allows listeners to
determine the relevance of a message before proceeding with
processing

Spring Boot Event. The second solution for event-driven
architecture is Spring Boot Event. It provides a robust mechanism
for handling internal application events through its event
publication and listening capabilities. When an event is published
by the event publisher, it is dispatched to the Spring application
context. This context acts as an internal broker, managing the flow
of these events within the application. Subsequently, the event
listener components are designed to listen for specific types of
events. Upon catching an event, these listeners acts similarly like
the listeners described in Apache Kafka architecture. The Spring
Boot Event is default synchronous for handling events. However,
it also allows components within the application to communicate
asynchronously via extra configuration. This mechanism is crucial
for applications needing internal, lightweight event handling
without the overhead of external brokers.

These two solutions, Apache Kafka and Spring Boot Event, will
be further evaluated in Chapter 4 to determine the most suitable
option for this project.

3.2.4 Database and data management. In microservices
architectures, especially asynchronous ones, managing data across
multiple services poses significant challenges. Challenges like
"retrieve data from multiple services" and "implement business
transactions that maintain data consistency across multiple
services"[41] would arisen when multiple microservices interact
with the same data repository.

In this project, we face the same issue. Thus, ideally each
microservice should manage its own database or data table.
However, it would be difficult to manage and maintain the database
with the amount of database or tables shown in Table 6. To address
these, our project adopts a strategy where similar calculation
outputs are aggregated, and microservices are tasked with specific
save and read functions via events.

Ultimately, we utilize three main database tables to store
calculation outputs, with each table managed by a single
microservice. This approach helps maintain data consistency
and integrity. Moreover, the ability to replay events in Apache
Kafka is particularly crucial for ensuring data consistency and
fault tolerance. In case a listener fails to process an event, it can be
reprocessed, thereby contributing to the system’s robustness and
recovery capability.

3.2.5 Data Flow. In this project, the front-end user interface
interacts with various APIs to retrieve data. This data, whether
original or user-edited, serves as the input for the microservices.
Therefore, the UI initiates the process by calling microservices APIs
to transmit this data for calculations.

Upon being triggered by these API calls, the microservices
perform the required calculations. Once the calculations are
complete, they publish an event to the message broker. This action
not only prompts downstream microservices to perform their
respective functions but also triggers the saving of results into
the database.

In the last step, the ’dashboard’ microservices are activated to
retrieve the calculated results. These results are then displayed on
the user interface’s dashboard, providing a visual representation of
the data.

This sequence ensures a seamless flow of data from the UI to
the microservices and back to the UI, facilitating a dynamic and
interactive user experience

4 VALIDATION
This chapter presents the crucial validation phase of the design
cycle, aiming to demonstrate how the proposed solution aligns with
business requirements and supports stakeholder goals.

4.1 Software Quality Model
In software engineering, adhering to recognized standards like
ISO/IEC 25010[6] is vital for the validation and evaluation of
software quality. This standard provides a set of quality attributes
crucial for assessing software products. Based on the business
requirements detailed in Table 3, three key characteristics –
performance efficiency, reliability, and maintainability – and their
respective sub-characteristics have been selected for evaluating the
two proposed event-driven microservices solutions discussed in
Chapter 3.2.2. The correlation between the business requirements
and these ISO 25010 characteristics is detailed in Table 7.

According to the business requirements stated in Table 3, the
’Interaction Capability’ and ’Safety’ characteristics from ISO 25010
are excluded because the proposed system is currently in the
development environment and lacks a user interface. Thus, the
interactions and their safety consequences between the proposed
system and users cannot be measured. Besides, sub-characteristic
like capability is also excluded because AWS will treat abnormal
high load as DDoS attack and ban the IP temporarily. Subsequently,
the most suitable sub-characteristic is selected for the assessment
of each business requirement. The mapping between business
requirements and ISO 25010 characteristics is shown in Table 7.

4.2 Software Testing
Software testing is vital in providing the development team with
insights into software performance, ensuring that the web-based
application meets quality standards before being deployed to
production.

4.2.1 Testing Tools. Among various tools for testing web-based
applications, Apache JMeter and Gatling have been chosen
for comparison in this project, as highlighted by Paz and
Bernardino[32]. These tools are selected due to their popularity
and proficiency in the field. Although Apache JMeter scores
highly overall, Gatling’s asynchronous, non-blocking approach
makes it more suitable for our project. This approach results in
enhanced performance and resource efficiency, allowing Gatling
to simulate more virtual users per unit of hardware. Additionally,



Migrating a monolithic system to Event-Driven Microservices - A case study in Philips Conference’17, July 2017, Washington, DC, USA

Sub-characteristics Characteristics Business Requirements Evaluate Method
Time behaviour Performance efficiency BR2 Load Test

Resource utilization Performance efficiency BR11 Load Test
Fault Tolerance Reliability BR3 Architecture Review

Testability Maintainability BR1 Unit Test
Modularity Maintainability BR5 Architecture Review

Analysability Maintainability BR10 Architecture Review
Reusability Maintainability BR6 Architecture Review
Integrity Security BR5 Architecture Review

Confidentiality Security BR5 Architecture Review
Functional completeness Functional Suitability BR7 BR8 BR9 BR13 Validation with Pre-existing System
Functional correctness Functional Suitability BR13 Validation with Pre-existing System

Interoperability Compatibility BR4 Architecture Review
Scalability Flexibility BR15 Architecture Review

Table 7: Map ISO 25010 Characteristics with Business Requirements

Gatling’s tests, which are written in Scala, offer greater flexibility
for customization.

4.2.2 Tests Design.

Load Testing. The first step in designing the load test is to
determine the target concurrency, which is essential to ensure that
the system can handle the expected user load efficiently. For now,
the total number of HBC users is fifty. And there are around one
thousand potential target users within Philips. Using the formula
from Czeiszperger[5], the concurrent users are estimated as follows:

(peak_hourly_visits * average_session_duration) / 3600
According to Table 3, the peak hourly visit can be calculated as:
The amount of all users / 16 (hour) = 62.5
The average session duration is set at 1 hour, and the calculated

number of concurrent users is 62.5. Besides, each user will click and
make an average of ten requests during the session. To assess the
system’s reliability, the test will simulate a scenario where there
are 625 calls within one hour. As identified by Schroeder, Wierman,
and Harchol-Balter[28], the proposed system is categorized as
an open system, where new jobs arrive independently of job
completions. Gatling’s capabilities align well with open system
testing requirements.The Gatling load test scripts, demonstrating
the implementation of these tests, are included in Chapter 6, Listing
1.

Unit Test. This project adopts a Test Driven Development
(TDD)[11] methodology, which involves creating unit tests prior to
developing the actual code. This approach ensures that development
is guided by pre-defined test cases, focusing on achieving the
required functionalities through iterative testing and coding.

4.2.3 Test Results. In the Test Results chapter, we evaluate the
system’s performance under various conditions.

Time Behavior. The Time Behavior section focuses on measuring
the system’s response time under specific workloads. The results
of the load testing, as outlined in Chapter 4.2.2, are summarized in
Table 8. According to Table 3, both broker satisfies the response
requirement.

Resource Utilization. Resource utilization refers to the efficiency
with which the system uses resources like CPU and memory to
perform its functions. During load testing, we closely monitor these
parameters to evaluate how efficiently the system operates under
load. The application, deployed in a Kubernetes cluster, allows us to
use server CPU and memory usage as key indicators of performance.
The results of this evaluation are presented in Table 9.

Kubernetes reports resource usage in specific units:
• CPU usage is measured in ’nanocores’. One core equals

1e9 nanocores. For example, a CPU usage of 601080303
nanocores, as seen in the Spring process, translates to
approximately 0.601 CPU cores.

• Memory usage is reported in ’kibibytes’ (Ki), where 1 KiB
equals 1024 bytes. Hence, a memory usage of 882456Ki
indicates that the process is using about 882.46 megabytes.

Event Broker CPU Usage Memory Usage
Spring 601080303n 882456Ki
Apache Kafka 431575551n 865680Ki

Table 9: Resource Utilization Matrix

4.3 Software Quality Analysis
4.3.1 Confidentiality and Integrity. From a confidentiality
perspective, the microservices architecture utilizes an API gateway,
as detailed in Chapter 3.2.2. This gateway plays a crucial role
in safeguarding the microservices from unauthorized access. It
achieves this by integrating with Azure application ’role’ settings, a
mechanism that strictly permits only authorized Philips personnel
to access the microservices API. Consequently, any attempt
at access by unauthorized individuals is systematically denied,
enhancing the system’s security posture.

Regarding data integrity, the microservices’ layered architecture
includes a repository layer that employs an ORM (Object-Relational
Mapping) tool. This tool uses parameterized queries, significantly
reducing the risk of SQL injection and thereby ensuring data
integrity



Conference’17, July 2017, Washington, DC, USA Yanchuan Zhang - s2888629

Event Broker Error Rate(%) Response Time(ms)
Average Min Max Std.Dev.

Spring 0 131 63 1232 173
Apache Kafka 0 202 98 922 116

Table 8: Time Behaviour Matrix

4.3.2 Maintainability. In the evaluation of the proposed system’s
maintainability, we use SonarQube5. SonarQube is an open-source
platform used for continuously inspecting the quality of source
code. The codebase achieved an ’A’ rating in maintainability,
which indicates a technical debt ratio of less than 5%. This
excellent result suggests minimal corrective effort required,
demonstrating the effectiveness of the adopted coding practices
and adherence to the good practices mentioned in Chapter 3.2. The
outcome not only highlights the software’s readiness for future
enhancements and modifications but also underlines the benefits of
such maintainability in reducing costs and improving the stability
of the software. This maintainability level supports the software’s
potential for long-term scalability and adaptability in response to
evolving technological landscapes.

Testability. Test automation is a crucial part of the Continuous
Integration pipeline. This pipeline automatically executes tests
stored in the project folder, covering both unit and integration
tests. The current test coverage stands at 83.06%, indicating a
comprehensive testing process.

Modularity. The event-driven microservices architecture
emphasizes modularity. Each microservice communicates via
events, eliminating the need for individual services to be aware
of each other’s details. This approach ensures that changes in
one microservice minimally impact others, enhancing system
modularity.

Analysability. To improve analysability, the system employs
extensive logging:

• In the Controller Layer: When the microservice API is
triggered, it logs the request from the UI and publishes an
audit event. These audit events are crucial for compliance
reporting and analysis as they represent significant security-
related actions or decisions within the application.

• In the Service Layer: Logging is utilized to document service
errors. Various log statements categorize different types of
failures, facilitating quick identification and resolution of
issues.

Reusability. The proposed event-driven microservices system is
designed for reuse within Philips. If another department within
Philips wishes to leverage some of these microservices, they must
undertake the following steps:

• Register a client application within the Azure portal.
• Ensure that the microservices application’s API permissions

are granted to the new client application.
• Connect to the existing Kafka Topic to consume the

calculation output.
5https://docs.sonarsource.com/sonarqube

4.3.3 Fault Tolerance. As depicted in Figure 9, the microservices
acting as event consumers depend on event producers. This
dependency, however, does not compromise the overall system
stability. If one microservice fails, the remaining services continue
to operate. The primary impact is on those microservices reliant
on the failed one, as they cannot perform calculations without the
necessary input from the failed service.

4.3.4 Functional completeness and correctness. As outlined in
Chapter 3, the HBC team employs a SCRUM methodology, working
through user stories. Each story includes a screenshot displaying
input and expected output. A user story is deemed complete and
accepted when the output matches that of the Excel file. By the
conclusion of this project, all user stories were completed and
accepted, thus ensuring the system’s functional completeness and
correctness.

4.3.5 Interoperability. In the proposed event-driven microservices
architecture, microservices communicate with each other via event
messages. This structure facilitates the exchange and mutual use of
information among services, simply by connecting to the existing
Kafka topics. Such a design enhances the system’s interoperability,
allowing seamless integration with minimal configuration changes.

4.3.6 Scalability. As described in Chapter 2.1.8, the proposed
system is deployed on AWS EKS with Kubernetes. This setup
enhances scalability through horizontal scaling, which allows for
adding application instances to manage increased load. AWS EKS
supports automatic scaling and efficient load distribution, crucial
for handling dynamic scaling. The architecture offers fine-grained
resource control, ensuring optimal resource use and cost efficiency.
Microservices on Kubernetes benefit from decoupling, allowing
individual services to scale independently without affecting the
overall application.

5 DISCUSSION
5.1 Answers to Research Questions
Main Research Question: How to migrate a monolithic system to
a cloud-based event-driven microservices architecture system? The
main research question regarding the migration of a monolithic
system to a cloud-based, event-driven microservices architecture
is comprehensively addressed through our proposed solutions
detailed in Chapter 3. These solutions consist of a migration
approach and an event-driven microservices architecture, tailored
to the specific needs of the HBC team.

First of all, the HBC needs to be migrated to the cloud because
the existing Excel structure and the manual processes surrounding
it have limited HBC’s efficiency and extended the time required
to approve a business opportunity, thus hindering profitability. To



Migrating a monolithic system to Event-Driven Microservices - A case study in Philips Conference’17, July 2017, Washington, DC, USA

automate these processes, the HBC team has decided to migrate
HBC to a cloud service.

HBC team adapts SCRUM methodology, which emphasises
iterative and incremental development. However, as highlighted
in Chapter 2.5, existing software migration approaches do not
align well with Agile principles, often involving excessive upfront
effort in architectural transformation, contrary to building the
architecture through continuous small refactoring[8]. Moreover,
they also do not take microservices characteristics like decoupling
and individually deployable into account. The debate on whether
continuous small refactoring in Agile software development can
lead to a satisfactory architecture has been longstanding. Chen
and Barbar[13] have identified twenty key factors that are critical
to this process. These factors significantly influence the success
of developing a satisfactory architecture through the incremental
refactoring method characteristic of Agile methodologies. To assess
the suitability of this approach for our project, we conducted a
detailed project-level analysis, including a survey.

The proposed software migration approach encompasses four
phases, with each phase contributing uniquely to the project’s
success. Notably, the Architectural Transformation phase starts with
an initial architecture skeleton, aligning with initial requirements.
The Forward Engineering phase integrates Agile methodology with
DevOps practices like Continuous Integration and Continuous
Delivery, significantly enhancing project flexibility and reducing
design cycles. Finally, in the Satisfactory Architecture Development
phase, the architecture is thoroughly documented.

In summary, our proposed migration approach innovatively
enhances existing software migration methodologies by integrating
Agile and DevOps practices, thereby ensuring iterative development
and continuous delivery.

The proposed event-driven microservices architecture integrates
microservices with an event-driven approach, utilizing a broker to
manage event communications. Producers within the microservices
generate events, sending messages to the broker, while listeners
consume these messages. Validation results indicate that although
Spring Event offers shorter response times, its CPU usage is
prohibitively high. This is attributed to Spring Event operating a
broker internally, as described in Chapter 3.2.3, compared to Apache
Kafka’s external broker setup. The external broker setup, while
potentially increasing response time, offers distinct advantages for
our system:

• Apache Kafka is preferable for future scalability, especially
for handling inter-service communication, a task that would
be challenging for Spring Event.

• Lower CPU usage with Kafka reduces the risk of system
failures.

• Apache Kafka’s ability to scale by adding more topics offers
flexibility for expanding the system.

The validation also confirms that the proposed software meets
not only business requirements and user goals but also adheres to
key software architectural principles. These include performance
efficiency, reliability, maintainability, functional suitability, and
security, thereby justifying our migration approach.

In conclusion, the proposed solutions will automate current
business processes shown in Figure 2. They will replace the Excel-
based system with a more efficient event-driven microservices
architecture. This upgrade will automate key processes like
’Consolidate Quotes’, ’Quotes Financing’, and ’DashBoard
Opportunities’. Additionally, the system is designed to enhance
user experience and expand user groups, leveraging features like
real-time response and scalability. Furthermore, it offers reusability
for other Philips departments, allowing them to access calculation
outputs through API authorization and participation in Apache
Kafka Topics.

5.2 Limitation of Scope
Due to the extensive workload of the overall migration, only a
subset of functions from the previous system has been migrated
to microservices. Additionally, as the design of the user interface
falls outside the scope of this project and remains incomplete, the
following limitations have been identified:

• The application has not been deployed in a production
environment by the end of this project. Consequently,
treatment validation occurred only in the development
environment, leaving the design cycle incomplete without
the phases of treatment implementation and implementation
evaluation. The availability and maturity of the proposed
system, therefore, remain untested.

• Without an user interface, a comprehensive qualitative
validation involving user interaction is not feasible.

• Load testing was conducted manually using Gatling.
Integrating this into the Continuous Integration Pipeline
could enhance early detection of performance issues,
contributing to more stable and efficient deployments.

5.3 Future Work
Future research should focus on evaluating the migration approach
from more perspectives that this project did not consider,
for example, the interaction with users. There is also a need
to explore the integration of emerging technologies, such as
artificial intelligence, to automate parts of the migration process
further, for example the architecture recovery and transformation.
A longitudinal study could examine the long-term impacts
of migration on system performance and business metrics.
Additionally, future work could look into developing a toolkit
that can cooperate with cloud technologies like CI/CD pipeline to
evaluate a software system both qualitatively and quantitatively.
Collaborations with industry could help refine the proposed
methodologies, making them more robust and user-friendly. Finally,
considering the rapid evolution of cloud technologies, ongoing
research is required to keep the migration strategies up to date
with the latest technological advancements.

6 CONCLUSIONS
This project successfully demonstrates a strategic migration
approach from a monolithic system to a cloud-based, event-
driven microservices architecture, significantly enhancing Philips’
Harmonized Business Case (HBC) functionalities. This approach,
characterized by continuous small refactorings within an Agile and



Conference’17, July 2017, Washington, DC, USA Yanchuan Zhang - s2888629

DevOps context, has proven to substantially improve operational
efficiency and flexibility over traditional software migration
methods. Notably, the implementation of automated workflows
has optimized operational efficiency and potentially improving the
profitability by shorten approval cycles. Furthermore, the decoupled
nature of event-driven microservices allows for easier updates
,maintenance and better interoperability, enabling the system
to adapt seamlessly to emerging business needs, technological
advancements and service integration. This flexibility also
facilitates the reuse of the system by other departments at Philips
with similar functionalities. Future work will focus on refining
the migration process to enhance efficiency. This research lays a
robust foundation for future innovations in process automation
and system integration.

This project follows the steps of a design cycle in Design Science
Methodology for Information Systems and Software Engineering[40].
In Chapter 2, the Problem Investigation phase of the design cycle,
we explored related works relevant to our main research question:
’How to migrate a monolithic system to a cloud-based event-driven
microservices architecture system?’ This investigation begins with
a business process analysis to identify the manual flows in the
current process. Subsequently, an ArchiMate model is used to
depict the landscape of future process automation. Microservices
and an event-driven architecture are then chosen as the desired
design patterns following this analysis. This led to the identification
of functional limitations, user goals, and a comprehensive list of
thirteen business requirements, along with several constraints. It
became evident that existing migration approaches were not fully
compatible with the Agile methodology and DevOps practices,
which are foundational to our project.

In Chapter 3, corresponding to the Treatment Design phase, we
proposed a migration model inspired by the Horseshoe[22] and
adapted Horseshoe[17] methodologies. This model is based on
the theory that a satisfactory software architecture can emerge
from continuous small refactoring, provided several key factors
are met[13]. A survey was conducted to evaluate these factors in
the context of our project, including aspects like team mindset and
company culture. Consequently, we developed a software migration
approach tailored for Agile and DevOps environments, resulting in
an event-driven microservices system, detailed in Chapter 3.2.2.

Finally, Chapter 4 focuses on the Treatment Validation phase,
where we conducted both quantitative and qualitative evaluations
of the proposed software. The results affirm the emergence of a
satisfactory architecture, thereby validating our software migration
approach.

Despite these successes, the project encountered several
significant challenges. These included the complexity of
decomposing a monolithic system into microservices, designing
an efficient event-driven model, and ensuring data integrity and
system stability throughout the migration process.

A ABBREVIATION
B HBCWORKFLOW
The workflow for the HBC model begins with users accessing the
latest version from the HBC Teams folder. This initial step sets
the stage for the subsequent data management process within the

Abbreviation Full Name
EQ Equipment
CS Customer Service
CTP Country Target Price
MS Management Service
MCost Marketing Cost
ICost Industry Cost
RFV Relative Fair Value
P&L Profit and Loss

Table 10: List of Abbreviations

system. After downloading the model, users must establish a VPN
connection to Philips’ network and log into their Philips account to
download the necessary master data. This data, along with specific
project information input by the user, is crucial for executing the
calculations.

Upon entering the required data in the sheets (see Table 11),
users can initiate the VBA code calculations by clicking the ’Run
Calculation’ button. These calculations, detailed in Table 12,
produce outputs such as profit and loss, which are displayed
on the output sheets (refer to Table 13).

Upon completion of the calculations, users have the option to
either upload their project information to the HBC database by
clicking ’Upload Project’ or to keep their data locally. It’s noted that
not all users opt to upload their data, with some choosing to share
project information via email, leading to gaps in data availability
for subsequent analysis and reporting.

Additionally, the system allows for the retrieval of previous
projects through the ’GoldenID’. Users can download these projects
for review and updates by clicking the ’Download Project’ button.

In summary, the existing setup, which integrates the user
interface, business logic (VBA code), and data handling all
within the Excel environment, epitomizes a tightly coupled,
single-tier architecture. This monolithic system structure presents
inefficiencies in usage and scalability, highlighting the need for a
more modular approach.



Migrating a monolithic system to Event-Driven Microservices - A case study in Philips Conference’17, July 2017, Washington, DC, USA

Sheet Name Description
FrontPage Philips internal front page

including version
Project Dashboard to control project

inputs and to check if the
project is perfoming in line with
norms

Annual Annual indexation and interest
control

Custom Empty customization sheet for
users to perform analyses

Sofon-Apttus Input Pricing inputs of equipment
and services from Sofon-Apptus
sources

Catalog Pricing inputs of equipment and
services

MgmtServ Location to add additional
services like staff, HTS,
education and other

CAP Location for capital asset plan
and services incl legacy and
room prep

PPU Input sheet for PPU revenue
profile (for both management
best estimate and floor revenue)

Payments Monthly payment profile to
Philips from customer with
option to adjust monthly
payment

Table 11: Input Sheet

Sheet Name Description
C_Index Engine to calculate custom

indexation for all MAGs
IndexData Data dump of all index

calculation per line item (MAG
level)

C_Pricing All pricing and lease
classifications for all items

C_EQ.CS All calculations for a single EQ
and CS line item

C.MS All calculations for a single MS
line item

C_PPU_Excess All calculations required for
PPU type of offering and excess
cash calculation

Data Data dump of all calculation per
line item

O_Prep Preparation calculation for
financial statement outputs

Table 12: Calculation Sheet

Sheet Name Description
SoW Share of Wallet - % calculation

of Philips and non Philips assets
and services

MgmtSum IGM and Cash flow
development as well as
tornado charts

P&L RFV Mixed P&L based on individual
asset lease classification (this
is the P&L recognised in the
Philips books)

P&L_Offer All calculations for a single EQ
and CS line item

BS Balance sheet - to determine
max. on balance position

CF Cash flow for either on or off
balance financing

RFV_analysis Analysis of the differences in
relative fair values and fair
values of equipment, customer
services and management
services

Project_vs_AOP Comparision of market AOP
targets, market AOP targets
based on weighted sales of
project and actual margins

EQ overview Overview of equipment
replacement over time

OIT Expected Order Intake based
on expected lead times on a
quarterly timeline

LeaseSched Overview of monthly principal
outstanding per equipment line
item

Table 13: Output Sheet

Figure 12: Example of Business Logic Break Down

Equipment Customer Services Management
Services

Indexation Indexation Indexation
Periods in
contract

Periods in contract Service period

Indexed price Indexed price Indexed price
Indexed CTP Indexed CTP Indexed CTP
Sales Sales Sales
Cost of sales Cost of sales Cost of sales
GPO fees GPO fees GPO fees
Indexed icost
prices

Indexed icost price Indexed cost
prices

Indexed mcost
prices

Indexed mcost price Start-up period

Interest
payments

Contingent rent Contingent
rent

Residual value
Contingent
rent

Table 14: Calculations before Reallocation



Conference’17, July 2017, Washington, DC, USA Yanchuan Zhang - s2888629

Equipment Customer Services Management
Services

RFV allocation RFV allocation RFV allocation
Sales RFV Sales RFV Sales RFV
Operating
expenses
(market
allocations)

Operating expenses
(market allocations)

Operating
expenses
(market
allocations)

AOP targets AOP targets AOP targets
Corporate
income tax

Corporate income tax Corporate
income tax

Interest RFV
Table 15: Calculations After Reallocation

C ISO 25010
The following definitions are used in this project and taken
directly from ISO 25010:2013[6]. The precise wording is retained
for technical accuracy.

Performance efficiency. This characteristic represents the
performance relative to the amount of resources used under
stated conditions.

• Time behaviour - Degree to which the response and
processing times and throughput rates of a product or system,
when performing its functions, meet requirements.

• Resource utilization - Degree to which the amounts and types
of resources used by a product or system, when performing
its functions, meet requirements.

• Capacity - Degree to which the maximum limits of a product
or system parameter meet requirements.

Reliability. Degree to which a system, product or component
performs specified functions under specified conditions for a
specified period of time.

• Maturity - Degree to which a system, product or component
meets needs for reliability under normal operation.

• Availability - Degree to which a system, product or
component is operational and accessible when required
for use.

Maintainability. This characteristic represents the degree of
effectiveness and efficiency with which a product or system can
be modified to improve it, correct it or adapt it to changes in
environment, and in requirements.

• Testability - Degree of effectiveness and efficiency with
which test criteria can be established for a system, product or
component and tests can be performed to determine whether
those criteria have been met.

• Modularity - Degree to which a system or computer program
is composed of discrete components such that a change to
one component has minimal impact on other components.

• Analysability - Degree of effectiveness and efficiency with
which it is possible to assess the impact on a product or
system of an intended change to one or more of its parts, or
to diagnose a product for deficiencies or causes of failures,
or to identify parts to be modified.

D CHARACTERIZATION OF CONTEXT

Factor Success Condition

Project

Change Medium to high rate of change
Size Small
Type Support small releases

Maturity of AK Mature Architecture Knowledge
(AK)

System Age Green field

Type of ASR No demanding ASR that cannot be
satisfied by refactoring

Criticality Low criticality

Team

Experience Experienced
Skill Skilled

Personality and
Mindset

Willing to make change, learn,
have passion, with dedication to
good design

Distribution Collocated
Team Size Small

Practices
Safe Net Automated testing with good

coverage
Continuous
Integration Continuous integration

Good Design
Principles

Applying good design principles
such as DRY, SOLID, KISS

Organisation
Management Management support and

commitment

Culture

Good communication channels,
encouraging for taking ownership
and commitment, open, blame-
free

Structure Embraces the openness of Agile
approaches.

Governance Proper architecture governance
Maturity Certain Level of Maturity

Table 16: Characterization of Contexts[13] for Evaluation

E TESTING SCRIPTS

Listing 1: Load Testing
v a l h t t p P r o t o c o l = h t t p

. b a s e U r l ( URL )

. header ( header )
v a l scn = s c e n a r i o ( " Load ␣ T e s t i n g " )

. exec (
. p o s t ( a p i )
. body ( Reques t )
. check ( s t a t u s . i s ( 2 0 0 ) )

)
se tUp (

scn . i n j e c t (
n o t h i n g F o r ( 4 . s econds ) ,
c o n s t a n t U s e r s P e r S e c ( 6 2 5 / 3 6 0 0 . toDouble ) d ur in g ( 1 . hour )



Migrating a monolithic system to Event-Driven Microservices - A case study in Philips Conference’17, July 2017, Washington, DC, USA

) . p r o t o c o l s ( h t t p P r o t o c o l )
)



Conference’17, July 2017, Washington, DC, USA Yanchuan Zhang - s2888629

REFERENCES
[1] Microservices. https://www.martinfowler.com/articles/microservices.html.
[2] Microservices priorities and trends. https://dzone.com/articles/dzoneresearch-

microservices-priorities-and-trends.
[3] The Art of Unix Programming. 2003.
[4] Stranglerfigapplication. https://martinfowler.com/bliki/StranglerFigApplication.

html, 2004.
[5] Load testing basics: How many concurrent users is enough? https:

//www.webperformance.com/load-testing-tools/blog/2011/02/load-testing-
basics-how-many-concurrent-users-is-enough/, 2011.

[6] Iso / iec 25010 : 2011 systems and software engineering — systems and software
quality requirements and evaluation ( square ) — system and software quality
models. 2013.

[7] Combining micro-services and event-driven architecture - a case study in philips,
2023.

[8] P. Abrahamsson, M. A. Babar, and P. Kruchten. Agility and architecture: Can
they coexist? IEEE Software, 27(2):16–22, 2010.

[9] F. Auer, V. Lenarduzzi, M. Felderer, and D. Taibi. From monolithic systems to
microservices: An assessment framework. Information and Software Technology,
137:106600, 2021.

[10] A. Balalaie, A. Heydarnoori, and P. Jamshidi. Migrating to cloud-native
architectures using microservices: An experience report, 2015.

[11] K. Beck. Test driven development: By example. Addison-Wesley Professional, 2022.
[12] S. Bragagnolo, N. Anquetil, S. Ducasse, A. Seriai, and M. Derras. Software

migration: A theoretical framework (a grounded theory approach on systematic
literature review). PhD thesis, Inria Lille Nord Europe-Laboratoire CRIStAL-
Université de Lille, 2021.

[13] L. Chen and M. A. Babar. Towards an evidence-based understanding of emergence
of architecture through continuous refactoring in agile software development.
In 2014 IEEE/IFIP Conference on Software Architecture, pages 195–204, 2014.

[14] D. Clegg and R. Barker. Case Method Fast-Track: A Rad Approach. Addison-Wesley
Longman Publishing Co., Inc., USA, 1994.

[15] A. Cockburn. Crystal clear a human-powered methodology for small teams.
Addison-Wesley Professional, first edition, 2004.

[16] T. Dalzell. The Routledge Dictionary of Modern American Slang and Unconventional
English. Routledge, 2009.

[17] P. Di Francesco, P. Lago, and I. Malavolta. Migrating towards microservice
architectures: An industrial survey. In 2018 IEEE International Conference on
Software Architecture (ICSA), pages 29–2909, 2018.

[18] R. Dijkman, J. Hofstetter, and J. Koehler. Business Process Model and Notation,
volume 89. Springer, 2011.

[19] H. Erdogmus. Architecture meets agility. IEEE Software, 26(5):2–4, 2009.
[20] J. S. Grace Jansen. Advantages of the event-driven architecture pattern. 2020.
[21] A. Josey, M. Lankhorst, I. Band, H. Jonkers, and D. Quartel. An introduction to

the archimate® 3.0 specification. White Paper from The Open Group, 2016.
[22] R. Kazman, S. S. Woods, and S. J. Carriere. Requirements for integrating software

architecture and reengineering models: Corum ii. Proceedings Fifth Working
Conference on Reverse Engineering (Cat. No.98TB100261), pages 154–163, 1998.

[23] S. Khriji, Y. Benbelgacem, R. Chéour, D. E. Houssaini, and O. Kanoun. Design
and implementation of a cloud-based event-driven architecture for real-time data
processing in wireless sensor networks. J. Supercomput., 78(3):3374–3401, feb
2022.

[24] M. Kuhn and J. Franke. Smart manufacturing traceability for automotive e/e
systems enabled by event-driven microservice architecture. In 2020 IEEE 11th
International Conference on Mechanical and Intelligent Manufacturing Technologies
(ICMIMT), pages 142–148, 2020.

[25] R. Likert. A technique for the measurement of attitudes. Archives of psychology,
1932.

[26] R. C. Martin. Clean architecture : a craftsman’s guide to software structure and
design.

[27] A. Mavin, P. Wilkinson, A. Harwood, and M. Novak. Easy approach to
requirements syntax (ears). In 2009 17th IEEE International Requirements
Engineering Conference, pages 317–322, 2009.

[28] B. Meyer. Object-oriented software construction, volume 2. Prentice hall Englewood
Cliffs, 1997.

[29] J. Münch, F. Fagerholm, P. Johnson, J. Pirttilahti, J. Torkkel, and J. Järvinen.
Creating minimum viable products in industry-academia collaborations. In Lean
Enterprise Software and Systems, 2013.

[30] R. L. Nord, I. Ozkaya, and R. Sangwan. Making architecture visible to improve
flow management in lean software development. IEEE Softw., 29(5):33–39, sep
2012.

[31] E. T. Nordli, S. G. Haugeland, P. H. Nguyen, H. Song, and F. Chauvel. Migrating
monoliths to cloud-native microservices for customizable saas. Inf. Softw. Technol.,
160(C), jun 2023.

[32] S. Paz and J. Bernardino. Comparative analysis of web platform assessment tools.
In WEBIST, pages 116–125, 2017.

[33] A. Rahmatulloh, F. Nugraha, R. Gunawan, and I. Darmawan. Event-driven
architecture to improve performance and scalability in microservices-based
systems. In 2022 International Conference Advancement in Data Science, E-learning
and Information Systems (ICADEIS), pages 01–06, 2022.

[34] M. Richards. Software architecture patterns. 2015.
[35] R. Sánchez-Reolid, D. Sánchez-Reolid, A. Pereira, and A. Fernández-Caballero.

Acquisition and synchronisation of multi-source physiological data using
microservices and event-driven architecture. In V. Julián, J. Carneiro, R. S.
Alonso, P. Chamoso, and P. Novais, editors, Ambient Intelligence—Software and
Applications—13th International Symposium on Ambient Intelligence, pages 13–23,
Cham, 2023. Springer International Publishing.

[36] K. Schwaber. Scrum development process. 1997.
[37] V. Singh, A. Singh, A. Aggarwal, and S. Aggarwal. A digital transformation

approach for event driven micro-services architecture residing within advanced
vcs. In 2021 International Conference on Disruptive Technologies for Multi-
Disciplinary Research and Applications (CENTCON), volume 1, pages 100–105,
2021.

[38] D. Taibi, V. Lenarduzzi, and C. Pahl. Processes, motivations, and issues for
migrating to microservices architectures: An empirical investigation. IEEE Cloud
Computing, 4(5):22–32, 2017.

[39] D. Thomas and A. Hunt. The pragmatic programmer. Addison-Wesley
Professional, 2019.

[40] R. Wieringa. Design science methodology for information systems and software
engineering. In Springer Berlin Heidelberg, 2014.

[41] S. Zhelev and A. Rozeva. Using microservices and event driven architecture for
big data stream processing. volume 2172, page 090010, 11 2019.

https://www.martinfowler.com/articles/microservices.html
https://dzone.com/articles/dzoneresearch-microservices-priorities-and-trends
https://dzone.com/articles/dzoneresearch-microservices-priorities-and-trends
https://martinfowler.com/bliki/StranglerFigApplication.html
https://martinfowler.com/bliki/StranglerFigApplication.html
https://www.webperformance.com/load-testing-tools/blog/2011/02/load-testing-basics-how-many-concurrent-users-is-enough/
https://www.webperformance.com/load-testing-tools/blog/2011/02/load-testing-basics-how-many-concurrent-users-is-enough/
https://www.webperformance.com/load-testing-tools/blog/2011/02/load-testing-basics-how-many-concurrent-users-is-enough/

	Abstract
	1 Introduction
	1.1 Methodology
	1.2 Research Questions
	1.3 Contributions
	1.4 Paper structure

	2 Background
	2.1 Problem Investigation
	2.2 Monolithic
	2.3 Microservice
	2.4 Event-driven
	2.5 Software Migration
	2.6 Challenges

	3 Design
	3.1 Migration Approach
	3.2 Event-Driven Microservices

	4 Validation
	4.1 Software Quality Model
	4.2 Software Testing
	4.3 Software Quality Analysis

	5 Discussion
	5.1 Answers to Research Questions
	5.2 Limitation of Scope
	5.3 Future Work

	6 Conclusions
	A Abbreviation
	B HBC Workflow
	C ISO 25010
	D Characterization of Context
	E Testing Scripts
	References

