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Abstract 
There is an urgent need for reliable now- and forecasting of (extreme) precipitation on the African continent. Early warning for 

extreme rainfall contributes to disaster preparedness and can decrease the associated risks. Precipitation data with a high 

temporal and spatial resolution is of high value for hazard models, especially flash floods. For short lead times (0-6h),  

nowcasting approaches that extrapolate ground-radar observations are commonly applied in practice. However, operational 

nowcasting efforts on the African continent are hindered due to the limited availability of ground-radar data. The increasing 

availability and resolution of satellite-based retrieval products show the potential to partly overcome the need for ground-based 

radar stations. This study addresses the accuracy and suitability of satellite-based retrieval products for operational 

precipitation nowcasting in Ghana.  

 

The high spatio-temporal resolution of Meteosat data (15 minutes and 3 km) in combination with its relatively short latency of 

45 minutes offers potential for operational nowcasting initiatives. This study focusses on the accuracy and applicability of the 

MSG-CPP retrieval products (infrared & visual). First, the accuracy of the retrieval products is examined using ground 

measurement data from 19 stations of the Trans-African Hydro-Meteorological Observatory (TAHMO) organization. It is 

concluded that the MSG-CPP retrieval products significantly overestimate the measured precipitation intensities. On a 15-

minute temporal resolution, the probability of detecting precipitation is 49% for the IR-based MSG-CPP retrieval product and 

81% for the visual retrieval product. Moreover, the visual product has a higher false alarm ratio which significantly influences 

the associated critical success indices of 0.20 and 0.19. Additionally, the detection capabilities for peak precipitation are 

examined. In this study peak precipitation is defined as the 95% percentile precipitation intensity of the TAHMO measurements. 

The associated probability of detection is 19% for the IR product and 39% for the visual one. The statistical patterns in the 

MSG-CPP and TAHMO data are so different that bias correction seems unsuitable.  

To study the MSG-CPP retrieval performance in relation to other satellite-based precipitation products, a comparative analysis 

is made using precipitation data from CMORPH and GPM IMERG. This analysis is performed for eight heavy precipitation 

events in the Odaw basin region. The results show that all satellite precipitation products present higher rainfall depths than 

the TAHMO measurements. This observation raises questions about the accuracy of the TAHMO data, which is not validated 

within the scope of this research. The start, peak, and end times of the precipitation events show clear similarities and deviate 

up to approximately 1.5 hours between datasets. Moreover, the retrieval products with longer latencies (IMERG Final & 

CMORPH), do not show a higher correspondence with ground observations compared to the products with short latencies 

(MSG-CPP IR and IMERG Early). To analyze the usability of satellite-based precipitation products for operational nowcasting 

purposes, the open-source Python nowcasting package Pysteps is utilized. The deterministic S-PROG method is applied to 

analyze the nowcasting skill using the MSG-CPP IR retrieval product for 116 precipitation events in Ghana. Median skillful 

nowcast performances are observed for 45-, 90-, 120- and 135 minutes of lead times for the respective spatial scale levels of 

9-, 60-, 180-, and 300 km. Furthermore, it is observed that the S-PROG nowcast method tends to extrapolate precipitation 

patterns in the input data. This phenomenon affects the accuracy of the nowcasted precipitation intensities.  

This study aims to underline the potential of satellite-based precipitation nowcasting while being transparent concerning the 

existing limitations and remaining uncertainties. By solely utilizing open data sources, this research contributes to open access 

of precipitation now- and forecasts. These research efforts are in line with the Early Warning for All initiative as called for by 

the United Nations Secretary-General in 2022.  
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1. Introduction 
Many areas in Africa are subject to extreme rainfall events 

which cause large social-economic disturbances. Due to 

climate change, the intensity and frequency of these 

events are expected to increase (Codjoe & Atiglo, 2020). 

Early warning for extreme rainfall contributes to disaster 

preparedness and can decrease the associated risks 

(United Nations, 2023). Moreover, in many hydrological 

models, precipitation data is the largest source of model 

uncertainty. Consequently, increasing the accuracy of 

rainfall data is highly relevant to enlarge the reliability of 

flood and river discharge models and the associated risk-

informed decision-making processes (Kobold & Sušelj, 

2005). For flash flood early warning, nowcasting 

techniques are required. For the scope of this research, 

nowcasting is defined as the process of providing weather 

forecasts that extend from the present to a time window up 

to six hours into the future. Traditional nowcasting 

approaches use a detailed observation of the current 

(initial) state which is subsequently extrapolated to derive 

a forecast for the near future (Smith & Austin, 2000). 

Commonly, ground-based radar data is used as 

observational data and the associated nowcast data 

shows reliable performance indicators up to approximately 

three hours of lead time (Imhoff et al., 2020).  

 

On the African continent, the availability of ground-based 

radar stations is limited, which hinders the production of 

reliable precipitation now- and forecasts (Wismans, 2023). 

Increasing computational power and the growing spatial 

and temporal resolution of satellite imagery offer 

possibilities for nowcasting without the need for ground-

based radar data. A remaining challenge is that many 

satellite-based retrieval products have latencies that make 

them unsuitable for operational nowcasting. Since 2012, 

the Dutch Royal Meteorological Institute (KNMI) has run 

and freely published rainfall data based on the Meteosat 

Second Generation, Cloud Physical Properties (MSG-

CPP) algorithm. This data has a latency of 45 minutes and 

shows a large potential to be used for nowcasting. This 

research explores and evaluates the suitability of the 

MSG-CPP rainfall retrieval product for detecting and 

nowcasting precipitation in Ghana. Ghana is selected as a 

case-study area due to the availability of ground 

measurement stations and the expressed interest of local 

meteorological organizations in nowcasting products. 

Moreover, the MSG-CPP data is compared with two other 

open available satellite-based precipitation products, 

namely CMORPH and GPM IMERG. The CMORPH and 

GPM IMERG datasets are selected based on their small 

observation interval (30 min). Moreover, they are 

frequently used in climatological and hydrological studies 

for areas with limited ground-radar coverage (Atiah et al., 

2020; Joyce et al., 2004; Kawo et al., 2021). The 

CMORPH and GPM IMERG products themselves are not 

considered suitable for operational nowcasting due to their 

long latencies.  

 

1.1. Precipitation retrieval from satellite 

imagery 

Translating raw satellite data to precipitation estimates is 

a complex challenge for which a variety of instruments and 

algorithms have been developed. A first approach to 

retrieve rainfall uses passive microwave sensors. These 

sensors measure radiation which is emitted by the earth’s 

surface at multiple microwave frequencies. The observed 

radiation is expressed as brightness temperature 

(Kummerow, 2020). By using multi-frequency precipitation 

retrieval algorithms, the relationship between microwave 

signals and precipitation intensity is determined. An 

advantage of passive microwave sensors is that they 

enable continuous monitoring throughout all hours of the 

day. A disadvantage is that microwave sensors have 

limited sensitivity to light precipitation quantities, for 

example, drizzle (Prigent, 2010; Kikuchi et al., 2022). 

Another approach for continuous rainfall retrieval utilizes 

infrared satellite data. Infrared sensors measure for 

different wavelengths the radiation of the atmosphere and 

use this to determine the cloud-top temperature (Prigent, 

2010). A disadvantage is that infrared data provides less 

accurate estimates of precipitation rates due to the lack of 

detailed information concerning, for example, liquid 

particle density in the atmosphere. Moreover, 

classification between diverse types of precipitation, such 

as rain and snow is challenging (Varma, 2018; Beusch et 

al., 2018).  Another approach for rainfall retrieval uses 

visible light sensors on satellites which capture sunlight 

scattering caused by the earth’s surface and clouds. This 

data is valuable for determining cloud cover and the 

presence of precipitation particles. Visual light data is 

particularly useful for the visual assessment of storm 

systems (Prigent, 2010). Nevertheless, the approach is 

daylight-dependent and faces difficulties in determining 

precise quantitative rainfall rates (Varma, 2018).  

The MSG-CPP retrieval product is derived from data from 

the Meteosat satellite. Meteosat is the name of a series of 

geostationary weather satellites of the European Space 

Agency (ESA) and EUMETSAT which cover the European 

and African continent. For weather nowcasting purposes 

the most important instrument on the Meteosat satellite is 

the SEVIRI (Spinning Enhance Visible and Infrared 

Imager). The advantage of using data from a 
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geostationary satellite is the high temporal resolution and 

short latency (15 min and 45 min) of the data. However, 

due to its larger distance to Earth, passive microwave 

sensors are not applicable. The IMERG and CMORPH 

precipitation retrieval products both primarily utilize 

passive microwave sensors from various low earth orbit 

satellites and have a temporal resolution of 30 minutes 

(Tan et al., 2019; Joyce et al., 2004). Additionally, 

CMORPH has a spatial resolution of 8 km and IMERG of 

10 km.  

 

1.2. Current practices for weather 

predictions 

To predict upcoming weather events there are various 

methods applied in practice. For nowcasting, optical flow 

and machine learning methods can be applied. When 

producing weather predictions with lead times of more 

than six hours, the term forecasting is applicable. Weather 

forecasts are commonly produced by using Numerical 

Weather Prediction (NWP) models. Additionally, there is a 

growing research field focusing on the development of 

seamless weather models that blend nowcast and NWP 

data. In table 1 the main advantages and disadvantages 

of each of the mentioned methods are presented.  
 

Table 1 Overview of existing weather prediction methods  

Nowcasting 
method 

Advantages Disadvantages 

Optical flow - Industry-standard 
- Skillful for short 
lead times (0-3h) 
 

- Limited skill in 
representing convective 
precipitation 
- Large performance 
variability related to e.g., 
season and geographic 
location 
 

Machine 
learning 

- Computationally 
efficient after 
training 
- Data-driven model 
so no need for 
assumptions such 
as Lagrangian 
persistence 
- Skillful for short 
lead times (0- 2h) 

- Requires training data of 
high quality and preferably 
in large volumes 
- Risk of over-fitting and 
training data bias 
- Interpretability can be 
challenging 

Numerical 
Weather 

Prediction 
(NWP) 
models 

- Can capture non-
linear growth and 
decay of 
precipitation 
- Skillful for longer 
lead times 

- High computational 
demands 
- Requires high-resolution 
spatial and temporal data  
- High sensitivity to initial 
conditions 
- Long spin-up times (3-
6h) 
 

Blended 
approaches 

-Potential to create 
a seamless 
nowcasting model 
 

- Risk of moving to 
climatological mean 
- Inconsistencies in output 
data 

Optical flow methods 

Nowcasting approaches based on the extrapolation of 

observations are executed in two steps. First, recent 

observations are analyzed to determine motion fields. 

Secondly, an advection scheme is applied to extrapolate 

the last observation along the determined motion vector 

(Pierce et al., 2012). A core assumption used in 

extrapolation nowcasting methods is the existence of 

Lagrangian persistence. Lagrangian persistence states 

that rainfall intensity and motion fields are stationary over 

time. Extrapolation-based nowcasting methods show a 

large skill dependency on event duration, spatial scale, 

season, and location. The Lagrangian persistence limits 

the extrapolation-based nowcasting abilities for dynamic, 

heavy, and localized rain events, such as convective 

precipitation. For small convective rainfall events, skillful 

lead times are limited to 30 minutes. Larger scale 

persistent precipitation events show skillful lead times of 

two hours and only continental scale stratiform events are 

reliably nowcasted with lead times of six hours (Imhoff et 

al., 2023; Ayzel et al., 2019). Moreover, errors in rainfall 

nowcasts increase significantly with rainfall intensity and 

spatial variability (Imhoff et al., 2022).   

Machine learning models 

Over the past years, machine learning methods for 

nowcasting purposes have increased in popularity. 

Machine learning models do not rely on physical equations 

and can therefore overcome the need for assumptions, 

such as the Lagrangian persistence. Shi et al., (2015) 

developed a convection nowcasting method using a 

convolutional Long Short-Term Memory (ConvLSTM) 

algorithm. Convolutional Neural Network (CNN) models 

show nowcasting skills that outperform traditional radar 

extrapolation-based methods (Shi et al., 2015; Shi et al., 

2017). Moreover, Foresti et al., (2019) used an Artificial 

Neural Network (ANN) to capture the nonlinear 

relationships between growth and decay of precipitation. 

The study concluded that average long-term growth and 

decay patterns are effectively reproduced. However, real-

time prediction is more challenging.  In 2021 the DeepMind 

department of Google presented the Deep Generative 

Model of Radar (DGMR) for precipitation nowcasting. 

Generative models learn from the statistical relations in 

their training data and subsequently generate data 

samples based on learned distributions. Ravuri et al., 

(2021) compared the results of the DGMR model with the 

nowcasting performance of existing extrapolation-based 

methods such as S-PROG and STEPS (Pulkkinen et al., 

2019). Quantitative performance indicators showed that 

the DGMR model outperforms the S-PROG and STEPS 

methods from a spatial accuracy perspective. 
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Nevertheless, it is important to remark that the accuracy of 

DGMR models decreases significantly with lead times of 

more than 90 minutes. Moreover, the DGMR model 

showed difficulties in predicting isolated showers. Overall, 

the quality of a machine learning model highly depends on 

the quality and available amount of training data.  

 

Numerical Weather Prediction (NWP) 

NWP models use dynamic and physically based equations 

that explain atmospheric conditions to predict future 

weather conditions. The advantage of NWP models is the 

ability to capture the non-linear evolution of weather 

phenomena, such as the growth and decay of 

precipitation. To apply NWP models for short lead times, 

data assimilation of high spatial and temporal resolution is 

key (Pierce et al., 2012). NWP models with a horizontal 

resolution of 1-4 km enable convective-permitting 

simulations (Sun et al., 2014; Clark et al., 2009; Weisman 

et al., 2008). The predictive skill of NWP models exceeds 

the nowcasting performances of extrapolation methods 

after the first hours of lead time (Sun et al., 2014).  

Nevertheless, NWP models face several challenges. 

Firstly, they are highly sensitive to their initial conditions 

and the definition of realistic boundary conditions is 

difficult. Additionally, NWP models are computationally 

heavy and cope with large spin-up times, which limits their 

updating frequency. For convective-permitting NWP 

models, spin-up times are commonly between three and 

six hours (Imhoff et al., 2020;Pierce et al., 2012;Sun et al., 

2014). Ongoing developments using rapid updating cycles 

and high-resolution data assimilation techniques 

contribute to the forecasting performances of NWP models 

(Sun et al., 2014; Payne, 2017; Honda et al., 2022). 

Nevertheless, the remaining latency of several hours 

between model initialization and forecasting data limits the 

applicability of NWP models for short lead times (Imhoff et 

al., 2023).  

For operational (global) forecasting purposes there are 

practically two NWP models available, namely the model 

of the European Center for Medium-Range Weather 

Forecasts (ECMWF) and the Global Forecasting System 

(GFS). ECMWF is a nonhydrostatic weather model. This 

means that altitude is an important input parameter in the 

model setup. The GFS model is hydrostatic, this means 

that the vertical acceleration of air is not derived explicitly. 

Instead of altitude, GFS uses atmospheric pressure which 

reduces the computational demands. Additionally, 

ECMWF has a spatial resolution of 14 km, whereas the 

GFS model has a spatial resolution of 27 km. Both models 

have a temporal resolution of 1 hour for the first days of 

lead time. The updating frequency of the ECMWF model 

is 12 hours, whereas the GFS model has an updating 

frequency of 6 hours (National Center for Environmental 

Information, 2023;ECMWF, 2023). Numerous studies 

have been conducted which compare the accuracy of both 

models (Medina et al., 2019; Hamill et al., 

2008;Kuznetsov, 2023). In general, the literature results 

state that ECMWF is consistently better. This is likely due 

to the non-hydrostatic character. Nevertheless, the GFS 

model shows higher skills in forecasting severe and 

extreme weather phenomena (Kuznetsov, 2023).   

Blended nowcasting approaches 

Different weather prediction methods show skillful 

performances for varying lead times. For short lead times, 

extrapolation and machine learning techniques are most 

skillful. NWP models show a higher accuracy for longer 

lead times. Blended nowcasting approaches aim to 

combine the different methods to create a seamless model 

that is applicable for varying lead times. Blending requires 

a reprojection of various models onto the same grid and 

the creation of a common temporal frequency. 

Subsequently, weights can be given to each data source 

to create a blended merge of input sources (Vannitsem et 

al., 2021). These weights can be adjusted based on 

various factors, such as lead time and spatial scale. In 

literature, a variety of blending techniques is described. 

Examples of blending algorithms are the hyperbolic 

tangent curve (HTW), the critical success index (CSIW) 

and the salient cross dissolve (Sal CD) (Radhakrishnan & 

Chandrasekar, 2020; Nerini et al., 2019). Recently, Imhoff 

et al., (2023) created an adaptive and scale-dependent 

blended nowcasting approach. The new method shows 

similar to better performances than individual radar 

extrapolation or NWP-based approaches. An added value 

is especially recognized for the first forecasting hours and 

the representation of instantaneous rainfall rates. A risk of 

using blending methods is the trend to move to a 

climatological mean. When using various input sources, 

inconsistencies may arise between the location and spatial 

scale of a precipitation feature. In a blended output this 

can lead to unrealistic output, for example, abrupt changes 

in weather conditions (Vannitsem et al., 2021).  

1.3. The Republic of Ghana, case-study area 

The Republic of Ghana is a country in West Africa with a 

population of 34.1 million in 2023. Ghana has a tropical 

climate which is strongly influenced by the West African 

monsoon winds (World Bank Group, 2023).  On an annual 

basis, Ghana faces floods. Besides their immediate 

destructive effects, floods have negative consequences 

on the social and economic development in the region 
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(Mensah & Ahadzie, 2020).  In the face of climate change, 

extreme weather events in Ghana are expected to 

increase. The dry seasons will become dryer and rainfall 

quantities during the rainy season are expected to 

increase (Logah et al., 2014). Ghana is selected as a case-

study region because of its availability of rainfall 

observation data from the Trans-African Hydro-

Meteorological Observatory (TAHMO).  

The responsible institution for weather monitoring and 

forecasting is the Ghana Meteorological Agency (GMET) 

and for flood management the Hydrological Services 

Department (HSD). The National Disaster Management 

Organization (NADMO) is responsible for formulating and 

distributing early warning messages and potential crisis 

response. The current applied flood forecasting system in 

Accra is solely based on rainfall monitoring. GMET runs a 

Weather Research and Forecasting (WRF) model with a 

resolution of 9 km, an updating frequency of 6 hours, and 

a lead time of 5 days. Published research that evaluates 

the quality and accuracy of these current forecasting 

methods is scares. There have been various initiatives that 

address precipitation now- and forecasting for Ghana. A 

collaboration between HKV and the Royal Dutch 

Meteorological Institute (KNMI) led to the development of 

the RAINSAT Convolutional Neural Network nowcasting 

model (rainsat.net) using the MSG-CPP data and the 

nowcasting method as described by Shi et al., (2017). For 

the Netherlands, this method showed skillful performances 

up to three hours of lead time (van der Kooij, 2021). For 

Ghana, no published research is available which reflects 

on the accuracy of the RAINSAT nowcasting performance.   

An additional nowcasting initiative in Ghana is the Science 

for Weather Information and Forecasting Techniques 

(SWIFT) project. The African SWIFT project was active 

from 2017 to 2022 and was led by the National Centre for 

Atmospheric Science (NCAS). In the scope of the SWIFT 

project the FASTA (Forecasting African Storms 

Application) app was developed. The FASTA app has a 

lead time of two hours. The app shows great potential; 

however, no clear performance evaluation has been 

published. While the original SWIFT plan describes the 

goal to develop the FASTA app for Ghana, it seems that 

currently, only a Kenyan version is available.  

Furthermore, Aryee et al., (2022) describe the 

implementation of a nowcasting approach using 

algorithms of the Nowcasting and Very Short Range 

Forecasting Satellite Application Facility (NWC SAF) 

and Meteosat data to improve early warning in Ghana. A 

performance analysis using 174 events showed a 

probability of detection of 68% and a false alarm rate of 

17%. It is unclear what the current status is of these 

nowcasting initiatives and to which degree they are 

operational.  

In summary, Ghana is prone to extreme precipitation and 

(urban) flooding. To mitigate disaster risks, there is a need 

for reliable now- and forecasting data. There have been 

various local and international organizations active in the 

development of now- and forecasting models. These 

initiatives are promising, however, based on literature 

research it remains unclear how accurate and operational 

the different initiatives are. 

1.4. Research gap 

As discussed in section 1.2, the industry standard for 

nowcasting models is the usage of ground-based radar 

data. Many areas on the African continent have limited 

access to ground-based radar data which hinders 

nowcasting and early warning initiatives. In Ghana, there 

have been various initiatives that aimed to compose 

operational precipitation nowcasting. The quality and 

current status of these nowcasting initiatives received very 

little attention in published reporting. This is considered a 

research gap.  

The high spatial-temporal resolution of Meteosat data in 

combination with its relatively short latency offers the 

potential for operational precipitation nowcasting without 

the need for ground radar. Unfortunately, the availability of 

retrieval algorithms that enable operational nowcasting is 

limited. KNMI has developed the MSG-CPP rainfall 

retrieval algorithm which uses Meteosat data as input and 

provides free and openly available precipitation data. For 

a long period, very little attention and no published findings 

were available in which the accuracy of MSG-CPP 

retrieval products was examined for a country on the 

African continent. This is considered a significant research 

gap. Recently, a paper by Bogerd et al., (2024) presented 

a first comparative analysis of the MSG-CPP products with 

IMERG and TAHMO data for Ghana. The paper observes 

significant differences in the precipitation datasets. To the 

best of our knowledge, there is no research available that 

analyzed the applicability of the MSG-CPP retrieval 

products for nowcasting purposes.  

When assessing the suitability of satellite-based 

precipitation products for nowcasting, it is of high value to 

analyze the differences between available products. 

Besides the MSG-CPP algorithm, there are, to the best of 

our knowledge, two other free and openly available 

satellite-based precipitation products with a spatial and 

temporal resolution large enough to serve nowcasting. 

These products are CMORPH (8 km, 30 min) and GPM 
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IMERG (10 km, 30 min). In literature, there is limited effort 

to compare the different retrieval products with ground 

measurement data for precipitation events in Ghana, 

especially for small temporal scales. Important to note is 

that the latency of the CMORPH and GPM IMERG 

products are in first perspective too long for operational 

nowcasting, for this reason, a focus is given to the MSG-

CPP retrieval product, and the CMORPH and IMERG data 

is used as reference datasets.  

1.5. Research objective and scope 

The main research objective addressed in this paper is 

as follows;  

Assess the accuracy and suitability of satellite-based 

precipitation products for precipitation nowcasting in the 

Republic of Ghana. 

In this research, a focus is given to the MSG-CPP retrieval 

products (IR and visual). The MSG-CPP products have the 

lowest latency and highest temporal and spatial resolution 

of the available satellite retrieval products that are in the 

public domain. Moreover, the MSG-CPP retrieval products 

are already used as input for the nowcasting initiative 

Rainsat.net. In the first research objective, the capabilities 

of the MSG-CPP algorithm to detect precipitation events 

in Ghana are examined.  

Subobjective 1: Analyze the capabilities of the MSG-CPP 

infrared and visual retrieval algorithm to represent 

observed precipitation events. 

To analyze the suitability of rainfall retrieval products for 

nowcasting it is important to analyze the correspondence 

of the various retrieval products with ground-based 

measurements. Early warning, especially for flash floods, 

is dominantly produced on a local scale. The second 

research objective focuses on the spatial extent of a basin 

and on the representation of historic precipitation events 

that could cause flash floods.  

 Subobjective 2: Compare and evaluate the ability of 

various satellite-based retrieval products to represent 

historic heavy precipitation events on a basin scale in 

Ghana. 

The final research objective aims to assess the suitability 

of satellite-based retrieval products for nowcasting and 

reflect on key data characteristics such as latency and 

temporal resolution.  

Subobjective 3: Evaluate the nowcasting performance of 

the S-PROG method in Ghana using the MSG-CPP 

retrieval product as input data and assess its sensitivity 

to various temporal resolutions.  

2. Materials and Methods 
2.1. Satellite-based precipitation retrieval 

products 

For this study, the satellite-based retrieval products of 

MSG-CPP, IMERG and CMORPH are used and 

compared to TAHMO observations. In table 2 the main 

characteristics of these datasets are presented. In the 

following paragraphs, a summary is given of the different 

retrieval algorithms. A more detailed insight concerning 

the retrieval methodologies can be found in the cited 

references. 

MSG-CPP retrieval algorithm 

The MSG-CPP (Cloud Physical Properties) algorithm uses 

data from the geostationary Meteosat satellite as input and 

consists of four main parts. The first step is the 

identification of cloud pixels and the determination of cloud 

top height and temperature. For this first step, the GEO 

v2018 algorithm is used which is provided by the NWC 

SAF, an organization of EUMETSAT. Next, the cloud 

thermodynamic phase, optical thickness, particle effective 

radius and liquid water path are determined using an 

algorithm that was developed by Roebeling et al., (2006) 

and improved by Benas et al., (2017). The algorithm uses 

backscatter radiation as the main data source and is 

therefore daylight dependent. The third step in the MSG-

CPP algorithm derives surface solar irradiance using an 

empirical method which is described by Greuell et al., 

(2013).  Finally, the precipitation rate is estimated. For this 

estimation, a different method is used during the day 

compared to the night. Precipitation estimates during 

daytime are derived using the empirical algorithm of  

Roebeling & Holleman, (2009) and use the cloud 

 MSG-CPP IR MSG-CPP Visual IMERG Early IMERG Final CMORPH TAHMO 

Spatial resolution 3 km x 3 km 3 km x 3 km 10 km x 10 km 10 km x 10 km 8 km x 8 km Point 

Temporal resolution 15 min 15 min 30 min 30 min 30 min 15 min 

Latency 45 min 45 min 4 h 3 months 12 months 1 h 

Availability Continuous Daytime Continuous Continuous Continuous continuous 

Data representation Pixel Pixel Pixel Pixel Pixel Point 

Remote vs in situ Space Space Space  Space + ground Space Ground 

Table 2 Used data sources and attributes 
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properties as determined in the second step of the MSG-

CPP model.  

During night-time precipitation estimates are derived using 

an algorithm based on infrared brightness temperature. 

This Nighttime Infrared Precipitation Estimation (NIPE) 

method is described in the master thesis of Brasjen, 

(2014). The NIPE method derives a cloud classification. 

This cloud class subsequently links to precipitation index 

values that finally lead to precipitation intensities. In 2017 

the NIPE algorithm was improved using GPM radar data 

between April 2014 and March 2015 for calibration. The 

improved algorithm showed a CSI of 23% during daytime 

and 22% during nighttime for classifying a satellite pixel as 

precipitation or non-precipitation. The derived precipitation 

rates deviated on average by a factor of 3.5 with the GPM 

radar observations (Brasjen & Meirink, 2017).  

The MSG-CPP rainfall retrieval data which is used in this 

research covers a time series from January 2020 till 

December 2023. Nevertheless, a data gap occurs starting 

in February 2021 till March 2022. Consequently, a time 

series of 35 months of data is used. The visual light-based 

product is daylight dependent, for Ghana this means that 

the retrieval data is available between approximately 7:00 

AM and 5:30 PM.  

GPM IMERG retrieval algorithm 
The Integrated Mult-satellitE Retrievals for GPM (IMERG) 

product is the gridded precipitation data from the Global 

Precipitation Measurement Mission (GPM) and has been 

developed by NASA (Huffman, 2020). The IMERG 

retrieval algorithm integrates passive microwave (PMW), 

infrared and dual-frequency radar data from various low-

earth orbiting satellites and is specifically skillful in 

capturing heavy rainfall events and convective systems 

(Hou et al., 2014).To blend and calibrate the different data 

sources a merged Bayesian methodology is used. In this 

probabilistic method, the uncertainties which are 

associated with each data source are captured in the joint 

probability distribution. Subsequently, weight is given to 

each data source. The weighted probability density 

function finally composes the IMERG GPM precipitation 

estimate. The temporal resolution of the IMERG data is 30 

minutes. 

Apart from satellite-based data sources, IMERG also 

integrates data from ground-based gauges from the 

Global Precipitation Climatology Centre (GPCC). IMERG 

publishes various versions of its retrieval product with 

varying latencies. The retrieval product with the shortest 

latency (4h) is the IMERG Early product. The IMERG Early 

product provides preliminary estimates of precipitation 

intensities and undergoes minimal post-processing based 

on ground measurements. Subsequently, there is the 

IMERG Late product with a latency of 14 hours. The 

IMERG Late data incorporates more satellite observations 

and corrections based on ground observations. Finally, the 

IMERG Final product is made available with a latency of 

several months. The IMERG Final product is considered 

the IMERG version with the highest accuracy due to its 

extensive postprocessing steps for error correction and 

validation using GPCC gauge data (Li et al., 2021; 

Tapiador et al., 2020).  

Maranan et al., (2020) analyzed the validity of the GPM 

IMERG data using a mesoscale rain gauge network in the 

West African Forest Zone. The study observed a high false 

alarm ratio for low-intensity rainfall. Moreover, the IMERG 

data tends to overestimate rainfall from weak convective 

events and underestimate strong mesoscale convective 

systems. Additionally, the IMERG performances 

decreased during the dry season. Research by Pradhan 

et al., (2022) evaluated the performances of GPM IMERG 

from a global perspective. In line with the conclusions of 

Dezfuli et al., (2017), substantial performance differences 

are noticed between regions and climates. In this study, 

the most recent versions (V06B) of the IMERG Early and 

IMERG Final retrieval products are used. The IMERG 

Early data is selected for its relatively small latency, which 

is of interest in the scope of operational nowcasting. The 

IMERG Final data is considered to evaluate the effects of 

post-processing using ground measurements on the 

IMERG retrieval product. 

CMORPH retrieval algorithm 

The Climate Prediction Center MORPHing Technique 

(CMORPH) was developed by the National Oceanic and 

Atmospheric Administration (NOAA) and described by 

Joyce et al., (2004). As data input the CMORPH algorithm 

uses infrared data from a geostationary satellite in 

combination with passive microwave (PMW) data from 

orbiting satellites. The advantage of using infrared data 

from geostationary satellites is the constant and reliable 

temporal and spatial resolution. On the other hand, PMW 

data provides more information concerning specific 

precipitation characteristics. By morphing PMW and 

infrared data, the strengths of both sources are utilized. 

However, CMORPH data is not corrected using ground 

measurements. Due to its high spatial (8 km) and temporal 

resolution (30 min), CMORPH is often applied for weather 

analyses, especially in data-scarce regions. A study by 

Atiah et al., (2020) analyzed the accuracy of CMORPH 

data in relation to various other precipitation datasets and 

ground measurements in Ghana. The paper concluded an 

overestimation of low-intensity rainfall and an 



8 

 

 

 

underestimation of high-intensity rainfall.  Dinku et al., 

(2010) described that CMORPH shows good 

performances in capturing convective rainfall. 

 

2.2. Trans-African Hydro-Meteorological 

Observatory (TAHMO) data 

The TAHMO organization aims to develop a vast network 

of inexpensive and robust weather stations across Africa 

(van de Giesen et al., 2014). The TAHMO weather stations 

contain a rain gauge with an ATMOS 41 sensor to 

measure precipitation. The equipment has a diameter of 

9.3 cm and consists of a flared hole which creates rainfall 

drops, of a known size, which are passing a drip counter. 

Based on the drip counts and the known drop volume, the 

precipitation volume per time interval is derived. The 

TAHMO data has a temporal resolution of 15 minutes and 

a latency of 1 hour. For high-intensity rain, the composed 

raindrops become smaller. To account for this 

phenomenon, ATMOS 41 uses an algorithm that 

considers drip size volumes for varying rainfall intensities. 

According to the weather station manual, the precipitation 

measurements have a resolution of 0.017 mm and an 

accuracy of 5% for measurements in the range of 0-50 

mm/h (TAHMO, 2023).  

For this research, TAHMO provided access to 25 of their 

stations in Ghana. After the first inspection, six of these 

stations were considered unsuitable due to 

inconsistencies in the data collection. The locations of the 

remaining 19 stations are presented in figure 1. Moreover, 

figure 2 shows the data availability of the different stations. 

In this research, all rainfall observations below 0.1 mm are 

set at 0 mm.  

2.3. S-PROG nowcasting method 

As a nowcasting model, this study uses the deterministic 

Spectral-PROGnosis (S-PROG) nowcasting model as 

introduced by Seed (2003). The S-PROG method is 

selected because it is open-source available and, 

according to the study of Imhoff et al., (2020), the model 

outperforms the Rainymotion nowcasting models. To 

implement the S-PROG model the open-source Python 

library Pysteps is used. The Pysteps set-up offers a 

configurable and accessible modular framework for space-

time simulations of precipitation (Pulkkinen et al., 2019). 

As input, the Pysteps framework requires a time series of 

raster precipitation data. Based on the S-PROG method a 

stochastic method is developed under the name Short-

Term Ensemble Prediction System (STEPS) (Bowler et 

al., 2006). Nevertheless, in this study, the focus is on the 

deterministic nowcasting model structure. This choice is 

made to avoid the addition of stochastic perturbations and 

therefore simplify the interpretability of the results.  

The S-PROG model applies optical flow advection to 

produce nowcast data. First, a log-normal distribution of 

rain rates is composed to represent the non-Gaussian 

distribution of precipitation rates. Subsequently, field 

advection finds place by estimating the movement of the 

rainfall field over time. In the S-PROG set-up for research, 

three rainfall fields are used to derive the motion vectors. 

The motion vectors are composed using a pattern-

matching algorithm that estimates the displacement 

between the succeeding input files. A sensitivity analysis 

by Pulkkinen et al., (2019) showed a limited sensitivity of 

motion field methods on the nowcasting skill. In this study, 

the Lucas-Kanade method (Lucas & Kanade, 1981) is 

applied, this is in line with the study of Imhoff et al., (2020). 

After the composition of the motion vectors, semi-

Lagrangian advection is used to extrapolate the rainfall 

fields.  

  Figure 1 Map of Ghana with TAHMO stations               Figure 2 Data availability of TAHMO observations per station 
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The following step in the Pysteps workflow is spectral 

decomposition. Precipitation behavior depends on its 

spatial scale (Germann & Zawadzki, 2002). To capture this 

phenomenon, the precipitation field is divided into six 

different cascades of spatial scales. This scale 

decomposition uses Gaussian weight functions on the 

Fast Fourier Transform (FFT) spectrum. Figure 3 shows 

an example of the various cascade decomposition levels. 

Next, the temporal evolution of precipitation is captured 

using auto-regressive (AR) model parameters per 

cascade. The AR models capture the temporal 

dependencies between successive levels and aim to 

represent evolving rainfall patterns over time. After the AR 

models are used to predict the future state of each 

cascade level, the results are to produce a nowcasted 

precipitation field. This final nowcast result becomes 

smoother over time. Figure 4 shows an example nowcast 

for the spatial extent of Ghana. In this figure, the 

smoothing effect over time is visible. This study uses the 

default S-PROG parameters as described by Seed, (2003) 

and Pulkkinen et al., (2019).  

2.4. Precipitation detection capabilities of 

the MSG-CPP retrieval products in 

Ghana 

For the first research objective, the capabilities of the 

MSG-CPP algorithm to detect precipitation and specifically 

peak precipitation intensities are analyzed for Ghana. In 

the scope of this research, peak precipitation is defined as 

the 95% percentile precipitation intensity as measured by 

the 19 TAHMO stations. To examine the precipitation 

detection capabilities of the MSG-CPP retrieval products, 

the MSG-CPP data is compared with TAHMO ground 

measurements. For all 19 TAHMO station locations the 

matching pixel in the MSG-CPP retrieval data is 

determined. The precipitation intensity value of the 

associated pixel is extracted for the visual as well as the 

infrared (IR) retrieval algorithm over the complete 

available time series of the MSG-CPP data. To compare 

peak precipitation thresholds, the 90% and 95% percentile 

precipitation is derived over all timesteps with a 

precipitation intensity > 0.1 mm/h per timestep. This is 

done for the TAHMO as well as the MSG-CPP IR and 

visual data, see table 3.  

 

As peak definition the 95% percentile intensity of the 

TAHMO data is used. However, to examine the peak 

detection capabilities, the choice is made to compare the 

95% percentile TAHMO threshold with the 90% percentile 

MSG-CPP thresholds. This study aims to examine 

whether the MSG-CPP retrieval products can detect high 

precipitation intensities. Expanding the acceptance margin 

contributes to the overall evaluation of the retrieval 

products in this context. The daily temporal resolution is 

added to the analyses to research the effect of temporal 

Figure 3 4 Example of spatial decomposition into cascades as used in the S-PROG method, adapted from Pysteps tutorial, cascade 

decomposition 

 

Figure 43 S-PROG nowcasting example using MSG-CPP IR input data for the spatial extent of Ghana 10/05/2020 
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resolution on the detection capabilities, the associated 

thresholds are presented in table 3.   

 
Table 3 Precipitation thresholds using the 90% and 95% percentile 

of precipitating timesteps  

 15-min precipitation 
intensity  

>0.1 mm/h  

Daily 
precipitation  

>0.1 mm daily 

TAHMO 

90%  
percentile 

3.8 mm/h 4.7 mm 

95% 
percentile 

7.0 mm/h 8.1 mm 

MSG-CPP IR 

90%  
percentile 

7.9 mm/h 16.8 mm 

95% 
percentile 

11.9 mm/h 29.6 mm 

MSG-CPP visual 

90%  
percentile 

17.9 mm/h 30.3 mm 

95% 
percentile 

32.5 mm/h 54.1 mm 

 

In the detection analyses, the following questions are 

addressed. Firstly, how well can the MSG-CPP retrieval 

algorithms detect observed precipitation? Secondly, when 

TAHMO shows a peak precipitation intensity how often 

does the MSG-CPP data detect peak intensity as well? 

And lastly, how often does the MSG-CPP data show a 

peak intensity which is not observed in the TAHMO 

measurements? To answer these questions the selected 

peak events as defined by the thresholds in table 3 are 

analyzed using a scatterplot and a histogram. Moreover, 

the Probability Of Detection (POD), the False Alarm Ratio 

(FAR), and the Critical Succes Index (CSI) are derived as 

performance indicators, see equations 1 till 3. In these 

equations, “hits” refers to a timestep where the MSG-CPP 

rainfall retrieval detected rainfall which was also detected 

by the TAHMO observations. “Misses” refers to the 

timesteps in which the TAHMO data shows a precipitation 

measurement that is not detected by the MSG-CPP 

algorithm. Finally, “false alarm” represents the timesteps 

in which the MSG-CPP data detected rainfall and the 

TAHMO data did not. For the POD and CSI, 1 indicates a 

perfect score, and 0 is the worst score. For the FAR, 0 is 

a perfect score and 1 indicates the worst outcome.  

 

𝑃𝑂𝐷 =  
ℎ𝑖𝑡𝑠

ℎ𝑖𝑡𝑠 + 𝑚𝑖𝑠𝑠𝑒𝑠
   

 

 
(equation 1) 

𝐹𝐴𝑅 =  
𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠

𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠 + ℎ𝑖𝑡𝑠
 

 

 
(equation 2) 

𝐶𝑆𝐼 =  
ℎ𝑖𝑡𝑠

ℎ𝑖𝑡𝑠 + 𝑚𝑖𝑠𝑠𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠
 

 

 
(equation 3) 

 

2.5. Comparative analysis of satellite-based 

precipitation data for peak events Odaw 

catchment 

For the second research objective, the precipitation 

intensity of various satellite-based retrieval products is 

compared for a selection of peak events.  For early 

warning purposes, the spatial scale of a basin is most 

applicable in practice. Consequently, the choice is made 

to select a basin and analyze the difference in precipitation 

representation for eight heavy precipitation events in this 

basin. In this analysis the precipitation retrieval products, 

as presented in section 2.1, are included. For these 

events, the precipitation intensity on the smallest available 

timestep and the cumulative rainfall depth are compared. 

Moreover, the percentual difference in daily rainfall depth 

is compared to the TAHMO measurements. All 

precipitation retrieval data is available in pixel format which 

eases the composition of an average precipitation 

intensity. To convert the point measurements of the 

TAHMO data into a precipitation field, Thiessen polygons 

are applied. In figure 5 the boundaries of the Thiessen 

polygons are visualized.  

 

Basin selection 

To select a case-study area, the availability of TAHMO 

stations is used as the main selection criteria. This led to 

the selection of the Odaw basin in the Accra region as a 

case-study area. For this basin there is data available of 

three nearby TAHMO stations, see figure 5.  The Odaw 

basin has a surface area of 285 km2 and is highly 

urbanized. The area is subject to frequent flooding, which 

has large social-economic consequences (Ntajal et al., 

2022). A report, published by the Ministry of Works and 

Housing, states that the average annual rainfall in the 

basin is 730 mm (Larmie Seth, 2019). For the analyses of 

the precipitation data, the pragmatic choice is made to 

derive a square extent around the basin shape. Making 

clips within the extent of a pixel is computationally complex 

and for the aim of this analysis, it is not considered of 

significant influence that the exact basin contours are 

followed.  
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Figure 5 Odaw Basin study area with TAHMO stations and 

Thiessen polygons 

 

Heavy precipitation event selection for Odaw basin 

To compose a selection of heavy precipitation events for 

the Odaw catchment, the TAHMO data is used. Firstly, all 

timesteps that have a NaN value for one of the three 

TAHMO stations in the Odaw region are removed from the 

time series. Next, the remaining TAHMO data is 

resampled to 3-hour and daily precipitation intensities. Of 

these resampled precipitation intensities, the highest peak 

events are selected and checked for MSG-CPP, IMERG, 

and CMORPH data availability. The eight resulting 

precipitation events are presented in table 4.  

 
Table 4 Selected heavy precipitation events for Odaw basin 

Precipitation 
days 

Peak intensity 
time step in 

TAHMO 
observation 
data (local 

time) 

The period used 
for nowcasting  

2020-04-26 9:30 6:00-10:30 

2020-05-10 17:00 13:30-18:00 

2020-05-28 16:45 13:00-17:30 

2020-10-10 9:15 5:30-10:00 

2022-05-06 16:30 13:00-17:30 

2022-05-21 20:30 17:00-21:30 

2023-03-07 3:45 01:30-6:00 

2023-04-27 17:00 14:30-18:00 

 

2.6. Satellite-based precipitation nowcasting  

For the third research objective, the nowcasting skill of the 

S-PROG method is analyzed for Ghana. For this analysis, 

the MSG-CPP IR data is used as input data. This dataset 

is selected because it has the potential to be operationally 

applied due to its relatively short latency. The MSG-CPP 

visual algorithm is not used because its daylight 

dependency is considered impractical for operational 

purposes. In the performance analysis of the S-PROG 

method, the nowcasted precipitation fields are compared 

to the retrieval product itself, as observed at the respective 

lead times. This approach enables the evaluation of the 

nowcasting algorithm independently from the evaluation of 

the retrieval product, which is studied in the first two 

research objectives.  

 

To get a comprehensive understanding of the S-PROG 

nowcast characteristics and its overall performance the 

choice is made to evaluate the satellite-based precipitation 

nowcast for various spatial extents and scopes. These 

different evaluation perspectives are shortly stated below 

and further elaborated in the following paragraphs.    

 

1) Conducting a quantitative nowcast evaluation 

using the Fraction Skill Score (FSS) for the 

complete area extent of Ghana with 116 

precipitation events > 5.0 mm/h.  

2) Reflecting qualitatively on the S-PROG 

nowcasting characteristics using the Odaw 

basin area extent and the eight selected heavy 

precipitation events as presented in table 4 

3) Analyzing the effects of different temporal 

resolutions in the input data on the nowcasting 

skill of the S-PROG model. This is done 

quantitatively using the FFS for the area extent 

of Ghana and subsequently using the Mean 

Absolute Error (MAE) for the Odaw basin. For 

the FSS as well as the MAE, 116 precipitation 

events > 5.0 mm/h are used.  

4) Reflecting qualitatively on the S-PROG 

nowcasting characteristics for the various 

temporal resolutions in input data. This is done 

for the Odaw basin and using the eight selected 

precipitation events as presented in table 4 

 

To analyze skillful lead times of the S-PROG method a 

large event selection has been made. The 5 mm/h 

threshold is selected as it represents a significant 

precipitation event while finding a balance in which 

sufficient precipitation events were present in the available 

MSG-CPP IR data. Over the complete MSG-CPP IR time 
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series, all precipitation events > 5 mm/h in the Odaw basin 

are selected. This resulted in the selection of 116 events. 

For these 116 events, a nowcast was composed including 

the timesteps four hours before the peak precipitation 

event and half an hour after. In literature, the highest found 

skillful lead time of the S-PROG nowcasting algorithm is 4 

hours (Burton et al., 2022). By selecting a time window of 

4.5 hours this lead time is included in the analyses, while 

limiting the computational demands of the analysis. For 

the derived time window, a nowcasting loop is composed 

in which each iteration starts one timestep later in time. For 

all of the different nowcast evaluation approaches, the 

nowcast algorithm is applied over the complete area 

extent of Ghana.  To subsequently assess the S-PROG 

nowcasting patterns in more detail, a focus is given to the 

eight selected precipitation events in the Odaw basin. For 

these events, the precipitation intensity per timestep and 

the cumulative precipitation per event are analyzed.  

 

Additionally, the sensitivity of the S-PROG method to the 

temporal resolution of input data is explored. In this study, 

emphasis is given to the MSG-CPP retrieval products as 

they have the largest potential to be used for operational 

nowcasting. This assumption is partly based on the fact 

that the MSG-CPP data has the highest temporal 

resolution. By examining how the S-PROG method 

responds to changes in the temporal resolution of input 

data, it is possible to analyze whether alternative satellite-

based retrieval products with lower temporal resolutions 

would offer possibilities. For this sensitivity analysis, the 

same 116 precipitation events > 5.0 mm/h are used. 

However, the MSG-CPP IR data is aggregated into 

timesteps of 30- and 60-minutes. To compare the 

nowcasting performance of the various temporal 

resolutions, the FSS is derived for the complete Ghana 

extent. Moreover, the Mean Absolute Error (MAE) is 

composed for the Odaw basin area. Finally, there is again 

given the focus on the eight heavy precipitation events for 

the Odaw basin to reflect qualitatively on the nowcast 

characteristics originating from varying temporal 

resolutions.  

 

Nowcasting performance indicators 

To evaluate the nowcasting performances for the 

complete Ghana area extent the fraction skill score (FSS) 

is utilized. The FSS, as described by Roberts & Lean, 

(2008), is selected as a performance indicator because it 

enables performance evaluation for various spatial scale 

levels. Evaluation on various scale levels is of value to 

reflect on the applicability of nowcasting results. Smaller 

spatial scales are of value to anticipate on localized 

events. However, nowcast data on large-scale levels can 

be of value for hydrological models on a basin scale. 

Equations 4 to 6 are used to quantify the similarity between 

observed and nowcasted precipitation fields and derive 

the FSS.  The FFS varies from 0, which indicates no skill, 

to 1, a perfect skill. The nowcast is generally considered 

skillful when FSS > 0.5 + 
𝑓0

2
 , where 𝑓0 is the area of the 

observed scale divided by the area of the observed 

domain (Roberts & Lean, 2008). The observed domain refers 

to the spatial scale level of the evaluation and the 

associated area of these grid cells. The area of the 

observed domain is the total area for which the nowcast is 

composed. In the scope of this study, it refers to the area 

extent of Ghana. As evaluation scale levels 3, 9, 60, 180, 

and 300 km are selected. These are all multiples of the 

spatial resolution of the MSG-CPP IR data of 3 km. For the 

spatial scales up to 60 km an FSS > 0.5 is considered 

skillful. For 180 and 300 km these thresholds are 

respectively 0.54 and 0.60.  

 

𝐹𝑆𝑆(𝑛) = 1 − 
𝑀𝑆𝐸(𝑛)

𝑀𝑆𝐸(𝑛)𝑟𝑒𝑓

 

 

 
(Equation 4) 

𝑀𝑆𝐸(𝑛) =
1

𝑁𝑥𝑁𝑦

∑ ∑[𝑂(𝑛)𝑖,𝑗 − 𝑀(𝑛)𝑖,𝑗]
2

𝑁𝑦

𝑗=1

𝑁𝑥

𝑖=1

 

 

 
(Equation 5) 

𝑀𝑆𝐸(𝑛)𝑟𝑒𝑓 =
1

𝑁𝑥𝑁𝑦

∑ ∑ 𝑂(𝑛)𝑖,𝑗
2

𝑁𝑦

𝑗=1

𝑁𝑥

𝑖=1

+ ∑ ∑ 𝑀(𝑛)𝑖,𝑗
2

𝑁𝑦

𝑗=1

𝑁𝑥

𝑖=1

 

 

 
(Equation 6) 

Where: 

𝑁𝑥 = Number of columns in the area extent of n x n cells 

𝑁𝑦 = Number of rows in the area extent of n x n cells 

𝑂(𝑛)𝑖,𝑗  = Amount of observed grid cells in a specific 

neighborhood size n that exceed an intensity threshold of 1.0 

mm/h 

𝑀(𝑛)𝑖,𝑗= Amount of nowcasted grid cells in a specific 

neighborhood size n that exceed an intensity threshold of 1.0 

mm/h 

𝑀𝑆𝐸(𝑛)= Mean Squared Error between observed and 

nowcasted values for a specific neighborhood size n 

𝑀𝑆𝐸(𝑛)𝑟𝑒𝑓= The largest possible MSE between observations 

and nowcast values for a specific neighborhood size n 
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The FSS mainly evaluates the spatial pattern of the 

composed nowcast data. To additionally reflect on the 

nowcasted precipitation intensities, the Mean Absolute 

Error (MAE) is derived using equation 7. The MAE is 

derived for the spatial extent of the Odaw basin and the 

116 precipitation events in various temporal resolutions.  

 

𝑀𝐴𝐸 =  
∑ 𝑀𝑖 −  𝑂𝑖 

𝑛
𝑖=1

𝑛
 

 

 
(equation 7) 

Where: 

𝑀𝑖 = Nowcasted average precipitation intensity in the Odaw 

basin 

𝑂𝑖 = Observed average precipitation intensity in the Odaw basin 

𝑛= Amount of included nowcasting timesteps 

 

 

 

3. Results  
3.1. Precipitation detection capabilities of 

the MSG-CPP retrieval products 

 

MSG-CPP IR retrieval  

 To analyze the precipitation detection capabilities of the 

MSG-CPP products first the overall detection of 

precipitation (>0.1 mm/h) is examined. Subsequently, a 

focus is given to peak precipitation intensities. In the scope 

of this study peak precipitation is defined as the 

precipitation intensity of the 95% percentile TAHMO and 

90% percentile MSG-CPP data, see section 2.4. The 

results presented in this section include the data of all 19 

TAHMO stations and their associated pixel value in the 

MSG-CPP data. Figure 6 shows scatterplots and 

histograms of the TAHMO and MSG-CPP IR peak 

precipitation data based on percentile thresholds as 

TAHMO  
threshold 

MSG-CPP IR 
threshold 

Number of 
events 

POD 
1 = perfect score 
0 = worst score 

FAR 
0 = perfect score 
1 = worst score 

CSI 
1 = perfect score 
0 = worst score 

15-minute timesteps 

>0.1 mm/h >0.1 mm/h 169648 0.49 0.75 0.20 

>7.0 mm/h >0.1 mm/h 135818 0.69 0.98 0.02 

>7.0 mm/h >7.9 mm/h 15990 0.19 0.95 0.04 

Daily timesteps 

>0.1 mm >0.1 mm 10290 0.55 0.53 0.34 

>8.1 mm >0.1 mm 7606 0.68 0.94 0.05 

>8.1 mm >16.8 mm 1420 0.31 0.81 0.13 

Figure 6 Histograms and scatterplots showing the peak precipitation events in the TAHMO and MSG-CPP IR data. (a) and (b) present a 

temporal resolution of 15 minutes, (c) and (d) a daily temporal scale. 

Table 5 Performance indicators precipitation detection MSG-CPP IR retrieval product using TAHMO measurements of 19 stations in Ghana 
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presented in table 3. Figure 6 (a) and (c) show the 

timesteps selection after applying the TAHMO peak 

threshold, additionally (b) and (d) show the timesteps 

when applying the MSG-CPP IR peak thresholds. In table 

5 the Probability Of Detection (POD), the False Alarm 

Ratio (FAR), and Critical Succes Index (CSI) are shown. 

Already in the definition of the thresholds, it is noticeable 

that there is a difference in precipitation intensities. The 

derived MSG-CPP IR percentile thresholds are 

significantly higher than the TAHMO percentiles. Besides 

the differences in intensity threshold, the scatterplots show 

that a clear correlation between the MSG-CPP IR retrieval 

product and the TAHMO measurements is lacking.  

 

 In the first row of table 5, the overall capability of detecting 

precipitation is shown, this led to a POD of 0.49. The high 

false alarm ratio of 0.75 shows that the MSG-CPP 

algorithm often detects precipitation, while the TAHMO 

ground measurement stations do not observe any rainfall. 

For peak observations in the TAHMO data, the POD  

becomes higher, however, the FAR also increases which 

leads to an overall lower CSI. When solely looking at peak 

observations for the TAHMO as well as the MSG-CPP IR 

data, the POD is 0.19. Besides the differences in 

precipitation intensities, the histograms show that the 

MSG-CPP IR data has a larger intensity spread compared 

to the TAHMO stations. The histogram of the MSG-CPP 

IR-based peaks barely shows any overlap with the 

TAHMO distribution. Moreover, it seems that the MSG-

CPP IR algorithm has a maximum precipitation intensity of 

50 mm/h (for a 15-minute timestep). To examine the 

impact of the temporal resolution on precipitation 

detection, a similar peak comparison is executed using 

daily timesteps. On a daily temporal resolution, the MSG- 

TAHMO  
threshold 

MSG-CPP visual 
threshold 

Number of events POD 
1 = perfect score 
0 = worst score 

FAR 
0 = perfect score 
1 = worst score 

CSI 
1 = perfect score 
0 = worst score 

15-minute timesteps 

>0.1 mm/h >0.1 mm/h 139228 0.81 0.80 0.19 

>7.0 mm/h >0.1 mm/h 133030 0.94 0.99 0.01 

>7.0 mm/h >17.9 mm/h 14164 0.39 0.95 0.05 

Daily timesteps 

>0.1 mm >0.1 mm 10701 0.58 0.55 0.34 

>8.1 mm >0.1 mm 8244 0.64 0.95 0.05 

>8.1mm >30.3 mm 1522 0.31 0.83 0.12 

Figure 7 Histograms and scatterplots showing the peak precipitation events in the MSG-CPP visual and TAHMO data. (a) and (b) present a 

temporal resolution of 15 minutes, (c) and (d) a daily temporal scale 

Table 6 Performance indicators precipitation detection MSG-CPP visual retrieval product using TAHMO measurements of 19 stations in 

Ghana 
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CPP IR peak threshold is approximately twice the TAHMO 

peak threshold. Additionally, the results show a reduction 

in the FAR and an increase in POD. This has a positive 

effect on the CSI. These results show that the MSG-CPP 

detection capabilities are sensitive to its temporal 

resolution.  

 

MSG-CPP Visual retrieval product 

Figure 7 shows scatterplots and histograms of the peak 

intensity timesteps of the MSG-CPP visual retrieval 

product and the TAHMO measurements. Figure 7 (a) and 

(c) show the timesteps selection after applying the 

TAHMO peak thresholds, additionally (b) and (d) show the 

timesteps when applying the MSG-CPP visual peak 

thresholds. In table 6 the POD, FAR, and CSI are 

presented for the various precipitation intensity thresholds 

as defined in Section 2.4. The number of selected peak 

events is reduced compared to the IR-based time series 

due to the decreased number of available timesteps in the 

data (only day times). As a first observation, it is visible 

that the peak percentile thresholds of the MSG-CPP visual 

data are almost 5 times higher than for the TAHMO data, 

and more than double the MSG-CPP IR threshold. These 

are clear indicators that the precipitation intensities in the  

MSG-CPP visual retrieval algorithm are significantly 

overestimated. Moreover, the associated scatterplots of 

the peak timesteps lack a clear correlation.  In the 

histograms, it is visible that many timesteps indicate a 

peak intensity in one of the datasets while the other does 

not present any precipitation occurrence. Additionally, the 

MSG-CPP visual data has a much larger spread in peak 

precipitation intensities compared to the TAHMO 

observations. 

 

The POD for detecting precipitation is 0.81, this is 

significantly higher than for the IR retrieval product. 

However, the FAR ratio of 0.80 is also higher, which leads 

to similar a CSI index. For TAHMO peak timesteps the 

POD is even 0.94, but the associated FAR is 0.99. For 

detecting peak precipitation intensities in both the TAHMO 

and MSG-CPP visual data, the POD is 0.39, also this is 

higher compared to the IR dataset. Interesting is that on a 

daily temporal scale the POD as well as the FAR 

decrease. These have the opposite effect on the CSI. 

Nevertheless, the overall CSI improves for a daily 

temporal resolution compared to the 15-minute analyses. 

On a daily resolution, the performance indicators of the 

MSG-CPP IR and visual data are comparable.  

3.2. Comparative analysis of satellite-based 

precipitation products for peak events 

in the Odaw catchment 

To compare the different datasets, a visual representation 

of the eight selected peak events, as presented in table 4, 

is made. This is done for the complete extent of Ghana. 

Figure 8 shows the precipitation maps for the peak event 

on 28 May 2020, the visualizations of the other events are 

presented in Appendix A. In these figures, it is visible that 

the overall patterns in the precipitation retrievals have 

clear similarities. Due to the limited coverage of the 

TAHMO stations, it is challenging to compare the retrieval 

products with patterns in TAHMO measurements. 

However, from the first interpretation, it seems that the 

retrieval products frequently show precipitation coverage, 

which is not detected by the TAHMO stations. This is for 

example visible for the 10th and 28th of May 2020. On the 

other hand, on the 6th of May 2022, the TAHMO station in 

the Accra region showed a clear precipitation peak, which 

is not recognizable in any of the retrieval products.  

 

Moreover, it is visible that the MSG-CPP visual product 

shows higher precipitation intensities than all the other 

retrieval products. Also, the difference between the 

IMERG Early and Final products is clearly recognizable, 

especially in the spatial extent of the precipitation field, for 

example, the 10th of May 2020 event. Another remarkable 

observation is that on the 6th of April 2020, the MSG-CPP 

visual algorithm detected a large precipitating field in the 

Northeast of the county which is not at all visible in the 

MSG-CPP IR retrieval product. 

 
To compare the retrieval products more quantitatively, a 

focus is given to the Odaw basin area. In figure 9 the 

cumulative precipitation of the eight selected heavy 

precipitation events is presented. More detailed 

precipitation intensity graphs per dataset can be found in 

Appendix B.  Important to note is that the graph 

representing the MSG-CPP visual algorithm is interrupted 

when the data availability ends (periods of the day without 

daylight). This limits the possibility of analyzing the rainfall 

intensities of the MSG-CPP visual product for all peak 

events. Still, it is visible that the MSG-CPP visual product 

extremely overestimates the precipitation intensity 

compared to the TAHMO measurements. This observation 

is in line with the observations in section 3.1. Besides the 

overestimation of the MSG-CPP visual product, several 

other observations can be made. Firstly, for almost all 

events, the satellite products overestimate the 
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precipitation intensity in relation to the TAHMO 

observations. This could be due to the limited product 

calibration using ground data in the Ghana region. Another 

possibility is that the point measurement stations in the 

TAHMO data are not suffieciently able to represent peak 

events and consequently underestimate the precipitation 

depth. A next observation is that overall, the IMERG Early, 

IMERG Final, CMORPH and MSG-CPP retrieval products 

show comparable shapes in their cumulative precipitation 

graphs for the selected events. Despite the differences in 

cumulative precipitation depth, the start time, end time, 

and time of peak precipitation vary in the order of 

magnitude of one to two hours.  
  

To assess which of the satellite-based retrieval products 

most closely corresponds with the TAHMO 

measurements, the percentual difference in daily 

precipitation depth is compared with TAHMO data, see 

figure 10. Again, a clear overestimation of the MSG-CPP 

visual data is visible. All other precipitation products show 

overestimations up to 500%. Only the MSG-CPP IR data 

also shows two underestimations of the measured 

precipitation depth. Moreover, the MSG-CPP IR data has 

a slightly larger spread in % differences compared to the 

IMERG and CMORPH data. Additionally, it is visible that 

the 27 April 2023 event has the lowest % difference for 

most datasets. This peak event has in comparison to the 

other selected peak events a lower cumulative 

precipitation depth. Potentially, lower precipitation peaks 

are easier to detect using satellite-based precipitation 

products than higher peak events. This hypothesis is 

further discussed in the discussion section.  

 

Based on the analyses of these eight heavy precipitation 

events in the Odaw basin, it cannot be concluded which of 

the satellite products is best at representing peak events. 

However, you could expect that the precipitation products 

with a larger latency (CMORPH and IMERG final) would 

show a higher correspondence with measurement data 

due to their increased usage of data sources and 

postprocessing steps. However, this hypothesis cannot be 

substantiated based on the presented results. The IMERG 

Early and the MSG-CPP IR retrieval product, both with low 

latencies, show similar abilities in representing peak 

precipitation timing and depth as IMERG Final and 

CMORPH. The implications that this observation has in 

the face of nowcasting using satellite-based retrieval 

products are also addressed in the discussion section.  

Figure 8 Precipitation retrieval products representing precipitation intensity on 28/05/2020, 16:30 
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Figure 10 9Percentual (%) difference between cumulative 

precipitation depth for retrieval products and TAHMO observations 

 

3.3. Satellite-based precipitation nowcasting  

Based on the results of the previous sections, questions 

can be raised concerning the applicability of the MSG-CPP 

retrieval products for nowcasting due to their limited 

correspondence with TAHMO measurements. The results 

in this section aim to reflect on the nowcasting potential of 

the S-PROG method given the spatial and temporal 

resolution of satellite-based retrieval products. The 

propagation of uncertainties that originate from the quality 

of the retrieval products is not incorporated in the 

presented results. When examining the nowcasting skill, 

the nowcast data is compared with the observed satellite 

image on its given lead time. In this nowcast analysis, a 

focus is given to the MSG-CPP IR retrieval product. This 

product is selected because it has the smallest latency and 

highest temporal and spatial resolution. The MSG-CPP 

visual product is due to its daylight dependence 

impractical.  

 

First, the nowcasting skill of the S-PROG method is 

analyzed for a variety of lead times and spatial scale levels 

for the complete area extent of Ghana. This is done using 

116 observed precipitation events >5.0 mm/h for a 

timestep of 15 minutes.  Next, the nowcast results of the 

eight selected peak events are discussed to observe the 

nowcasting patterns in more detail. For the eight heavy 

precipitation events the nowcast algorithm is applied for 

the complete area extent of Ghana, however, the results 

are specifically analyzed for the Odaw basin. Additionally, 

the sensitivity of the S-PROG method to various temporal 

resolutions in input data is analyzed. This is again done for 

the complete Ghana area extent and the 116 precipitation 

events. 

 

Quantitative assessment of skillful lead times of S-

PROG nowcast model in Ghana 
The S-PROG nowcast method is applied for 116 

precipitation events in Ghana. Figure 11 shows boxplots 

of the FSS performance indicator per lead time and spatial 

scale. The spatial scale component is included to evaluate 

Figure 9 10 Cumulative precipitation of various retrieval products and TAHMO observations for the eight selected heavy precipitation 

events 
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on the applicability of the nowcast results for various 

spatial extents. Important to consider is that the latency of 

the MSG-CPP retrieval data is not included in the 

presented lead time. From a practical perspective, the lead 

times starting from 45 min latency could be used in 

operational nowcasting. In the plot, the dotted lines 

indicate the FSS threshold for skillful performances, as 

discussed in Section 2.6.  Based on the presented results, 

the following observations are made. Firstly, the variation 

in FSS per spatial scale and lead time is significant. This 

shows a large variance in nowcasting performance per 

event and is an indication that some precipitation patterns 

can be nowcasted with more accuracy than others. 

Moreover, the nowcasting results show a decreasing 

performance with increasing lead times and higher 

performances for large spatial scale levels. These 

observations are in line with many other nowcasting 

studies, such as van der Kooij, (2021) and Imhoff et al., 

(2020). Additionally, it is visible that the spread in derived 

FSS increases with the lead time. This indicates that the 

certainty of the nowcast performance decreases with the 

lead time.  

 

In table 7 the maximum skillful lead times are presented 

by using the median and the 75% percentile results. Due 

to the large spread in FSS scores, the skillful lead time 

differs significantly between the two columns. Taking into 

consideration the 45-minute latency of the MSG-CPP IR 

data, the median nowcast results with a spatial scale of 60, 

180, and 300 km show nowcast results that could be 

operationally applicable. Skillful results on these scale 

levels can be of value for hydrological models on a basin 

scale.  

 

Table 7 Maximum skillful lead time of S-PROG nowcast in Ghana 

for various spatial scale levels 

Spatial scale 

level FSS 

score 

Maximum skillful 

lead time of 

median 

Maximum skillful 

lead time of 75% 

percentile 

3 km 30 min 0 min 

9 km 45 min 15 min 

60 km 90 min 45 min 

180 km 120 min 60 min 

300 km 135 min 60 min 

 

S-PROG nowcasting characteristics in the Odaw 

basin for eight selected events  

To get a better understanding of the S-PROG nowcasting 

behavior, the nowcast results of the eight selected 

precipitation events as presented in table 4  are analyzed 

in more detail for the Odaw basin. Appendix C shows per 

event the observed and nowcasted precipitation intensities 

throughout the time. In this section, specific graphs are 

featured to substantiate the analyses of the results. A first 

observation is that the correspondence between the 

nowcast and the observed precipitation highly varies per 

event and the nowcasting start time. For example, the 

nowcasts of 26 April 2020 show significant 

correspondence with the observed data, already 2.5 hours 

before the peak intensity, see figure 12. For some of the 

other events the nowcast is not at all capable of detecting 

the upcoming precipitation wave, for example, 27th April 

2023 in figure 12. In Appendix A, a visualization is given of 

the precipitation fields of the eight precipitation events. For 

the 26th of April 2020, a large dense precipitation field is 

visible. The S-PROG method shows high skill in 

nowcasting such precipitation patterns. On the other side, 

the precipitation event on the 27th of April 2023 has a more 

scattered and irregular precipitation pattern. These 

patterns are harder to capture by the S-PROG nowcast 

Figure 11 Fraction Skill Score (FFS) of S-PROG nowcast in Ghana using 116 precipitation events and MSG-CPP IR retrieval product 
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method. In the graph, it is visible that the nowcast 

completely misses the precipitation for the Odaw basin.  

 

 
Figure 12 Observed and nowcasted precipitation for the Odaw 

basin 26/04/2020 

 

 
Figure 13 Observed and nowcasted precipitation for the Odaw 

basin 27/04/2023  

 

An additional observation is that the S-PROG method has 

difficulties representing precipitation with varying 

intensities. The nowcast results show the tendency to 

produce one precipitation wave. The increasing or 

decreasing precipitation patterns in the input data are 

extrapolated in the nowcast. Consequently, the cumulative 

precipitation depth can approximate the observed rainfall 

depths, however, the intensity distribution over time is not 

well captured. Examples of this phenomenon are 

presented in figures 14 and 15.  

 

 
Figure 14 Observed and nowcasted precipitation for the Odaw 

basin 28/05/2020  

 

 
Figure 15 Observed and nowcasted precipitation for the Odaw 

basin 10/05/2020  

S-PROG sensitivity to the temporal resolution of 

input files 

Various input data attributes potentially influence the 

nowcasting performances of the S-PROG model. Partly 

due to its high temporal resolution, this study emphasized 

the potential of the MSG-CPP retrieval product. To the 

best of our knowledge, it is currently the only satellite-

based retrieval product in the public domain that is 

available on this temporal resolution. However, as 

discussed in sections 3.1 and 3.2, the correspondence 

between the MSG-CPP products and TAHMO 

observations in Ghana is limited. Potentially there are 

other, lower temporal resolution products, which better 

represent precipitation in Ghana. Consequently, this 

raises the question of how sensitive the S-PROG 

nowcasting method is to the temporal resolution of its input 

data. The results in this section show the S-PROG 

nowcasting performances using the MSG-CPP IR data 

with an aggregated temporal resolution of 30- and 60 
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minutes. For this evaluation, the same 116 precipitation 

events are used as for the boxplot in figure 11.   

 

The boxplots in figure 16 and figure 17 show the FSS 

results of the S-PROG nowcast with the 30- and 60-minute 

temporal resolution in input data. The FSS performance 

patterns as a function of lead time and spatial scale are 

similar to in the 15-minute nowcast results in figure 11. 

When visually comparing the boxplots, a decreasing skill 

is observed for lower temporal resolutions. However, at 

first sight the sensitivity to temporal resolution seems 

limited. In table 8, the maximum skillful lead times of the 

median and 75% percentile are presented per spatial 

scale and temporal resolution. While the boxplot 

differences seem limited at first, the effect on the skillful 

lead time definition is significant, especially for the 75% 

percentile definition.  

 

To examine how the temporal resolution of the input data 

impacts the accuracy of the precipitation estimates, the 

MAE is derived between the nowcasted and observed 

precipitation data for the Odaw basin, see figure 18. For 

this MAE the same 116 events are used as presented in 

the boxplots. It is visible that the MAE reduces with a 

decreasing temporal resolution. This indicates that the 

nowcast results have a higher accuracy in estimating 

precipitation intensities when a lower resolution of input 

data is used. This is remarkable because the FSS 

performance indicator showed a decreasing performance 

with lower temporal resolutions.  

 
 

Figure 17 FFS of S-PROG nowcast in Ghana using 116 precipitation events and 60 min aggregated MSG-CPP IR input data 

Figure 16 FFS of S-PROG nowcast in Ghana using 116 precipitation events and 30 min aggregated MSG-CPP IR input data  
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To assess in more detail the cause of a reducing MAE with 

lower temporal resolutions, a nowcast for the Odaw basin 

is made for the eight heavy precipitation events as 

presented in table 4. These results are presented in 

Appendix C, in this paragraph some graphs originating 

from these figures are included. Overall, the results of the 

30- and 60-minute nowcasting graphs show similar 

nowcasting performance patterns as the 15-minute data. 

The growth and decay of precipitation are often 

extrapolated, and this causes differences in observed and 

nowcasted precipitation intensities. This phenomenon is, 

for example, clearly visible for the 10th of May 2020 in 

figure 19. In the 7:15 AM nowcast, the observed peak 

precipitation wave is missed. When the increase in 

precipitation is captured by the nowcast input files of later 

iterations, the increase in precipitation intensity is 

extrapolated. Subsequently, the decay of the precipitation 

wave is not well captured which leads to overestimations 

in rainfall intensities. However, it seems that for the 30- 

and 60-minute timestep this extrapolation is less extreme 

compared to the 15-minute data. This is also noticeable in 

the nowcasts for the 21st of May 2022 and the 26th of April 

2020 in figure 20 and figure 21. If precipitation intensities  

 

show reduced overestimations of nowcasted precipitation, 

this could explain the lower MAE for lower temporal 

resolutions.  

 

A hypothesis concerning the cause of these reduced 

extrapolation patterns is as follows. The 15- 30- and 60-

minute nowcasts all use three input files to determine their 

advection field. However, these are the three most recent 

input files before the nowcast start time. For example, 

when aiming to compose a nowcast at 13:00, the 15-

minute dataset uses the input files of 12:15, 12:30, and 

12:45. However the 30-minute dataset uses 11:30, 12:00, 

12:30, and the 60-minute nowcasts uses 10:00, 11:00 and 

12:00. The lower temporal resolution potentially captures 

the high variability in precipitation less well, which led to a 

lower FSS. However, the reduction of extremes in 

precipitation extrapolation results in a lower overall MAE. 

Additionally, the larger timeframe of the lower resolution 

nowcasts has the potential to track the movement of a 

cloud over a longer period. This potentially increases the 

quality of velocity estimations. It could explain why the 60-

minute nowcast on the 27th of April 2023 at 17:15 captures 

Spatial scale level 
FSS 

Maximum skillful lead time  

 Median 75% percentile Median 75% percentile Median 75% percentile 

 15 min temporal resolution 30 min temporal resolution 60 min temporal resolution 

3 km 30 min 0 min 30 min 0 min 0 min 0 min 

9 km 45 min 15 min 30 min 0 min 0 min 0 min 

60 km 90 min 45 min 90 min 30 min 60 min 0 min 

180 km 120 min 60 min 120 min 30 min 60 min 0 min 

300 km 135 min 60 min 120 min 30 min 60 min 0 min 

Table 8 Maximum skillful lead time of S-PROG nowcast in Ghana for various spatial scale levels and temporal resolutions of the MSG-CPP 

IR input data 

Figure 18 Mean Absolute Error of 116 precipitation events > 5.0 mm/h in Odaw basin for various temporal resolutions in input data 
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the precipitation peak while the 15- and 30-minute 

nowcast completely miss it, see figure 22.   

 

4. Discussion and 

recommendations 

The research presented in this MSc thesis aimed to 

assess the accuracy and suitability of satellite-based 

precipitation products for nowcasting in the Republic of 

Ghana. In this section, the limitations of the used research 

set-up are discussed and the results are compared with 

available literature. Moreover, the practical implications of 

the results for operational early warning purposes are 

described. Finally, recommendations are given for future 

research, where a differentiation has been made in short-

term and relatively easy applicable research steps and a 

long-term research vision to strive towards reliable 

nowcasting using satellite-based data sources.  

 

  
Figure 19 Observed and nowcasted precipitation for a 15- 30- and 60-

minute temporal resolution of input data 10/05/2020, the lines 

represent cumulative rainfall depth 

 

Figure 20 Observed and nowcasted precipitation for a 15- 30- and 60-

minute temporal resolution of input data 26/05/2020 the lines 

represent cumulative rainfall depth 

  
Figure 21 Observed and nowcasted precipitation for a 15- 30- and 60-

minute temporal resolution of input data 21/05/2022  the lines 

represent cumulative rainfall depth 

Figure 22 Observed and nowcasted precipitation for a 15- 30- and 60-

minute temporal resolution of input data 27/04/2023  the lines 

represent cumulative rainfall depth 
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Limitations of research set-up 

The research method comes with several limitations. 

Firstly, to analyze the detection capabilities of the MSG-

CPP retrieval products, a comparison is made between 

point measurement data and pixel values that represent 

mean precipitation estimates over a pixel domain. In this 

study, the detection of precipitation (> 0.1 mm/h) and the 

detection of peak precipitation intensities is evaluated. 

This 0.1 mm/h threshold is selected based on the stated 

accuracy level of the TAHMO stations. Nevertheless, 

questions can be raised concerning the accuracy level for 

such small precipitation intensities, especially in regions 

with high evapotranspiration rates. Furthermore, the peak 

intensity threshold was set at the 95% percentile of the 

measured TAHMO precipitation data over the 19 stations 

in Ghana. For the MSG-CPP products, a threshold 

percentile of 90% was utilized. In these peak threshold 

definitions, no differentiation is made addressing 

seasonality or local climate variations. Additionally, no 

research is performed to indicate which precipitation 

intensities could cause flash floods in the study area. The 

TAHMO dataset is used as the only data source of in situ 

data in the region. In the comparative analysis of the 

different retrieval products, it was visible that TAHMO 

consistently shows much lower rainfall intensities than the 

different retrieval products. This raises questions about the 

accuracy of the TAHMO measurements. In the scope of 

this study, the TAHMO data is not validated in relation to 

other ground measurements.  

 

Moreover, the MSG-CPP data is the only included retrieval 

product which is based on the geostationary Meteosat 

data. The other considered retrieval products are derived 

from data of orbiting satellites. The results of this study 

show a limited ability of the MSG-CPP retrieval product to 

represent TAHMO precipitation measurements in Ghana. 

To assess the potential of precipitation representation 

using Meteosat data, it would be a valuable addition to add 

another retrieval product that uses Meteosat data as a 

basis for rainfall retrieval, for example, the EUMESAT 

H60B data. This retrieval product also uses Meteosat data 

as the main data source, however precipitation intensities 

are calibrated using microwave data of orbiting satellites 

(EUMETSAT HSAF, 2019).  

 

Additionally, the comparison of precipitation peak data for 

the Odaw catchment comes with some remarks. Firstly, 

not the exact basin boundaries, but a square boundary 

around the catchment was used. Moreover, the measured 

TAHMO intensity data of the Odaw catchment is derived 

using only three measurement points and the usage of 

Thiessen polygons. The usage of Thiessen polygons is a 

simplified view of reality. The results are highly sensitive 

to the accuracy of the three measurement stations. 

Preferably, a higher density of measurement stations and 

ground-radar equipment would be used to measure and 

compare precipitation intensities.  

 

In the nowcast analyses emphasis is given on precipitation 

events with a precipitation intensity > 5.0 mm/h. This focus 

hinders the generalization of the conclusion for 

precipitation events with lower intensities.  Additionally, the 

study set-up utilized the deterministic S-PROG nowcasting 

method. Using a deterministic approach limits the 

understanding of uncertainties related to the nowcasting 

results. For future research, it would be interesting to 

analyze the difference in nowcasting skill between the 

deterministic S-PROG and stochastic STEPS method 

using satellite-based retrieval products. Moreover, it would 

be valuable to analyze the propagation of uncertainties 

originating from the retrieval algorithm and assess which 

effect they have on the reliability of the nowcasting results.  

 

Research results in a literature perspective 

Roebeling & Holleman, (2009), who developed the MSG-

CPP visual algorithm, used Dutch radar data from May 

and June 2007 to validate their product. For a selection of 

events, they observed a precipitation POD between 32% 

and 67%. In the presented research results for Ghana the 

POD for precipitation (> 0.1 mm) is 81% using MSG-CPP 

visual. For the detection of peak intensities, this POD is 

reduced to 39%. Due to the limited period over which 

Roebeling & Holleman (2009) validated their algorithm, 

their calibration had likely limited focus on peak 

precipitation. This can explain the difference in POD for 

the overall and peak precipitation. The master thesis of 

Brasjen (2014) describes the development of the 

Nighttime Infrared Precipitation Estimation (NIPE) 

algorithm, which produces the MSG-CPP IR data. The 

thesis presented a 24% accuracy in classifying a satellite 

pixel as precipitating or non-precipitation for the Dutch 

weather. Moreover, the precipitation estimates deviated 

on average by a factor of 3.3 from radar observations. For 

Ghana, the 95% percentile precipitation intensity of 

THAMO and MSG-CPP IR deviated by a factor of 2.1. 

Moreover, Brasjen (2014) describes that the number of 
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precipitation events in the NIPE algorithm is slightly 

overestimated. This overestimation could explain the high 

number of false alarms that were detected in the peak 

analyses. Nevertheless, this study found a FAR of 0.75, 

this can be interpreted as more than just a “slight” 

overestimation in rainfall events. In 2017, Meiring & 

Brasjen aimed to improve the MSG-CPP IR algorithm 

using GPM radar data. For detecting precipitation, a CSI 

of 22% was derived. This study derived a CSI of 20% for 

detecting precipitation with the MSG-CPP IR retrieval 

data. For the detection of peak intensities, this CSI 

reduced to 4%. Meiring & Brasjen (2017) state that their 

precipitation rate estimates deviated on average by a 

factor of 3.5 from the GPM observations and are unbiased.  

 

Bogerd et al., (2024) presented the first paper in which the 

MSG-CPP visual and IR retrieval products are compared 

with ground measurements in Ghana. The study 

concludes an extreme overestimation of precipitation 

intensities in the MSG-CPP visual algorithm. The MSG-

CPP IR data show a precipitation intensity with a factor of 

1.5 higher in the wet season compared to TAHMO. This is 

in line with the observations of this study. Interesting is 

that, despite the extreme overestimations in rainfall 

intensity, Bogerd et al., (2024) detect a higher correlation 

between the TAHMO and MSG-CPP visual data 

compared to the correlation with MSG-CPP IR data. Also, 

in the results of this research, the POD for the visual 

retrieval product is higher than for the IR product. 

 

According to Bogerd et al., (2024), the IMERG late 

retrieval data agrees in annual sums, and on basin scale 

for seasonal and daily resolutions with TAHMO 

observations. Nevertheless, capturing the strong spatial 

variability of rainfall and detecting high-intensity events is 

challenging. Dezfuli et al., (2017) analyzed the IMERG 

performances over the complete African continent with the 

usage of TAHMO stations. A main conclusion was that the 

IMERG performance highly varies per season and region. 

This conclusion underlines the need for local calibration of 

satellite-based rainfall retrieval products. Atiah et al., 

(2020)  and  Owusu et al., (2019) researched the accuracy 

of the CMORPH retrieval product for Ghana. Both studies 

indicate an overestimation of precipitation intensity. This is 

in line with the findings of this research. Nevertheless, 

Atiah et al., (2020) described an underestimation of the 

most extreme events. This is something that was not 

observed for the eight selected peak events in this study.  

Burton et al., (2022) applied the S-PROG method with 

Meteosat data to generate satellite-derived convective rain 

rates for West Africa. On a 10-km resolution, skillful 

performances up to 2 hours lead times were detected. For 

a resolution of 200 km, the skillful lead times increase up 

to 4 hours. The research shows a large diurnal variation in 

nowcasting performances. Another paper that elaborates 

on the accuracy of satellite extrapolation nowcasting is 

presented by Hill et al., (2020). This research evaluated 

the convective rainfall rate (CRR) and rapidly developing 

thunderstorm convection warning (RDT-CW) for 

nowcasting in tropical Africa. Both methods show skillful 

lead times up to 90 minutes. Imhoff et al., (2020) applied 

four different nowcasting algorithms for 1533 precipitation 

events in the Netherlands. For the S-PROG method, a 

skillful lead time of 37 minutes was defined for a 10 km 

scale. The Ghana nowcast results in this research show a 

skillful lead time between 30 and 45 minutes on a scale of 

9 km. This is in line with the findings of Imhoff et al., (2020), 

however, it is much shorter than the results of Burton et 

al., (2022) and Hill et al., (2020). The exact cause of this 

difference is uncertain.  

 

Practical implications of research results 

In the scope of this study, the validity of the TAHMO 

measurements is not evaluated. For the practical 

implications of the research results, the assumption is 

made that the TAHMO data correctly represents reality. 

Nevertheless, it is strongly recommended to test this 

assumption using more and other sources of in situ data. 

The detection analyses using TAHMO data showed that 

the current MSG-CPP IR and visual algorithm have a 

limited detection ratio and a high false alarm ratio. 

Moreover, they significantly overestimate precipitation 

intensities compared to ground-based observations. Bias-

correcting the intensities is considered ineffective due to 

the low detectability of the peak precipitation events. 

Based on these results questions can be raised 

concerning the applicability of the current MSG-CPP 

products for operational nowcasting and early warning. 

Nevertheless, it is important to consider the reference 

situation in which there is currently no operational nowcast 

data available in Ghana. To weigh the potential 

advantages and disadvantages of applying the MSG-CPP 

retrieval products for early warning purposes the social-

economic effects and action perspective need to be 

assessed by local experts and decision makers. Import to 

consider is that the uncertainties in the retrieval products 
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will further increase when they propagate through the 

nowcasting workflow.  

 

When comparing the different precipitation retrieval 

products for the Odaw basin, it was visible that the MSG-

CPP IR, IMERG Early, IMERG Final, and CMORPH data 

show similar performances in representing rainfall in 

relation to the TAHMO observations. This is remarkable 

especially because the IMERG final and CMORPH 

retrieval products make use of detailed microwave data 

and extensive postprocessing which is not performed for 

MSG-CPP IR and IMERG Early. This observation 

underlines the complexity of composing reliable 

precipitation estimates from satellite products. However, it 

also provides perspective on the usage of Meteosat-based 

retrieval products. Within the scope of this research, the 

MSG-CPP IR product showed comparable results to the 

advanced IMERG and CMORPH products, with the added 

benefit of operational applicability.  

 

In this study, the MSG-CPP IR retrieval product is used for 

the nowcast evaluation. The practical usage of the MSG-

CPP visual data is hindered due to its dependence on 

daylight. During the wet season, approximately 30% of the 

precipitation events occur at night and would consequently 

not be detected by the MSG-CPP visual retrieval product 

(Bogerd et al., 2024). Additionally, the IMERG Early 

product could be considered for operational nowcasting. 

However, its latency of 4 hours is expected to have a 

significant impact on the practical usage of derived 

nowcast results. The MSG-CPP IR S-PROG nowcasting 

results for Ghana show FSS indicators with large 

performance variability. Nevertheless, median skillful 

nowcast performances are observed for 45, 90, 120, and 

135 minutes of lead times for the respective scale levels 

of 9-, 60-, 180-, and 300 km. The MSG-CPP data has a 

latency of just 45 minutes. This implies that operational 

applicability of the S-PROG nowcast using satellite data 

could be feasible. Additionally, it was observed that the 

nowcast results are sensitive to the temporal resolution of 

input data. The FSS performance indicator showed that 

the spatial patterns for precipitation are better represented 

using higher temporal resolutions in the input data. 

However, for the estimation of precipitation intensities, 

lower resolution input data led to better MAE evaluations. 

This is remarkable and potentially caused by the reduced 

extrapolation of precipitation patterns. From a practical 

perspective, it could be beneficial to compose a 

combination of nowcast results using various spatial 

resolutions to optimize the representation of the spatial 

patterns, as well as the precipitation intensity estimates.  

 

Recommended next research steps 

To better understand the detectability and accuracy of 

satellite-based retrieval products it is recommended to 

increase the number of ground measurement stations in 

the analyses. In this study, the TAHMO observations show 

much lower precipitation intensities than the retrieval 

products. Adding more ground measurements, for 

example from the Ghana Meteorological Agency (GMET), 

is useful to validate the accuracy of the TAHMO 

measurements. Additionally, it is suggested to perform the 

event precipitation analyses, as executed for the Odaw 

catchment, also for other basins in Ghana. This analysis 

would provide insight into whether the overestimation of 

precipitation intensities in the retrieval products is 

landscape or climate-zone-dependent. Furthermore, a 

sensitivity analysis based on seasonality would be an 

interesting addition. These results are of high value to 

research the transferability and generalizability of the 

research results.  Moreover, in this study, a focus was 

given on retrieval products with a small temporal resolution 

(max 30 minutes). The S-PROG nowcasting results 

showed to be sensitive to the temporal resolution of the 

input data. However, skillful performances are observed 

for input data with temporal resolutions of 30 and 60 

minutes. Based on this observation it could be of value to 

include additional retrieval products with a coarser 

temporal resolution (e.g. PERSIANN,  GSMaP V5/6 & 

EUMESAT H60B) to the comparative analyses of retrieval 

products.  

   

From an overarching perspective, this study aimed to 

contribute to operational and accessible early warning for 

extreme precipitation in areas with limited ground radar 

data. To strive towards this overarching goal, the following 

research steps are recommended. Firstly, the MSG-CPP 

algorithm shows high potential for nowcasting in the public 

domain as it has the shortest latency and highest temporal 

and spatial resolution. However, its correspondence with 

TAHMO measurements in Ghana is currently limited. 

Besides validating the accuracy of the TAHMO stations, a 

recommended next research step is to improve the MSG-

CPP algorithm using a localized calibration approach and 

the usage of ground measurements. When the algorithm 

was developed in 2014, its calibration set-up was focused 
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on the Dutch climate. Later Brasjen & Meirink (2017) 

calibrated the IR-based algorithm using GPM radar data. 

In this calibration, no specific focus was given to the 

representation of variating climates. The NIPE algorithm 

first composes a cloud classification and subsequently 

derives a precipitation intensity based on this cloud class. 

Potentially, the classification of clouds and the associated 

precipitation statistics are different for various climates. To 

get a better understanding of the accuracy of the retrieval 

product based on the cloud types it is useful to have 

access to a historical time series of cloud classifications. 

When the uncertainty of precipitation retrieval can be 

linked to specific cloud classes, it could be possible that 

the MSG-CPP algorithm does not only provide rainfall 

maps but also corresponding uncertainty indicators. These 

uncertainty indicators can be used in the nowcasting set-

up and the decision making process concerning early 

warning communication. Another point of attention in the 

calibration of the NIPE algorithm is that Brasjen & Meirink 

(2017) used a data archive of only one year. This data was 

subsequently also split into a calibration and validation 

dataset. This implies that the number of high-intensity 

precipitation events included in current algorithm 

calibration is likely limited.  

 

Additionally, Bogerd et al., (2024) address two potential 

causes for deviations between the MSG-CPP retrieval 

products and ground measurements. Firstly, evaporation 

of precipitation before the ground is reached. In warm 

tropical climates evaporation can be significant. 

Precipitation which evaporates before it reaches the 

ground is not detected by the TAHMO stations and this 

can therefore be the cause of inconsistencies between the 

rainfall retrieval products and the ground measurements. 

In future research, the effect of evaporation can be 

analyzed by including temperature or humidity data and 

correlating this to the variations between the retrieval 

products and ground measurements. A potential next 

uncertainty source is the presence of “Harmattan Dust” in 

Ghana. This is a very dry and dust-laden wind that blows 

at a height of 3 km (Breuning-Madsen & Awadzi, 2005). 

Harmattan dust could cause increased evaporation rates 

during the dry season and could also be incorrectly 

classified as clouds (Bogerd et al., 2024).  

 

The current MSG-CPP visual algorithm has a higher 

detectability of peak precipitation intensity than the IR 

product. However, the IR product shows a larger 

correspondence in precipitation estimates. Potentially 

these observations can be used as a starting point to 

increase the quality of the algorithm. It is advised to 

dominantly focus on an algorithm structure that enables 

continuous precipitation retrieval. For nowcasting and 

early warning purposes, daylight dependence is 

impractical.   

 

Besides improving the retrieval product, it is 

recommended to do more in-depth research concerning 

the exact nowcasting method which is applicable for 

satellite-based rainfall data. In this study the basic set-up 

of the deterministic S-PROG method as developed by 

Seed, (2003) is used. A study by Imhoff et al., (2020) 

shows high nowcasting skills for the stochastic STEPS 

method. It would be interesting to analyze the nowcasting 

skill of the STEPS method using satellite-based retrieval 

products as input. Besides, it is advised to analyze the 

nowcast sensitivity on various settings of the S-PROG 

algorithm. For example, various optical flow methods, 

different quantities of spatial cascades, and varying 

numbers of timesteps to derive the nowcasting motion 

field. Especially this last variable is of interest because the 

sensitivity analyses of the temporal resolution showed 

indications that the inclusion of a larger timeframe as input 

data could lead to less extreme extrapolations of 

precipitation intensities.  

 

Finally, to facilitate operational early warning, seamless 

precipitation prediction is of high value. Seamless 

predictions of precipitation go beyond the six hours of lead 

time which fall under the nowcasting definition. Studies by 

Imhoff et al., (2023), Nerini et al., (2019) and 

Radhakrishnan & Chandrasekar, (2020) show promising 

developments in the field of blended weather predictions 

in which (radar-based) nowcasts and NWP models are 

combined to create a seamless weather model. It would 

be interesting to apply these blending algorithms using 

satellite-based nowcasting data and an NWP model.  

 

5. Conclusion 
Reliable precipitation nowcasting data is of high value for 

early warning purposes. Availability of such data is for 

many regions on the African continent hindered due to the 

lack of ground-radar data. Satellite-based precipitation 

products offer potential to be used for nowcasting 

purposes in areas with scarce radar coverage. This study 

assessed the accuracy and suitability of satellite-based 
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precipitation products for nowcasting purposes in the 

Republic of Ghana. In this research, a focus is given to the 

MSG-CPP infrared (IR) and visual retrieval products. 

These products show high potential for operational 

nowcasting purposes due to their relatively short latency 

(45 min) and high temporal (15 min) and spatial resolution 

(3 km). Additionally, CMORPH, IMERG Early, and Final 

are included as reference satellite-based products. 

Furthermore, data from 19 TAHMO ground measurement 

stations are used as in situ data.  

 

Accuracy of the MSG-CPP rainfall retrieval products in 

Ghana 

The accuracy of the MSG-CPP products is analyzed on a 

15-minute temporal resolution over a timeseries of 35 

months while using the TAHMO measurements as a 

reference. This resulted in a Probability Of Detecting 

(POD) for precipitation of 49% for the IR and 81% for the 

visual retrieval product. Additionally, the detection 

capabilities for peak precipitation are examined. In the 

scope of this research, the 95% percentile precipitation 

intensity of TAHMO observations is used as peak intensity 

threshold. This resulted in a POD of 19% for the IR and 

39% for the visual product. Additionally, both retrieval 

products are subject to high false alarm ratios (FAR). The 

MSG-CPP algorithm has a FAR of 75% for precipitation 

detection and for 95% for peak precipitation. For the MSG-

CPP visual these FAR performance indicators are 

respectively 80% and 93%. When comparing the 95% 

percentile intensities of MSG-CPP products with TAHMO 

observations, the MSG-CPP IR product shows an average 

overestimation with a factor of 1.7 and the visual product 

with a factor of 4.6.  

 

Comparative analyses of satellite-based retrieval 

products and TAHMO measurements for the Odaw 

basin, Ghana 

For eight heavy precipitation events in the Odaw basin in 

Ghana, the precipitation correspondence of the various 

retrieval products was compared with TAHMO ground 

measurements. This analysis showed that specifically the 

MSG-CPP visual product extremely overestimates the 

observed rainfall depths. The other retrieval products all 

show cumulative overestimations up to 500% in 24 hours. 

The precipitation start, end, and peak time varies up to 1.5 

hours between the retrieval products. Moreover, the 

analyses showed that the retrieval products with short 

latencies (IMERG Early and MSG-CPP IR) show equal 

abilities in representing TAHMO observations compared to 

products with longer latencies (IMERG Final and 

CMORPH). This raises questions concerning the accuracy 

of the TAHMO stations, which was not verified within this 

study.  

 

S-PROG Nowcast results based on MSG-CPP IR input 

data 

The deterministic S-PROG nowcasting method is applied 

using the MSG-CPP IR data as input. The nowcasting 

results for precipitation events >5 mm/h show a large 

variance in nowcasting skill over the various events. 

Median skillful nowcast performances are observed for 45-

, 90-, 120- and 135 minutes of lead times for the respective 

spatial scale levels of 9-, 60-, 180-, and 300 km. The MSG-

CPP data has a latency of just 45 minutes. This implies 

that the operational applicability of the S-PROG nowcast 

using MSG-CPP satellite data could be feasible. 

Moreover, a sensitivity to the temporal resolution of the 

input data is detected. For operational applicability, it is 

important to perform additional research concerning the 

propagation of uncertainties originating from the retrieval 

product into the nowcast.  

 

Implications of research results 

The results of this study provide insights concerning the 

potential that satellite-based precipitation nowcasting has 

to offer. Critical evaluation of the TAHMO station accuracy 

and the MSG-CPP retrieval algorithm is recommended. It 

is expected that local calibration efforts using in situ data 

and a calibration focus on high precipitation intensities will 

increase the accuracy of the MSG-CPP products. 

Additionally, the S-PROG nowcasting results show 

promising results with skillful lead times which exceed the 

latency of the MSG-CPP data. Furthermore, the set-up of 

the nowcast model offers the potential for additional 

optimization of the modeling parameters.  

 

Satellite-based operational precipitation nowcasting is of 

high value for disaster risk mitigation efforts in regions 

without ground-radar data. This study aims to underline 

the large potential of satellite-based precipitation 

nowcasting while being transparent concerning the 

remaining uncertainties. Within this novel research field, it 

is expected that additional research efforts can 

significantly contribute to the increased accessibility and 

reliability of operational precipitation nowcasting data. 
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Appendix A: Precipitation retrieval products and TAHMO measurements for eight 
heavy rainfall events in Ghana  
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Figure A:   Visual representation the selected precipitation events for various precipitation datasets 
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Appendix B: Precipitation intensity graphs of various retrieval products for the 
eight heavy precipitation events in Odaw basin  
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Figure B:   Precipitation intensity graphs of eight heavy precipitation events for various precipitation data sources 
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Appendix C: Observed and nowcasted precipitation in Odaw basin for selected peak events and 
various temporal resolutions in input data 
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Figure C:   Precipitation intensity graphs of observed (blue), nowcasted 15 min (yellow), nowcasted 30 min (red) and nowcasted 60 min 

(purple) temporal resolution of MSG-CPP IR input data and the associated cumulative precipitation 


