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Abstract
Animals excel at sensing the world around them, thereby making choices that best ensure their sur-
vival. The same is true for humans; from the moment we open our eyes each day, we are constantly
receiving and processing the world’s information, making decisions based on what we gather. Sensing
the environment effectively is the starting of intelligence, allowing an entity or a robot to indepen-
dently initiate actions. In this thesis, developing an effective algorithm to perceive and interpret the
surrounding basic signals is the main topic.

The most basic signal widespread in the nature is the one-dimensional signal. From sound waves,
electric and biological signals, to the earthquake signals and the temperature, one-dimensional sig-
nal represents the variations of a single parameter over time, which is a fundamental aspect of many
natural and human-made processes. The typical one-dimensional signal in medical domain is the
ultrasound (US), which is widely used for the non-invasive diagnosis. Among all US techniques, the
A-mode type receives less attention because the one-dimensional raw signal is difficult for human to
interpret. However, besides B-mode’s non-invasive advantage, A-mode US is smaller, more conve-
nient, and easier to use, showing the potential to not only be installed on the robotics system for the
intelligent perception, but also having the practical values for patients’ daily portable and wearable
care, reflecting disease status in daily time.

In this master thesis, the ultrasound raw data will be revisited and explored using deep learning to
unveil the unique features useful for medical and robotics applications. The exploration started from
bone detection to muscle activity monitoring by interpreting raw US signals. The results showed high
accuracy thanks to the universality, generalizability and robustness of the proposed deep-learning ap-
proaches, which is also inspiring for the intelligent robotics perception. More attempts were made to
define the weakness and scope of the technical performance, providing a clearer vision for the broader
application in more robotics domains of future developments.
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1 Introduction

1.1 Research Questions
Nowadays, although different types of artificial intelligence (AI) theories, robotics systems and ap-
plications have been built and developed, a truly human-like robotics that can perceive the world for
its own intelligence to naturally interact with the environment is still lacking. The main reason is that
the whole pipeline of a life form, from the intelligence start to the end-effector movement, is still not
clear and very difficult to transform to the real robotics system. If such an intelligent robotics can be
built, it should first have the efficient perception capability to grasp the surrounding signals and infor-
mation. The most basic signal widespread in the nature is in one-dimensional, such as sound waves,
electronic signals, and bio-signals. This is because the time works as the independent variable for al-
most all the dynamic systems. Its pervasive nature offers a direct and efficient tool to comprehend the
dynamics of physical and biological systems. Thus, this type of singular dimension forms the core of
how we understand and interact with the surrounding world. Similarly, the better understanding and
perception of the one-dimensional signals enable robots to grasp all sorts of information to facilitate
their decisions and actions.

In the medical domain, one typical one-dimensional signal is the ultrasound (US), which was used
widely as a non-invasive and safe diagnosis device. Although the B-mode US and its two-dimensional
results visualization are widely used currently, the B-mode US results actually could be regarded as
the combination of many A-mode ultrasound’s results. The better understanding and intelligent pro-
cessing of A-mode US raw data not only decrease the B-mode US cost and the device size, but also
help to integrate the small size A-mode probe on the robotics arm or exoskeleton for more efficient
surgery navigation or daily biometric data tracking of patients. Therefore, processing and interpreting
the A-mode US signals intelligently not only have its value in the biomedical and robotics domains,
but also inspire people to build a truly intelligent robotics that can process and interpret the similar
types of one-dimensional signals in the surroundings.

To analyze and interpret the A-mode US raw signals from the intelligent robotics perspective, several
questions need to be answered:

(1) Can this signal reflect the actual positions and track the movement of the subjects?

(2) What is the range and scope of this perception when it has a high accuracy, and what
components in this method really take effects?

(3) When doing the (1) and (2), can it still classify and recognize different types of signals so
that it can have a grand view of the subjects for a complete perception?

(4) Can this capability of interpreting one-dimensional signal be integrated with other forms of
signals for a more complex but useful system development?

In the following, each chapter try to answer one question by solving the challenges in the medical
scenarios using A-mode ultrasound. Although each chapter in the thesis used different background,
the whole master thesis tries to develop the algorithm that can empower robots with the perception of
the grand-view of the subjects only by one-dimensional signals.
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1.2 Thesis Outlines
In chapter 2, the problem was first proposed and a preliminary deep-learning based structure was
suggested. The constructed CasAtt-UNet was used to track the movement of femur & tibia in specific
positions and showed sub-millimeter accuracy, surpassing previous methods in both accuracy and
operation complexity, which achieved the intelligent perception without additional manual works or
pre-measurement.

Based on it, the chapter 3 define the method and algorithms in a more formally and mathematically
way, and explore the one-dimensional signal interpretation in a wider area instead of specific bone
positions. The ablation study was done to verify the designed structures and losses in different per-
ception bone areas.

After the problem and the approach being well-defined, the chapter 4 continuously simplify the model
and enable it to recognize the signals from different channels and positions, which increase the inde-
pendence of the method and make it more suitable to be integrated in a real-time robotics systems for
the medical and navigation usages.

In chapter 5, the one-dimensional signal interpretation algorithm has been transformed to another
type of signal (surface electromyography signals). The combination of A-mode ultrasound and the
surface electromyography (sEMG) enables the robot’s capability to predict mechanical movement
using merely the energy information, achieving the conversion between the energy and momentum.
This paves the way for the information conversion using merely the one-dimensional signal, showing
the great potential perception capability for the intelligent robotics.

Through these explorations, this master thesis not only demonstrates the enhanced capabilities of
A-mode ultrasound in medical imaging and robotic applications, but also paves the way for its inte-
gration into more accessible and efficient healthcare solutions. The developed deep learning algorithm
give new directions on how to interpret and utilize A-mode ultrasound or other one-dimensional raw
signals, expanding the applications into the fields of daily medical practice and personalized health
monitoring. In addition, the generalization and adaptation of the algorithm can empower the robotics
to be aware of the surroundings and make reasonable decision.
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2 Deep Learning-based Acoustic Measurement Approach
In orthopedic surgery, the operation precision and convenience for the bone measurement is critical,
especially in the Total Knee Replacement Arthroplasty (TKA). The traditional methods involves op-
tical tracking systems and radioactive imaging, which have the invasive limitation and required the
extended preparation times. This chapter introduces a novel deep learning model that used the A-
mode US to enhance the accuracy, safety and convenience of the bone tracking. By training with the
labeled data from the cadaver experiments, the method achieves sub-millimeter precision in the bone
positioning, offering a safer and efficient alternative for the surgical navigation.

Figure 1: Graphical Abstraction of the Chapter 2



Deep Learning based acoustic measurement approach for robotic
applications on orthopedics
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Abstract— In Total Knee Replacement Arthroplasty (TKA),
surgical robotics can provide image-guided navigation to fit
implants with high precision. Its tracking approach highly
relies on inserting bone pins into the bones tracked by the
optical tracking system. This is normally done by invasive,
radiative manners (implantable markers and CT scans), which
introduce unnecessary trauma and prolong the preparation
time for patients. To tackle this issue, ultrasound-based bone
tracking could offer an alternative. In this study, we proposed a
novel deep-learning structure to improve the accuracy of bone
tracking by an A-mode ultrasound (US). We first obtained a
set of ultrasound dataset from the cadaver experiment, where
the ground truth locations of bones were calculated using bone
pins. These data were used to train the proposed CasAtt-UNet
to predict bone location automatically and robustly. The ground
truth bone locations and those locations of US were recorded
simultaneously. Therefore, we could label bone peaks in the raw
US signals. As a result, our method achieved sub-millimeter
precision across all eight bone areas with the only exception
of one channel in the ankle. This method enables the robust
measurement of lower extremity bone positions from 1D raw
ultrasound signals. It shows great potential to apply A-mode
ultrasound in orthopedic surgery from safe, convenient, and
efficient perspectives.

I. INTRODUCTION

Measuring bone position is important to understand the po-
sitions and kinematics of the lower extremity, for example, in
robotic total knee replacement arthroplasty [1] and wearable
exoskeleton [2]. However, traditional measurements, such as
CT scan, skin markers, or implantable markers, unexpectedly
introduce accumulated distance errors, unnecessary trauma,
radiation risks, and infections.

To precisely measure distance without unnecessary
trauma, previous studies used data from multiple sensors.
[3] worked on measuring and evaluating fingertip distances
using optical sensors and ultrasound probes. [4] regarded that
merely using ultrasound was difficult to predict movements
of the lower extremities; instead, they used data from both
EEG and sEMG recordings. A-mode ultrasound has recently
been proposed for bone model reconstruction [5], [6], reg-
istration and surgery robotics [7], [8], [9], as it is easy to
deploy and feasible to collect data from different bone loca-
tions via multiple channels simultaneously. Reconstruction
and registration of bony surface can be carried out using
these data in different bone locations.

For example, ultrasound was studied to apply in lower
extremity motion tracking and bone measurement for surgi-
cal robotics, which was a novel convenient and noninvasive

1Robotics and Mechatronics, University of Twente, Enschede, AE, The
Netherlands, 2Orthopaedic Research Lab, Radboud University Medical
Center, Nijmegen, the Netherlands

method [10], [11], [12], [13]. However, in these approaches,
distance measurement was mostly based on expert knowl-
edge, by knowing the approximate range of bone peak’s
locations and the general shapes of the peaks, which purely
based on experience and was lacked of robustness and
generalization, as a little disturbance brought by processing
or measurement noise could easily change profiles of the
peak, making it difficult to identify. In our approach, we used
the generalized and adaptability of deep learning to automati-
cally measure bone reflection peaks in US signals without ad-
ditional knowledge, making ultrasound-based measurements
more applicable and automatic. In addition, it helped to
ease the difficulty of deployment in total knee replacement
arthroplasty and other surgical robot applications.

In previous studies, to analyze 1D medical signals using
deep learning, the U-Net structure was used to recognize
and identify ECG peaks to diagnose heart disease [14] by its
contextual information preservation and feature localization
capability. The different resolution perceptual fields can
capture different sizes of peak profiles. However, it was
difficult to recognize the various reflection peaks in the
US, as the reflection peaks are more sparse, random, and
have diverse profiles in different channels. To solve the
issue, we exploited UNet’s localization pattern by using a
cascade U-Net structure for different perception resolutions,
connected with a novel sampling-based proposal mechanism.
In addition, an attention framework was introduced to filter
out features that are irrelevant to the target peak range
[15]. This helped to continually improve the perception of
the peak profile. Through these designs, our CasAtt-UNet
(Cascaded Attention UNet) could easily recognize the sparse
and effective peak profiles in the US signals with high
accuracy. In addition, since the proposed CasAtt-UNet could
infer signal peaks and calculate bone location efficiently, it
could achieve real-time bone measurement in the surgical
robot application, e.g. total knee replacement arthroplasty.

To the best of our knowledge, few studies focused on
analyzing and interpreting the 1D ultrasound signal to detect
bones using deep learning method. In this paper, we aim to
introduce a deep learning-based 1D raw signal peak locating
approach for accurate bone position measurement. The pro-
posed method showed great potential for using deep learning
to analyze complex and random ultrasound signals. For
future development, this can be deployed on surgical robot
arms to guide precise total knee replacement arthroplasty. It
is worth noting that the proposed technique could also hold
the potential for adaptation to other robotics surgery where
bone motion tracking is essential. This is also beneficial to

8 Chapter 2 DEEP LEARNING-BASED ACOUSTIC MEASUREMENT APPROACH



Fig. 1. Pipeline overview: Our method had three steps (from left to right):
performed cadaver experiment to collect ultrasound signals (network input)
and calculate bone positions (network output), Use the dataset to train
CasAtt-UNet, recover the bone position and evaluate.

improve the accuracy of bone kinematics measurement.

II. MATERIAL AND METHOD

Our method contained three parts in Fig. 1: Data collection
from a cadaver experiment, CasAtt-UNet training, and vali-
dation of the inference result. The US data and positions of
the optical markers were collected from a full-body cadaver
specimen, where bone pins were inserted into the femur and
tibia for the reference locations of the bones.

Firstly, ultrasound holders were attached to the cadaver
leg and tracked using the 3D optical tracking system. Each
holder has multiple US transducers to collect US reflection
waves in one anatomical locations on the femur or tibia.
Thanks to the bone pins, the ground truth position of the
two bones could be recalculated, and the reference positions
of the attached US holders were also recorded concurrently.
The precise bones locations were then calculated with respect
to the positions of the attached US holders (i.e., that of
each ultrasound probe). Subsequently, the reference distances
between each ultrasound transducer and the underlying bone
surface could be derived. Because bone locations and bone
reflection peaks in the raw 1D ultrasound signal are corre-
lated, the ultrasound signal with bone locations was used to
train our CasAtt-UNet. In the end, the precision at different
bone locations was evaluated, and the performance of our
model was reported.

A. Experimental Setup and Data Acquisition

To ensure the accuracy and functioning of our method,
a human cadaver specimen (male, 79kg, 179cm) was used
to acquire dataset. This has been approved by Radboud
University Medical Center (Radboud UMC), Nijmegen, the
Netherlands. A full leg (from pelvic to foot) was CT
scanned (TOSHIBA Aquilion ONE, voxel size of 0.755mm×
0.755mm× 0.500mm). Subsequently, 3D geometric models
of the femur and tibia were segmented using Mimics 17.0
(Materialise N.V., Leuven, Belgium).

This dataset was collected in our previous study [12].
During the experiment, each ultrasound holder contained
three LED optical markers and several 7.5MHz A-mode ul-
trasound transducers (Imasonic SAS, Vorayl’Ognon, France),
which were used to acquire ultrasound echos. There were in
total 30 A-mode ultrasound transducers and 18 LED optical

Fig. 2. Location of the US holders[12]: Our ultrasound holders were
installed on the six locations of the left leg: Trochanter, Mid Tibia, Femur
Epicondyle, Tibia Epicondyle, Mid Tibia and Ankle. Each holder was
tied using bandages. Notice that the distribution of optical markers and
transducers were different with the ones in the image.

markers distributed on the 6 ultrasound holders (holders
were designed from CAD models). Also there were 16
LED optical markers distributed on the four bone pins. The
sample rate of the entire US tracking system was 20 Hz. An
optical tracking system (Visualeyez VZ4000v trackers, PTI
Phoenix Technologies Inc., Vancouver, Canada) was operated
at 100 Hz to track the 3D locations of the US probes. The
ultrasound signal was acquired and synchronized with the
optical tracking system in the Diagnostic Sonar FI Toolbox
(Diagnostic Sonar Ltd., Livingston, Scotland). The origin and
direction of the ultrasound beam were determined from the
calibration method [11].

To record the location of the bones, four bone pins were
inserted into different parts of the femur and tibia, and six
ultrasound holders were fixed at different locations of the
femur and tibia. Throughout the experiment to collect the
dataset, the leg was actively maneuvered through a cyclic
flexion and extension process to emulate the swing phase of
the gait cycle, which simulated the condition of a person’s
walking. This caused changes in distance between bones
and transducers, resulting in changes of peak locations in
ultrasound signals.

After data collection, we gathered US signals and tra-
jectories of the attached optical markers from the holders.
These data were used to reconstruct the actual locations of
US holders above bones and the directions of US waves.
Consequently, the actual bone depth can be derived using
the bone location, the origin of US waveform, and the US
wave directions.

In total, a dataset was acquired that contained 1017 con-

Chapter 2 DEEP LEARNING-BASED ACOUSTIC MEASUREMENT APPROACH 9



Fig. 3. Steps to determine ground truth labels: The optical markers
in the predefined and the experiment case determined the transformation,
which was used to transform US transducers and waves directions to the
experiment coordinate frame. The label was calculated using Euclidean
distance and the speed of US.

tinuous samples (moments) recorded from leg movement. In
each sample, there were ultrasound echos from 30 transducer
channels and 3D positions of 34 optical markers (16 bone
pin markers and 18 US holder markers). We noticed that
for most bone peaks in the US signals from Trochanter and
Mid Tibia, they have been attenuated or disappeared. The
missing number had already exceeded half of all acquired
samples, which was clearly not suitable for network training.
Therefore, the dataset in these two locations was directly
discarded. The rest dataset was checked and screened too.
Finally, the 1D ultrasound signals in four anatomical areas
(Fig. 2) were collected: Femur Epicondyle, Tibia Epicondyle,
Mid Tibia and Ankle. The holder at each location contained
three optical markers and several transducers. Totally nine
channels in the four anatomical locations with the trajectories
of twelve LED optical markers were suitable for training the
CasAtt-UNet.

B. Bone Location Calculation and US Signal Peak Labeling

After cadaver experiment, we labeled the ground-truth
position of bone peaks in the 1D ultrasound signals. What
we had were the following: 1, 3D geometric surface of femur
& tibia and 3D positions of bone pins; 2, 3D positions and
distributions of the US transducers and optical markers in the
holders; 3, 3D positions of optical markers (bone pins and
holders) in the experiment. The processing procedure was
to transfer transducers, femur and tibia from the predefined
coordinate frame (e.g. CT frame and CAD frames) to the
experiment coordinate frame (i.e. the coordinate frame of
the cadaver specimen in the experiment) in each moment.
The process was shown in Fig. 3. Firstly the transformation
R
HT that align optical markers {H} in the predefined model
with the ones in the experiment {R} was calculated, which
was f ({H},{R}). Then this matrix R

HT was used to transfer
US transducers positions {PH} to the ones in the experiment
{PR}, which was R

HT · pH . The calculation also kept the wave
directions unchanged. The same process was done for both
femur and tibia bones, where 16 optical markers on four
bone pins were used to transform. The calculation was as
following. This transformation process applied to all US

Fig. 4. Intersection between bones and US waves: This showed one
moment in the experiment that the US waves intersected with the bony
surface. The intersection positions produced ground truth locations. Red dots
were transducer probes positions. Black dots were intersection positions.
Green lines were waves directions. The ground truth distance (later used
for labeling) was the line segments between black dots and red dots. For
some waves there was no black dot as there was no intersection.

transducers positions.

R
HT = f ({H},{R}) (1)

pR =R
H T · pH (2)

After obtaining all relative positions and wave directions,
we could render the US waves starting from the transducers
and ending on the bony surface. The distance between inter-
section positions and the transducer probes were calculated
and shown in Fig. 4. After knowing the 3D positions of
transducer probes and the intersections, we could calculate
the Euclidean distance d(mm) between them (Green line
segments cropped by red and black dots). To annotate
the corresponding reflected peak position in 1D ultrasound
signals, the bone peak location was calculated using Equation
(3), represented as the index of units (idx). Here we assumed
the ultrasound speed under skin was v = 1540m/s from [16],
the sampling rate was fs = 40MS.

idx =
d

(2× v
fs
×1000)

(3)

, where 2× v
fs
×1000 was the one unit length along the 6760

length of the 1D raw ultrasound signal. From our calculation,
one unit length in the signal is equal to 0.01925 mm in the
distance measurement, which is the minimum accuracy level.

After getting the depth point in the signal, the location in
the 1D signal could be annotated as the training label. Using
the raw US signals and labels, we could train our CasAtt-
UNet.

D. Overview of Cascade Attention U-Net

The proposed CasAtt-Unet was shown in Fig. 5. It com-
posed of coarse attention U-Net, sampling-based proposal,
and refined attention U-Net. As the raw US signal occu-
pied 130mm while the original peak annotation was only
one index interval (1 index = 0.01925mm), a hierarchical
structure was required for narrowing down the range. To do
this, a coarse attention U-Net was first used to determine the
existence of bone peak and capture the approximate range

10 Chapter 2 DEEP LEARNING-BASED ACOUSTIC MEASUREMENT APPROACH



Fig. 5. Pipeline of Algorithm: Given a 130mm US raw signal, the first
coarse U-Net captured the approximate range (1mm) of bone peak. The
output was used to segment a continuous length (3mm) of signal region,
which is the input of the refined U-Net to determine the exact position of
the bone peak.

(1mm). From this region, a novel sampling-based mechanism
proposed the most likely region of the bone peak. Based
on the proposal, the refined U-Net predicted the exact peak
location.

E. Structure of Attention U-Net

The proposed coarse and refined attention U-Net was
shown in Fig. 6, which was inspired from [14]. Compared
with the normal U-Net in image domain, the convolution
kernels had been replaced from two dimension to one
dimension. In addition, an attention block similar to [17]
was inserted in every skip connection between two sides of
U-Net. The output from the left side worked as the input
feature of the attention block, filtered by the attention signal
from the deeper layers, as the features from deeper layers
contained abstract and general space knowledge that can
filter out large irrelevant areas in the signal. In this way,
the CasAtt-Unet performed more robustly when dealing with
more complex and random signals. During training, because
the peak summit was only one unit length (0.01925 mm)
along the whole range, to facilitate network training, the
range of peak was increased to 5 units (about 0.1 mm) for
the Refined location. For the coarse UNet, the coarse range
has been increased to 50 units ( approx. 1 mm). The network
output had the whole signal length consisting of bone peak
probability in each unit. This would be threshold by 0.5
probability to the bone peak segment. To recover the exact
peak position (i.e., bone depth), we used the middle point of
this segment to calculate the depth distance by multiplying
the middle point unit index number with the unit interval
length.

F. Mechanism of Sampling-based Proposal

To have a candidate region from the coarse U-Net output, a
sampling-based proposal method was required and shown in
Fig. 7. A standard Gaussian distribution (mean=1.0, std=1.0)
curve, whose amplitude was determined by the predicted
probability, was built on each unit of the whole signal. They

Fig. 6. Attention U-Net Structure: We replaced the 2D convolution in
normal U-Net to 1D convolution, and added additional attention block to
increase the perception ability. In each orange hexagon connection (attention
block), the attention signal was from the deeper layer, while the input feature
was from the left side of U-Net. The output was concatenated with the up
convolution result of the deeper layer and input to the double conv1D block.

were combined and summed to have a mixture possibility
density curve. Based on this PDF, a continuous fixed-length
region was probabilistic sampled. The start and end location
cropped the original US signal to be the input of refined
attention U-Net, which continuously identified the bone peak
in this local region. The benefit of probabilistic approach
instead of the deterministic one was that: Each time the
refined U-Net can be confronted with a random region even
if the coarse U-Net output was the same, the refined U-
Net was forced to learn the meaningful peak profile instead
of memorizing peak position. This enabled CasAtt-UNet’s
robust detection when only trained using a limited dataset.
During inference, instead of sampling from the PDF, the
peak position was directly decided by the largest probability
position in this region.

G. Training and Evaluation

To train a dataset with highly unbalanced foreground and
background labels, we introduced dice loss and cross-entropy
loss simultaneously. The dice loss was written in Equation
(4). It is defined as one minus dice coefficient, which is
widely used in medical image segmentation: The numerator
is defined as twice of intersection between ground truth and
prediction, while the denominator is defined as the total
probability of prediction and ground truth. The ε can stabilize
the training and prevent zero division. For cross-entropy loss,
we constructed one-hot vectors for each unit prediction, then
did a binary class softmax operation on the U-Net output.
The loss was calculated between onehot labels and softmax
results. These two losses were used for both the coarse and
refined U-Nets’ training.

DiceLoss = 1− 2∑n
i=0(ppred

i ∗ ptrue
i )+ ε

∑n
i=0 ppred

i +∑n
i=0 ptrue

i + ε
(4)

We split the whole dataset into 8:2 for training and testing.

Chapter 2 DEEP LEARNING-BASED ACOUSTIC MEASUREMENT APPROACH 11



Fig. 7. Sampling-based Proposal: This structure connected the coarse and
refined attention U-Net. The Gaussian distribution was built on each unit
position of the prediction. Then a mixture PDF curve was built, on which
a continuous region was sampled and cropped the original raw signal. The
result was the input of the refined U-Net.

For network training, we augmented for 10 times by shifting
the signal x-axis up to 1000 units. To train the model, the
first coarse U-Net was trained for first 30 epochs so that
a relatively accurate coarse region could be generated, then
the second refined U-Net was trained for another 20 epochs
using the output of Sampling-based Proposal to get the exact
positions of bone peaks.

For evaluation, the inference result from the refined UNet
could be represented as a sequence of bone peak probability:
Sprob = {p1, p2, ..., pm}. After filtering the outputs using the
softmax and 0.5 threshold probability, we had a feasible
segment of indices in the signal to represent peak positions:
Sindex{idx1, idx2, ..., idxn}. The exact peak prediction was
defined as the middle of this segment, which was expressed
as (max(Sindex)+min(Sindex))/2. With the unit index length,
the bone peak depth prediction could be easily calculated by
multiplying the position unit index with the interval length
from Equation (3): 2× v

fs
× 1000. The whole step was in

Equation (5).

Position = Interval× (max(Sindex)+min(Sindex))/2 (5)

With the prediction and the ground truth bone depth, our
method performance could be evaluated by counting the
percentage when the bias of ground truth and prediction was
lower than 0.5mm (ACCURACY). We also calculated the
average bias (BIAS) and the detection rate whether the bone
peak existed or not (FIND PEAK%). We reported the results
in the following sections.

III. EXPERIMENTAL RESULTS

Here the method’s performance was compared with the
traditional method. For each body area (the US holder
location), we selected 2 to 3 typical channels, in which the
peaks were clear to see and the number of peaks was over
half of total 1017 samples. This allowed for the training and
facilitated the learning process.

TABLE I
WINDOW WIDTH AND POSITION DETERMINED BY THE EXPERT

LOCATION CHANNEL WINDOW
POSITION

WINDOW
WIDTH

Femur Epicondyle 11 12.427mm 8mm
12 15.879mm 9mm

Tibia Epicondyle
16 9.205mm 7mm
17 7.939mm 5mm
19 12.287mm 7mm

Mid Tibia 24 3.011mm 5mm
26 6.559mm 5mm

Ankle 28 7.642mm 6mm
29 5.211mm 5mm

A. Traditional Method Result

For the traditional method to detect bone peaks, the highest
peak from a certain window in the signal is annotated and
determined as the bone peak using past experience. Here
we used the expert knowledge from a previous study [12].
The window position pwin and window width wwin was
shown in TABLE I. As the interval lint was already known
in Equation (3), the start and end position of the window
(represented as the unit index) was determined using the
following Equations.

idxstart = (pwin−wwin/2)/lint (6)
idxend = (pwin +wwin/2)/lint (7)

After cropping the meaningful region, a simple
peak detection algorithm from the python library
(scipy.signal. f ind peaks) was used. It detected the peak
that has a certain height range, prominence, and threshold.
In our experiment, the height range was determined using
the same training dataset, and tested using the same testing
dataset of neural network. The result was shown in the
left gray background of TABLE II. Noticed that the bias
between the prediction and the ground truth was between 1
to 3 mm, showing that the error was large and the accuracy
(below 0.48mm) was quite low.

B. Deep Learning Method Result

The result of CasAtt-UNet was shown in the bright
right background of TABLE II. Noticed that without any
expert knowledge, our model could automatically locate
bone peak locations in different areas within sub-millimeter
accuracy (except for Channel 28). The average accuracy
(below 0.48mm) in all the channels could perform 71.19% on
average, which demonstrated the advantage of our method. It
was evident that the traditional method could almost achieve
100% peak recognition rate. This is because the traditional
method could always find a peak in the window region,
as long as all samples in the test dataset existed peaks.
Thus, it did not provide useful indication of the performance.
However for the CasAtt-UNet, it indeed showed a sensitivity
issue, as different static probability threshold could produce
various length of possible bone peak segments, directly
influencing final peak prediction. A better method would be
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TABLE II
RESULTS COMPARISON WITH TRADITIONAL METHOD

(LEFT GRAY PART WAS FROM TRADITIONAL METHOD, RIGHT BRIGHT PART WAS FROM OUR CASATT-UNET.)

LOCATION CHANNEL ACCURACY BIAS FIND PEAK% ACCURACY BIAS FIND PEAK%

Femur Epicondyle 11 38.30% 1.455mm 92.20% 81.18% 0.348mm 91.18%
12 27.84% 2.334mm 86.27% 90.07% 0.337mm 92.16%

Tibia Epicondyle
16 14.21% 2.778mm 100.00% 80.22% 0.437mm 92.62%
17 4.41% 2.808mm 100.00% 63.59% 0.561mm 95.59%
19 19.80% 2.488mm 96.57% 81.35% 0.275mm 94.53%

Mid Tibia 24 32.35% 1.302mm 100.00% 66.51% 0.554mm 94.77%
26 26.96% 1.380mm 100.00% 63.52% 0.648mm 89.53%

Ankle 28 28.43% 1.294mm 100.00% 55.25% 1.616mm 85.72%
29 20.59% 2.211mm 100.00% 59.06% 0.623mm 89.77%

studied later to automatically adjust the probability threshold
to achieve the optimal peak recognition performance.

IV. DISCUSSION

This work constructed a deep-learning-based method for
bone peak detection in 1D US signals, to measure the bone
positions with A-mode ultrasound transducers when applied
in the robotic orthopedic application and exoskeletons. The
contextual information preservation and feature localization
capability of U-Net were greatly improved by cascading
different perception resolution U-Nets together, connected by
a novel sampling-based proposal mechanism. The introduced
attention blocks enabled the learnt patterns more robust and
adapt to more channels situations.

one limitation of the work is that we only used one cadaver
specimen to collect the dataset, the result may be lack of the
variability in patient’s anatomy, and had not considered other
impacts of the surgical environment factors that can directly
impact model’s performance. Another limitation is that, com-
pared with other bone registration and reconstruction study,
our work only provided and evaluated the distance between
skin and bones without completing the whole registration
process. However, it is worth noting that the advantage of
our method lies in the high precision and automatic bone
position measurement under skin, without additional trauma
or expert knowledge. Even in the registration process, the
previous study [11] reported the registration error as 2.81
mm, which was much worse than our measurement of bone
positions.

Besides, this technique could further provide real-time
bone locations when installed on the surgical robot arms, as
the normal time to process 2D ultrasound images has been
removed. Its sub-millimeter accuracy can guide the robot
to do high-precision alignment of total knee replacement,
also in other similar surgery that had strict requirement.
In addition, since the neural network can achieve high
precision in identifying the special and sparse bone peaks,
this work convinced that deep learning technique was capable
to identify and find profiles for very special and irregular
signal peaks in the 1D raw signal, which could also inspire
other works that require identification of the non-evident and
sparse peaks in the 1D raw signal.

V. CONCLUSIONS

In this study, we proposed a novel deep-learning structure
to detect highly random and sparse bone peaks in the 1D raw
signals with high precision. The measured distance can be
used for later bone registration and bone position recovery
in real-time, which could be installed on the robotics arms
and guide the surgery with sub-millimeter accuracy. The
experiment results demonstrated the optimal precision we
can achieve, which shows the promising prospective of our
system to apply in not only the total knee replacement
arthroplasty but also other similar robotics surgeries.
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3 Improving Bone Tracking Precision using SIRC-UNet
Compared with the previous chapter, this chapter targets at a similar challenge but with a different
solution and evaluation. The introduced SIRC-UNet can recognize the bone peaks in local bone
areas instead of the specific positions, and more mathematical equations and algorithm were stated to
provide a formal and complete view of the technique. In the analysis, the bias of each area between
the prediction and the ground truth has been demonstrated, compared with the traditional method.
In addition, the ablation study was done to verify the effectiveness of the proposed loss and the
Sampling-based Proposal mechanism.

Figure 2: Graphical Abstraction of the Chapter 3
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Abstract— A-mode ultrasound (US) has not been widely used in
medical applications compared to B-mode ultrasound. The primary
reason is that the data representation, being 1-dimensional (1D),
is less intuitive to users and harder to interpret. However, A-mode
ultrasound transducers have several advantageous features, such
as faster data acquisition to allow real-time sensing, direct dis-
tance measurement from raw RF data, and a smaller size. A-mode
ultrasound has been used to measure biometric distances. How-
ever, current distance measurement algorithms are crude, relying
on conventional signal processing for peak detection. Especially
when the tracking task is under dynamic conditions, it becomes
challenging to maintain high accuracy and robustness. In this study,
we introduce a novel method to enhance the tracking reliability of the A-mode US under dynamic conditions. This
approach aims to improve the accuracy of A-mode US for bone tracking application. SIRC-UNet is designed to enhance
the perceptual resolution of the received A-mode ultrasound RF data. It allows for the accurate analysis of the significant
signal region, leading to more precise peak detection. The method performance is evaluated by analyzing the bias between
the predicted and the ground truth peak locations, and the capability to distinguish bone peaks from irrelevant peaks. The
results demonstrate that our method can perform real-time high-precision (sub-millimeter accuracy) bone measurements
on the cadaver experiment. It showcases the potential to provide accurate dynamic bone tracking and bone position
detection, with possibilities to extend applications to surgical robots and rehabilitation exoskeletons, where real-time
bone tracking is crucial.

Index Terms— A-mode ultrasound, dynamic bone tracking, deep learning, peak detection, SIRC-UNet

I. INTRODUCTION

MEDICAL ultrasound (US) is commonly used in di-
agnostic examinations. It is a safe, non-invasive, and

inexpensive diagnostic method. In medical imaging, different
types of ultrasound are used, such as A-mode (“A” for
amplitude), B-mode (“B” for brightness), M-mode (“M” for
motion) ultrasound and Doppler sonography. Among these,
the A-mode US is not as popular as others [1]. This is due to
the fact that the received signal of the A-mode is visualized
as one-dimensional echos plotted as the function of depth,
which is less intuitive for the user to interpret compared to 2D
images [2]. The A-mode peak profiles are diverse and difficult
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to analyze [3]. However, the A-mode has its advantages.
Compared to the B-mode, which is integrated with multiple A-
mode transducers [4], A-mode is more convenient and portable
[2], [3], [5]. When measuring, the A-mode US allows real-
time sensing and data acquisition, which enables the direct
measurement of the distance from the RF data.

In orthopedics, one of the clinical applications for ul-
trasound diagnosis is bone tracking [6], where traditional
methods can introduce unnecessary trauma or measurement
deviation. The use of skin-mounted markers is currently
widely used to measure the kinematics of the lower extremity
[7], [8], but soft tissue artifacts (STA) introduce large errors for
measurement [9], [10]. Fluoroscopic systems use radiographic
images and model-based methods [11]–[14] to achieve the
measurement accuracy of 1mm translation and a 2 degree
rotation [15]–[17], but irradiation and high cost hinder the
application in reality. Although the B-mode ultrasound-based
system can estimate knee joint kinematics without invasion
and radiation risk [18], it is more expensive and larger in size.
However, to realize reliable joint kinematics tracking, integrat-
ing multiple B-mode transducers to cover various anatomical
locations is inevitable. Moreover, the A-mode US is more
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Fig. 1. The overview of the workflow. It includes three parts (from left
to right): cadaver experiment for getting a dataset (used as the ground
truth position), develop SIRC-UNet for peak recognition and detection,
transform peak distance to bone position for validation.

accurate for biometric depth measurement [19], [20]. It is also
faster, cheaper, and smaller in size. With these features, the A-
mode US is capable of tracking the bone in real time and more
precisely.

In bone measurement, the exact three-dimensional (3D)
coordinate of bone position can be derived from two sources
of information [21]: the distance (or depth) between US
transducers and the bony surface, as well as the 3D position
of beam origins and directions emitted from the A-mode
ultrasound transducer. To perform a distance measurement
using A-mode US, the common approach is to detect peak
locations empirically [22]. However, the problem that the peak
has an unclear profile or a rapid position change cannot be
avoided, which is due to the ambiguous interface between
the tendon and the bony surface, or the relative shift of
the skin and soft tissues [23]. Furthermore, it requires the
necessary knowledge of the general positions of bone peaks.
A new method is required to better resolve these problems and
automatically capture bone peak patterns.

Therefore, the challenge of A-mode US for bone measure-
ment lies in the automatic and precise detection of bone peak
in 1D signal. To develop an ideal system, we increase the cur-
rent precision as described in [24] by using a Deep Learning
framework. This framework is inspired by the study of 1D
ECG signals in [25], where peak profiles are automatically
recognized by UNet to identify specific heart diseases. UNet
is capable of preserving contextual information and locating
hierarchical characteristics of effective segmentation, which
can be used to capture the regular peak shapes in the ECG
signal that represent symptoms. However, for the A-mode US
signal, there is no such regular profile. The various shapes of
the US peaks are the results of stretching and contraction of
the tissues [3].

To develop an effective method, different resolution features
of the A-mode US signal are exploited for better feature
decoding. For the proposed method, SIRC-UNet represents
Sampling-based Increased Resolution Cascaded UNet, as the
resolution of US signal is different for the two UNets. The
perceptual region for the second UNet is specified by a novel
sampling-based method, which connects two UNets. These
designs attempt to make the proposed method more powerful
in recognizing the random and dynamic peak profiles in the
A-mode US signal.

The cascaded UNets design not only enables dynamic
control of the perceptual region, but also is beneficial for peak

Fig. 2. Schematic overview of the Experimental Setup: The cadaver
experiment was performed on a specimen leg. The four bone pins were
installed to record the movement of ground truth position, while six US
transducer holders were attached to record the ultrasound signal.

recognition and detection tasks. As the larger perceptual region
is better for peak recognition and the smaller region is better
for peak detection, an algorithm is introduced to improve the
recognition and detection performance following two UNets’
characteristics. Combining peak recognition and detection, our
method is expected to have the correct bone peak recognition
and the better accuracy for bone tracking.

In summary, the proposed SIRC-UNet can simultaneously
recognize and detect the location of bone peaks in US signals
for high-precision bone tracking. In addition, its universal
network structure allows other applications to accurately track
the motions of various parts of the body, for example, upper
limbs, thorax, and neck.

II. MATERIAL AND METHOD

This work consists of three stages in Fig. 1: a cadaver
experiment to collect the training dataset, the SIRC-UNet
architecture for peak recognition and detection, and validation
experiments to evaluate the precision of the measurement.
The cadaver experiment was carried out on a leg of cadaver
samples, where four bone pins were installed to record bone
movement, while six US transducer holders were attached to
the skin to detect the US signal reflected by the bony surfaces.
3D positions of the bone pins and holders were recorded using
an additional optical tracking device. After the experiment,
the exact locations of the bones could be retrospectively
calculated by calculating the relative positions between the
bones and the transducers. These locations correspond to the
received US signal. In the second step, they were paired and
processed to remove the unqualified US channels, where bone
peaks were attenuated or disappeared. The remaining channels
formed the dataset for peak detection. The proposed network
was trained and validated in the recognition and detection
of the bone peaks. In the last step, since the peak location
corresponds to the bone position, the inference results could
be used to establish the existence of bone below specific skin
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Fig. 3. Ground truth calculation and labeling process: We first define the 3D positions of the bony surface and the holders in Ψ1 and Ψ2. With
transformation 3

1T and 3
1T , the 3D positions of the bones and holders in the experiment Ψ3 were recovered. The origins of the ultrasound beam

and wave directions can be rendered, so the intersection between the US waves and the bony surface can be found. The Euclidean distance
representing the bone position is calculated and the corresponding peak position is labeled in the signal.

positions and the bone depth from these locations. The results
were compared to the traditional method to demonstrate the
advantages of our method.

A. Experimental Setup and Data Acquisition
The cadaver experiment was from a previous research

project [26], where a human cadaver specimen (male, 79kg,
179cm) was used to acquire all essential data. This experiment
was approved by Radboud University Medical Center (UM-
CRPS02PRD PRTC0119). A full leg (from the pelvic to foot)
was CT scanned using a TOSHIBA Aquilion ONE scanner,
with a voxel size of 0.755mm×0.755mm×0.500mm. The geo-
metrical models of the femur and tibia were then segmented
using Mimics 17.0 (Materialise N.V., Leuven, Belgium).

To collect the ultrasound dataset, a total of 30 A-mode US
transducers (7.5MHz, Imasonic SAS, Vorayl’Ognon, France)
and 18 LED optical markers were installed in the six ultra-
sound holders. The US holders were strategically placed in
key positions on the specimen leg according to a previous
study [21]. This was to ensure the optimal reception of the US
signals from transducers and accurate positioning of optical
markers. Meanwhile, 16 LED optical markers were placed on
the four bone pins. The bone pins were installed on the femur
and tibia to record the bone movement. Additionally, the sam-
pling rate for the entire US tracking system was 20 Hz. The
optical tracking system (Visualeyez VZ4000v trackers, PTI
Phoenix Technologies Inc., Vancouver, Canada) that tracked
3D location LED markers was operated at 100 Hz. The US
signal was acquired and synchronized in the Diagnostic Sonar
FI Toolbox (Diagnostic Sonar Ltd., Livingston, Scotland).

During data collection, the leg was manually moved cycli-
cally from flexion to extension to simulate the swing phase in
the gait cycle. On the skin of the leg, A-mode ultrasound trans-
ducers were attached. This movement changed the distance
between bony surface and US transducers, which introduced
the change of bone position that SIRC-UNet predicts. During
the movement, the A-mode signal and the trajectories of the
attached optical markers were collected. They were used to

reconstruct the actual locations of the US transducers and the
directions of US waves, as well as the movements of the femur
and tibia. Finally, the actual position of the bone was derived
from the Euclidean distance between the bony surface and
the transducers in the US beam directions. The calculation in
details is Equation (5).

In total, a dataset containing continuous leg movement was
collected. The movement sequence was divided into 1017
samples (moments). Each sample has 30 transducer channels
including the received US signals and 34 optical marker
positions for bones and transducer movement recording. Note
that the Trochanter and Mid Tibia datasets were discarded due
to the attenuation and disappearance of signal peaks, making
them unsuitable for peak detection. The rest of channels were
screened in four typical locations (the number of bone peaks
should be greater than 70% of the total samples for better
training). In the end, the four anatomical areas (Femur Epi-
condyle, Tibia Epicondyle, Mid Tibia, and Ankle) provided 12
available US channels and 18 LED optical marker trajectories.
They are used for peak detection of the A-mode ultrasound.

B. Ground Truth Calculation and Labeling

The prediction target of SIRC-UNet is the distance between
the transducer origin and the intersection between the US wave
and the bony surface. To derive the distance, the required data
from the cavader experiment includes three parts: ({∗} means
a series of points)
• In the bone coordinate frame Ψ1, bony surface {P1,B}

segmented from CT scan and the bone pins installed with
the optical markers {P1,M};

• In the holder coordinate frame Ψ2, six ultrasound holders
including optical markers {P2,M}, origins of the transduc-
ers {P2,O} and the directions of the US waves;

• In the experiment coordinate frame Ψ3, the optical mark-
ers {P3,M} of both bone pins and US holders in the
cadaver experiment.

The whole process is illustrated in Fig. 3.
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The idea is to use optical markers of bone pins and holders
as intermediaries to transfer the bony surface of the frame Ψ1
and the US transducers of the frame Ψ2 to the experimental
coordinate frame Ψ3. In this way, the positions of the trans-
ducers, the directions of the US waves, and the surface of the
femur and tibia are expressed in the same coordinate frame
Ψ3.

The derivation algorithm is as follows. The positions of the
optical markers in Ψ2 are {P2,M}, which correspond to {P3,M}
in the experiment. The transform matrix 3

2T can be derived
using f ({P2,M},{P3,M}). Then the origins of US transducers
can be transformed from {P2,O} to {P3,O} using the same
transformation 3

2T . Similarly, the bone positions {P3,B} in
Ψ3 can be derived from {P1,B} using 3

1T , which is from
f ({P1,M},{P3,M}). To align the two coordinates correctly,
VTK Landmark Transformation Library [27] is used to per-
form the alignment f (Psource,Ptarget).

3
1T = f ({P1,M},{P3,M}) (1)

{P3,B}=3
1 T · {P1,B} (2)

3
2T = f ({P2,M},{P3,M}) (3)

{P3,O}=3
2 T · {P2,O} (4)

After knowing the bony surface {P3,B} and the origins of
the US transducer {P3,O}, the intersection between the US
waves and the bony surface can be derived. This is calculated
for every moment in the experiment. The Euclidean distance
(d(mm)) between the transducer origin and the intersection
with the US wave can infer the peak location in the 1D
signal, as the US waveform hitting and reflection process
will create the signal peak in the echo at the corresponding
location. However, as sometimes the optical tracking device
cannot detect the optical marker positions due to the occlusion,
a rigidity check is performed to ensure that the change of
bone peak location is aligned with the actual bone movement:
The positions of optical markers {P3,M} are examined to
ensure a rigid transformation during the experiment, so that
the calculated transformations 3

1T and 3
2T are correct. The peak

index (idx) in the signal is determined using knowledge from
the ultrasound device. The equation is as follows:

idx =
d

dunit
=

d
(2× v

fs
×1000)

(5)

where v = 1540m/s refers to the speed of the US in soft
tissues (mainly muscle), and fs = 40× 106Hz refers to the
sampling rate of the US. The formula dunit = 2× v

fs
×1000 is

the length of one unit over the 6760 units length of the signal.
The length of one unit is calculated as 0.01925mm, which is
the minimum precision of the measurement.

When conducting a visualization analysis to validate the
calculations, we observed a clear relationship between the
calculated index idx and the location of the peak in the signal.
This shows that the signal peak can represent the distance of
bone depth under the skin. These calculated indexes are the
ground truth labels of the US signal, and used as the target of
the peak detection.

Fig. 4. Cascaded Attention design in SIRC-UNet. It includes two
attention UNets that focus on different regions of signal. The coarse
UNet recognizes the peak and give a coarse detection. The intermediate
mechanism determines the input of the refined UNet from coarse UNet.
The refined UNet predict more precise peak location.

C. Overview of the SIRC-UNet architecture
From the cadaver experiment and the ground truth labeling

process, ultrasound signals and labels of 12 transducer chan-
nels were collected. In addition to detect the peak position,
SIRC-UNet is also required to identify the peak existence, as
sometimes US waves do not intersect with any bony surfaces.
At these moments, the segmentation of SIRC-UNet should
be only the background. Since the bone peak label (index)
is only one unit, which is difficult for network segmentation,
we increase the length of label to a sufficient width (coarse
label: 50 units, refined label: 10 units) for peak recognition
and introduce a mechanism to increase the input resolution.
In post-processing, we recover the exact one-unit bone peak
location from the detection result.

The proposed network has two attention UNets, and a
sampling-based strategy to select the region of signal for the
second UNet. The first UNet identifies the existence of bone
peaks and performs coarse position detection. The sampling-
based method increases the signal resolution by selecting the
most likely region from the coarse probability. This region
of the signal is used as the input of the second UNet,
which predicts the precise peak position. The final result is
determined by both the coarse and refined predictions. The
overall architecture is shown in Fig. 4.

D. Cascaded Attention UNet
The UNet for peak recognition and detection is inspired

by the study of ECG signal [25]. An attention block similar
to [28] is incorporated to highlight the prominent features of
the skip connections. In the A-mode signal, there are other
tissue peaks and random noise that confuse the bone peak
recognition. The coarser scale of features in the attention
block can filter out irrelevant and noisy features in the skip
connections. In this way, only the relevant features of the bone
peaks are merged into the concatenation operations.

To be concrete, the attention UNet has the structure in Fig.
5, where the attention block uses coarser scales of contextual
features as the gate signal to filter irrelevant features in the

Chapter 3 IMPROVING BONE TRACKING PRECISION USING SIRC-UNET 19



Fig. 5. Attention UNet structure. The UNet with an attention block is shown here. The light blue box includes two 1-dimensional convolution,
represented as the blue solid arrow, connecting the number of convolution kernels before and after. The detail in the 1× 1 convolution in the
attention block is from [28].

Fig. 6. Sampling-based Proposal. The softmax is applied to get the
coarse peak probability. Then a candidate area is proposed and a region
is sampled on this area. This region determines the input of the refined
UNet.

skip connections [28]. The output is concatenated with the
up convolution of the coarser features and goes into the left
feature decoder. This helps suppress irrelevant signal areas and
highlight salient peak features.

Although the two attention UNets share the same structure,
they have different priorities for recognition and detection.
The coarse UNet identifies the bone peak existence in full
resolution and gives a coarse peak probability. On the basis
of that, a sampling-based mechanism proposes a candidate
region by probability-based sampling. The proposed region
is the input of the second UNet for the precise detection of
the bone peak. The cascaded UNet pipeline increases signal
resolution to improve peak detection accuracy.

As the signal resolution is different for two UNets, different
labels should be applied accordingly. The peak label for the
coarse UNet is expanded to 50 units of length (approximately
1 mm), while the peak label for the refined UNet is only
expanded to 10 units of length (approximately 0.2 mm). This
complements the information of bone peaks when inference,
as it is difficult to quantify the actual width of the bone
peak. The peak profile is influenced not only by the medium
layers between bone and soft tissues but also by the relative
movement of multiple soft tissue layers when muscles contract
or stretch. The method to determine the exact peak location
and the existence of the peak from two UNets prediction is
illustrated in the II-F Peak Location Determination.

E. Sampling-based Proposal
To define the input signal of the refined UNet for precise

detection, a direct strategy is to use the segment of signal
where the peak is most likely to appear. This segment can be
determined directly by the most probable peak region of the
coarse UNet, but it has two problems: First, not every time the

coarse UNet can detect exactly the peak position, sometimes
the peak is far away. In this situation, the proposed region
does not contain any peak. The second problem occurs when
the coarse UNet is well trained, and each time the peak is
exactly in the middle of the output (the expansion of the label
is symmetrical around the peak location). Then it is difficult
for the refined UNet to learn effectively, as it can directly select
the middle position of the proposed region as the location of
bone peak.

An improved strategy is to change the proposed region
dynamically: sample a segment based on the probability of the
coarse UNet output. As the proposed region keeps changing,
the learning of coarse UNet is disentangled with the refined
UNet. The refined UNet is required to learn without any
reference from the coarse UNet. In this way, training becomes
stable and test performance is improved. Inspired by the
region proposal in [29], we develop a proposal method based
sampling for the selection of the effective region.

The detail is illustrated in Fig. 6. During training, the
Softmax operation is applied to the coarse UNet output to
get the peak probability. Based on it, the sampled region is
determined as a typical area for the efficient computation
instead of the entire signal range (approximately 130 mm):
we initially identify the peak with the highest probability.
Following this, the sampled region is created around this
identified peak to ten times its width. In this area, a region
is sampled to decide the start and end of the index. These
indexes of proposal crop the original signal as the input of
the refined UNet. In the testing (validation), since there is no
requirement for sampling, the proposed region is the segment
that has the highest probability peak from the coarse UNet
output.

F. Peak Location Determination

As both UNets predict bone peaks as their detection results,
a strategy is required to determine the existence of the peak
and pinpoint the most precise location. To make the final
decision, an algorithm is designed in Algorithm 1. The idea
is that the coarse UNet recognizes the existence of the peak,
while the refined UNet detects the location of the peak. There
are two abnormal situations: (1) If the coarse UNet does not
find the peak while the refined UNet does, the bone peak is
treated as non-existent. (2) If the coarse UNet find the peak,
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Algorithm 1 Peak Location Determination
Input: coarse segmentation, refined segmentation

1: if coarse segmentation ̸= 0 then
2: peak exist
3: if refined segmentation ̸= 0 then
4: location = middle of refined segment
5: else
6: location = middle of coarse segment
7: end if
8: else
9: peak does not exist

10: end if
Output: peak existance, peak location

while the refined UNet does not, the peak is treated as existing
and the location is decided from the coarse UNet segmentation.

The peak detection output is a segmentation. The result
of each unit is decided by the higher probability between
foreground and the background. To transform segmentation
to a peak location, Equation (6) is used. The probability after
Softmax is Oprob = {p1, p2, ..., pm}, which is filtered by 0.5 to
get the segment Pindex = {idx1, idx2, ..., idxn},n ̸= m. The peak
index is the middle idxpeak = (idx1 + idxn)× 0.5. And each
unit length is calculated in the Equation (5).

dpeak =dunit × idxpeak

=(2× v
fs
×1000)×

(idx1 + idxn)×0.5 (6)

G. Training Strategy

To train our SIRC-UNet, the US signal and labels were first
processed to remove outliers (strength greater than 5000) and
shuffled into 8:2 training versus testing dataset. To demonstrate
the universal and generalized ability, the channels from the
same segment of the lower limb are grouped together to form
the dataset.

For training loss, dice loss (DL) and cross-entropy loss
are used for the segmentation task. Dice loss [30] considers
both the recall and precision rates of the target to solve the
sparse foreground (target) issue in medical applications. It is
the Equation (7).

DiceLoss(DL) = 1− 2×∑n
i=0(ppred

i ∗ ptrue
i )+ ε

∑n
i=0 ppred

i +∑n
i=0 ptrue

i + ε
(7)

For the cross-entropy loss, it is calculated for the binary
classification of each unit. In training, Softmax is first applied
to the UNet output to have the peak probability Oprob, which
is compared with the one-hot 2× 1 labels to calculate the
cross-entropy loss. This loss l1 and the dice loss l2 are added
together to train only the coarse UNet for 30 epochs, as if the
first UNet has not been well trained, sampling-based proposal
cannot propose an effective region for the refined UNet.

TABLE I
WINDOW WIDTH AND POSITION FOR US PEAK

LOCATION CHANNEL WINDOW
POSITION

WINDOW
WIDTH

Femur Epicondyle
11 12.427mm 8mm
12 15.879mm 9mm
15 21,862mm 10mm

Tibia Epicondyle

16 9.205mm 7mm
17 7.939mm 5mm
18 5,383mm 6mm
19 12.287mm 7mm
20 8,660mm 6mm

Mid Tibia 24 3.011mm 5mm
26 6.559mm 5mm

Ankle 28 7.642mm 6mm
29 5.211mm 5mm

The refined UNet is trained from the 30th epoch to the 50th

epoch. Training loss for refined UNet is also the summation
of cross-entropy loss l3 and dice loss l4. The second training
includes both coarse UNet and refined UNet. For the entire
training, ”RMSprop” is used as the optimization with an initial
learning rate 0.00001.

lossstage1 =l1 + l2 (8)
lossstage2 =l1 + l2 + l3 + l4 (9)

III. EXPERIMENTAL RESULTS

To comprehensively evaluate the method, the traditional
method was used to compare the performance of peak recog-
nition and detection. Peak recognition represents whether the
method can recognize the bone peak, while peak detection
represents how precisely the method can locate the peak
position.

For peak recognition, in some moments when US waves
did not intersect with the bony surface, the bone peaks do not
exist. SIRC-UNet needs to distinguish the existing bone peaks
from the irrelevant peaks due to noise or other tissues. When
the UNet segmentation only contains background, the bone
peak is treated as disappeared.

For peak detection, the absolute difference of the index
between the predicted peak and the ground truth label is
calculated. The difference is transformed into the distance
(mm). To show the distribution of distance (or errors), the
quartile-based analysis is shown in TABLE II. For a more
clear comparison, the boxplot was generated from the table
and shown in Fig. 7, where each error distribution has a middle
box, a median red line and two extended boundaries. The
middle box ranges from the lower quartile (Q1) to the upper
quartile (Q3). The extended boundary corresponds to 1.5 IQR
(interquartile range = Q3-Q1) outside the middle box range.

A. Results of Traditional Method
For traditional method, the selection of bone peak is based

on a channel-specific window size (pwin) and window position
(pwin), which are the locations of femur and tibia under the
skin. These parameters are established before the experiment
[24] and are presented in TABLE I. To translate the values
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TABLE II
THE PEAK DETECTION IN QUARTILE-BASED ACCURACY AND PEAK RECOGNITION RATE FOR THE COMPARISON OF TWO METHODS.

METHOD TRADITIONAL METHOD SIRC-UNet

Area Channel Quartile-based Accuracy (mm) Recogn-
ition(%) Dataset Quartile-based Accuracy (mm) Recogn-

ition(%)mean std dev 25% 50% 75% mean std dev 25% 50% 75%

Femur
Epicondyle

11 1.455 1.494 0.245 0.876 2.127 92.16
group1 0.978 7.632 0.0 0.019 0.058 90.6512 2.334 2.141 0.327 2.204 3.412 86.27

15 3.276 3.183 0.394 2.252 5.135 92.16

Tibia
Epicondyle

16 2.778 2.111 0.886 2.349 4.668 100.0

group2 0.522 0.846 0.02 0.077 0.674 90.79
17 2.808 1.356 1.838 2.926 3.754 100
18 2.033 1.472 0.746 1.858 2.931 100
19 4.686 1.477 3.715 4.582 5.852 96.57
20 3.314 1.907 1.973 3.350 4.586 100

Mid
Tibia

24 1.302 1.095 0.308 1.059 2.069 100.0 group3 0.562 0.844 0.0 0.019 0.905 90.4326 1.380 1.178 0.462 1.030 1.988 100

Ankle 28 3.482 2.517 1.025 3.619 5.217 94.12 group4 1.108 1.950 0.0 0.019 1.232 90.4329 1.167 1.058 0.173 0.963 1.867 94.61

TABLE III
UPPER QUARTILE (75%) ACCURACY IN PEAK DETECTION, DL: DICE

LOSS, SBP: SAMPLING-BASED PROPOSAL, W/O: WITHOUT

SEGMENT w/o DL
(mm)

w/o SBP
(mm)

Full
Model(mm) Improvement

Femur Epi. 0.096 0.077 0.058 32.5%
Tibia Epi. 0.693 0.727 0.674 5.03%
Mid Tibia 0.982 0.977 0.905 7.62%

Ankle 1.328 1.328 1.232 7.24%

into the index of signal range, we use the Equations (10) and
(11) to determine the window range with the interval length
(dunit ) calculated from Equation (5).

idxstart = (pwin−wwin/2)/dunit (10)
idxend = (pwin +wwin/2)/dunit (11)

The start and end indices define the candidate area that has
the bone peak. Within this region, an automatic peak detection
algorithm (Python library scipy.signal. f ind peaks) is applied.
Among all candidate peaks, the bone peak is the one that has
the highest strength. This is based on the characteristics that
a strong ultrasound response is only created by acoustic bone
reflection within the candidate area. Typically, no higher peak
should occur in subsequent segments of the signal, except in
the case of overlapping secondary echoes from multiple tissues
located in the front.

The results of the traditional method, including peak de-
tection accuracy and recognition rate for all channels, are
illustrated to the left of TABLE II. In Fig. 7, they are visualized
as light blue boxes. The errors predominantly range from 0.5
to 6 mm, as shown by the Q1 to Q3 range.

B. Results of Deep Learning Method
The results of SIRC-UNet in terms of peak recognition and

detection are presented on the right side of TABLE II, and
is visualized as dark blue boxes in Fig. 7, where a precision
threshold of 1 mm is indicated as the red horizontal dashed
line. To analyze the effectiveness of dice loss and Sampling-
Based Proposal, we trained the SIRC-UNet again without
these components. The results are summarized in TABLE
III. In addition to assessing peak recognition and detection

capabilities, we also tested inference time of SIRC-UNet,
particularly for its application in the real-time tracking. The
model has a rapid processing speed of 15 ms per signal, while
the traditional method requires 1.5 hours for accessing window
information [24].

IV. DISCUSSION

For peak detection, the lack of precision in traditional
method can be attributed to several factors. Primarily, the bone
peak might be obscured by a shift of the peak induced by
movements or noise within the signal. In addition, bone peaks
may not always have regular shapes for easy detection. Relying
only on identifying the highest peaks, without considering
peak profiles or the possibility of secondary echos, can lead
to inaccuracies.

In SIRC-UNet, for the segment of Femur Epicondyle,
Tibia Epicondyle, and Mid Tibia, the precision for over 75%
bone peaks does not exceed 1mm, achieving sub-millimeter
precision. Even in more challenging areas like the ankle
with more curvatures, where bone peak localization is more
difficult compared to other bony surfaces with less curvatures,
most bone peaks (from Q2 to Q3) meet this precision. The
precision of 50% peaks (red line) in all areas approaches
zero, demonstrating the exceptional precision. The accuracy
can reach sub-millimeter for different segments of the limb.
The extended tails above Q3 of the boxplot, representing shifts
from Q3 to 1.5 times of the interquartile range, are attributed
to occasional processing noise or irrelevant echoes that mimic
bone peak profiles. However, from a broader perspective,
SIRC-UNet significantly enhances precision over traditional
methods, consistently achieving sub-millimeter accuracy in
bone peak detection.

Another advantage of SIRC-UNet is that, in each segment
of the lower limb, SIRC-UNet is trained on the dataset of
all channels. These channels have different peak locations,
strengths, and profiles as shown in TABLE I. Despite the
advantage of the varied prior knowledge in window size and
width, our SIRC-UNet model still performs significantly better
than the traditional method. This high level of precision could
be attributed to the accurate recognition of the peak profile
across different channels. This suggests that the proposed
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Fig. 7. Boxplot from TABLE II. The traditional method is represented as light blue boxes, while SIRC-UNet is represented as dark blue boxes. The
red dashed line refers to the 1 mm precision. For the traditional method, the boxes correspond to the 12 channels. For SIRC-UNet, groups 1-4 refer
to the combined channels data in this segment.

method distinguishes the unique bone peak from irregular
noise or interference from other soft tissue echo peaks.

For peak recognition, the traditional method performs well.
This is because the traditional method can always find a signal
spike in the specified region without knowing the bone peak
profile. The peak detection from signal processing field can
always give a prediction, no matter whether this is the bone
peak. Therefore, the relative significance of peak recognition
is considered minimal compared to that of the SIRC-UNet.

In the SIRC-UNet result, the performance can achieve
around 90% precision to distinguish bone peaks from irrel-
evant peaks in TABLE II. Several factors attribute to the 10%
errors. Firstly, the presence of peaks resulting from processing
noise or other soft tissues with similar profiles can interfere
with the accurate recognition. In addition, attenuation of bone
peaks or their overlap with echoes from irrelevant tissues can
complicate the recognition process. These factors often lead
to a more irregular peak shape, diverging from the regular
features typically found in the training dataset. This increased
variability poses a challenge for the deep learning model,
especially in the absence of fixed parameters such as window
size and width, which are used in the traditional approach.

In TABLE III to compare the variants of SIRC-UNet,
the average improvement of dice loss (DL) and Sampling-
based Proposal (SBP) for all channels is 13.1%. This is a
considerable improvement that underscores the effectiveness
of dice loss and sampling-based proposal mechanism.

For the inference time, the speed of 15 ms per signal means
that our method can process more than 60 signals per second
during real-time data streaming, without the need for addi-
tional parameters or pauses. This is due to the architecture that
includes fewer 1D convolution kernels and shallower layers
compared to the traditional 2D UNet, and a simplified argmax
operation in the SBP mechanism. Alongside precision, speed
is another key advantage of SIRC-UNet for bone tracking
applications.

Based on the analysis, unlike traditional methods that heav-

ily rely on the prior knowledge to achieve millimeter-level
precision, our method operates without the need for predefined
parameters to obtain sub-millimeter precision in peak detection
and recognition. This capability makes it particularly useful
for real-time bone tracking. The implementation of Sampling-
Based Proposal enhances model’s training robustness and
performance by focusing on bone peak’s nearby region. And
the integration of dice loss optimizes the segmentation result
by simultaneously considering both precision and recall rates.

Contrasting with the traditional method, our SIRC-UNet
eliminates the need for expert knowledge and adapts seam-
lessly to varying peak profiles across different segments of
the lower limb without any change in network structure. Its
ability to infer in real time makes it a valuable tool for
integration into medical robotics, such as in orthopedic surgery
[31] or wearable exoskeletons [32] to analyze the kinematics
of human movement. The enhanced precision and automation
of bone measurement brought about by SIRC-UNet increases
the accuracy of bone registration. This improvement makes the
use of A-mode ultrasound in medical applications, particularly
in tracking tasks, more feasible and efficient.

V. CONCLUSION

In this study, we introduced SIRC-UNet, a novel deep
learning-based method designed to recognize and detect bone
peaks in raw 1D A-mode ultrasound signals. This detec-
tion is crucial for measuring bone position in real-time and
facilitates high-precision bone tracking tasks. Thanks to its
sub-millimeter precision and efficient network structure, our
method excels in performing bone tracking with high accuracy
and in real-time. These capabilities demonstrate SIRC-UNet’s
significant potential for widespread application in various
medical tasks, particularly in enhancing the utility of A-mode
ultrasound.

Chapter 3 IMPROVING BONE TRACKING PRECISION USING SIRC-UNET 23



REFERENCES

[1] B. Meikle, R. M. Kimble, and Z. Tyack, “Ultrasound measurements
of pathological and physiological skin thickness: A scoping review
protocol,” BMJ open, vol. 12, no. 1, p. e056720, 2022.

[2] D. R. Wagner, M. Teramoto, T. Judd, J. Gordon, C. McPherson,
and A. Robison, “Comparison of a-mode and b-mode ultrasound for
measurement of subcutaneous fat,” Ultrasound in medicine & biology,
vol. 46, no. 4, pp. 944–951, 2020.

[3] L. Guo, Z. Lu, L. Yao, and S. Cai, “A gesture recognition strategy based
on a-mode ultrasound for identifying known and unknown gestures,”
IEEE Sensors Journal, vol. 22, no. 11, pp. 10 730–10 739, 2022.

[4] P. Hauff, M. Reinhardt, and S. Foster, “Ultrasound basics,” Molecular
Imaging I, pp. 91–107, 2008.

[5] K. Niu, T. Anijs, V. Sluiter, J. Homminga, A. Sprengers, M. A. Marra,
and N. Verdonschot, “In situ comparison of a-mode ultrasound tracking
system and skin-mounted markers for measuring kinematics of the lower
extremity,” Journal of biomechanics, vol. 72, pp. 134–143, 2018.

[6] S. Feng, Q.-T.-K. Shea, K.-Y. Ng, C.-N. Tang, E. Kwong, and Y. Zheng,
“Automatic hyoid bone tracking in real-time ultrasound swallowing
videos using deep learning based and correlation filter based trackers,”
Sensors, vol. 21, no. 11, p. 3712, 2021.

[7] A. Cappozzo, F. Catani, U. Della Croce, and A. Leardini, “Position
and orientation in space of bones during movement: anatomical frame
definition and determination,” Clinical biomechanics, vol. 10, no. 4, pp.
171–178, 1995.

[8] S. P. Rana, M. Dey, M. Ghavami, and S. Dudley, “Markerless gait
classification employing 3d ir-uwb physiological motion sensing,” IEEE
Sensors Journal, vol. 22, no. 7, pp. 6931–6941, 2022.

[9] M. Akbarshahi, A. G. Schache, J. W. Fernandez, R. Baker, S. Banks,
and M. G. Pandy, “Non-invasive assessment of soft-tissue artifact and
its effect on knee joint kinematics during functional activity,” Journal
of biomechanics, vol. 43, no. 7, pp. 1292–1301, 2010.

[10] W. Schallig, G. J. Streekstra, C. M. Hulshof, R. P. Kleipool, J. G. Dobbe,
M. Maas, J. Harlaar, M. M. van der Krogt, and J. C. van den Noort,
“The influence of soft tissue artifacts on multi-segment foot kinematics,”
Journal of Biomechanics, vol. 120, p. 110359, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0021929021001391

[11] W. Anderst, R. Zauel, J. Bishop, E. Demps, and S. Tashman, “Vali-
dation of three-dimensional model-based tibio-femoral tracking during
running,” Medical engineering & physics, vol. 31, no. 1, pp. 10–16,
2009.

[12] J. Bingham and G. Li, “An optimized image matching method for
determining in-vivo tka kinematics with a dual-orthogonal fluoroscopic
imaging system,” 2006.

[13] J. E. Giphart, C. A. Zirker, C. A. Myers, W. W. Pennington, and R. F.
LaPrade, “Accuracy of a contour-based biplane fluoroscopy technique
for tracking knee joint kinematics of different speeds,” Journal of
biomechanics, vol. 45, no. 16, pp. 2935–2938, 2012.

[14] S. Banks and P. Flood, “Jointtrack auto: An open-source programme
for automatic measurement of 3d implant kinematics from single-or bi-
plane radiographic images,” in Orthopaedic Proceedings, vol. 98, no.
SUPP 1. Bone & Joint, 2016, pp. 38–38.

[15] G. Li, S. K. Van de Velde, and J. T. Bingham, “Validation of a non-
invasive fluoroscopic imaging technique for the measurement of dynamic
knee joint motion,” Journal of biomechanics, vol. 41, no. 7, pp. 1616–
1622, 2008.

[16] S. Guan, H. A. Gray, F. Keynejad, and M. G. Pandy, “Mobile biplane
x-ray imaging system for measuring 3d dynamic joint motion during
overground gait,” IEEE transactions on medical imaging, vol. 35, no. 1,
pp. 326–336, 2015.

[17] M. Kozanek, A. Hosseini, F. Liu, S. K. Van de Velde, T. J. Gill,
H. E. Rubash, and G. Li, “Tibiofemoral kinematics and condylar motion
during the stance phase of gait,” Journal of biomechanics, vol. 42, no. 12,
pp. 1877–1884, 2009.

[18] M. A. Masum, M. Pickering, A. Lambert, J. Scarvell, and P. Smith,
“Accuracy assessment of tri-plane b-mode ultrasound for non-invasive
3d kinematic analysis of knee joints,” Biomedical engineering online,
vol. 13, no. 1, pp. 1–16, 2014.

[19] W. A. Hamidzada and E. P. Osuobeni, “Agreement between a-mode
and b-mode ultrasonography in the measurement of ocular distances,”
Veterinary Radiology & Ultrasound, vol. 40, no. 5, pp. 502–507, 1999.

[20] G. Barsotti, S. Citi, M. Brovelli, E. Mussi, E. Luchetti, F. Carlucci,
and M. Sgorbini, “Equine ocular ultrasonography: Evaluation of some
biometric measurements,” Ippologia, vol. 21, pp. 39–43, 09 2010.

[21] K. Niu, J. Homminga, V. Sluiter, A. Sprengers, and N. Verdonschot,
“Measuring relative positions and orientations of the tibia with respect
to the femur using one-channel 3d-tracked a-mode ultrasound tracking
system: A cadaveric study,” Medical engineering & physics, pp. 61–68,
2018.

[22] A. K. Sahani, J. Joseph, and M. Sivaprakasam, “Automatic measurement
of lumen diameter of carotid artery in a-mode ultrasound,” in 2013 35th
Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC). IEEE, 2013, pp. 3873–3876.

[23] A. Ekizos, F. Papatzika, G. Charcharis, S. Bohm, F. Mersmann, and
A. Arampatzis, “Ultrasound does not provide reliable results for the
measurement of the patellar tendon cross sectional area,” Journal of
Electromyography and Kinesiology, vol. 23, no. 6, pp. 1278–1282, 2013.

[24] K. Niu, V. Sluiter, J. Homminga, A. Sprengers, and N. Verdonschot,
“A novel ultrasound-based lower extremity motion tracking system,”
Intelligent Orthopaedics: Artificial Intelligence and Smart Image-guided
Technology for Orthopaedics, pp. 131–142, 2018.

[25] V. Moskalenko, N. Zolotykh, and G. Osipov, “Deep learning for ecg
segmentation,” in Advances in Neural Computation, Machine Learning,
and Cognitive Research III: Selected Papers from the XXI International
Conference on Neuroinformatics. Springer, 2020, pp. 246–254.

[26] K. Niu, J. Homminga, V. I. Sluiter, A. Sprengers, and N. Verdonschot,
“Feasibility of a-mode ultrasound based intraoperative registration in
computer-aided orthopedic surgery: A simulation and experimental
study,” Plos One, vol. 13, no. 6, p. e0199136, 2018.

[27] W. Schroeder, K. Martin, and B. Lorensen, The Visualization Toolkit
(4th ed.). Kitware, 2006.

[28] O. Oktay, J. Schlemper, L. L. Folgoc, M. Lee, M. Heinrich, K. Misawa,
K. Mori, S. McDonagh, N. Y. Hammerla, B. Kainz, et al., “Atten-
tion u-net: Learning where to look for the pancreas,” arXiv preprint
arXiv:1804.03999, 2018.

[29] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2014, pp. 580–587.

[30] F. Milletari, N. Navab, and S.-A. Ahmadi, “V-net: Fully convolutional
neural networks for volumetric medical image segmentation,” in 2016
fourth international conference on 3D vision (3DV). IEEE, 2016, pp.
565–571.

[31] C. Li, Z. Zhang, G. Wang, C. Rong, W. Zhu, X. Lu, Y. Liu, and
H. Zhang, “Accuracies of bone resection, implant position, and limb
alignment in robotic-arm-assisted total knee arthroplasty: a prospective
single-centre study,” Journal of Orthopaedic Surgery and Research,
vol. 17, no. 1, p. 61, 2022.

[32] T. B. Meier, N. A. Goldfarb, C. J. Nycz, and G. S. Fischer, “Evaluating
knee exoskeleton design based on movement with respect to underlying
bone structure using mri,” IEEE Transactions on Medical Robotics and
Bionics, 2023.

24 Chapter 3 IMPROVING BONE TRACKING PRECISION USING SIRC-UNET



Chapter 4 ANATOMICAL REGION PERCEPTION BONE TRACKING METHODS 25

4 Anatomical Region Perception Bone Tracking Methods
Building on the previous chapters, the third chapter explores a simplified and efficient deep learning
structure for the real-time bone tracking method that have accurate anatomical region perception.
This approach utilized the end-to-end cascaded U-Nets to effectively find the bone peaks and classify
anatomical regions under the bone dynamic motions. The high accuracy to identify knee joint areas
and measure the bone demonstrate the improvement over the traditional methods and methods in
previous chapters. In the end of this chapter, the good and worse recognition cases have been analyzed
to explore the source of prediction errors.

Figure 3: Graphical Abstraction of the Chapter 4



Anatomical Region Perception and Real-time Bone Tracking Methods
by Dynamically Decoding A-Mode Ultrasound Signals

Bangyu Lan1, Stefano Stramigioli1 and Kenan Niu1

Abstract— Accurate bone tracking is crucial for kinematic
analysis in orthopedic surgery and prosthetic robotics. Tra-
ditional methods, such as skin markers, are subject to soft
tissue artifacts, and the bone pins used in surgery introduce the
risk of additional trauma and infection. For electromyography
(EMG), its inability to directly measure joint angles requires
complex algorithms for kinematic estimation. To address these
issues, A-mode ultrasound-based tracking has been proposed
as a non-invasive and safe alternative. However, this approach
suffers from limited accuracy in peak detection when processing
received ultrasound signals. To build a precise and real-
time bone tracking approach, this paper introduces a deep
learning-based anatomical region perception tracking method
for A-mode ultrasound signals. Simultaneously, it is capable
of identifying the corresponding anatomical region to which
the A-mode ultrasound is attached. This model contains the
fully connection between all encoding and decoding layers of
the cascaded U-Nets to decode only the signal region that is
most likely to have the bone peak, thus pinpointing the exact
location of the peak and classifying the anatomical region
of the signal. The experiment showed a 97% accuracy in
the classification of the anatomical regions and a precision
of around 0.5±1 mm under dynamic tracking conditions for
various anatomical areas surrounding the knee joint. This
method shows great potential beyond the traditional method,
in terms of the accuracy achieved and the perception of the
anatomical region where the ultrasound has been attached as
an additional functionality.

I. INTRODUCTION

Bone tracking technology is essential for the kinematic
analysis of the human body. The highly precise tracking pro-
duces accurate kinematics data, vital for surgical procedures
[1], prosthetic robotics [2], and wearable exoskeletons [3].
Typically, the gold standard of tracking is achieved by using
bone pins with optical markers [4], but it introduces invasive
procedures and infection risks to subjects. Another method
is electromyography (EMG)-based techniques [5], [6], [7],
[8], but indirect measurement based on muscle activation
patterns requires complex algorithms to analyze kinematics.
In this context, a more accurate and convenient approach is
preferable to obtain the knee kinematics in a non-invasive
manner.

Recently, an A-mode ultrasound (US) based tracking
method has been introduced as a solution [9]. Compared
to B-mode US, A-mode US can perform bone tracking in
real-time, without the receiving and processing time of 2D
images, and the need to analyze medical images by experts.
Compared with other tracking techniques, A-mode US is
safe, noninvasive, and cost-effective. However, its accuracy

1Robotics and Mechatronics, University of Twente, Enschede, AE, The
Netherlands

Fig. 1. Steps to build our method: A cadaver experiment to get the dataset
and annotate the bone peak location. Our network is trained by the dataset
and infers the actual bone depth and anatomical region.

and robustness are compromised due to the reliance on
traditional peak detection to analyze one-dimensional raw
US signals. The automatic peak detection algorithm from
traditional signal processing theory falls short in extracting
comprehensive information from the raw A-mode ultrasound
signals.

In related research fields, deep learning has been employed
for signal peak recognition. For example, in the diagnosis
of heart disease, a U-Net framework was developed to
segment and identify meaningful peaks in raw EEG signals
[10]. However, the A-mode US signal presents a unique
challenge: the meaningful bone peaks are actually sparse and
ambiguous due to acoustic strength attenuation or the unclear
interface between the soft tissues (e.g. tendon and muscles)
and the bony surface. For this reason, to our knowledge,
few studies have reported using deep learning for A-mode
ultrasound diagnosis in knee kinematics tracking or real-time
bone tracking. A novel method that considers both the local
features (sparse bone peak) and the general features (entire
ultrasound echo signal) of the A-mode US signal is needed
to address the challenge.

In this study, we focused on tracking the knee joint, a
challenging area for traditional tracking methods, especially
around the femur epicondyle and the tibia epicondyle, where
curved skin and bone surfaces are associated. Around the
knee joint, curvatures of the skin and bone surfaces lead
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to challenges of distance measurements and inaccuracies.
The powerful capability of deep learning to extract abstract
features can probably enhance the precision of peak recog-
nition in this area. This is because bone peaks, despite their
subtle and complex characteristics in geometry, may share
underlying similar features that deep learning algorithms can
identify and analyze.

Specifically, we employed fully connected cascaded U-
Nets with the interconnections determined by the proposed
Sampling-based Proposal (SBP), enhancing efficiency and
accuracy. Furthermore, an anatomical region classification
network in the first U-Net bottleneck layer facilitated the
extraction of comprehensive signal knowledge, enabling
anatomical region perception. In general, this approach not
only achieved high precision in tracking knee joint movement
but also extracted anatomical knowledge from the US signal
simultaneously. The perceived anatomical region is espe-
cially useful after tracking the location of the bone. To have a
complete bone registration, accurate predefined landmarks on
the bones are required for the correct alignment between 3D
scans of bony surface and US transducer locations[4], [11].
The anatomical region detected by our method can provide
position calibration for the tracking robot.

In summary, our method simultaneously identifies anatom-
ical regions and performs real-time tracking of the bony
surface. It shows great potential for usage in prosthetic robot
control and bone or tissue tracking.

II. METHOD

A. Motion Tracking System
Our motion tracking method began with collecting the

knee joint motion dataset from a cadaver specimen [12].
This dataset included the positions of optical markers from
bone pins and US holders. The optical markers transformed
the actual 3D positions of the US transducers (frame Ψ1)
and bone pins (frame Ψ2) into the experimental coordinate
frame Ψ3. After rendering their 3D positions relative to the
bony surface in the same coordinate frame, the intersections
between the bony surface and the directions of the US
waveform could be found. The depth of bone under the skin,
denoted d, was obtained by calculating the distance between
the intersections and the origin of the ultrasound transducers
[13]. For each transducer, the corresponding depth distance
corresponded to the location of a specific bone peak in the
A-mode US signal. This conversion from depth distance to
index of bone peak (idxpeak) was listed in Equation (1),
where v = 1540m/s (the speed of US in soft tissues) and
fs = 40× 106Hz (the US sampling rate). The dunit is the
actual length of one unit in the US signal. All bone peak
locations in the signals were annotated as the dataset labels
to train our fully connected cascaded U-Nets. During testing,
the network detected the bone peak position in each signal,
which was later converted to the actual depth of the bone for
evaluation using the calculated ground truth distance.

idxpeak =
d

dunit
=

d(
2× v

fs
×1000

) (1)

B. Overall Structure of the Network

Our method was designed to perceive the anatomical
region and perform bone tracking with high accuracy. To
this end, a novel structure of fully connected cascaded U-
Nets was proposed, which is depicted in Fig. 2. The input
of Coarse U-Net was a 1D signal. The output features of
the Coarse U-Net bottleneck layer were used to classify
the signal channel. The output features from all decoder
layers of the Coarse U-Net were linked to the encoder of the
Refined U-Net through the Sampling-based Proposal. This
strategy pinpointed the dynamic region that was most likely
to contain bone peaks. The Refined U-Net output yielded a
more precise peak detection (existing as a segment form).
The combination of two segments ultimately determined the
existence and location of the bone peak.

C. Details of the Structure

1) Cascaded U-Nets: Inspired by [14], our cascaded U-
Nets structure was designed to utilize the underlying hierar-
chical structure within the US signal. The two U-Nets shared
a similar structure: each comprised an encoder and a decoder
with five layers of dual 1D convolutions. The number of
kernels for each convolution was indicated next to the blue
boxes in Fig. 2. In the first four layers, the encoder’s output
was filtered by the feature from the deeper layer through
the 1D feature attention block [15] before proceeding to the
decoder. This filtering suppressed irrelevant features (peaks
resulting from other tissues or noise) and highlighted the
salient bone peak-related features. For the Refined U-Net, the
encoder’s input at each layer was a concatenation between
the outputs of Region Cropping and the MaxPooling. The
advantage of cascaded U-Nets instead of only one U-Net
was the augmented signal scale, which helps to improve
the method’s perceptual resolution and improve the detection
accuracy.

2) Sampling-based Proposal: To determine the region
that is most likely to have the bone peak, a Sampling-
based Proposal (SBP) inspired by [16] was established
between the layers of the coarse U-Net encoder and the
refined U-Net encoder. The steps are as follows: Initially,
the Coarse U-Net output was converted into the probability
of bone peak (ppeak

i at the ith location) using SoftMax,
serving as a preliminary guess of the location of the bone
peak. Subsequently, a candidate region (a sequence of in-
dexes {idxstart , idxstart+1, ..., idxend}) was identified around
the point of highest probability, the size being three times
the width of the final sampled region. Within this candidate
area, a Gaussian distribution (GaussianDist(mean,std)) was
generated for each probability point. The cumulative effect
of all these Gaussian distributions formed the final sam-
pling distributionSamplingDist, which is found in Equation
(2). The final signal region was then sampled using this
distribution as the input of the Refined U-Net. Compared
to [16], the region of the segment sampled in SBP was
also used to crop the features of each output layer of the
Coarse U-Net decoder. Note that before cropping, the region
was down-sampled first to match the feature resolution in
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Fig. 2. Our network structure had two U-Nets with different perception scales for bone peaks detection and input signal classification. The input was a
1D ultrasound signal. The outputs were the signal classification results and the prediction of the peak location, which was a segment after thresholding the
predicted probability sequence. The result Two U-Nets were connected by Sampling-based Proposal.

the corresponding layer. The outputs of Region Cropping
were directly concatenated with the inputs of each layer
in the Refined U-Net. Overall, this strategy captured only
the essential regions and increased the resolution. Compared
to the normal network, this probabilistic approach offered
a better perception of the dynamic peak region, facilitating
further investigation by the following network.

SamplingDist =
end

∑
i=start

ppeak
i ∗GaussianDist(idxi,1) (2)

3) Classification Network: The classification network had
three fully connected layers to reduce the dimension. The
number of neurons in each layer was specified under the
gray rectangle (Fig. 2), where ’x’ denoted the number of
categories (3 for the femur and 5 for the tibia). LeakyReLU,
with a negative slope of 0.1, was used as the activation
function between layers. The final classification result was
determined by the last layer with a Softmax function. The
advantage of linkage between the classification network and
the bottleneck layer was that the Coarse U-Net encoder had
the capacity to capture the entire signal. This meant that the
encoded features from the bottleneck contain comprehensive
information, not just bone peaks related but also various soft
tissue characteristics, which are crucial for anatomical area
identification.

4) Network Output: The network generated two outputs,
which are represented as geometric symbols on the light
blue background in Fig. 2. The upper right light blue part
pinpointed the location of the bone peak, using both coarse
and refined segmentation results from two U-Nets. This
segmentation was obtained by applying a threshold to the
probability of bone peak. The rule for peak determination
was based on the priorities of two segmentations: the Coarse
segmentation confirmed the existence of a peak, while the
Refined segmentation ascertained its precise location. There-
fore, a bone peak was considered to exist only if it was
indicated by the Coarse U-Net output. Once a bone peak
was confirmed to exist, the Refined segmentation was used

to determine the exact position. Regarding the bottom-middle
light blue box, it gave the signal classification by Argmax on
the output of the classification network. This was illustrated
in Equation (3), where n is the total number of channels, pch

i
is the probability of the ith channel. Each channel was corre-
lated with the anatomical regions beneath the corresponding
US transducer. The anatomical region was characterized
by unique subcutaneous tissues, creating distinctive signal
characteristics that are useful for classification.

Rx← idxch = argmax(pch
1 , pch

2 , ..., pch
n ) (3)

D. Training Strategy and Post-Processing

To train the network for accurate segmentation, dice loss
and cross-entropy loss were used for both the Coarse U-
Net ldice, lce and Refined U-Net l′dice, l′ce. Dice loss [17]
can mitigate the problem of sparse foregrounds. This was
crucial as over 6760-unit signal length, the peak region
spanned merely 10 units, a dimension easily overlooked
when relying solely on cross-entropy loss. Equation (4)
detailed the dice loss formula. Cross-entropy loss was used
as a binary classification for the network to identify the
foreground (peak region) or background at each unit. For
classification, the training loss lcls was also the cross-entropy
loss. The final training loss was in Equation (5). The network
was trained by RMSprop optimization [18] with a learning
rate of 1e-5, a batch size of 10 [10] and a duration of 50
epoches.

DiceLoss(DL) = 1− 2×∑n
i=0(ppred

i ∗ ptrue
i )+ ε

∑n
i=0 ppred

i +∑n
i=0 ptrue

i + ε
(4)

loss = ldice + lce + l′dice + l′ce + lcls (5)

To construct the training dataset, two distinct movements
of the knee joint were collected. They were merged and
segmented into 2033 samples for all transducer channels.
Within the femur epicondyle channels No. 10 to No. 15, only
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TABLE I
PEAK DETECTION ACCURACY AND PROPORTION OF THE

SUB-MILLIMETER BIAS FOR EACH CHANNEL. THE UNIT IS MILLIMETER.

Area Channel
(Region)

%
CLS Mean STD % sub-

mm RMSE

Femur
Epi.

11 (Rα )
97.04%

0.434 0.843 84.7% 0.945
12 (Rβ ) 0.453 1.201 89.7% 1.279
15 (Rγ ) 0.551 1.322 84.2% 1.428

Tibia
Epi.

16 (Rδ )

97.48%

0.582 1.205 87.8% 1.336
17 (Rε ) 0.604 0.750 87.1% 0.961
18 (Rζ ) 0.666 0.852 77.7% 1.079
19 (Rη ) 0.312 0.662 89.7% 0.730
20 (Rθ ) 0.683 0.959 77.9% 1.175

channels No. 11, No. 12, and No. 15 exhibited discernible
bone peaks; the others were excluded. The signals from the
viable channels were truncated if the strengths exceeded
5000. These truncated signals were augmented tenfold by
shifting the units on the x-axis. Subsequently, the dataset
was divided into training and testing parts in an 8:2 ratio.
An identical process was also applied to the tibia epicondyle
channels. We shuffled US signals from all channels in the
same epicondyle for training and testing, as we assumed that
the bone peak in the same area (femur or tibia) exhibited
similar profiles.

During post-processing, Equation (6) was used to convert
the peak location to the actual depth of the bone. We also
verified the anatomical region of the classified channel.

d = dpeak = idxpeak×dunit (6)

E. Evaluation

To demonstrate the improvement in accuracy, we intro-
duced the traditional method in [12] for comparative analysis.
The conventional method of detecting bone peaks involves
using expert knowledge to pinpoint the general vicinity of the
peak. Within this localized area, a classical peak detection
was used to identify the highest peak as the bone peak.

To evaluate our approach, we first collected the bias
distance between the positions of the predicted peaks (the
peak position was regarded as the middle position of the
segmentation) and the ground truth peaks. Then the mean
and standard deviation of bias were calculated. Outliers that
were much divergent from most biases were analyzed by
examining the corresponding 3D position of the knee joint
and the US waveform, which is shown in Fig. 4.

We also recorded the network inference time to determine
the speed of our method.

III. RESULT

TABLE I is the quantitative results, where CLS is the
classification accuracy, STD is the standard deviation, Epi.
refers to Epicondyle. Mean, STD, and RMSE are the statistic
results of the bias distance. It showed that our method
achieved an approximate classification accuracy 97% in
both the femur and the tibia epicondyles. For the bias
distance, the accuracy was approximately 0.5±1 mm, with
the RMSE at around 1.1 mm. In contrast, the traditional

method, referenced in [12], showed the best accuracy of only
2.835± 1.893 mm. To have a visual overview of the bias,
the bias histogram was plotted for all channels in Fig. 3.
A single continuous movement sequence was used for the
analysis to ensure consistency. The proportion of samples
as the submillimeter accuracy is between 80% and 90% for
most channels.

For an in-depth examination of the outliers, Fig. 4 presents
two situations that contain both a large and a small bias
in channel 12. In the top row, an outlier was carefully
analyzed in which the prediction deviated by 5.87mm from
the ground truth location. The corresponding 3D position
and waveform at this moment were also presented. Similarly,
plots representing low-error scenarios are provided in the
bottom row, offering a balanced view to investigate the
method’s performance.

Except for these experiments, the network inference speed
is recorded, which is 15 ms per batch using the normal laptop
(Intel i7-10875H CPU, GeForce RTX 2080 Super Max-Q
designed GPU, and 32GB RAM, 2TB SATA SSD). This
means that our method has a rapid peak detection speed of
15 ms per signal.

IV. DISCUSSION

In this paper, we proposed a deep learning based method
that utilized A-mode ultrasound (US) for measuring bone
depth and identifying the anatomical regions during bone
tracking. The network could process data in 15ms per signal,
which meant that our method is capable of processing
ultrasound signal in real-time while obtaining the anatomical
regions as extra information.

Our method has been improved upon the CasAtt-UNet
[16] by fully integrating cascaded dual U-Nets in each layer
and modifying Sampling-based Proposal (SBP) structure for
an end-to-end training. This enhancement streamlined the
learning process and simplified training. Additionally, the
integration of a classification network offered deeper insights
into the 1D signal and validates the discriminating features
learned by the Coarse U-Net encoder. With the ability to
identify anatomical regions, our method offers an option for
position calibration, which is critical for precise landmark
registration during post-processing in bone tracking [19],
[20]. This feature is particularly beneficial in computer-
assisted and robotic-assisted orthopedic surgeries, such as
Total Knee Arthroplasty (TKA) [21], where accurate bone
tracking is vital for kinematic analysis and disease diagno-
sis. Furthermore, in applications like exoskeletons [22] and
Human-Robot Interaction [23], accurate position calibration
is essential to ensure correct location sensing, thus facilitat-
ing task completion.

In addition, our study had a limitation due to the use of a
single cadaver specimen. Inclusion of specimens with varied
human characteristics such as gender and age would enhance
the robustness of our results. To mitigate this limitation, we
gathered two datasets that were recorded at different postures
and times of the day. In data augmentation, we pre-processed
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Fig. 3. The histogram of bias between the predicted and the ground truth bone peaks for each channel. They are all in the same dataset, a continuous
movement sequence.

Fig. 4. Closer look at the large and small bias. The distribution of bias along the time (across the entire 1017 samples) is plotted on the left. The 3D
position of knee joint in the middle was the same moment of the specified bias. In the right waveform figure, the bias was visually showed.

these datasets by slicing and shuffling them to demonstrate
the validity and generalizability of our approach.

When looking at the result, the bias between the predicted
and ground truth peaks was approximately 0.5± 1 mm in
the TABLE I, indicating that our method achieved a sub-
millimeter accuracy for most cases, significantly surpassing
the accuracy of the traditional method of 2.835±1.893 mm,
as derived from [12]. In addition, there are slight variations
across channels, possibly due to the different characteristics
of the soft tissue surrounding the knee joint. However,
these variations also provided unique signal characteristics

beneficial for classification, resulting in a high accuracy rate
of 97%. This highlights the efficacy of our anatomical-aware
bone tracking approach, finely classifying anatomical regions
during bone peak detection.

To have a closer look at the large and small errors that
occurred in the femur epicondyle, we conducted a detailed
analysis of the scenarios in channel 12, with the findings
presented in Fig. 4. In the 3D position of the top row,
we observed that at the 457th moment, the right leg was
transitioning from extension to flexion. During this phase,
the labeled ground truth was situated in the green segment
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of the waveform. Probably the peak profile in the predicted
location resembling the actual bone peaks in the training
dataset, the network mistakenly identifies the bone peak. It
is important to note that there are several possible reasons
for the attenuated bone peaks: (1) the curvature of the skin
at that moment could lead to loss of skin contact with the
transducers, leading to incorrect ground truth calculation
and labeling, and (2) the specific posture of the specimen
(fixed on the surgical table) at that moment might cause an
unusual distribution of the soft tissues, attenuating the bone
peaks. However, these potential causes are required to be
investigated later. In contrast, the bottom row of this figure
illustrates a case of small error, where the leg was in an
extension position. In the vicinity of the waveform, the bone
peak has an apparent shape without other similar-strength
peaks presented nearby to interfere with peak recognition.
This makes it easier to accurately identify the bone peak in
the signal.

V. CONCLUSIONS
In this study, we introduced an anatomical region percep-

tion tracking method capable of performing real-time bone
tracking for knee kinematics measurement. This method sig-
nificantly exceeds traditional A-mode ultrasound techniques
in bone measurement accuracy. Additionally, it demonstrates
a high rate of anatomical classification accuracy, thereby
enabling precise identification of anatomical regions. Our
approach makes the A-mode ultrasound a safe and non-
invasive alternative which can be used not only in accurately
identifying the anatomical region from the signal, but also in
precisely tracking bone movements. Potentially, our approach
not only enhances the current capabilities of A-mode ultra-
sound but also paves the way for its future integration into
robotics and prosthetic systems, promising advancements
in accurate kinematics measurements that provide real-time
feedback for precise robot control.
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5 A Dual-Attention Framework to Decipher Muscle Dynamics
The final chapter transfer the focus from bone to muscle, as the distance between the skin and bone
actually reflect the contraction degree of muscle in a quantitative way. This chapter introduce a dif-
ferent deep learning framework based on hierarchical attentions that predicts the muscle thickness
deformations merely from sEMG (surface electromyography) data. By integrating the self-attention
and cross-attention mechanisms, this approach eliminates the need for the heavy and complex ul-
trasound imaging or magnetic resonance imaging (MRI), facilitating the real-time, wearable, and
portable daily monitoring of the muscle health. Combining with the muscle activation measurement
from the sEMG device itself, this technique shows great potential to bring clinical diagnostics or
rehabilitation evaluation to the user’s daily life.

Figure 4: Graphical Abstraction of the Chapter 5
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Abstract— Quantitatively deciphering the relationship
between muscle activation and thickness deformation is
essential for diagnosing muscle-related diseases and mon-
itoring muscle health (e.g., Facioscapulohumeral Dystro-
phy). Despite the potential of ultrasound (US) imaging and
sensing could measure the changes in muscle thickness
during movements, it remains challenging to make a fully
portable device, considering the wires and data collection.
On the other hand, surface electromyography (sEMG) is
capable of recording muscle bioelectronical signals and
measuring muscle activations, which offers a unique per-
spective to correlate with the underlying muscle thickness
changes. This paper introduced a deep learning-based
approach that leveraged sEMG signals to infer muscle
thickness deformation. Utilizing a hierarchical combina-
tion of self-attention and cross-attention mechanisms, this
method predicted muscle deformation directly from sEMG
data, eliminating the dependency on applying ultrasound
imaging techniques. Experimental results on six healthy
subjects indicated that our approach could accurately pre-
dict muscle thickness deformation with an average preci-
sion of 0.923±0.900 mm, showcasing substantial benefits
in measuring muscle thickness deformation only by sEMG
device. This technique facilitates real-time portable muscle
health monitoring by sEMG to provide not only bioelectroni-
cal signals but also biomechanical information. It indicates
the great potential of utilizing such a technique in clinical
diagnostics, sports science, and rehabilitation.

Index Terms— Ultrasound, Surface EMG, Muscle de-
formation, Muscle activation, Muscular dynamics, Dual-
Attention, Deep learning

I. INTRODUCTION

QUANTITATIVE relationship between muscle activation
and thickness deformation depicts muscular dynamics

and reveals muscle health status, which is prominent for
disease diagnosis. In Facioscapulohumeral Dystrophy (FSHD),
loss of muscle strength and deformation are due to the
fatty infiltration and fibrosis of the histopathological changes
[1]. Quantitatively measuring muscle thickness variations and

This paragraph of the first footnote will contain the date on which you
submitted your paper for review. It will also contain support information,
including sponsor and financial support acknowledgment. For example,
“This work was supported in part by the U.S. Department of Commerce
under Grant 123456.”

Bangyu Lan, Stefano Stramigioli and Kenan Niu are with the
Robotics and Mechatronics group, the Faculty of EEMCS in University
of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands. (e-mail:
bangyu@ieee.org, S.Stramigioli@ieee.org, and k.niu@utwente.nl)

tracking muscle activation is pivotal for understanding funda-
mental aspects of the disease and muscle mechanics [2]. It also
helps to diagnose and monitor muscle pathological conditions
in an early stage [3]. However, a portable and wearable
device is lacking, which could measure muscle activation and
thickness deformation simultaneously [4]. Thus, it fails to offer
a grand view of muscle status in a convenient and low-cost
way.

In traditional methods, ultrasound (US) images directly
visualize muscle thickness [5], while surface electromyog-
raphy (sEMG) device demonstrates the ability to capture
muscle activation patterns [6]. Interpreting the two sources to
summarize the muscle health status requires expert knowledge,
difficult for users to have a portable daily tracking tool [7]–[9].
Moreover, integrating the A-mode US transducers and sEMG
into a compact and wearable device remains challenging. The
alternatives solutions like magnetic resonance imaging (MRI)
are impractical for real-time and daily applications due to their
size, cost, and operational complexity [10]. Therefore, it is
hard to reach a wide spectrum of accessibility for users to
track and monitor normal muscle health status in daily life.

Aiming at extending the wider understanding of muscle
health status by a portable and convenient device, an al-
ternative solution is to infer muscle thickness deformation
quantitatively from the muscle activation pattern, derived by
sEMG signals. The sEMG device records the muscle activities
during muscle contraction and extension [11]. In repeated
motion periods, the muscle electrode signals show specific
patterns that can be quantitatively measured and analyzed [12].
Therefore, the patterns from the surface electromyography
signals strongly correlate with the mechanical behavior of
muscles [13], suggesting a viable pathway to infer muscle
thickness changes [14]. This capability, combined with the
portability and convenience of the sEMG device, makes it
a potentially promising alternative for continuous and daily
tracking of muscle thickness deformation (MTD).

To infer the MTD from sEMG signal, we introduce a
novel dual-attention based approach to quantitatively correlate
muscle activation and thickness deformation to decipher the
muscle dynamics. By utilizing both self-attention [15] and
cross-attention [16] mechanisms hierarchically, this framework
aims to precisely predict muscle contraction solely from the
sEMG data, thereby eliminating the requirement for the ultra-
sound imaging during muscle activity assessment, and enable
portable and real-time muscle health tracking.
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Fig. 1. The overview of the proposed system from data acquisition at the experiments to the network structure of the dual-attention model. The
experiment subjects were six persons having different Body Mass Index (BMI). They were required to perform forearm movements in several
motion patterns for sEMG and US signals recording. The sEMG device recorded muscle activation as the sole input of the dual-attention model,
while the US signals were preprocessed to recover the actual muscle thickness deformation as the model’s target. The dual-attention network
extracts periodic features and gives accurate muscle thickness deformation measurement.

TABLE I
EXPERIMENTS PARTICIPANTS INFORMATION (MTC: MUSCLE

THICKNESS CONTRACTION)

Subject Gender BMI MTC range
(mm)

MTC
distribution

(mm)
A Male 20,76 [1.94, 11.35] 6.45 ± 2.54
B Female 20.96 [3.07, 11.08] 6.33 ± 1.51
C Male 22,28 [1.36, 12.48] 7.09 ± 2.87
D Female 25,22 [2.06, 12.84] 6.12 ± 2.81
E Male 24.62 [3.26, 16.27] 9.82 ± 3.49
F Female 26.44 [2.05, 14.11] 7.46 ± 2.83

In our experiments, the A-mode ultrasound signals provided
the quantitative ground truth record of the muscle contraction,
and the sEMG signal worked as the sole caused signal that
sparks the muscle thickness deformation. A self-attention
structure is leveraged for each sEMG channel signal to ex-
tract muscle movement periodic patterns. A cross-attention
mechanism was built upon on the six channels features for
the considerable and more accurate thickness deformation
prediction. The experiments were performed on six subjects to
validate model’s universality, generalizability, and robustness.
The ablation study was performed to research the effects of
proposed losses and network structure designs on the method’s
performance.

To the best of our knowledge, few study inferred mus-
cle thickness deformation solely from sEMG signals. The
proposed method demonstrates the substantial potential to
enhance muscle contraction analysis and provide new insights
for how muscle health can be monitored in the clinical settings,
sports science, and rehabilitation. Further developments could
explore the integration of additional biometric data [17],

enhancing the model’s applicability and accuracy in the real-
world scenarios.

II. MATERIAL AND METHOD

In this section, the experiment to collect the representative
dataset and the dual-attention framework to predict the muscle
thickness deformation were described.

A. Overview of the system
The whole pipeline of the experiment and the prediction

model was shown in Fig. 1. Six participants having different
BMI indexes (see TABLE I) were invited to perform three
types of arm motions representing the daily activities. Each
motion was performed repeatedly to obtain different muscle
contraction levels measured by the A-mode US. Meanwhile,
the sEMG device collected muscle electrode signals from the
nearby muscle positions as the muscle activation patterns.
The sEMG and A-mode US devices in the experiment were
demonstrated in Fig. 2. The sEMG was a 3D-printed, eight
channels, and dry electrodes measurement device based on
the custom-developed amplifier Octopus [18]. Of the eight
channels of the Octopus, six channels were connected to
the biceps and triceps electrodes, while the other two were
used for measuring the average voltage and the ground level
voltage [19]. After negating the ground level voltage, the
six channels voltage were used together to record subjects’
biceps and triceps muscle electronics signals. The A-mode
ultrasound (US) used a ultrasonic testing device, OPBOX ver
2.1 (OPTEL Ultrasonic Technology, Wrocław, Poland). The
device was set to 100 MHz sampling frequency, 4 to 25 MHz
bandwidth analog filters, +30dB constant gain, and +24 dB
pre-amplifier to increase the raw signal strength. The x-axis
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Fig. 2. The setup and typical signals of the sEMG device and A-
mode ultrasound device. The sEMG device contained three electrodes
for biceps and three electrodes for triceps. In the recorded signals, the
channel 1 to 6 were used for network training. The ultrasound data
specified the bone location and indicated the movement of bone, which
reflected the muscle thickness deformation

(time-domain) of the US signal has been shifted to a personal-
related amount of time to focus only on the area that the
bone peaks most likely to appear. The recorded A-mode US
signals were compared with the B-mode US images to verify
the actual muscle contraction range, which was then used as
the prediction targets of the network. The sEMG signals, on
the other hand, worked as the input of the model.

The model to predict the muscle thickness deformation
apply a dual-attention structure (see bottom of Fig. 1), inspired
by the foundational principles of transformer architecture [20],
[21]. It contained attention mechanisms operated at different
hierarchical levels. The self-attention mechanism encoded six
channels of sEMG signals as separate modality features. Each
channel feature encoded local muscle contraction patterns. The
combination of all features encoded the entangled and corre-
lated biceps and triceps muscle contractions in the upper arm,
which was then decoded by the cross-attention mechanism to
predict the muscle thickness deformation more accurately.

B. Human-Related Muscle Contraction Experiment
To validate the universality and generalizability of the ap-

proach thoroughly, a representative dataset, including diverse
personal physical characteristics (e.g., BMI) and different
muscle movements, was collected. The details were illustrated
in TABLE I. Three male and three female participants with
different BMI and muscle thickness contraction (MTC) joined
the experiment. This experiment had been approved by Ethics
Committee Information & Computer Science of the University
of Twente. All participants had signed the consent forms.
Before the experiment setup, the A-mode US signals from
each subject had been checked with the B-mode US images
to locate the general range of bone peak positions in the
upper arm humerus among all visible peaks (Fig. 3). The
bone peak location reflects the muscle thickness between the

Fig. 3. The A-mode US bone peak verification using the B-mode
ultrasound. This verification was performed on the same position of
the A-mode ultrasound. The B-mode ultrasound visualized the relative
positions between bone surface and the skin, indicative of the muscle
thickness. This distance is the same as the bone peak location.

skin and bone [22], [23], indicative of the quantitative degree
of the muscle thickness deformation. Before performing arm
movements, each subject wear A-mode US and sEMG devices
on the upper arm with the help of the researchers (Fig. 4). The
measuring position of the A-mode US was above the elbow
on the inside of the right upper arm. This was because when
the forearm moved, the muscle contraction near the elbow
displayed large bone peak movement in the A-mode US, which
facilitated the easy measurement and the muscle movement
tracking. The sEMG device used to trace muscle activation was
fixed in the nearby middle of the upper arm to collect muscle
electrode signals from the right biceps and triceps brachii. As
the muscle activation and thickness deformation of the upper
arm was highly correlated, the sEMG signal could be used to
predict the muscle deformation on specific position.

After the preparation was finished, the subjects started to
perform three types of forearm motions. There are totally three
stages recorded in different daily time. The first two stages are
the same, while the last stage involved a 500 grams weight
carrying in the right hand. Each forearm motion is performed
repeatedly for five minutes. Each single motion period was five
seconds, except for the ten seconds of the motion C. They were
all performed by rotating the forearms around the touching
position of the elbow (see Fig. 5), where the motion A rotated
around the y-axis, the motion B around x-axis, and the motion
C rotated the forearm around the 135◦ between x-axis and z-
axis. The three motions were performed continuously, with
the order from motion A, B, to C. After one stage had been
finished, the volunteer was forced to take a rest for 5 to 30
minutes and prepare the next stage. In the end, both muscle
electrode signals (sEMG) and muscle thickness deformation
(US) were collected from all the three stages of the six people
at different daily time.

C. Ultrasound and sEMG signal processing
To have a proper setting for the training-effective dataset

collecting, the US signals were recorded at 30Hz, while sEMG
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Fig. 4. The experiment setups for six participants. The ultrasound probe
was attached above the elbow, while the sEMG device was attached on
the middle of the upper arm. The background had been removed for a
clear visualization.

signals were recorded at 1000Hz. They were synchronized
using the timestamps recorded at the same time. Each moment
of the US signal was visualized as a 2D plot (see Fig. 1), so
that the bone peak locations in the signals could be tracked.
The outliers had been removed from the tracking curves, which
continuously to be smoothed for the ground truth labels of the
muscle thickness deformation (MTD). The muscle thickness
contraction (MTC) was the largest range of muscle thickness
deformation (MTD) in a single motion period, which was
calculated by Equation (1). In each single motion period, MTC
equals to the distance between the largest muscle thickness
deformation (HMTD) and the smallest muscle thickness de-
formation (LMTD).

MTC = HMTD − LMTD (1)

After the muscle thickness deformation being obtained from
the US, the sEMG data began to be pre-processed. For each
single data-point of the recorded US signals, the surrounding
30 sEMG data-point were concatenated as the corresponding
synchronized muscle activation pattern. This aimed to keep as
much as raw sEMG signals to remain more useful information.
Then the strength of sEMG was increased 500 times to reach
the 0.1 unit magnitude. No further complex pre-processing
steps were done on the signals, as we believed that even tiny
features in the local frame of one period could be considered
for the more accurate prediction.

As the motion was performed repeatedly, some regular and
repeatable patterns can be visually noticeable from the raw
sEMG signals and the pre-processed MTD. Noticed that as
there was no requirement for the starting and end positions
of subjects’ forearms, they could freely moved forearms to
different positions in different motion periods. This created
the differences of MTD and MTC among each single motion
period. For each subject’s motion, the MTC range and distri-
bution (mean±standard deviation) was summarized on the last
two columns of TABLE I. Comparing the BMI and MTC, we
noticed that there was no linear relationship between the MTC
and BMI index, although higher BMI index prone to have a
higher MTC.

Fig. 5. The three arm motions performed by the subjects. Each motion
required forearm rotation around at the elbow. The motion A rotated
around the y-axis, motion B around the x-axis, while motion C draw a
large circle anti-clockwise in the air. After the hand touched the table,
the forearm returned to the original positions then repeatedly performed
the same motion again. Each single period of the motion A or B was
performed for five seconds, while the single period of motion C was
performed for ten seconds.

D. Dual-attention network structure

To extract periodic patterns from sEMG signals to ac-
curately decode muscle thickness deformation, a regression
model able to consider all bio-electronics signals from differ-
ent muscle positions was created. The overview of the dual-
attention model was in Fig. 6. Inspired by the transformer
structure, a self-attention mechanism was designed as a self-
adaptive signal encoder for each sEMG channel signal. The
detail was in the middle of the Fig. 6. The assumption was
that the raw sEMG signal could be regarded as a special
transformed pattern from the pure muscle contraction periods,
as it was recorded during the repeated motions. Inside a
single period motion, the muscle activation signal within a
small range was assume to have some recognizable patterns
corresponding to the muscle periodic tiny deformation, critical
for recognizing current period position. To capture the local
patterns for the accurate periodic position recognition, the
self-attention structure adjusts the original sEMG signals to
de-noise and de-transform for the motion period recovery,
which was achieved by the two-head attention mechanism.
This process produced the self-adaptive and periodic features,
which shared the same encoding backbone but with different
linear operations and output activation functions. The periodic
feature was the coarse prediction directly supervised by the
ground truth labels.

Based on all sEMG channels features, a cross-attention
mechanism was built upon (bottom pipeline of Fig. 6). Since
on the forearm all channels signals record the synergy of an
entangled muscle (biceps and triceps muscles) movement, each
self-attention structure was applied on a single channel as a
separate modality encoder. To prevent the situation when one
of channel signals contained purely electronic noise, the cross-
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Fig. 6. Overview of the proposed dual-attention network and sub-structures in details. Each sEMG signal channel connected with a self-adaptive
encoder (self-attention structure), the encoded periods and self-adaptive features worked as the Key (K), Queue (Q) and Value (V) respectively.
Based on the period features, the grand-view preceptor (cross-attention) weighted averaged all self-adaptive features to decode the final prediction.
This prediction was de-normalized to recover the actual muscle thickness deformation in millimeters. The bottom two pipelines showed the details
of self-attention and cross-attention structures. The input features of cross-attention module were the concatenation of all encoded features from
the self-attention structures. Noticed that for all keys, queues and values, they were produced from separated linear operations.

attention perceive all channel features to supplement potential
lacking information for a grand-view prediction. This helped
to decode the complete muscle contraction movement. To
decide the importance in each channel and pay more attention
to the specific ones, the periodic features worked as the K
(key) and Q (query) of the cross-attention input to guide the
attention. While the self-adaptive features, adjusted and de-
transformed from the sEMG raw signals, worked as the V
(values) to be filtered and decoded. The regression output
from the cross-attention was the final prediction of the muscle
thickness deformation. The training labels for the coarse and
final predictions were the same, but the learning targets were
different.

In general, this dual-attention structure predict the muscle
deformation by learning the correlations between the changing
patterns of sEMG signals and the muscle contraction. To

facilitate network’s training, the prediction target had been
normalized and recovered in the end based on the personal
MTC range.

E. Training and validation

To effectively train the network’s capability for accurate
periodic muscle deformation regression, the input and the
ground truth label were set as one period (5 seconds, 150
data-points). Within each period, the MSE loss was adopted
to minimize the errors of MTD prediction. The muscle con-
traction loss (Lossc) was proposed to minimize the muscle
thickness contraction, which was defined by Equation (5): In
each single motion period, the top 5 and bottom 5 muscle
thickness deformation values (Top5,MTD and Bottom5,MTD)
were selected. For each 5 values the averages were calculated
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TABLE II
GENERALIZATION ABILITY EVALUATION IN MTC ORDER, WITHOUT CARRYING 500 GRAMS (F: FULL LENGTH, P: SINGLE PERIOD)

SUBJECTS TESTING DOMAIN ADAPTATION
Train Test BMI MTC Distance(F, mm) Distance(P, mm) Percentage (%) Distance(F, mm) Distance(P, mm) Percentage (%)
BCEF AD 22.99 6.29 1.625 ± 1.456 2.771 ± 1.813 56.23 ± 25.06 0.810 ± 0.826 0.743 ± 0.740 13.22 ± 14.59
CDEF AB 20.86 6.39 1.998 ± 1.703 3.083 ± 1.861 55.52 ± 24.42 0.832 ± 0.859 0.806 ± 0.776 11.70 ± 10.82
ABEF CD 23.75 6.61 2.018 ± 1.557 1.880 ± 1.385 43.35 ± 41.38 0.927 ± 0.888 0.745 ± 0.646 14.00 ± 14.30
ADEF CB 21.62 6.71 2.060 ± 1.497 2.523 ± 1.335 53.40 ± 50.31 0.966 ± 0.983 0.824 ± 0.858 13.28 ± 15.94
BCDE AF 23.60 6.96 2.597 ± 2.086 4.165 ± 2.346 61.80 ± 26.78 1.082 ± 1.309 0.961 ± 1.070 13.96 ± 16.93
ABDE CF 24.36 7.28 2.319 ± 1.788 2.504 ± 1.903 46.63 ± 46.21 1.138 ± 1.342 0.946 ± 1.169 14.36 ± 19.82
ABCF ED 24.92 7.97 2.511 ± 1.934 3.594 ± 2.869 43.58 ± 22.62 1.270 ± 1.235 0.974 ± 0.809 15.19 ± 13.69
ACDF EB 22.79 8.08 2.724 ± 2.095 4.395 ± 2.746 52.47 ± 20.94 1.266 ± 1.227 1.124 ± 1.012 15.22 ± 16.42
ABCD EF 25.53 8.64 2.834 ± 1.979 4.719 ± 3.376 48.59 ± 22.91 1.508 ± 1.558 1.182 ± 1.017 15.36 ± 13.81

AVERAGE 23.38 7.21 2.298 ± 1.788 3.293 ± 2.182 51.29 ± 31.18 1.089 ± 1.136 0.923 ± 0.900 14.03 ± 15.15

TABLE III
GENERALIZATION ABILITY EVALUATION IN MTC ORDER, WITH CARRYING 500 GRAMS (F: FULL LENGTH, P: SINGLE PERIOD)

SUBJECTS TESTING DOMAIN ADAPTATION
Train Test BMI MTC Distance(F, mm) Distance(P) Percent Distance(F) Distance(P) Percent
BCEF AD 22.99 6.29 2.311 ± 1.859 3.264 ± 2.182 62.57 ± 37.55 0.878 ± 0.909 0.766 ± 0.813 13.19 ± 16.11
CDEF AB 20.86 6.39 2.039 ± 1.547 3.203 ± 2.039 56.37 ± 26.69 0.866 ± 0.884 0.836 ± 0.903 13.33 ± 15.01
ABEF CD 23.75 6.61 2.975 ± 2.162 3.014 ± 1.962 63.05 ± 56.67 1.125 ± 1.125 0.901 ± 0.913 15.44 ± 16.56
ADEF CB 21.62 6.71 2.352 ± 1.781 2.617 ± 1.733 52.65 ± 53.76 1.061 ± 1.069 0.874 ± 0.842 15.10 ± 20.71
BCDE AF 23.6 6.96 2.321 ± 1.775 3.467 ± 2.126 51.50 ± 25.65 1.227 ± 1.436 1.158 ± 1.265 16.87 ± 18.87
ABDE CF 24.36 7.28 2.579 ± 1.939 2.465 ± 1.636 42.53 ± 40.14 1.244 ± 1.365 1.000 ± 1.100 14.63 ± 19.40
ABCF ED 24.92 7.97 3.020 ± 2.434 2.979 ± 2.053 38.03 ± 25.68 1.151 ± 1.334 1.010 ± 1.054 13.56 ± 14.60
ACDF EB 22.79 8.08 3.093 ± 2.428 2.583 ± 1.603 32.86 ± 21.53 1.299 ± 1.333 1.077 ± 0.928 13.78 ± 12.11
ABCD EF 25.53 8.64 3.422 ± 2.605 5.451 ± 3.640 52.99 ± 23.03 1.519 ± 1.652 1.178 ± 1.098 14.21 ± 13.64

AVERAGE 23.38 7.21 2.679 ± 2.059 3.227 ± 2.108 50.28 ± 34.52 1.152 ± 1.234 0.978 ± 0.991 14.46 ± 16.33

to represent the largest MTD (HMTD) and smallest MTD
(LMTD). The two averages were subtracted to calculate the
muscle thickness contraction (MTC) in that period. The
average absolute difference of the ground truth MTC (MTCgt)
and the prediction MTC (MTCpred) over all periods was
defined as the muscle contraction loss. The effect of the
contraction loss was demonstrated in the ablation study.

HMTD = mean(Top5,MTD), (2)

LMTD = mean(Bottom5,MTD), (3)
MTC = HMTD − LMTD, (4)
Lossc = abs(MTCpred −MTCgt) (5)

To verify model’s generalizability to different people in
daily applications, the model was trained only on two pairs of
females and males and tested on the rest one pair of female and
male. As the model has not seen the rest two subjects before,
a domain adaptation method was directly applied on the rest
subjects: the well-trained model on the four subjects was
continually trained by the 20% (1 minute) of the rest subjects
using a smaller learning rate, and tested on the other 80%
(4 minutes) of the rest subjects’ data. This evaluated model’s
generalization and adaptation to a new person. In both the
two training stages, the network was trained for 100 epoches
using the RMSProps optimization in Pytorch framework, with
the initial learning rate 1e-4 in the main training and 1e-5 in
domain adaptation stage.

III. EXPERIMENTAL RESULTS

As different people have different MTC range due to the
individual variation in muscle tissue physiology, model’s direct
testing performance on the rest two subjects were bad, which
was illustrated in the ”TESTING” column of TABLE II.
Therefore, a followed domain adaptation process was applied.
The model’s performance after domain adaptation had been
summarized in the right ”DOMAIN ADAPTATION” column.
As the model’s prediction was a normalized result and needed
to be recovered to the actual distance, the accuracy of the
inferred final MTC was highly depended on personalized MTC
range. The models’ performance was compared with a descend
order of the MTC.

To evaluate model’s robustness when the movement remain
the same but with a greater arm strength, we evaluated model’s
performance using the same metrics but with subjects’ carry-
ing 500 grams weight in hand. The performance was shown in
another TABLE III. The comparison between TABLE II and
TABLE II directly demonstrated model’s robustness.

As different subjects had different MTC range, the pre-
diction accuracy should not only include the actual distance
(mm) but also the percentage accuracy (%) of the muscle
contraction. They were defined by the Equation (6) and
Equation (7) in a single period. The average accuracy for all
motion periods were shown under the columns Distance(P)
and Percentage(%). In addition, the prediction bias of muscle
thickness deformation for the full length motions (instead of
single period) had been calculated between the whole ground
truth sequence and whole prediction sequence, denoted as
Distance(F). This checked if the model tracked good on the
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Fig. 7. The MTD ground truth and prediction curves for the test subjects who have the smallest or the largest MTC ranges. In each experiment
group, the left figure showed the testing performance, while the right figure showed the performance after domain adaptation.

ground truth MTD.

AccMTC(mm) = abs(MTCpred −MTCGT ) (6)

AccMTC(%) =
abs(MTCpred −MTCGT )

MTCGT
(7)

Finally, the effects of contraction loss and the cross-attention
structure were evaluated on the ablation study.

IV. DISCUSSION

The TABLE II showed all experiment results after training
on different combinations of males and females from six
subjects. In each experiment, after training on the two pairs
of males and females, the model directly tested on another
pair of male and female that had never been seen before.
Although the initial prediction is bad, the model quickly
improve the performance merely using 20% of dataset. In
the domain adaptation results, from a grand-view perspective,
our approach achieved an average 1.089 ± 1.136 mm accu-
racy for all six subjects in a point-to-point muscle thickness
deformation (MTD) curves tracking accuracy. From a single
period contraction perspective, our approach could achieve the
average sub-millimeter accuracy 0.923 ± 0.900 mm among
the six subjects for the muscle thickness contraction (MTC)
prediction, which corresponded to 14.03± 15.15 % errors of
the ground truth MTC, which proved that this approach could

achieve millimeter-level precision in both MTD and MTC. In
the following sections, more analysis was done on the TABLE
II (without carrying a weight) to prove the generalizability,
robustness, and the designs of the approach.

A. Model’s Generalizability to different subjects

The prediction performance change from the testing to the
domain adaptation can show whether the approach can quickly
adapt to a new subject. This could be visualized in several
random periods of the predictions from Fig. 7. Two situations
(low and high MTC) were shown to explore the extreme
cases. In each experiment group performance, from left to
right are the performances before and after domain adaptation.
Noticed that the model had a large bias of MTC range
before adaptation, as different people had different relationship
between the strength of sEMG signals and MTC range. After
merely 20% subjects’ data have been used, the large MTC
bias range was significantly decreased.

From all visualized curves, the low MTC groups were
adapted better, while the high MTC group had a slightly
worse result. This may due to the fact that subject E had a
much larger MTC over 9 mm, at least 2mm larger than the
others. The training result using a different MTC range (from
other subjects) was hard to quickly adapt to the subject E
data domain. This problem also existed in the BE experiment
group, where the subject B had almost the smallest MC on
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Fig. 8. The histograms for both the accuracy of distance and MTC
percentage when subjects did not carry 500 grams weights. The subject
E has been highlighted as its average MTC is 2 mm above all other
subjects’ average MTC.

the extreme contrary of the subject E.
To explore the impact of subject E on the performance, the

boxplots for accuracy distribution of all experiment groups
were drawn for clear visualization. The results was in Fig. 8.
The top figure was based on the MTC percentage accuracy,
while the bottom figure used the distance accuracy. The red
dash lines corresponded to the 17% and 1.1 mm. In each
figure the experiment groups were divided into three larger
groups using average MTC of the test subjects. From left
to right the test subjects MTC got increased. Except for the
groups that contained subject E, mostly other groups’ accuracy
were higher than the red dash line, which represents the good
generalizability for the model when the subjects shared similar
MTC, no matter how the personal sEMG signals, BMI or the
muscle thickness deformation looked like. For the performance
accuracy measured by the distance, although the accuracy
decreased when the MTC increased (see DE, BE, and EF
cases), the performance by percentage kept almost the same.
This was because the training labels have been normalized,
the network learn to approach the ground truth curves in a
percentage way, helping to better control the training accuracy
when the subjects had a very diverse MTC range.

B. Model’s Robustness Evaluation
To better visualize the model’s robustness when facing with

different muscle strength but had the same movement, the
distributions of the two situations (carrying or not carrying 500
grams) in TABLE II and TABLE III had been visualized in Fig

Fig. 9. The combined histograms for both subjects’ carrying and not
carrying 500 grams by hands. The light purple was without carrying
weights, while the dark purple referred to the carrying weights situations.

9. When subjects did not carry weight, most of performance
accuracy were higher than the 1.1 to 1.2 mm. After carrying
the 500 grams weight, the model’s performance drop to the
accuracy higher than 1.3 to 1.4 mm, which was almost the
same. Noticed that when comparing the groups AB, CD with
DE and BE, carrying a weight did not always bring a perfor-
mance drop, sometimes increased (see the last three groups).
This may due to that carrying weights can lead to a more
diverse muscle thickness changes, highly related to personal
muscle deformation dynamics (activation and deformation).
As the US muscle measurement was only on one position,
the muscle dynamics on that specific position brought much
more uncertainty and complexity to the problem. Therefore,
except for the robustness analysis, the evaluation and accuracy
analysis in the paper were summarized from the situations
when subjects did not carry the 500 grams weight.

C. Ablation study for the Model’s designs
To understand the impacts of the proposed contraction loss

and cross-attention structure, the ablation study was done to
check model’s performance before and after the designs. This
comparison was based on the distance (mm) as it showed more
precise accuracy changes. For the contraction loss design,
the comparison experiments were performed using merely the
MSE loss and using both the MSE loss and contraction loss
together. The mean and standard deviation before and after ap-
plying the loss were shown in TABLE V as a mean±standard
deviation format. Except for the last two experiment groups
that had the largest MTC (EB and EF), other experiment
groups had around 5% to 10% accuracy improvement, which
created a general 4.2% increased accuracy performance. This
demonstrated that the contraction loss helped the network
grasp the muscle thickness contraction range from the sEMG
signals. For the two worse cases, the contraction loss cannot
perform well due to that subject E brought a different and
diverse MTC range, and there was no higher and similar MTC
range in the training subjects.

For the cross-attention structure, both the single period MTC
(Distance(P)) and the prediction accuracy over the full length
sequence (Distance(F)) had been summarized. The coarse
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TABLE IV
ABLATION STUDY FOR CONTRACTION LOSS (CLOSS),

AFTER DOMAIN ADAPTATION (P: SINGLE PERIOD)

SUBJECTS Distance(P)
Test MTC w/o CLoss Full model
AD 6.29 0.817±0.650 0.743±0.740
AB 6.39 0.854±0.975 0.806±0.776
CD 6.61 0.772±0.706 0.745±0.646
CB 6.71 0.902±0.939 0.824±0.858
AF 6.96 1.027±1.236 0.961±1.070
CF 7.28 0.957±1.019 0.946±1.169
ED 7.97 1.121±1.059 0.974±0.809
EB 8.08 1.074±1.032 1.124±1.012
EF 8.64 1.157±1.330 1.182±1.017
AVERAGE 0.964 ± 0.994 0.923 ± 0.900

TABLE V
ABLATION STUDY FOR CROSS ATTENTION STRUCTURE (C-ATT), AFTER DOMAIN

ADAPTATION (P: SINGLE PERIOD, F: FULL LENGTH)

SUBJECTS Distance(P) Distance(F)
Test MTC w/o C-Att Full model w/o C-Att Full model
AD 6.29 0.768±0.748 0.743±0.740 0.817±0.824 0.810±0.826
AB 6.39 0.762±0.786 0.806±0.776 0.850±0.879 0.832±0.859
CD 6.61 0.714±0.609 0.745±0.646 0.952±0.892 0.927±0.888
CB 6.71 0.845±0.901 0.824±0.858 0.994±0.958 0.966±0.983
AF 6.96 0.931±1.045 0.961±1.070 1.113±1.313 1.082±1.309
CF 7.28 0.984±1.090 0.946±1.169 1.173±1.316 1.138±1.342
ED 7.97 1.047±0.909 0.974±0.809 1.255±1.199 1.270±1.235
EB 8.08 1.042±0.982 1.124±1.012 1.258±1.192 1.266±1.227
EF 8.64 1.137±1.060 1.182±1.017 1.508±1.528 1.508±1.558
AVERAGE 0.914 ± 0.903 0.923 ± 0.900 1.102 ± 1.122 1.089 ± 1.136

prediction from the period features was used to analyze the
performance accuracy that was without the cross-attention.
Noticed that for the single period MTC, the performance
behave similar with or without the cross-attention. However
for the full length sequence accuracy, the performance using
cross-attention was better than the model without the structure
in most of experiment groups. It meant that the cross-attention
structure could not bring much benefits (even sacrifice) for the
signal period MTC range prediction, but instead it increases
the full length sequence prediction accuracy to improve the
general muscle thickness deformation (MTD) tracking perfor-
mance, which was also very important to decrease the phase
shifts and muscle position prediction shifts.

D. Limitation and future perspectives
Based on the above analysis, this dual-attention based

approach could be verified to some extent as a universal,
generalizable, and robustness for muscle thickness contraction
prediction. It was universal to different subjects as long as they
share similar MTC range, or the MTC range has been included
in the pre-training datasets. It could easily generalize and
efficiently adapt to different people with limited dataset (20%)
and perform in millimeter-level accuracy. It is robust to some
extent when subjects exerting different muscle activities and
having different strength movements. We assume that when the
training datasets increased to have more diverse personalized
MTC datasets, the pre-trained model can well-adapt to more
people and have a better performance.

In addition, this approach also has its limitations. Firstly,
this method only used six subjects datasets, more diverse
BMI / MTC subjects could be included for better model
generalization evaluation. Secondly, the ultrasound holder was
attached on the elbow using medical cotton cloth, the attach
phase may have shift that probably brought some system
errors. Thirdly, there was only one A-mode ultrasound probe,
could not truly reflect the whole muscle contraction movement.
fourthly, as the model required one period length (150 data-
points) as input, if the motion has the indefinite length in
time, this dual-attention model could not be used. Lastly,
the movements and variants were only limited to the three
arm motions and 500 grams weights. More arm motions
and weights could be considered to increase the variants

and enriched experiment results. However, although there
existed the weakness regarding to the experiment setups and
approach designs, the highlight of our method was to decipher
the correlations between sEMG signals and muscle thickness
deformation. The millimeter-level prediction accuracy for the
muscle thickness contraction after domain adaption suggest
the potential to use sEMG to replace the ultrasound. This
demonstrates the possibility to combine muscular mechanical
and energy features to create a portable and wearable medical
devices (like sEMG device) for the disease and rehabilitation
tracking. In the future, based on these weakness, the variety
of experiment subjects and movements will be increased for a
more complete evaluation of the technique. In addition, more
ultrasound probes will be installed on the rigid ultrasound
holders for better reflecting the whole muscle movements.
The model structure will also be modified so that the input
could be available for the diverse periods of motions data. We
hope this finding can bring better development in the current
medical device and increase the efficiency and convenience
for a user-friendly usage in the daily scenarios.

V. CONCLUSION

This paper presents a dual-attention based structure to
predict muscle thickness deformation (MTD) and muscle
thickness contraction (MTC) only from the muscle activation
electrode signals (sEMG). The experiment was performed on
the three pairs of males and females with the different BMI
indexes and muscle thickness contraction (MTC). Thanks to
the self-attention and cross-attention hierarchical structures,
the method was demonstrated as universal, generalizable and
robust for different subjects. The ability that the model can
quickly adapt to new person using merely limited data can
help for more widespread application, particularly for those
that required convenient and portable devices to replace the
ultrasound. This finding can inspire the portable and wearable
medical device development, and increase the real-time and
daily tracking of the patient’s disease.
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6 Discussion
Based on the orthopedics and muscle activity monitoring background, this master thesis try to de-
velop an intelligent algorithm to classify and recognize the objective world using merely the one-
dimensional signal, the A-mode ultrasound. The proposed approach widely adopted one-dimensional
convolution neural network (CNN) and its variants for the high-precision perception and tracking of
the motion dynamics and movement activities. In addition, the attached Multi-Layer Perceptron struc-
ture further decoded category knowledge, and the combination of both sEMG and US signals could
unveil the information conversion from energy to momentum in muscle activity. In a more in-depth
analysis, the performance (good and bad) of method had been closely checked, and the generalizabil-
ity and robustness had been demonstrated for better defining the technical application scope from the
engineering perspective.

6.1 Answers to the Questions

(1) Can this signal reflect the actual positions and track the movement of the subjects?

From chapter 2 and chapter 3, the CasAtt-UNet and SIRC-UNet were developed to automatically
track the bone movement in a high accuracy using merely the one-dimensional ultrasound raw data.
From chapter 4, a more simplified model easier to train was proposed to classify the type of channel
information. These work demonstrate that through the one-dimensional signal, it is possible to track
the actual positions and dynamics movement automatically. Therefore, the A-mode US transducer
can be used to track body movement, or to be installed on the robotics arm for the surgery navigation.

(2) What is the range and scope of this perception when it possess a high accuracy, and what
components in this method really take effects?

From the TABLE II of chapter 2, the proposed SIRC-UNet can recognize the bone peaks in the local
bone area. The effective recognition regions in the joints and the surface of middle bone are around
30 to 70 mm [1]. From the ablation study of chapter 2, both the dice loss and the sampling-based
proposal contributed to the high accuracy. The dice loss balance the numbers of positive and negative
labels, while the sampling-based proposal connect two UNet to increase the signal perception field,
paying more attention to the signal areas that most likely to appear the bone peaks. Therefore, a hier-
archical UNet structure was successfully constructed for the accurate detection of the sparse and less
evident bone peaks.

(3) When doing the (1) and (2), can it still classify and recognize different types of signals so that
it can have a grand view of the subjects for a complete perception?

Chapter 3 proposed a similar but simplified network structure that can be trained end-to-end. Differ-
ent channels of signals can be automatically classified through decoding the encoded features from
the first Coarse UNet. Therefore, the model is able to distinguish different signals types even in the
small local areas. The situations of the large bias and small bias have been analyzed to identify the
error sources. The capability to classify signal after the high precision position tracking is useful
especially when the robotics need to calibrate the position during movement. Also it helps to correct
bone registration when the relative shifts between the skin and ultrasound probes occur.
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(4) Can this capability of interpreting one-dimensional signal be integrated with other forms of
signals for a more complex but useful system development?

Chapter 4 propose such possibility to use the US detection results as the ground truth labels, while
the sEMG signals as model’s input to predict the muscle thickness deformation solely from muscle
activation pattern. The experiment was performed in different subjects under different motions, so
that the results with a millimeter accuracy were actually in a generalizable and robust way. Although
the two types of signals made the system more complex, it proved on the other hand the feasibility
to use convenient sEMG device for replacing the ultrasound, increasing the portable and wearable of
the device and making the daily usage of the measurement and patient’s care possible.

6.2 Limitation and future perspectives

The proposed methods also have limitations. Firstly, the methods from the first three chapters were
only tested on the one cadaver, while the method in the last chapter was only tested on the six subjects
and three motions. More subjects and diverse situations should be included for the methods’ robust-
ness and generalization evaluations. Secondly, the collected data may not reflect the actual situations.
There is a gap between the cadaver setting and the real person’s movement. To transform the exper-
iment setting to the in-vivo situations using A-mode ultrasound, the subjects’ body movement and
the relative shifts between tissue layers will bring much diverse changes of bone peaks in the signals
[2, 3]. Thirdly, model’s prediction and the recognition results were lack of explanation and trans-
parency. It is unknown for us when and why the models behave good or bad, and the potential ethical
challenges may arise [4]. Although two specific cases had been discussed in chapter 4, a more general
calibration on the prediction confidence [5] and more in-depth understanding of the performance are
lacking. These hinder the further step to be adopted in the clinical decisions. Therefore, in the future,
the proposed techniques will be applied on more people and scenarios to validate its performance in a
more complex situations. In addition, the transparency and the explainable aspect will be researched
and considered to increase the practical values of the approach.

A-mode ultrasound is only one type of the one-dimensional signal, and there exist many other types
of one-dimensional signals. To integrate more compact devices on robotics for sensing more traces
and signals from the surroundings is another promising directions for the future work [6]. Based on
this, a starting point of building the intelligent robotics can be built, which shed the light towards the
future of building the robust, transferable and powerful robotics intelligence.
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7 Summary
This thesis has demonstrated that the A-mode ultrasound, when combined with the proposed deep
learning techniques, holds significant potential for the high accuracy bone measurement and various
types of robotic applications. With the accurate interpretation of the A-mode US raw signals, the
methods have been successfully developed that it not only increase the precision of bone tracking in
orthopedic surgery, but also enable the real-time anatomical region classification and dynamic muscle
monitoring.

Each chapter has contributed to a comprehensive understanding of how the enhanced capabilities be
integrated into the practical, non-invasive tools for the clinical use. The CasAtt-UNet and SIRC-
UNet models have shown high accuracy in the bone tracking, while the dual-attention framework for
the muscle contraction prediction lead to an accurate muscle health monitoring. In the end, these
findings not only pave the way for its broader application in healthcare settings, but also inspire the
construction of an intelligent robotics that can perceive the surrounding environment.
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