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For this version values regarding costs, volumes, capacities and sales are multiplied by random non-integer

numbers due to confidentiality. Specific customer and production information are also removed.
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III. Summary

This research is conducted at an animal feed company called De Heus from the Netherlands, located in

Vietnam. The company produces livestock feed for pigs, poultry, and ruminants for the local market. The

customers are direct farmers and dealers (who sell the feed to their smaller customers) across the country, each

with a certain demand per week for one or multiple products (SKUs). The finished goods are transported to

direct farms by bulk truck, which directly delivers the feed from the factory to the customers where dealers

pick up the feed themselves at a pick-up warehouse at a factory or depot. After a large acquisition of a

major competitor, new problems have arisen within De Heus Vietnam. There is a lack of insight into the

relationship between different costs. The acquisition has led to an increased number of SKUs, bringing many

of the competitor’s products into the assortment. Lastly, there is a lack of integrated optimization, causing

De Heus to be uncertain about how changes in production planning affect transportation costs. This leads to

the research question: What is the most cost-effective way to plan production, inventory, and transportation

of finished goods? This question aims to determine where to produce which products in what quantity and

how to supply the customers.

The research area for the problem is in the southeast region of Vietnam. This region has three factories:

Dong Nai, Bien Hoa, and Binh Duong. Each of these factories has characteristics regarding production

capacity, the types of products they can produce, bulk capacity, and production costs at these locations. The

products that De Heus sells to customers are finished goods, each with its own SKU number. These SKUs

contain a certain recipe created by nutrients, and multiple SKUs can have the same recipe. These recipes are

planned in a production run, which consists of a certain amount of product in tons produced successively.

After a production run, the machines need to be flushed, leading to a reduction in factory capacity. Once the

finished goods are produced, they are directly transported by bulk trucks to the direct customers or stored

in 25 kg bags in the warehouse of the factory, which also has a certain capacity limit. The bags wait in the

warehouse until dealers pick up the feed at that location, or the finished goods are transported to depots or

other factories where they are sold to the dealer. The types of transportation can be described in three forms:

internal transportation from factory to another pick-up location, external transportation from the customer

to the pick-up location, and bulk transportation to supply direct customers. External transportation refers to

the extra kilometers that customers need to drive to a pick-up location that is not the closest one, resulting in

extra driven kilometers. These extra driven kilometers can be translated into a cost per ton per kilometer or

optimized using multi-objective optimization. Production, inventory, and transportation describe the finished

goods supply chain, which is optimized using a model.

The model created is a production assignment problem based on the production-routing problem. The

routing of the problem is replaced by by flow constraints and multiple products/factories relationships are

implemented. Additionally, reduced production capacity due to setup times and joint replenishment are in-

corporated. For multi-objective optimization, the AUGMECON2 algorithm is chosen because of its impartial

treatment of objective function importance and its efficiency.

The model optimizes the current case instance, which represents the actual situation in the southeast

region of Vietnam with 3 factories, 3 depots, 1117 customers, and 494 SKUs derived from 194 recipes. Addi-

tionally, it optimizes artificial pseudo-randomly created data instances with varying numbers of customers.

The experiments are conducted in two phases: In phase 1, the model is used to optimize both the current

case and artificially created instances within the existing capabilities. In phase 2, a sensitivity analysis is

performed on the current case, examining the effects of expanding production and/or warehouse capacities,

testing new potential production locations, and investigating the impact of reducing the number of SKUs.
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Artificial instances are utilized during both single and multi-objective optimization processes.

The experimental results of the current case optimization show a total cost reduction of -1.8%. This

reduction can be attributed to several factors, including the shifting of multiple products to another factory,

reducing stock levels, and assigning customers to more favorable locations for De Heus. Increasing the

production capacity by +10% at the Dong Nai factory leads to a total cost reduction of -1.1% per month,

achieved through lower production costs at this factory and serving customers from closer locations. The

investment costs for this capacity expansion are $525,600, resulting in a payback period of 3.5 years. Testing

new production locations results in significant cost reductions for the Binh Duong II and Binh Phuoc locations,

with monthly savings of -9.4% and -7.9%, respectively. This is due to the lower production costs and increased

flexibility offered by this new factory, along with its advantageous locations. The investment costs for a new

factory are $13.87 million, with the location of Binh Duong II costing $4.38 million instead of $2.92 million

for Binh Phuoc, making both options viable. Reducing the number of SKUs has a relatively minor impact

on total costs, resulting in a reduction of only -0.3%. Given the considerable effort required to reduce SKUs,

it may be more cost-effective to focus on merging or removing recipes. The analysis of the multi-objective

optimization Pareto diagram reveals that larger data instances create smoother Pareto fronts, where costs

increase gradually with the reduction of extra driven kilometers. De Heus can decide how much they want to

pay for lowering the extra driven kilometers, as the costs remain the same regardless of the reduction steps.

The current case optimization can be implemented without additional investments, next to that it is advised

to invest in capacity extension at the Dong Nai factory and replace the factory in Bien Hoa with a new one

located in Binh Duong II or Binh Phuoc. Instead of focusing solely on reducing SKUs, De Heus should also

consider merging recipes to optimize production planning. Additionally, implementing forecasted demand

could further improve the analysis.
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IV. List of Mathematical Definitions

∈ in (i ∈ I: item i in set I

∀ for all (∀i: for all items i)∑
summation

Z+ = 0, 1, 2, ..., the set of all positive integers, including 0

V. List of Terms and Abbreviations

AUGMECON2 Multi-objective optimization method

Bien Hoa Factory location in Bien Hoa province

Binh Duong Factory location in Binh Duong province

CLSP Capacitated Multi-item Lot-sizing Problem

Cross-production Shifting production volumes from one to another location

De Heus Animal feed company where research is conducted

DIO Days Iventory Outstanding

Dong Nai Factory location in Dong Nai province

FTE Full-Time Equivalent

KPI Key Performance Indication

MCNF Multi-Commodity Network Flow Problem

POF Pareto Optimal Front

Proconco/ANCO Acquired company by De Heus

PRP Production Routing Problem

SKU Stock Keeping Unit

WACC Weighted Average Costs of Capital
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1 Introduction

The first section of this thesis introduces De Heus as a company and provides an explanation of its operations

in Vietnam. After reading this chapter, the reader will have an overview of De Heus in Vietnam, the research

problem they are currently facing, and the corresponding motivated research questions aimed at solving the

main problem. In Section 1.1, the description of the company in Vietnam is elaborated. In Section 1.2, the

research problem is described, leading to the research goal in Section 1.3 and the corresponding research

questions given in Section 1.4. Section 1.5 presents the research design and an overview of the thesis.

1.1 De Heus as a company

Royal De Heus is a global top-10 player in the production and sale of animal nutritional products. The

company produces compound feed, premixes and feed specialties for livestock and aquaculture customers

worldwide. In addition, they are actively involved in genetic research for pigs and poultry, managing breeding

farms for chickens, and owning slaughter facilities. This enables De Heus to influence and control the entire

value chain, from animal growth to slaughter, ensuring it is ready for consumption.

Figure 1.1: De Heus Vietnam factory loca-

tions.

Royal De Heus was founded in 1911 in Barneveld by H.A. de

Heus and remains under family ownership. During the 1990s,

the company expanded its production capacity through the ac-

quisition of other companies in the Netherlands. After acquir-

ing the company ’Koudijs,’ they also gained access to its ex-

port department, enabling them to expand operations beyond

the Netherlands and begin exporting to other countries. De

Heus maintains its interest in expanding to other countries,

with more than 80 production locations in over 20 countries.

Its products are distributed in 75 countries, and that number

continues to grow every day (De Heus, 2023).

”Keep animals healthy and drive optimal production. It’s

what we call Powering Progress.”

- De Heus (2023)

In November 2008, De Heus acquired its first two factories

in Vietnam. They continued to expand their operations, in-

creasing the number of factories to achieve a total sales volume

of 1 million metric tons per year, with seven operating factories

by 2016. Over time, De Heus secured the third position in the

animal feed market in Vietnam. In 2021, one of De Heus’s most

significant acquisitions took place when the company purchased

Proconco/ANCO, which held the second position in the market

at that time. As a result, De Heus currently operates a total of

17 factories in Vietnam, with a total sales volume of more than

3 million tons. The map of Vietnam with the factory locations

can be seen in Figure 1.1.
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1.2 Problem description

After the acquisition of Proconco/ANCO in 2021, De Heus is currently still busy integrating this company

within De Heus. On an organizational level, the management and sales teams are already integrated, and

the current phase is to integrate the production volume output across all the factories. This integration

makes it possible to assign customers to more different production or pick-up locations or produce specific

products only at certain locations to avoid startup costs. Currently, De Heus and Proconco/ANCO operate

their production facilities independently. In practice, this means that De Heus factories exclusively produce

feed and stock keeping units (SKUs) under the De Heus brand or related brands, while Proconco/ANCO

produce feed and SKUs under their own brands. As a result, some customers are served from a location

that is not the closest to their area, leading to potential savings in logistics costs when there is a possibility

to serve customers from a less distant production location. There is a lack of insight into the relationship

between costs of producing products in the different factories, the storage costs of the finished goods, and

the transportation costs to the customers. This is explained in Section 1.2.1. Another problem arising from

the acquisition of Proconco/ANCO is the increase in the number of SKUs, which leads to more different

products that need to be produced and stored at the different locations, putting more pressure on production

and inventory planning. This is explained in Section 1.2.2. Currently, De Heus is already starting to shift

production volumes from one factory to another. However, this is only performed on an individual SKU basis

and does not consider the consequences, which also include changing production costs, inventory costs, and

transportation costs due to these changes. This is explained in Section 1.2.3.

1.2.1 Lack of insight into the relationship between different costs

At first, De Heus lacks insight into the relationship between the costs associated with producing a ton of feed

at different locations, inventory costs, and transportation costs to transport the feed to its selling location.

The production costs include, for example, inbound logistics costs for raw materials, labor costs at the factory,

and transportation costs to a depot, among others. Currently, production costs are calculated by dividing

the total cost of the factory (including labor, electricity, raw material imports, etc.) by the total amount of

feed produced. These costs are termed ’semi-variable’ rather than ’variable’ because an increase of one ton in

production does not necessarily correspond to an equal increase in these determined costs. So it is important

to make the distinction between fixed and variable costs. Besides these costs, the relationship between the

different costs is not known. De Heus is not calculating inventory holding costs for the finished goods in the

warehouse, and it has no insights into the additional cost changes when production volumes are shifted to

other locations. This shifting can, for example, lead to higher internal transportation costs from a factory to

a depot when deciding to produce the product at a factory which is further away from the depot. Therefore,

De Heus needs to gain insights into what happens with the different costs in production costs, inventory

costs, and transportation costs when a change is made to optimize one of them.

1.2.2 Increased number of SKUs

Secondly, De Heus is facing a challenge with the increased number of SKUs that arise from the acquisition

of Proconco/ANCO, which mostly consists of different brands of the same recipe. A recipe contains the

ingredient list for a certain feed, where the recipe is put in bags with a different brand on it, which is called

a SKU. For example, looking at De Heus, they use three different brand names on their bags: De Heus,

Windmill, and Koudijs. The feed in these bags has exactly the same recipes, but the brands are used to sell

to dealers in the same town, allowing De Heus to strike deals with various dealers in a single location, each
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granted exclusive rights to sell a particular brand. Initially, this branding strategy for its various brands did

not result in production and storage issues. However, after acquiring two new main brands, Proconco and

ANCO, each with its own sub-brands, the total number of SKUs increased from 1236 to 2045. The more

SKUs are produced at a location, the more separate storage space is required in the finished goods warehouse

of the factories, and the overall production capacity of the factory will decrease due to the turnover time

associated with switching bag types or recipes. So it is important to search for a new optimal solution, where

it is still possible to produce the SKUs within the capacity limitations of the factories. Another aspect of

these SKUs is that De Heus is reducing SKUs by stopping production when the sales volume is low or merging

them with other brands. However, De Heus does not know what the actual effect on production planning or

warehouse occupation will be from reducing this number of SKUs. It is difficult to convince the sales team to

reduce the number of SKUs because the customers also need to be convinced to switch products. Therefore,

it is necessary to gain insights into the optimization that could be used when the number of SKUs is reduced.

1.2.3 Lack of integrated optimization

Thirdly, De Heus lacks integrated optimization, which can result in cost reduction on one side of the supply

chain but may lead to increased costs or capacity problems on the other side, resulting in no net cost

reduction. An example of this is De Heus shifting production volumes from one location to another, which

reduces transportation costs as the product is produced closer to a depot. However, the impact on production

planning or warehouse occupation is not calculated, potentially leading to increased costs. Therefore, it is

important for De Heus to understand how changes in production planning affect warehouse occupation and

customer assignment. Additionally, when a customer is assigned to another factory, understanding how the

production schedule needs to be adjusted to fulfill that customer’s demand is essential. Currently, these

optimizations and changes are only measured in costs, but it could also be effective to optimize based on

other variables important to De Heus. If these relationships become clear and integrated optimization is

performed, it becomes possible to achieve the best overall solution instead of just optimizing production,

inventory, or transportation costs in isolation.

1.3 Research goal

The problems identified reflect a lack of insight into the relationship between different costs, an increased

number of SKUs, and lack of integrated optimization. Consequently, De Heus is currently not producing in

the most cost-effective way due to the acquisition of Proconco/ANCO, which increased the number of SKUs,

but it is also not able to optimize in the most cost-effective way because the relationship between costs and

the influence on capacities in production, inventory, and transportation are not known. The research into

these different aspects begins by gaining knowledge about the possibilities of integrated optimization, where

the relationship in costs and influence on the different parts of the production, inventory, and production

planning are used to optimize the new situation where the amount of SKUs is increased.

Integrated optimization consists of three parts: production, inventory, and transportation, where simul-

taneously optimizing them could outperform individual optimization. These parts describe the supply chain

of the finished goods of De Heus, including where and in what quantities SKUs are produced, stored, and

supplied to the customer. Therefore, the primary objective of this research is to optimize production plan-

ning, inventory occupation, and customer assignment simultaneously while taking the company’s constraints

into account in the most cost-effective manner. Understanding the possibilities and limits of the company is

crucial; these need to be translated into variables and constraints, such as warehouse capacity and driving
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distances, used during the optimization process. These decisions rely on the network of factories, depots,

and customers. The final output of this research includes a production plan for each factory, necessary trans-

shipments between factories and/or depots, and the allocation of customers to specific factories or depots

for goods collection. Consequently, there should be a reduction in production, inventory, and transportation

costs, along with a better understanding of the changes made within the organization.

1.4 Research questions

During this research, a model has to be created to provide cost-effective production, inventory and trans-

portation planning, which offers improved insights into the influences of integrated supply chain optimization.

This leads to the following main research question:

”What is the most cost-effective way to plan production, inventory, and transportation of finished goods?”

To support the main research question, several research questions are defined. Each of these research

questions has its dedicated chapter where the answer to the question is provided and is further supported by

sub-questions to enhance readability.

The first research questions center around the current situation at De Heus in Vietnam. The primary goal

of this set of research questions is to gain a deeper understanding of the problem context, analyze potential

areas for improvement, and identify gaps in knowledge that can be addressed through a literature review.

1. How is the production, inventory and transportation of De Heus currently planned?

(a) What are the characteristics of the demand, production, inventory and transportation of De Heus

Vietnam?

(b) What are the cost differences for demand, production, inventory and transportation at the various

locations?

(c) What kind of KPIs are used to measure the performance of production, inventory and transporta-

tion?

(d) What assumptions have to be made to enable fully integrated cross-production?

(e) What are the requirements for the production , inventory and transportation planning of De Heus?

To address the company’s problem, it is essential to understand the supply chain, which comprises produc-

tion, inventory, and transportation characteristics specific to De Heus’ situation, and the various optimization

techniques applied in these contexts.

2. What is proposed in the literature for solving the optimisation problem of De Heus?

(a) What type of optimisation problem is suitable for the current situation at De Heus?

(b) What types of characteristics match those of De Heus in production, inventory, and transportation?

(c) Which solution methods are used to solve the supply chain optimisation problem?

(d) Which multi-objective optimization methods are most appropriate for the case of De Heus?

After reviewing the literature, insights about the solution for solving the supply chain optimisation prob-

lem become clear. These insights help to design a solution that aligns with reality.
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3. How should the solution approach be designed?

(a) How is the optimization problem to be solved?

(b) What are assumptions and requirements of the solution approach?

After the solution is designed, it needs to be tested and validated in the current situation. Various

experimental settings are designed and used to assess the real-world solution. It needs to be investigated

whether the optimized production, inventory and transportation planning outperforms the current situation.

4. How does the solution approach perform compared to the current situation?

(a) How to test the performance of the solution approach?

(b) What are the different experimental scenarios that should be tested?

(c) How does the solution approach perform for the different scenarios?

(d) What insights does the sensitivity analysis on the possibilities within the company provide?

Finally, the conclusions are drawn, and recommendations for De Heus are provided.

5. What are the conclusions and recommendations for De Heus?

(a) What can be concluded from the supply chain optimisation for production, inventory and trans-

portation planning?

(b) What are the recommendations and future research for De Heus?

1.5 Research design, scope and methods

This research will primarily involve developing a mathematical model that can optimize the current produc-

tion, inventory and transportation strategy. First, the current situation needs to be identified and literature

research is needed to gain more knowledge about the mathematical formulation of the current situations.

Combining this information creates the conceptual solution framework. Next, the data and the methods are

combined, and a solution is designed, validated, and tested. The results of the experiments provide De Heus

with new insights into optimizing their processes and offer information about opportunities due to the bind-

ing constraint analysis. Figure 1.2 provides an overview of the relationship between the research questions

and the thesis structure, illustrating where the various questions are addressed. In Chapters 2 and 3, the

problem context is presented with input from factory visits, expert opinions, and the ERP system, followed

by a literature review. Chapter 4 outlines the solution approach with input from data obtained from de Heus.

Chapters 5 and 6 validate the solution approach with the results of experiments. Chapter 7 concludes the

thesis by addressing the main research question.

The scope of the research will be the South-East region of Vietnam, focusing on livestock, which includes

pigs, poultry, and ruminants. This region will serve as a test area to keep computation times manageable.

According to De Heus, this area also has the most potential for optimizing the production, inventory, and

transportation planning because the factories are relatively close to each other. De Heus has three livestock

factories in this region: Dong Nai, Bien Hoa, and Binh Duong. The locations of these factories can be seen

in Figure 1.1.
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Figure 1.2: Research design. This figure shows the research questions (yellow) with the necessary input (blue) and

the produced output (red). The thesis structure with chapters is represented by the different boxes.
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2 Problem context

In this section, a detailed description of the problem and the current situation is given. Section 2.1 explains

the current supply chain network and describes the different parts. Section 2.2 gives the characteristics

of demand, production, inventory, and transportation. Section 2.3 outlines the different KPIs of De Heus.

Section 2.4 outlines the pitfalls of implementing cross-production.

This section addresses the research question, ’How is the production, inventory, and transportation of De

Heus currently planned?’ along with its sub-questions, which represent smaller components of the overall

inquiry.

(a) What are the characteristics of the demand, production, inventory and transportation of De Heus

Vietnam?

(b) What are the cost differences for demand, production, inventory, and transportation at the various

locations?

(c) What kind of KPIs are used to measure the performance of production, inventory, and transportation?

(d) What assumptions have to be made to enable fully integrated cross-production?

(e) What are the requirements for the production, inventory and transportation planning of De Heus?

2.1 Supply chain network

The problem described in Section 1 involves the production, inventory, and transportation issues related to

the finished goods of De Heus. Finished goods are defined as products that have completed the manufacturing

process, but have not yet been sold. The supply chain network for these finished goods is illustrated in Figure

2.1, depicting their flow from left to right, with blocks representing locations.

Figure 2.1: Supply chain network - De Heus Vietnam

At the beginning of the supply chain, raw materials such as corn, wheat, and nutritional additives are used

to produce animal feed. In factories, these materials undergo processes like sifting, crushing, heating, and

pressing to yield the finished product, typically pellets. This can be seen in the production part of the figure.

Delivery to customers occurs in two ways: either in bags or in bulk volumes. Bagged goods are transported

to the factory’s finished goods warehouse, while bulk items are conveyed via a conveyor belt to bulk storage

bins. This can be seen in the inventory part of the figure. Customer acquisition methods vary; for bagged

products, customers collect their orders from factories or depots, aiming for the closest possible location.

This may require internal transport from the production facility to a depot or another selling factory. Bulk
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feed loads onto trucks from bulk storage bins, directly serving farms, a process managed by De Heus’s trucks.

These different formats for bagged and bulk customers can be seen in the transportation part of the figure.

2.2 Characteristics

After defining the supply chain, it is separated into three main parts: production, inventory, and trans-

portation. It is important to understand the characteristics and limitations of these different components.

The demand is explained to better understand the various products delivered to the customers. Firstly, the

production is detailed, including information about various production locations, their corresponding costs,

and capacities. Secondly, the inventory capacities of the finished goods warehouses are provided. Lastly, the

transportation routes are outlined, along with associated transportation costs

2.2.1 Demand

In Vietnam, customers of De Heus can be divided into two groups: dealers and direct farmers. Dealers own

shops where they sell products from various brands and manufacturers, supplying medium and small farmers

from their locations. The second group comprises direct farms, which are larger farms with larger sales

volumes. Due to the higher sales volume of direct farms, it is economically beneficial for De Heus to deliver

feed directly to these customers. Because of the different demands from small and medium-sized farmers

through dealers and the larger demand from direct farms, De Heus delivers feed in two ways. Dealers are

supplied with bags (typically 25 kg), while direct farms receive bulk feed delivered by bulk trucks. Dealers

still have substantial sales volumes, representing 90% of the total sales volume, with direct farms accounting

for the remaining 10%. A summary of the characteristics regarding the volume of sales, the feed product and

the transport methods for the demand from the direct farms and dealers is provided in Table 2.1. Customer

demand must always be fulfilled within the requested period, as animals require their feed. Therefore, back

orders are not allowed.

Direct farms Dealers

Sales volumes High Medium & Small

Feed product Bulk Bag

Transportation method Bulk trucks Pick-up

Table 2.1: Characteristics of customers.

The distribution of demand throughout the month differs for bags and bulk products. When analyzing

the sales volume of bagged and bulk products separately, it becomes evident that the patterns are distinct.

The demand distribution over the month is illustrated in Figure 2.2, utilizing data from December 2023 for

the sales volume of the South-East region. The figure reveals that the sales demand pattern is time dependent

within the month. Direct farms, which own farms and maintain a constant number of livestock, require, on

average, the same amount of feed every week, resulting in a consistent demand depicted by the blue line.

In contrast, dealers exhibit an increasing trend throughout the month, represented by the green line. This

trend is attributable to the discounts offered to dealers to boost sales volume toward the end of the month,

resulting in a peak in demand during that period. Consequently, dealers tend to purchase fewer bags at

the beginning of the month. These variations in demand can be represented as vectors for each month. For

bulk products, the vector is evenly distributed throughout the month, resulting in [0.25, 0.25, 0.25, 0.25]

for weeks 1 to 4. However, for bagged products, the distribution varies slightly, with the vector being [0.22,
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0.24, 0.25, 0.29]. The uneven distribution throughout the week results in a higher workload at the end of the

month, necessitating coverage from the beginning of the month to fulfill the demand. It is essential that the

components of the supply chain are adjusted to one another to accommodate this fluctuating demand.

Figure 2.2: Demand distribution of South-East during month (Dec-2023)

In addition to categorizing the feed into bags and bulk with corresponding demand patterns, the feed is

also categorized into product groups. The main product groups, with their subgroups for livestock, are: Pigs

(breeding, fattening, growing, and piglets), Poultry layer (ducks and chickens), Poultry meat (white broilers

and yellow broilers), and Ruminants (beef, dairy, and goats). Each of these specific groups has various growth

phases. For example, to raise a pig, there is a need for piglet feed, starter feed and fattening feed are needed,

each with its specific ingredients and formulations designed to meet animal requirements as best as possible.

The demand volume for these different phases also varies. For instance, on average, a pig will require 30 kg

of piglet feed, 50 kg of starter feed, and 150 kg of fattening feed, resulting in different demand volumes.

2.2.2 Production

In the focus area South-East, De Heus operates three factories. The Dong Nai and Binh Duong factories

were already owned by De Heus, while Bien Hoa was acquired from Proconoco/ANCO. The Proconco/ANCO

factories that were purchased were mostly very old, as the company did not invest in those factories in recent

years. The different factories have varying production capacities and production costs. Some factories have

newer machines capable of producing more tons per hour than others. The factories in Dong Nai and Binh

Duong have bulk loading lines, while Bien Hoa produces only bags. All the factories have a finished goods

warehouse where the bags are stored and supplied to dealers or depots. Each location has its own production

planning, created on Fridays. Customers are required to place their orders by Thursday afternoon for the

following week. Depots also forecast the sales volumes of different SKUs expected at various locations and

place these as orders at the factory. After receiving the orders, the production manager examines inventory

data and, based on safety stocks and incoming orders, creates the plan for the following week. This planning

covers 24/6, meaning that production occurs 24 hours a day except for Sunday. Production planning is done

per recipe, where a recipe consists of multiple bag and bulk SKUs. Each recipe contains the nutritional

formula of the feed and can be sold in both bulk and bags, each with its own SKU number. Additionally, the

same recipe may be sold under different brands, with each brand having its own bag and SKU number. For
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example, if 20 tons are produced from a certain recipe, it could be the case that 10 tons are bulk feed, while

the remaining 10 tons are evenly divided between two brands, resulting in three different SKUs.

There are potentially 576 production hours per month, but each time a different recipe is produced, the

machines need to be flushed. Flushing the machines cannot be considered a complete halt to the production

process because not all machines are in series; there are also parallel machines that can continue production

unless the other machine is busy flushing. The estimated flushing time resulting in a loss of production

time is approximately 5 minutes. This is based on flushing the serial machines in the production process.

The different SKUs have different brands on their bags, meaning it also takes 5 minutes to switch the bags

and get a new pallet to stack the filled bags. After finishing production, the bags are stacked on pallets

and transported by a forklift to the finished goods warehouse of the factories. The bulk is transported by a

conveyor belt to the bulk storage bins.

The flushing time occurs between two production runs of two different recipes, where a production run

consists of the amount of tons that are produced consecutively until the next production run of a new

product starts. To calculate the average production run size of the feed, it is categorized into low, medium,

and high sales volume products. To determine the classification, an ABC classification with the Pareto

80/20 rule is used (Ultsch, 2002). This classification assigns high volume (A), medium volume (B), and low

volume (C) categories. Twenty percent of the products, responsible for 80% of the total volume, receive

the high volume classification. Ten percent of the products, responsible for 10% of the volume, receive the

medium classification, and the remaining 80% of products, responsible for 10% of the volume, receive the

low classification. Each category is assigned an average production run size based on the average production

volume per day when the product is produced. For this measurement, it is assumed that a production run is

only produced once a day, as this theoretically provides the most efficient situation, requiring only one flush

after production. The average production run for low volume is 12 tons, for medium volume 20 tons, and

for high volume 36 tons. In reality, determining a specific production run size for a product is challenging

because it depends on demand and can be easily adjusted to decrease or increase the production volume for

each SKU and recipe. Ideally, using a variable lot size would be desirable, assuming a linear relationship

between the total amount of production and the production run size. This relationship is depicted in Figure

2.3, where the horizontal axis represents the total production volume for 10 months, and the vertical axis

represents the production run size, illustrating that the production run size increases with higher total

volume. This is logical, as longer production runs are more efficient. Therefore, if the total volume increases

and the production manager wishes to maintain the same number of production runs, the amount of tons

per production run needs to increase. In addition to determining where and in what quantity to produce

the product, decisions regarding production run sizes must also be made. In practice, production planning

often relies on experience rather than calculated cost-effectiveness. Because of the increased number of

SKUs resulting from the acquisition of Proconco/ANCO, the pressure on the production schedule has further

increased, as more diverse SKUs need to be produced at each factory. This leads to longer flushing times,

resulting in less efficient production planning. To address this issue and optimize the current situation, it

may be possible to increase the production volume of a certain SKU at one factory and then transship it to

other factories. Alternatively, it could be more optimal to produce products closer to the customers, but this

would entail smaller production volumes, leading to increased flushing times. Therefore, the problem should

be solved by optimizing all parts of the finished goods supply chain to make the most optimal decisions.

The factories of De Heus are unable to produce all the different types of feed and SKUs at every location.

This differentiation depends on the product groups and the production quality of each factory. Animal feed
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Figure 2.3: Scatter plot: Total Production Volume (10 months 2023) vs Average run size of recipe

can be categorized into main product groups such as pigs, ruminants and poultry, and subproduct groups

like breeding pigs, piglets, growing pigs, and fattening pigs within the main group of pigs. Some product

groups require additional cleaning measures due to safety and health concerns. For example, after the use

of ruminant bone meal, it is not allowed to produce ruminant feeds without thorough cleaning due to the

risk of ’Mad Cow Disease’. Piglet feed also requires a dedicated production line due to the highly stringent

cleanliness requirements for this type of feed. For this reason, De Heus chooses not to produce this type of

feed at all of its different factories, because this leads to inefficient production planning. To make it more

optimal, the products can only be produced at dedicated locations to decrease the number of cleanings. Table

2.2 shows that Bien Duong is allowed to produce all kinds of feed, while Dong Nai and Bien Hoa are allowed

to produce everything except for ruminant feed and piglet feed. The second differentiation in production type

is production quality. After the acquisition of Proconco/Anco feedmills, the quality has already improved

to meet De Heus standards. Previously, the feed quality was inferior, making cross-production not fully

applicable. While most factories across Vietnam are now capable of producing all types of feed, it was not

sustainable to invest in upgrading the Bien Hoa factory to meet these standards. Therefore, a restriction

has been implemented stating that De Heus products can only be produced at factories that meet De Heus

standards.

The costs of production are currently calculated using semi-variable costs. This means that the total costs

of a factory are divided by the number of tons produced at a certain location. These costs consist of:

• Production costs(labour costs, outsource labour costs and cleaning/security)

• Maintenance (labour costs, outsource labour, consumables, repairs and the building)

• Warehouse (labour costs, outsource labour, vehicles and rentals)

• Utilities (Fuel for boilers, electricity, oil, water and other energy resources)

The semi-variable costs serve as key performance indicators (KPIs) for the company. During operational

meetings, the actual variable costs are compared among different factories and with the budget set at the

beginning of the year. Significant differences in semi-variable costs are observed when comparing De Heus
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Product group Product subgroup abbr. Dong Nai Bien Hao Binh Duong

Pigs Breeding pigs PB ✓ ✓ ✓

Pigs Piglets PP ✓

Pigs Growing pigs PG ✓ ✓ ✓

Pigs Fattening pigs PF ✓ ✓ ✓

Ruminants Goat RG ✓

Ruminants Beef RB ✓

Ruminants Diary RD ✓

Fur Animal Rabbit FA ✓ ✓ ✓

Poultry Yellow Broilers CYB ✓ ✓ ✓

Poultry White Broilers CWB ✓ ✓ ✓

Poultry Duck CD ✓ ✓ ✓

Poultry Quail CQ ✓ ✓ ✓

Poultry Breeders CB ✓ ✓ ✓

Poultry Layer CL ✓ ✓ ✓

Table 2.2: Production sub-group possibility factories

factories to Pronconco/ANCO factories. Specifically, the semi-variable costs for Dong Nai are $6.69 per ton,

for Bien Duong $8.23 per ton, and for Bien Hoa $13.82 per ton. The most substantial variations are found

in labor production costs, repairs, and electricity consumption. This discrepancy is attributed to the older

machinery at the Bien Hoa factory, leading to increased labor needs and more frequent breakdowns. While

these costs provide a useful indication of production costs per ton, the calculation is not entirely fair due

to its ’semi’ variable nature. Start-up costs for a factory become relatively smaller as production increases.

When a factory is opened, it requires management, security, general electricity consumption, etc., which are

independent of the production volume. Consequently, costs are relatively high with low production volumes

but decrease as production volume increases.

It is not possible to use semi-variable costs alone to determine the cost of producing one ton of feed in a

specific factory and compare it with other factories. Therefore, it is necessary to break down semi-variable

costs into direct variable production costs, direct material costs, factory overhead costs and fixed production

set-up costs. The direct production costs consist of the following components: labor costs production,

outsourced production, labor costs maintenance, consumables maintenance, labor costs warehouse, fuel for

boilers, electricity, and QC teams. The fixed production costs consist of: cleaning and guards labor costs,

repair maintenance, M&R buildings, outsourced warehouse, Vehicles & machine lease, Do oil, others (water,

ink, solvent, chemical, etc.) utilities, QC expenses, and HSE expenses. Not all costs are implemented as fully

variable or fully fixed, so some assumption are made to make them usable. For example, electricity costs

are not completely variable in reality because the general buildings of a factory also require electricity, which

is not solely dedicated to an increase in production volume. It is also assumed that maintenance costs are

fixed, while in reality, they may increase in a trapezoid form as production volume increases by a certain

amount. However, it is not possible to make them fully variable because there is always maintenance when

there is feed in production. In consultation with the company, this list of direct production costs and fixed

(overhead) costs is made as realistic as possible, while some simplifications and assumptions are made to use

the costs currently calculated directly in the model. Depreciation is not taken into account in the factory
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overhead costs because depreciation costs will always exist, even if the decision is made not to open the

factory at all. The direct material costs are based on the logistic inbound costs and depend on the amount

of tons produced at a factory. The direct material costs encompass expenses related to raw materials such

as corn, nutrient and enzymes. Each recipe has its own composition of ingredients, which is similar across

all factories. Therefore, it is assumed that there are no differences in material usage between factories, as it

has only a small impact. However, transportation costs for materials differ for each factory due to variations

in the supply chain. For instance, Bien Hoa is located near a river, which results in lower raw material costs

due to economies of scale. These transportation costs are factored into the total direct material costs. The

cost per production run is equal to the cleaning time of the machine, which is performed by the production

team. The cleaning time is estimated to be an average of 5 minutes between production runs. Therefore,

the cost of cleaning is calculated based on the machines’ inability to produce during this time. Normally, the

production speed is 60 tons per hour, so a loss of 5 minutes results in a loss of 5 tons. So for example for the

Binh Duong factory it gives a labor cost per ton of $1.55. Thus, the total cost is 5 · $2.13 = $7.77 per flush

between two production runs.

The production capacity, bulk possibilities, and the direct, set-up, and overhead costs are provided in

Table 2.3, expressed per factory. It can be observed that the direct material costs in Bien Hao are cheaper

than in other locations, but the production costs are higher at this location. These costs serve as inputs to

determine the appropriate factories for meeting demand.

Dong Nai Bien Hao Binh Duong

Production capacity 36,500 ton 19,710 ton 16,425 ton

Bulk possibility Yes No Yes

Direct variable production costs 4.88$ 8.62$ 6.18$

Direct material costs 4.4$ 2.1$ 4.9$

Fixed production set-up costs 0.82$ 14.82$ 7.77$

Factory overhead costs 34,997.40$ 80,789.96$ 57,688.24$

Table 2.3: Production location capacity and costs.

2.2.3 Inventory

The next step in the supply chain of finished goods after production is storing them in the finished goods

warehouse of the factory. For bags, this means storing them on pallets which are transported to the finished

goods warehouse with a forklift, with each pallet containing 2 tons of feed. Bulk feed is transported by a

conveyor belt to the bulk storage bins. The capacity of the finished goods warehouse is limited by the amount

of space available to store the pallets. The warehouse capacity for Dong Nai is 3,500 tons, for Bien Hao is

3,000 tons, and for Binh Duong is 2,000 tons. An overview of these capacities can be found in Table 2.4. The

capacity of the bulk storage bins is determined by the maximum bulk capacity, which includes production,

storage, and transportation possibilities, this capacity can be found in Section 2.2.4.

The finished goods warehouse at the factories are used for storing and supplying two types of inventory:

the finished goods that are picked-up by the dealers and other depots/factories which place an internal order

which means that the finished goods needs to be transshiped to another location. Upon loading orders,

pallets are transported by forklifts to the loading station, where bags are loaded onto trucks using conveyor

belts. Finished goods transshipped to depots or other factories spend one day in the warehouse for high-
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sales volumes, three days for medium volumes, while goods sold at the factory remain in the warehouse

for two days for high volumes, seven days for medium volumes, and fourteen days for low volumes. Slow-

moving products can pose an issue by occupying warehouse space where potential 6 (three pallets stacked)

tons can be stored. The average stay durations are provided in Table 2.5. These average lengths of stay,

in combination with the occupation of the warehouse space, determine the total usage of the warehouse

capacity. In reality, achieving 100% warehouse utilization is not possible because the stored tonnage is not

always a multiple of six. It is important to monitor the number of warehouse slots occupied by finished

goods. For instance, if a product uses an average of seven tons of warehouse space, it requires two slots in

the warehouse. In production planning, it is important to consider inventory capacity, as the inability to

store finished goods means production cannot continue. With an increase in the number of SKUs, it has

become even more challenging to store all the different SKUs in the warehouse, as each SKU with an average

warehouse capacity < 6 occupies a slot. Therefore, optimization is necessary to determine where products

should be produced and subsequently stored and sold.

The holding costs at the different warehouses are based on the working capital of the finished goods.

If the finished goods are at the warehouse and waiting to be sold, it means that the value of money used

to produce the finished goods cannot be utilized for investing in new projects of the company or placed in

a savings account to accrue interest. These costs are referred to as Opportunity Costs of Capital. Other

potential costs that could be included in the holding costs are the occupancy costs and depreciation costs.

However, since the finished goods warehouse is always necessary after production, and it is assume that every

bag gets sold, there is no depreciation. So it is assumed that the opportunity costs of capital are the only

costs influencing the holding cost. The Weighted Average Costs of Capital (WACC) are used to approximate

the opportunity cost of capital. If the average value per ton of finished goods is $292, and the WACC is

17.53% it gives: Holding costs per ton per year = 292$ · 17.53% = 51.20$

Dong Nai Bien Hao Binh Duong

Warehouse capacity 3,500 ton 3,000 ton 2,000 ton

Table 2.4: Warehouse: Finished goods warehouse capacity factories and depots

Transshipments Selling warehouse

High sales volume 1 day 2 days

Medium sales volume 3 days 7 days

Low sales volume 3 days 14 days

Table 2.5: Length of stay finished goods

2.2.4 Transportation

The last step in the supply chain is to fulfill the demand of the customers through transportation. There

are two types of transportation from De Heus company to meet the customers’ demand: the internal trans-

portation of bags to depots and factories, and the bulk transportation of bulk feed to customers. After the

finished goods are transported to the correct locations, the dealers pick up the bags themselves at the depots

or factories, meaning that De Heus does not incur direct transportation costs for this part of the process.

For bag customers, the pick-up locations are the factories or depots. The factories can produce the feed

themselves, but they can also be supplied by other factories. This is the case, for example, when a factory is
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unable to produce a certain type of feed or when it is more cost-effective to produce it at another location.

Depots have capacities and cannot produce feed themselves; they need to be supplied by factories. In the

south-east region, there are three depots: Dau Giang, Long An, and Ben Tre with corresponding capacities

of 1,750 tons, 3,300 tons, and 1,700 tons, respectively. The primary purpose of these depots is to provide

an additional service to customers. They are strategically situated near the customers, eliminating the need

for them to travel all the way to the production locations. Currently, most dealers are assigned to the

depot/factory that is closest to them. They pick up the feed at these locations and are not willing to pick

up different SKUs at different locations. For that reason, it is only possible to assign a dealer to at most one

pick-up location. The resupply of a certain SKU at a depot/factory can only be done by one and the same

factory to ensure consistent quality for customers.

The direct customers who demand higher volumes are supplied by a bulk truck. When a bulk truck is

scheduled for delivery to a customer, it loads its truck using a loading robot positioned above the truck,

which deposits the right feed in the correct part of the tank. After loading, the truck can proceed to the

customer and transfer the feed into a silo. One bulk truck is only able to go to one farm on each trip due to

biosecurity measures. If the trucks were to drive to several customers in one run, it could potentially spread

disease from one farm to another, which is not desired. It is possible to supply different SKUs from different

factories to one direct farm. The bulk trucks have different capacities ranging from 5 to 24 tons, but most

of the trucks are 14 tons, so this number is used to calculate the bulk transportation costs. Because the

optimization will not assign a specific truck to a certain route, it is assumed that the total truck capacity

is used as a constraint in the maximum amount of feed each location can supply in bulk. The total bulk

capacity and bag capacity are provided in Table 2.6. Bien Hoa is unable to supply bulk feed, and the bag

fleet is always infinite because it is managed by a third-party logistics company.

The different types of transportation can be categorized into three cost groups: internal transportation

between factories and from factories to depots, external transportation caused by bag customers picking

up the feed, and bulk transportation costs occurring when bulk feed is transported by bulk truck to the

customer. Internal transportation is used to supply factories and depots and is carried out by a third-party

logistics company, where the capacity of these third-party logistics is unlimited. A differentiation between

internal transportation costs between factories and from factories to depots is made because potentially, the

transportation costs from the factory to the depot could be forwarded to the customer who picks up the feed

at a closer location. It could be more cost-effective for De Heus to deliver the feed at a depot location instead

of the customer having to drive a longer distance because of scale advantages. The costs for this third-party

logistics are $0.03 per ton per kilometer. External transportation costs arise from the additional kilometers

that customers must drive to pick up feed from their designated locations. Currently, these costs are not

included in the total price calculation because there is uncertainty regarding customers’ willingness to drive

to alternative locations, and no incentives are offered to encourage them to do so. However, for optimization

purposes, it is essential to include these external costs. They are determined based on available information,

such as the customer’s location and the assigned depot/factory. The definition of ’extra’ kilometers is that

these are the kilometers that the customer needs to drive additionally to a location that is not the closest

one to the customer. For instance, if the closest pick-up location is 40 km away, but assigning the customer

to another location results in a total driving distance of 60 km, then the additional 20 km incurs costs for

De Heus. Customers are willing to travel to alternative locations if it is more cost-effective for them and

to incentivize this behavior a discount is offered, which constitutes the external transportation costs. The

external transportation costs amount to $0.031 per ton per kilometer. Bulk transportation costs to the direct
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farms are currently calculated for each route to the customers separately by hand. These total transportation

costs consist of toll costs, fuel costs, depreciation/salary costs, and depend on the amount of tons transported

by the truck. Fuel costs are responsible for 80-90% of the total costs, so these costs are used to calculate

the transportation costs from the factories to the direct farms. Transportation costs are given per ton per

kilometer driven. The trucks’ fuel consumption is on average 25 liters per 100 km. With an average truck

weight of 14 tons, it gives Costs per kilometer per ton = (0.25 · $0.62)/14 ton = $0.011.

An overview of the transportation network for internal bag transportation and external transportation to

the direct farms is provided in Figure 2.4. The internal transportation routes from a factory to a depot/factory

are represented by dotted lines. The black trucks performing these routes are supplied by a third-party

logistics company and operate at a fixed price per trip. The external transportation routes, depicted by the

black lines, involve bulk transport from the factory to the direct customer. This transportation is handled by

our own bulk trucks, and its capacity is constrained by the total bulk capacity of the factory, determined by

production levels and the number of trucks available. Dealers (customers) collect their orders from the depot

or factory, and their transportation costs are not incurred by us. However, they opt to travel to an alternate

location only if it proves more cost-effective for them in the end. Thus, it remains crucial to consider the

distances the dealers need to cover.

Dong Nai Bien Hao Binh Duong

Bulk fleet capacity per month 12,410 ton - 5,840 ton

Bag fleet capacity per month ∞ ∞ ∞

Table 2.6: Truck fleet capacity

Figure 2.4: Transportation network: Network of bag and bulk delivery.
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2.3 Key Performance Indicators (KPIs)

To measure the performance of the company, De Heus uses several KPIs. The most important KPI of

the supply chain is costs, which consist of raw material costs, production costs across various factories and

transportation costs for transshipment between them. Currently, production costs depend on the production

volume at each factory because the total costs of a factory are divided by the production volume to calculate

the cost per produced ton. Therefore, when analyzing these costs, it is important to consider various factors

at each location, such as the number of SKUs produced and the total production volume. The previous

Section describes the various components of these costs and the necessary transformations for cost calculation,

including the impact of shifting an SKU to another factory and the impact of increasing the production volume

of a SKU in a factory. Inventory costs are presently excluded from the company’s total cost calculation for

inventor where these costs are now integrated into the overall cost optimization strategy, leading to reduced

total inventory levels.

Other KPIs crucial for the company encompass various production-level metrics: customer complaints.

rework volume, operational utilization, full-time equivalent (FTE) count (which correlates with costs), tons

per FTE, and energy consumption. In the warehouse, the Days Inventory Outstanding (DIO), indicating

inventory in days based on average daily demand, stands as the primary metric. However, as it is measured

at specific points in time, drawing conclusions on this KPI currently proves challenging. The transportation

cost per ton and bulk truck utilization are important factors for transportation. Most of these KPIs directly

relate to costs. For instance, increased factory utilization leads to lower production costs per ton. Similarly,

reducing DIO in a factory lowers average inventory, subsequently reducing capital requirements. While the

model primarily focuses on cost reduction, these KPIs are not individually considered; however, optimization

positively impacts these indicators.

2.4 Cross-production

The process of shifting production volumes to different locations, where the optimization encompasses the

overarching optimization of De Heus and Proconco/ANCO factories, is named cross-production. De Heus

has already begun implementing cross-production, optimizing the production capacities of the factories from

different entities, although on a smaller scale. Some recipes and SKUs are transferred to factories that are

clearly located in better positions. However, cross-production also introduces new challenges when transfer-

ring products to other factories, as the quality and texture may differ if the same product is produced in a

different factory. Each factory has its own layout and its own machines, so not every factory has the same

type of machines. Machines can be from different manufacturers or different ages, which could lead to quality

differences. Consequently, when producing the same recipe in different factories, variations may arise in fac-

tors such as hardness, pH, and pallet durability index (PDI). Maintaining consistent quality across different

factories is crucial, as any discrepancies could lead to farmers rejecting the feed. This is especially critical

in Vietnam, where many farmers still hand-feed animals and inspect feed for color, structure, and smell. If

any of these aspects differ, there is a high likelihood that they will reject it and send a complaint to De

Heus. To address this issue, De Heus is currently investing in its factories to enhance product quality. This

investment aims to enable the production of all recipes in all factories with minimal differences in quality.

The assumption that every recipe (and SKU) can be produced at every location is made in this research to

optimize the situation to its fullest potential.
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2.5 Conclusion

For the focus area of southeast Vietnam, encompassing the factories in Dong Nai, Bien Hoa, and Binh Duong,

this chapter provides information on the characteristics of the production locations, inventory, and demand

distribution. The supply chain network of finished goods begins at production, where raw materials are

imported and processed into feed. Production occurs in factories, each with its own production planning

that schedules recipes comprising multiple bag and/or bulk SKUs. This demand comes from dealers, serving

smaller customers in bags, and from direct farms, which are larger customers served by bulk trucks. Bag

demand fluctuates, with 24% of sales occurring in the first week and 29% in the last week of the month due

to end-of-month discounts. To manage this peak, it is necessary to optimize the problem within a monthly

time frame to respond to and prepare for these differences in earlier weeks.

To make production plans for the factories, recipes are scheduled. These recipes are produced in pro-

duction runs, with the average tonnage determined based on the total production volume during the month.

High, medium, and low volume products yield 12, 20, and 36 tons per run, respectively. Factories have a

total production time of 567 hours, with capacity reduced due to 5-minute flushing times between production

runs. Additionally, not all types of feed can be produced at every location due to safety and health concerns;

former Proconco/Anco factories cannot produce De Heus feed due to machinery limitations affecting qual-

ity. Production costs depend on semi-variable costs of the factories, divided into setup and variable costs

for recipes and SKUs. Direct material costs depend on inbound logistic costs, while production run costs

are determined by cleaning costs. These production restrictions needs an integrated optimization approach

between different factories to determine the best locations for producing certain recipes and SKUs.

After finished goods are produced, they are stored in the factory’s finished goods warehouse, which has ca-

pacity constraints. From these locations, finished goods are sold or transshipped to other warehouses/depots.

Warehouse occupancy is determined by the average length of stay of finished goods, with goods staying for

1 or 3 days when ordered for depots/factories, and 2, 7, or 14 days when sold at a location, based on volume

(high, medium, or low). Occupancy is based on available slots, each capable of storing a maximum of 6 tons

(3 stacked pallets), with full occupancy maintained even if less than 6 tons are present. Holding costs are

$51.20 per ton, based on opportunity costs of capacity. Due to the increased number of SKUs, it becomes

even more important to strategize optimization of production locations to efficiently utilize warehouse slots.

Transportation comprises three distinct parts: internal transportation from production factories to de-

pots and other factories, handled by a third-party logistics company; external transportation costs, seen as

the ’discount’ given to customers for longer driving distances; and bulk transport to direct farms. Internal

transportation costs are predetermined at $0.03 per ton per kilometer. External transportation costs depend

on the additional driving costs for customers, estimated at $0.031 per ton per kilometer. Bulk transporta-

tion costs are based on fuel costs, accounting for 80-90% of total costs, at $0.011 per ton per kilometer.

Cross-production, where production volumes are shifted to other locations, has already begun, but ensuring

consistent feed quality at all locations remains a significant implementation challenge due to quality differ-

ences between factories. Currently, not all costs are yet incorporated into the cost calculations of De Heus.

When all costs of production, inventory, and transportation are known, the most cost-effective solution can

be determined where a model provide a solution that includes customer assignment to specific locations, in

combination with production planning per week detailing which SKUs need to be produced at which location

and how it reached the customer.
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3 Literature Review

In this section, the existing literature on supply chain optimization, the corresponding mathematical models,

and the solution methods are analyzed. In Section 3.1, supply chain management is explained. Section

3.2 examines various production scheduling models, Section 3.3 delves into inventory management control

systems, and Section 3.4 focuses on transportation management, particularly routing explanations. Following

the examination of each segment, the review proceeds to analyze their integrated optimization. Section 3.5

elaborates on the Lot-Sizing problem, addressing the combined optimization of production and inventory.

Another aspect discussed is the simultaneous optimization of inventory and transportation, presented in

Section 3.6 as the Inventory Routing Problem. To serve multiple customers, Section 3.7 introduces the

Multi-Commodity Network Flow problem. Lastly, Section 3.8 introduces the concept of optimizing the entire

supply chain, encompassing production, inventory, and transportation, potentially resulting in significant

cost savings. Section 3.9 provides a literature review overview of the papers used. Section 3.10 discusses

the different methods needed to solve larger instances of the given models. Section 3.11 provides different

multi-objective optimization techniques. Section 3.12 summarizes the findings and concludes which literature

is most suitable for De Heus.

This section addresses the research question, ’What is proposed in the literature for solving the optimisation

problem of De Heus?’ along with its sub-questions, which represent smaller components of the overall inquiry.

(a) What type of optimisation problem is suitable for the current situation at De Heus?

(b) What types of characteristics match those of De Heus in production, inventory, and transportation?

(c) Which solution methods are used to solve the supply chain optimisation problem?

(d) Which multi-objective optimization methods are most appropriate for the case of De Heus?

3.1 Supply chain management

A supply chain may be defined as an integrated process wherein various business entities work together in

one effort: acquiring raw materials, converting them into a final product, and delivering this to the customer.

In this supply chain, materials flow forward, while information flows backward. This means that products

flow to the customers, but the demand, which can be seen as information, is customer-related and is sent to

production (Beamon, 1998). The supply chain is comprised of two basic integrated processes: the Production

Planning and Inventory Control process and the Distribution and Logistics process. The Production Plan-

ning and Inventory Control process designs the manufacturing process, including raw material scheduling,

production planning, and design, while inventory control describes the storage policies and procedures. The

Distribution and Logistics process uses input from inventory management to determine how products are

retrieved and transported to warehouses and customers. Simultaneously optimizing the Production Planning

and Inventory Control process and the Distribution and Logistics process could lead to promising results.

Most of the time, these optimizations are cost-driven. However, it is also possible to focus on customer satis-

faction, which is derived from on-time delivery or the shortest distance (Eksioglu, Vural, & Reisman, 2009).

Chandra and Fisher (1994) showed that optimizing production scheduling and the vehicle routing problem

simultaneously can result in a cost reduction of 3 to 20%. An integrated supply chain planning system is

a tool to jointly optimize several planning decisions and, thereby, attempt to adjust the decisions to profit

from the benefits (Adulyasak, Cordeau, & Jans, 2015). The supply chain usually consists of different parts:

production, inventory, and distribution. This system includes a factory that produces goods, stores them
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and distributes them to other warehouses (Haq, Vrat, & Kanda, 1991). It is important to understand the

different parts and know their characteristics before the optimization models can be explained. The different

characteristics lead to different choices and modeling approaches.

The next sections aims to explore optimization models related to the production, inventory, and trans-

portation segments within the supply chain, as well as their integrated optimization. Initially, the individual

segments are analyzed separately, and subsequently, the simultaneous optimization of these parts is investi-

gated.

3.2 Production

Before optimizing production planning and scheduling, it is needed to understand the various types of pro-

duction processes and their specific characteristics. These diverse types possess specific attributes that result

in particular constraints and input parameters that must be incorporated into the optimization model. It

can be distinguished that there are four broad classes of processes: Job shop, batch flow, assembly line, and

continuous process (Silver, Pyke, & Thomas, 2016). Job shops manufacture customized products, for exam-

ple, a specially made part for a machine. Batch flow produces larger quantities at once before transferring to

the next phase, for example, a bakery that produces different kinds of bread. An assembly line puts different

parts together to produce the final product, for example, a car. The continuous process has a continuous

flow, like chemical processes in the oil industry. These processes already provide characteristics for a high

number of customers and products for job shops and a low number for continuous processes. Job shops are

able to produce for customization, while continuous processes have more standardized output. In planning, it

is easier to plan continuous processes because they require less optimization than job shop processes (Silver et

al., 2016). The characteristics of the jobs that need to be planned are important for the design of the model.

Key considerations include: How many production locations and lines are there? Are they able to produce

all the different types of item? For items, do you have one or multiple items, and are there relationships

between these items? Are there start-up costs for the different item groups? Is backlogging allowed, and does

an increase in volume lead to discounts? Jans and Degraeve (2008).

3.3 Inventory

In inventory management, there are six broad decision categories in controlling inventory: cycle stock, conges-

tion stock, safety or buffer stock, anticipation inventories, pipeline inventories, and decoupling stock (Silver

et al., 2016). Cycle inventory results from producing batches instead of one unit at a time, where the amount

on hand at any point is the cycle inventory. Congestion stocks are inventories due to limited production

capacity, for example, if the same machine is used to produce the products. Safety stocks are used to cover

uncertainties in demand. Anticipation stocks are produced in advance to accumulate an expected peak in

sales, due to promotion. Pipeline stocks are in transit from one location to another, for example, from the

factory to the depot. Decoupling stocks are used in multi-echelon situations to permit decision-making at

different echelons, allowing decision-making without direct impact. Inventory needs to play one of these roles

to have a significant impact on inventory control (Silver et al., 2016). The inventory is stored in warehouses

with capacity restrictions. Therefore, it is important to understand the role of inventory in the different

warehouses and depots before determining the actual usage of the capacity. A part of the total capacity of

the warehouses of De Heus is used for the pipeline inventory that is transshipped to other depots or factory

warehouses, while the other part of the capacity is used for selling the finished goods and consists of the cycle

inventory and congestion stocks. These different types of inventory have varying lengths of stays; the pipeline
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inventory stays shorter in the warehouses compared to the finished goods that are sold at that location. In

the model, it is important to distinguish between the pipeline and cycle inventory/congestion stocks.

3.4 Transportation

In transportation management, assigning a customer with a demand to a factory or warehouse capable of

supplying this demand is crucial. This assignment ensures that the customer’s demand is met and could be

expanded to implement routing for optimizing supply to customers. The most basic form of routing involves

assigning customers to a factory where a truck travels to the customer, delivers the supplies, and returns to the

factory. Supplying customers depends on truck characteristics and routing possibilities. If visiting different

customers in one trip is feasible, the Vehicle Routing Problem (VRP) could be applied (Bektas, 2006). The

characteristics used in a VRP are also significant to customer assignment without routing. Eksioglu et al.

(2009) defined various situations modelled in the VRP. Key demand characteristics include determinism and

splittability. Time considerations involve the need for time windows and multiple periods. In addition, details

about vehicles are crucial, whether they have capacity constraints, can reach only one point at a time, or

form a homogeneous fleet. Although routing to customers is not integrated into the optimization model for

De Heus, understanding these characteristics remains important due to bulk transport to direct farms and

transshipments between factories and depots. These transportation characteristics describe aspects similar

to the VRP.

3.5 Lot-Sizing Problem: Production-Inventory

The first possibility of gaining advantages in optimizing two parts simultaneously is by optimizing the pro-

duction and inventory. Optimizing the production costs is balancing the production costs with the inventory

cost. One of the first problems that defined it was a lot sizing problem named the Economic Order Quantity

(EOQ) by Harris (1913). The EOQ model uses a constant demand rate of a single single item and searches

for the optimal order point when the inventory and production costs are balanced. This model is later on

translated to a model with discrete time periods and can be seen as the simplest form of the dynamic lot

sizing problem is the Single-Item Uncapacitated Problem. This problem was initially discussed by Wagner

and Whitin (1958), and Zangwill (1969) subsequently demonstrated that it can be viewed as a fixed-charge

network problem. An extension of this problem, which provides a more realistic model, is the Capacitated

Multi-Item Lot Sizing Problem (CLSP). Depending on the factory’s characteristics, it can be either a large

bucket model, where several items can be produced on the same machine in the same time period, or a small

time bucket model, where only one product can be produced by a machine per time unit. The mathematical

formulation of the large bucket CLSP Jans and Degraeve (2008).

In this formulation, each period is given by t, and each product is given by i. It has the following decision

variables: production level xit, setup decision yit, and inventory variable sit. The associated costs are vcit,

scit, and hcit, respectively representing the production, setup, and holding costs of product i in period t.

T is the set of all periods, with m as the last period. The known demand for each period is given by

dit, and cumulative from period t until k is given by ditm. capt gives the production capacity, where vti

shows how many units of capacity product i consume. The ’big M’ is a large number, typically set equal to

min{capt/vti, sditm}.

min
∑
i∈P

∑
t∈T

(scit + yit + vcitxit + hcitsit) (3.1)

s.t. si,t−1 + xit = dit + sit ∀i ∈ P,∀t ∈ T (3.2)
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xit ≤ Myit ∀i ∈ P,∀t ∈ T (3.3)∑
i∈P

vtixit ≤ capt ∀t ∈ T (3.4)

xit, sit ≥ 0 ∀i ∈ P,∀t ∈ T (3.5)

yit ∈ {0, 1} ∀i ∈ P,∀t ∈ T (3.6)

The objective function 3.1 minimizes the total costs of start ups, set ups, variable production and inven-

tory. The demand balance equation is given in constraint 3.2. Constraint 3.3 gives the set up. Constraint

3.4 gives the capacity restriction. Constraints 3.5 and 3.6 gives the non-negativity and binary variables.

The research explores various alternatives. On one hand, lot-sizing formulations incorporate more oper-

ational and scheduling issues to model the production process, costs, and demand more accurately. On the

other hand, the model could also focus more on tactical and strategic problems, where operational lot-sizing

decisions constitute a core substructure (Jans & Degraeve, 2008). On the operational level, the setup costs

and times could not only apply to individual items but also to joint or major setups (Veinott Jr., 1969).

(Hindi, 1995) consider setup times for CLPS, viewing them as capacity lost due to the time needed for tasks

like cleaning, preheating, and adjustments. Production may occur in batches, where yit is not a binary value

anymore but a multiple of the number of batches produced (Van Vyve & Ortega, 2004). These batches,

for example, could be limited by the capacity of a production tank. Sometimes, it is assumed that either

production happens or it does not, and no half batch production is possible (Van Vyve & Ortega, 2004).

Stowers and Palekar (1997) and Bhatia and Palekar (2001) consider a variant of production called the joint

replenishment lot sizing problem, where products belong to the same family. This is also known as strong

setup interaction and is common in industries like oil refineries (Persson, Göthe-Lundgren, Lundgren, &

Gendron, 2004). Production costs may change when producing in larger volumes to obtain discounts. These

discounts are often determined by a piecewise linear cost function (Shaw & Wagelmans, 1998). Inventory

can be bounded by upper and lower limits at a customer (Jaruphongsa, Çetinkaya, & Lee, 2004). It can

also be extended with perishable inventory, it considers the uncapacitated single item lot sizing problem with

age-dependent inventory, which is lost when carried over to the next period. In some models, backlogging is

allowed for demand, which means that demand can be met at a later time, resulting in negative inventory

levels (Zangwill, 1966), (Federgruen & Tzur, 1993). This leads to a situation where lot sizing models with

stock outs are an alternative to backlogging and result in lost sales (Sandbothe & Thompson, 1990), (Aksen,

Altinkemer, & Chand, 2003). The demand time window for a single item uncapacitated dynamic lot sizing

problem is introduced by C.-Y. Lee, Çetinkaya, and Wagelmans (2001). In this approach, each demand has

an earliest and latest delivery date. When analyzing the time horizon of the schedules, a rolling horizon

approach is commonly used, where the first period is implemented, and the demand forecast is used to look

at one period further. The Wagner-Within algorithm still outperforms other heuristics (Simpson, 2001). The

rolling horizon approach can result in planning nervousness because schedules need to be changed frequently,

and these changes can result in extra costs (Kazan, Nagi, & Rump, 2000).

On the tactical and strategic level, hierarchical production planning is a procedure that addresses pro-

duction planning at different levels of aggregation (Bitran, Haas, & Hax, 1981). First, a decision is made at

a higher level, which provides restrictions to the lower level. Items are aggregated into families, and families

are grouped into types. A type represents a set of items with a similar demand pattern. Within families,

the items share the same setup. The decision is to determine the capacity for a type, with the objective of

minimizing the total setup costs for all families within a type (Liberatore & Miller, 1985).

For De Heus, the lot-sizing decision regarding how much should be produced in each period and what
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inventory level is the most efficient is of interest. Flow constraints for the produced finished goods, inventory

demand, stock levels, and end-of-period considerations are applied across various time steps. Specific cases

discussed in several papers, such as capacity reduction due to flushing time, grouped set-up times, and joint

replenishment times, are relevant to the De Heus model.

3.6 Inventory Routing Problem: Inventory-Transportation

The second way to simultaneously solve two parts of the supply chain is by combining inventory and trans-

portation. The inventory routing problem (IRP) is a fusion of inventory and transportation management,

first introduced by (Bell et al., 1983). This example aimed to demonstrate the impact on transportation

costs when making joint decisions about whom to serve, how much to deliver, and the routes to take to reach

customers Bertazzi and Speranza (2012). The problem entails a set of customers which are served by direct

shipping from a single depot. Transportation connections are provided between different nodes and from

the depot to the customers, each with specific costs based on distance. There are unlimited vehicles with

a certain capacity, known daily customer demands, and maximum inventory levels at the customers. The

objective is to minimize costs while providing a plan to serve the customers without stock-outs within the

given capacity restrictions.

The shipping times and planning horizon for these shipments could be seen as continuous replenishment

or discrete replenishment, where continuous means replenishment can occur at any time, while discrete can

only be performed at certain times. The time horizon can be long-term for an infinite horizon or finite

to address specific situations Bertazzi and Speranza (2012). The mathematical optimization model was

introduced by (Bertazzi & Speranza, 2002). It has a finite time horizon, H, with possible shipping times in

T = {0, 1, ..,H−1}. The model aims to determine the quantity sit of each product i ∈ I to ship at each time

t ∈ T , starting inventory levels dAi and dBi at suppliers A and customer B, and yt representing the number of

vehicles. The optimization model aims to minimize costs.

min
∑
i∈I

hi(d
A
i + dBi ) +

∑
t∈T

c

H
yt (3.7)

s.t.
∑
t∈T

sit = qiH ∀i ∈ I (3.8)

∑
i∈I

visit ≤ yt ∀t ∈ T (3.9)

dAi + qit−
t∑

k=0

sik ≥ 0 ∀i ∈ I, ∀t ∈ T (3.10)

dBt +

t∑
k=0

sik − qi(t+ 1) ≥ 0 ∀i ∈ I, ∀t ∈ T (3.11)

dAi , d
B
i ≥ 0 ∀i ∈ I (3.12)

sit ≥ 0 ∀i ∈ I, ∀t ∈ T (3.13)

yt ≥ 0 ∀t ∈ T (3.14)

The objective function 3.7 minimizes the total inventory and transportation costs. Constraint 3.8 ensures

complete shipment for each product, while equation 3.9 determines the number of trucks required. Inequalities

3.10 and 3.11 represent the stock-out constraints, and equations 3.12 to 3.14 define the non-negative decision

variables. In the context of De Heus, routing also occurs with direct shipping due to bag customers picking

up feed at one location and bulk customers that can be served with only one trip. This mirrors the problem
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described by (Bertazzi & Speranza, 2002), where only one customer and one depot are used. What is

introduced are the time frame and the inventory at the depot level which can also be applied to the model of

De Heus. The De Heus model should be able to serve multiple customers with direct shipping, so network-flow

constraints need to be added to enable this capability.

3.7 Multi-Commodity Network Flow Problem

After determining the necessity of network-flow constraints for implementing direct shipment to multiple

customers, the solution involves utilizing the multi-commodity network flow problem (MCNF problem). This

problem describes a network where multiple commodities need to be transported from designated origin nodes

to destination nodes, with the arcs connecting these nodes restricted by capacities (Salimifard & Bigharaz,

2022). The node-arc model, connecting nodes through arcs to form a network as described by (Wang, 2003),

entails several components. N represents a non-empty set of n nodes, while A signifies a non-empty set of

all arcs, and K denotes the non-empty set of all commodities, defining their respective origins (sk, supply

points) and destinations (tk, demand points). The capacity of arc (i, j) in the network is denoted by uij ,

with cij representing the cost per unit flowing through the arc (i, j). Furthermore, xk
ij signifies the flow from

node i to node j, and dk represents the total demand for commodity k.

min
∑
k∈K

∑
(i,j)∈A

ckijx
k
ij (3.15)

s.t.
∑

(i,j)∈K

xk
ij −

∑
(i,j)∈K

xk
ji =


0 if i ∈ N\{sk, tk},

+dK if i = sk,

−dK if i = tk.

∀i ∈ N, ∀k ∈ K (3.16)

∑
k∈K

xk
ij ≤ uij ∀(i, j) ∈ A (3.17)

xk
ij ≥ 0 ∀(i, j) ∈ A,∀k ∈ K (3.18)

The objective function 3.15 aims to minimize the total shipping costs. Constraint 3.16 represents the

supply and demand constraint, with positive values at the origin nodes and negative values at the destination

nodes in the network. Constraint 3.17 addresses the capacity constraint, while Constraint 3.18 imposes non-

negativity. These supply and demand constraints can be applied to the De Heus model, where factories serve

as supply nodes and customers as demand points. Depots, however, illustrate commodities that are neither

demand nor supply points, requiring incoming and outgoing arcs to balance each other.

3.8 Production Routing Problem: Production-Inventory-Transportation

After discussing the lot-sizing problem and the inventory routing problem separately, combining these models

offers an additional advantage due to the optimized flow of items through the supply chain (Chandra &

Fisher, 1994). The lot-sizing problem does not incorporate the routing decision, while the inventory routing

problem does not address decisions at the production site. The production routing problem (PRP) integrates

these models to optimize the entire supply chain, aiming to minimize total costs by integrating tactical and

operational decisions on lot-sizing, inventory, distribution, and vehicle routing (Lei, Liu, Ruszczynski, &

Park, 2006). In the PRP, the plant must decide in each period whether or not to make the product and

determine the corresponding lot size. Production incurs fixed setup costs and a cost per product. The lot

size is constrained by the production factory’s capacity. Deliveries are made from the plant using a limited
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number of vehicles with specific capacities. Efficient routing of these vehicles fulfills demand and incurs

transportation costs. Storing products in capacitated warehouses leads to inventory costs (Adulyasak et al.,

2015).

The base model of PRP is given by Bard and Nananukul (2009a). It describes a model with one factory

that produces a single product and has a capacity restriction on maximum production. The inventory

replenishment policy is based on the maximum level (ML), which means that customer demand needs to be

fulfilled but cannot be exceeded. The warehouse also has capacity restrictions. In the end, the distribution

is done by a limited-capacity homogeneous fleet of trucks, all with the same capacity. The PRP network is

defined in the complete directed graph G = (N,A), where N is the set of plants and customers, and A is the

set of arcs. The plant has node 0, and the customers are in the set Nc = N\0. T is the total time period, and

K is the number of vehicles. The unit production cost is given by u, and there is a fixed production setup

cost of f . hi represents the holding costs at node i, and cij represents the transportation costs from node i

to node j. The customer demand dit represents the demand of customer i in period t. The constraints on

capacity are given by C for production and Q for vehicles. Li is the maximum or target inventory level, and

Ii0 is the initial available inventory. The decision variables are as follows: pt for the production quantity in

period t, Iit for the inventory at the end of period t, yt equals 1 if there is production at the plant in period

t; otherwise, it is 0. z0t represents the number of vehicles leaving the plant, and zit equals 1 if a customer

is visited. xijt equals 1 if the route from i to j is used in period t, qit represents the quantity delivered to

customer i, Wit represents the load of a vehicle before making a delivery to customer i in period t. Further

Mt and M̃it are given by Mt = min
{
C,
∑l

j=t

∑
i∈Nc

dij

}
and M̃it = min

{
Li, Q,

∑l
j=t dij

}
.

min
∑
t∈T

upt + fyt +
∑
i∈N

hiIit +
∑

(i,j)∈A

cijxijt

 (3.19)

s.t. I0,t−1 + pt =
∑
i∈Nc

qit + I0t ∀t ∈ T (3.20)

Ii,t−1 + qit = dit + Iit ∀i ∈ Nc,∀t ∈ T (3.21)

pt ≤ Mtyt ∀t ∈ T (3.22)

I0t ≤ L0 ∀t ∈ T (3.23)

Ii,t−1 + qit ≤ Li ∀i ∈ Nc,∀t ∈ T (3.24)

qit ≤ M̃itzit ∀i ∈ Nc,∀t ∈ T (3.25)∑
j∈N

xijt = zit ∀i ∈ Nc,∀t ∈ T (3.26)

∑
j∈N

xjit +
∑
j∈N

xijt = 2Zit ∀i ∈ N, ∀t ∈ T (3.27)

z0t ≤ m ∀t ∈ T (3.28)

wit − wjt ≥ qit − M̃it(1− xijt) ∀(i, j) ∈ A,∀t ∈ T (3.29)

0 ≤ wit ≤ Qzit ∀i ∈ Nc,∀t ∈ T (3.30)

pt, Iit, qit ≥ 0 ∀i ∈ N, ∀t ∈ T (3.31)

yt, xijt ∈ {0, 1} ∀i, j ∈ N, ∀t ∈ T (3.32)

zit ∈ {0, 1} ∀i ∈ Nc,∀t ∈ T (3.33)

z0t ∈ Z+ ∀t ∈ T (3.34)

The objective function 3.19 minimizes the total production, setup, inventory, and routing costs. Con-
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straints 3.20 and 3.21 represent the inventory flow balance at the plant and customer levels. Constraint 3.22

enforces the setup and production capacity. Constraints 3.23 and 3.24 limit the maximum inventory levels

at the plants and customers, controlled by the Maximum Level (ML) policy (Archetti, Bertazzi, Laporte, &

Speranza, 2007). Constraint 3.25 allows only positive delivery quantities, while constraint 3.26 ensures that

each customer is visited only once. Constraints 3.27 maintain vehicle flow conservation. Constraints 3.28

restrict the number of trucks, and constraints 3.29 involve vehicle loading restrictions and sub-tour elimina-

tion based on the Miller-Tucker-Zemlin inequalities (Miller, Zemlin, & Tucker, 1960). Lastly, constraints 3.30

impose vehicle capacity constraints. Constraints 3.31, 3.32, 3.33 and 3.34 are the non-negativity, binary and

positive integer variables.

The PRP has various papers focusing on differentiations at the production, inventory, or transportation

levels. Different solution methods have also been used to solve the PRP within reasonable time frames.

Chandra and Fisher (1994) introduced the PRP with capacitated single plant and multi-product character-

istics. Instances were solved using a decomposition model, resulting in promising cost reductions. However,

research progress on the integrated problem was relatively slow due to its complexity and limitations, lead-

ing to high computational time. Fumero and Vercellis (1999) introduced a Lagrangian relaxation method

that could obtain a lower bound of the feasible solution, marking a significant step in the right direction.

Another substantial advancement came from Lei et al. (2006), who developed a two-phase approach with a

load consolidation algorithm. This approach tackled the problem of multiple plants producing a single item

and transporting it to multiple distribution centers using a homogeneous fleet. When discussing the PRP

under various inventory policies, namely the maximum level (ML) and the order-up-to level (OU), Y. Lee

et al. (2022) introduces the PDP. They solve the oxygen supply chain problem using both their own trucks

and third-party logistic trucks, employing a decomposition heuristic. This heuristic breaks down the problem

into higher and lower-level problems, optimizing one problem and using its output as input for optimizing

the other. The De Heus problem can depend on the constraints regarding the flow of finished goods, allowing

for inventory buildup during different time steps. The objective function aims to minimize total costs in

production, inventory, and transportation, which aligns with De Heus’s goals. Routing constraints are not

relevant for De Heus because only direct delivery is considered.

3.9 Literature overview

An overview of the literature for this thesis is presented in Table 3.1. The studies on the lot-sizing problem, the

inventory routing problem, and the production routing problem are consolidated in a single table, analyzed

based on the characteristic aspects of the supply chain. The different characteristics of the various models

are combined at the end to define the situation at De Heus as accurately as possible. First, the meanings

of the different symbols are explained, followed by the presentation of the table. A discussion is provided at

the end of the section.

For the production aspect, the number of plants (N.Plants) is denoted as a single plant (S) or multiple

plants (M). Similarly, the number of products (N.Products) optimized in the model is indicated as single

product (S) or multiple products (M). Various models of the Lot-Sizing Problem offer specific extensions

(Extension) that could be integrated into the model. Extensions in the production aspect encompass joint

setup time and costs (JST), reduced production capacity due to setup times (SUT<Cap), batch production

(BP), joint replenishment by family groups of products (JR), and piecewise linear costs based on different pro-

duction amounts (PLC). A checkmark(✓) denotes whether the production is capacitated (Cap.). Regarding

the inventory aspect, the inventory policy (Policy) is described by a maximum level (ML) or an order-up-to
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level (OUL). Extensions in inventory management include time windows for delivery (TW), allowance of

backlogging (BO), and the rolling horizon (RH) of the models. A checkmark indicates if the inventory is

capacitated (Cap.).The distribution segment is characterized by the fleet (Fleet), classified as homogeneous

(Hom.) when all trucks are identical or heterogeneous (Het.) when trucks have different characteristics. The

number of trucks can be unlimited (∞), limited (Lim.), a specific multiple amount of trucks (M), or a single

truck (S). A checkmark is provided if the trucks are capacitated (Cap.).

The solution method can be exact (E), heuristic (H), or computing a lower bound (L). Various methods

include Decomposition, Lagrangian relaxation, Variable Neighborhood Search (VNS), Branch-and-Bound,

dynamic programming, Wagner-Whitin, Silver-Meal, Mixed-Integer Programming (MIP), Branch-and-Cut,

and Tabu Search. These solution methods are given in the next Section 3.10

Table 3.1: Literature review

Production Inventory Transportation Solution method

Author

N
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a
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Veinott Jr. (1969) M S JST ML ✓ H Decomposition

Hindi (1995) S M SUT<Cap ML ✓ L/H Lagrangian relaxation/VNS

Van Vyve and Ortega (2004) S S BP ML ✓ H Dynamic programming

Stowers and Palekar (1997) S M JR ML ✓ L/H Lagrangian relaxation/Decomposition

Bhatia and Palekar (2001) S M JR ML ✓ L/H Lagrangian relaxation/VNS

Shaw and Wagelmans (1998) S S PLC ML ✓ H Dynamic programming

Jaruphongsa et al. (2004) S S ML TW ✓ H Dynamic programming

Zangwill (1966) S S ML BL ✓ H Dynamic programming

Federgruen and Tzur (1993) S M ML BL ✓ E/H Branch-and-Bound/Decomposition

C.-Y. Lee et al. (2001) S S ML TW ✓ H Dynamic programming

Kazan et al. (2000) S S ML RH ✓ H Wagner-Whitin/Silver-Meal/MIP

Bitran et al. (1981) S M ML RH ✓ H Decomposition

Bertazzi and Speranza (2002) ML ✓ Hom. ∞ ✓ E Branch-and-Bound

Bertazzi and Speranza (2012) ML/OUL ✓ Hom. ∞ ✓ H (proposed)

Chandra and Fisher (1994) S M ✓ ML Hom. ∞ ✓ H Decomposition

Lei et al. (2006) M S ✓ ML ✓ Het. Lim. ✓ H Decomposition

Adulyasak et al. (2015) S S ✓ ML/OUL Hom. M ✓ E/H Branch-and-Cut/ALNS

Bard and Nananukul (2009b) S S ✓ ML ✓ Hom. Lim. ✓ H Tabu Search

Fumero and Vercellis (1999) S M ✓ ML Hom. Lim. ✓ L/H Lagrangian relaxation

Archetti et al. (2007) S S ML/OUL Hom. S ✓ E/H Branch-and-Cut/MIP

Y. Lee et al. (2022) M S ML Hom. M ✓ H Decompostion

This work M M JST/SUT<Cap/JR ✓ ML RH ✓ Hom. ∞ (✓) H (Decomposition)

Table 3.1 provides information on the lot-sizing model, inventory routing problem, and the production

routing problem, which combines the first two models. The table includes information about the production,

inventory, and transportation aspects. The last column provides information about the solution methods

used to solve the models.

The production part, the model of this Thesis involves multiple plants (M) and different SKUs for animal

species with various growth phases at different production locations. Extensions required include joint set-up

times (JST) for SKUs belonging to the same recipe, reduced production capacity due to increased SKUs

causing overtime (SUT<CAP), and joint replenishment for SKUs within the same recipe (JR). De Heus

factories have limited production capacity. For inventory, De Heus operates a finished goods warehouse

limited by a specific area translated into a certain tonnage capacity. Inventory levels can be as high as possible

as long as the warehouse’s total capacity is not exceeded (ML). De Heus follows a recurring monthly cycle

where the output inventory from week 4 becomes the input inventory for week 1, requiring consideration of a

rolling horizon (RH). Time windows are not considered due to undefined delivery times and no backordering

allowance. For transportation, De Heus focuses on vehicle characteristics used for transshipments and direct
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farm deliveries. Transshipments utilize a third-party logistics company, implying an uncapacitated system

with an unlimited fleet of vehicles. Direct deliveries prioritize bulk capacity, already inclusive of truck capacity.

In both cases, there is a homogeneous fleet (Hom.) with unlimited vehicles (∞), wherein transshipments

have no capacity restrictions, while direct deliveries align with bulk capacity. Finally, the proposed solution

method for this thesis is a heuristic. If it is not possible to solve the problem within a reasonable time frame,

a decomposition heuristic is employed. This approach is explained in Section 3.10

3.10 Solution methods

If solving the De Heus problem within a reasonable time frame is not feasible, solution methods can be

employed. Various solution methods, detailed in Table 3.1, are utilized for determining lower bounds, pro-

viding exact solutions, or employing heuristics to solve larger instances. Not all of the solution methods are

elaborated upon; only the models most likely to be used in solving the problem for De Heus are discussed.

3.10.1 Lower bounds

Lagrangian relaxation is an approach used to obtain lower bounds by dualizing constraints with Lagrangian

multipliers and decomposing (Adulyasak et al., 2015). In a modified version of the PRP, Fumero and Vercellis

(1999) presented Lagrangian relaxation. They decomposed the PRP into smaller subproblems: Production,

Inventory, Distribution, and Routing. Production and inventory problems were addressed using inspection,

while a LP solver was employed for the distribution problem. The lower bound of routing was calculated by

minimizing the cost network flow problem. Despite moderate problem sizes—8 periods, 12 customers, and

10 different products—the solution was achievable with an average gap of 5.5%

3.10.2 Exact solution

To achieve an exact solution for the PRP problem, a Branch-and-Cut algorithm can be utilized. Within the

literature, few other methods exist to attain an exact solution (Adulyasak et al., 2015). The branch-and-cut

algorithm presented by Archetti et al. (2007) involves a single uncapacitated vehicle, while the algorithm

from Adulyasak et al. (2015) handles multiple capacitated vehicles. In the model by Archetti et al. (2007),

an additional inequality is introduced, requiring that the inventory level in period t− s− 1 must be sufficient

to fulfill the demand in that period if no delivery occurs in the period (t−s, t). This strengthens the lot-sizing

part of customer replenishment, resulting in a better lower bound. The algorithm was tested on an instance

with 14 customers and 6 periods, producing a solution within seconds.Adulyasak et al. (2015) extends the

model of Archetti et al. (2007) by incorporating multiple vehicles. They also refined the formulation of the

routing part and added the vehicle index, enhancing the symmetry-breaking constraints to disallow alternative

solutions due to the homogeneous fleet of trucks. This algorithm successfully solved instances with up to 35

customers, 3 periods, and 3 vehicles within 2-hour.

3.10.3 Heuristics

To obtain a solution when encountering various problem instances, it is possible to design a heuristic method.

The decomposition method, often utilized in several papers, acts as such a heuristic. Chandra and Fisher

(1994) introduced this method by optimizing the lot-sizing problem and employing a 3-opt procedure for its

enhancement. In a different approach, Lei et al. (2006) assumed direct shipments from plants to customers.

In their second phase, decisions from the initial phase are fixed within the optimization model of the VRP
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heuristic. The paper by Y. Lee et al. (2022) presents a distinctive strategy involving a two-level solution ap-

proach. An upper level concentrates on determining optimal production, inventory decisions, and customer

allocation to plants, disregarding routing decisions and considering only single customer routing. The lower

level addresses multi-customer routing decisions, assuming fixed production and inventory decisions. For the

upper level, the assumption is made that only one customer can be visited on each route. These models were

solved using Gurobi. Archetti et al. (2007) designed a mixed-integer problem that decomposes the PRP into

an uncapacitated lot-sizing problem and an inventory routing sub problem. They developed an algorithm

that matches production amounts to demand and solves the inventory routing problem based on this input.

After an initial solution is found, it attempts to shift production to different times to reduce inventory and

transportation costs, restarting the algorithm if the best possible solution is reached. Bard and Nananukul

(2009b) devised a tabu search where each iteration moves from the current solution to the best neighboring

solution. They applied a reactive tabu search (RTS), creating the initial solution by solving the PRP without

routing constraints, assuming equal transportation costs for the round trip. Subsequently, the routing was

constructed using swap and move operators. Adulyasak et al. (2015) employed the adaptive large neighbor-

hood search (LNS). They first created an enumeration scheme using two decomposed problems. In the second

stage, two operators were chosen, alternating combinations of customer-period and removing/inserting them

elsewhere. Thirdly, a minimum cost flow was used to minimize total costs. The algorithm halted upon

reaching the maximum number of enumerations.

3.11 Multi-objective optimization

In addition to prioritizing cost minimization, it is also enticing to explore an alternative objective function.

Customer satisfaction is one such objective that could be taken into account. However, optimizing costs

and customer satisfaction simultaneously is not directly possible with the current model. Therefore, it is

necessary to find a method capable of handling this situation These problems that require more than one

objective function are called multi-objective optimization (Gunantara, 2018). Three different methods of

multi-objective optimization are explained. First, the weighted sum method is analyzed because it is simple

and easy to use. Second, the lexicographic method is analyzed because it prioritizes the objective functions.

The third method is the ϵ–constraint method because it optimizes one problem while treating the other

objective function as a constraint and it is capable of solving problems that are not convex (Gunantara,

2018).

These multi-objective methods are used to create a Pareto front. With the Pareto method, it is possible

to keep each part of the solution separate and not mix them up during optimization. By examining dominant

points, it is possible to determine which solutions are better and which ones are not. Dominant solutions

usually occur when one objective cannot increase without reducing or increasing the other objective function

(Gunantara, 2018). The solutions in this set are called Pareto optimal solutions. In the Pareto method,

two terms need to be noted: the anchor point, which is obtained as the best of an objective function, and

the utopia point, which is obtained as the combination of the best objectives from both objective functions.

However, this utopia point is infeasible. The optimization of two objective functions can be described in a

Pareto optimal front (POF) on a two-dimensional surface (Chong & Żak, 2013). An example of a POF can

be seen in Figure 3.1. In this figure, there are dominated and non-dominated points on a two-dimensional

axis. The non-dominated points are connected with a line called the Pareto front. The anchor points and

the utopia point are also given. The methods provided are used to create this Pareto front, so in the next

paragraphs, an analysis is conducted on which methods perform best in creating this front.
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Figure 3.1: Pareto Optimal Front (POF) example (Gunantara, 2018)

The weighted sum method (WSM) is a traditional approach commonly used for resolving multi-objective

models (Boyer, Sai Hong, Pedram, Mohd Yusuff, & Zulkifli, 2013). WSM combines two objectives into one

by multiplying each objective by a weight provided by the decision maker. This technique transforms the

objectives into a single dimension through a convex combination. Since f1(x) and f2(x) have different units,

they are normalized, and a unified objective function is established by adding the weighted normalized objec-

tives. This process converts the multi-objective model into a single-objective model, as given by Equations

3.35 and 3.36. The advantages of using WSM are its ease of application and implementation into your model.

However, this method also has disadvantages. It is challenging to determine the weights, and the outcome of

the optimization heavily depends on the chosen weights.

min f(x) =
w1 · f1(x)

f ·
1(x) · w1 + w2

+
w2 · f2(x)
f ·
2(x)

(3.35)

w1 + w2 = 1 (3.36)

The Lexicographic method, prioritizes objectives in a feasible set according to a lexicographic order,

meaning that lower-priority objectives are optimized as long as they do not interfere with the optimization of

higher-priority objectives (Isermann, 1982). Initially, the objective function with the highest priority, denoted

as f1(x), is optimized. Subsequently, the solution of this optimization f1(X
·), is utilized in optimizing f2(x)

under the condition f1(x) ≤ f1(X
·). An advantage of this method is that objective functions do not require

normalization for comparability, and it is possible to create a Pareto front by optimizing the objective

functions in the designated order. However, a disadvantage is the need for repeated optimization for each

objective function, and the order of the objective functions in a lexicographic method is important for the

optimization. It is more interesting to observe the relationship between the objective functions without any

preferences.

The ϵ-constraint method is a technique in which one objective is optimized while the remaining objectives

are translated into constraints and incorporated into the optimization process (Deb, 2001). Instead of altering

the objective function alone to optimize multiple objectives simultaneously, this method involves optimizing

multiple objective functions while restricting the optimization by adding constraints. This allows multi-

objective optimization without a predefined sequence of importance. The simplest form of the ϵ-constraint

method is represented by Equations 3.37 and 3.38.
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min f2(X) (3.37)

s.t. f1(X) ≤ ϵ, X ∈ S (3.38)

An improvement upon the ϵ-constraint method was introduced by Mavrotas (2009), termed AUGME-

CON. The conventional ϵ-constraint method calculates the bounds by simply maximizing or minimizing both

functions and looking at the objective value of the other objective functions. The AUGMECON method

proposes to create a payoff table, aiming to find non-dominant solutions for the other objective functions as

well. This approach leads to narrower bounds, improving the density of the solution area and providing more

meaningful results. It serves as an enhancement to the original ϵ-constraint method, which, alongside the

weighting method, stands out as one of the most commonly utilized approaches for constructing represen-

tations of the Pareto front. The ϵ-constraint method offers certain advantages over the weighting method,

particularly in scenarios involving discrete variables (such as Mixed Integer or Pure Integer problems). The

AUGMECON method has been further enhanced, resulting in the introduction of AUGMECON2, which

builds upon AUGMECON by incorporating information from slack variables in each iteration (Mavrotas &

Florios, 2013). These enhancements primarily focus on reducing computation time by avoiding numerous

redundant iterations. To outline the steps necessary for AUGMECON2, a simplified flowchart of the original

AUGMECON2 algorithm is provided in Figure 3.2. The extended version, designed for scenarios with more

than two objective functions, can be found in Appendix A

Figure 3.2: AUGMECON 2 flowchart with two objective functions.

The first step involves initialization. During this phase, a payoff table must be created. This table displays

the maximum or minimum optimal value per objective function and the corresponding outcome of the other

objective function, depending on whether minimization or maximization is the goal. These values serve as

anchor points. Objective function f1(x) is utilized in the objective function, where fk(x) is transformed into

a constraint. The minimum value is represented by fmink. With these anchor points established, the ranges

rk for the objective function can be determined. The stepsizek is computed by dividing the range rk by the

number of intervals gk. To complete the initialization, the counters ik and np need to be set to zero. In the
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second step, the loop over ik is initiated. Since there are only two objective functions, it loops only over

i2. The multi-objective equations of AUGMECON2 that need to be solved during the iteration are given by

equations 3.39 and 3.40.

min {f1(x) + eps · (S2/r2 + 10−1 · S3/r3 + · · ·+ 10−(p−2) · Sp/rp)} (3.39)

s.t. f2(x)− S2 = e2

f3(x)− S3 = e3

...

fp(x)− Sp = ep ∀p ∈ K (3.40)

x ∈ S and Si ∈ R+

Where f1(x) is the objective function, ep the parameters of the RHS for the specific iteration drawn from

the grid points of the objective functions p. The parameters rp are the ranges of the respective objective

functions. Sp are the surplus variables of the respective constraints and ϵ ∈
[
10−6, 10−3

]
. For each objective

function p, we calculate the objective function range. The RHS of the corresponding constraint in the ik-th

iteration in the specific objective function will be:

ek = fmink + ik × stepk

where fmink is the minimum from the payoff table and ik the counter for the specific objective function

(Mavrotas & Florios, 2013).

If the problem is feasible the number of Pareto solution np is counted. After that it is checked if the

surplus variable corresponds to the innermost objective function. In this case, it is the objective function

with k = 2. Then, we calculate the bypass coefficient as:

b = int

(
S2

step2

)
where int() is the function that gets a real number to its integer part. If the surplus variable S2 surpasses the

value of step2, it implies that in the next iteration, the solution will remain identical except for the surplus

variable, which will decrease by step2. This makes the iteration redundant, allowing us to bypass it as it does

not generate any new Pareto optimal solutions. The bypass coefficient b signifies the number of consecutive

iterations we can skip. After the bypass calculation, the new value of i2 is known. If the total number of

iterations g2 has not been reached yet, the algorithm continues until its value is reached, and the algorithm

stops.

The AUGMECON2 method offers a systematic approach for applying the ϵ-constraint method more effi-

ciently, thereby minimizing unnecessary iterations. Consequently, the results obtained are more meaningful,

stemming from a comprehensive representation of the efficient set. AUGMECON2 achieves this by searching

within the ranges defined in the payoff table. Depending on the running times of the De Heus model, it

proves advantageous when the multi-objective optimization method efficiently reaches an optimal solution,

free from biases introduced by manual inputs.

3.12 Conclusion

he problem at De Heus represents a variant of the production routing problem, where the routing aspect

is replaced with direct delivery to customers. The model is based on the production routing problem,

incorporating joint set-up times, reduced capacity, and joint replenishment from papers related to lot-sizing
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problems. Flow constraints from the multi-commodity network flow problem govern the flow of finished goods

from factories to customers, with the option to store finished goods in warehouses at different time frames.

The ability to make decisions on production levels, including stock numbers and transportation arcs, leads

to a model that most accurately reflects the situation at De Heus.

Literature research on production, inventory, and transportation characteristics reveals that the problem

faced by de Heus is closely related to the base model of the Production Routing Problem introduced by Bard

and Nananukul (2009b). This problem involves determining the production volume for each week, managing

inventory positions for every week, and planning the routing to customers. While Bard’s model deals with a

single factory, de Heus operates multiple factories. The study by Lei et al. (2006) involves multiple factories

and pick-up locations, making its constraints applicable to our case. While the inventory component is based

on Bard’s model, which uses only a single SKU, de Heus incorporates multiple SKUs, as seen in Fumero and

Vercellis (1999). Regarding production characteristics, insights from Lot-sizing problems are relevant, such

as joint replenishment from Stowers and Palekar (1997) and total production capacity reduction from Hindi

(1995). Capacity constraints for production and warehouse, as well as flow constraints. Transportation,

particularly for transshipments to depots and factories, remains relatively unrestricted, whereas bulk trucks

are limited by their capacity. The routing aspect of Bard’s model can be omitted and replaced by additional

flow constraints based on the principles outlined by Wang (2003).

For multi-objective optimization, three different methods are analyzed. Firstly, the weighted sum method

is introduced due to its simplicity, where the objective functions are assigned weights and optimized simulta-

neously. However, because determining the weights heavily influences the optimization outcome, this method

is less suitable. The lexicographic method prioritizes the objective functions based on their importance. An

advantage is that it does not require normalization for comparability. However, implementing a dedicated

order of importance can be challenging for multi-objective optimization, particularly for de Heus, as they

aim to investigate the relationship between both objective functions, which are valued evenly. Lastly, the

ϵ-constraint method is introduced, which presents the objective functions as constraints. The AUGMECON2

method enhances the ϵ-constraint method by reducing running time to avoid unnecessary iterations and nar-

rowing the solution space by considering non-dominating anchor points. Notably, the AUGMECON2 method

does not impose any order of importance, making it the most suitable multi-objective optimization method

for de Heus.

It needs to be investigated whether the problem instance of De Heus is too big to execute the optimization

within a reasonable time. If it is not possible to solve it exactly within this timeframe, the design of a heuristic

becomes necessary. The decomposition heuristic appears well-suited to this situation, as it enables breaking

down the problem into smaller parts. These parts are optimized individually in sequence to derive the best

possible overall solution.
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4 Problem description and solution approach

In this section, the conceptual model is explained, the mathematical model is presented, a toy problem is

illustrated to explain the mathematical model and the algorithm and the objective function of the multi-

objective optimization are introduced. Section 4.1 explains the conceptual model in words, first providing

general remarks. Afterward, the incorporation of the company requirements for demand, production, inven-

tory, and transportation is explained. At the end, a list of constraints, requirements, and assumptions is

provided. Section 4.2 introduces the sets, indices, parameters, and decision variables. The objective func-

tion is presented, and each constraint is explained. Section 4.3 illustrates the outcome of the mathematical

model. Section 4.4 provides the objective functions and algorithm necessary for multi-objective optimization.

Section 4.5 summarizes the findings and concludes what is necessary from the problem description for the

experimental design and results.

This section addresses the research question, ’How should the solution approach be designed?’ along with

its sub-questions, which represent smaller components of the overall inquiry.

(a) How is the optimization problem to be solved?

(b) What are assumptions and requirements of the solution approach?

4.1 Conceptual model

The problem faced by De Heus can be described as a production assignment problem, where the routing aspect

of the original production routing problem is simplified to customer assignment and includes characteristics

from lot-sizing problems such as joint replenishment and capacity reduction due to flushing times. This

problem is defined on a complete directed graph G = (N,A), where N represents the set of factories I,

transshipment warehouses J , pick-up warehouses K, and customers L. A is the set of arcs defined as

(i, j) : i ∈ I, j ∈ J, i = j ; (j, k) : j ∈ J, k ∈ K ; (k, l) : k ∈ K, l ∈ L. Over a finite set of time periods W , there

are P different productions which are produced from one of the N recipe product groups. The products can

be classified as P bu for bulk products and P ba for bag products, and further classified as P dh for De Heus

products and Pndh for Proconco/ANCO products.

Figure 4.1 illustrates the transportation route of the finished goods. The process begins with production

at factory i, where the feed is exclusively produced for its corresponding transshipment warehouse j (where

i = j). From the transshipment warehouse, the finished goods are transported to any pick-up warehouse

k, where they are subsequently allocated to a customer l. These products may be either bag products,

picked up by the customers themselves, or bulk products, delivered to the customers. Consequently, bulk

products can only be supplied from the factory locations. The distance between factories and transshipment

points is 0 because they are located at the same position, whereas the distance between the transshipment

warehouse and the pick-up warehouse is represented by the internal distance matrix idmjk, and from the

pick-up warehouse to the customer by the external distance matrix edmkl. These distances are determined

based on the shortest traveling distance.

Each customer l has a demand dwlp for each product p for every week w in tons, which is divided over

the week according to a certain percentage of the total sales volume svwp . The production at the factories is

capacitated ci, as is the bulk capacity cbi. This production capacity decreases as the amount of production

increases; the amount of production runs is based on the average run size bsn, which helps to determine the

number of runs, multiplied by the capacity loss los to calculate the remaining capacity. In the factories, it

is not possible to produce all types of feed; certain product groups are allowed at a factory pgafip, and the
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brand that is allowed in the factory is indicated by bpafi. The warehouse capacity at the factories and depots

is given by whck and is calculated based on the average length of stay of goods that are only transshipped

to other locations lostp and the average length of stay of goods that are sold from that warehouse lospp.

The model aims to minimize the total cost, which consists of the sum of direct variable costs fdlci,

direct material costs fdmci, factory overhead costs foci, fixed production set-up costs fpsci, holding costs

h, internal transportation costs tcif / tcid, external transportation costs tce, and bulk transportation costs

tcb. This minimization takes place while considering the requirements and assumptions described in Section

4.1.1.

Figure 4.1: Diagram netwerk factory, transshipment and pick-up points

4.1.1 Requirements & assumptions

Before creating the mathematical model, it is useful to provide an overview of the requirements, and assump-

tions made to facilitate the model. The requirements are given by:

• The monthly total demand is divided over four weeks. Every week, the demand needs to be met within

the period. So no backorders are allowed.

• Customers are served from the same location every week to maintain constant quality.

• Customers are only assigned to one pick-up location or are only served from one factory by bulk truck

to maintain constant quality.

• A product sold from a location can only be produced in one factory to maintain constant quality.

• De Heus products can only be produced in De Heus factories.

• Specific product groups can only be produced in specific factories.

• Bulk can only be transported directly from the factory and cannot be stored for the next period.

• Production and warehouse capacities are limited.

• Bulk can only be produced at specific factories and is directly sold from these locations.

• Transshipment warehouses are used to keep track of products that are produced at a factory and are

directly moved to another factory/depot.
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• The model needs to calculate the number of production runs required to fulfill the demand and even-

tually add feed to stock.

The assumptions required for the model are as follows:

• It is assumed that the production is first-time right, which means that the model does not take rework

into account.

• A fixed production run size is employed to estimate the number of production runs, resulting in them

being merely counted rather than optimized. Consequently, the model does not aim to optimize pro-

duction runs to achieve maximum capacity utilization, as it is relatively straightforward to extend the

run length in practice but quite complex to do so during optimization in a model. One drawback of this

approach is that small production runs are not considered to be full production runs (e.g., one run),

requiring a flush. Thus, based on the total volume of high, medium, and low volume products at the

factory, the model is capable of estimating the number of production runs necessary to produce this

total volume.

• The capacity for transshipments between the transshipment warehouses and pick-up warehouses is

unlimited because they are performed by a third-party logistics company.

• All customers can be convinced with a discount to drive to another location.

• SKU setup times are negligible because the delay at the bagging stage is insignificant, owing to the

presence of multiple filling stations. So there is no time loss between the switch of different SKUs within

the recipe.

• There are always enough raw materials to produce the feed.

• If a customer has both bag and bulk demand, all demand can only be fulfilled from a factory where

bulk can be produced. Since a customer can only be assigned to one location, it must be a location

where bulk feed can be produced.

4.2 Mathematical formulation

The mathematical formulated gives the production assignment problem which is based on the problem of

Bard and Nananukul (2009b), which serves as the foundational model for the production routing problem.

However, the routing components are transformed to direct customer assignment. Extensions have been

developed to address specific cases, such as those related to De Heus.

4.2.1 Sets & Indices

The indices are created to refer to different elements. These distinct sets represent specific nodes in trans-

portation, defining the product or recipe product group, or indicating the time period. These sets consist of

elements representing the transportation network, products, product groups, recipes, and time periods. The

subsets cover specific parts of a set based on particular characteristics.
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Sets

I Set of factories i where i = {1, .., I}
D Set of depots d where d = {1, .., D}
J Set of transshipment warehouses j where j = {1, .., J}
K Set of pick-up warehouses k where k = {1, .., I ∪D}
L Set of customers l where l = {1, .., L}
P Set of products p where p = {1, .., P}
N Set of recipe product groups n where n = {1, .., N}
W Set of time periods in week w where w = {1, ..,W}

Subsets

P bu Subset of products p which are bulk pbu where pbu ⊆ {1, .., P}
P ba Subset of products p which are bag pba where pba ⊆ {1, .., P}
P dh Subset of products p which are De Heus pdh where pdh ⊆ {1, .., P}
Pndh Subset of products p which are Proconco/ANCO pndh where pndh ⊆ {1, .., P}

4.2.2 Parameters

The parameters provide input for the model. All the necessary information is known in advance and is either

directly stored in the model or used to calculate the required data.

Parameters

dwlp l ∈ L, p ∈ P , w ∈ W Demand from customer l for product p in week w in tons

fdlci i ∈ I Direct variable costs per ton at factory i

fdmci i ∈ I Direct material costs per ton at factory i

foci i ∈ I Factory overhead costs at factory i

fpsci i ∈ I Fixed production set-up costs at factory i

iipk p ∈ P , k ∈ K Initial inventory of product p at pick-up location k

svwp p ∈ P , w ∈ W Percentage of sales volume from total volume for product p in week w

h Holding costs

tcif Transportation costs intern from factory to factory per km

tcid Transportation costs intern from factory to depot per km

tce Transportation costs external per km

tcb Transportation costs bulk per km

idmjk j ∈ J , k ∈ K
Internal distance matrix from from transshipment warehouse j to pick-up

warehouse k in km

edmkl k ∈ K, l ∈ L External distance matrix from pick-up warehouse k to customer l in km

sedmkl k ∈ K, l ∈ L
Subtracted shortest distance external distance matrix from pick-up

warehouse k to customer l in km

ci i ∈ I Capacity of factory i in tons

cbi i ∈ I Bulk capacity of factory i in tons

los Capacity loss due to flushing time between production runs

pgpp p ∈ P Product group of product p

pgafip i ∈ I, p ∈ P Product group allowance of product p at factory i

bpafi i ∈ I Brand production allowance in factory i
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lostp p ∈ P
Average length of storage period before transshipped to other warehouse

of product p

lospp p ∈ P
Average length of storage period before complete sold out at pick-up

warehouse of product p

whck k ∈ K Warehouse capacity at pick-up warehouse k in tons

bsn n ∈ N Average production run size of recipe n

pnrnp n ∈ N , p ∈ P Recipe relationship matrix of recipe n and product p

M ’Big M’ is a very large number

4.2.3 Decision variables & Auxiliary decision variables

The decision variables constitute the output of the model. The model’s choices are utilized to provide advice

to De Heus on enhancing their performance. The central decision within the model revolves around deter-

mining the quantity of product to produce at each factory and to which location the customers need to be

assigned. While most variables are directly used to calculate the total cost of the objective function, other

variables function as constraints to accommodate De Heus’ specified limitations; these types of variables are

referred to as auxiliary decision variables.

Variables

twijp i ∈ I, j ∈ J , p ∈ P , w ∈ W
Transport from factory i to transshipment warehouse j of product p

in week w in tons

xw
jkp j ∈ J , k ∈ K, p ∈ P , w ∈ W

Transport from transshipment warehouse j to pick-up warehouse k

of product p in week w in tons

qwklp k ∈ K, l ∈ L, p ∈ P , w ∈ W
Transport from pick-up warehouse k to customer l of product p in week w

in tons

pdwip i ∈ I, p ∈ P , w ∈ W Production amount in factory i of product p in week w in tons

bpwin i ∈ I, n ∈ N , w ∈ W Amount of produced production runs in factory i of recipe n in week w in tons

ipwkp k ∈ K, p ∈ P , w ∈ W
Amount of inventory at pick-up point warehouse k at the end of week w

in tons

yi i ∈ I Indicator binary variable for overhead costs at factory i

rwjkp j ∈ J , k ∈ K, p ∈ P , w ∈ W
Indicator binary variable for using transportation route from transshipment

warehouse j to pick-up warehouse k of product p in week w

swklp k ∈ K, l ∈ L, p ∈ P , w ∈ W
Indicator binary variable for using transportation route from pick-up

warehouse k to customer l of product p in week w

slotswkp k ∈ K, p ∈ P , w ∈ W Amount of slots used at pick-up point k for product p in week w

4.2.4 Objective function

The objective function 4.1 aims to minimize total costs throughout the entire supply chain, extending from

production to customer transportation. The first segment calculates the following: (i) production costs per

ton, aggregated across all factories i; (ii) holding costs for all inventory at pickup locations k; (iii) internal

transportation costs per kilometer per ton for supplying pickup points (factory-factory and factory-depot)

k from a transshipment warehouse j; (iv) external transportation costs, accounting for discounts offered to

customers k who must travel to a pickup location l that is not the closest one; (v) bulk transportation costs
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per ton. The second segment calculates setup costs for production runs per week w, considering recipes

under n associated with factory i. The third segment concludes the objective function by incorporating the

overhead cost per factory i.

min
∑
w∈W

∑
p∈P

(∑
i∈I

(fdlci + fdmci) · pdwip + h ·
(∑
k∈K

ipwkp +
∑
k∈K

∑
l∈L

qwklp · lospp · 0.5

+
∑
j∈J

∑
k∈K

xw
jkp · lostp · 0.5−

∑
k∈I

xw
kkp · lostp · 0.5

)
+
∑
j∈J

∑
k∈J

tcif · xw
jkp · idmjk · 2

+
∑
j∈J

∑
k∈K\J

tcid · xw
jkp · idmjk · 2 +

∑
k∈K

∑
l∈L

tce · qwklp · sedmkl · 2 · bbp

+
∑
k∈K

∑
l∈L

tcb · qwklp · sedmkl · 2 · (1− bbp)

)
+
∑
w∈W

∑
n∈N

∑
i∈I

fpsci · bpwin +
∑
i∈I

foci · yi (4.1)

The basis of the objective function is derived from the model of Bard and Nananukul (2009b). The

production, setup, inventory, and routing costs are adapted to the situation of De Heus. The production run

costs are developed logically.

4.2.5 Constraints

Multiple constraints used to model the case of de Heus. These constraints serve various purposes within the

model, encompassing limitations (such as production capacity), conditions (ensuring fulfillment of demand),

and auxiliary elements (for instance, quantifying production run amounts). This section provides an expla-

nation for each constraint, detailing its purpose and real-world significance.

Constraint 4.2 ensures that all products p produced at factory i are transported from the factory to the

transshipment warehouse j. This condition must hold true for every week w.

pdwip =
∑
j∈J

twijp ∀i ∈ I, ∀p ∈ P,∀w ∈ W (4.2)

Constraint 4.3 ensures that all products entering transshipment warehouse j must be transported to a

pickup point warehouse k. As per the model, inventory at the transshipment warehouse is not permissible.

However, constraint 4.14 will account for the occupation of the warehouse by these goods. This condition

must be satisfied for every week w.∑
i∈I

twijp =
∑
k∈K

xw
jkp ∀j ∈ J, ∀p ∈ P,∀w ∈ W (4.3)

Constraint 4.4 ensures that bulk goods can only be delivered to the pickup warehouse k of factory i. Bulk

feed can only originate from the factory where it is produced. Since this rule is implemented within the

same model handling bagged feed (which can be supplied from various locations), a constraint is necessary to

enforce this limitation. This constraint applies exclusively to products p categorized as bulk; these products

are in the subset P bu. The variable xw
jjp indicates that transshipment warehouse j is identical to the pickup

warehouse j (normally k). This condition must be met for every week w.∑
i∈I

twijp = xw
jjp ∀j ∈ J, ∀p ∈ P bu,∀w ∈ W (4.4)
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Constraints 4.5 and 4.6 describe the flow equations at the pickup warehouses k. Incoming goods originate

from transshipment warehouse j and are supplemented by inventory from the previous week w. For week 0,

the inventory is initially set in the optimization as iipk and is specified in Constraint 4.5. For subsequent

weeks w, the inventory is represented as ip
(w−1)
kp and is detailed in Constraint 4.6. Outgoing goods are directed

to customer l, while any remaining goods are retained as inventory ipwkp. These conditions must be fulfilled

for every product p.

iipk +
∑
j∈J

xw
jkp =

∑
l∈L

qwklp + ipwkp ∀k ∈ K, ∀p ∈ P,w = 0 (4.5)

ip
(w−1)
kp +

∑
j∈J

xw
jkp =

∑
l∈L

qwklp + ipwkp ∀k ∈ K,∀p ∈ P,w > 0 (4.6)

Constraint 4.7 ensures that all products p produced at factory i are sent to the transshipment warehouse

i (originally j), which corresponds to the factory of production. The transshipment warehouse serves as the

hub from which products are distributed to other warehouses or transferred to the finished goods warehouse

at the factory location, and it is essential for calculating warehouse occupation. This condition must be met

for every week w.

pdwip = twiip ∀i ∈ I, ∀p ∈ P,∀w ∈ W (4.7)

Constraints 4.8 and 4.9 ensure that the demand dwlp from customer l is met from pick-up point k. The

demand in week w is contingent on the sales volume svwp and results in stable demand for bulk products and

increasing demand for bag products. Customers with bagged products P ba can be supplied from any pick-up

location, as outlined in 4.8. However, customers purchasing bulk products P bu can only be supplied directly

from the factory, restricting the pick-up location to the set of factories I within the summation, as detailed

in 4.9. ∑
k∈K

qwklp ≥ dwlp · svwp ∀l ∈ L,∀p ∈ P ba,∀w ∈ W (4.8)

∑
k∈I

qwklp ≥ dwlp · svwp ∀l ∈ L,∀p ∈ P bu,∀w ∈ W (4.9)

Constraint 4.10 defines the production capacity constraint for factory i. The total production at a

factory must not exceed its capacity ci. This capacity is influenced by the number of production runs bpwin

produced at the factory due to flushing los. The factory’s capacity begins at 100% and decreases through

the multiplication of the production run quantity and the associated loss per production run. This condition

applies to every week w.∑
p∈P

pdwip ≤ ci · (1−
∑
n∈N

bpwin · los) ∀i ∈ I, ∀w ∈ W (4.10)
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Constraint 4.11 ensures that factory i can only produce products p permitted within the product group of

the product pgpp. The binary variable pgafip is set to 1 if the product group can be produced in the factory;

otherwise, it is set to 0. The large number M represents an arbitrary large value. This condition applies to

every week w.

pdwip ≤ M · pgafip ∀i ∈ I, ∀p ∈ P,∀w ∈ W (4.11)

Constraint 4.12 ensures that products p with the De Heus brand that are in subset P dh can only be

manufactured in De Heus factories, denoted by bpafi (set to 1). Due to quality distinctions between factories,

De Heus aims to maintain high quality, achievable only by producing their products in a De Heus factory.

This condition applies to every week w.

pdwip ≤ M · bpafi ∀i ∈ I,∀p ∈ P dh,∀w ∈ W (4.12)

Constraint 4.13 defines the bulk capacity constraint for factory i. The total bulk production at a factory

must not exceed its capacity cbi. Only the bulk products, represented by bbp (set to 0 for bulk), are summed

to calculate the utilized capacity. This condition applies to every week w.∑
p∈P

qwklp · (1− bbp) ≤ cbi ∀i ∈ I, ∀w ∈ W (4.13)

Constraints 4.14, 4.15, 4.16,and 4.17 specify the warehouse capacity at the pick-up warehouse k. The

total warehouse capacity for bag products P ba at the pick-up location must not exceed its limit whck which

is given the maximum amount of slots slotswkp. Warehouse occupation arises from two factors: the average

storage duration of products at the pick-up warehouse lospp and the average duration of transshipment

goods staying there lostp. The total occupation of a warehouse adjacent to the factory k ∈ I comprises three

parts: (i) Inventory ipwkp at the finished goods warehouse; (ii) products sold at the factory warehouse qwklp

(iii) products transshipped from the factory’s transshipment warehouse j to pick-up location p in xw
kjp; (iV)

minus the products transshipped from the factory’s transshipment warehouse to the same factory’s pick-up

warehouse xw
kkp. Subtracting these products is necessary as they are already accounted for in part (i), as

detailed in 4.14. Depot warehouses that are situated at a factory side k ∈ D do not contain transshipment

goods; hence, only inventory contributes to the occupation, as stated in 4.15. The translation from the used

amount of slots to the warehouse capacity is given in 4.16. Additionally, assuming that bulk feed P bu cannot

be stored implies that bulk products cannot have inventory, as described in 4.17. These conditions apply to

every week w.

∑
p∈P ba

ipwkp +
∑
l∈L

qwklp · lospp · 0.5 +
∑
j∈K

xw
kjp · lostp · 0.5− xw

kkp · lostp · 0.5


≤ slotswkp · 6 ∀k ∈ I, ∀w ∈ W (4.14)
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∑
p∈P ba

(
ipwkp +

∑
l∈L

qwklp · lospp · 0.5

)
≤ slotswkp · 6 ∀k ∈ D,∀w ∈ W (4.15)

∑
p∈P ba

slotswkp ≤ whck/6 ∀k ∈ K,∀w ∈ W (4.16)

∑
p∈P bu

ipwkp ≤ 0 ∀k ∈ K, ∀w ∈ W (4.17)

Constraint 4.18 ensures that the factory overhead costs in the objective function are applied only when

there is production pdwip at factory i. In this scenario, the binary variable yi is set to 1. M represents a large

number. The overhead costs are applied for the entire planning horizon.∑
w∈W

∑
p∈P

pdwip ≤ M · yi ∀i ∈ I (4.18)

Constraint 4.19 computes the minimum quantity of production runs bpwin, each consisting of bsn tons of

feed per production run, required to fulfill the production quantity of the products in the recipe pdwip and

pnrnp. The production run size depends on the overall production volume of recipe n, resulting in larger

production run sizes for higher volumes and smaller production run sizes for lower volumes. These conditions

are applicable to every factory i and for every week w.

bsn · bpwin ≥
∑
p∈P

pdwip · pnrnp ∀i ∈ I, ∀n ∈ N, ∀w ∈ W (4.19)

Constraints 4.20 and 4.21 ensure that the demand for a product p from a customer l can only be fulfilled

by a single pick-up warehouse k. De Heus aims to maintain consistent feed quality, achievable by supplying

the customer from the same factory. The auxiliary variable swklp is employed in Constraint 4.20 to tally the

number of different pick-up warehouses, ensuring it does not exceed one in Constraint 4.21. These conditions

apply for every week w.∑
w∈W

qwklp ≤ M ·
∑
w∈W

swklp ∀k ∈ K, ∀l ∈ L,∀p ∈ P (4.20)

∑
w∈W

∑
k∈K

swklp ≤ 1 ∀l ∈ L,∀p ∈ P (4.21)

Constraints 4.22 and 4.23 ensure that products p needed at pick-up warehouse k can only be fulfilled by

a single transshipment warehouse j. The auxiliary variable rwjkp is employed in Constraint 4.22 to tally the

number of different transshipment warehouses, ensuring it does not exceed one in Constraint 4.23. These

conditions apply for every week w.∑
w∈W

xw
jkp ≤ M ·

∑
w∈W

rwjkp ∀j ∈ J, ∀k ∈ K, ∀p ∈ P (4.22)
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∑
w∈W

∑
j∈J

rwjkp ≤ 1 ∀k ∈ K,∀p ∈ P (4.23)

Constraints 4.24, 4.25 and 4.26 provides the definition of the variables. Where Constraint 4.24 gives the

non-negativity, Constraint4.25 gives the binary and Constraints 4.25 give the positive integer.

twijp, x
w
jkp, q

w
klp, pd

w
ip, bp

w
in, ip

w
kp ≥ 0 ∀i ∈ I, ∀j ∈ J, ∀p ∈ P,∀w ∈ W, ∀k ∈ K,∀l ∈ L,∀n ∈ N (4.24)

yi, r
w
jkp, s

w
klp ∈ 0, 1 ∀i ∈ I, ∀j ∈ J, ∀k ∈ K,∀p ∈ P,∀w ∈ W, ∀l ∈ L (4.25)

slotswkp ∈ Z+ ∀k ∈ K,∀p ∈ P,∀w ∈ W (4.26)

Constraints 4.2, 4.3, and 4.4 are derived from the flow constraint of the model by Bard and Nananukul

(2009b) and Wang (2003). However, they are extended from 2 to 3 constraints because transshipment

warehouses are added. The concept of handling multiple products in these and subsequent constraints is

derived from Fumero and Vercellis (1999), while the inclusion of multiple factories originates from the model

of Fumero and Vercellis (1999) as well. Constraints 4.5 and 4.6 are based on Bard and Nananukul (2009b) but

adjusted to account for the added locations. Constraint 4.7 is implemented by myself because it is necessary

for the characteristics of transshipment warehouses. The demand in 4.8 and 4.9 is based on the distribution

throughout the month, and in the previous constraints, it is replaced by qwklp, which represents the arcs from

the pick-up warehouses to the customers. This implementation is developed by myself. Constraint 4.10 is a

capacity constraint with reduction due to set-up times and is based on Hindi (1995), with the relationship

with joint set-up times coming from Stowers and Palekar (1997) and adjusted by myself for the structure

with an average run size based on the classification of sales volume and recipes. Constraints 4.11, 4.12, and

4.13 are implemented by myself and are necessary for the specific characteristics of the problem at De Heus.

The warehouse capacity constraints 4.14, 4.15, 4.16, and 4.17 are developed by myself. After analyzing the

situation at De Heus with transshipment goods and selling goods, the length of stay is determined and used

to calculate the occupation. Additionally, working with slots instead of capacity is implemented by myself.

Constraint 4.18 for overhead costs comes from Bard and Nananukul (2009b), while Constraint 4.19 is designed

by myself to count the number of production runs. Constraints 4.20, 4.21, 4.22, and 4.23 are designed by

myself to meet the product quality requirements at De Heus.

4.3 Toy problem illustration

An illustrative solution of the model is presented in Figure 4.2. This toy problem shows three factories, two

depots, four bag customers, and two bulk customers. The problem presents a solution for a recipe consisting

of two products, one bag product, and one bulk product. The factories are represented by the blue blocks,

the depots by the green diamonds, the bag customers by red circles, and the bulk customers by orange circles.

The dotted lines represent internal transportation routes, while solid lines represent customers picking up

the feed at the location or bulk trucks driving to customers. The reason for not switching the direction of

the lines where customers pick up the feed is that it also represents the flow of the finished goods. If the

direction were changed, it would not be clear anymore how the finished goods flow. All possible solutions

that could be used by the optimization model are presented in the figure.
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Figure 4.2: An illustration of the toy instance solution of the model

This model presents the solution for a specific week of the month, where each customer exhibits a particular

solution within the given requirements and constraints. Customer 1 demonstrates a scenario where demand is

fulfilled from the inventory of depot 1. In period w−1, the model maintained some stock in the depot to meet

the demand in week w. Although Factory 1 is closer to Customer 1 than Depot 1, due to the optimization

being for a single product, it may be necessary for this product to also come from Depot 1 if other products

already originate from there. This constraint arises because only one factory/depot is allowed to serve the

customer, even if Factory 1 is closer for that specific product. Customer 2, being a bulk customer, is served

directly from a factory. If this customer were a bag customer, it would have been possible to serve them from

Depot 1, but bulk customers can only be served directly from a factory. Customer 3 is served from Depot

2, which is restocked by Factory 3. This situation may occur if the warehouse capacity limit of Factory 2 is

already reached, and because the average warehouse occupancy is lower for transshipment goods, it could be

advantageous to transfer the goods to a depot for sale from that location. Customer 4 is served from Factory

2, even though Factory 3 is closer and capable of producing the same product. However, Factory 3 cannot

produce bulk feed, so it is not possible to serve Customer 4 from that factory. Customer 5 is served directly

from the factory. Additionally, a customer can be served from a factory warehouse. Customer 6 is served

from the warehouse of Factory 1. Although Factory 1 itself is unable to produce this product, perhaps due

to limitations in the production of the type of feed or the brand, it is still possible to serve the customer from

that location because the factory has a warehouse that can be supplied by another factory.

Calculating the costs of the objective function is challenging due to the difficulty in determining warehouse

occupation for a specific week. Nonetheless, it is still possible to compute the costs for the other components

of the objective function. From this solution, we know that 675 products were produced at factory 2 and

200 at factory 3. Assuming that the direct variable costs and the direct material costs together are $10 per

ton for factory 2 and $12 per ton for factory 3, the production costs are calculated as follows: 675 · $10 +

200 · $12 = $9, 150. Factory overhead costs are only taken into account if the factory was in production;

for this product, factory 1 was not producing, indicating that it was not in production at all. The overhead

costs for factory 2 are $5000 and for factory 3 are $7500, totaling $12,500. The fixed production set-up costs

depend on the production run size, which, in turn, depends on the sales volume. Assuming that this recipe

is a high-volume recipe, the average run size is 36 tons. If the flushing costs are $8 at factory 2 and $10 at
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factory 3, the calculation is as follows: (675/36) · $8 + (200/36) · $10 = $205.56. The internal transportation

costs are calculated as (20 · 25 · 2 + 40 · 200 · 2) · $0.03 = $510, and the external transportation costs are

(20 ·75 ·2+5 ·200 ·2+20 ·50 ·2+25 ·3 ·2) ·$0.031 = $221.65. The bulk transportation costs are calculated as

(80 ·300 ·2+50 ·300 ·2) ·$0.011 = $858. Since it is difficult to determine the holding costs for one week for one

product, this part is not included in this toy calculation. Adding all the costs together, the total cost for this

product for one week is calculated as follows: $9, 150+$12, 500+$205.56+$510+$221.65+$858 = $23, 445.21.

The different customer assignments to factories or depots provide insights into the choices and limitations

of the model. The cost calculation also provides an overview of how the costs are minimized by the model.

4.4 Multi-objective optimization

The current model focuses solely on minimizing total costs. In this model, external transportation kilometers

are translated into costs and added to the cost function. The total number of kilometers is multiplied by a cost

factor, assumed to represent the discount needed to persuade customers to drive longer distances. These costs

are also estimated based on the scale advantage that De Heus has when transporting finished goods closer

to the customer. However, for De Heus, it is difficult to estimate the exact factor needed because it could

vary depending on the situation; some customers are easier to convince than others. To address this issue,

external transportation costs could be excluded from the objective cost function and reinterpreted as a new

objective function called ’Customer Satisfaction.’ Customers prefer to minimize the distance traveled as it is

more cost-effective for them, but this preference conflicts with cost minimization because it requires accepting

less optimal production and transportation planning. This is due to having fewer opportunities to assign

customers to pick-up locations, which results in higher costs for internal transportation, production costs,

etc. To simultaneously optimize cost minimization and minimize the extra kilometers driven by customers,

a multi-objective optimization approach is required. For this analysis, the AUGMECON2 method for multi-

objective optimization is utilized. To apply this method, two objective functions are considered: 1. The cost

function excluding the ’external’ driving costs of the customers, and 2. The quantity of ’extra’ kilometers.

These objective functions are represented by Equations 4.27 and 4.28.

f1(x) : min
∑
w∈W

∑
p∈P

(∑
i∈I

(fdlci + fdmci) · pdwip + h ·
(∑
k∈K

ipwkp +
∑
k∈K

∑
l∈L

qwklp · lospp · 0.5

+
∑
j∈J

∑
k∈K

xw
jkp · lostp · 0.5−

∑
k∈I

xw
kkp · lostp · 0.5

)
+
∑
j∈J

∑
k∈J

tcif · xw
jkp · idmjk · 2

+
∑
j∈J

∑
k∈K\J

tcid · xw
jkp · idmjk · 2 +

∑
k∈K

∑
l∈L

tcb · qwklp · sedmkl · 2 · (1− bbp)

)

+
∑
w∈W

∑
n∈N

∑
i∈I

fpsci · bpwin +
∑
i∈I

foci · yi (4.27)

f2(x) : min
∑
w∈W

∑
p∈P

∑
k∈K

∑
l∈l

qwklp · sedmkl · 2 · bbp (4.28)

In Section 3.11 a flowchart is given of the AUGMECON2 that needs to be followed to apply AUGMECON2

on two objective function. This flowchart is translated into an algorithm that needs to be defined during the

experimental phase in the next chapter. This algorithm is given in Algorithm 1, the steps of these algorithm

and the bypass value are explained in Section 3.11.

The problem solved during the multi-objective optimization in Algorithm 1 is defined in equations 4.29

and 4.30. In these equations, ϵ has a value of 10−5, and the surplus S2 is a variable.
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Algorithm 1 AUGMECON2 algorithm

Initialization of loop and parameters

while i < gk do

e2 = fmink − i · stepk
Solve Problem with f1(x) and f2(x)

b = int
(

S2

step2

)
i+ = 1 + b

end while

min {f1(x) + ϵ · (S2/r2} (4.29)

s.t. f2(x)− S2 = e2 (4.30)

4.5 Conclusion

The model developed is a production assignment problem based on the production routing problem from

the literature, adjusted with characteristics from the lot-sizing problem, including joint replenishment and

capacity reduction due to flushing times. The objective function aims to minimize the total costs of production

per ton, production run cost, factory overhead costs, holding costs, internal transportation costs, external

transportation costs, and bulk transportation costs. To accurately reflect the situation at De Heus, constraints

are added to the model. Flow constraints secure the transportation lines from the production facilities to the

customer, along with inventory opportunities. It ensure that bulk customers are only served from a factory,

each customer can only receive finished goods from one location, and the resupply of a certain finished good

can only be done by one factory. Capacity constraints for production, warehouse, and bulk are included, as

well as limitations for factories in producing all types of feed and brands. Customer demand must be fulfilled

every week of the month, with no backorders allowed. Some necessary assumptions include no rework being

performed, incorporating a fixed production run size, and assuming customers are willing to go to every

assigned location when compensated. This formulation of the objective function and constraints enables

modeling of the actual case of De Heus, resulting in realistic results suitable for experimental analysis.

The multi-objective optimization objective functions focus on customer satisfaction, expressed in the extra

kilometers customers need to drive. The first objective function aims to minimize costs without considering

external transportation costs. The second objective function aims to minimize the sum of extra kilometers

driven per ton.
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5 Experimental design

In this section, the data instances are defined, and the experiments are designed. Section 5.1 introduces the

current case dataset and data instances. Section 5.2 presents the experimental setup design, which is divided

into two phases: Phase 1 optimizes the base model and Phase 2 contains the sensitivity analysis and multi-

objective analysis. Section 5.3 summarizes the findings and provides a clear overview of the experiments.

This section addresses the first part of answering the research question, ’How does the solution approach

perform compared to the current situation?’ along with its sub-questions, which represent smaller components

of the overall inquiry.

(a) How to test the performance of the solution approach?

(b) What are the different experimental scenarios that should be tested?

5.1 Data instances

The model is designed to solve the problem instance given by the actual situation of De Heus in Vietnam.

The current case of De Heus consists of the customers and factories located in the South-East region of

Vietnam. This scenario comprises 3 factories, 3 depots, 1117 customers, and 494 SKUs, which are derived

from 194 recipes. The customer locations are obtained from the ERP system and translated into latitude and

longitude coordinates. Demand data is sourced from December 2023, as this provides the most realistic case

for optimization. Using the average demand of 2023 would require including customers who are no longer

ours and implementing SKUs that have been replaced by newly developed or combined SKUs, which makes it

more valuable to use the latest known demand. For all experiments, a computer with an Apple M2 processor

and 8GB of RAM is used. The experiments are performed using Gurobi version 11.0.0 in Python 3.11.5.

The model is designed to solve the problem instance of the actual situation of De Heus in Vietnam.

Constraints are used to make the model applicable to this specific situation, including distinctions between

bag and bulk customers, restrictions for different brands/products, and the use of depots. Currently, it is

applied to the southeast region, but with new customer input from the north, middle, and Mekong regions,

optimization could be extended to these areas as well. Additionally, it may be possible to apply the model

to other business units of De Heus in different countries, although adjustments may be necessary due to

differing characteristics. For example, in the Netherlands, all feed is supplied by bulk trucks to customers,

and these trucks are allowed to visit multiple customers in a single trip, requiring adjustments to the model

for that scenario. Business units in countries undergoing similar economic development processes bear the

closest resemblance to the situation of De Heus in Vietnam, making them candidates for applying the model

to other realistic scenarios, particularly those with smaller farms that have mostly bag demand.

To assess the model’s performance under varying problem sizes, artificial instances from different regions

are deployed. These instances simulate scenarios where the problem size differs, either smaller or larger than

the original instance. These instances vary in the number of customers and factories. The problem instances

are artificially created by generating random numbers to obtain X and Y coordinates and assigning pseudo-

random demand to the customers, based on the actual demand of December 2023. The number of customers

varies from 10, 20, 50, 100, 200, 500, 750, 1000, 1200, to 1300. The number of factories varies from 3 to

4, resulting in a total of 10 · 2 = 20 instances. The actual scenario consists of 1117 customers, 3 factories,

and 494 SKUs. The problem instances differ from the actual situation in that they are plotted in an area

ranging from -500 to 500 for the X and Y dimensions. The actual situation is based on the latitude and

longitude coordinates of the factories, depots, and customers. The optimization concept remains the same,
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but the distances from customers to factories/depots are calculated using the Euclidean distance formula

(
√
(x2 − x1)2 + (y2 − y1)2) instead of driving distances determined by the shortest route in Google Maps.

The problem instances provide an idea of the solution quality and solving time if the actual situation of De

Heus is scaled up or applied to a different region/business unit

5.2 Experimental set-up

The data sets that contain the current case of De Heus and artificial data instances are created. An experiment

setup needs to be designed to conduct a proper analysis of the current situation and also explore future

opportunities that could be tested using the mathematical model. This experimental setup design is divided

into two phases:

• Phase 1: Optimizing base case.

• Phase 2: Sensitivity analysis and multi-objective optimization.

An overview of the different phases and their components can be seen in Figure 5.1.

Figure 5.1: Experimental set-up

Within the phases, there are five different experiments labeled from E1 to E6. Experiments E1, E2, E3,

and E4 are performed on the current case instance of De Heus, optimizing the base case and conducting a

sensitivity analysis. This means that the outcome of these experiments could potentially be implemented

directly. Experiments E1, E5, and E6 are performed on artificial data related where customer locations and

demand are artificial. These experiments show the performance of the model if the data instances change in

the future for the actual situation. They also demonstrate the influence of using multi-objective optimization

in comparison with single-objective optimization. The different experiments are listed in 5.1, with detailed

explanations provided in 5.2.1 and 5.2.2.

5.2.1 Phase 1 - E1: Optimization base case

The optimization of the base case provides the most common solution for the current case, because it aims to

use the current resources in the most cost-effective way, so without any further investments. This optimiza-

tion is also performed on artificial data instances to demonstrate the quality of the model. The base case
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Experiment

ID
Title Goal

E1
Optimization

base case

The experiment consists of two parts: optimizing the base case with

the real dataset and testing the performance of the base model on

different artificial data instances. The outcome of optimizing the

base case provides De Heus with the most common solution, which

represents the most cost-effective way to utilize the current resources.

The artificial cases are used to assess the performance of the model;

these cases vary in the number of customers, factories, and SKUs.

The goal is to obtain the optimal solution for the base case and gain

insights into the model’s performance.

E2
Expanding ca-

pacities

This experiment evaluates the expansion of the capacities of one of

the factories in the current case situation. It provides insights into

the expansion of production and warehouse capacities and also in-

vestigates a combination of both. The goal is to determine if it is

cost-effective to invest in a capacity extension.

E3

New potential

production lo-

cation

This experiment evaluates three potential production locations to

replace the old factory of Bien Hoa. The goal is to determine which

location would be the most suitable as a new site for the future.

E4 SKU reduction

This experiment evaluates the influence of reducing the number of

SKUs to two options: either two bag SKUs and one bulk SKU, or

one bag SKU and one bulk SKU. The goal is to determine if reducing

the number of SKUs alleviates production planning and leads to a

more cost-effective situation.

E5
Single objective

analysis

This experiment optimizes the different data instances for the individ-

ual objectives and shows the differences in computational time for the

various sizes of the instances. The goal is to set up the single-objective

optimization results to compare them with the multi-objective opti-

mization.

E6
Multi-objective

optimization

This experiment performs multi-objective optimization using the

AUGMECON2 algorithm. This algorithm provides a Pareto front

diagram for the different instances. The goal is to gain insights into

the relationship between the two objective functions.

Table 5.1: Experimental design

optimization results in better utilization of resources, leading to lower total costs. This is also the goal of this

optimization: to provide a solution that includes customer assignment to specific locations, in combination

with production planning per week detailing which SKUs need to be produced at which location and how they

reach the customer. In addition to modeling the actual situation, artificially created scenarios of customers

and demand are used to assess the limitations of the model and provide insights into its performance. These

scenarios instances differ from the base case in terms of size, location, and customer demand.

59



5.2.2 Phase 2 - Sensitivity analysis and multi-objective optimization

The second step is to utilize the optimized base case as the current optimum and conduct a sensitivity analysis

to assess the influence of changes in the current situation. Questions from the company are translated

into experiments, offering the opportunity to test if the solution found in Phase 1 remains effective and

to determine what actions the company should take if the situation changes in the future. The last two

experiments of this phase involve conducting single-objective analysis and multi-objective analysis to obtain

insights into the relationship between the objective functions of total costs and customer satisfaction.

• E2 : Expanding capacities

• E3 : New potential production location

• E4 : Reducing SKUs

• E5 : Single-objective analysis

• E6 : Multi-objective analysis

E2: Expanding capacities

In the current situation, some factories are reaching their limitations in production and warehouse capacity.

For this reason, this experiment investigates the influence of expanding capacity at locations where it is

possible. The production capacity of a factory is increased by a certain percentage to measure the impact

on the final solution. Additionally, the warehouse capacity is extended to assess if the combination leads to

even better performance. The different extensions of factory production or warehouse capacity will only be

applied to the Dong Nai factory. The reasons for not applying it to the Bien Hoa and Bien Duong factories

are that the Bien Hoa factory will be closed within four years, meaning that De Heus is not willing to make

large investments in this factory anymore. As for the Bien Duong factory, it is not possible to expand at

the current location due to limited space. Therefore, the experiments include capacity increments of 5% and

10%, which can be combined with a warehouse capacity increment of 250 tons (from 3,500 to 3,750 tons) or

500 tons (to 4,000 tons). The costs are evaluated and compared with the potential investment required to

reach the proposed capacity.

E3: New potential production location

Currently, De Heus operates three different factories in the South-East region: Dong Nai, Bien Hoa, and Binh

Duong. The factory in Bien Hoa is located in an area that the government of Vietnam plans to redevelop for

a more high-tech industry in the coming years. Consequently, De Heus needs to find a new location to provide

feed to customers because, due to capacity constraints, handling the task with only two existing factories is

not feasible. Typically, there are two opportunities for De Heus to acquire a new factory location: acquiring

an existing company and utilizing its factories to produce feed, or constructing a new factory in a chosen

location. The first solution is unpredictable so the second opportunity is likely to be evaluated using the

created model, as it enables the easy implementation of new potential factory locations and comparison of

solutions across different factories to determine the best location. These factory locations are not randomly

chosen; the government has already designated industrial zones where De Heus can build a new factory.

Three of these locations are selected and analyzed in sub-experiments a, b, and c. Alongside the production

manager of De Heus, potential locations for a new factory are examined, and the following provinces are

chosen based on the current situation and anticipated future shifts in demand: Binh Duong, Binh Phuoc,
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and Dak Nong. While De Heus already has a factory in the Binh Duong province, it is currently operating

at full capacity, making expansion unfeasible due to space constraints. Consequently, a new factory in that

area could cater to customers in the region instead of transporting feed from factories located farther away.

The characteristics of the newly built factory can be found in 5.2. The capacity and production costs

are the same for all factory locations except for the direct material costs. The direct material costs depend

on the driving distance from the harbor to the production location (supply by barge is not possible for all

locations). The Binh Duong province has a direct material costs of 4.91$ per ton, Binh Phuoc has 5.62$

per ton and Dak Nong has 17.23$. The location of Dak Nong is much farther from a harbor, resulting in

a significant increase in inbound logistic costs. All costs are considered in consultation with the production

managers, logistics managers, and operations officers

Factory
Production

capacity

Warehouse

capacity

Bulk pos-

sibility

Direct

var.

prod.

costs

Direct

material

costs

Fixed

prod.

set-up

costs

Factory

overhead

costs

New fac-

tory
18,250 ton 2,500 ton 3,650 ton 5.48$

4.91-

17.23$
7,3$ 45,990$

Table 5.2: New factory location capacity and costs.

E4: Reducing SKUs

Currently, De Heus produces 494 different SKUs due to the acquisition of Proconco/ANCO. This situation

poses challenges in production planning and warehouse capacity, prompting De Heus to initiate efforts to

reduce some SKUs by removing low-volume SKUs from their assortment. However, the actual impact of

these reductions remains unclear, as only several SKUs are removed without calculating the overall results

in total costs or observing it in optimized production planning. This experiment explores the possibility of

merging SKUs that share the same recipe, effectively consolidating products with identical feeds. Collabora-

tion with the nutritionist clarifies the relationship between recipes and SKU numbers, enabling a reduction

in the number of SKUs per recipe. For example, a recipe that initially has five different SKU numbers (in-

dicating the same feed for all SKUs) is reduced to only two or one SKU number to experiment with SKU

reduction. It’s important to note that no recipes are merged, as this requires well-considered decisions in

consultation with the sales and nutrition teams, which is beyond the scope of this project. The presence of

numerous SKUs increases warehouse occupancy because each SKU requires its own slot in the warehouse

and production. Therefore, reducing the number of SKUs allows testing if this reduction in occupancy is

cost-effective. Additionally, it can be observed if the reduction in the number of SKUs leads to changes in

production planning. The experiments to be conducted involve two bag SKUs and one bulk SKU, as well as

one bag SKU and one bulk SKU.

E5: Single-objective optimization

Before the multi-objective optimization can be applied to the artificial instances, it is necessary to test the

artificial data instances on the individual objective functions used in the multi-objective optimization. In-

stead of optimizing based solely on total costs, customer satisfaction could be included as a factor. This

would involve considering the inconvenience to customers, such as longer driving distances, not only in terms

of cost but also in terms of overall satisfaction. Therefore, the objective functions would be: minimizing
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the total costs (without external transportation costs) and minimizing the extra kilometers driven by the

customers. The artificial data instances that are used in the multi-objective optimization are also employed

in the single-objective optimization. These instances vary the number of customers from 10, 20, 50, 100 to

200, while maintaining consistency in the number of factories and SKUs, with 3 factories and 494 SKUs,

mirroring the actual case.

E6: Multi-objective optimization

For the multi-objective optimization, both objectives of total costs and minimization of the extra kilometers

driven by the customers are optimized using the AUGMECON2 algorithm. During this algorithm the total

extra driven kilometers per ton of feed are expected to be zero in theory. This is because all bag feed can be

transported as close as possible to the customer, as there are no limitations on that part. However, in the

model, there are still extra kilometers that need to be driven for some customers. The reason for this is that

all customers can only receive feed from one location, which results in extra kilometers for customers with

bulk and bag demand. The bulk feed demand can only be covered by factories capable of producing bulk, so

customers can only be assigned to one of these locations. This means that bag feed demand is also assigned

to that location, even if it is not necessarily the closest location for the customer. For example, a closer

location could be a depot or a factory that is unable to produce bulk feed. This situation only occurs when

a customer has bulk/bag demand. The restriction of De Heus and Proconco/ANCO feed can be resolved by

transportation between the factories.

The optimization for the current case takes approximately 3 hours, which is impractical for generating

a Pareto front with several iterations (around 10). Consequently, the AUGMECON2 multi-objective opti-

mization is conducted on artificial data instances introduced in experiment E5, focusing on single-objective

optimization. The payoff table necessary for initializing the AUGMECON2 algorithm is created during ex-

periment E5, which involves single-objective optimization. In this experiment, the problem instances are

solved with either min f1(x) or min f2(x), providing the values for the payoff table when the other objective

is also minimized.

5.3 Conclusion

For the design of the experiments, the data instances are introduced. The real data, the current case instance,

consists of 3 factories, 3 depots, 1117 customers, and 494 SKUs derived from 194 recipes. This real data

instance is used to perform experiments with practical impact. The artificial data instances are used to test

the performance of the model and to perform multi-objective optimization.

The first phase is about the optimization of the base model and it contains the first experiment, E1. In

this first experiment, the base model is optimized. This means that within the given resources, the total

costs are optimized to their minimum. For the current case, the objective function, the minimization of the

total costs, is performed once on the current case dataset. For the artificial data instances, the datasets are

used to show how the model is performing in comparison with the current case.

The second phase contains the sensitivity analysis and the multi-objective optimization. For the sensitivity

analysis, the current case is used to perform experiments which have a relevant contribution to practice.

Experiment E2 involves expanding the production and/or warehouse capacity of the factory in Dong Nai.

Experiment E3 tests three new potential production locations to replace the factory in Bien Hoa. Experiment

E4 tests the influence of reducing the number of SKUs. These experiments yield outputs which could

directly be used in the current organization (after some modifications) or could be used as a basis for an
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investment plan. The next part of phase two contains the single-objective optimization and the multi-

objective optimization, which are performed on artificial data instances. Experiment E5, the single-objective

optimization, provides the optimization of the total costs (without external transportation costs) and the

extra kilometers driven by the customers separately. In experiment E6, multi-objective optimization, these

single objectives are optimized in a multi-objective optimization using AUGMECON2. This multi-objective

function is not performed on the current case because the optimization of the current case takes around 3

hours to get a solution, as AUGMECON2 requires several iterations (around 10) to create a Pareto front.

Therefore, the algorithm is tested on smaller artificial instances which provide insights into its performance

if the problem instances are increased.

Different experiments are conducted, where the basic experiment is to solve the current case, providing

insights into how De Heus can improve itself with the current resources. The first part of phase two gives

insights into the influence of changes that could result from an impactful change. The second part of phase

two shows how the model would react if the focus is not only on minimizing the total cost but also on customer

satisfaction. These experiments provide a wide and specific overview of the applications of the model.
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6 Experimental results

In this section, the experimental results are analyzed, and conclusions are drawn based on these findings.

Section 6.1 provides an explanation of the outcome data from the optimization process. Section 6.2 outlines

the validation and verification procedures. Subsequently, Section 6.3 presents the results of experiment E1,

which includes optimizing the base case for both the current scenario and artificial instances. Section 6.4

delves into the sensitivity analysis conducted in experiments E2, E3, and E4, along with the results of the

single-objective optimization from experiment E5 and the multi-objective optimization from experiment E6.

Section 6.5 summarizes the findings and draws conclusions regarding the next steps.

This section addresses the research question, ’How does the solution approach perform compared to the

current situation?’ along with its sub-questions, which represent smaller components of the overall inquiry.

(b) How does the solution approach perform for the different scenarios?

(c) What insights does the sensitivity analysis on possibilities within the companies provide?

6.1 Results of the optimization

The optimization results are solved by the optimization model implemented in Python. The output provides

an Excel sheet where the results are presented. This file contains the following information: total costs per

factory and depot, a list per SKU per factory indicating how much should be produced in each week and in

which factory, the assigned pick-up locations for the customers, the transshipments of SKUs from each factory

to other factories or depots for every week, and the average warehouse occupation based on the amount of

tons and the number of slots. This information is used to create three different overviews for comparing

the different situations: Overview of total costs, overview of variables, overview of production, and a map

showing customer assignments.

6.2 Validation and verification

The validation of the model occurs during its development. Each constraint added to the model is individually

tested in an artificial environment to ensure that the expected changes are implemented correctly. For

example, it is verified whether all bulk customers are assigned to factories capable of producing bulk products.

To validate the larger model, an Excel file is created containing information about production volumes at

factories, transshipment of finished goods, inventories, and customer assignments for each week. This data

allows for a comprehensive review of the solution, verifying whether the model’s decisions align with the

given constraints and if they are logical. In addition to the Excel file, the model generates a map illustrating

customer assignments as output. This visualization enables direct assessment of the logical coherence of

customer assignments. The step-by-step approach of adding and verifying constraints, along with detailed

data exports and customer assignment visualizations, facilitates ongoing validation of the model both before

and after optimization.

The verification of the model is conducted in consultation with the production managers, the COO, and

CEO. Initial results are discussed during individual meetings. After incorporating their feedback, the model

and results are once again verified through a presentation covering the experiments that impact the current

case. The optimization results of the base model closely match the actual situation in terms of production

amounts, and the customer assignment provides logical options. Therefore, the model produces results that

can be implemented in the real situation.
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6.3 Phase 1 - Optimizing base case

E1: Optimizing base case - current case

The optimization for the base case is performed on the current case. This data instance is listed in Table

6.1 and provides information about the objective function, computational time, the gap, and the extra

kilometers driven. The objective function represents the total costs of the optimization, while computational

time refers to the running time of the model, limited to 3 hours (10,800 seconds). The gap indicates the

percentage by which the objective function deviates from the lower bound, and the extra kilometers driven

account for the additional distance customers travel to pick up feed from a location that is not the closest

to them.The objective function is $1,097,765.73, which will be detailed explained in the coming paragraphs.

The computational time is 10,800 seconds, indicating that the optimization was stopped before an optimal

solution was reached, with a gap of 0.0193%. The extra amount of driven kilometers is 1,390,082.4 and is

used to calculate the external transportation costs.

Data instance
Objective func-

tion ($)

Computational

time(s)
gap (%)

Extra driven

KMs (km)

’Current case’ $1,097,765.73 10,800 (max) 0.0193% 1.390.082,48

Table 6.1: Experiment E1 - optimization performances (current case)

The differences in costs between the current situation and the optimized current case can be seen in Table

6.2. The production costs and factory overhead costs are almost the same. This is because the amount of tons

produced in the different factories is similar for both situations. The factory overhead costs are the same for

both situations because all factories are necessary in the total production volume, so it is not possible for the

model to close one of the factories. The production set-up costs are reduced from $25,014.87 to $21,939.83 ,

which is a reduction of -12.3%. The reason for this reduction is that the feed is better distributed over the

factories, which means that volumes are bundled together to reduce the amount of production runs, resulting

in less switching time. The holding costs are reduced from $23,009.60 to $15,431.18, which is a reduction of

-32.9%. Currently, the company is producing as much as possible to be sure that the warehouses are as full

as possible, which leads to a service level where De Heus is always able to serve the customer as quickly as

possible. This high availability in the amount of goods in stock leads to high holding costs, but according to

the model, it is not necessary to have these high inventory levels to still meet all demand in time. Internal

transportation costs can be reduced from $40,565.06 to $27,235.43, which gives a reduction of -32.9%, but

the external transportation costs increase from $41,178.33 to $45,365.42 with 10.2%. The combination of the

internal and external transportation costs is reached by assigning the customers to a more central pickup

location. In general, this leads to the fact that customers need to drive a longer distance to pick up their

feed, but they get compensated with a discount. A more optimal assigning of the customers to a pickup

location leads to less internal transportation because the necessary feed is produced closer to the demand.

The bulk transportation costs are decreased from $59,948.33 to $58,796.20, which gives a reduction of -1.9%.

This reduction is obtained with a more optimal customer assignment. This gives in total that the costs

are reduced from $1,118,028.47 to $1,097,765.94, which is effective -$20,262.53 (-1.8%) per month for the

southeast region of Vietnam.

The current customer assignment and the optimized customer assignment can be seen in Figures 6.1a and

6.1b, respectively. It is evident that customers are currently assigned closer to pick-up locations than the

proposed optimized situation suggests. This observation is supported by the transportation costs, wherein

65



Costs name
Total costs (cur-

rent) ($)

Total costs (opti-

mized) ($)
dif ($) %

Production costs $754,827.45 $755,513.02 $685.57 0.1%

Factory overhead costs $173,484.62 $173,484.62 - 0.0%

Production setup costs $25,014.87 $21,939.82 -$3,075.04 -12.3%

Holding costs $23,009.60 $15,431.18 -$7,578.41 -32.9%

Internal transportation costs $40,565.06 $27,235.43 -$13,329.62 -32.9%

External transportation costs $41,178.33 $45,365.42 $4,187.09 10.2%

Bulk transportation costs $59,948.33 $58,796.20 -$1,152.12 -1.9%

TOTAL COSTS $1,118,028.26 $1,097,765.72 -$20,262.53 -1.8%

Table 6.2: Overview total costs: Optimizing base case

internal transportation costs decrease while external transportation costs increase, indicating that customers

are being assigned to locations farther away. Currently, De Heus aims to deliver feed as close as possible to

the customer in almost all cases. However, in an optimal situation, it could be more beneficial to produce

specific types of feed at certain locations closer to the customer. This may result in some customers, who

are farther away from these locations, needing to drive a longer distance. Not all data points in the figure

represent the same demand. Therefore, for the model, it is more advantageous to relocate relatively small

customers to pick-up locations further away, instead of larger customers, because the cost for driving distance

is calculated per kilometer per ton of feed.

The most significant differences in volumes that are shifted to other locations can be observed in pigs

(PB, PP, PG, and PG) and chicken white broiler (CWB) feed. For the model, it is only possible to produce

piglet feed at the Binh Duong factory. In reality, some small volumes are still produced in the Dong Nai

factory and Bien Hoa factory. However, in the Dong Nai factory, it only occurs when the Binh Duong factory

is unable to fulfill all the demand, and in the Bien Hoa factory, only Proconco/ANCO feed can be produced.

Therefore, as it is likely to only produce piglet feed in Binh Duong. Because all piglet feed is shifted to the

Binh Duong factory, it is also more advantageous to produce the other pig feed in Binh Duong. The reason

for this is that customers can only have one pick-up location. Therefore, if the customers already have piglet

feed demand, the customer needs to be assigned to the Binh Duong factory, or the piglet feed needs to be

transhipped to the pick-up location from the customer. As the option of selling the piglet feed from the Binh

Duong factory is already more attractive, it becomes more optimal to produce the other pig feed at this

location to fulfill the other demand for pig feed.

From Dong Nai 7,469 tons of feed is shifted to Bien Hoa and Binh Duong, with Binh Duong receiving

6,626 tons of pig feed. As determined during the initialization of the feed types producible in different

factories, ruminant feed can also exclusively be produced in Binh Duong, resulting in a production increase

of 1,138 tons. Binh Duong, located favorably for reaching customers in the northern part of the southeast

region, is nearing its production capacity limits. This is due to its advantageous location, which assigns

more customers. Therefore, its capacity limit is exceeded if no feed is shifted to other locations. In the

optimization, almost all chicken white broiler feed, 10,038 out of 11,159 tons, is shifted from the Binh Duong

to the Dong Nai factory. Additionally, since most large customers are bulk customers, similar to those for pig

feed, and bulk feed customers are assigned to the Binh Duong factory, there is a need to shift bulk production

to another factory, with Dong Nai being the only viable option.
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(a) Current case situation

(b) current case optimization

Figure 6.1: Optimization customer assignment: Optimizing current case.

(a) Depots: Orange = Dau Giang, Purple = Long An, Pink = Ben Tre

(b) Factories: Red = Dong Nai, Blue = Bien Hoa, Green = Binh Duong
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Finally, the variables: Total production volume, number of recipes in production, number of SKUs in

production, number of SKUs in the warehouse, Total factory costs, and costs per ton are used to compare the

current situation with the optimized situation. These variables can also serve as KPIs which the company

uses to compare the factories with each other. The overview of the variables of the current situation can

be seen in Table 6.3, and the overview of the variables of the optimized situation can be seen in Table 6.4.

The total production in the different factories has not changed significantly when comparing the current

situation with the optimized situation. This is logical because the factories in Dong Nai and Binh Duong are

already operating at their limitations due to production capacity restrictions. For the Dong Nai factory, the

production volume cannot reach its full capacity due to changes in overtime that decreased the production

capacity because of flushes between production runs. However, because the volumes are almost the same for

both situations, it can also be said that the optimized situation proposed a solution within the possibilities

of the real capacities. The number of different recipes and SKUs produced has decreased for Dong Nai

but increased for Binh Duong. The optimization proposes to produce more products close to the customer.

The number of SKUs in the warehouse can increase for all factories because the warehouses can store more

efficiently due to the model decreasing the average inventory. The total factory costs are increasing with

the optimization for Binh Duong in comparison with the current situation. This is caused by the increased

holding costs and production set-up costs. Binh Duong is assigned to large pig bulk customers which have

a long driving distance, so these costs are shifted from the Dong Nai factory to Binh Duong. Additionally,

the amount of recipes that are produced is increased which also leads to more flushing times between the

production runs, resulting in higher costs. The cost per ton is the most important KPI for De Heus to measure

the performance of the factories. Currently, the transportation and holding costs are not incorporated into

these costs, but to make the costs comparable, the holding costs are calculated based on the average warehouse

occupation and the transportation costs are calculated based on the transportation that is currently necessary

to fulfill the demand. In total, the costs per ton are decreased from $14.82 to $14.53, which is achieved by

reducing the costs incurred at the Dong Nai and Bien Hoa factories. The costs of the Binh Duong factory

are increased because they are assigned some new customers with piglet bulk feed demand who are further

away.

Variables Total Dong Nai Bien Hoa Binh Duong

Total production volume 54,967 29,946 10,364 14,657

# recipes in production 225 136 61 69

# SKUs in production 494 287 277 132

# SKUs in warehouse 494 283 306 244

Total factory costs ($) $1,116,526.26 $495,941.50 $287,301.66 $333,283.10

$ per ton (incl hold-

ing/transportation costs)
$14.82 $12.08 $20.49 $16.60

Table 6.3: Overview variables: Current situation

At the end, it is possible to save $27,756.90 by optimizing the current situation by the use of the model.

However, it is important to take some remarks into account. The demand implemented into the model is

already known beforehand, making it possible for the model to make decisions based on information that

is not precisely known at that moment. Because the production time is relatively short and flexibility in

production planning is high, the given information being known beforehand does not vary significantly. De
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Variables Total Dong Nai Bien Hoa Binh Duong

Total production volume 54,967 29,635 10,551 14,781

# recipes in production 225 126 61 103

# SKUs in production 494 271 132 217

# SKUs in warehouse 494 287 216 261

Total factory costs ($) $1,094,320.09 $475,543.76 $278,554.61 $340,221.69

$ per ton (incl hold-

ing/transportation costs)
$14.53 $11.71 $19.27 $16.80

Table 6.4: Overview variables: Optimizing base case

Heus is already working with demand forecasts and experience also helps in learning patterns, which can be

used to predict demand very accurately. Also no safety stock is incorporated into the production schedule.

In reality, some safety stock is needed to cover uncertainties, but because the demand is already known, it is

not necessary. In the production schedule per factory, no differences are necessary to incorporate the safety

stocks because the total production remains the same, but with a buffer produced at an earlier stage. The

safety stocks can lead to a higher occupation of the warehouse, so if De Heus wants to implement safety

stocks, the warehouse capacity can be reduced by the percentage of the safety stocks. Another point leading

to different outcomes is that according to the model, all feed needs to come from one factory to guarantee

stable quality. In reality, there are cases where big bulk customers get their feed from two different factories.

For example, piglet feed may come from Binh Duong, and other pig feed from Dong Nai. In our model,

everything needs to come from Binh Duong. Implementing this throughout the model could lead to solutions

that are unrealistic because sourcing from two locations is more of an exception than a rule. These examples

of big customers could be even more optimal if they are allowed to be supplied from two locations. The

last remark concerns the production runs, which are only counted and are not variable. Investigating the

variable run sizes of the production runs would also be interesting for the company, but for this model, it

is not possible to incorporate that due to conflicting situations on linearity. Because the model can only

count by dividing the total production by the average run size, the small production runs are also counted

with a small part. In practice, small production runs lead to problems because the number of flushing times

compared to the production volume is high. However, since this only affects smaller volumes, which also have

a small part in the total production planning, the estimation of the number of production runs is assumed

to remain valid for this model.

E1: Optimizing base case - artificial instances

The optimization for the base case is also carried out on the artificial instances which vary in the amount of

customers and factories. The instances with 3 factories are listed in Table 6.5 and with 4 factories are listen

in Table 6.6 and provide information about the objective function, computational time, the gap, and the

extra kilometers driven. The instances vary in the number of customers and factories but remain consistent

with the actual capacities to ensure comparability. The table shows that the computational times increase as

the number of customers increases. The reason for this is that the model needs to consider more customers,

making the solution more complex. In Table 6.5 The amount of extra driven kilometers from 50 to 100

customers is decreasing, the reason for that is that the model makes the decision to open an extra factory,

this results in higher costs because of the factory overhead costs, but it decreases the extra driven kilometers
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by the customers because it became possible to serve the customers from a location which is closer for them.

If Table 6.5 and Table 6.6 are compared, it can be seen that the computational time increases more rapidly

when an extra factory is added. The reason for this is that the model has more possible solutions to check,

leading to higher computational times. Additionally, the data instance with 4 factories is able to serve more

customers; therefore, it is able to obtain a solution with 1200 customers, whereas the instance with 3 factories

cannot achieve this.

Based on the data instances, it is still hard to conclude how many customers could be served by the

model because this depends on the input capacities of the different factories. To make the data instances

comparable, the real factory characteristics are used to test the different computational times against each

other. This reveals that the computational times increase when the number of customers increases, with the

most significant increases occurring when the capacity restrictions are almost reached. In such cases, the

model needs to perform more calculations to determine if a solution is both optimal and feasible. Additionally,

attempts were made to solve for a larger number of customers with higher factory capacities. While the model

can still find a solution, the various possibilities for assigning customers to pick-up locations when capacities

are increased make it challenging to compare computational times. For example, with 2500 customers and

an overall capacity increase (warehouse, production, and bulk) of a factor of 2.5, the model can find a

solution within 2,375 seconds. However, this does not align with the trend of increasing computational time

with a higher number of customers. Therefore, the increase in the number of customers is not the primary

reason for the increased computational times. Consequently, it is difficult to conclude how many customers

can be served by the current model due to its dependence on customer demand and factory capacities.

In conclusion, the optimization of the base case demonstrates that computational time increases with the

number of customers. As factory capacities approach their limits, it becomes more challenging for the model

to find feasible solutions, resulting in higher computational times. Therefore, it is not possible to precisely

determine how many customers the model can handle in the current and future situations, as this depends

on customer demand, which may exceed capacity limits.

Data instance

with 3 factories

Objective func-

tion ($)

Computational

time(s)
gap (%)

Extra driven

KMs (km)

10 customers $272,071.92 1.08 s 0.0000% 2,384,290.76

20 customers $293,955.14 1.61 s 0.0000% 2,571,898.22

50 customers $326,748.63 1.89 s 0.0000% 2,702,049.24

100 customers $456,469.64 15.53 s 0.0096% 2,445,141.44

200 customers $655,792.03 118.22 s 0.0039% 3,694,305.42

500 customers $1,057,407.20 99.22 s 0.0097% 4,976,664.14

750 customers $1,805,279.74 3,563.21 s 0.0074% 8,555,871.043

1000 customers $2,622,564.52 4,735.78 s 0.0065% 13,933,407.81

1100 customers $2,842,588.54 10,120.97 s 0.0998% 15,659,483.01

1200 customers $ - - s - % -

1300 customers $ - - s - % -

Table 6.5: Experiment E1 - optimization performances with 3 factories (artificial)
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Data instance

with 4 factories

Objective func-

tion ($)

Computational

time(s)
gap (%)

Extra driven

KMs (km)

10 customers $145,868.09 1.77 s 0.0000% 631,698.56

20 customers $192,825.47 2.17 s 0.0000% 840,865.88

50 customers $245,287.57 3.13 s 0.0000% 1,623,764.30

100 customers $371,942,3552 5.13 s 0.0000% 1,101,479.93

200 customers $517,646,04 50.28 s 0.0000% 2,526,813.66

500 customers $863,015.28 789.97 s 0.0000% 5,396,705.10

750 customers $1,385,099.22 10,800 s 0.0120% 6,093,258.02

1000 customers $1,994,996.31 10,800 s 0.0844% 7,797,565.09

1100 customers $2,096,194.93 10,800 s 0.0255% 8,068,570.57

1200 customers $2,318,551.39 10,800 s 0.0310% 9,763,982.92

1300 customers $ - - s - % -

Table 6.6: Experiment E1 - optimization performances with 4 factories (artificial)

6.4 Phase 2 - Sensitivity analysis and multi-objective optimization

In this section, the sensitivity analysis and multi-objective optimization are performed, and the results are

explained.

6.4.1 E2: Expanding capacities

The first experiment within the sensitivity analysis involves expanding the capacities of the production and/or

warehouse. The different instances are listed in Table 6.7, providing information about the objective function,

computational time, gap, and extra driven kilometers. In the experiment aimed at expanding capacities, the

warehouse and production capacity of the Dong Nai factory are extended. Four different scenarios are tested:

+5% or 10% production capacity, and +5% production capacity with +250 or +500 warehouse capacity.

Tables 6.8 and 6.9 present the total costs for these scenarios. These modifications are compared with the

optimized current case because the scenario changes should lead to an improvement over the already optimized

situation based on the current conditions.

Data instance
Objective func-

tion ($)

Computational

time(s)
gap (%)

Extra driven

KMs (km)

’Current case’ $1,097,765.72 10,800 s 0.0193% 1.390.082,48

’Current case’ with +5% prod $1,091,807.94 10,800 s 0.1422 % 1,295,689.66

’Current case’ with +5% prod +

250 WH
$1,091,077.30 10,800 s 0.0207 % 1,316,525.72

’Current case’ with +5% prod +

500 WH
$1,091,076.45 10,800 s 0.0191 % 1,316,525.72

’Current case’ with +10% prod $1,085,220.45 10,800 s 0.1518 % 1,223,891.02

Table 6.7: Experiment E2 - optimization performances

In the first scenario, the +5% production capacity is optimized. The total costs for this scenario decrease

from $1,097,765.729 to $1,091,807.944, resulting in a monthly difference of -0.6%. These cost savings are
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achieved by reducing total production setup costs, because of the increased production capacity at Dong Nai,

it becomes more efficient in terms of switching times to produce more feed at one location. Internal trans-

portation costs increase by 5.9% because some feed previously produced at other, more expensive locations,

like Bien Hoa, is now produced at Dong Nai and transported back to be sold there. Additionally, because

Dong Nai is near most bag customers, more customers can be assigned to this factory, reducing external

transportation costs by 10.3%.

In addition to increasing production capacity, it is also interesting to investigate whether expanding the

warehouse in combination with production capacity leads to even lower total costs. The current warehouse

capacity of Dong Nai is 3,500 tons, increased to 3,750 and 4,000 tons. Additional savings could be achieved:

-$730.64 if the capacity is increased by 250 tons, and an extra $0.84 if the capacity is increased with 500 tons.

Increasing the warehouse capacity changes the decision-making process of the model, instead of increasing

internal transportation costs by supplying feed to another pick-up location, more feed can be sold at the

factory itself. However, to fully utilize production capacity, goods need to be transshipped to other ware-

houses for sale, reducing warehouse occupation in the warehouses at the factories but increases the internal

transportation costs. There is an optimum in available warehouse space for maximum cost-effectiveness, as

seen from the minimal difference between 3,750 and 4,000 tons, indicating that this extension does not lead

to further savings.

Lastly, optimizing production expansion of + 10% results in a total cost reduction from $1,097,765.47 to

$1,085,220.45, yielding a percentage decrease of -1.1%. With expanded capacity, it is even more feasible to

assign customers to closer locations, resulting in additional cost savings for external transportation, reduced

by 15.3%.

Therefore, expanding production and/or warehouse capacity leads to cost savings, as production in the

Dong Nai factory is cheaper, and the location is near bag customers. The cost for expanding the factory with

+ 10% is estimated at $525,600, while the expansion of the warehouse by 500 tons is estimated to be $343,100.

The factory overhead costs do not change with these investments because, for example, if the production

capacity is increased, an extra pelletizing line is added, and an old hammermill machine is replaced by a

newer, bigger one. This does not lead to higher overhead costs because the new machines replace old ones

and are likely to use less energy. Therefore, the total overhead costs and production costs do not change

much when the investments are made, so for comparability, it is assumed that they will remain the same.

For the expansion of the warehouse, it can be concluded that it is not cost-effective, as the extra warehouse

capacity does not lead to enough savings to recoup the investment. However, the investment in the extra

production capacity of +10% can be earned back within a reasonable time of 3.5 years. The price for the

expansion of +5% is estimated to be half of that price, but because the cost savings are also half of the

savings of +10%, so the payback period remains the same. Therefore, both investments in expanding the

production capacities are economically attractive with the same payback period. De Heus could decide how

much they want to invest to reach the amount of savings they aim to achieve.

6.4.2 E3: New potential production location

The next experiment within the sensitivity analysis involves the new potential production locations of De

Heus. For optimizing the testing of new potential production locations, various instances are listed in Table

6.10, providing information about the objective function, computational time, gap, and extra driven kilome-

ters. Instead of expanding existing capacities with an expansion, it is also possible to build a new factory at

a location that maximizes customer assignment potential. This option becomes even more attractive because
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Costs name

Optimized

current

case

+ 5% prod %
+5% prod

+ 250 WH
%

Production costs $755,512.77 $753,107.36 -0,3% $753,081.31 -0,3%

Factory overhead costs $173,484.61 $173,484.61 0,0% $173,484.61 0,0%

Production setup costs $21,939.83 $21,351.39 -2,7% $21,365.41 -2,6%

Holding costs $15,431.18 $15,545.86 0,7% $15,540.47 0,7%

Internal transportation costs $27,235.43 $28,850.79 5,9% $27,483.52 0,9%

External transportation costs $45,365.42 $40,671.70 -10,3% $41,325.74 -8,9%

Bulk transportation costs $58,796.20 $58,796.20 0,0% $58,796.20 0,0%

TOTAL COSTS $1,097,765.47 $1,091,807.94 -0,5% $1,091,077.30 -0,6%

dif -$5,957.53 -$6,688.17

Table 6.8: Overview total costs: Expanding capacities part 1

Costs name

Optimized

current

case

+ 5% prod

+ 500 WH
%

+ 10%

prod
%

Production costs $755,512.77 $753,081.31 -0,3% $750,831.73 -0,6%

Factory overhead costs $173,484.61 $173,484.61 0,0% $237.650,16 0,0%

Production setup costs $21,939.83 $21,365.41 -2,6% $20,715.06 -5,6%

Holding costs $15,431.18 $15,539.62 0,7% $15,669.45 1,5%

Internal transportation costs $27,235.43 $27,483.52 0,9% $27,305.43 0,3%

External transportation costs $45,365.42 $41,325.74 -8,9% $38,417.93 -15,3%

Bulk transportation costs $58,796.20 $58,796.20 0,0% $58,796.20 0,0%

TOTAL COSTS $1,097,765.47 $1,091,076.45 -0,6% $1,085,220.45 -1,1%

dif -$6,689.01 -$12,545.02

Table 6.9: Overview total costs: Expanding capacities part 2

the Bien Hoa factory needs to close in the coming years. Section 5.2.2 proposes three potential locations:

Binh Duong II, Binh Phuoc, and Dak Nong.

Data instance
Objective func-

tion ($)

Computational

time(s)
gap (%)

Extra driven

KMs (km)

’Current case’ $1,097,765.72 10,800 s 0.0193% 1.390.082,48

’Current case’ with Binh Duong

II
$994,363.39 511.76 s 0,0090 % 312,372.30

’Current case’ with Binh Phuoc $1,011,247.69 10,800 s 0,0201 % 520,556.71

’Current case’ with Dak Nong $1,209,423.63 5,380.29 s 0,0090 % 985,320.83

Table 6.10: Experiment E3 - optimization performances with new location instead of Bien Hoa

The first potential location is in the Binh Duong region: Binh Duong II. This factory is close to the

existing Binh Duong factory (24.4 km), which is the most northern factory, and is capable of producing all

kinds of feed, including bulk feed. As a replacement for Bien Hoa, this results in a new situation where
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all factories are able to produce De Heus and Proconoco/ANCO feed and bulk feed. It also provides an

extra option to produce piglet and ruminant feed at this location. The total costs of this new factory in

comparison with the already optimized situation can be seen in Table 6.11. The total costs can be reduced

from $1,097,765.72 to $994,363.39, which is a decrease of 9.4%. This significant reduction in costs has several

reasons:

• The production costs per ton are lower at the new location because this factory can be designed by

De Heus engineers, which leads to lower production costs per ton compared to the Bien Hoa factory.

Thus, the production costs with a new factory are obviously lower than with the old Bien Hoa factory,

gives a reduction of 0.9%.

• The factory overhead costs at the Bien Hoa factory are currently relatively high. A new factory

requires less maintenance, uses less energy, and can be designed with fewer employees needed, resulting

in reduced overhead costs from 20.1%.

• The production is more flexible in the new situation, allowing for the combination of production runs

at different locations, resulting in a reduction in production setup costs of 21.6%. Holding costs can

be reduced because the products can be produced closer to the customer, and there is more capacity

to produce all the needed products per week, so less work in advance is necessary to meet all demand.

Additionally, more SKUs can be sold at the factory warehouse location, reducing the number of trans-

shipments and, consequently, lowering the average occupation in total at all warehouses due to the sold

feed.

• The internal, external, and bulk transportation costs are also reduced by 39.5%, 78.4%, and 15.1%,

respectively, because the factory is more flexible in production and able to serve customers located in

the northern part of the southeast region.

Costs name
Total costs (opt)

($)

Total costs (Binh

Duong II) ($)
dif ($) %

Production costs $755,512.77 $748,487.83 -$7,025.19 -0.9%

Factory overhead costs $173,484.61 $13,8675.64 -$34,808.96 -20.1%

Production setup costs $21,939.83 $17,208.08 -$4,731.74 -21.6%

Holding costs $15,431.18 $13,770.77 -$1,660.40 -10.8%

Internal transportation costs $27,235.43 $16,484.50 -$10,750.92 -39.5%

External transportation costs $45,365.42 $9,805.36 -$35,560.05 -78.4%

Bulk transportation costs $58,796.20 $49,931.17 -$8,865.03 -15.1%

TOTAL COSTS $1,097,765.47 $994,363.39 -$103,402.33 -9.4%

Table 6.11: Overview total costs: New potential production location - Binh Duong II

The second potential location is the Binh Phuoc area. This factory has the same characteristics as

explained for the Binh Duong II factory, which means that this factory is also flexible, leading to cost

reduction at almost every part. The Binh Phuoc factory has a driving distance of 42.0 km to the Binh Duong

factory. The total costs are decreasing from $1,097,765.72 to $1,011,247.69 which gives a reduction of -7.9%.

The differences between Binh Phuoc and the current situation has several reasons:
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• The Binh Phuoc factory is located at a further distance from the harbor in comparison with Binh

Duong II, which means that the direct material costs are $5.62 per ton instead of the $4.90 per ton. In

comparison with the current case optimization, this results in an increase of 0.8%.

• The bulk transportation costs in this case decrease with 21.8%. There is already a significant reduction

for the current customer situation, which aligns with expectations for the future, where farmers from

the southern part move to the northern part to build larger farms requiring more bulk resources. Thus,

it holds even more potential for the future.

• The other costs have similar explanations as already mentioned at the Binh Duong II factory.

The last potential location is the Dak Nong location. This location is positioned far to the northeast part

of the southeast region. The driving distance to Binh Duong is 290.7 km, which if you compare it with the

Binh Duong II factory (24.4 km) is completely at a different location. The total costs are increasing from

$1,097,765.72 to $1,209,423.63 which is an increase of 14.1%. The differences between Dak Nong and the

current situation has several reasons:

• The direct material costs for Dak Nong are higher than those for the Binh Duong II and Binh Phuoc

factories because the location is even further from the harbor. This results in direct material costs of

$17,22 per ton. This is already $12,32 per ton higher than the Binh Duong II factory location. These

significant cost increases are evident in the production costs, which increase of 22.9%.

• The bulk transportation costs are not decreasing because the customers are not located in areas that

would lead to a more efficient customer allocation if this factory location were added.

• The factory overhead, production setup, internal, and external transportation costs are still decreasing

in comparison with the current case optimization and have similar explanations as Binh Duong II and

Binh Phuoc.

The Binh Duong II factory will take over most of the piglet and ruminant feed from the Binh Duong

factory because this factory has lower production costs per ton produced (when adding up the direct variable

costs and direct material costs, the difference is $10,56 for Binh Duong and $10,38 for Binh Duong II). Due to

the transfer of that feed, capacity at Binh Duong is once again available to deliver the feed of chicken white

broiler (CWB) close to the customer. Production planning is changed to the optimal situation for every new

factory, and this differs greatly due to the differences in customer assignment, which depend on the location

of the new factory. The variables of the new production location can be seen in Table 6.12. Because the

new factory is able to produce more different products closer to the customer, the number of SKUs produced

per factory increases. The costs per ton are cheaper in Binh Duong compared to Binh Phuoc because the

production volume is higher at this location. The total factory costs are high for Dak Nong because the

direct material costs are high at this location.

In conclusion, there are three possible locations where it is possible to build a factory: Binh Duong II,

Binh Phuoc, and Dak Nong. Optimization shows that the location in Dak Nong is not economically viable

because it costs De Heus $133,750.73 extra per month to operate this factory. This is caused by the long

transportation route to the nearest harbor and the lower customer density in that area. Both Binh Duong

II and Binh Phuoc are options to build a factory, with the total cost reduction per month for Binh Duong II

being $103,402.33 and for Binh Phuoc being $86,518.03, making the option to choose Binh Phuoc $16,884.30

per month more expensive. It would suggest that the Binh Duong II location is the best option, but based on
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Variables Total
Binh Duong

II
Binh Phuoc Dak Nong

Total production volume 54,967 15,319 11,625 10,566

# recipes in production 225 154 145 166

# SKUs in production 494 307 283 296

# SKUs in warehouse 494 272 242 250

Total factory costs ($) $318,446.44 $256,132.71 $426,169.70

$ per ton (incl hold-

ing/transportation costs)
$15.17 $16.08 $29.44

Table 6.12: Overview variables: New potential production location

the differences in building costs and possible customer movements, it has not been decided yet. The estimated

building costs for a new factory are $13.87 million, where the land prices in Binh Duong II are $4.38 million

and in Binh Phuoc are $2.92 million. Depending on the total investment costs and the forecasted demand

for the different areas for the coming 10, 20, and 30 years, De Heus can decide where the factory should be

built.

6.4.3 E4: Reducing SKUs

The last experiment within the sensitivity analysis involves reducing the amount of SKUs. For the optimiza-

tion of reducing the amount of SKUs, the different instances are listed in Table 6.13, providing information

about the objective function, computational time, gap, and extra driven kilometers. he next experiment

performed aims to reduce the number of SKUs to two bags and one bulk SKU, and to one bag and one bulk

SKU. The overview of the total cost optimized current case and the two different experiments can be seen in

Table 6.14.

Data instance
Objective func-

tion ($)

Computational

time(s)
gap (%)

Extra driven

KMs (km)

’Current case’ $1,097,765.72 10,800 s 0.0193% 1.390.082,48

’Current case’ with 2 bag, 1 bulk

SKUs
$1,096,557.96 5,854.53 s 0.0100 % 1,372,950.55

’Current case’ with 1 bag, 1 bulk

SKUs
$1,094,735.06 6,853.02 s 0.0203 % 1,249,024.52

Table 6.13: Experiment E4 - optimization performances

For the reduction of the number of SKUs to two bags and one bulk SKU, the holding costs can be reduced

with 24.0%. With fewer SKUs, it becomes easier to produce the demand in higher volumes and transport

it to the customers. While the internal transportation costs and bulk transportation costs increase slightly,

these increased costs are offset by lower holding and external transportation costs. This results in a decrease

in total costs from $1,097,765.72 to $1,096,557.96, which is a reduction of -0.1%.

Reducing to one bag SKU and one bulk SKU yields better results than reducing to two bulk SKUs. The

holding costs decrease 31.7%. Although the internal transportation costs increase further, the decrease in

external transportation costs, combined with lower holding costs, results in a more cost-effective solution.
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This could be attributed to the cost-effectiveness of assigning customers to locations closer to them, although

it requires transportation from De Heus to that pick-up location to fulfill the demand. The total costs

decrease from $1,097,765.72 to $1,094,735.06, which is a reduction of -0.3%.

Before this experiment, it was expected that reducing SKUs would lead to more cost reduction, as the

company is actively reducing the number of SKUs. However, the results of this experiment indicate that

reducing SKUs alone does not optimize the production schedule. This is because reducing only the number

of SKUs still requires producing the same volume of recipes, with corresponding flushing times between the

recipes. The only advantage of reducing the number of SKUs is that warehouse occupancy becomes more

efficient, due to fewer different SKUs in storage which leads to less ’empty’ occupied space at a warehouse

slot. To increase production schedule efficiency, it is important to reduce the number of recipes that need to

be produced. Thus, the company should consider combining recipes to increase total production volume and

corresponding longer production runs. Longer runs in the factory require less flushing time.

Overview total costs
Total costs

(optimized)

2 SKUs bag 1

SKU Bulk
%

1 SKU bag 1

SKU Bulk
%

Production costs $755,512.77 $755,494.36 0.0% $755,464.61 0.0%

Factory overhead costs $173,484.61 $173,484.61 0.0% $173,484.61 0.0%

Production setup costs $21,939.83 $21,932.52 0.0% $21,941.39 0.0%

Holding costs $15,431.18 $11,732.27 -24.0% $10,542.33 -31.7%

Internal transportation costs $27,235.43 $29,057.13 6.7% $32,334.89 18.7%

External transportation costs $45,365.42 $43,096.91 -5.0% $39,206.87 -13.6%

Bulk transportation costs $58,796.20 $61,760.13 5.0% $61,760.13 5.0%

TOTAL COSTS $1,097,765.47 $1,096,557.96 -0.1% $1,094,735.06 -0.3%

Table 6.14: Overview total costs: Reducing SKUs

6.4.4 E5: Single-objective optimization

The second part of phase two is multi-objective optimization. Before this multi-objective optimization is

performed, the experiment E5 includes single-objective optimization. This optimization displays objective

values for cost minimization (f1(x)) and minimization of extra kilometers driven by the customer (f2(x)).

The data instances used are artificial and vary in the number of customers: 10, 20, 50, 100, and 200. Each of

these data instances is optimized based on one of these objective functions. The costs, total extra kilometers,

computational time, and the gap are presented in Table 6.15. The data instances are defined by the number

of customers, the number of factories, and the number of SKUs. Therefore, C10-F3-S494 means there are 10

customers, 3 factories, and 494 different SKUs.

The costs and the extra driven kilometers increase as the problem instance grows larger. Optimization

of the extra driven kilometers is performed more quickly in terms of computational time compared to the

optimization of costs. The reason for this is that the objective function for minimizing extra kilometers is

relatively simple. It minimizes the extra driven kilometers by assigning the customer to the closest possible

location that meets the constraints of the model. This is not always the closest possible location because a

bulk customer can be close to a factory that is not able to produce bulk feed, so it must be assigned to a

location that is not the closest possible. This results in extra driven kilometers, which are not zero. Since

the model optimizes only one of the two objective functions, the other objective still has the potential to be

reduced. This reduction in both objective functions establishes the lower and higher bounds. These bounds
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Data instance Costs ($) - f1(x)
Extra driven

KMs (km) - f2(x)

Computational

time(s)
gap (%)

C10-F3-S494 (min f1(x)) $168,753.11 2,403,129.72 1.05 s 0.0000 %

C10-F3-S494 (min f2(x)) $197,316.28 1,788,731.39 1.55 s 0.0000 %

C20-F3-S494 (min f1(x)) $180,261.89 2,645,184.13 1.75 s 0.0000 %

C20-F3-S494 (min f2(x)) $360,777.37 1,097,649.78 0.92 s 0.0000 %

C50-F3-S494 (min f1(x)) $200,073.51 2,952,039.04 2.38 s 0.0000 %

C50-F3-S494 (min f2(x)) $393,637.01 1,097,649.78 1.64 s 0.0000 %

C100-F3-S494 (min f1(x)) $257,150.32 4,876,539.08 10.80 s 0.0000 %

C100-F3-S494 (min f2(x)) $646,896.63 1,097,649.78 2.18 s 0.0000 %

C200-F3-S494 (min f1(x)) $339,459.86 8,342,603.75 31.04 s 0.0000 %

C200-F3-S494 (min f2(x)) $739,407.38 1,097,649.78 2.77 s 0.0000 %

Table 6.15: Experiment E5 - optimization performances

are utilized in the payoff table, which is necessary to determine the step size for the AUGMECON2 multi-

objective optimization. An example illustrating the differences when a second optimization is performed can

be seen in Table 6.16.

Data instance Costs ($) - f1(x)
Extra driven

KMs (km) - f2(x)

Computational

time(s)
gap (%)

C200-F3-S494 (min f1(x)) $339,459.86 8,342,603.75 31.04 s 0.0000 %

C200-F3-S494 (min f1(x) →
min f2(x) )

$339,460.85 8,342,579.73 51.92 s 0.0000 %

C200-F3-S494 (min f2(x)) $739,407.38 1,097,649.78 2.77 s 0.0000 %

C200-F3-S494 (min f2(x) →
min f1(x) )

$669,559.88 1,097,649.78 10.25 s 0.0000 %

Table 6.16: Experiment E5 - payoff table

Table 6.16 illustrates an example of single optimization and additional minimization of the second objective

function for data instance C200-F3-S494. It shows that after minimizing the cost amount, the kilometers

cannot be further reduced. This limitation arises because every kilometer incurs extra costs. Thus, if the

minimum cost remains unchanged, the extra kilometers cannot decrease further. However, when minimizing

the extra kilometer first, there are still opportunities to minimize the total costs. By optimizing the costs

of the solution obtained from minimizing the extra kilometer, the total costs decrease from $739,407.38 to

$669,559.88. This reduction is possible because for example production planning and internal transportation

costs can still be optimized while maintaining the same amount of extra kilometers driven by the customers.

The objective values obtained in the min f1(x) → min f2(x) and min f2(x) → min f1(x) optimizations

serve as the bounds in the payoff table used for multi-objective optimization.

6.4.5 E6: Multi-objective optimization

For the multi-objective optimization, the payoff values obtained from experiment E5, the single-objective

optimization, are utilized to determine the stepsize. The multi-objective optimization constains data instances

78



with 10, 20, 50, 100, and 200 customers, while maintaining the same number of factories and SKUs. A Pareto

front is generated for each data instance using the AUGMECON2 algorithm. In the Pareto diagram, specific

points on the graph are identified with capital letters. These points are further analyzed in the corresponding

table, which provides the iteration number, costs f1(x), extra driven kilometers f2(x), computation time,

and gap. Following the diagram and table, an explanation of the values is provided. The data instances 20,

50 and 100 are given and explained in Appendix A.2.

Figure 6.3: Pareto front: C10-F3-S494

Data instance #Iteration Costs ($) - f1(x)
Extra driven

KMs (km) - f2(x)

Computational

time(s)
gap (%)

C10-F3-S494 (A) 0 $168,753.12 2,403,129.72 1.05 s 0.0000 %

C10-F3-S494 (B) 4 $201,578.95 1,695,515.54 1,51 s 0.0000 %

C10-F3-S494 (C) 8 $238,883.47 1,603,128.71 1.86 s 0.0000 %

C10-F3-S494 (D) 15 $245,657.43 1,097,649.78 0.91 s 0.0000 %

Table 6.17: Experiment E6 - Pareto front values C10-F3-S494

Figure 6.3 and Table 6.17 shows the Pareto results of 10 customers. The Pareto front shows only 8

data points, although the algorithm is capable of generating 16 data points. The algorithm is designed

to avoid unnecessary iterations; if no improvement is expected in upcoming iterations, these iterations are

skipped due to the bypass coefficient. The most interesting data points are provided in the table. The

difference in the amount of costs needed to achieve a small reduction in extra driven kilometers is significant

between solutions B and C. The differences in costs are $238, 883.47 − $201, 578.95 = $37, 304.52 for only

1, 695, 515.54− 1, 603, 128.71 = 92, 386 kilometers, resulting in $2.48 per reduced kilometer. Previously, this

rate was $201, 578.95− $168, 753.12 = $32, 825.83 for 2, 403, 129.72− 1, 695, 515.54 = 707, 614.18 kilometers,

giving $21.56 per reduced kilometer. The closer the amount of kilometers gets to the minimum amount, the

higher the price per reduced kilometer becomes. This trend can already be observed in this Pareto front,
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but because the number of customers is limited, it is challenging to create a smooth line due to the limited

possibilities in customer assignment and finding a better solution within the given bounds.

Figure 6.4: Pareto front: C200-F3-S494

Data instance #Iteration Costs ($) - f1(x)
Extra driven

KMs (km) - f2(x)

Computational

time(s)
gap (%)

C200-F3-S494 (A) 0 $339,460.86 8,342,579.73 43.10 s 0.0000 %

C200-F3-S494 (B) 9 $484,173.63 3,995,491.31 246.02 s 0.0052%

C200-F3-S494 (C) 15 $669,559.90 1,097,649.78 9.86 s 0.0000 %

Table 6.18: Experiment E6 - Pareto front values C200-F3-S494

Figure 6.4 and Table 6.18 show the Pareto results for 200 customers: This Pareto front displays all 16

potential data points, resulting in a smooth curve. Compared to the other data instances, this Pareto front

diagram is the smoothest. The reason for this is that the model has more optimization options within the

new bounds provided at every point. Therefore, the optimal points become more evident in the middle of

the Pareto front as the number of customers in the data instance increases.

The analysis of the Pareto fronts for different artificial data instances reveals that the Pareto front becomes

smoother as the model’s options increase. For example, the Pareto front for 10 customers consists of only

8 points, whereas the Pareto front for 200 customers has the maximum of 16 points. The reduction in the

number of data points occurs because there are no further improvements possible within a new iteration.

This is logical because the options are limited in assigning a customer to a better location, requiring waiting

until the amount of extra kilometers allows for a new optimal solution that reduces total costs. Applying

this conclusion to the current case of De Heus, which involves 1117 customers, it can be assumed that it is

also possible to create a smooth Pareto front for this amount because the number of possibilities to assign

a customer is even higher, leading to smoother steps in the Pareto front. The price difference between the

steps in reducing the amount of extra kilometers will be estimated to be equal. However, it is also expected
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that the last reduction of the amount of kilometers (which are close to the lower bound) will result in the

highest costs. Therefore, De Heus can decide, based on the total costs they are currently incurring, how

much they are willing to pay to reach the customer satisfaction level in terms of extra driven kilometers by

the customers. The costs of these steps will only differ significantly at the beginning or at the end of the

Pareto front but are approximately the same between these points.

6.5 Conclusion

Before the experiments in phases one and two can be executed, the model is validated by checking the

outcomes of the constraints individually. Additionally, the outcomes can be followed step by step due to the

visualization and output of every step during optimization. The verification process involves experts from

De Heus, and after some adjustments, the model yields realistic results.

Experiment E1, optimizing the base case, reduces the total costs from $1,118,028.47 to $1,097,765.94,

resulting in a decrease of -1.8%. De Heus is currently overly focused on filling warehouses to capacity, which

leads to high holding costs. However, high inventory positions are unnecessary if better production planning

could be made based on demand forecasts. The internal and bulk transportation costs are reduced, while

external transportation costs increase. The model decides to assign customers to locations that are further

away from them but cheaper for De Heus to supply. These customers are compensated for driving longer

distances with discounts on their feed. The total number of SKUs in the warehouse and production remains

the same for Dong Nai, decreases for Bien Hoa due to its expensive location, and increases for Binh Duong

because it can produce all products and is favorably located. The remarks on solutions that could result in

less positive outcomes are that the demand is already known at the beginning of the optimization, and no

safety stock is incorporated. However, this could also lead to better results in the real world by not having

variable run sizes currently. These remarks can be addressed by implementing proper demand forecasts and

reducing warehouse capacity if safety inventory is needed. The variable run size could lead to a more optimal

situation because fewer production runs are needed. Thus, the new optimized situation, where decisions about

production locations and customer service are made, leads to cost savings, and the changes are manageable

for De Heus because no investments are needed.

Experiment E2, examining the expansion of the capacities of the Dong Nai factory, demonstrates a

further cost reduction from $1,097,765.72 to $1,091,807.94 for a 5% production expansion, and a reduction

to $1,085,220.45 for a +10% expansion. The investment in extra warehouse capacity is not attractive due

to the low savings against high investment costs. The investment costs for +10% production capacity are

estimated at $525,600, so it has a payback period of around 3.5 years. This period remains the same for +5%

production capacity because the savings and investment costs are half of those for +10% production. Thus,

the expansion of the production capacity is an attractive option for De Heus, where they need to decide how

much they are able to invest right now.

Experiment E3, exploring new potential production locations to replace Bien Hoa in the future, reveals

potential reductions from $1,097,765.72 to $994,363.39, a reduction of 9.4% for a new location at Binh Duong

II. This significant reduction is attributed to lower production and factory overhead costs due to a newer

factory. Planning production, inventory, and transportation becomes more efficient and closer to the customer

with the new factory, which can produce all types of products unlike the limited capabilities of Bien Hoa.

Binh Phuoc also offers potential savings, with a reduction from $1,097,765.72 to $1,011,247.69, resulting in a

reduction of -7.9%. This location is favorable due to its proximity to the northern part of the southeast region.

Dak Nong is currently not viable due to high transportation costs, resulting in additional monthly expenses.
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The investment required for Binh Duong II and Binh Phuoc differs by $1.46 million, so De Heus needs to

forecast future demand in the region and update the model to optimize the new scenario for even better

results. However, based on current information, both locations yield significant savings, making building a

new factory is an attractive option.

Experiment E4 provides information on reducing the number of SKUs. It shows that reducing the number

of SKUs does not significantly decrease costs. Reducing to 2 bag SKUs and 1 bulk SKU reduces costs from

$1,097,765.72 to $1,096,557.96, a reduction of -0.1%. This occurs because reducing the number of SKUs does

not optimize production planning, as the same number of recipes are still produced in the factory. To make

a positive impact on production planning and cost reduction, De Heus needs to consider reducing or merging

recipes instead of only reducing the number of SKUs.

Experiment E5 provides the single-objective optimization function, where the payoff table is created

by further optimizing the second objective after already minimizing the first objective. Experiment E6

demonstrates the multi-objective optimization. As the problem instance used to generate the Pareto front

increases, the number of data points also increases, resulting in a smoother curve. This is because the model

has more options to find new optimal solutions within the given bounds. The cost of decreasing the extra

driven kilometers of De Heus is approximately the same for every step. Based on that, De Heus can decide

how much they want to increase the cost until they reach a certain level of customer satisfaction for the

current case.

Concluding, the different experiments provide information about the performance of the model and how

multi-objective optimization can be applied in the future. It also gives information about how to optimize

the current situation and advises on which changes are worth considering and which are not effective.
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7 Conclusion and Recommendations

In the last section of this thesis, insights are provided about the conclusion, contribution, and recommenda-

tions. This chapter summarizes the most important findings, but also gives advice to De Heus on what they

should do with the results. Section 7.1 provides the conclusions found by the model. Sections 7.2 and 7.3 de-

tail the contribution of this research to the literature and to practice. Section 7.4 provides recommendations

for De Heus. Section 7.5 outlines the limitations of this research and offers advice for further research.

This chapter addresses the research question, ’What are the conclusions and recommendations for De

Heus?’ along with its sub-questions, which represent smaller components of the overall inquiry.

(a) What can be concluded from the supply chain optimisation for production, inventory and transportation

planning?

(b) What are the recommendations and future research for De Heus?

7.1 Conclusions

The research aims to find the most cost-effective way to plan production, inventory, and transportation of

finished goods. After the acquisition of Pronco/ANCO, De Heus is busy integrating this company within

its operations. De Heus have already started the integration at the organizational level, and now they are

optimizing production and supply to customers, deciding where to produce which products and how to supply

them. During this integration, De Heus faces the problems of a lack of relationship between costs, an increased

number of SKUs, and a lack of integrated optimization between different parts of the finished goods supply

chain. To solve this problem, a model was built, which can make decisions at the production, inventory, and

transportation levels, covering different time frames.

The model used to solve the problem is the production assignment problem, based on the production

routing problem, where the routing part is replaced by direct customer assignment. Network flows are used

to ensure the supply from factory to customer, and specific characteristics of lot-sizing problems, like capacity

reduction due to flushing time and joint set-up and replenishment time, are implemented. This model can

make monthly decisions split into four weeks, deciding which SKUs are produced, how they are stored at each

location, and how they are supplied to customers to meet the demand of every week. The model successfully

solved the current case for the southeast region of Vietnam, which includes three factories, three depots,

1117 customers, and 494 SKUs derived from 194 recipes. Total costs were reduced from $1,118,028.26 to

$1,097,765.72 , a monthly saving of -1.8%. This solution was reached within the maximum computational time

of 10,800 seconds and a gap of 0.0193%. The main reason for these savings is the more cost-effective customer

assignment; currently, most customers are assigned to the closest possible location, whereas it would be more

cost-effective for De Heus to offer discounts to customers and assign them to other locations. Additionally, De

Heus is currently focusing too much on maintaining high stock levels; however, with better demand planning,

these high levels are unnecessary. Therefore, within the current case, De Heus is already able to save a

significant amount of money by adjusting production volumes, inventory positions, internal transportation,

and customer assignment decisions. The only drawbacks of the model are that it has fixed demand input, no

safety stock, and no variable run size. However, these can be addressed by using properly forecasted demand

and reducing warehouse capacity. A variable run size would lead to even better optimization, as it would

result in fewer production runs compared to the current optimization.

In addition to optimizing the current case, the model was used to test three different situations within

the sensitivity analysis of the current case. The first experiment tested the expansion of production capacity
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by +5% and +10% for the Dong Nai factory, as well as the expansion of warehouse capacity by +250 tons or

+500 tons. The results showed that both capacity increases led to significant cost savings of -$5,957.53 and

-$12,545.02 per month, with one-time investment costs of $525,600 for +10% production capacity and half

of that for +5%. Both investments have a payback period of 3.5 years, making them advisable for De Heus.

The second experiment tested potential new production locations in the Binh Duong (II), Binh Phuoc, and

Dak Nong regions. A new factory in Binh Duong led to monthly savings of -$103,402.33, a cost reduction of

9.4% compared to the optimized current situation. Similarly, a new factory in Binh Phuoc showed savings of

$86,517.99, making it a viable option due to its lower land price. The third experiment tested the reduction

of SKUs within a recipe to only two bags and one bulk SKU, resulting in cost reductions of $1,207.76 and

$3,030.66 per month, respectively. Less variation in SKUs reduces warehouse needs and increases utilization,

thus reducing holding costs. However, drastic reductions in SKUs may lead to challenges with marketing and

sales, outweighing the savings.

Additionally, multi-objective optimization was performed to optimize total costs and customer satisfac-

tion in terms of extra driven kilometers to pick up feed. The AUGMECON2 algorithm was used, as it reduces

runtime by skipping unnecessary iterations. The multi-objective optimization showed the Pareto front, which

became smoother with larger problem instances, indicating more options for cost-effective customer assign-

ment. Costs increased gradually for reducing extra driven kilometers, with the first extra kilometers being

the cheapest and the last being the most expensive. Therefore, De Heus can decide how much it wants to pay

for increasing customer satisfaction, with the price remaining approximately the same for each increment.

In conclusion, the optimization model created reflects the situation of De Heus and is capable of optimizing

the current case and conducting experiments on future events, leading to better results. The model allows

testing of these cases and presenting implications on production, inventory, and transportation. The multi-

objective optimization provides insights into costs necessary to meet customer satisfaction. Without the

model, obtaining information about the entire finished goods supply chain would have been challenging,

relying solely on trial and error. Thus, the model enables informed decision-making.

7.2 Contribution to theory

The literature review discusses various models that optimize production, inventory, and transportation indi-

vidually. The lot-sizing problem, focusing on production-inventory optimization, was addressed by Jans and

Degraeve (2008). Bertazzi and Speranza (2012) introduced the inventory-routing problem, which optimizes

inventory and transportation, while Bard and Nananukul (2009b) presented the production-routing problem,

aiming to optimize all three aspects simultaneously. However, applying these models directly to the problem

at De Heus revealed challenges, as certain characteristics of the situation were not addressed in the existing

literature. To address this, the thesis simplified the routing aspect to customer assignment and incorporated

additional elements such as multiple products and factories (Fumero & Vercellis, 1999), reduced production

capacity due to setup times (Hindi, Fleszar, & Charalambous, 2003), and recipe relationships (Stowers &

Palekar, 1997). The transportation routes of the finished goods, from production, to a transshipment ware-

house, to a pick-up location, to the customers are based on the multi-commodity network flow problem given

by Wang (2003). Moreover, specific constraints unique to De Heus, such as product types and bulk capacities,

were added to the model.

The decision to base the model on the production-routing problem was driven by the lack of available

models optimizing production, inventory, and transportation simultaneously. However, the model’s flexibility

allows for adaptation to different routing characteristics, such as scenarios where only one customer is served
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at a time, by adjusting constraints accordingly. This dynamic approach not only makes the model suitable

for other business units within De Heus but also for companies with similar routing characteristics.

7.3 Contribution to practice

The research outcomes are easily understandable for De Heus, allowing for direct implementation in real-

world scenarios. The experiments with current case data utilize recently gathered monthly data, ensuring

realistic results. The optimization of the base case provides weekly production schedules, inventory planning,

and more efficient customer assignments, presented through detailed Excel files and visualizations for easy

comprehension. Experiments such as capacity extension, new production locations, and SKU reduction were

designed based on questions or considerations raised by the company. The model is able to prove the existing

insights and experiences within the company, facilitating discussions about improvements and expansions.

For instance, the model for a new production location can support the development of a business model for

a new factory, while the focus on SKU reduction can be expanded to include the reduction of recipe variety.

Due to the modularity of the model and its high level of comprehensibility, this research provides valuable

insights for both present and future decision-making.

7.4 Recommendations

The different experiments conducted on the current situation of De Heus reveal that significant cost savings

are already possible when the current case is optimized. For De Heus, it does not require any additional

investments or cultural changes to achieve these savings, so it is advised to implement the results of the

current case. The model offers a broader perspective on shifting feed between locations, assuming customers

are willing to change pickup locations for cost-effectiveness. However, currently, De Heus does not encourage

customers to switch locations, despite indications from discussions with regional customers that they would be

open to the idea. De Heus should initiate negotiations with customers in this regard. Additionally, De Heus is

currently focusing on producing as much as possible to keep stock levels high. This results in high inventory

levels in the warehouse, decreasing the flexibility of slots in the warehouse and leading to unnecessarily

high inventory costs. De Heus is currently only focusing on reducing production costs, without considering

inventory costs or the impact on transportation costs when making production decisions. Therefore, it is

advised to also track these costs, as it allows for better analysis of changes in the finished goods supply chain.

In the experiments regarding expansion, it is advisable for De Heus to expand the Dong Nai factory and

construct a new factory in the Binh Duong II or Binh Phuoc area soon. A new location would reduce pro-

duction costs and provide flexibility for further optimization due to the new factory’s production capabilities.

Regarding the number of SKUs, it is recommended to continue reducing them, especially those with low

volumes. De Heus should evaluate whether these SKUs are profitable. Moreover, De Heus should actively

reduce or merge recipes to minimize flushing times. A smaller number of recipes would increase production

run sizes and reduce total flushing time. It is suggested that De Heus conducts the optimization process

annually to assess if any changes are necessary in production shifts or customer assignments. The model

could serve as support for these decisions.

7.5 Limitations and future research

For the optimization of the model, it was necessary to implement a certain ’external transportation cost’ to

force the model to also optimize the distance for customers to drive to their pick-up points. In theory, it does
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not cost De Heus anything if customers need to drive longer distances than before to pick-up the feed. Thus,

if no costs were implemented, the model would always choose to minimize costs for De Heus instead of also

considering the driving distances for customers. To address this in the current case optimization, an ’external

transportation cost’ was added. This cost is estimated based on the internal transportation costs provided

by the third-party logistics company and must be interpreted as a discount given to customers to convince

them to drive longer distances. The model assumes that this discount is the same for every customer, but

in reality, it takes time to convince customers to drive longer distances, leading to negotiations where the

discount per ton per kilometer may vary for each customer. Therefore, while this fixed discount approximates

the actual situation, the cost savings depend on the amount of discount given to customers. Changing the

fixed value currently used would lead the model to make different decisions based on the new most cost-

effective solution. To improve the model, De Heus could examine these external transportation costs and

investigate the appropriate discount to offer customers. Multi-objective optimization is also optimize the

extra driven kilometers without the need to implement specific costs during the optimization. In this case,

De Heus only needs to decide the maximum amount of extra kilometers customers need to drive, and the

model can minimize total costs based on that.

Another limitation is that the model optimizes based on fixed input data. In reality, demand forecasts

and customer orders mean factories have approximate expectations for upcoming weeks, but this is not as

fixed as the data currently used to optimize the model assumes. For now, demand data from December

2023 is used because it was the most recent available. Within this data, the demand for week 4 was already

known at the beginning of week 1, allowing the model to plan to fulfill all demand in week 4. In reality,

this demand is not known, but because demand patterns are predictable, the model still generates a valuable

solution. However, De Heus also wants to optimize the forecasted situation for a future period. To improve

optimization results, it would be better to implement forecasted demand and customer data into the model

to make decisions, for example, regarding building a new factory based on forecasted demand data for the

next 10, 20, or 30 years.

During the process of analyzing the structure of supplying depots from factories, the logistics department

noted that the costs of transporting finished goods from the factory to the depot are fully passed on to

customers. According to the department, transferring feed to that location is cheaper for De Heus because

they have a scale advantage. they can combine multiple orders of feed and transport them in one truck.

Theoretically, this would result in all feed being transported as close as possible to the customer, as it would

be the most cost-effective solution. However, when analyzing current customer assignments and corresponding

sales volumes, it was noted that sales at the depots were relatively low compared to sales at the factories.

Additionally, the company is currently closing most depots due to excessive costs. Therefore, in consultation

with the COO and production managers, it was decided not to implement this in the model, as proposed by the

logistics department, because the results would not have been comparable to the current case. Nonetheless,

for future research, it would be interesting to examine how these internal transportation costs are passed

on to customers and how this could lead to win-win situations if De Heus could use the economies of scale

advantage in supplying pick-up points.

The model currently cannot use variable run size during optimization. This means that the model

estimates the amount of production runs based on product categorization (low, medium, or high), each with

its own average production run size. In practice, production run size varies, allowing production planning to

vary the tons produced in one run. Due to linearity restrictions, it was not possible to implement this in the

current model. To implement it, it would have been interesting to focus more on production (and inventory
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planning) rather than also on transportation routes. In that case, customer assignment and transportation

routes would be assumed to be fixed, while a detailed production planning per day would be created, varying

the length of production runs. Most customers were assigned to the closest possible pick-up location, optimal

in terms of customers but possibly less cost-effective for De Heus. However, this actual situation could have

been used as fixed input for customer assignment, providing an opportunity to make more precise production

planning simultaneously optimizing three factories. Currently, De Heus makes a production planning per

factory, whereas it would be more efficient to plan production per region to see where demand occurs and

how to meet it. Therefore, for future research, it would be interesting to examine production planning in

detail to build a planning model able to plan demand per day in different factories, offering the opportunity

to decide if longer or shorter production runs are necessary.

In the end, the model was able to solve the current case within a reasonable time of 3 hours. This was

achieved without creating a heuristic to tackle theoretically larger problems with a systematic approach.

Since this model could solve the current case, the decision was made to perform experiments providing

relevant solutions to the company, rather than investing more time in developing a heuristic capable of

solving the problem faster and potentially addressing larger problem instances. This decision was made

in consultation with the company and supervisors because it was important to deliver results analyzable

in detail. Unfortunately, it could be possible for further research to develop a heuristic capable of solving

even larger problem instances, as the analysis on artificial data instances showed that computational time

increased when capacity restrictions were almost met. If this heuristic were developed, the literature review

of this thesis provides valuable information about different heuristics. The decomposition heuristic appears

well-suited to this situation, as it enables breaking down the problem into smaller parts, which are then

optimized individually in sequence to derive the best possible overall solution.
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A Appendix

A.1 AUGMECON2 flowchart

This part of the appendix containts the flowchart of the AUGMECON2 algorithm proposed by (Mavrotas &

Florios, 2013).

Figure A.1: AUGMECON2 flowchart
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A.2 Experimental results figures and tables

This part of the Appendix containts the results of the experiments in additional figures and tables.

The Figures provides the following information:

• Paretro front diagram for 20, 50 and 100 customers: Figure A.2, A.3 and A.4.

The tables provides the following information:

• Multi-objective optimization experiments for 20, 50 and 100 customers. Table: A.1, A.2 and A.3

Figure A.2: Pareto front: C20-F3-S494

Data instance #Iteration Costs ($) - f1(x)
Extra driven

KMs (km) - f2(x)

Computational

time(s)
gap (%)

C20-F3-S494 (A) 0 $180,261.89 2,645,184.13 1.72 s 0.0000 %

C20-F3-S494 (B) 7 $213,712.77 1,922,891.99 4.57 s 0.0027 %

C20-F3-S494 (C) 8 $218,708.47 1,819,189.90 7.48 s 0.0000 %

C20-F3-S494 (D) 15 $283,290.18 1,097,649.78 1.07 s 0.0000 %

Table A.1: Experiment E6 - Pareto front values C20-F3-S494

Figure A.2 and Table A.1 show the Pareto results for 20 customers. This Pareto front shows 12 of the

potential 16 data points. Data point C is interesting because the costs increase significantly to reduce fewer

extra driven kilometers. This observation was also made in the problem instance with 10 customers, where

at a certain point, the cost per kilometer reduction became very high. However, it can also be observed that

after point C, the reduction becomes cheaper again.

Figure A.3 and Table A.2 show the Pareto results for 50 customers. This Pareto front displays all 16

potential data points, resulting in a smooth Pareto front. Notably, from point B to C and onwards to point D,
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Figure A.3: Pareto front: C50-F3-S494

Data instance #Iteration Costs ($) - f1(x)
Extra driven

KMs (km) - f2(x)

Computational

time(s)
gap (%)

C50-F3-S494 (A) 0 $200,073.52 2,952,039.04 4.14 s 0.0000 %

C50-F3-S494 (B) 9 $252,423.23 1,839,163.051 15.60 s 0.0088%

C50-F3-S494 (C) 10 $269,057.93 1,715,514.11 18.81 s 0.0000 %

C50-F3-S494 (D) 15 $319,662.99 1,097,649.78 1.55 s 0.0000%

Table A.2: Experiment E6 - Pareto front values C50-F3-S494

the graph gives an interesting trend. Between B and C, it becomes increasingly costly to reduce the amount

of kilometers, but beyond point C, the cost decrease accelerates, leading to a steeper downward slope. Toward

point D, it becomes evident that the last kilometers are the most expensive.

Data instance #Iteration Costs ($) - f1(x)
Extra driven

KMs (km) - f2(x)

Computational

time(s)
gap (%)

C100-F3-S494 (A) 0 $257,150.33 4,876,539.08 14.64 s 0.0000 %

C100-F3-S494 (B) 9 $344,415.52 2,609,122.45 45.43 s 0.0077%

C100-F3-S494 (C) 14 $413,251.93 1,349,554.92 36.17 s 0.0099 %

C100-F3-S494 (D) 15 $465,506.15 1,097,649.78 4.27 s 0.0000%

Table A.3: Experiment E6 - Pareto front values C100-F3-S494

Figure A.4 and Table A.3 show the Pareto results for 100 customers. This Pareto front displays all 16

potential data points, leading to a smooth curve. Moreover, the costs between points C and D increase

rapidly compared to the reduction in the number of extra kilometers.
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Figure A.4: Pareto front: C100-F3-S494
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