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Abstract 

Utilizing multiple annotators for data annotation is a common practice since it can ensure the quality of 

annotated data by facilitating error detection and reducing individual biases. However, this approach 

inevitably results in annotation disagreements, especially in subjective topics such as hate speech, 

emotion or sexism, as well as in some objective tasks like law and medical decision-making. While 

methods such as refining annotation guidelines, resorting to majority voting or dataset curator 

intervention have been employed to address annotation discrepancies, there is growing recognition of 

the limitations of traditional approaches that force a single “ground truth” label. It can sacrifice the 

valuable nuances and diverse perspectives inherent in annotators’ assessments, thereby compromising 

the authenticity and richness of annotated dataset. Thus, there is a shifting paradigm towards preserving 

annotation disagreements to maintain the diversity of opinions and objectiveness of labeled dataset. 

In this study, we introduce approaches that incorporate annotation disagreement into the model training 

process. We mainly focus on hate speech detection and abusive conversation detection, tasks inherently 

entailing a high degree of subjectivity. Our approaches construct models using three different strategies: 

probability-based multi-label method, ensemble system and instruction tuning. The probability-based 

multi-label method treats the detection tasks as a multi-label text classification problem and gives 

probability distribution across different labels. The ensemble system imitates the annotation process 

that involves multiple annotators. It consists of multiple sub-models that are trained individually, 

thereby incorporating diverse perspectives within the annotations. The predictions from all sub-models 

are combined and transformed into the final decisions. Both the multi-label method and the ensemble 

system use BERT as their foundation models. Instruction tuning shares the same principle with the 

ensemble system but employs LLaMa 2 as the foundation model and fine-tunes it through the use of 

natural language instructions. Cross entropy is utilized as a metric to compare the performance of these 

three approaches. Moreover, to evaluate the effectiveness of embracing annotation disagreements for 

model training, we conduct an online survey that compares the performance of the multi-label model 

against the baseline model. The baseline model shares the identical structure with the multi-label model 

but is trained with the majority label. In the survey, participants are asked to give their preferences for 

the outputs generated by these two models. 

Our experimental results show that, in hate speech detection, the multi-label method outperforms the 

ensemble system and instruction tuning, even though the latter two approaches have much more 

complicated model structures and larger parameter sizes. For abusive conversation detection, 

instruction tuning achieves the best performance because unlike the other models, it relies less on using 

an extensive training dataset. Through significance testing, we find that the outputs from the multi-label 

model are considered more reasonable than those from the baseline model to characterize samples from 

the online survey. This proves the effectiveness of leveraging annotation disagreements for model 

training. 

  



ii 

 

Acknowledgements 

First and foremost, I would like to thank Dr. Daniel Braun for giving me this opportunity to work on 

this project on leveraging annotation disagreements among annotators. There were some minor 

obstacles on the road to obtaining approval for this undertaking. Therefore, I would also like to express 

my deep thanks to Dr. Mariët Theune for taking the responsibility of chair of the thesis committee. 

Otherwise, it would not be possible for me to work on this project. Next, I would like to extend my 

heartfelt gratitude to them for providing patient and detailed guidance throughout the process. The 

weekly meetings over the last six months have been very beneficial thanks to their academic insight 

and expertise, which ensured that this research work progressed in the right direction. Over this period, 

they consistently gave valuable feedback and raised thought-provoking questions. Furthermore, I 

appreciate their meticulous review of this thesis, which has significantly enhanced its quality and clarity. 

I am extremely grateful for the friends who generously dedicated their precious time to participate in 

the online survey, which was an important component of this research. Without their involvement, the 

completion of this project would not have been so smooth, and I am deeply thankful for their support. 

This thesis marks the end of my master’s studies, and I would like to express my sincere gratitude to 

those who have supported me during this journey. Their guidance, encouragement, and unwavering 

belief in my abilities have been indispensable over the past two years. 

 

 

  



 

iii 

 

Contents 
Abstract ................................................................................................................................................... i 

Acknowledgements ............................................................................................................................... ii 

1 Introduction ................................................................................................................................... 1 

2 Background.................................................................................................................................... 3 

2.1 Related Work ........................................................................................................................... 3 

2.1.1 Sources of annotation disagreement................................................................................ 3 

2.1.2 Tackling annotation disagreement ................................................................................... 3 

2.2 Relevant Techniques ............................................................................................................... 5 

2.2.1 BERT ............................................................................................................................... 5 

2.2.2 Large language models ................................................................................................... 6 

2.2.3 Parameter efficient fine-tuning ....................................................................................... 7 

2.2.4 Instruction tuning ............................................................................................................ 8 

2.3 Chapter Summary ................................................................................................................... 9 

3 Datasets ........................................................................................................................................ 10 

3.1 “Large-Scale Hate Speech” Dataset ...................................................................................... 10 

3.2 “Abuse in Conversational AI” Dataset .................................................................................. 11 

3.3 Chapter Summary ................................................................................................................. 13 

4 Methodology ................................................................................................................................ 14 

4.1 Baseline Model ..................................................................................................................... 14 

4.2 Proposed Models ................................................................................................................... 14 

4.2.1 Probability-based multi-label method ........................................................................... 15 

4.2.2 Ensemble system ........................................................................................................... 16 

4.2.3 Instruction tuning .......................................................................................................... 17 

4.3 Evaluation Metrics ................................................................................................................ 20 

4.3.1 Regular metrics ............................................................................................................. 20 

4.3.2 Alternative metric ......................................................................................................... 20 

4.4 Chapter Summary ................................................................................................................. 21 

5 Experiments and Results ............................................................................................................ 23 

5.1 Baseline Model ..................................................................................................................... 23 

5.1.1 Hate speech detection .................................................................................................... 23 

5.1.2 Abuse detection in conversational AI ........................................................................... 23 

5.2 Probability-based Multi-label Model .................................................................................... 24 

5.2.1 Hate speech detection .................................................................................................... 24 

5.2.2 Abuse detection in conversational AI ........................................................................... 25 

5.3 Ensemble System .................................................................................................................. 26 

5.3.1 Hate speech detection .................................................................................................... 26 



iv 

 

5.3.2 Abuse detection in conversational AI ........................................................................... 28 

5.4 Instruction Tuning ................................................................................................................. 29 

5.4.1 Hate speech detection .................................................................................................... 30 

5.4.2 Abuse detection in conversational AI ........................................................................... 31 

5.5 Online survey ........................................................................................................................ 32 

5.5.1 Hate speech dataset ....................................................................................................... 32 

5.5.2 Abusive conversation dataset ........................................................................................ 35 

5.6 Chapter Summary ................................................................................................................. 37 

6 Results Analysis ........................................................................................................................... 38 

6.1 Comparative Analysis ........................................................................................................... 38 

6.1.1 Dataset-wise .................................................................................................................. 38 

6.1.2 Model-wise ................................................................................................................... 41 

6.2 Online Survey ....................................................................................................................... 43 

6.2.1 Hate speech dataset ....................................................................................................... 44 

6.2.2 Abusive conversation dataset ........................................................................................ 45 

6.3 Error Analysis ....................................................................................................................... 48 

6.4 Chapter Summary ................................................................................................................. 51 

7 Conclusion and Limitations ....................................................................................................... 53 

Bibliography ........................................................................................................................................ 56 

Appendix A .......................................................................................................................................... 65 

Appendix B .......................................................................................................................................... 66 

Appendix C .......................................................................................................................................... 77 

Appendix D .......................................................................................................................................... 78 

Appendix E .......................................................................................................................................... 80 

Appendix F .......................................................................................................................................... 81 

Appendix G .......................................................................................................................................... 84 

Appendix H .......................................................................................................................................... 86 

Appendix I ........................................................................................................................................... 91 

 

 

 



1  Introduction 

1 

 

1 Introduction 

Employing multiple annotators for data annotation is a widely adopted practice since it can mitigate the 

individual biases and allows for error detection and correction, thereby ensuring the quality and 

reliability of annotated data. Nevertheless, this practice will inevitably lead to annotation disagreement. 

Annotation disagreement refers to instances where annotators, often individuals tasked with labeling or 

marking data, have not reached a consensus on the appropriate annotation in the process of annotating 

data. This lack of agreement can arise due to various factors, including differences in interpretation, 

subjective judgment, or ambiguity in the guidelines provided to annotators. Implementing inter-

annotator agreement metrics can help quantify and manage annotation discrepancies. However, the 

importance of addressing annotation disagreement extends beyond this, especially in tasks related to 

natural language processing (NLP), computer vision, and machine learning, where accurately labeled 

datasets are foundational for training models (Pang & Lee, 2004; Snow et al., 2008). 

Strategies to deal with annotation disagreement may include refining annotation guidelines, providing 

clearer instructions to annotators, and conducting regular training sessions to ensure a shared 

understanding of the labeling criteria. Additionally, the annotations provided by individuals can be 

combined through methods such as majority voting (Sabou et al., 2014) or other alternative procedures 

(e.g. the involvement of domain experts). In these ways, the consensus is achieved and subsequently 

utilized in training supervised machine learning algorithms. However, for some subjective annotation 

tasks involving hate speech, emotion or sexism, as well as for some objective tasks such as law and 

medical decision making (Dumitrache et al., 2018), there may be not a definitive right answer or true 

label (Alm, 2011; Cabitza et al., 2023). Under these circumstances, preserving annotation disagreements 

is essential for maintaining the quality and reliability of labeled datasets used in training and evaluating 

machine learning models. Instead, forcing a single “ground truth” label can sacrifice the valuable 

nuances inherent in annotators’ assessments of the stimuli and their disagreement, thereby diminishing 

the authenticity and representativeness of annotated data (Cheplygina & Pluim, 2018). Therefore, there 

is a paradigm shift in the academic community that moves away from the conventional approach of 

constructing monolithic, majority-aggregated gold standards. In contrast, harmonization, which 

typically involves aligning annotations through methods like majority voting, is not universally favored 

as the primary means of generating gold standards. 

In this study, we propose approaches that incorporate annotation disagreement into model training 

process. We choose two text classification tasks in the field of NLP which inherently entail a high degree 

of subjectivity: hate speech detection and abuse detection in conversation AI. In our chosen datasets, 

these two tasks exhibit different complexity and difficulty in terms of the label space. Hate speech 

detection is to determine whether one given text is hate speech or not, while abusive conversation 

detection requires not only identifying abusive text but also classifying the severity of the abuse. For 

these two detection tasks, the baseline model only considers the majority labels derived from the 

multiple annotations for training. Conversely, our three proposed approaches formulate the 

incorporation of multiple annotations during model training with different strategies: the probability-

based multi-label method, the ensemble system and instruction tuning. Firstly, given that the final 

annotation for each instance is the probability distribution over different classes after the integration of 

the annotations from all the annotators, we tackle this task as a probability-based multi-label text 

classification problem. Instead of predicting specific label(s) to one instance, the model gives a 

probability distribution. Each value in this distribution represents the level of likelihood regarding the 

instance’s association with each label. Secondly, we imitate the process of annotation from multiple 

annotators and approach this task by proposing an ensemble system. The ensemble system consists of 

many sub-models. Each sub-model is trained on its respective labels to capture the diverse viewpoints 

embedded in the annotations. Thirdly, since instruction tuning facilitates injecting explicit guidance into 

the training process and allows for explicit customization of model’s behavior, it is applied to both 
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detection tasks. Specifically, we use the pre-trained generative model and fine-tune it typically for the 

datasets. The response of the model is one annotation. In the baseline, multi-label method and ensemble 

system, BERT is adopted as their foundation model, while LLaMa 2 is utilized for instruction tuning. 

The performance of the proposed models on two datasets is compared using cross entropy. Besides, to 

evaluate the effectiveness of incorporating multiple labels during model training, we conduct an online 

survey. This survey aims to investigate individuals’ preferences between the outputs generated by the 

multi-label model and those by the baseline model. These two models share an identical structure, and 

their only difference is the labels they are trained on. Therefore, although the baseline model is trained 

with single labels, it is tasked with generating probability distributions in the inference phase, which 

facilitates the comparison. For each selected sample, participants are presented with probability 

distributions generated by both the multi-label model and the baseline model during the online survey. 

They are then asked to indicate which of these two probabilistic annotations they find more reasonable 

to describe the sample. By employing significant testing on the collected data, we aim to reveal whether 

individuals exhibit a preference for one of the probabilistic annotations to characterize the samples they 

encounter in the online survey. 

With these background and introduction, our research questions are as follows: 

Firstly, we aim to design models that can incorporate individual annotations from multiple annotators 

during the model training phase. 

• RQ 1: How can models be designed to incorporate individual annotations from multiple 

annotators during the training, instead of only considering the majority label derived from 

these annotations? 

Then, with these proposed models, we intend to compare their performances across the two selected 

tasks. 

• RQ 2: How do the proposed models perform in hate speech detection and abuse detection in 

conversational AI? 

Lastly, we aim to explore whether incorporating multiple annotations can improve model performance 

compared with solely using the majority label. Since these two approaches generate different output 

formats, we need to design a method that allows for the comparison between them. 

• RQ 3: How can we design a method to evaluate the effectiveness of incorporating multiple 

labels for model training against the model that only considers the majority label? 

The remainder of this thesis is structured as follows: Chapter 2 presents an overview of related work, 

including sources of annotation disagreement, approaches to tackling such disagreements, and key 

techniques relevant to this research, such as BERT, large language models, parameter-efficient fine-

tuning and instruction tuning. Chapter 3 discusses our two experimental datasets which correspond to 

two text classification tasks: hate speech detection and abuse detection in conversation AI. The 

methodology to be employed is illustrated in Chapter 4. It contains the baseline model, the three primary 

models that we propose for incorporating annotation disagreement during model training, and the 

evaluation metrics. Subsequently, Chapter 5 gives a description of the conducted experiments along 

with the experimental results, and Chapter 6 delves into a comprehensive analysis of these outcomes. 

Finally, the conclusion and limitations are summarized in Chapter 7. 
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2 Background 

Recently, a large number of studies have been conducted to tackle annotation disagreement. This chapter 

primarily concentrates on reviewing related work in the sources of annotation disagreement, tackling 

annotation disagreement and key techniques relevant to our research, such as BERT, large language 

models, parameter efficient fine-tuning and instruction tuning, etc. 

2.1 Related Work 

2.1.1 Sources of annotation disagreement 

The disagreements in annotation can come from different sources, such as the inherent ambiguity of 

text subjectivities and variations in value systems of annotators. 

On one hand, natural language, especially texts, can be inherently complex and can be interpreted in 

multiple ways within a given context (Poesio, 2020). There are many subjective elements existing in 

the texts which may add an additional layer of intricacy to the understanding of texts, such as sentiments, 

opinions or nuanced expressions. Therefore, it is common that there are divergent interpretations among 

annotators. Furthermore, some sentences or even labels may contain vague or ambiguous statements 

(Russell et al., 2008), making it challenging for annotators to understand or reach an agreement. 

On the other hand, some characteristics of annotators can have a significant impact on the annotation 

results, such as cultural differences, individual value systems or personal discrepancies, etc (Davani et 

al., 2022). For example, through post-annotation interviews, Patton et al. revealed that annotators who 

come from communities discussed in gang-related tweets are more likely to rely on their lived 

experiences in the process of annotating when compared to graduate student researchers. This 

divergence results in distinct label judgments (Patton et al., 2019). Additionally, Luo et al. found that 

the political affiliation of annotators can significantly shape how they assess and annotate the neutrality 

of political stances (Luo et al., 2020). 

The above-mentioned studies reveal the multifaceted nature of annotation disagreement, underscoring 

both text-related complexities and annotator-specific influences. 

 

2.1.2 Tackling annotation disagreement 

Majority voting involves aggregating annotations by selecting the label that the majority of annotators 

agree upon. It is obvious that majority voting is intuitive, easy to understand and implement (Uma et 

al., 2021). Furthermore, it tends to perform well when the annotators share unanimous perspectives. 

However, the employment of a majority voting method in annotation processes can unintentionally 

obscure nuanced viewpoints, especially for groups that are underrepresented in annotator pools 

(Prabhakaran et al., 2021). For instance, this is particularly evident when considering older adults, who 

may hold distinctive views on aging that differ from those of crowd workers, the majority of whom are 

typically younger. The reliance on a majority vote mechanism may lead to the overshadowing of unique 

insights and experiences. To address this concern, it is important to ensure a diverse representation 

among annotators to foster a more comprehensive understanding of various perspectives, particularly 

those from underrepresented demographics (Wan et al., 2023). Recognizing this necessity is crucial for 

fostering inclusivity and preventing the marginalization of specific viewpoints in annotation tasks. 

Therefore, there are some studies that have introduced alternative methods to majority voting when 

aggregating multiple annotations. In 2012, De Marneffe et al. trained a classifier that can predict event 

veridicality distributions (whether events described in a text are viewed as happening or not). Three 

types of features (lexical features, structural features and world knowledge) were used and selected 

through 10-fold cross validation (de Marneffe et al., 2012). All of these features aim to capture different 
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factors that can influence the veridicality of the text. From the perspective of information theory, 

Waterhouse measured a contributor’s judgment based on how much the judgement helps to reduce the 

entropy of our finding the “true” labels. These labels are estimated by a collective judgment resolution 

algorithm that takes into account the measurement of annotation workers’ contributions. And this 

quantity is expressed by the pointwise mutual information (PMI) between the annotated labels and the 

“true” ones (Waterhouse, 2013). Furthermore, they also used conditional PMI to measure the 

intersections between annotators. With these measurements, the “true” labels can be correctly estimated. 

In 2013, Hovy et al. proposed an item-response model, which was trained in an unsupervised way. By 

treating the “correct” labels as latent variables, the model gains the ability to predict whom to trust and 

when, rather than relying solely on applying majority voting on all samples (Hovy et al., 2013). 

Experimental results showed remarkable improvements over baselines for predicting label and 

estimating trustworthiness. In 2021, Gordon et al. introduced a disagreement transformation that 

leveraged multiple annotators’ judgments and disentangled stable opinions from noise by estimating 

intra-annotator consistency (Gordon et al., 2021). Using this algorithm, the final annotation for each 

instance was sampled from the primary labels, with random noise added, while non-primary labels were 

excluded. 

Some studies have developed methods for incorporating annotation disagreement in the process of 

model training. In 2019, Chou et al. incorporated the characteristics of each annotator in the inner layers 

of the neural network. In their experiment, they also introduced a joint learning methodology that 

simultaneously modelled the label uncertainty and annotator idiosyncrasy by using both hard label 

(majority voting) and soft label (the distribution of annotations) (Chou & Lee, 2019). The results 

showed that the added features contain useful information that significantly boosts the model 

performance. In 2021, Fornaciari et al. proposed a multi-task neural network that was trained on soft 

label distribution over annotator labels (Fornaciari et al., 2021). By integrating a divergence 

measurement between soft label and “true” label vector into the loss functions, they effectively 

mitigated overfitting and therefore improved performance across different tasks. In 2022, Davani et al. 

introduced multi-annotator models where each annotator’s judgements were regarded as independent 

subtask with a shared common representation of the annotation task (Davani et al., 2022). This approach, 

on one hand, enables to preserve and model the internal consistency in each annotator’s label. On the 

other hand, it also incorporates the systematic disagreements with other annotators. Similarly, the 

network architecture introduced by Guan et al. incorporates the concept of “crowd layers” to 

individually model annotation experts (Guan et al., 2018). In this approach, each expert’s model weight 

is calculated independently, and these individual weights are then averaged to facilitate ensemble 

recognition. In order to include the knowledge from all the annotators, Fayek et al. employed neural 

networks to build an ensemble system that consists of many models, with each model representing one 

annotator. Then the final results are obtained by combining the individual model outputs. For the 

purpose of comparison, they also trained a model that is fed with the soft labels from all annotators 

(Fayek et al., 2016). The results showed that these two approaches exhibit similar performance, which 

means that the performance improvement from the ensemble could be achieved by using soft labels 

from annotators. 

Although the approaches outlined above have improved the performance by leveraging annotation 

disagreements into model training, they remained limited to identifying the majority label. The outputs, 

in the form of “soft labels” (probability distribution over labels), were still aggregated to single labels 

as final predictions. Accordingly, there is also a lack of research focusing on evaluating the effectiveness 

of embracing multiple labels during model training. To address the first gap, this study proposes three 

approaches for constructing text classification models that use “soft labels” as targets. The relevant 

techniques and knowledge will be introduced in the following subsections. The handling of the second 

gap will be discussed in Section 4.3.2. 
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2.2 Relevant Techniques 

2.2.1 BERT 

BERT, short for Bidirectional Encoder Representations from Transformers, is a self-supervised learning 

model which can represent words as low-dimensional embeddings. The embedding provides rich 

contextual information and this is achieved through the utilization of self-attention mechanism. The 

BERT model consists of a series of encoders which are stacked on top of each other (see Figure 1). 

These encoders are based on the Transformer architecture, which is a type of neural network architecture 

specifically designed for processing sequential data, such as natural language text. There are two sub-

layers within each encoder: a multi-head self-attention mechanism and a feed forward neural network 

(Devlin et al., 2018). The self-attention mechanism allows the model to selectively attend to the most 

relevant parts of the input sequence, while the feedforward neural network captures nonlinear 

dependencies between the sequence elements. Through the stacking of multiple encoders, the BERT 

model is able to learn increasingly complex representations of the input text, thereby capturing 

contextual information from different scales. 

 

Figure 1 The architecture of BERT (Devlin et al., 2018; Vaswani et al., 2017) 

The input to the BERT model consists of a sequence of words and other special tokens such as “CLS” 

and “SEP”. First of all, the positional embedding, segmentation embedding and word embedding are 

applied to each token, and these embeddings will be summed to form a new vector. After that, these 

embeddings are passed through multiple transformer encoder layers in stack. During pre-training, BERT 

employs a masked language modelling (MLM). In this approach, a random subset of the input tokens 

are replaced with a special mask token (“[MASK]” in Figure 1) and the model is trained to predict the 

masked tokens based on the surrounding context provided by other tokens in the sequence. In this way, 

BERT learns how words relate to each other, which forces it to develop strong contextual 

representations. Additionally, BERT employs a next sentence prediction (NSP) objective. In this 

objective, the model is provided two sentences and trained to predict whether they are consecutive in 

the original text or not (depicted as “CLS” as the output). The final output consists of a sequence of 

contextualized embeddings for each token in the input sequence. These embeddings encapsulate not 
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only the meaning of the individual words but also their relationships with others in the sequence. 

Importantly, these embeddings are commonly used as input for downstream tasks. 

The self-attention layer within each encoder block enables the model to selectively focus on specific 

parts of the input (Vaswani et al., 2017). The architecture of the attention mechanism is illustrated in 

Figure 2. There are three matrices: 𝑊𝑄, 𝑊𝐾 and 𝑊𝑉, which are derived via network training. As shown 

in this figure, by using these matrices, input vectors 𝑋1, 𝑋2, … … , 𝑋𝑛 are transformed into new vectors 

𝑞𝑖, 𝑘𝑖 and 𝑣𝑖 (1 ≤ 𝑖 ≤ 𝑛). Subsequently, each element of the input sequence is compared with every other 

element in the same sequence. This is achieved by computing a score between each pair of elements (𝑞𝑖 

and 𝑘𝑖), which indicates their relatedness. The score is calculated using a dot product operation between 

the embeddings of the two elements. Following this, scores are normalized using a SoftMax function 

to obtain a set of weights that signify the relative importance of each element in the sequence with 

respect to others. Utilizing these weights, a weighted sum of the embeddings (𝑣𝑖) is computed, which 

is a contextual and low-dimensional vector that encapsulates the most relevant information within the 

sequence. The attention calculation in a self-attention layer is given in formula (1), where 

𝑄 = (𝑞1, 𝑞2, … … , 𝑞𝑛) , 𝐾 = (𝑘1, 𝑘2, … … , 𝑘𝑛)  and 𝑉 = (𝑣1, 𝑣2, … … , 𝑣𝑛) . In the denominator, 𝑑𝑘 

represents the dimension of 𝑞𝑖 and 𝑘𝑖. It serves to scale the values before applying the SoftMax function. 

This scaling makes sure that the softmax outputs are not overly influenced by the magnitude of the input 

vectors. With these three matrices, this layer calculates the relation between different tokens with dot 

product and form a new vector for each token. 

 

Figure 2 The architecture of the attention layer 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉                                              (1)  

The input of the self-attention layer will be added to its output (residual connection in Figure 1) and 

then layer-normalized (“Add & Normalize” in Figure 1). Next, the output of this “Add & Normalize” 

layer will be fed into a feed forward layer and another “Add & Normalize” layer. Finally, the last hidden 

state vector, which serves as the representation of the text, will be used as the output of this model. 

Generally, this vector will be put into a full-connected network to fit the downstream tasks. 

 

2.2.2 Large language models 

In recent years, there has been a surge in the development and utilization of large language models 

(LLM). As a result, “pretrain-then-finetune” has become a new paradigm for addressing various NLP 
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tasks. Large pre-trained models have shown remarkable abilities in understanding and generating texts. 

For example, autoregressive models (decoders only) like GPTs (Generative Pre-trained Transformer) 

(Brown et al., 2020), LlaMa (Large Language Model Meta AI) (Touvron et al., 2023) exhibit strong 

ability in generating human-like text, while auto-encoding models (encoders only) like BERT, 

RoBERTa (Liu et al., 2019) and Electra (Clark et al., 2020) are good at natural language understanding. 

Different from these two types, T5 (Text-To-Text Transfer Transformer) is an encoder-decoder 

architecture designed specifically for conditional generation tasks (Raffel et al., 2020), where text is 

generated based on specific conditions or context. One of the most impressive aspects is that T5 serves 

as a unified text-to-text framework for different kinds of NLP tasks. Whether for text classification or 

generation, these challenges can be effectively tackled by T5 in a consistent manner. 

These models are typically trained on massive datasets to learn the patterns and structures of language. 

Once pre-trained, they can be fine-tuned on specific tasks or domains to achieve better performance. 

Fine-tuning involves training the model on a smaller, task-specific dataset to adapt it to the nuances and 

requirements of a particular application, such as sentiment classification, summarization, translation, 

question-answering, etc. 

The availability of pre-trained models and their fine-tuning capabilities has democratized access to 

advanced language processing for a wide range of applications. Researchers and developers can 

leverage these models to build applications with improved natural language understanding and 

generation, saving time and resources compared to training models from scratch. 

 

2.2.3 Parameter efficient fine-tuning 

Despite the widespread popularity and impressive performance across various research domains, the 

fine-tuning of LLMs can pose challenges since it is resource-intensive and time-consuming, especially 

for models with massive parameter sizes like LLaMA, Vicuna (Chiang et al., 2023). In some cases, it 

is even problematic to load such models onto a single GPU since they can lead to memory constraints 

and slower processing speeds. This can hinder the smooth fine-tuning of the models for downstream 

tasks. Consequently, various strategies have been proposed by researchers to facilitate the efficient 

deployment of these large models into memory and optimize the fine-tuning process to achieve 

acceptable efficiency. 

For example, LoRA was introduced in 2021 as an innovative solution for parameter efficient fine-tuning 

(PEFT). It involves freezing the basic model and adding an adapter layer that consists of two trainable 

low-rank decomposition matrices. By freezing the base model and only optimizing these two matrices 

during fine-tuning process, LoRA significantly reduces the number of model's trainable parameter and 

avoids the computational overhead (Hu et al., 2021). Impressively, their experimental results 

demonstrated that LoRA can lead to a remarkable threefold reduction in GPU memory requirements. In 

2022, Liu et al. introduced prompt-tuning, a technique involving the freezing of the basic model and 

updating the discrete embeddings of manual prompts during training. This approach substantially 

reduced per-task storage and memory usage (Liu et al., 2022). However, it is important to note that a 

slight change in prompts, despite targeting the same task, could influence model performance. 

Furthermore, the embeddings are discrete since they are derived from manual prompts. To address the 

instability associated with manual discrete prompt embeddings, Liu et al. proposed P-tuning, a 

technique that adds randomly generated continuous embeddings before the discrete embeddings of 

manual prompts. This method not only stabilized training by minimizing gaps between different discrete 

prompts, but also led to remarkable performance improvements across a wide range of tasks (Liu et al., 

2023). In order to further optimize the memory usage of parameters, Dettmers et al. proposed NF4 (4-

bit NormalFloat), a quantization method which store pre-trained neural network weights with integer 

rather than floating-point values (Dettmers et al., 2023). By utilizing a zero-centered normal distribution 

to divide the range of floating-point values, NF4 aligns well with the distribution of weight values 
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within the model, thereby reducing the quantization errors. In 2021, with the similar idea with P-tuning, 

Li et al. proposed prefix-tuning technique. Different from P-tuning, which inserts continuous vectors 

solely in the input layer, prefix tuning inserts continuous vectors for each layer of the model, resulting 

in a larger parameter size. The authors discovered that prefix-tuning demonstrated impressive results. 

It can achieve comparable performance in full data settings and outperform fine-tuning in low data 

settings by learning only 0.1% of the parameters (Li & Liang, 2021). 

In order to deal with the challenges that manually designing prompts is troublesome and automatically 

generated prompts is difficult and time-consuming in multi-class text classification tasks, Han et al. 

proposed a framework that creates a sub-prompt based on rules (Han et al., 2022). They injected these 

rules with the prior knowledge of the text classification through encoding. Their experiments were 

conducted on three multi-class classification tasks, including relation classification, entity typing, and 

intent classification. The results showed that the prompt tuning method with rules outperforms prompt-

based methods in terms of the efficiency in constructing prompts. 

 

2.2.4 Instruction tuning 

With the wide-range application of transformer-based generative language models, the paradigm of 

using natural language to induce model’s behaviors has become a popular research topic. First of all, 

in-context learning is a type of machine learning where the model learns from a specific context and 

generates predictions based on it (Radford et al., 2019). Different from traditional machine learning 

algorithms that train models on a fixed dataset, in-context learning allows models to adapt and learn 

from new information or data points encountered during inference phase (Brown et al., 2020). It is 

important to note that the in-context learning does not train and update the weights of the model. There 

are several types of in-context learning methods, such as few-shot, one shot and zero shot. In few-shot 

learning, the model is given a few examples of the task during inference as conditioning. In particular, 

one example usually consists of a context and a desired completion, and for few-shot learning, there are 

K examples given where K is often set in the range of 10 to 100. By contrast, in one-shot learning, K 

equals to 1. For zero-shot, instead of providing any examples, we only offer a natural language 

description of the task. One of the primary advantages of in-context learning is that it does not require 

a large amount of task-specific data. Even in few-shot learning, usually less than a hundred examples 

will be sufficient to control the model’s generation (Zheng et al., 2021). However, due to the lack of 

training and fine-tuning process, the performance from this approach is significantly worse than many 

fine-tuned models (Sanh et al., 2021). Conducting in-context learning relies exclusively on the prior 

knowledge stored by a model during pre-training. In addition, in-context learning imposes significant 

computational, memory, and storage costs as it necessitates the processing of all training examples each 

time a prediction is generated (Liu et al., 2022). Also, the exact formatting of the prompt (including the 

wording and the arrangement of examples) can exert a substantial and unforeseeable influence on the 

model’s performance, extending well beyond the variations observed during fine-tuning across different 

runs (Webson & Pavlick, 2021; Zhao et al., 2021). 

Prompt tuning is also another way to control model’s output with natural language. However, unlike in-

context learning, prompt tuning has the fine-tuning process, but no weights of the model are updated 

(Shin et al., 2020). Instead, only the embeddings of the prompts are updated during the fine-tuning 

process. As a result, we do not have to save different models with different parameters for different 

downstream tasks. Conversely, only the fine-tuned embeddings of prompts corresponding to specific 

tasks need to be stored, and these are dramatically smaller than the whole pre-trained model. 

Nevertheless, prompt tuning can lead to model’s overfitting to specific prompts. This process typically 

involves fine-tuning a pre-trained model on a specific dataset and task using a fixed set of prompts. 

Such an approach restricts the transferability of the model to other tasks or domains, as it may demand 

extensive fine-tuning with new prompts for each new task (Su et al., 2021). For example, Liu et al. 
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showed that even though prompt tuning shows superiority on some of the natural language 

understanding benchmarks, it performs poorly on typical sequence tagging tasks compared to fine-

tuning (Liu et al., 2022). Furthermore, the model’s performance is not always consistent across different 

model scales. Lester et al. proved that for medium-sized models (ranging from 100 million to 1 billion 

parameters) that are widely used, prompt tuning yields significantly inferior results compared with fine-

tuning, while its performance can become comparable to fine-tuning when the model scales beyond 10 

billion parameters (Lester et al., 2021). Thus, instruction-tuning was proposed and well-studied. 

As a new tool of model tuning, instruction tuning has become increasingly popular and widely used to 

induce model through the usage of natural language instructions. In recent year, there has been a lot of 

work focusing on applying instruction tuning on a wide range of NLP tasks (Mehri & Eric, 2021; Wang 

et al., 2022; Wei et al., 2022), such as intent identification, sentiment analysis. The advantages of 

instruction tuning lie not only in its ability to explicitly guide the model’s outputs to align with the 

desired response characteristics or domain knowledge, but also in its remarkable transferability across 

various tasks, showcasing superior generalization to previously unseen tasks. This process involves the 

fine-tuning of the pre-trained model with a specific dataset. In 2022, Gupta applied instruction tuning 

on dialogue to enhance model’s performance on zero-shot and few-shot settings (Gupta et al., 2022). In 

their experiments, they adopted a unified text-to-text format based on 59 openly available dialogue 

datasets. Two pre-trained large language models were selected: T0-3B and BART0. In particular, T0-

3B (Sanh et al., 2021) is a fine-tuned version of T5 (Lester et al., 2021) with three billion parameters. 

It is fine-tuned on a multitask mixture of general non-dialogue tasks, such as question answering, 

paraphrase recognition and sentiment analysis. BART0 has a parameter size of 406 million (Lin et al., 

2022). It is fine-tuned on the same task mixture as T0-3B on the basis of Bart-large (Lewis et al., 2020). 

The experimental results indicated that their proposed model could lead to good zero-shot performance 

on unseen data, and in many NLP tasks, it can even outperform few-shot learning. Given that LLMs 

does not always follow the users’ intent as they are becoming increasingly bigger, such as making up 

facts, generating biased or harmful text, or just simply obviating instructions from users (Bender et al., 

2021; Weidinger et al., 2021), Ouyang et al. proposed InstructGPT which is fined-tuned via 

reinforcement learning to incorporate human preferences (Ouyang et al., 2022). In this way, they 

managed to make sure that the LLM can act in accordance with human’s intentions. Specifically, they 

selected GPT-3 as the pre-trained model and fine-tuned it by writing some instructions which 

demonstrated the desired output behavior from the model. The primary fine-tuning strategy is 

reinforcement learning from human feedback (RLHF) since in the second step of their experiments, 

human preference was utilized as a reward signal to train a reward function. The reinforcement learning 

algorithm employed was Proximal Policy Optimization (PPO) (Schulman et al., 2017). From their 

experimental results, an improvement in the truthfulness and reductions in toxic output generation can 

be observed, even though InstructGPT still makes some small mistakes. 

 

2.3 Chapter Summary 

In this chapter, we mainly introduced the relevant background knowledge that is utilized in this research. 

Firstly, we discussed the sources of annotation disagreement and the way to tackle it. Then, we 

introduced some newly released techniques that are relevant to our experiments, including large 

language model, BERT, parameter efficient fine-tuning and instruction tuning. Due to the capacity of 

LLM in solving many NLP problems, this research will mainly unfold around LLM, instead of the 

traditional machine learning algorithms. To reduce the training time and the requirement of 

computational power, we used PEFT, which achieves this by reducing the size of the parameters that 

need to be upgraded in the process of fine-tuning. We also applied instruction tuning to one of our 

proposed models given its ability to directly control the model’s output with natural language.  
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3 Datasets 

In this study, we want to discover discrepancies in model performance across different datasets. To 

achieve this, two datasets are utilized in our experiments. They show differences in some aspects, such 

as data size, the number of annotators involved in each sample, classification difficulty, etc. 

3.1 “Large-Scale Hate Speech” Dataset 

The first dataset utilized in this study is the “Large-Scale Hate Speech Dataset”1 (hereinafter referred to 

as “hate speech dataset”) (Toraman et al., 2022). This dataset consists of 200,000 tweets, evenly split 

between Turkish and English languages. For our experiments, we specifically focus on 100,000 English 

tweets, with 7,000 tweets for training, 1,500 for validation, and another 1,500 for testing. Five distinct 

domains are involved in this dataset: Religion, Gender, Race, Politics, Sports. For both languages, there 

are 2,000 tweets for each domain. There are a total of 20 annotators in the annotation panel. And each 

tweet is annotated by randomly selected five anonymous annotators. The label space is {0,1,2}, where 

0 corresponds to “Normal”, 1 to “Offensive” and 2 to “Hate” (Toraman et al., 2022). According to the 

annotation guidelines utilized by Sharma et al. and Toraman et al., tweets are categorized as “Hate” if 

they target, incite violence against, threaten, or advocate for physical harm towards an in dividual or a 

group of people based on identifiable trait or characteristic. And if tweets humiliate, taunt, discriminate 

against, or insult an individual or a group of people, they are annotated as “Offensive”. In the absence 

of these criteria, the tweets are labeled as “Normal” (Sharma et al., 2018; Toraman et al., 2022). An 

example of a data sample is demonstrated in Table 1. 

Table 1 An example from the hate speech dataset 

Column Name Description Example 

TweetID Twitter ID of the tweet 1344215464352821248 

Text Tweet’s text contents 

I don’t care what this man’s 

beliefs were, no one deserves to 

die this way. Hopefully this 

event will help raise 

awareness...... 

LangID 
Language of the tweet 

0-Turkish, 1-English 
1 

TopicID 

Domain of the topic 

0-Religion, 1-Gender, 2-Race, 3-Politics, 

4-Sports 

0 

Label_1 
Annotation of the first annotator 

0-Normal, 1-Offensive, 2-Hate 
1 

Label_2 
Annotation of the second annotator 

0-Normal, 1-Offensive, 2-Hate 
0 

Label_3 
Annotation of the third annotator 

0-Normal, 1-Offensive, 2-Hate 
0 

Label_4 
Annotation of the fourth annotator 

0-Normal, 1-Offensive, 2-Hate 
1 

Label_5 
Annotation of the fifth annotator 

0-Normal, 1-Offensive, 2-Hate 
0 

HateLabel 
Final hate label decision 

0-Normal, 1-Offensive, 2-Hate 
0 

 

 
1 https://github.com/avaapm/hatespeech/tree/master/dataset_v1 
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Here, we also present the statistical characteristics of tweets in the dataset. As illustrated in Table 2, a 

serious class-imbalance issue exists in this dataset. The predominant class, “Normal” constitutes 

approximately 66% of all samples across various domains. By contrast, only 27% and 7% of the tweets 

are from “Offensive” and “Hate” categories respectively. In our experimental results, we will present 

the model performance on each class. 

Table 2 The statistical characteristics of tweets in the hate speech dataset (English part) 

Domain Hate Offensive Normal Total 

Religion 1,427 5,221 13,352 20,000 

Gender 1,313 6,431 12,256 20,000 

Race 1,541 3,846 14,613 20,000 

Politics 1,610 6,018 12,372 20,000 

Sport 1,434 5,624 12,942 20,000 

Total 7,325 (7%) 27,140 (27%) 65,535 (66%) 100,000 

 

3.2 “Abuse in Conversational AI” Dataset 

The second dataset is “Abuse in Conversational AI” dataset 2  (hereinafter referred to as “abusive 

conversation dataset”) (Curry et al., 2021). The data was collected from conversations between users 

and three different conversational AI systems (Alana v2, CarbonBot and ELIZA), which have different 

goals and properties. Specifically, two of these systems are classed as chatbots, serving as social, open-

domain platforms, while the third one operates as a transactional, goal-oriented system. 

Alana v2 is one of the chatbots developed in Alexa Challenge 2018. This is a competition in which 

university teams were required to develop engaging social chatbots that can have conversations with 

users. The chatbot seamlessly integrated social chit-chat with the provision of information through 

entity linking. Users were informed about the competition at the beginning of the conversation. The 

dataset comprises automatically transcribed user utterances, inclusive of recognition noise, and was 

collected during the period from April 2017 to November 2018. 

CarbonBot is an assistant developed by Rasa3 and hosted on Facebook Messenger4. This bot’s primary 

goal is to persuade the user to consider buying carbon offsets for their flights. The data for CarbonBot 

was collected over a period spanning from 1st October 2019 to 7th December 2020. Additionally, it also 

informed the user that their conversations will be recorded for research purposes. 

ELIZA is an implementation of a rule-based conversational agent designed to emulate the role of a 

psychotherapist (Weizenbaum, 1966). This agent serves academic purposes and is hosted at the Jozef 

Stefan Institute5. Its primary motivation is to engage the users through the presentation of open-ended 

questions such as “Tell me more about……”. The data collection for ELIZA took place from December 

19, 2002 to November 26, 2007. 

Regarding the annotation of this dataset, the author adopted the unbalanced rating scale proposed by 

Poletto et al. (Poletto et al., 2019), in which inputs are labelled on a scale from +1 (Not abusive) to −3 

(Very strongly abusive). This annotation scheme offers insights into not only the presence of abusive 

content, but also the severity of the abuse. Specifically, -3 denotes content that is strongly negative with 

overt incitement to hatred, violence, or discrimination, and an attitude geared towards attacking or 

demeaning the target. A label of -2 indicates content that is negative, insulting, or abusive, with an 

aggressive tone. -1 represents content that is negative and impolite, mildly offensive but still within the 

 
2 https://github.com/amandacurry/convabuse/tree/main 
3 https://rasa.com/ 
4 https://m.me/CarbonBot.from.Rasa 
5 http://www-ai.ijs.si/eliza 
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bounds of conversational language. A label of 0 suggests ambiguity or unclear sentiment, while a +1 

indicates the non-abusive content. In the annotation process, eight annotators have been recruited, and 

each example is annotated by a minimum of three annotators to ensure annotation quality. 

Table 3 gives the dataset size, the number of annotations and the percentage of abuse annotations from 

three different datasets. From the table, the ratio of annotation numbers to dataset is about 

20,710/6,837 ≈ 3.0291, which means that, in average there are approximately three annotators 

designated for one sample in the dataset. Similarly, this is also a class-imbalanced dataset. The overall 

percentage of abuse samples is about 20.4%, while the figure for CarbonBot is only 6.7%. Due to 

privacy reasons, the authors were not able to provide the dataset from Alana that was used in their paper 

(Curry et al., 2021). Only data from CarbonBot and ELIZA has been released. Specifically, we have 

2501 samples as training data, 831 as validation data and 853 as testing data. 

Table 3 Dataset size, labelled examples and the percentage of abuse across different datasets 

Dataset Size Annotation Abuse Percentage 

Alana v2 2,652 7,942 27.2% 

CarbonBot 1,515 4,650 6.7% 

ELIZA 2,670 8,118 21.2% 

Total 6,837 20,710 20.4% 

 

An example of a data sample is given in Table 4. 

Table 4 An example from the abusive conversation dataset 

Column Name Description Example 

example_no Index of the record 278 

annotator_id Annotator ID 2 

conv_id Conversation ID 164070 

prev_agent Agent’s previous utterance 
How long have you been on the 

verge of suicide? 

prev_user User’s previous utterance since I was 10 years old 

agent Agent utterance 
Why do you tell me you were 

10 years old just now? 

user User (target) utterance were you not ten years old? 

bot Agent name (CarbonBot/Eliza) Eliza 

Annotator1_is_abuse.1 Not abusive 1 

Annotator1_is_abuse.0 Ambiguous 0 

Annotator1_is_abuse.-1 Mildly abusive 0 

Annotator1_is_abuse.-2 Strongly abusive 0 

Annotator1_is_abuse.-3 Very strongly abusive 0 

Annotator2_is_abuse.1 Not abusive 0 

Annotator2_is_abuse.0 Ambiguous 1 

…… …… …… 

Annotator8_is_abuse.-3 Very strongly abusive / 

 

As we can see from this table, one conversation consists of two rounds of dialogue between the user 

and agent. The annotations provided by one annotator are depicted across five columns, where they 

assign their chosen class as 1 and the others as 0. For each sample, there are annotations from at least 

three annotators, and for annotators not assigned to a particular sample, their entries remain blank. 
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3.3 Chapter Summary 

In this chapter, we mainly discussed our experimental datasets we intend to utilize. In this research, we 

have two different datasets, one is the hate speech dataset, and the other one is abusive conversation 

dataset. They were collected from different platforms and have different classification granularities: one 

is three-class classification, and the other is five-class classification. Furthermore, they have a huge 

discrepancy in terms of data size, which would be beneficial to testing our models’ applications in 

different size of datasets. 
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4 Methodology 

4.1 Baseline Model 

In this study, our baseline model is trained on the “ground truth” label that is aggregated via majority 

voting. That is, the label assigned to a particular data point will be determined by the majority vote 

among annotators (see Figure 3). In cases of a tie situation, a dataset curator outside the initial annotator 

set determines the label as the final decision. 

 

Figure 3 The framework of the baseline model 

Given BERT’s notable performance in contextual understanding, we choose it as the pre-trained model. 

The anticipated output of this model should be a single label. Therefore, we augment its architecture by 

adding a fully connected layer to its last hidden state, thereby adapting the model structure to this 

specific prediction task. Within the model architecture, BERT functions as a feature extractor, extracting 

contextual information from the input text, while the fully connected layer appended to the last hidden 

state of BERT enables the model to learn task-specific patterns, relationships and knowledge. 

 

4.2 Proposed Models 

Although the baseline approach facilitates model training by providing a highly “precise” dataset with 

a clear and consistent target for supervised machine learning models to learn from, it can lose its 

meaning to a certain extent in some subjective tasks, such as sentiment analysis, hate speech 

identification. On one hand, majority vote-based harmonization tends to overlook minority perspectives, 

potentially leading to a loss of valuable nuances in the data. On the other hand, even if a “ground truth” 

label could be derived through harmonization, it might not serve as a robust basis for training a system 

aiming to reproduce annotators’ judgements within a specific understanding task (Klenner et al., 2020). 

Instead, this approach can lead to brittleness or excessive generality, posing challenges in transferring 

annotated data across domains or limiting the practical applicability of the obtained results (Aroyo & 

Welty, 2013). 

As a result, alternative methods that incorporate annotation disagreement into the model training 

process are proposed to improve model’s robustness and capacity to generate diverse and inclusive 

predictions. The model becomes more informative by providing diverse predictions, rather than just 

adhering to one single assumed “ground truth” label. In our proposed methods, instead of training model 

on the majority-based label, annotations from all annotators are taken into account as valuable 

perspectives for model training. 
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Fornaciari et al. (2021) added multi-label training as an auxiliary task of the majority label training in a 

multi-task neural network. Inspired by this, we remove the single label training and propose probability-

based multi-label model. Moreover, based on a similar idea employed by Fayek et al. (2016), we 

propose an ensemble system that consists of multiple sub-models, with each contributing to the final 

prediction. Instruction tuning shares the same idea with the ensemble system but employs a different 

foundation model and fine-tunes it through the use of natural language instructions. Notably, these 

existing studies incorporated multiple labels only to improve the performance of identifying the 

majority label. In this study, we use the probability distribution over labels as the model output, instead 

of aggregating it into a single label. 

4.2.1 Probability-based multi-label method 

The task of identifying hate speech or abusive conversation can be regarded as a multi-label text 

classification problem, where a given piece of text can be associated with one or multiple labels 

simultaneously. This paradigm is especially relevant in scenarios where content demonstrates diverse 

characteristics, and can be associated with various topics, themes, or attributes. In the probability-based 

multi-label method, the input is the text and the output is the probability distribution over the predefined 

label space. Unlike the traditional approaches that assign one or several exclusive labels to the input 

text (Jiang & Nachum, 2020), our model predicts the likelihood or probability of each label being 

associated with the given text. A framework of this approach is provided in Figure 4. As we can see 

from this figure, the model is trained on the probability distribution across different labels which is 

derived from individuals’ annotations. 

 

Figure 4 The framework of model training within the probability-based multi-label method 

In this approach, we mainly follow “pretrain then finetune” paradigm. Accordingly, since BERT is adept 

at generating contextualized word representations by considering the left and right context, we select it 

as the pre-trained model for training on the probability-based multi-label text classification task. During 

the fine-tuning process, an extra layer is added to the output layer of the pre-trained model. Specifically, 

the pre-trained model generates a vector as the presentation of the text in this phase (see Figure 5). This 

vector encapsulates the essential features and semantic information extracted from the text. 

Subsequently, this vector is fed into a fully-connected layer and mapped into a multidimensional vector, 

with each dimension corresponding to a distinct category associated with the text. Given that this study 

involves three or five types of label space, the output vector has three or five dimensions. Finally, in 

order to make sure values from all dimensions sum up to 1, this vector is normalized by the SoftMax 

function, thereby providing a probability distribution that reflects the model’s confidence or certainty 

regarding each category. 
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Figure 5 Fine-tuning BERT in the probability-based multi-label method 

 

4.2.2 Ensemble system 

In the process of label annotation, diverse labels are assigned by different annotators. And based on that, 

a probability distribution over different categories can be obtained by integrating all the annotations. 

Inspired by this idea, we propose the development of an ensemble system. The concept behind 

proposing an ensemble system for this task is to simulate the process of annotation by leveraging the 

diversity in labels provided by different annotators. Rather than relying on a singular annotator’s 

perspective, this approach integrates the annotations from multiple annotators, thereby capturing the 

collective insights of all annotators. 

The ensemble system consists of several sub-models. Each sub-model is trained independently on its 

respective set of labels. During the inference process, the final results concerning the probability 

distribution across different labels are obtained by combining outputs from all sub-models. Within the 

ensemble system, each sub-model contributes a unique perspective to the final predictions, collectively 

representing the diversity and nuances present in the annotations. In this way, it aims to achieve a more 

comprehensive understanding of the data by incorporating the varied viewpoints of multiple annotators. 

In the abusive conversation dataset, the annotators assigned for each sample are clearly specified, as 

detailed in Table 4. Therefore, within the ensemble system, each sub-model represents one specific 

individual annotator and is trained on that annotator’s provided labels. In the testing phase, these sub-

models make their own predictions, which contribute to the final outcomes of the ensemble system. 

This can ensure a more comprehensive result by embracing the insights from each individual annotator, 

as represented by the sub-models. 

In the hate speech dataset, each column of labels contains annotations from several anonymous 

annotators. Despite the anonymity, training model with such labels can potentially increase the 

robustness of sub-models since it helps to reduce the biases or inconsistencies introduced by individual 

annotator (Frenay & Verleysen, 2014). Furthermore, the resulting labels are likely to reflect a diverse 

range of perspectives and interpretations of the data. Training sub-models on these diverse annotations 

can capture the variability in annotator judgments and enhance the model’s ability to generalize across 

different viewpoints (Audhkhasi & Narayanan, 2013). This collective wisdom pooled from multiple 

annotators has the potential to improve overall performance. 

The foundation model used to train on individual annotations is the pre-trained BERT model. As we 

can see from Figure 6, each BERT model is trained individually on its corresponding labels. For each 

sub-model, the input is the text from one instance and the output is a multidimensional vector where 

each dimension corresponds to one category. After that, this vector is transformed by the SoftMax 
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function and the dimension with highest probability is identified as the final output. Finally, the 

predictions from all sub-models are combined and converted into a probability distribution of three- or 

five-dimensional vector. 

 

Figure 6 Fine-tuning BERT individually as sub-models within the ensemble system 

 

4.2.3 Instruction tuning 

Instruction tuning involves the process of further training LLMs on a dataset consisting of (instruction, 

output) pairs in a supervised fashion. Here, an “instruction” is constructed to guide the learning process. 

The key idea is to provide the model with explicit instructions, often in the form of paired input-output 

examples, to enhance its performance and align it with specific objectives. Unlike traditional training 

approaches where models learn from data alone, instruction tuning injects explicit guidance into the 

training process. This approach allows for explicit customization of the model’s behavior. Researchers 

can provide specific guidance to shape the model’s output, thereby adhering to desired properties or 

behaviors. In other words, this guidance comes in the form of instructions, which specify desired 

properties, behaviors, or characteristics that the model should exhibit in its outputs. In this study, we 

ask the model to predict the class of hate speech or abusive conversation based on the input we construct. 

The input contains task description, instruction, original text, and response, which is the annotation 

from a specific annotator. In this context, we need to design a template. This template can transform 

(text, label) pairs from existing annotated datasets to (instruction, output) pairs. In many cases, the 

construction of template typically involves two steps: firstly, manually composition of instruction and 

target templates; secondly, filling templates with data instances from the dataset (Zhang et al., 2023). 

The advantages of instruction tuning are as follows. On one hand, instruction tuning enables the explicit 

incorporation of contextual information and constraints, ensuring that the model generates outputs that 

align with specific contextual requirements. In contrast, traditional supervised learning may struggle to 

implicitly capture or handle complex contextual dependencies. On the other hand, instruction tuning 

allows for few-shot learning. In other words, it enables the model to learn from a few examples or even 

just one, which makes it suitable for many few-shot learning scenarios. This facilitates training models 

on tasks where real-world labelled data is limited or expensive to obtain. By contrast, in traditional 

supervised learning, adverse effects may arise due to the lack of sufficient training data since it typically 

requires a large amount of dataset from which the model can learn the knowledge or pattern as precisely 

as possible (Zhou et al., 2017). 
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In the development of instruction tuning, numerous pre-trained LLMs, such as LLaMa 2, T5 and Vicuna 

can be employed. LLaMA 2 was pre-trained on an extensive dataset that encompasses a wide range of 

text and code, including books, articles, websites, and programming code. The dataset was compiled 

from various sources, including the Common Crawl corpus, the English Wikipedia, and GitHub. In the 

process of pre-training, the model was trained on a variety of NLP tasks, such as masked language 

modelling, text classification, and code generation. This multifaceted training equipped LLaMA 2 with 

the ability to learn a wide range of linguistic patterns and relationships. Operating as an auto-regressive 

language model, LLaMA 2 employs an optimized transformer architecture. The tuned versions use 

supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) (Introducing 

ChatGPT, n.d.; Ouyang et al., 2022) to align to human preferences, specifically targeting criteria related 

to helpfulness and safety6. Available through the Hugging Face platform under this repository, LLaMA 

2 is configurable with parameters ranging from 7 billion, 13 billion, to 70 billion, and it is offered in 

both pre-trained and fine-tuned variations. Although Vicuna is an upgraded version of LLaMa, it has 

been particularly fine-tuned with a ChatGPT dialogue corpus, which enhances its performance in 

dialogue-related tasks and chatbot interaction (Xu et al., 2023). These capabilities are not directly 

aligned with the objectives of this study. Therefore, we will utilize LLaMa 2 (7 billion version) as the 

foundation model. LLaMa 2 is an auto-regressive language model, which means it generates text one 

word at a time, predicting the next word based on the words that came before it. As a result, different 

from the earlier models we have proposed, in which this task is treated as text classification problem, 

this approach addresses it as a question answering task. In this context, the model is trained to generate 

a response when given a designed input. 

 

Figure 7 Fine-tuning LLaMa 2 as a sub-model with instruction tuning in the hate speech dataset 

 

 

Figure 8 Fine-tuning LLaMa 2 as a sub-model with instruction tuning in the abusive conversation dataset 

 
6 https://huggingface.co/meta-llama/Llama-2-7b-chat-hf 
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The frameworks of fine-tuning LLaMa 2 via instruction tuning in two datasets are presented in Figure 

7 and Figure 8. On the left sides of the figures are the inputs fed into the pre-trained model. From the 

figures, the instruction tuning process involves providing the pre-trained model with an input, which 

comprises the following four components: scenario description, instruction, text input and response. 

The instruction indicates the desired task, the text input comprises the tweet or conversation and the 

response is the annotation from a specific annotator. With this input format, the model is fine-tuned to 

become adept in the downstream task. After several attempts and checking the quality of model outputs, 

different instructions are allocated for hate speech detection and abusive conversation detection 

respectively. Following the fine-tuning process, the model gains the ability to predict the corresponding 

label assigned by a particular annotator. In the inference phase, the value under the “Response” key will 

be removed, and the fine-tuned model is tasked with generating its prediction. 

However, due to the large parameter size of the pre-trained model, it would be very time-consuming to 

fine-tune the entire model throughout the whole training process. As a result, PEFT strategies will be 

applied to mitigate training time and memory requirements. The available strategies include LoRA, 

QLoRA, P-Tuning, Prefix-Tuning, and others, which have proven prominent in fine-tuning. Notably, 

LoRA and QLoRA are the most widely utilized techniques. Although QLoRA proves more memory-

efficient and powerful in making the training process faster, it potentially leads to lower performance 

compared with LoRA, as it uses lower-precision weights to compress the model size and conserve 

memory. Considering that the selected version of LLaMa 2 (seven billion) lies within the acceptable 

limits of our memory and computational power, we employ LoRA as the PEFT method for instruction 

tuning. This allows for fine-tuning model by only optimizing a small number of parameters. The details 

of applying LoRA for PEFT is given in Figure 9. In the figure, the pre-trained weights are frozen and 

an adaptor is added alongside it. The adaptor is decomposed into two smaller matrices where r is much 

smaller than d and k. During fine-tuning, only the parameters in the adaptor are updated. As a result, 

the computations are reduced dramatically. In the process of inference, the matrices A and B will be 

multiplied and merged with pre-trained model, which ensures that the parameter size of newly fine-

tuned model will stay unchanged. 

 

Figure 9 Details of using LoRA for model’s parameter efficient fine-tuning 
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4.3 Evaluation Metrics 

4.3.1 Regular metrics 

The baseline model and sub-models within the ensemble system and instruction tuning method are 

trained using single labels. Therefore, we utilize precision, recall, accuracy and F1-score (Salton & Lesk, 

1968) to evaluate the performance of these models. The ways of calculating these metrics are present 

in the formulas below. Given that there are several different classes and the dataset is class-imbalanced, 

we specifically present confusion matrix (Townsend, 1971) to elucidate the performance on each class. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
                                        (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
                                           (3) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
           (4) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                                                      (5) 

On the other hand, the final output of our proposed models is a probability distribution across different 

labels, and in this scenario, a single “ground truth” label is no longer applicable for model evaluation. 

Instead, we need to compare the distribution of annotations with model output. Here, cross entropy is 

used to measure the difference between probability distributions. Cross entropy is one kind of statistical 

distance which can be used to measure how a probability distribution is different from a reference 

probability distribution. By definition, it is the average number of bits (a format of quantified 

information) required to encode data coming from a target distribution A when using the approximation 

of the target distribution B (Murphy, 2012). For two discrete probability distributions A and B which 

have the same class space 𝜒, the way of calculating the cross entropy between A and B is shown in 

formula (6) (Shannon, 1948). The higher the cross entropy is, the more different two distributions are. 

This metric is commonly used as the loss function for training neural networks. However, in previous 

research on NLP tasks, it has also been used to quantify how well the model’s predicted distribution 

matches the annotation distribution over possible categories from multiple annotators (Pavlick & 

Kwiatkowski, 2019). 

𝐻(𝐴, 𝐵) = − ∑ 𝑎(𝑥) log 𝑏(𝑥)

𝑥∈𝜒 

                                                            (6) 

4.3.2 Alternative metric 

Furthermore, in RQ3, we aim to evaluate the effectiveness of training model with multiple labels against 

the model that only relies on the majority label. Due to the format disparity between the outputs 

generated by these two models, it is impractical to use the abovementioned metrics for evaluation. To 

bridge this gap, we conduct an online survey where participants specify their preference between 

annotations generated from the probability-based multi-label model and the baseline model. For each 

dataset, we select 10 samples, each featuring two groups of annotations. In the first group, there are two 

annotations. One is the multiple labels from all the annotators, and the other one is the “ground truth” 

label derived from these multiple labels via majority voting. There are also two annotations in the 

second group. Both annotations are in the form of probability distributions across different labels. One 

is generated from the baseline model trained with majority label, which is, however, used to generate 

probability distribution in the phase of inference. The other one is from the probability-based multi-

label model. This model has the same structure as the baseline model and their only difference is the 
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labels in the data they were trained on. For each sample, participants are required to indicate which 

annotation they find is more reasonable to characterize the tweet or the abusive conversation in each of 

these two groups of annotations. The first group of annotations is to explore individuals’ preferences 

regarding the labelling method for hate speech or abusive conversation. Specifically, we aim to 

understand whether individuals favor using a majority label or multiple labels. The second group aims 

to investigate whether training the model with the multiple labels improves performance. 

In terms of the sampling strategy for the online survey, we incorporated samples with diverse annotation 

patterns. They, on one hand, have both diverse and concentrated annotations. For example, in hate 

speech part, three samples are relatively concentrated, with all the five annotators assigning the same 

label, while three others contain disperse annotations. On the other hand, we ensure the diversity of the 

majority labels across the samples. 

On the visualization aspect, we use a different way for each group. The first group is presented via word 

cloud since we aim to display the multiple labels and majority label. The size of each word in the word 

cloud indicates the likelihood that the tweet belongs to a specific label. As for the second group, we 

visualize two distributions via stacked bars where the length of each section in the stacked bar indicates 

the probability value. For the specific details of the questionnaire, please refer to Appendix B. 

In terms of analyzing the collected data, we have two goals. Firstly, we need to explore in general if 

individuals prefer multiple labels over majority label, and if they prefer the probability distribution 

generated from the probability-based multi-label model compared to the baseline model. Secondly, we 

seek to investigate the correlations between these two preferences and various demographic factors, 

such as gender, degree, ethnicity and familiarity with hate speech. To achieve the first objective, we 

employ binomial test and multinomial test to discover if people exhibit preference for certain option. 

The binomial test is a statistical hypothesis test used to assess if the proportion of observations in a 

sample deviate from a hypothesized value (Fisher, 1992). It is suitable for investigating labelling method 

preference since there are two options available. Moreover, this test is particularly effective for small 

to moderate sample sizes. However, when dealing with very large samples, even slight changes from 

the hypothesized proportion can yield statistically significant outcomes, which might not be very 

meaningful when put into practice. The multinomial test builds on the basis of binomial test since it 

handles scenarios with more than two possible outcomes (Read & Cressie, 2012). They are both 

valuable in analyzing categorical data and have wide applications such as market research, where they 

help to understand customer preferences across various product features or categories. As for the second 

objective, we adopt chi-square test for assessing the relationship between these two preferences and 

individuals’ demographic factors. The chi-square statistic examines the independence between variables 

by quantifying the disparity between the observed and expected frequencies of outcomes within a 

specific variable set (William G. Cochran, 1952). It is commonly applied to categorical data, especially 

when dealing with nominal variables, such as marital status or gender, where the order of categories 

does not matter (Yeager, n.d.). 

 

4.4 Chapter Summary 

In this chapter, we mainly introduced the methodology that is used in this research. To begin with, we 

build the text classification models that embrace the annotation disagreement in different ways: the 

probability-based multi-label method, the ensemble system and instruction tuning method. Regarding 

the evaluation metrics, the common ones, such as precision, recall and F1-score will be applied on the 

baseline model and sub-models within the ensemble system and instruction tuning, as their targets are 

single labels. For the three proposed models which output probability distributions, cross entropy loss 

will be utilized. Additionally, in order to evaluate the performance of incorporating the multiple 

annotations for model training, we conduct an online survey. This survey contains two parts: the first 
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part is to investigate individuals’ preferences regarding the selection of either a majority label or 

multiple labels, as well as their preferences between two probability distributions, for labelling the hate 

speech or abusive conversation. One of these distributions is generated by the multi-label model, while 

the other one by the baseline model. The second part is used to investigate the correlations between 

these two preferences with demographic factors, such as degree, gender, etc.  
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5 Experiments and Results 

The experiments in this study involve training models that can predict targets in different scenarios, 

including those with multiple labels or single labels. Our primary methodology follows the “pretrain 

then finetune” paradigm, which selects a model pre-trained on a large dataset, and subsequently, fine-

tunes this model to tailor its knowledge for our specific tasks. 

5.1 Baseline Model 

The details of training configurations are given in Table 5. 

Table 5 The training configurations of the baseline model 

Hyperparameter Value 

Batch size 64 

Learning rate 3e-5 

Epoch 50 

Dropout 0.3 

 

5.1.1 Hate speech detection 

The results of the baseline experiment for the hate speech dataset are shown in Table 6 and Table 7. 

From these tables, the baseline model achieves an accuracy of 0.7456 on the testing dataset. There exists 

significant discrepancy in performance across the three classes. Specifically, class “Normal” 

demonstrates the highest performance, attaining an F1-score of 0.8452. By contrast, the results for the 

other two classes are less satisfactory, especially for class “Hate”, where the F1-score is only 0.3002. 

As shown in Table 2, both the “Offensive” and “Hate” classes are minority classes within the dataset, 

and this class-imbalance issue is the main reason why the model shows suboptimal performance on 

these classes. In both traditional machine learning and deep learning algorithms, the model might 

become biased towards the majority class if it is trained on a class-imbalanced dataset (Japkowicz & 

Stephen, 2002; Mazurowski et al., 2008). To minimize training loss and optimize fitting, the model may 

prioritize learning patterns from the majority class, potentially neglecting the minority classes. 

Table 6 The loss and accuracy of the baseline model for hate speech detection 

Training Validation Testing 

Loss Accuracy Loss Accuracy Loss Accuracy 

0.6804 0.7243 0.6232 0.7482 0.6230 0.7456 

 

Table 7 The baseline model’s performance across classes on the testing data for hate speech detection 

 Precision Recall F1-score 

Normal 0.7906 0.9081 0.8452 

Offensive 0.6364 0.5560 0.5935 

Hate 0.5595 0.2051 0.3002 

Macro avg 0.6621 0.5564 0.5796 

Weighted avg 0.7266 0.7456 0.7251 

 

5.1.2 Abuse detection in conversational AI 

For the abusive conversation dataset, the results are shown in Table 8 and Table 9. According to Table 

8, the baseline model demonstrates an accuracy of 0.8499, which is significantly higher than its 

accuracy on the hate speech dataset. Similarly, substantial performance disparities are evident across 
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various classes. As a majority class, “Not abusive” achieves a remarkably high F1-score of 0.9447. By 

comparison, the model struggles to make correct predictions for “Ambiguous” class. 

Table 8 The loss and accuracy of the baseline model for abusive conversation detection 

Training Validation Testing 

Loss Accuracy Loss Accuracy Loss Accuracy 

0.1459 0.9604 0.6451 0.8700 0.6997 0.8499 

 

Table 9 The baseline model’s performance across classes on the testing data for abusive conversation detection 

 Precision Recall F1-score 

Ambiguous 0.0000 0.0000 0.0000 

Not abusive 0.9413 0.9481 0.9447 

Mildly abusive 0.3556 0.2424 0.2883 

Strongly abusive 0.5455 0.7619 0.6358 

Very strongly abusive 0.2727 0.1875 0.2222 

Macro avg 0.4230 0.4280 0.4182 

Weighted avg 0.8388 0.8499 0.8421 

 

5.2 Probability-based Multi-label Model 

In the development of the probability-based multi-label model, we also leverage BERT as the pre-

trained model. Further details on the training configurations can be found in Table 10. 

Table 10 The training configurations of the probability-based multi-label model 

Hyperparameter Value 

Batch size 32 

Learning rate 2e-5 

Epoch 50 

Dropout 0.3 

Optimizer AdamW 

 

5.2.1 Hate speech detection 

Table 11 The average cross entropy for hate speech detection from the probability-based multi-label model 

 Training Validation Testing 

Hate speech 0.7613 0.7569 0.7638 

 

The model’s performance is evaluated by computing the cross entropy between the probability 

distributions generated by the multi-label model and annotators. The results of model training, 

validation and testing on this dataset are summarized in Table 11. Specifically, the model achieves a 

cross entropy loss of 0.7638 in the testing phase. 

However, cross entropy, being a general metric, provides insights only into the overall performance of 

the model across the entire testing dataset. To gain a more nuanced understanding, we proceed to 

visualize the predictions and target values across different classes. For each distribution, we dissect it 

into three numbers which represent the probability prediction on each class. Then, values in the same 

dimensions from the prediction and target distributions are regarded as x-axis and y-axis coordinates, 

thereby forming points in the plot. Figure 10 shows the heatmaps of points from three distinct classes 

in the hate speech dataset, color-coded based on their density. We also plot the “y=x” line (identity line), 

and points near this line indicate the predictions and targets have close values. 
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Normal Offensive Hate 

Figure 10 Density-based heatmaps of points across different classes for hate speech detection (the probability-

based multi-label method) 

From this figure, the results for classes “Normal” and “Offensive” are less satisfactory. There are 

numerous points where the model’s predictions and targets values exhibit misalignment. By contrast, 

the model’s performance is robust in the “Hate” class, where most of the points stay close to origin of 

coordinate plane (0,0). 

 

5.2.2 Abuse detection in conversational AI 

Table 12 The average cross entropy for abusive conversation detection from the probability-based multi-label 

model 

 Training Validation Testing 

Abusive conversation 0.8861 0.9680 0.9834 

 

From Table 12, the model achieves a cross entropy loss of 0.9834 in the testing phase. It turns out that 

the multi-label model achieves a more promising result on the hate speech dataset. 

   
Ambiguous Not abusive Mildly abusive 

  

 

Strongly abusive Very strongly abusive  
Figure 11 Density-based heatmaps of points across different classes for the abusive conversation dataset (the 

probability-based multi-label method) 

Figure 11 shows the heatmaps depicting points from five distinct classes in the abusive conversation 

dataset. Although the overall cross entropy loss is higher compared with the ensemble system, the 

results for all classes are relatively satisfactory. There is not a specific area from these plots that indicates 

a substantial number of points significantly deviating from the identity line. 
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5.3 Ensemble System 

The ensemble system consists of multiple BERTs which function as sub-models. All the BERT models 

within the ensemble system share the same training configurations, which are outlined in Table 13. 

Table 13 The training configurations of sub-models in the ensemble system 

Hyperparameter Value 

Batch size 64 

Learning rate 3e-5 

Epoch 50 

Dropout 0.3 
 

5.3.1 Hate speech detection 

Table 14 The loss and accuracy of sub-models in the ensemble system for hate speech detection 

Model 
Training Validation Testing 

Loss Accuracy Loss Accuracy Loss Accuracy 

Sub-model 1 0.6614 0.7306 0.6294 0.7380 0.6285 0.7367 

Sub-model 2 0.6830 0.7140 0.6452 0.7238 0.6605 0.7154 

Sub-model 3 0.6769 0.7159 0.6377 0.7251 0.6494 0.7237 

Sub-model 4 0.7003 0.7037 0.6541 0.7165 0.6754 0.7057 

Sub-model 5 0.6838 0.7095 0.6533 0.7193 0.6551 0.7166 

 

 

Figure 12 The F1-score of sub-models across classes in the ensemble system on the testing data for hate speech 

detection 

The results of the sub-models on the hate speech dataset are given in Table 14. As we can see from this 

table, sub-model 1 stands out with the highest accuracy on the testing data at 0.7367. By contrast, sub-

model 4 records the lowest accuracy, reaching only 0.7057. The remaining three exhibit similar 

performance, achieving accuracies of about 0.72. The detailed performance results of the sub-models 

across different classes on the testing data are shown from Table 36 to Table 40 in Appendix C. In Figure 

12, we present their F1-score for comparison. There also exists pronounced discrepancy in the model’s 

ability to accurately predict instances in the minority class “Hate” across five sub-models, with sub-

models 3 and 4 displaying a particularly noticeable disparity. Specifically, the F1-score of class “Hate” 

achieved by these two sub-models are only around 0.06. In contrast, among all sub-models, their 
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precision, recall and F1-score on classes “Normal” and “Offensive” are not very different. The 

consistency suggests that the model perform comparably well on the majority classes, highlighting their 

ability to effectively capture and classify samples within these prevalent categories. 

Subsequently, the predictions from sub-models are combined and transformed into a probability 

distribution via the SoftMax function. Table 15 illustrates this process, which is also employed for 

annotations from multiple annotators. 

Table 15 The method of combining and transforming predictions from the sub-models 

Predictions Combined Result Probability Distribution 

Sub-model 1: 0 

Sub-model 2: 2 

Sub-model 3: 1 

Sub-model 4: 2 

Sub-model 5: 0 

[2, 1, 2] [0.4223, 0.1554, 0.4223] 

 

Lastly, since these sub-models show varying performances in the training and validation processes, we 

typically choose top n (n≥3) best-performing sub-models to determine the final results. The ranking 

criteria is based on their accuracies in the validation data. The predictions from these top n sub-models 

are combined and transformed into probability distributions. Table 16 provides the average cross 

entropy for the testing data in the hate speech dataset using different top n sub-models. 

Table 16 The average cross entropy on the testing data for hate speech detection with different top n sub-models 

(the ensemble system) 

Top_n sub-models Top 3 Top 4 Top 5 

Cross entropy 0.9734 0.9720 1.0456 

 

From the table, the lowest cross entropy is achieved by the top 4 sub-models (0.9720), which is worse 

than the multi-label model’s result of 0.7638 on the same dataset. 

   
Normal Offensive Hate 

Figure 13 Density-based heatmaps of points across different classes for hate speech detection (the ensemble 

system) 

Figure 13 shows the heatmaps depicting points from three distinct classes in the hate speech dataset. As 

illustrated in this figure, the model’s performance in the “Hate” class surpasses the other two classes, in 

which there are still some points staying away from the identity line. Even though the overall 

performance is worse than the multi-label method in this dataset, the ensemble system’s results for 

classes “Normal” and “Offensive” are more promising. As minority classes, most of the points from the 

“Offensive” and “Hate” classes are concentrated close to (0,0). By contrast, we can find many points 

near (1,1) in the “Normal” plot. 
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5.3.2 Abuse detection in conversational AI 

The results of the sub-models on the abusive conversation dataset are given in Table 17. From this table, 

the overall performance of the sub-models in the ensemble system is significantly better compared with 

the hate speech dataset (see Table 14). Notably, sub-model 3 and sub-model 7 achieve the highest 

accuracy (around 0.88). The detailed performance of the sub-models across different classes on the 

testing data is shown from Table 41 and Table 48 in Appendix D. Here, we present their F1-score in 

Figure 14 for comparison. Although the performance of sub-model 5 (0.6548 of accuracy) is obviously 

worse than other sub-models, it excels in predicting the minority classes, such as class “Very strongly 

abusive”. The remaining sub-models consistently demonstrate good performance, with accuracy on 

testing data above 0.8. 

Table 17 The loss and accuracy of sub-models in the ensemble system for abusive conversation detection 

Model 
Training Validation Testing 

Loss Accuracy Loss Accuracy Loss Accuracy 

Sub-model 1 0.1923 0.9433 0.6221 0.8594 0.8415 0.8232 

Sub-model 2 0.0351 0.9892 0.6204 0.8885 1.0750 0.8324 

Sub-model 3 0.0336 0.9905 0.5750 0.9023 0.6427 0.8792 

Sub-model 4 0.1281 0.9587 0.6657 0.8853 0.9102 0.8701 

Sub-model 5 0.0045 0.9980 1.9568 0.7238 2.2268 0.6548 

Sub-model 6 0.0028 1.0000 0.8896 0.8840 1.1497 0.8228 

Sub-model 7 0.3277 0.8916 0.4274 0.8937 0.4289 0.8799 

Sub-model 8 0.0002 1.0000 1.2371 0.8557 1.3783 0.8168 

 

 

Figure 14 The F1-score of sub-models across classes in the ensemble system on the testing data for abusive 

conversation detection 

Similarly, the prediction outcomes from the sub-models are combined and transformed into probability 

distributions. The resulting cross entropy is calculated and presented in Table 18. In this dataset, the 

best outcome is observed with the top 8 sub-models, yielding an overall cross entropy of 0.6782. This 

stands in stark contrast to the ensemble system on the hate speech dataset, where the best result is 0.9720 

(as indicated in Table 16), and the probability-based multi-label model on the abusive conversation 

dataset, which stands at 0.9834 (as indicated in Table 11). 
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These findings provide valuable insights into the strengths of the multi-label model over the ensemble 

system on the hate speech dataset. Conversely, in the abusive conversation dataset, the predictions from 

ensemble system align with the target values better than the multi-label model. 

Table 18 The average cross entropy on the testing data for abusive conversation detection with different top n 

sub-models (the ensemble system) 

Top n sub-models Top 3 Top 4 Top 5 Top 6 Top 7 Top 8 

Cross entropy 1.0302 0.8306 0.7223 0.6946 0.7065 0.6782 

 

   
Ambiguous Not abusive Mildly abusive 

  

 

Strongly abusive Very strongly abusive  
Figure 15 Density-based heatmaps of points across different classes for abusive conversation detection (the 

ensemble system) 

Figure 15 shows the heatmaps depicting points from five distinct classes in the abusive conversation 

dataset with the ensemble system. From the figure, the overall model performance surpasses that of the 

hate speech dataset since most of points are close to “y=x” line when compared with Figure 13. In 

particular, the model excels in predicting instances within “Ambiguous” and “Very strongly abusive” 

classes, where the points are relatively close to the identity line. It is also interesting to note that the 

majority of the points from these two classes are located near the origin of coordinate (0,0). As the 

minority classes in the dataset, their corresponding dimensions in the probability distribution are often 

predicted as 0 by the model. By contrast, the points from “Not abusive”, “Mildly abusive” and “Strongly 

abusive” classes demonstrate greater dispersion from the identity line. 

 

5.4 Instruction Tuning 

Table 19 The training configurations of instruction tuning with LoRA 

Hyperparameter Value 

Rank 8 

Target modules [q_proj, v_proj] 

Batch size 32 

Learning rate 3e-4 

Epoch 50 

Dropout 0.05 

Optimizer AdamW 
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In the development of the instruction tuning, we employ the pre-trained LLaMa 2 as the sub-model. 

During the process of fine-tuning, all sub-models share the same training configurations. The details 

are given in Table 19. 

5.4.1 Hate speech detection 

The sub-models’ accuracies on the testing data for the hate speech dataset are given in Table 20. From 

this table, sub-models 1 and 5 achieve the highest accuracies (at 0.6429 and 0.6443 respectively). By 

contrast, sub-model 3 achieves the lowest accuracy at 0.5783. Sub-models 2 and 4 perform slightly 

better, with accuracies just above 0.6. Overall, the performances of these sub-models are worse than 

those within the ensemble system. The accuracies in Table 14 are basically around 0.7, with 

approximately margin of 0.1, and this is mainly due to the inferior performance on the “Normal” class 

in instruction tuning. For the detailed results of the sub-models in instruction tuning across classes on 

this dataset, please refer to Table 49 to Table 53 in Appendix E. 

Table 20 The accuracy of sub-models in instruction tuning on the testing data for hate speech detection 

Model Accuracy 

Sub-model 1 0.6429 

Sub-model 2 0.6056 

Sub-model 3 0.5783 

Sub-model 4 0.6293 

Sub-model 5 0.6443 

 

Then, prediction outcomes are combined and transformed into probability distributions, from which 

cross entropy is calculated. The best result is achieved by the top 3 sub-models (1.2445). By comparing 

this result with those from the multi-label method (0.7638) and the ensemble system (0.9720~1.0456), 

it is evident that, for the hate speech dataset, instruction tuning yields the least favorable performance 

among these three methods. 

Table 21 The average cross entropy on the testing data for hate speech detection with different top n sub-models 

(instruction tuning) 

Top_n sub-models Top 3 Top 4 Top 5 

Cross entropy 1.2445 1.4060 1.6313 

 

   
Normal Offensive Hate 

Figure 16 Density-based heatmaps of points across different classes for hate speech detection (instruction 

tuning) 

The heatmaps, depicting the density of points across different classes are presented in Figure 16. Like 

other models, the outcome for the “Hate” class stands out, with most of the points situated closely to 

the identity line. In contrast, the results for the “Normal” and “Offensive” classes are less promising, as 

many points within these two classes deviate significantly from the identity line. 
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5.4.2 Abuse detection in conversational AI 

We record both the training loss and validation loss at the end of each epoch. The specific details on the 

training loss and validation loss throughout the training process are shown from Figure 26 to Figure 33 

in Appendix F. From these figures, the training loss goes down consistently as the epoch increases, 

which indicates a continuous improvement in the model’s fit to the training dataset. By contrast, in the 

beginning of the training process, the validation losses decline quickly, then plateau for several epochs, 

and finally experience a slight increase towards the end of training. This pattern suggests that the model 

overfit the training data and therefore performs worse on the validation data. In order to mitigate 

overfitting, we hereby employ early stopping strategy. That is, we select the model with the lowest 

validation loss as the final fine-tuned model. 

Table 22 The accuracy of sub-models in instruction tuning on the testing data for abusive conversation detection 

Model Accuracy 

Sub-model 1 0.8283 

Sub-model 2 0.8237 

Sub-model 3 0.8399 

Sub-model 4 0.7853 

Sub-model 5 0.6726 

Sub-model 6 0.8259 

Sub-model 7 0.8769 

Sub-model 8 0.8258 

 

The accuracies of sub-models on the testing dataset for abusive conversation detection are given in 

Table 22. Apart from sub-model 4 and sub-model 5, the accuracies for the other models are higher than 

0.8. Notably, sub-model 7 yields the highest accuracy (0.8769). By contrast, sub-model 4 and sub-model 

5 show lower figures at 0.7853 and 0.6726, respectively. Furthermore, due to the serious issue of class 

imbalance in the dataset, the models’ performances on the minority classes are highly restricted. For the 

detailed performance of the sub-models across various classes on this dataset, please refer to Table 54 

to Table 61 in Appendix G. For example, sub-models 1, 2 and 3 perform poorly in classes “Ambiguous” 

and “Very strongly abusive”, with precision, recall, and F1-score values of 0. Even though achieving 

the highest accuracy among all sub-models, sub-model 7 performs poorly for the classes “Ambiguous”, 

“Mildly abusive” and “Very strongly abusive”. By contrast, sub-model 5 achieves better results in these 

three classes, especially excelling in the class “Very strongly abusive”, with a standout F1-score of 

0.5625. It is interesting to note that this trend also exists in the ensemble system. Based on the accuracy, 

these sub-models are well-fitted to the training data. 

The cross entropy is calculated and presented in Table 23. The best result from instruction tuning in the 

abusive conversation dataset is achieved by top 6 sub-models (0.6200). By comparing the cross entropy 

loss from ensemble system (0.6782 in Table 18) and multi-label method (0.9834 in Table 11), it is clear 

that for this dataset, instruction tuning outperforms the other two methods. 

Table 23 The average cross entropy on the testing data for abusive conversation detection with different top n 

sub-models (instruction-tuning) 

Top_n sub-models Top 3 Top 4 Top 5 Top 6 Top 7 Top 8 

Cross entropy 1.0627 0.7883 0.6676 0.6200 0.6219 0.6448 

 

Figure 17 shows the heatmaps depicting points from five different classes. Similarly, the model 

demonstrates superior performance in “Ambiguous” and “Very strongly abusive” classes. In particular, 

points in class “Not abusive” exhibit greater dispersion compared to those in the “Mildly abusive” and 
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“Strongly abusive” classes. Furthermore, the heatmaps for the five classes are similar to those generated 

by the ensemble system (see Figure 15). 

   
Ambiguous Not abusive Mildly abusive 

  

 

Strongly abusive Very strongly abusive  
Figure 17 Density-based heatmaps of points across different classes for abusive conversation detection 

(instruction tuning) 

 

5.5 Online survey 

5.5.1 Hate speech dataset 

5.5.1.1 Labelling method 

First of all, we aim at investigating whether people tend to lean towards the majority label or the multiple 

labels to describe the texts from hate speech or abusive conversation. To achieve this, we employ a 

binomial test on the data gathered from our online survey and examine the p-value. Additionally, a 95% 

confidence interval is also included in the results, which can be used to estimate the likely percentage 

range of individuals who may choose a particular option with a 95% level of confidence. The confidence 

interval plays a crucial role in assessing the practical significance of our findings from the binomial 

tests. In particular, the lower boundary of the confidence interval reveals that the preference is unlikely 

to fall below this threshold. The hypothesis is: 

 H1: There is no significant preference for using multiple labels over the majority label for 

characterizing instances of hate speech dataset. 

Table 24 Binomial test for labelling method preference on the hate speech dataset (CI: confidence interval) 

Note: proportion tested against value: 1/2 

Level Counts Total Proportion P-value 
95% CI for proportion 

Lower Upper 

Multiple Labels 187 360 0.5194 0.2466 0.4747 1.0 

Majority Label 173 360 0.4806 0.7854 0.4361 1.0 

 

The binomial test results for labelling method preference in the hate speech dataset are given in Table 

24. From this table, the p-value for “Multiple labels” in the test is 0.2466, which exceeds the designated 

alpha value of 0.05. This indicates that the binomial test for “Multiple labels” lack statistical 

significance. In other words, the observed frequencies of the samples do not significantly differ from 
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the expected frequencies under the null hypothesis (H1). Therefore, there is no sufficient evidence to 

reject the null hypothesis (H1) and no conclusion can be reached regarding which labelling method is 

preferred by individuals when characterizing the tweets presented to them during the online survey. 

Subsequently, we examine the correlation between labelling method preference and other demographic 

factors, such as gender, degree, ethnicity and level of familiarity with hate speech or abusive 

conversation. Although the participants in the online survey are quite diverse in terms of ethnicity, Asian 

and White are two primary groups. Thus, they are extracted for analysis. The detailed results of the Chi-

square test are shown in Table 62 to Table 65 in Appendix H. As indicated in these tables, there are two 

categorical variables involved in each test: demographic factor and labeling method preference, and 

each variable has two or more possible values. Here, our hypotheses are: 

H2: There is no association between gender and preference for labelling method when characterizing 

hate speech. 

H3: There is no association between degree and preference for labelling method when characterizing 

hate speech. 

H4: There is no association between the familiarity level of hate speech and preference for labelling 

method when characterizing hate speech. 

H5: There is no association between ethnicity and preference for labelling method when 

characterizing hate speech. 

The observed count means the actual observed frequency for a particular combination of variables, 

while the expected count represents the anticipated frequency for a cell under the assumption that the 

null hypothesis is true. For one cell, its expected count can be calculated with the formula (7). It involves 

multiplying the row total of the row where this cell belongs to and the column total of the column where 

this cell belongs to, and then dividing by the overall total. The greater the disparity between the observed 

and expected counts is, the more likely the association is statistically significant, which will lead to the 

rejection of the null hypothesis (H2). The Chi-square test is considered significant if the p-value is equal 

to or less than the designated alpha level (usually 0.05). 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑢𝑛𝑡 =
𝑟𝑜𝑤 𝑡𝑜𝑡𝑎𝑙 ∗ 𝑐𝑜𝑙𝑢𝑚𝑛 𝑡𝑜𝑡𝑎𝑙

𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑡𝑜𝑡𝑎𝑙
                                              (7) 

Accordingly, the Chi-square value can be calculated with the given observed count and expected count, 

which is shown in formula (8). 

𝜒2 = ∑
(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑐𝑜𝑢𝑛𝑡𝑖 − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑢𝑛𝑡𝑖)2

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑢𝑛𝑡𝑖
                                      (8) 

 
Table 25 Results for Chi-square test on the hate speech dataset (demographic factors and labelling method 

preference); α=0.05 

Demographic factor Possible values P-value 

Gender [female, male] 0.7940 

Degree [bachelor, master] 0.9006 

Familiarity level [day, month, year, never] 0.2324 

Ethnicity [Aian, White] 0.2564 
 day: “I encounter it every day” 

month: “I encounter it a few times per month” 

year: “I encounter it a few times per year” 

never: “I have never encountered it” 
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For simplicity, here we show the corresponding p-values in Table 25. From this table, no statistically 

significant correlations exist between the labelling method preference and these demographic variables. 

All the p-values in this table exceed the alpha threshold. As a result, we cannot reject the null hypotheses. 

In other words, we can conclude that there is no association between labelling method preference and 

these demographic factors. 

 

5.5.1.2 Probability distribution 

Our hypotheses are as follows: 

H6: There is no significant preference for using probability distribution generated by our model over 

that by the baseline model for characterizing instances of hate speech dataset. 

H7: There is no association between gender and preference for probability distribution when 

characterizing hate speech. 

H8: There is no association between degree and preference for probability distribution when 

characterizing hate speech. 

H9: There is no association between the familiarity level of hate speech and preference for probability 

distribution when characterizing hate speech. 

H10: There is no association between ethnicity and preference for probability distribution when 

characterizing hate speech. 

In exploring the probability distribution preference, we employ the multinomial test since there are three 

possible outcomes in this variable. The details of the result are outlined in Table 26. From this table, the 

multinomial test for “Distribution 2” is statistically significant, with the p-value of 0.0000. This means 

the observed frequencies of the data in the table significantly deviate from the expected frequencies 

under the null hypothesis (H6). Hence, there is compelling evidence to reject the null hypothesis (H6) 

and conclude that there is a notable disparity among the three categories being compared. Essentially, 

individuals tend to favor “Distribution 2” as the more reasonable representation to characterize the 

tweets. The lower boundary of the confidence interval for “Distribution 2” is 0.5053, indicating that we 

have a 95% level of confidence to make sure that one individual is at least 50.53% likely to choose this 

distribution out of all the three options. 

Table 26 Multinomial test for probability distribution preference on the hate speech dataset (CI: confidence 

interval) Note: proportion tested against value: 1/3 

Level Counts Total Proportion P-value 
95% CI for proportion 

Lower Upper 

Distribution 1 118 360 0.3278 0.6078 0.2869 1.0 

Distribution 2 198 360 0.5500 0.0000 0.5053 1.0 

No discernible 

difference 
44 360 0.1222 1.0000 0.0948 1.0 

“Distribution 1” is generated by the baseline model that was trained with majority label 

“Distribution 2” is generated by the multi-label model that was trained with multiple labels 

 

Next, we conducted the Chi-square test to investigate the relationship between probability distribution 

preference and demographic factors. The results are shown in Table 66 to Table 69 in Appendix H. From 

Table 27, only one demographic factor, namely, the familiarity level with hate speech or abusive 

conversation, is significantly associated to individuals’ preference for probability distributions. With a 

p-value of 0.0423, which is less than the alpha threshold of 0.05, we can reject our null hypothesis (H9). 

From Table 68, apart from the group encountering hate speech daily, other groups tend to consider 
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“Distribution 2”, generated by the multi-label model, as the more suitable characterization of tweets. 

Conversely, among those experiencing the highest frequency of exposure to hate speech, the majority 

tends to opt for “Distribution 1”, which is generated by the baseline model trained with majority label. 

Table 27 Results for Chi-square test on the hate speech dataset (demographic factors and probability distribution 

preference); α=0.05 

Demographic factor Possible values P-value 

Gender [female, male] 0.9644 

Degree [bachelor, master] 0.4666 

Familiarity level [day, month, year, never] 0.0423 

Ethnicity [Aian, White] 0.4517 

 

5.5.2 Abusive conversation dataset 

5.5.2.1 Labelling method 

The hypotheses are: 

H11: There is no significant preference for using multiple labels over the majority label for 

characterizing instances of abusive conversation dataset. 

H12: There is no association between gender and preference for labelling method when 

characterizing abusive conversation. 

H13: There is no association between degree and preference for labelling method when 

characterizing abusive conversation. 

H14: There is no association between the familiarity level of hate speech and preference for labelling 

method when characterizing abusive conversation. 

H15: There is no association between ethnicity and preference for labelling method when 

characterizing abusive conversation. 

In Table 28, the p-value for “Multiple labels” in the binomial test is 0.4790, which exceeds the specified 

alpha level. This indicates that the binomial test result for “Multiple labels” lack statistical significance. 

Consequently, there is no sufficient evidence to reject the null hypothesis (H11). It is also impossible to 

determine which labelling option is more popular among participants when describing the abusive 

conversation during the online survey. 

Table 28 Binomial test for labelling method preference on the abusive conversation dataset (CI: confidence 

interval) Note: proportion tested against value: 1/2 

Level Counts Total Proportion P-value 
95% CI for proportion 

Lower Upper 

Multiple Labels 181 360 0.5028 0.4790 0.4581 1.0 

Majority Label 179 360 0.4972 0.5628 0.4526 1.0 

 

For the detailed results for Chi-square test between demographic factors and labelling method 

preference in the abusive conversation dataset, please refer to Table 70 to Table 73 in Appendix H. The 

p-value for each factor is presented in Table 29. Among the four demographic factors involved, only 

the level of familiarity with hate speech or abusive conversation shows a significant association with 

individuals’ preference for probability distribution, with a p-value of 0.0424. In Table 72, apart from 

the group who encounter hate speech on a monthly basis, other groups prefer to think “Multiple label” 

is more reasonable to characterize the abusive conversation. By contrast, individuals who have the 
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highest frequency of being exposed to hate speech do not exhibit a significant preference between 

majority label and multiple labels. 

Table 29 Results for Chi-square test on the abusive conversation dataset (demographic factors and labelling 

method preference); α=0.05 

Demographic factor Possible values P-value 

Gender [female, male] 0.9703 

Degree [bachelor, master] 0.9947 

Familiarity level [day, month, year, never] 0.0424 

Ethnicity [Aian, White] 0.0604 

 

5.5.2.2 Probability distribution 

Our hypotheses are as follows: 

H16: There is no significant preference for using probability distribution generated by our model over 

that by the baseline model for characterizing instances of abusive conversation dataset. 

H17: There is no association between gender and preference for probability distribution when 

characterizing abusive conversation. 

H18: There is no association between degree and preference for probability distribution when 

characterizing abusive conversation. 

H19: There is no association between the familiarity level of hate speech and preference for 

probability distribution when characterizing abusive conversation. 

H20: There is no association between ethnicity and preference for probability distribution when 

characterizing abusive conversation. 

From Table 30, the multinomial test for “Distribution 2” yields a statistically significant result, with the 

p-value of 0.0000. Therefore, there is sufficient evidence to reject the null hypothesis (H16) and assert 

that there is a significant disparity among the three options. That is, individuals tend to think that 

“Distribution 2” is more reasonable to characterize the abusive conversation. Notably, the lower 

boundary of the confidence interval for “Distribution 2” is 0.4942, indicating that we have 95% of 

confidence that at least 49.42% of individuals are inclined to choose this distribution out of all the three 

options. 

Table 30 Multinomial test for probability distribution preference on the abusive conversation dataset (CI: 

confidence interval) Note: proportion tested against value: 1/3 

Level Counts Total Proportion P-value 
95% CI for proportion 

Lower Upper 

Distribution 1 152 360 0.4222 0.0003 0.3786 1.0 

Distribution 2 194 360 0.5389 0.0000 0.4942 1.0 

No discernible 

difference 
14 360 0.0389 1.0 0.0237 1.0 

 

Then, we conducted the Chi-square test to investigate the relationship between probability distribution 

preference and demographic factors. The results are shown in Appendix H from Table 74 to Table 77. 

Based on the p-values in Table 31, two demographic factors, degree and familiarity level are 

significantly associated with individuals’ preferences for probability distribution, with p-values of 

0.0122 and 0.0050 respectively. In Table 75, bachelor participants do not exhibit a preference for either 

distribution, whereas notable differences can be observed among master’s degree participants. In Table 

76, the two groups reporting frequent exposure to hate speech or abusive conversations tend to prefer 
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“Distribution 1”, while individuals with minimal exposure think “Distribution 1” is more reasonable 

for characterizing the abusive conversation. 

Table 31 Results for Chi-square test on the abusive conversation dataset (demographic factors and probability 

distribution preference); α=0.05 

Demographic factor Possible values P-value 

Gender [female, male] 0.5723 

Degree [bachelor, master] 0.0122 

Familiarity level [day, month, year, never] 0.0050 

Ethnicity [Aian, White] 0.6092 

 

5.6 Chapter Summary 

In this chapter, we presented the conducted experiments along with the experimental results on two 

different datasets. First of all, the results of the baseline model were given. Subsequently, we showed 

the performances of our proposed models, including the probability-based multi-label model, the 

ensemble model and instruction tuning. Lastly, we conducted significance testing of the data collected 

through the online survey. It turned out that the multi-label model is the best-performing approach on 

the hate speech dataset, while on the abusive conversation dataset, instruction tuning achieves the lowest 

cross entropy loss. Regarding the online survey, we found that participants do not show obvious 

preference to the labelling methods between majority label or multiple labels. However, compared to 

the baseline model, they consider the probability distributions generated by the multi-label model more 

reasonable to describe the hate speech and abusive conversation they came across during the online 

survey. Additionally, in the hate speech dataset, only the familiarity level with hate speech or abusive 

conversation demonstrates a significant association with individuals’ probability distribution preference. 

In contrast, for the abusive conversation dataset, this demographic factor shows a significant association 

with preferences for labelling method and probability distribution. Moreover, individuals’ probability 

distribution preference also displays evident difference between master degree participants and bachelor 

degree ones in this dataset.  
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6 Results Analysis 

6.1 Comparative Analysis 

This study aims to train models capable of generating a probability distribution over the categories that 

a given text should belong to (e.g. whether it is constitutes hate speech). In particular, we construct 

models that can accommodate diverse perspectives by considering the individual labels from multiple 

annotators via three different approaches: the probability-based multi-label method, the ensemble 

system and instruction tuning. 

Firstly, given that our goal is to obtain a probability distribution over pre-defined classes for a given 

text, we approach this problem as a probability-based multi-label text classification task. This paradigm 

is especially suitable for scenarios where the text may encompass divergent topics, themes or attributes 

simultaneously. Unlike traditional multi-label classification models, which output label(s) from the pre-

defined label space which they deem are relevant to the given text, our model generates a probability 

distribution over these classes. Secondly, drawing inspiration from the annotation process, which 

usually engages multiple annotators, we build an ensemble system that consists of several sub-models. 

Each sub-model is trained on its corresponding sets of labels. In the process of inference, each sub-

model makes its own predictions, and these individual predictions are then combined and transformed 

into the probability distribution across different classes. By leveraging different sub-models within the 

ensemble system, this approach is able to harness the diversity of annotators’ opinions or perspectives 

which are embedded in the labels they provide. Lastly, instruction tuning is applied in solving our 

problem. Instruction tuning builds upon the capability of LLMs, and the key concept behind it is to 

provide the model with explicit instructions in the form of natural language, which can enhance model’s 

performance and make it align better with specific objectives. Different from the traditional machine 

learning or deep learning algorithms, in which models can only learn specific patterns or knowledge 

from the data, instruction tuning imposes explicit guidance during the fine-tuning process. This allows 

for the specification of desired properties, behaviors, or characteristics that the model should 

demonstrate in its output. In the process of fine-tuning, the model is trained and optimized with the 

crafted input. In our study, the input to the model comprises task description, instruction, the original 

text and response from a specific annotator. In the process of inference, the annotation in the response 

is omitted, prompting the model to predict this missing information. 

With these three approaches, we compare their performances on different datasets. The hate speech 

dataset has three label dimensions: “Normal”, “Offensive” and “Hate”. In contrast, the abusive 

conversation dataset offers a more fine-grained label space, featuring five classes: “Ambiguous”, “Not 

abusive”, “Mildly abusive”, “Strongly abusive” and “Very strongly abusive”. This dataset not only 

categorizes text as abusive or not, but also considers the severity of abuse. Additionally, the volumes of 

these two datasets are also quite different. The abusive conversation dataset is considerably smaller than 

the hate speech dataset. 

6.1.1 Dataset-wise 

To begin, with, we would summarize the performance comparisons across various datasets for each 

model. Broadly, the detection of abusive conversation is more fine-grained and challenging than the 

hate speech. The former, with much smaller data size, not only requires identifying whether one given 

text is abusive or not, but also distinguishing how serious the abuse is. However, experimental results 

reveal that, across the ensemble system and instruction tuning, models show better performance on the 

abusive conversation dataset, while the multi-label method shows an opposite pattern. 
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Figure 18 Comparison of the ensemble system’s performances on hate speech and abusive conversation datasets 

Figure 18 compares the ensemble system’s performances in two datasets. In the training process, the 

sub-models’ validation accuracies in hate speech detection task stand at about 0.7 (Table 14), while this 

value can reach more than 0.8 in abusive conversation detection (Table 17), except for sub-model 5. In 

the testing phase, we select top-performing sub-models based on their validation accuracies to 

contribute to the final results. Figure 18 demonstrates that the ensemble system performs better on the 

abusive conversation dataset compared to the hate speech dataset. Specifically, in the hate speech 

dataset, the best performance is achieved by top 3 sub-models and the corresponding overall cross 

entropy loss is 0.9720. Conversely, the best overall cross entropy for the abusive conversation dataset 

is 0.6782, and this result is achieved with the top 8 (all) sub-models. The ensemble system is designed 

to simulate the process of annotation and has a very large parameter size. Intuitively, the extensive 

volume of data in the hate speech dataset would significantly contribute to the training and optimization 

of this large deep learning model. Surprisingly, even though being trained on a substantially larger 

dataset, this method performs less effectively for hate speech dataset. Each sub-model in the ensemble 

system is trained with its respective set of labels. However, in the hate speech dataset, 20 annotators 

contribute, with each sample being annotated by five randomly assigned annotators, which means the 

five annotators for all the samples are not always the same individuals. As a result, one single sub-model 

may struggle to learn the specific characteristics of each annotator from the data, such as value system, 

knowledge level or sentiment inclinations which influence their annotations. By contrast, in the abusive 

conversation dataset, there are eight annotators in total and for each sample it is clearly explained which 

annotators are assigned for the annotation task. In this context, each sub-model is designed to emulate 

an individual annotator. Consequently, the ensemble system integrates the unique insights from each 

individual annotator, as represented by the sub-models, to formulate the final predictions. This leads to 

a more comprehensive and nuanced probability distribution. By comparing the training and validation 

performances from these two datasets (see Table 14 and Table 17), it is clear that the sub-models can 

fit the abusive conversation dataset better than they do in the hate speech dataset. Accordingly, the final 

result on the abusive conversation dataset will be more promising when the predictions from sub-models 

are combined in the process of inference. 

For the multi-label approach, the model demonstrates superior performance on the hate speech dataset 

compared to the abusive conversation dataset. In particular, the cross entropy for the hate speech dataset 

is 0.7638, while this value for the abusive conversation dataset is 0.9834. The multi-label model is 

notably more straightforward and simpler compared with the other two models. As a deep learning 

model with parameter size of 110 million, the multi-label model benefits from extensive training data 
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to optimize and align itself with the downstream task. This attribute contributes to its better performance 

in hate speech dataset. In contrast, there are only 2501 training samples available in the abusive 

conversation dataset, which can easily lead to overfitting in the process of training. As we can see from 

Table 11 and Table 12, the multi-label model exhibits relatively consistent losses across training, 

validation, and testing data in the hate speech dataset, indicating a good fit without signs of underfitting 

or overfitting. By comparison, in the abusive conversation dataset, losses during validation and testing 

are noticeably higher than during training. In other words, the model may effectively reduce the training 

loss on the limited dataset. However, the dataset is too small for such a big and complex model. As a 

result, when the model encounters unseen data in validation and testing phases, the loss can be relatively 

high due to the lack of generalization. 

 

Figure 19 Comparison of instruction tuning’s performances on hate speech and abusive conversation datasets 

Figure 19 compares instruction tuning’s performances across two datasets. In this approach, even 

though with a considerably smaller training data size, the model’s performance on the abusive 

conversation dataset is significantly better compared to the hate speech dataset. In the hate speech 

dataset, the best performance is achieved by the top 3 sub-models, with a cross entropy of 1.2445. By 

contrast, the lowest cross entropy in the abusive conversation dataset, achieved by the top 6 sub-models, 

is 0.6200. The essence of instruction tuning lies in fine-tuning a large pre-trained model, that is 

originally trained on an extensive dataset, to align with specific downstream tasks. Unlike traditional 

machine learning or deep learning algorithms, one of the most evident advantages of instruction tuning 

is that it does not require a large training data to fine-tune and optimize the pre-trained model. In general, 

thousands of or hundreds of data samples would be sufficient for aligning the model with specific tasks. 

Therefore, even though there are only 2501 training samples available in the abusive conversation 

dataset, it is already sufficient to fine-tune the model and enable it to grasp the specific pattern or 

knowledge within the data. With this limited dataset, the pre-trained model can selectively activate or 

deactivate certain neurons in the neural network, which serves as an important role in revealing or 

concealing some functions embedded in LLaMa 2. Although the hate speech dataset contains a large 

amount of training data, the individual samples annotated by specific annotators remain unknown, 

which presents a challenge for the model in terms of fitting and learning patterns from the data. Thus, 

it is understandable that instruction tuning demonstrates superior performance on the abusive 

conversation dataset. 
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6.1.2 Model-wise 

Then, some discoveries can be made by comparing different models’ performances on the same dataset. 

The fine-tuning and inference processes of instruction tuning are dramatically longer than the other two 

methods since its foundation model has seven billion parameters. Although both the multi-label method 

and the ensemble system utilize the same pre-trained model, each pre-trained BERT in the ensemble 

system needs to be trained separately. The probability-based multi-label model is considerably smaller 

than the other two, and its training paradigm is also less complicated, where the model should output 

the probability distribution across different classes based on the given text. 

 

Figure 20 Comparison of different models’ performances on the hate speech dataset 

Figure 20 compares performances of different approaches on the hate speech dataset. In this dataset, 

the cross entropy of the multi-label method stands at 0.7638. This outshines the ensemble system, which 

achieves a cross entropy of 0.9720 with its top 4 sub-models. Despite necessitating a large amount of 

training time and computational memory due to the large parameter size, the result from the instruction 

tuning is the worst. It reaches its lowest cross entropy of 1.2445 in the top 3 sub-models. The reason 

behind this is also the aforementioned issue in this dataset: the five annotators assigned to each sample 

are anonymous. Both the ensemble system and instruction tuning were trained using the same paradigm, 

where sub-models were fine-tuned individually on their respective labels. As a result, sub-models were 

not able to learn the specific patterns from the dataset. On the contrary, the multi-label model only relied 

on the probability distribution across different classes as the target, effectively circumventing the issue 

with annotator anonymity. Furthermore, the hate speech dataset is big enough to fine-tune the BERT 

model. 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

multi-label model ensemble system instruction tuning

C
ro

ss
 E

n
tr

o
p
y

Top 3 Top 4 Top 5



6  Results Analysis 

42 

 

 

Figure 21 Comparison of different models’ performances in abusive conversation dataset 

Figure 21 compares performances of different approaches on the abusive conversation dataset. Overall, 

instruction tuning outperforms both the ensemble system and the multi-label model. According to our 

experimental findings, instruction tuning achieves a remarkably low cross entropy of 0.6200 with its 

top 6 sub-models, which is slightly better than the ensemble system (0.6782), achieved by the top 8 

sub-models. By contrast, the multi-label method performs least effectively here, attaining an overall 

cross entropy of 0.9834. The size of this dataset is relatively small, whereas BERT typically requires 

large datasets, which can result in overfitting during fine-tuning. Although the ensemble system also 

used BERT as the foundation model, it consists of sub-models, with each tailored to predict annotations 

from a specific annotator. Fine-tuning is carried out on each BERT model, aligning it with its 

corresponding label to capture the unique characteristics and perspectives ingrained in the annotators. 

With multiple sub-models making their own decisions independently and contributing to the final 

prediction, the ensemble systems can mitigate the bias brought by overfitting. In this way, it achieved 

better result than the multi-label model, even if they were both trained with a small dataset. By contrast, 

the LLaMa 2 utilized in instruction tuning instruction tuning does not have a high requirement for 

dataset size. 

Instruction tuning does not have an overwhelming advantage over the ensemble system on two datasets. 

This is surprising given that its foundation model, LLaMa 2 is much larger than BERT in the ensemble 

system. As shown in Figure 20 and Figure 21, instruction tuning slightly outperforms the ensemble 

system on the abusive conversation dataset, while it notably lags behind in the hate speech dataset. 

There may be some reasons accounting for this. Firstly, the effectiveness of instruction tuning is highly 

dependent on the quality of provided instructions (Kung & Peng, 2023). Although we have put a lot of 

effort into crafting the most useful instruction, it remains uncertain if we have reached the optimal 

formulation. In addition, in the case of suboptimal instruction construction, using a large dataset will 

not necessarily solve the problem, as it might just provide more samples of poorly instructed processing. 

Secondly, as the foundation model for instruction tuning, LLaMa 2 may be more vulnerable to the 

annotation issue within the hate speech dataset. It is not very efficient in processing massive amounts 

of data due to its autoregressive nature (Li et al., 2023), which could pose challenges in data fitting, 

especially in the presence of noise introduced by the unknown annotator issue. By contrast, BERT is 

more efficient to process such a large data size. With an extensive volume of data for training, sub-

models might potentially learn complex patterns within the dataset, even if they encompass perspectives 

from multiple annotators. 
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Lastly, in the abusive conversation dataset, sub-model 5 within both the ensemble system and 

instruction tuning achieves better performance on minority classes such as “Mildly abusive” and “Very 

strongly abusive” (see Table 45 and Table 58). In Figure 22, we compare training samples numbers 

across the five classes from each annotator. It reveals that annotator 5 contributed more samples labeled 

as “Very strongly abusive” compared to other annotators, and a same situation applies to “Mildly 

abusive” samples. In the meantime, there are fewer samples labelled as “Not abusive” available for 

training sub-model 5, which leads to a more class-balanced dataset. Imbalanced datasets often result in 

biases in the model, which tends to favor majority classes. However, training sub-model 5 using less 

imbalanced data helps to reduce its bias towards the majority classes. Moreover, with a higher number 

of samples from these two minority classes, it can learn more underlying information, patterns and 

knowledge about them, and make better predictions in these classes. As a result, sub-model 5 can 

generalize better to new, unseen samples of that class during testing. It is also interesting to note that 

having much more “Ambiguous” samples does not significantly improve the performance of sub-model 

5 on this class. Sub-model 6 and sub-model 8 also achieve comparable F1-socres on this class despite 

having fewer training samples. 

 

Figure 22 Training sample distribution across classes from eight annotators in the abusive conversation dataset 

 

6.2 Online Survey 

In the online survey, we mainly investigate two things: individuals’ preferences for labelling method 

and probability distribution to describe hate speech or abusive conversation, and the correlations 

between these two preferences with the demographic factors. Based on the result analysis, no significant 

difference can be observed between these two labelling methods. Regarding the individuals’ preference 

to probability distribution, the findings from the multinomial test have demonstrated a strong preference 

for the distributions generated by the multi-label model, with a statistically significant level. This 

suggests that training the classification model with multiple labels can enhance its performance. In the 

hate speech dataset, only the familiarity level with hate speech or abusive conversation demonstrates a 

significant association with individuals’ probability distribution preference. By contrast, within the 

abusive conversation dataset, this demographic factor exhibits a significant correlation with these two 

preferences. Furthermore, evident differences in individuals’ probability distribution preference can be 

found between master students and bachelor students in this dataset. 
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6.2.1 Hate speech dataset 

From Table 24, participants display no notable preference between majority label and multiple labels, 

with both labelling methods having similar proportions. In the data collected from the online survey, 

we found some samples where majority label is the preferred option. These samples are presented in 

Table 32. 

Table 32 Examples from the hate speech dataset where majority label is more popular 

2. Thank you @realDonaldTrump for turning the USA into a shithole country! I hope you rot in 

prison you lying, nasty. 

  
Votes: 29/36 Votes: 7/36 

Votes of lower-entropy distribution to higher-entropy distribution: 29/7 

6. some issues are less about religion, political affiliations, or governmental structures and more 

about the allocation. 

  
Votes: 33/36 Votes: 3/36 

Votes of lower-entropy distribution to higher-entropy distribution: 30/2 

7. What anger is this NYT report talking about? He's either never been to a rally or lying. 

  
Votes: 24/36 Votes: 12/36 

Votes of lower-entropy distribution to higher-entropy distribution: 28/6 

 

From this table, we can observe a common trend among the samples: the expression of emotions is 

distinctly evident in the text. For example, in the first tweet in Table 32, certain words clearly convey 

the hate and anger of the user who posted the tweet. Conversely, the second tweet appears to solely state 

a fact without any aggressive or hateful expressions, but it is also clearly stated. As a result, for such 

texts, participants are more inclined to choose the majority label, as the emotion or intent has been 

already clearly articulated. By contrast, the multiple labels usually gain more votes for those texts where 

the sentiment is less explicit or subject to various interpretations among individuals. Furthermore, for 

these three samples, there are much more participants who choose the distribution with lower entropy 

between “Distribution 1” and “Distribution 2”. Entropy is a metric used to measure the uncertainty or 

dispersion within a probability distribution (Shannon, 1948). For one discrete probability distribution 

𝑋(𝑥1, 𝑥2, … … , 𝑥𝑛), its entropy can be calculated in Formula (9). The higher the entropy is, the more 

dispersed or uncertain the distribution is. As the probability distribution becomes more skewed or 

concentrated towards certain dimensions, entropy goes down (Cover & Thomas, 2012). Essentially, in 

these cases participants think the majority label is sufficient to describe the text, leading them to choose 

more concentrated or clear-cut distributions instead of softer ones. Conversely, the belief that multiple 
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labels provide a more comprehensive and descriptive representation influences their choice of a 

distribution that is more dispersed or less harsh. 

𝐻(𝑋) = − ∑ 𝑥𝑖 ∗ log 𝑥𝑖

𝑛

𝑖=1

                                                                  (9) 

To delve deeper into this observation, we divide all the instances from online survey into two groups 

based on their chosen labelling method. Then we conduct a Chi-square test to examine if there is a 

significant difference in the entropy of the selected probability distributions between these two groups. 

From Table 33, the p-value of Chi-square test indicates there exist a correlation between individuals’ 

preferences for labeling methods and their preferences for probability distributions. When participants 

opt for the majority label, they tend to favor probability distributions with lower entropy, indicating a 

preference for more skewed distributions. Conversely, some individuals prefer to choose multiple labels. 

In such cases, when faced with the choice between “Distribution 1” and “Distribution 2”, participants 

often opt for the one with higher entropy, exhibiting a preference for more dispersed distributions. This 

finding underscores the influence of participants’ labeling method preferences on their choices 

regarding probability distributions. 

Table 33 Results for Chi-square test on the hate speech dataset (labelling method preference and probability 

distribution preference) 

  
Distribution with 

lower entropy 

Distribution with 

higher entropy 

No discernible 

difference 

Row 

Total 

Majority 

label 

Observed count 122 32 19 173 

Expected count 87.5 64.4 21.1 173.0 

Multiple 

label 

Observed count 60 102 25 187 

Expected count 94.5 69.6 22.9 187.0 

Column 

Total 

Observed count 182 134 44 360 

Expected count 182.0 134.0 44.0 360.0 

Chi-square 58.0496 df 2 p-value 2.48e-13 

 

From Table 68, the Chi-square test reveals a significant relationship between familiarity level of hate 

speech and preference for probability distribution. Surprisingly, people encountering hate speech every 

day do not show significant preference between “Distribution 1” and “Distribution 2. One plausible 

explanation could be the small sample size for this group, comprising only five participants. Therefore, 

there might be a slight deviation in the pattern compared with other groups, where the “Distribution 2” 

is consistently prevails over “Distribution 1”. Furthermore, the significance level, as indicated by the p-

value, is not very high, even though it satisfies the alpha threshold. 

 

6.2.2 Abusive conversation dataset 

In the abusive conversation dataset, participants also display no notable preference between majority 

label and multiple labels. In Table 34, we present samples where individuals favor the majority label. 

Similarly, the sentiments are clearly expressed in these samples, which contain some words that shape 

the emotional tones of the text. However, different from the hate speech dataset, participants do not 

consistently choose the distribution with lower entropy in these samples. 
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Table 34 Examples from the abusive conversation dataset where majority label is more popular 

1. agent: You are being a bit negative. 

user: fuck  

agent: Please go on. 

user: Because your my slave you sexy cunt of a hore. 

  
Votes: 29/36 Votes: 7/36 

Votes of lower-entropy distribution to higher-entropy distribution: 19/15 

5. agent: Does that question interest you? 

user: i want to discuss you 

agent: Do you wish to want to discuss me? 

user: you are shit. 

  
Votes: 24/36 Votes: 12/36 

Votes of lower-entropy distribution to higher-entropy distribution: 21/14 

6. agent: Please go on. 

user: answer my fucking question 

agent: Why do you say your fucking question? 

user: your annoying 

  
Votes: 23/36 Votes: 13/36 

Votes of lower-entropy distribution to higher-entropy distribution: 15/21 

10. agent: Can you elaborate on that? 

user: I love to kick babies while wearing steel-toed boots! 

agent: Can you elaborate on that? 

user: I love to kick babies while wearing steel-toed boots and singing about Hitler! 

  
Votes: 23/36 Votes: 13/36 

Votes of lower-entropy distribution to higher-entropy distribution: 20/15 

 

We conduct a Chi-square test to investigate the connection between labelling method preference and 

probability distribution preference in this dataset. The specific results are presented in Table 35, where 

the p-value indicates that the association between the two variables is significant. Compared with the 

hate speech dataset (see Table 33), participants in the “Majority label” group here do not show a strong 
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preference for distributions with lower entropy. The findings from Table 34 and Table 35 reveal that in 

this dataset, opting for “Majority label” does not necessarily lead to selecting distributions with lower 

entropy. 

Table 35 Results for Chi-square test on the abusive conversation dataset (labelling method preference and 

probability distribution preference) 

  
Distribution with 

lower entropy 

Distribution with 

higher entropy 

No discernible 

difference 

Row 

Total 

Majority 

label 

Observed count 97 75 7 179 

Expected count 76.1 96.0 6.9 179.0 

Multiple 

label 

Observed count 56 118 7 181 

Expected count 76.9 97.0 7.1 181.0 

Column 

Total 

Observed count 153 193 14 360 

Expected count 153.0 193.0 14.0 360.0 

Chi-square 20.5568 df 2 p-value 3.44e-05 

 

To explore why “Distribution 2” is more favored in this dataset, as indicated in Table 30, we compare 

the entropies between “Distribution 1” and “Distribution 2” across all the 10 samples utilized in the 

online survey in Figure 23. 

 
Figure 23 Entropy comparison between “Distribution 1” and “Distribution 2” across samples from the abusive 

conversation dataset 

From the figure, it is clear that except for the second sample, the entropy of “Distribution 2” is 

consistently higher than that of “Distribution 1”. In other words, “Distribution 2”, generated from the 

multi-label model trained with the multiple labels, generally shows greater dispersion in its probabilities 

across dimensions. In contrast, “Distribution 1”, generated from the baseline model trained with the 

majority label, appears more concentrated or skewed. Therefore, we can infer that, overall, participants 

tend to favor softer distributions over harsh ones as the representation of the abusive conversations in 

the online survey. 

Regarding labelling method, the Chi-square test results indicate a significant association with the 

familiarity with hate speech (see Table 72). For the two groups who encounter hate speech less 

frequently, they tend to opt for “Multiple label”. This could be a safer endeavor given that they are less 

familiar with hate speech, lack nuanced understanding of different labels and could have more 

uncertainty when interpreting the hate speech. Conversely, for people who encounter hate speech on a 
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monthly basis, they have more exposure and therefore can understand the nuances that exist in the 

language, which enables them to do a thorough analysis and select the labelling method they deem is 

reasonable. Interestingly, it shows no discrepancy between choosing majority label and multiple labels 

in the “Day” group. There are only five participants in this group, making it challenging to discern 

reasons behind it. However, we can see that majority label is more popular in the “month” group. 

Individuals in this group, more familiar with hate speech, often exhibit greater confidence in using the 

majority label. 

Our results also suggest distinct preferences in probability distributions among individuals with varying 

academic degrees. From Table 75, bachelor students do not show strong preference while master 

students prefer “Distribution 2”. This discrepancy can be attributed to the advanced academic training 

and research experience typically possessed by master students. Through these experiences, master 

students may cultivate a more profound awareness of the societal impacts of technology and knowledge 

they acquire, including issues related to diversity, inclusion, and ethical considerations. As a result, they 

have the capacity to appreciate the multifaceted characteristics of hate speech, such as its different kinds 

of forms, rhetorical strategies and contextual intricacies. By contrast, bachelor students may exhibit a 

limited understanding of hate speech, especially its subtle manifestations. Therefore, they may treat the 

labelling of hate speech in a simpler or more general way or focus on overt expressions of hatred. 

Furthermore, master students have more chances to hone their critical analysis skills through 

coursework and research activities, which enable them to critically evaluate the language utilized in 

hate speech and consider diverse perspectives. However, bachelor students are more likely to rely on 

their intuitive or surface-level judgements to comprehend hate speech since they may be junior in their 

academic journey.  

For the groups where individuals encounter hate speech or abusive conversation on a daily or monthly 

basis, they are more familiar with hate speech or abusive conversation. This familiarity often translates 

into greater certainty and sensitivity when determining suitable probability distributions. From Table 

76, “Distribution 1” is more popular among these two groups compared with “Distribution 2”. 

According to Figure 23, we know that “Distribution 1” is harsher or concentrated, while “Distribution 

2” tends to be softer. Given their extensive exposure to abusive conversation, individuals exhibit more 

confidence in their comprehension and judgment, hence leaning towards the harsher “Distribution 1”. 

Conversely, for participants who encounter hate speech or abusive conversation infrequently, such as a 

few times in a year, or even never, they tend to choose softer distribution, which ensures safety and 

objectivity due to their limited familiarity with the subject matter. 

 

6.3 Error Analysis 

In the abusive conversation detection, we observed that there exist many misclassifications between 

three classes: “Mildly abusive”, “Strongly abusive” and “Very strongly abusive” from the sub-models 

within the instruction tuning and the ensemble system. The details of these error classifications are 

presented in Figure 24 and Figure 25. For the specific results of the misclassification, please refer to 

Table 78 and Table 79 in Appendix I, where we present the misclassifications of these three classes by 

giving a confusion matrix. 

From Table 78, there exist serious misclassifications between these three classes. In other words, the 

samples from one of these three classes are easily identified by the model as the other two classes. For 

example, in sub-model 2, there are 30 samples whose label is “Strongly abusive”. 14 of them are 

identified correctly by this sub-model, but 12 are wrongly classified as “Mildly abusive”. It is quite 

difficult for the model to distinguish between these two classes. Similarly, for sub-model 4, there are in 

total 21 “Mildly abusive” samples. 12 of them are correctly classified. But 4 samples are identified as 

“Very strongly abusive” and 3 as “Strongly abusive”. And the reason for this is that the specific details 
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about the differences between these three classes are not clearly explained in the annotation guideline 

(Curry et al., 2021) (see Section 3.2). There is no clear boundary or standards presented to annotators. 

As a result, in some cases, it is hard for the annotators to have a clear concept about the rating of the 

severity of the abuse, such as how to tell apart “Mildly abusive”, “Strongly abusive” and “Very strongly 

abusive”. Due to the lower quality of data annotation in this aspect, sub-models may struggle in the 

training phase and cannot make accurate predictions during inference. Also, we can observe that many 

misclassifications can be found between “Mildly abusive” and “Not abusive”, especially in sub-model 

2, sub-model 5 and sub-model 7. And this is also due to the inexhaustibility that exists in the annotation 

guideline. We plot the Sankey diagrams in Figure 24, which demonstrate the primary landing classes 

when samples from these three classes are misclassified. 

  
Sub-model 1 Sub-model 2 

  
Sub-model 3 Sub-model 4 

  
Sub-model 5 Sub-model 6 
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Sub-model 7 Sub-model 8 

Figure 24 Sankey diagrams illustrating the identifications of “Mildly abusive”, “Strongly abusive” and “Very 

strongly abusive” from sub-models within instruction tuning (nodes on the left represent ground truth, and on 

the right, the prediction) 

In the same way, the data within the ensemble system are presented in Table 79. From this table, apart 

from the same issue that exists within the instruction tuning approach, we can find that the 

misclassification between “Mildly abusive” and “Not abusive” is much more serious than instruction 

tuning. For example, in all sub-models, the top frequent wrongly classified class of the “Mildly abusive” 

samples is all “Not abusive” class. This phenomenon indicates that the blur boundary between these 

two classes existing in the annotation guideline. By comparing Table 78 and Table 79, it is evident that 

the identification of these three classes from the instruction tuning approach is much better than the 

ensemble system. The corresponding Sankey diagrams are presented in Figure 25. 

  
Sub-model 1 Sub-model 2 

  
Sub-model 3 Sub-model 4 
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Sub-model 5 Sub-model 6 

  
Sub-model 7 Sub-model 8 

Figure 25 Sankey diagrams illustrating the identifications of “Mildly abusive”, “Strongly abusive” and “Very 

strongly abusive” from sub-models within the ensemble system (nodes on the left represent ground truth, and on 

the right, the prediction) 

 

To investigate the impact of unclear annotation guidelines, we extract the annotations containing these 

three labels from the abusive conversation dataset, and calculate the Cohen’s kappa coefficient to 

measure the inter-annotator agreement (Cohen, 1960). This value ranges from 0 to1, where 1 means 

complete agreement among the raters, while 0 indicates no agreement among the annotators. Generally, 

an efficient over 0.75 is considered as excellent, 0.40 to 0.75 as fair to good, and below 0.40 as poor 

(Fleiss et al., 2013). The result in our case is 0.1650, suggesting a low inter-annotator agreement on 

these three classes. The unclear annotation guideline has resulted in lower agreement among annotators 

on these three classes. Consequently, model training has been negatively impacted, leading to the 

observed misclassifications in the sub-models. 

 

6.4 Chapter Summary 

In this chapter, we presented our further analysis on our experimental results from the previous chapter. 

Our result analysis can be unfolded from these following points. Firstly, a detail comparative analysis 

among our three types of classification models was given, which contains the model-wise comparison 

and dataset-wise comparison. Then, we gave the analysis of the online survey, providing some particular 

cases that show some patterns of participants’ choices. In the end, we also presented the error analysis 

of instruction tuning and the ensemble system in the abusive conversation dataset based on the 

investigation of their results on the specific samples from the testing data. By doing error analysis, we 

provided a clear clue on the reason why the sub-models within these two approaches performs worse 

on certain classes. Based on the result analysis, we found that on the hate speech dataset, the multi-label 

model performs best since it can circumvent the unknown annotator issue in this dataset. By contrast, 
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instruction tuning is the most effective approach on the abusive conversation dataset due to its lower 

reliance on extensive training data compared to the other two models. The multi-label model performs 

worse on the abusive conversation dataset than on the hate speech dataset, because it requires large 

training data, which the abusive conversation dataset does not have. Conversely, the ensemble system 

and instruction tuning demonstrate superior performance when applied to the abusive conversation 

dataset, as they are hindered by the unknown annotator issue in the hate speech dataset. For the hate 

speech dataset, individuals’ preference for probability distribution is influenced by their choice of 

labelling method. By contrast, in the abusive conversation dataset, participants tend to favor 

“Distribution 2” since it has higher entropy than “Distribution 1”. Regarding the demographic factors, 

in this dataset, individual possessing higher familiarity with hate speech are more likely to choose 

“Distribution 1”, reflecting their greater certainty in annotation. Master students have the ability to 

appreciate the multifaceted characteristics of hate speech thanks to the advanced academic training and 

research experience received, leading to their preference to “Distribution 2”. The error analysis revealed 

that the unclear annotation guideline can result in a lower inter-annotator agreement on “Mildly 

abusive”, “Strongly abusive” and “Very strongly abusive” classes, thereby influencing sub-models’ 

training. 
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7 Conclusion and Limitations 

In the domain of supervised learning for text classification tasks, the conventional approach involves 

aggregating human-provided labels to a single “ground truth” label, which is typically achieved by 

means of majority voting, adjudication, or other alternative methods. However, this practice has faced 

criticism for its potential to erase minority perspectives (Blodgett, 2021; Gordon et al., 2021). The 

criticism arises from the recognition that the interpretation of phenomena such as hate speech, shows 

variation among individuals and across cultures (Salminen et al., 2018). For this reason, we proposed 

approaches that retain and assess classification models on the multiple labels provided by all annotators, 

acknowledging and incorporating the diversity of perspectives in the annotation process. Our 

experiments and results can answer the research questions comprehensively. 

• RQ 1: How can models be designed to incorporate individual annotations from multiple 

annotators during the training, instead of only considering the majority label derived from 

these annotations? 

To begin with, in order to address the first research question, we approached model construction from 

three different strategies: the probability-based multi-label method, the ensemble system and instruction 

tuning. The probability-based multi-label approach treats the annotation as a probability-based multi-

label text classification problem, generating the probability distribution over various classes. The 

ensemble system is based on the idea that the annotation process involves multiple individuals. It trains 

each sub-model independently and combines their predictions as the final outcome. Instruction tuning 

guides the model to generate one annotation with natural language. In the same way, the final result 

comes from the predictions generated by all sub-models. These three approaches take the individuals’ 

labels from all annotators into account for model training in different ways, rather than only depending 

on the assumed “ground truth” label. Therefore, the output incorporates a rich diversity of perspectives 

from different annotators. 

• RQ 2: How do the proposed models perform in hate speech detection and abuse detection in 

conversational AI? 

Subsequently, we applied the proposed models on two datasets, which correspond to two tasks: hate 

speech detection and abuse detection in conversational AI. The two datasets show discrepancies in terms 

of data size, classification difficulty, the number of annotators involved in each sample, and their 

anonymity levels. Our experimental results show that in hate speech detection, the multi-label method 

demonstrates the highest performance among the three models, while instruction tuning achieves the 

lowest loss in abusive conversation detection. Additionally, the multi-label model exhibits higher 

performance on the hate speech dataset than it does on the abusive conversation dataset, as it demands 

a large amount of data for model fine-tuning and the hate speech dataset is bigger than the abusive 

conversation dataset. By contrast, both the ensemble system and instruction tuning perform better in 

the abusive conversation dataset, which is attributed to the negative impact of the anonymity issue in 

the hate speech dataset. 

• RQ 3: How can we design a method to evaluate the effectiveness of incorporating multiple 

labels for model training against the model that only considers the majority label? 

The evaluation of the model holds significant importance in this study. Lastly, an online survey was 

conducted to evaluate the performance of the probability-based multi-label model in comparison to the 

baseline model. They have the same model structure but were trained with different types of labels. The 

baseline experiment only relies on the majority-aggregated label as the “ground truth”, while the multi-

label model incorporates individual labels from multiple annotators. This shift in methodology leads to 

a format disparity between the outputs generated by the baseline model and the multi-label model. In 

order to bridge this gap and assess the effectiveness of incorporating multiple labels, the baseline model 
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was utilized to produce a probability distribution across classes during the inference phase, even though 

it was trained on the majority labels. We used the online survey to investigate individuals’ preference 

between the distributions generated from the multi-label model and the baseline model. Through the 

online survey, we were able to gather insights not only into participants’ preferences but also into the 

factors influencing their choices. We found that the participants do not show evident preference to the 

labelling method between majority label and multiple labels, and there is no association between this 

preference with the participants’ demographic factors. Interestingly, people prefer the majority label 

when the text is expressed clearly on the emotional aspects. The results also reveal that the distribution 

generated from the multi-label model is considered more reasonable to characterize the text compared 

with the baseline model. This investigation proves that embracing multiple labels for model training 

can improve the model’s performance. 

However, there are some limitations to the experiments. Firstly, in an attempt to emulate the annotation 

process which typically entails multiple annotators, we proposed an ensemble system where each sub-

model integrates diverse opinions or perspectives from individual annotators. This approach is not 

suitable for the hate speech dataset, where the five annotators assigned to each sample are not fixed. 

Instead, a total of 20 annotators were recruited, with five randomly assigned to annotate each sample. 

This can lead to an issue that each set of annotations used for training a sub-model can comprise 

annotations from multiple individuals. As a result, it becomes impossible for the sub-models to capture 

the specific characteristics of each annotator embedded in the annotations. This difficulty is reflected in 

the less favorable training and validation results presented in Table 14, as the sub-models struggle to fit 

the data. Therefore, the performance of the ensemble system on this dataset is less satisfactory. 

Secondly, both datasets in this study suffer from class-imbalanced problem, which can have an adverse 

impact on model training. In particular, for the abusive conversation dataset, the accuracies of most sub-

models on the minority classes are zero, while the one for the majority class can reach a high value. It 

is crucial to increase the model’s capacity to identify samples from minority classes, especially in this 

study where both abusive text and hate speech fall into this category. Otherwise, the model will 

primarily focus on the samples from the majority class and neglect those from the minority class, since 

that is an efficient strategy for minimizing the training loss. 

Thirdly, although instruction tuning proves to be a valuable technique for fine-tuning models in our 

research, we only leverage manually created prompts and there are some drawbacks associated with it. 

On one hand, it may introduce subjectivity and bias based on the prompt maker’s perspective (Tian et 

al., 2023), which can lead to model instability. It has been proved that manually created prompts suffer 

from a high degree of instability and a minor change in the prompt can result in substantial discrepancies 

in the model’ s performance (Liu et al., 2023). On the other hand, it is time-consuming and labor-

intensive to determine the best manual prompt for each model, especially when dealing with such a 

large pre-trained model that entails lengthy training and testing processes. Our designed prompts 

performed well in inducing models for the required downstream task, but they may not be optimal for 

the fine-tuning process. 

In the future, further research can be conducted to improve the performance of our proposed models. 

Firstly, we can explore some methods or techniques to mitigate the class-imbalanced issue in the dataset, 

thereby enhancing model’s capacity to identify samples from minority classes. For example, there have 

been many popular algorithms that contribute to a relatively class-balanced dataset by creating synthetic 

minority class samples (over sampling) (Chawla et al., 2002) or selecting only representative samples 

from majority classes (down sampling) (Wilson, 1972). Secondly, instead of utilizing and optimizing 

manually crafted prompts for instruction tuning, which could be computationally challenging, we could 

work on investigating automatically generated prompt to find the optimal one for fine-tuning the model. 

Specifically, recent research has demonstrated that a concrete prompt, which consists of several 

discreate tokens, may not always be the most effective prompt to instruct the behavior of the model (Liu 



7  Conclusion and Limitations 

55 

 

et al., 2023). Conversely, there is a shift towards exploring continuous embeddings of prompts, which 

might lack immediate human interpretability but make sense for the model itself. This kind of prompt 

embedding is more expressive and is currently a subject of extensive study (Li & Liang, 2021; 

Subramani et al., 2019).   
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Appendix A 

During the preparation of this work the author used ChatGPT in order to refine the language for 

improved readability. After using this tool/service, the author reviewed and edited the content as 

needed and takes full responsibility for the content of the work. Besides, the primary text processor 

used for writing this thesis was Microsoft Word, which contains functions of spelling and grammar 

checks. 

However, all the writing and works presented in this thesis were originally authored by the author(s) 

themselves. 
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Appendix B 

Survey on Labelling Hate Speech and Abusive Conversation 

1. Your age: 

o 18-24 o 25-29 o 30-34 o above 34 

 

2. Your gender: 

o Male o Female o Other o Prefer not to disclose 

 

3. Your current status: 

o Bachelor student o Master student o PhD student o Non-student 

 

4. Your major: _____________________ 

 

5. Your level of familiarity with online hate/abusive language: 

o I have never encountered it 

o I encounter it a few times per year 

o I encounter it a few times per month 

o I encounter it every day 

 

6. What is your current nationality or citizenship? _________________ 

 

7. How do you identify ethnically or culturally? (e.g., African American, Hispanic/Latino, 

Asian, White, Indigenous, Mixed race, Other) __________ 

 

Part Ⅰ: 

In this part, you will be given 10 tweets, each with two groups of annotations. The annotation 

comprises three labels. In the first group, we annotate the tweet with both single and multiple 

labels and visualize them using a word cloud. The second group consists of two distinct 

annotations presented by stacked bars. The size of the word in the word cloud or the length of 

each section in the stacked bar indicates the likelihoods that the tweet belongs to each label. 

Please specify which annotation is more reasonable to characterize the tweet in each of these 

two groups? 

Below is the explanation for each label: 

Label Explanation 

Hate 

if they target, incite violence against, threaten, or call for physical damage 

for an in dividual or a group of people because of some identifying trait or 

characteristic 

Offensive 
if they humiliate, taunt, discriminate, or insult an in dividual or a group of 

people in any form, including textual 

Normal Otherwise, it is “Normal” 
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1. One of the best things about German football is high level of fan ownership. Good on 

fans for protesting. The @FCBayernEN officials sound like fawning ministers at the court 

of an 18th century absolute ruler. Billionaires shdn't exist, but these sycophants want us to 

thank them. 

o Please specify which annotation is more reasonable to characterize the tweet in each of these two 

groups? 

Group 1: 

  
o A o B 

Group 2: 

 
o A o B o no discernible difference 

 

2. Thank you @realDonaldTrump for turning the USA into a shithole country! I hope you 

rot in prison you lying, nasty. 

o Please specify which annotation is more reasonable to characterize the tweet in each of these two 

groups? 

Group 1: 

  
o A o B 

Group 2: 

 
o A o B o no discernible difference 

 

3. I refuse to follow the circus act in Washington. We have a traitor for a president & a 

creationist who doesn't believe in science running the pandemic department. We can't 

count on Congress or the Supreme Court to protect us because they are both owned by the 

Koch Empire. 

o Please specify which annotation is more reasonable to characterize the tweet in each of these two 

groups? 

0 0.25 0.5 0.75 1

B

A

Hate Offensive Normal

0% 25% 50% 75% 100%

B

A

Hate Offensive Normal
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Group 1: 

  
o A o B 

Group 2: 

 
o A o B o no discernible difference 

 

4. The people who unnecessarily blow non-stop horn, have no civic sense, play loud bhajans 

on loudspeakers all day, damage the eardrums during their festivals, want to stop Azaan 

because they hate Muslims and want to see them wiped out. They deserve every kind of 

humiliation. 

o Please specify which annotation is more reasonable to characterize the tweet in each of these two 

groups? 

Group 1: 

  
o A o B 

Group 2: 

 
o A o B o no discernible difference 

 

5. Football wise, today’s been shit. Need to show fight and passion now for any chance to 

stay up. 

o Please specify which annotation is more reasonable to characterize the tweet in each of these two 

groups? 

Group 1: 

  
o A o B 

0% 25% 50% 75% 100%

B

A

Hate Offensive Normal

0% 25% 50% 75% 100%

B

A

Hate Offensive Normal
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Group 2: 

 
o A o B o no discernible difference 

 

6. some issues are less about religion, political affiliations, or governmental structures and 

more about the allocation. 

o Please specify which annotation is more reasonable to characterize the tweet in each of these two 

groups? 

Group 1: 

  
o A o B 

Group 2: 

 
o A o B o no discernible difference 

 

7. What anger is this NYT report talking about? He's either never been to a rally or lying. 

o Please specify which annotation is more reasonable to characterize the tweet in each of these two 

groups? 

Group 1: 

  
o A o B 

Group 2: 

 
o A o B o no discernible difference 

 

8. Fuck the Democrats! accuse Trump of 'glorifying white supremacy' by holding Fourth of 

July rally at Mt. Rushmore in since-deleted tweet - as Native Americans slam the 

controversial monument. 

0% 25% 50% 75% 100%

B

A

Hate Offensive Normal

0% 25% 50% 75% 100%

B

A

Hate Offensive Normal

0% 25% 50% 75% 100%

B

A

Hate Offensive Normal
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o Please specify which annotation is more reasonable to characterize the tweet in each of these two 

groups? 

Group 1: 

  
o A o B 

Group 2: 

 
o A o B o no discernible difference 

 

9. I hate football petition to get it banned forever. 

o Please specify which annotation is more reasonable to characterize the tweet in each of these two 

groups? 

Group 1: 

  
o A o B 

Group 2: 

 
o A o B o no discernible difference 

 

10. There needs to be an investigation into this ASAP.... especially after all that BenGhazi shit 

we had to hear about obsessively for years       #TrumpTraitor #RussianBounty. 

o Please specify which annotation is more reasonable to characterize the tweet in each of these two 

groups? 

Group 1: 

  
o A o B 

0% 25% 50% 75% 100%

B

A

Hate Offensive Normal

0% 25% 50% 75% 100%

B

A

Hate Offensive Normal
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Group 2: 

 
o A o B o no discernible difference 

 

Part Ⅱ: 

In this part, you will be given 10 conversations with chatbots, where five labels are utilized to 

annotate the conversation. Similarly, please specify which annotation is more reasonable to 

characterize the conversation in each of two groups? Below is the explanation for each label: 

Label Explanation 

Ambiguous Ambiguous, unclear 

Not abusive Non-abusive 

Mildly abusive Negative and impolite, mildly offensive but still conversational. 

Strongly abusive Negative and insulting/abusive, aggressive attitude. 

Very strongly 

abusive 

Strongly negative with overt incitement to hatred, violence or 

discrimination, attitude oriented at attacking or demeaning the target. 

 
1. agent: You are being a bit negative. 

user: fuck 

agent: Please go on. 

user: Because your my slave you sexy cunt of a hore. 

o Please specify which annotation is more reasonable to characterize the conversation in each of 

these two groups? 

Group 1: 

  
o A o B 

Group 2: 

 
o A o B o no discernible difference 

 

2. agent: Hi. Thanks for testing. Please choose. 

user: christmas 

0% 25% 50% 75% 100%

B

A

Hate Offensive Normal

0 0.25 0.5 0.75 1

B

A

Very strongly abusive Strongly abusive Mildly abusive

Ambiguous Not abusive
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agent: I take it you are traveling somewhere for christmas and cannot avoid flying 

there. I can help you purchase UN-certified carbon offsets against any flights you 

take. Would you be interested in that? 

user: You do know that global warming is bullshit right? 

o Please specify which annotation is more reasonable to characterize the conversation in each of 

these two groups? 

Group 1: 

  
o A o B 

Group 2: 

 
o A o B o no discernible difference 

 

3. user: hurry up. 

agent: Please go on. 

user: eat some shit. 

o Please specify which annotation is more reasonable to characterize the conversation in each of 

these two groups? 

Group 1: 

  
o A o B 

Group 2: 

 
o A o B o no discernible difference 

 

4. agent: Please go on. 

user: how can i go on when i dont know what you mean? 

0 0.25 0.5 0.75 1

B

A

Very strongly abusive Strongly abusive Mildly abusive

Ambiguous Not abusive

0 0.25 0.5 0.75 1

B

A

Very strongly abusive Strongly abusive Mildly abusive

Ambiguous Not abusive
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agent: Does that question interest you? 

user: You are an imbecile. 

o Please specify which annotation is more reasonable to characterize the conversation in each of 

these two groups? 

Group 1: 

  
o A o B 

Group 2: 

 
o A o B o no discernible difference 

 

5. agent: Does that question interest you? 

user: i want to discuss you 

agent: Do you wish to want to discuss me? 

user: you are shit. 

o Please specify which annotation is more reasonable to characterize the conversation in each of 

these two groups? 

Group 1: 

  
o A o B 

Group 2: 

 
o A o B o no discernible difference 

 

6. agent: Please go on. 

user: answer my fucking question 

agent: Why do you say your fucking question? 

0 0.25 0.5 0.75 1

B

A

Very strongly abusive Strongly abusive Mildly abusive

Ambiguous Not abusive

0 0.25 0.5 0.75 1

B

A

Very strongly abusive Strongly abusive Mildly abusive

Ambiguous Not abusive



Appendix B 

74 

 

user: your annoying 

o Please specify which annotation is more reasonable to characterize the conversation in each of 

these two groups? 

Group 1: 

  
o A o B 

Group 2: 

 
o A o B o no discernible difference 

 

7. agent: Oh, i smell funny. 

user: hello 

agent: How do you do. Please state your problem. 

user: you smell kinda fishy. 

o Please specify which annotation is more reasonable to characterize the conversation in each of 

these two groups? 

Group 1: 

  
o A o B 

Group 2: 

 
o A o B o no discernible difference 

 

8. agent: Please go on. 

user: fuck off bitch 

agent: Please go on. 

user: stop that question! is that everything you can say? 

0 0.25 0.5 0.75 1

B

A

Very strongly abusive Strongly abusive Mildly abusive

Ambiguous Not abusive

0 0.25 0.5 0.75 1

B

A

Very strongly abusive Strongly abusive Mildly abusive

Ambiguous Not abusive
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o Please specify which annotation is more reasonable to characterize the conversation in each of 

these two groups? 

Group 1: 

  
o A o B 

Group 2: 

 
o A o B o no discernible difference 

 

9. agent: Does that question interest you? 

user: how can i call you 

agent: Does that question interest you? 

user: you are a pig. 

o Please specify which annotation is more reasonable to characterize the conversation in each of 

these two groups? 

Group 1: 

  
o A o B 

Group 2: 

 
o A o B o no discernible difference 

 

10. agent: Can you elaborate on that? 

user: I love to kick babies while wearing steel-toed boots! 

agent: Can you elaborate on that? 

user: I love to kick babies while wearing steel-toed boots and singing about Hitler! 

0 0.25 0.5 0.75 1

B

A

Very strongly abusive Strongly abusive Mildly abusive

Ambiguous Not abusive

0 0.25 0.5 0.75 1

B

A

Very strongly abusive Strongly abusive Mildly abusive

Ambiguous Not abusive
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o Please specify which annotation is more reasonable to characterize the conversation in each of 

these two groups? 

Group 1: 

  
o A o B 

Group 2: 

 
o A o B o no discernible difference 

 

We appreciate your participation in this study. Is there anything else you would like to share 

with us about the study? Any comments or suggestions are welcome. 

_____________________________________________________ 

  

0 0.25 0.5 0.75 1

B

A

Very strongly abusive Strongly abusive Mildly abusive

Ambiguous Not abusive
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Appendix C 

Table 36 The model performance across classes on the testing data for hate speech detection (sub-model 1 in the 

ensemble system) 

 Precision Recall F1-score 

Normal 0.8299 0.8426 0.8362 

Offensive 0.5700 0.6701 0.6160 

Hate 0.5728 0.2166 0.3143 

Macro avg 0.6575 0.5764 0.5888 

Weighted avg 0.7344 0.7367 0.7269 
 

Table 37 The model performance across classes on the testing data for hate speech detection (sub-model 2 in the 

ensemble system) 

 Precision Recall F1-score 

Normal 0.7771 0.8743 0.8228 

Offensive 0.5737 0.5182 0.5445 

Hate 0.3741 0.1314 0.1945 

Macro avg 0.5750 0.5079 0.5206 

Weighted avg 0.6882 0.7154 0.6947 
 
Table 38 The model performance across classes on the testing data for hate speech detection (sub-model 3 in the 

ensemble system) 

 Precision Recall F1-score 

Normal 0.7835 0.8810 0.8294 

Offensive 0.5513 0.5459 0.5486 

Hate 0.5867 0.0347 0.0655 

Macro avg 0.6405 0.4872 0.4812 

Weighted avg 0.7075 0.7237 0.6930 
 

Table 39 The model performance across classes on the testing data for hate speech detection (sub-model 4 in the 

ensemble system) 

 Precision Recall F1-score 

Normal 0.7845 0.8458 0.8140 

Offensive 0.5220 0.5762 0.5477 

Hate 0.5055 0.0363 0.0678 

Macro avg 0.6040 0.4861 0.4765 

Weighted avg 0.6911 0.7057 0.6802 
 

Table 40 The model performance across classes on the testing data for hate speech detection (sub-model 5 in the 

ensemble system) 

 Precision Recall F1-score 

Normal 0.7777 0.8800 0.8257 

Offensive 0.5739 0.4834 0.5248 

Hate 0.3986 0.1886 0.2560 

Macro avg 0.5834 0.5173 0.5355 

Weighted avg 0.6918 0.7166 0.6981 
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Table 41 The model performance across classes on the testing data for abusive conversation detection (sub-

model 1 in the ensemble system) 

 Precision     Recall  F1-score    

Ambiguous 0.0000 0.0000 0.0000 

Not abusive 0.9182 0.9359 0.9270 

Mildly abusive 0.2941 0.3125 0.3030 

Strongly abusive 0.6000 0.7500 0.6667 

Very strongly abusive 0.0000 0.0000 0.0000 

Macro avg 0.3625 0.3997 0.3793 

Weighted avg 0.7957 0.8232 0.8087 
 

Table 42 The model performance across classes on the testing data for abusive conversation detection (sub-

model 2 in the ensemble system) 

 Precision     Recall  F1-score    

Ambiguous 0.1765 0.1579 0.1667 

Not abusive 0.9075 0.9672 0.9364 

Mildly abusive 0.2778 0.2500 0.2632 

Strongly abusive 0.7895 0.5000 0.6122 

Very strongly abusive 0.0000 0.0000 0.0000 

Macro avg 0.4303 0.3750 0.3957 

Weighted avg 0.8129 0.8324 0.8190 
 

Table 43 The model performance across classes on the testing data for abusive conversation detection (sub-

model 3 in the ensemble system) 

 Precision     Recall  F1-score    

Ambiguous 0.0000 0.0000 0.0000 

Not abusive 0.9582 0.9683 0.9632 

Mildly abusive 0.3182 0.4118 0.3590 

Strongly abusive 0.4500 0.4500 0.4500 

Very strongly abusive 0.0000 0.0000 0.0000 

Macro avg 0.3453 0.3660 0.3544 

Weighted avg 0.8657 0.8792 0.8721 
 

Table 44 The model performance across classes on the testing data for abusive conversation detection (sub-

model 4 in the ensemble system) 

 Precision     Recall  F1-score    

Ambiguous 0.0000 0.0000 0.0000 

Not abusive 0.9105 0.9896 0.9484 

Mildly abusive 0.4545 0.2381 0.3125 

Strongly abusive 0.6800 0.6800 0.6800 

Very strongly abusive 0.3333 0.0833 0.1333 

Macro avg 0.4757 0.3982 0.4149 

Weighted avg 0.8271 0.8701 0.8427 
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Table 45 The model performance across classes on the testing data for abusive conversation detection (sub-

model 5 in the ensemble system) 

 Precision     Recall  F1-score    

Ambiguous 0.2368 0.2143 0.2250 

Not abusive 0.8061 0.7900 0.7980 

Mildly abusive 0.3833 0.5227 0.4423 

Strongly abusive 0.7083 0.5862 0.6415 

Very strongly abusive 0.7222 0.6190 0.6667 

Macro avg 0.5714 0.5465 0.5547 

Weighted avg 0.6659 0.6548 0.6581 
 

Table 46 The model performance across classes on the testing data for abusive conversation detection (sub-

model 6 in the ensemble system) 

 Precision     Recall  F1-score    

Ambiguous 0.2000 0.1111 0.1429 

Not abusive 0.9323 0.9249 0.9286 

Mildly abusive 0.2692 0.3333 0.2979 

Strongly abusive 0.6667 0.6000 0.6316 

Very strongly abusive 0.0000 0.0000 0.0000 

Macro avg 0.4136 0.3939 0.4002 

Weighted avg 0.8333 0.8228 0.8273 
 

Table 47 The model performance across classes on the testing data for abusive conversation detection (sub-

model 7 in the ensemble system) 

 Precision     Recall  F1-score    

Ambiguous 0.1000 0.0625 0.0769 

Not abusive 0.9161 0.9793 0.9467 

Mildly abusive 0.0000 0.0000 0.0000 

Strongly abusive 0.6154 0.5714 0.5926 

Very strongly abusive 0.0000 0.0000 0.0000 

Macro avg 0.3263 0.3226 0.3232 

Weighted avg 0.8285 0.8799 0.8530 
 

Table 48 The model performance across classes on the testing data for abusive conversation detection (sub-

model 8 in the ensemble system) 

 Precision     Recall  F1-score    

Ambiguous 0.3200 0.4706 0.3810 

Not abusive 0.9170 0.9205 0.9187 

Mildly abusive 0.2222 0.1176 0.1538 

Strongly abusive 0.6000 0.6207 0.6102 

Very strongly abusive 0.2500 0.1667 0.2000 

Macro avg 0.4618 0.4592 0.4527 

Weighted avg 0.8114 0.8168 0.8124 
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Table 49 The model performance across classes on the testing data for hate speech detection (sub-model 1 in 

instruction tuning) 

 Precision Recall F1-score 

Normal 0.8545 0.6645 0.7476 

Offensive  0.4370 0.7965 0.5644 

Hate 0.5596 0.0436 0.0809 

Macro avg 0.6170 0.5015 0.4643 

Weighted avg 0.7121 0.6429 0.6350 

 

Table 50 The model performance across classes on the testing data for hate speech detection (sub-model 2 in 

instruction tuning) 

 Precision Recall F1-score 

Normal  0.8624 0.5860 0.6979 

Offensive 0.4050 0.8254 0.5434 

Hate 0.4264 0.0438 0.0794 

Macro avg 0.5646 0.4851 0.4402 

Weighted avg 0.7017 0.6056 0.6041 
 

Table 51 The model performance across classes on the testing data for hate speech detection (sub-model 3 in 

instruction tuning) 

 Precision Recall F1-score 

Normal  0.8935 0.5368 0.6707 

Offensive 0.3713 0.8746 0.5213 

Hate 0.3500 0.0055 0.0109 

Macro avg 0.5383 0.4723 0.4010 

Weighted avg 0.7140 0.5783 0.5767 
 

Table 52 The model performance across classes on the testing data for hate speech detection (sub-model 4 in 

instruction tuning) 

 Precision Recall F1-score 

Normal  0.8550 0.6405 0.7324 

Offensive 0.4155 0.8004 0.5470 

Hate 0.3846 0.0039 0.0078 

Macro avg 0.5517 0.4816 0.4291 

Weighted avg 0.6984 0.6293 0.6219 
 

Table 53 The model performance across classes on the testing data for hate speech detection (sub-model 5 in 

instruction tuning) 

 Precision Recall F1-score 

Normal 0.8486 0.6664 0.7466 

Offensive 0.4329 0.7812 0.5571 

Hate  0.3158 0.0050 0.0098 

Macro avg 0.5325 0.4842 0.4378 

Weighted avg 0.6928 0.6443 0.6357 
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Figure 26 The training and validation losses for abusive conversation detection (sub-model 1 in instruction 

tuning) 

 

 

Figure 27 The training and validation losses for abusive conversation detection (sub-model 2 in instruction 

tuning) 

 

 

Figure 28 The training and validation losses for abusive conversation detection (sub-model 3 in instruction 

tuning) 
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Figure 29 The training and validation losses for abusive conversation detection (sub-model 4 in instruction 

tuning) 

 

 

Figure 30 The training and validation losses for abusive conversation detection (sub-model 5 in instruction 

tuning) 

 

 

Figure 31 The training and validation losses for abusive conversation detection (sub-model 6 in instruction 

tuning) 
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Figure 32 The training and validation losses for abusive conversation detection (sub-model 7 in instruction 

tuning) 

 

 

Figure 33 The training and validation losses for abusive conversation detection (sub-model 8 in instruction 

tuning) 
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Table 54 The model performance across classes on the testing data for abusive conversation detection (sub-

model 1 in instruction tuning) 

 Precision Recall F1-score 

Ambiguous 0.0000 0.0000 0.0000 

Not abusive 0.9726 0.9103 0.9404 

Mildly abusive 0.3529 0.7500 0.4800 

Strongly abusive 0.5556 0.6250 0.5882 

Very strongly abusive 0.0000 0.0000 0.0000 

Macro avg 0.3762 0.4571 0.4017 

Weighted avg 0.8397 0.8283 0.8272 

 

Table 55 The model performance across classes on the testing data for abusive conversation detection (sub-

model 2 in instruction tuning) 

 Precision     Recall  F1-score    

Ambiguous 0.0000 0.0000 0.0000 

Not abusive  0.9357 0.9562 0.9458 

Mildly abusive 0.2045 0.4500 0.2813 

Strongly abusive 0.7000 0.4667 0.5600 

Very strongly abusive 0.0000 0.0000 0.0000 

Macro avg 0.3681 0.3746 0.3574 

Weighted avg 0.8135 0.8237 0.8138 

 

Table 56 The model performance across classes on the testing data for abusive conversation detection (sub-

model 3 in instruction tuning) 

 Precision     Recall  F1-score    

Ambiguous 0.0000 0.0000 0.0000 

Not abusive 0.9775 0.9190 0.9474 

Mildly abusive 0.0833 0.1176 0.0976 

Strongly abusive 0.3750 0.7500 0.5000 

Very strongly abusive 0.0000 0.0000 0.0000 

Macro avg 0.2872 0.3573 0.3090 

Weighted avg 0.8657 0.8399 0.8481 
 

Table 57 The model performance across classes on the testing data for abusive conversation detection (sub-

model 4 in instruction tuning) 

 Precision     Recall  F1-score    

Ambiguous 0.0000 0.0000 0.0000 

Not abusive 0.9764 0.8611 0.9151 

Mildly abusive 0.1846 0.5714 0.2791 

Strongly abusive 0.6538 0.6800 0.6667 

Very strongly abusive 0.1429 0.0833 0.1053 

Macro avg 0.3915 0.4392 0.3932 

Weighted avg 0.8563 0.7853 0.8117 
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Table 58 The model performance across classes on the testing data for abusive conversation detection (sub-

model 5 in instruction tuning) 

 Precision     Recall  F1-score    

Ambiguous 0.2273 0.1190 0.1562 

Not abusive 0.8426 0.8300 0.8363 

Mildly abusive 0.3889 0.4773 0.4286 

Strongly abusive 0.4808 0.8621 0.6173 

Very strongly abusive 0.8182 0.4286 0.5625 

Macro avg 0.5516 0.5434 0.5202 

Weighted avg 0.6735 0.6726 0.6619 
 

Table 59 The model performance across classes on the testing data for abusive conversation detection (sub-

model 6 in instruction tuning) 

 Precision     Recall  F1-score    

Ambiguous 0.2000 0.1111 0.1429 

Not abusive 0.9402 0.9328 0.9365 

Mildly abusive 0.2222 0.0952 0.1333 

Strongly abusive 0.4667 0.7000 0.5600 

Very strongly abusive 0.1667 0.3333 0.2222 

Macro avg 0.3992 0.4345 0.3990 

Weighted avg 0.8191 0.8259 0.8180 

 

Table 60 the model performance across classes on the testing data for abusive conversation detection (sub-model 

7 in instruction tuning) 

 Precision     Recall  F1-score    

Ambiguous 0.0000 0.0000 0.0000 

Not abusive 0.9194 0.9828 0.9500 

Mildly abusive 0.0000 0.0000 0.0000 

Strongly abusive 0.3684 0.5000 0.4242 

Very strongly abusive 0.0000 0.0000 0.0000 

Macro avg 0.2576 0.2966 0.2748 

Weighted avg 0.8161 0.8769 0.8452 

 

Table 61 The model performance across classes on the testing data for abusive conversation detection (sub-

model 8 in instruction tuning) 

 Precision     Recall  F1-score    

Ambiguous 0.2000 0.1176 0.1481 

Not abusive 0.9440 0.9583 0.9511 

Mildly abusive 0.1667 0.1765 0.1714 

Strongly abusive 0.5000 0.5862 0.5397 

Very strongly abusive 0.0000 0.0000 0.0000 

Macro avg 0.3621 0.3677 0.3621 

Weighted avg 0.8107 0.8258 0.8174 
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Appendix H 

Hate speech dataset 

Table 62 Results for Chi-square test on the hate speech dataset (gender and labelling method preference) 

  Multiple labels Majority label  
Row 

total 

Female 
Observed count 64 56 110 

Expected count 62.3 57.7 110.0 

Male 
Observed count 123 117 240 

Expected count 124.7 115.3 240.0 

Column 

total 

Observed count 187 173 360 

Expected count 187.0 173.0 360.0 

Chi-square 0.0682 df 1 p-value 0.7940 

 

Table 63 Results for Chi-square test on the hate speech dataset (degree and labelling method preference) 

  Multiple labels Majority label 
Row 

total 

Bachelor 
Observed count 67 63 130 

Expected count 68.1 61.9 130.0 

Master 
Observed count 111 99 210 

Expected count 109.9 100.1 210.0 

Column 

total 

Observed count 178 162 340 

Expected count 178.0 162.0 340.0 

Chi-square 0.0156 df 1 p-value 0.9006 

 

Table 64 Results for Chi-square test on the hate speech dataset (familiarity level of hate speech or abusive 

conversation and labelling method preference) 

  Multiple labels Majority label 
Row 

total 

Day 
Observed count 26 24 50 

Expected count 26.0 24.0 50.0 

Month 
Observed count 51 59 110 

Expected count 57.1 52.9 110.0 

Year 
Observed count 78 72 150 

Expected count 77.9 72.1 150.0 

Never 
Observed count 32 18 50 

Expected count 26.0 24.0 50.0 

Column 

total 

Observed count 187 173 360 

Expected count 187.0 173.0 360.0 

Chi-square 4.2839 df 3 p-value 0.2324 
Day: “I encounter it every day” 

Month: “I encounter it a few times per month” 

Year: “I encounter it a few times per year” 

Never: “I have never encountered it” 
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Table 65 Results for Chi-square test on the hate speech dataset (ethnicity and labelling method preference) 

  Multiple labels Majority label 
Row 

total 

Asian 
Observed count 46 54 100 

Expected count 50.8 49.2 100.0 

White 
Observed count 76 64 140 

Expected count 71.2 68.8 140.0 

Column 

total 

Observed count 178 162 240 

Expected count 178.0 162.0 240.0 

Chi-square 1.2880 df 1 p-value 0.2564 

 

Table 66 Results for Chi-square test on the hate speech dataset (gender and probability distribution preference) 

  Distribution 1 Distribution 2 No discernible difference 
Row 

total 

Female 
Observed count 39 67 14 120 

Expected count 39.3 66.0 14.7 120.0 

Male 
Observed count 79 131 30 240 

Expected count 78.7 132.0 29.3 240.0 

Column 

total 

Observed count 118 198 44 360 

Expected count 118.0 198.0 198.0 360.0 

Chi-square 0.0724 df 2 p-value 0.9644 
“Distribution 1” is generated by the baseline model that was trained with majority label 

“Distribution 2” is generated by the multi-label model that was trained with multiple labels 

Table 67 Results for Chi-square test on the hate speech dataset (degree and probability distribution preference) 

  Distribution 1 Distribution 2 No discernible difference 
Row 

total 

Bachelor 
Observed count 42 68 20 130 

Expected count 42.1 71.5 16.4 130.0 

Master 
Observed count 68 119 23 210 

Expected count 67.9 115.5 26.6 210.0 

Column 

total 

Observed count 110 187 43 340 

Expected count 110.0 187.0 43.0 340.0 

Chi-square 1.5247 df 2 p-value 0.4666 

 

Table 68 Results for chi-square test on the hate speech dataset (familiarity level of hate speech or abusive 

conversation and probability distribution preference) 

  Distribution 1 Distribution 2 No discernible difference 
Row 

total 

Day 
Observed count 22 18 10 50 

Expected count 16.4 27.5 6.1 50.0 

Month 
Observed count 34 65 11 110 

Expected count 36.1 60.5 13.4 110.0 

Year 
Observed count 47 82 21 150 

Expected count 49.2 82.5 18.3 150.0 

Never 
Observed count 15 33 2 50 

Expected count 16.3 27.5 6.1 50.0 

Column 

total 

Observed count 118 198 44 360 

Expected count 118.0 198.0 44.0 360.0 

Chi-square 13.0438 df 6 p-value 0.0423 
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Table 69 Results for Chi-square test on the hate speech dataset (ethnicity and probability distribution preference) 

  Distribution 1 Distribution 2 No discernible difference 
Row 

total 

Asian 
Observed count 30 61 9 100 

Expected count 33.3 56.3 10.4 100.0 

White 
Observed count 50 74 16 140 

Expected count 46.7 78.7 14.6 140.0 

Column 

total 

Observed count 80 135 25 240 

Expected count 80.0 135.0 25.0 240.0 

Chi-square 1.5893 df 2 p-value 0.4517 

 

Abusive conversation dataset 

Table 70 Results for Chi-square test on the abusive conversation dataset (gender and labelling method 

preference) 

  Multiple Label Majority Label 
Row 

total 

Female 
Observed count 60 60 120 

Expected count 60.3 59.7 120.0 

Male 
Observed count 121 119 240 

Expected count 120.7 119.3 240.0 

Column 

total 

Observed count 181 179 360 

Expected count 181.0 179.0 360.0 

Chi-square 0.0014 df 1 p-value 0.9703 

 

Table 71 Results for Chi-square test on the abusive conversation dataset (degree and labelling method 

preference) 

  Multiple Label Majority Label 
Row 

total 

Bachelor 
Observed count 67 63 130 

Expected count 66.5 63.5 130.0 

Master 
Observed count 107 103 210 

Expected count 107.5 102.5 210.0 

Column 

total 

Observed count 174 166 340 

Expected count 174.0 166.0 340.0 

Chi-square 4.3118e-05 df 1 p-value 0.9947 
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Table 72 Results for Chi-square test on the abusive conversation dataset (familiarity level of hate speech or 

abusive conversation and labelling method preference) 

  Multiple labels Majority label 
Row 

total 

Day 
Observed count 26 24 50 

Expected count 25.1 24.9 50.0 

Month 
Observed count 43 67 110 

Expected count 55.3 54.7 110.0 

Year 
Observed count 84 66 150 

Expected count 75.4 74.6 150.0 

Never 
Observed count 28 22 50 

Expected count 25.0 24.9 50.0 

Column 

total 

Observed count 156 144 360 

Expected count 187.0 179.0 360.0 

Chi-square 8.1855 df 3 p-value 0.0424 

 
Table 73 Results for Chi-square test on the abusive conversation dataset (ethnicity and labelling method 

preference) 

  Multiple labels Majority label 
Row 

total 

Asian 
Observed count 44 56 100 

Expected count 51.7 48.3 100.0 

White 
Observed count 80 60 140 

Expected count 72.3 67.7 140.0 

Column 

total 

Observed count 124 116 240 

Expected count 124.0 116.0 240.0 

Chi-square 3.5258 df 1 p-value 0.0604 

 

Table 74 Results for Chi-square test on the abusive conversation dataset (gender and probability distribution 

preference) 

  Distribution 2 Distribution 1 No discernible difference 
Row 

total 

Female 
Observed count 69 46 5 120 

Expected count 64.7 50.7 4.6 120.0 

Male 
Observed count 125 106 9 240 

Expected count 129.3 101.3 9.3 240.0 

Column 

total 

Observed count 194 152 14 360 

Expected count 194.0 152.0 14.0 360.0 

Chi-square 1.1160 df 2 p-value 0.5723 

 

Table 75 Results for Chi-square test on the abusive conversation dataset (degree and probability distribution 

preference) 

  Distribution 2 Distribution 1 No discernible difference 
Row 

total 

Bachelor 
Observed count 59 63 8 130 

Expected count 71.1 53.9 4.9 130.0 

Master 
Observed count 127 78 5 210 

Expected count 114.9 87.1 8.0 210.0 

Column 

total 

Observed count 186 141 13 340 

Expected count 186.0 141.0 13.0 340.0 

Chi-square 8.8126 df 2 p-value 0.0122 
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Table 76 Results for Chi-square test on the abusive conversation dataset (familiarity level of hate speech or 

abusive conversation and probability distribution preference) 

  Distribution 2 Distribution 1 No discernible difference 
Row 

total 

Day 
Observed count 23 25 2 50 

Expected count 26.9 21.1 1.9 50.0 

Month 
Observed count 49 60 1 110 

Expected count 59.3 46.4 4.3 110.0 

Year 
Observed count 96 46 8 150 

Expected count 80.8 63.4 5.8 150.0 

Never 
Observed count 26 21 3 50 

Expected count 26.9 21.2 1.9 50.0 

Column 

total 

Observed count 194 152 14 360 

Expected count 194.0 152.0 14.0 360.0 

Chi-square 18.5464 df 6 p-value 0.0050 

 

Table 77 Results for Chi-square test on the abusive conversation dataset (ethnicity and probability distribution 

preference) 

  Distribution 2 Distribution 1 No discernible difference 
Row 

total 

Asian 
Observed count 58 38 4 130 

Expected count 71.1 53.9 4.9 130.0 

White 
Observed count 78 59 3 210 

Expected count 114.9 87.1 8.0 210.0 

Column 

total 

Observed count 186 141 13 340 

Expected count 186.0 141.0 13.0 340.0 

Chi-square 0.9913 df 2 p-value 0.6092 
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Table 78 and Table 79 show the specific details of classifications from sub-models within the 

ensemble system and instruction tuning. In these two tables, the figures are marked as bold if they 

represent the primary class where samples from another class are wrongly classified by the model. 

Table 78 The identifications of “Mildly abusive”, “Strongly abusive” and “Very strongly abusive” from sub-

models within instruction tuning (bold: the top frequent class where one class is wrongly classified) 

 
#Predict 

#True 
Ambiguous 

Mildly 

abusive 

Not 

abusive 

Strongly

 abusive 

Very strongly 

abusive 

Sub-model 

1 

Mildly abusive 0 12 1 3 0 

Strongly abusive 0 5 1 10 0 

Very strongly 

abusive 
0 0 1 4 0 

Sub-model 

2 

Mildly abusive 1 9 7 3 0 

Strongly abusive 0 12 3 14 1 

Very strongly 

abusive 
0 1 0 2 0 

Sub-model 

3 

Mildly abusive 0 2 3 12 0 

Strongly abusive 0 4 1 15 0 

Very strongly 

abusive 
0 0 0 1 0 

Sub-model 

4 

Mildly abusive 0 12 2 3 4 

Strongly abusive 0 6 1 17 1 

Very strongly 

abusive 
0 7 0 4 1 

Sub-model 

5 

Mildly abusive 2 21 12 9 0 

Strongly abusive 0 3 0 25 1 

Very strongly 

abusive 
0 0 0 12 9 

Sub-model 

6 

Mildly abusive 1 2 6 12 0 

Strongly abusive 0 2 2 21 5 

Very strongly 

abusive 
0 0 0 2 1 

Sub-model 

7 

Mildly abusive 0 0 6 3 0 

Strongly abusive 0 3 4 7 0 

Very strongly 

abusive 
0 1 1 2 0 

Sub-model 

8 

Mildly abusive 2 3 5 7 0 

Strongly abusive 2 5 3 17 2 

Very strongly 

abusive 
0 0 1 5 0 
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Table 79 The identifications of “Mildly abusive”, “Strongly abusive” and “Very strongly abusive” from sub-

models within ensemble system (bold: the top frequent class where one class is wrongly classified) 

 
#Predict 

#True 
Ambiguous 

Mildly 

abusive 

Not 

abusive 

Strongly

 abusive 

Very strongly 

abusive 

Sub-model 

1 

Mildly abusive 0 5 8 3 0 

Strongly abusive 0 2 1 12 1 

Very strongly 

abusive 
0 0 1 4 0 

Sub-model 

2 

Mildly abusive 5 5 8 2 0 

Strongly abusive 5 5 5 15 0 

Very strongly 

abusive 
0 1 2 0 0 

Sub-model 

3 

Mildly abusive 1 7 5 4 0 

Strongly abusive 1 8 2 9 0 

Very strongly 

abusive 
0 0 0 1 0 

Sub-model 

4 

Mildly abusive 1 5 10 4 1 

Strongly abusive 0 2 6 17 0 

Very strongly 

abusive 
0 3 5 3 1 

Sub-model 

5 

Mildly abusive 4 23 14 1 2 

Strongly abusive 4 5 2 17 1 

Very strongly 

abusive 
0 2 0 6 13 

Sub-model 

6 

Mildly abusive 2 7 10 2 0 

Strongly abusive 0 4 2 18 6 

Very strongly 

abusive 
0 1 0 2 0 

Sub-model 

7 

Mildly abusive 2 0 6 1 0 

Strongly abusive 2 0 4 8 0 

Very strongly 

abusive 
1 0 2 1 0 

Sub-model 

8 

Mildly abusive 3 2 6 4 2 

Strongly abusive 3 2 6 18 0 

Very strongly 

abusive 
0 2 2 3 1 
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