
DesigningDesigning a System to Aid in
Conversational Requirement Elicitation Practices
Integrating REConSum and Trace2Conv into a system that can be used and experienced in practice.Integrating REConSum and Trace2Conv into a system that can be used and experienced in practice.
Master Thesis Industrial Design Engineering
Jeroen van kekem
24-05-2024
DPM 2101

INFORMATION PREFACE

Master Thesis - Undustrial Design Engineering
University of Twente - Fizor.
May 2024
Jeroen van Kekem - s1543628

Faculty: Favulty Engineering Technology
Department: Design, Production and Management
Master Programme: Industrial Design Engineering
Track: Management of Product Development

University of Twente
Drienerlolaan 5
7500 AE Enschede

Fizor.
Herculesplein 2
3584 AA Utrecht
Netherlands

Number of Pages: ...
Number of Appendices: ...

Conversational RE is an important part of the
requirement engineering tasks performed
within the project life cycle of an agile software
development team. Efforts to automate of
Requirement Engineering processes using Natural
Language Processing can be widely found in
literaturre and Fizor, the client also has produced
two functionalities/systems/tools that make use
of NLP with the aim to improve processes within
the Requirement Engineering workflow, specifically
automatically processing conversations to enable
different functionalities for users. These are called
REConSum and Trace2Conv.

The initial problem statement has been translated
to a desired system consisting of multiple system
layers that build on elicitation interviews used to
elicit requirements and ends in a use case to use
this (processed) data. A knowledge base has been
created with a base in literature and the input of
8 Buiness Analysts that provided valuable insights
in annekdotes, general workflow, and challenges.
The initial system has been analysed and with this
initial system a system prototype has been realized
that integrates the subsystems of REConSum
to aids Business Analysts in Conversational
Requirement Elicitation activities.

This thesis has produced a prototype that has the
potential to be useful for Business Analysts in the
activity of processing captured elicitation data into
structured requirements. While it may not always
be of use, in longer real-life conversations the
ability to filter conversations to search for specific
conversation data has the potential to be valuable
for a Business Analyst (Spijkman et al., 2023).

The main functionality on system level that has

This thesis journey has been a challenging yet
rewarding experience, particularly navigating
the substantial gap between industrial design
engineering and IT. While there is overlap in design
and production methodology between the two
areas of discipline, there were also encountered
multiple differences where there are similarities
and differences in the language used, different
principles, and different visions regarding how
products are designed, and requirements are
formulated. I learned a lot during my thesis that
will prove useful in my future career.

This thesis journey has been marked by the
exploration of an interdisciplinary realm where
I grappled with the intricacies of harmonizing
the methodologies of software design with
the foundational principles of industrial design
engineering. In this journey, looking to the design
problem as a system allowed me to understand the
initial systems on a functional level and allowed me
to start designing at a point where the underlying
mechanics were not yet fully understood and the
skills necessary to realize any functionality with
them were learned.

I want to extend my sincere gratitude
to Tjerk Spijkman (company supervisor) and Roy
Damgrave (UT supervisor) for their continuous
support throughout my thesis. My meetings with
them allowed me to get a better understanding
of things, gave me new useful insights, and
allowed me to continue when I was stuck for a
moment. Both have made a lot of time when I
needed something, which I appreciated a lot.
I want to thank Tjerk especially for sharing his
expertise regarding the research topic and related
business practices what allowed me a lot in the

been tried to realize is to capture all conversation
data generated during the elicitation interview
(so no conversation data is lost) and allowing a
Business Analyst to locate requirement relevant
information in this conversation dataset using
filters. The prototype that has been realized is
a system that consists of multiple subsystems
labeled ‘MS Teams, NLP, GUI, and Marker’, each
with their own behaviour and components, that
together achieve the main functionality of the
system.

The components of REConSum have been
used as start of the system design and have
been integrated into one system prototype
that can be used through a GUI. This removed
the need for installing python and the desired
packages, writing code that runs the algorithms
of REConSum, and manually downloading and
installing of StanfordCoreNLP (a system necessary
for functioning, requiring the downloading and
installing of java) and running it manually. This
solution was necessary as the knowledge and time
needed to run REConSum would ask to much of
any user. A solution has been provided for users to
interact with the outputs that are being generated
by the system through the design of the system
GUI, storing the system outputs in excel files, and
realizing the systematically accessing and storing
of information.To create a seamless transition
between the MS Teams Conversation Artefact
output and the expected input an import function
has been integrated that performs all necessary
steps to format, process and view the conversation
in the background. This in total takes 5-10 minutes
in total from start to end, and takes 15 minutes of
processing time after which the conversation can
be directly used by the Business Analyst.

design process. Furthermore, his contribution to
testing and evaluating design ideas helped a lot
in the development of the realized system. I want
to thank Roy especially for his expertise in the
Industrial Design process and helping me through
obstacles in the design process. I really enjoyed the
interesting discussions we had each meeting about
different findings or design ideas and helped me
to get new and interesting insights.

My journey at Fizor was nothing but great. The
time at the company made me feel as I was part
of the team, I got the opportunity to participate
in the many learning opportunities like workshops
and got the space to really get to know the people
working there and the company culture. I really
appreciate the continued support and resources
that were made available to me. It is a great
company with a company culture that resonates a
lot with me, and I look very much forward to start
working there now my thesis has been concluded.
As I conclude this chapter of my academic journey,
I eagerly anticipate the prospect of transitioning
into a professional role at Fizor. I am enthusiastic
about contributing to its ongoing success.

Within the scope of this thesis only the systems
functionality could be realized and validated.
The system will most definetley need to
see improvements to fit more specific user
requirements for example. With how the system is
designed future research questions can be tailored
to test the effectiveness, efficiency, and user
friendlyness in regards to capturing, processing,
and using requirement relevant information from
conversation.

Within the scope of this thesis conversation
artefact with enough accuracy could be realized.
Furthermore, in face to face conversations,
speakerturns are formulated as required because
of how MS Teams functions. Solutions with
high chance to solving these problems have
been provided in a implementation plan that
provides guidelines for further research and
development and how to implement the prototype
within the workflow of Fizor as a first step. This
implementation provides initial requirements
of implementing and validating the method to
accurately capture requirement artefacts. It also
provides for each part of the system suggestions
for further research and development.

This prototype is not a finished product but
should be considered as a tool designed for Fizor
to get useful feedback from users to be used in
further research and development while minimally
disrupting the current workflow of Business
Analysts.

3

Designing a System to Aid in
Conversational Requirement
Elicitation Practices

Education

Educational institution

Company

Report

SUMMARY

GLOSSARY ABBRIVIATIONS
Algorithm:
An algorithm is a defined set of instructions or rules that, when followed, allows a computer to solve a
specific problem or perform a particular task efficiently.
Business Analyst:
A Business Analyst is a professional who analyzes organizational processes, identifies needs and
requirements, and recommends solutions to help businesses improve efficiency, productivity, and
profitability.
Conversational Requirement Elicitation:
Conversational Requirement Elicitation is the process of gathering and understanding the needs,
preferences, and expectations of stakeholders through dialogue and interaction, to inform the design
and development of conversational systems or interfaces.
Conversation Artefact:
A Conversation Artefact refers to any tangible or recorded element produced during a conversation,
such as transcripts, recordings, or annotations, which can be analyzed or referenced for insights into the
communication dynamics, content, or outcomes of the interaction.
Natural Language:
Natural language refers to the way humans communicate with each other using spoken or written words,
expressions, and symbols that have evolved naturally within a community or culture, as opposed to
formalized or artificial languages.
REConSum:
A NLP prototype tool that can assist practitioners and researchers in processing elicitation conversations
by summarizing the transcriptions and extracting requirements-relevant information
Requirement Artefact:
A documented or tangible representation of a requirement, which could include specifications, user
stories, use cases, diagrams, or any other artifact used to capture, communicate, or manage requirements
during the software development lifecycle.
Speakerturn:
A Speakerturn is a term used in conversational analysis to denote a segment of speech or dialogue
produced by a single speaker within a conversation
Trace2Conv:
An initial effort to establish backward traceability from requirements to relevant transcript segments in
requirement conversations.

BA (Business Analyst)
CA (Conversation Artefact)
GUI (Graphical User Interface)
MLP (Manual Language Processing)
MS Teams (Microsoft Teams)
NLP (Natural Language Processing)

5

0. TABLE OF CONTENTS
Information
Preface
Summary
Glossary
Abbriviations

0. Table of contents

1. Introduction
 1.1) Conversational RE
 1.2) Requirement Engineering Workflow
 1.3) Fizor

2. Design method and Approach

3. Problem analysis
 3.1) System analysis | REConSum and Trace2Conv
 3.2) How to generate Conversation Artefacts
 3.3) System conceptualization
 3.4) What can be realized within the scope of this thesis
 3.5) Defining main user, implementation environment, and design problem.
 3.6) Use case definition
 3.7) Defining use requirements
 3.8) Defining functional requirements
 3.9) Design Brief

4. Realized system
 4.1) Use Flow
 4.2) NLP & Database storage
 4.3) Conversation Artefact Generation
 4.4) Marker functionality
 4.5) Potential of advanced notetaking interaction

5. Validating the realized system
 5.1) Can the system be used as-is?
 5.2) Does the design aid in the capture of and searching for specific conversation data?

6. Implementation roadmap

 6.1 Implementation step 1: Standardizing Layers One and Two (Capturing & Storing)
 6.2 Implementation step 2: Utilizing Processed Conversation Data
 6.3 Implementation step 3: Use Evaluation
 6.4 Implementation step 4: Research and development

7. Conclusion & Evaluation

8. References

9. Appendix 0: Realized system development manual
9. Appendix 1-16 (see separate file)

7

78.
79.
79.
79.

84.

90.

92.

2.
2.
3.
4.
4.

6.

8.
8.
8.

14.

18.

22.
22.
26.
26.
27.
27.
30.
38.
39.
40.

44.
46.
47.
56.
57.
60.

66.
66.
69.

78.

9

1. INTRODUCTION
This thesis delves into a system prototype
developed in response to the goals and needs
articulated by Fizor, a company central to this
study. This chapter will begin by introducing the
concept of Conversational Requirement Elicitation
(Conversational RE), which forms the core focus of
this thesis.

To understand the system design and its potential
value to Fizor and its key user(s), Conversational
RE’s position within the requirement engineering
process will be introduced as well as the value of
Conversational RE itself as activity. The key user
group ‘Business Analysts’, that perform this activity,
will be discussed. As well as the best practices
related to Conversational RE, challenges related
to conversational RE, and requirements related to
Conversational RE.

Additionally, this thesis outlines the primary
stakeholder groups involved in Conversational
RE and identifies the key user of the system
design. Moreover, an introduction to Fizor will
be provided, elaborating on their relationship to
and interest in Conversational RE, as well as their
objectives and aspirations, for which a design
process has been implemented to craft a suitable
solution. This thesis concludes the graduation
program of the study in Industrial Design
Engineering at the University of Twente where one
or multiple potential solutions are designed in
order to solve a specific industry problem.

1.1) Conversational RE
Conversational RE is an important part of the
requirement engineering tasks performed
within the project life cycle of an agile software
development team. Agile software development,
characterized by its iterative approach and rapid
development cycles known as sprints, emphasizes
efficiency and adaptability. Through phases
encompassing planning, design, development,
testing, deployment, and review, agile teams
rapidly iterate on system components within short
time frames typically spanning between a couple
of week to a few months (Al-Saqqa et al., 2020).
In the project life cycle Requirement Elicitation
(RE) concerns the activities of seeking, uncovering,
acquiring, and elaborating requirements (Spijkman
et al., 2023). RE stands as a cornerstone, pivotal
for effectively capturing and communicating client
needs early in the development process. This early
comprehension, coupled with the elicitation of
evolving requirements, serves as a critical strategy
for mitigating the substantial costs associated
with error correction later in system development
(A. Davis et al., 2006). Recognized as an integral
part of every development cycle, RE involves an
interactive process between analysts and clients
aimed at identifying and capturing the essential
requirements of a system or product to be
developed (Bano et al., 2019; Davey & Cope, 2009;
C. J. Davis et al., 2006; Ferrari et al., 2016; Sutcliffe
& Sawyer, 2013). This process typically unfolds
in the early stages of developing information
(Davey & Cope, 2008; C. J. Davis et al., 2006) and
is universally regarded as one of the most pivotal
steps in system development (Davey & Cope,
2008). In Conversational RE conversations are used
as the method to elicit requirements from clients

and stakeholders. This is one method among
others available like observations, unstructured
interviews, structured interviews, protocol analysis,
and others(Davey & Cope, 2008). Among these
methods conversations (or semi structured
interviews) stands out as a widely used and
highly effective approach, particularly through
semi-structured interviews, renowned for their
knowledge transfer efficacy (Bano et al., 2019;
Davey & Cope, 2008).
 
1.2) Requirement Engineering
Workflow
While RE is an integral part of any development
cycle only the agile software development cycle
will be considered as the scope of this thesis. To
better illustrates its role within the agile software
development, cycle the requirement engineering
tasks, of which RE is one, will first be covered.
Within the agile software development team the
Business Analyst is responsible for requirement
engineering tasks that take place during the
project lifecycle. These activities can be grouped
into multiple requirement engineering phases.
These phases can be defined as ‘needs assessment,
Requirement management planning, Requirement
elicitation, Requirement analysis, Requirement
monitoring and controlling, Solution evaluation,
and project closure’. Each phase will be covered
briefly while elaborating more on (Conversational)
Requirement Elicitation and requirement analysis
as they are the focus of this thesis.

Needs assessment is conducted prior to the
project life cycle, aiming to analyze requirements
and identify business problems or opportunities.
The findings form the foundation for subsequent

requirements processes.

Planning requirements management occurs within
the Planning Process Group, providing guidance
for developing and managing requirements
throughout the project lifecycle. It involves
crafting, assessing, and revising plans to align with
various lifecycle phases.

Elicitation is a discovery process that extracts
insights from stakeholders and various sources to
understand business problems or opportunities.
It operates iteratively throughout the project
lifecycle, contributing to the definition of product
backlog and its refinement.
Analysis involves scrutinizing a
nd integrating information to derive
comprehensive requirements. It follows a
progressive and iterative approach, persisting until
the necessary level of requirements is attained.
Both elicitation and analysis are ongoing in an
adaptive life cycle.

Requirements monitoring and controlling oversee
the status of requirements and manage the
requirements baseline throughout the project’s life
cycle. It ensures proper approval and management
of changes to requirements, distinguishing it from
project management processes.

Solution evaluation validates a solution’s
effectiveness in meeting stakeholder needs and
delivering value. It may identify new requirements
for solution refinement. Different organizations
may use various terms and methods for these
processes, but the goal remains consistent across
projects.
 

Conversational RE, best practices
Bano et al. (2019) presents a novel pedagogical
approach for training student analysts in the art
of elicitation interviews. 7 high level category
mistakes are presented, “…namely question
formulation, question omission, interview order,
communication skills, analyst behaviour, customer
interaction, teamwork and planning” (Bano et al.,
2019) . Throughout the paper, best practices of
performing elicitation interviews are described.

For a well-planned interview, take time as analyst
to prepare in advance by writing down clear and
unambiguous questions. The analyst needs to
familiarize themself with the problem domain for
an effective elicitation interview It is necessary for
the analysts to form a questioning strategy and
include prompts based on the context of their
interview. This can help in eliciting requirements,
as well as overcoming the challenge of client-
analyst interaction. A good questioning strategy
consists of a start, in which the analyst builds
rapport with the customer. A mid-section in which
he understands the existing business process and
the problems faced by the client in current process
in order to reason on the need for a new system.
Towards the end of the interview, the analyst
needs to summarize the findings to the customer
to confirm the understanding. Summarizing the
findings of the interview is a best practice for
overcoming the misinterpretations during the
interview and overcoming any cognitive limitations
during customer and analyst communication.
Effort must be done by the analyst to remove
the semantic gap and push the customer to the
boundaries of their tacit knowledge. The use
of common vocabulary during interview is also
very important, and the analysts should plan and

prepare so that they will not use the words that
might confuse the customer. It is typically the
responsibility of the analyst to create a friendly
environment that can stimulate the communication
with the customer.

Conversational RE and Requirement
Analysis |
Stakeholders
There are three stakeholder groups to consider
in regards to Conversational RE being Business
Analysts, Client(s)/Stakeholder(s), and the
Development team. The Requirement Artefact
is the main item of interest for both the
development team and the client as it dictates
what will be delivered in the end of the project
lifecycle. Both the client and development team
prioritize accuracy, completeness, and clarity in
documented requirements to ensure the final
product aligns with client needs and minimize
miscommunications that could lead to unforeseen
costs (C. J. Davis et al., 2006).

Elicitation interview
BAs will need to use the system during Elicitation
Interviews to enable its intended functionality.
Understanding this process is crucial. In the
PACT Analysis (results visualised in figure 19),
various location settings where the elicitation
conversations occur are identified. These locations
can range from within the company premises to
external locations, such as client sites.

At each elicitation there is at least 1 business
analyst and 1 client present. However the amount
of analysts varies between 1 and 2, and the amount
of client(s) or stakeholder(s) can vary between 1

11

1. INTRODUCTION

Figure 1: The initial systems positioned in the flow of information from the client to the development team.

and up to 10. The amount of analysts determines
the amount of tasks that need to be performed
simultaneously, if 2 analysts are present one will be
working on maintaining the conversation while the
other is tasked with documenting the requirement
relevant information. If an analyst is on their own
all these tasks need to be performed by the single
analyst.

During elicitation interviews, BAs rely on prompted
questions to extract requirement-relevant
information from clients or stakeholders. This is
essential as clients/stakeholders possess unique
domain knowledge and may struggle to express
requirements effectively (C. J. Davis et al., 2006).
Additionally, ambiguities in client communications
can lead to misunderstandings regarding specific
requirements (Ferrari et al., 2016), necessitating
continuous clarification by the BA.

During elicitation interviews, BAs typically have
multiple systems at hand to aid conversations
and capture data. Laptops serve various
purposes, including visualization support
(e.g., presenting PowerPoint slides or relevant
charts) and note-taking using text processors or
recording capabilities. Other tools aiding data
capture include portable conference speakers,
improving recording quality, and traditional
tools like notebooks and writing utensils. Online
conversations often require laptops with audio
and video recording hardware. Currently, several
systems on the market integrate seamlessly with
tools already used during elicitation conversations,
enhancing their functionalities. These systems
include drawing tablets and smart pens that merge
writing/documentation with digital notetaking,
enabling various computer-based interactions

like copy-paste and moving notes. Additionally,
conference speakers facilitate integration with
conference software, enhancing conversation
management with features like microphone
controls (figure 2).

Elicitation settings typically fall into two
categories: face-to-face conversations and online
conversations. During elicitation interviews, BAs are
tasked with multiple simultaneous activities that
require consistent or improved performance.
Conducting elicitation interviews requires BAs
to juggle multiple mental tasks simultaneously.
They must maintain conversational flow, actively
listen to participants, and provide appropriate
responses (Bano et al., 2019). Concurrently, they’re
constructing a mental framework of domain goals,
rules, and application views to interpret client
information (Ferrari et al., 2016). conversations can
range from a few hours to multiple days, thereby
making it not only likely for the analyst to miss
out on certain information, but also cognitively
demanding as they would need to focus both
on the note-taking and on keeping a natural
flow(Spijkman et al., 2023).

Capturing requirement relevant information
for analysis
Upon concluding a conversation, BAs must
distill the relevant information into structured
requirements, which are then compiled into a
Requirement Artefact. This artefact serves as the
foundation for project requirements and evolves
over time (Eger et al., 2012). While there are
various requirement formats, there’s a focus on
User Stories, a widely used format in the software
industry and agile practices (Lucassen et al.,
2016). The User Story format typically follows:

“As a <role>, I want <goal>, [so that <benefit>]”
(Lucassen et al., 2016).

Notetaking
Presently, the predominant method involves
memorization and note-taking, with tools like
Word and Excel being popular for documenting
requirements. Note taking serves several functions
for the note taker. While one primary function is to
reproduce information, it is not the sole purpose. If
reproduction were the only function, more efficient
methods, such as recording conversations, would
suffice(Carrier & Titus, 1979). Note taking also
functions as an external memory device, storing
data for later retrieval and study, as described
in literature (Berrezueta, 2023). Another crucial
function is that note takers encode data by
reorganizing it, making it their own (Berrezueta,
2023). This function is considered even more
important than mere reproduction (Berrezueta,
2023).

Taking notes from both oral and written verbal
presentations is widely accepted as a useful
strategy for enhancing information retention
(Carrier & Titus, 1979). When individuals actively
engage in material they are trying to learn, such
as by taking notes, their memory improves,
particularly at deeper levels of comprehension,
such as the situation model level. Research
supports that note taking can enhance
performance and that reviewing notes of any type
increases recall compared to not reviewing notes
(Carrier & Titus, 1979). Therefore, note-taking
emerges as a potent cognitive tool, facilitating
both encoding and retrieval processes to promote
effective learning and memory retention.

13

Figure 3: Use/positions of hands during a Elicitation conversation to take notes.

Figure 4: The aim is that a product is within reach during notetaking (~30 cm). One free hand is available for the use of a product (when writing) or a product can be placed closeby.

FIGURE 2: MARKET ANALYSIS OF SYSTEMS THAT INTEGRATE
FUNCTIONALITY IN SYSTEMS USED DURING CONVERSATION.

PAPER TABLETS, SMART PENS, DRAWING TABLETS
Linking the physical act of writing to the digital domain.

CONFERENCE SPEAKERS
Integrating microphone, speaker and
conversation management functionalities
in portable format.

1. INTRODUCTION

15

1. INTRODUCTION

Figure 5: Conceptualization of the desired future system.

Memorization
Amidst these mental activities, BAs must also
capture requirement-relevant information for
later processing. Notetaking serves this purpose,
but the constraints of multitasking limit the
depth and context captured in notes. Human
memory supplements notes but isn’t sufficient for
comprehensive data retention (PACT analysis).
Humans possess two types of memory: working
memory (or short-term memory) and long-
term memory. During a conversation, relevant
information resides in working memory, essential
for immediate processing. However, once
the conversation concludes, this information
transitions to long-term memory over time, as
working memory has limited capacity. Retrieving
this information later for processing into
requirements poses challenges, as human brains
aren’t inherently optimized for recalling facts
(Johnson, 2021). The coordination required for
memory recall increases the likelihood of errors
or incomplete recall, potentially leading to loss
or misremembering of relevant information
(Johnson, 2021). Factors such as the duration of
the conversation, the number of participants, and
the frequency of conversations can further impact
the ability to recall specific details. For instance,
longer conversations or those with multiple
participants increase mental load and complexity,
reducing the ability to memorize all relevant
information. Additionally, if multiple conversations
occur in quick succession, there may be overlap
in memories when recalling specific information.
Time pressure to process conversations into
requirements can also impair processing ability.
Given the imperative for complete and accurate
requirements, these challenges underscore the
value of tools to aid in conversation processing

for BAs, the use case that has been argued in this
thesis.

Recording
Sometimes a recording device is used to record
the meeting to rewatch later. The big difference
between online and face to face conversations
is that in online conversations all participants
use a laptop with a microphone and camera
to communicate with each other in an online
meeting room. For online conversations a record
functionality is available allowing to record the
conversation to rewatch later. This is a low effort
interaction (one click) that is already widely used in
online meetings. The recordings of requirements
conversations contain valuable information that
can easily be lost in the overall picture of the
elicitation (Spijkman et al., 2023) but manually
listening back to a conversation of multiple
hours or days takes a lot of time and requires
also listening to a large conversation dataset of
irrelevant information. Such investment of time is
not available to everyone and inefficient.

Challenges and Opportunities
Efforts to automate of Requirement Engineering
processes using Natural Language Processing can
be widely found in literature of which Meth et
al. (2013) provides an extensive overview of the
state of the art in the automation of Requirement
Engineering processes. 4 types of tool categories
are defined called Abstraction Identification,
Requirements Model Generation, Requirement
Quality Analysis, and Requirement Identification
(Meth et al., 2013). Fizor also has produced two
functionalities/systems/tools that make use of
NLP with the aim to improve processes within the
Requirement Engineering workflow, specifically

automatically processing conversations to enable
different functionalities for users (figure 1).
 
1.3) Fizor
History of Fizor.
Fizor part of the Forza IT group. Forza IT group,
established in 2007, finds its origin in the company
Forza Consulting as it has been split off from
the company. Forza Consulting is in origin a
software house that handles everything from
management to execution(Maurice Hoog, 2021).
Forza Consulting stands as a prominent provider
of Oracle NetSuite solutions, specializing in
delivering comprehensive ERP and CRM services
to businesses spanning diverse industries. With
a commitment to excellence and supported by
a team of seasoned experts, Forza Consulting
empowers organizations to streamline operations,
enhance efficiency, and drive growth through
innovative technology solutions.
Over time, specializations have emerged within the
Forza IT group, each deserving its own showcase
to better reach their specific target audience.
For example, Scanman has been established to
provide automation solutions worldwide, and Fizor,
established in 2019, is a new branch for business
application consultancy within the low-code-now-
code IT landscape (Maurice Hoog, 2021).

Fizor, the independent Low Code
specialist of the Netherlands
Fizor stands as a pioneering consultancy firm
specializing in the delivery of cutting-edge
low-code solutions tailored to clients’ unique
requirements. Collaborating with state-of-the-
art platforms, Fizor crafts bespoke software

17

1. INTRODUCTION
applications that precisely address client needs.
Operating within the low-code subdomain, a field
coined by Forrester in 2014, Fizor benefits from
its affiliation with the Forza IT group, established
in 2007, to amass extensive experience and
expertise in the low-code market. Since its formal
establishment in 2019, Fizor has strategically
leveraged this accumulated knowledge to establish
a prominent foothold in the low-code market.
Fizor has branched in logistics, wholesale, and the
manufacturing industry. With in-depth knowledge
of low code platforms like Thinkwise, Novulo, Betty
Blocks, WEM, and USoft fizor guides clients in
choosing the most suitable path.

Low Code Development Platforms (LCDPs)
represent a transformative toolset allowing
both programmers and non-programmers to
swiftly develop and deploy business applications
with minimal reliance on coding, environment
setup, and training efforts (Waszkowski, 2019).
By employing a graphical user interface, LCDPs
streamline the development process, offering an
accessible pathway to application creation. With
a burgeoning adoption rate among companies,
the utilization of low-code solutions heralds a
significant advancement in the realm of essential
business application development (Waszkowski,
2019).

Fizor, based in Utrecht, Netherlands, is a small
company with approximately 30 employees.
Their specialty lies in agile development,
delivering custom solutions tailored to clients’
needs. Positioned as the leading independent
low-code specialist in the Netherlands, Fizor
aids in modernizing application landscapes and
bringing client projects to fruition. Their approach

involves deep dives into processes that require
enhancement, aligning with clients’ IT strategies.
Evaluation of low-code solutions is carried out
with a commitment to honesty and prioritization
of client interests. Fizor excels in crafting and
implementing ingenious solutions, covering a
broad spectrum of applications customized to
meet client requirements. Their dedication to
transparency ensures adherence to both time and
budget constraints. What sets Fizor apart is their
versatility in selecting the most suitable solutions
for each client, collaborating with esteemed
partners like Forrester and Gartner to harness
proven technologies for digital innovation. With
Fizor’s low-code systems, clients benefit from fully
optimized solutions tailored to their objectives and
processes, boasting development speeds up to 10
times faster than traditional high-code methods. 

Fizor’s interests in Conversational
RE
Fizor has strong ties to the University of Utrecht
(UU) through the research of T. Spijkman’s Ph.D.
research on Conversational RE. Through this
collaboration two systems have been realized
called REConSum (Spijkman et al., 2023) and
Trace2Conv (Spijkman et al., 2022).

REConSum (Requirements Elicitation Conversations
Summarizer), described as “a NLP prototype
tool that can assist practitioners and researchers
in processing elicitation conversations by
summarizing the transcriptions and extracting
requirements-relevant information” (Spijkman
et al., 2023), streamlines information processing
by detecting relevant questions in interview
transcripts.

Trace2Conv represents an initial effort to establish
backward traceability from requirements to
relevant transcript segments in requirement
conversations (Spijkman et al., 2022), This is
achieved through matching requirements
to speakerturns based on tokenization and
lemmatization techniques.

Fizor has indicated the future goal of
implementing the functionalities of REConSum
and Trace2Conv in practice as part of a larger
system. Figure 5 presents a clear overview of the
aim of the client regarding the future. The future
system automatically captures conversations and
processes them using the functionalities of, at
least initially, the functionalities of REConSum
and Trace2Conv, and stores these processed
conversations in a shared conversation database,
where the data of the conversations can be used
to enable different system functionalities and to
aid in different activities through the agile software
development process.
To achieve this goal Fizor wants to know how
these functionalities can be used to aid in industry
practices. The ask is to explore Conversational
RE practices in industry and through prototyping
gather user data that can be used in further
research and development. The next chapter will
cover the design method and approach that has
been used to present a design solution to the
proposed problem or question. Requirement Relevant Information

Conversations

Capturing Conversation Data

NLP Processing

System Functionalities

Use In Practice

Storing Conversation Data

DESIRED SYSTEM

Figure 6: The foundations of the desired system.

19

2. DESIGN APPROACH & METHOD
Gathering use data would require the realization
of some sort of prototype for a user to interact
with, so it can provide feedback on the interaction.
Because prototyping plays a central role the
design phases mentioned in Leary & West (2023)
have been considered in which system prototypes
would be designed on paper, wireframe, and
functional prototype level and evaluated with
users to determine the best ideas (figure 8). Three
metrics are important in the evaluation of the
usability of a product or system. These metrics are
effectiveness, how well the task has performed with
and without using the system (defining measurable
performance factors), on efficiency, how much
time takes it to perform with and without using
the system (measuring time), and how well the
system performs in regards to user friendliness,
allowing users to provide feedback on how they
experienced using the system and if they liked it or
not.

Preliminary research presented some knowledge
gaps from the field of IT that needed to be filled
in to make the design of a solution possible. The
main knowledge gaps were domain specific terms
that made some papers hard to understand and
the other were the systems in which REConSum
and Trace2Conv were developed and the code of
which the systems consisted. To bridge the gap
between Industrial Design Engineering knowledge
and IT, the system to be designed and the initial
systems of REConSum have been approached
and conceptualized as systems, allowing system
engineering principles to be applied and allowing
to create an understanding of the initial situation
and to ideate with them without understanding the
underlying code. Multiple client conversations and
whiteboard sessions where used to get clarification

on domain language and parts of REConSum
and Trace2Conv in the early phases of the design
process.
The design approach for this thesis was structured
around the waterfall model, with distinct phases
including problem analysis, development/design,
validation, and evaluation. While this framework
guided the process, design activities did not
necessarily follow a strictly sequential fashion.
There were two approaches considered in this
thesis, both revolving around getting user data
from use in practice, to provide a design solution
to the proposed problem. Both approaches
originated from the problem analysis where a
knowledge base needed to be formed. To structure
the analysis the “cubic design approach” by
Mohammad Rajabali Nejad (2020) was used. This
involved a systematic methodology for analyzing
and designing systems, grounded in fundamental
system engineering principles and entailed
analyzing the system, relevant stakeholders,
and the environment to elucidate their intricate
interactions (figure 9).
In the system analysis REConSum and Trace2Conv
need to be first analysed on system level (what
is their functionality?). After that analysis on
subsystem level (what subsystems make up
the system and what is needed to achieve the
system functionality, so what outside systems
and interactions are needed to achieve this). To
design with the algorithms already developed to
create a functional prototype also the supersystem
(the overarching system that runs the systems
of REConSum and Trace2Conv) needed to be
analysed and the component level (the code that
makes up the algorithms).
For the human or stakeholder analysis and the
interaction with the systems a understanding of

Conversational RE, the stakeholders to consider,
best practices in Conversational RE, the context
in which Conversational RE is performed and the
technologies and products that are used within its
context. Also, challenges related to Conversational
RE needed to be identified. Information from
Conversational RE in industry practice was needed
in order to search for abovementioned topics and
to search for systematic problems in relation to
Conversational RE that could be solved with the
introduction of a system design that processes
elicitation conversations. A main user for the
system has been identified, the Business Analyst as
he has the closest ties to Conversational RE as he
is the one planning, performing, and processing
the elicitation interview. Other stakeholders with
interests in processed conversation data can also
have interest in the system that will be designed
but are out of the scope of this thesis. Figure 7
presents the knowledge base that could be formed
within the timeframe of this thesis.
The environment analysis entailed all the
environmental elements like the contexts,
other products and systems used in relation
to the system design or Conversational RE, or
other environmental factors that needed to be
considered in the system design. Most of this
information has been gathered through the
interviews with Business Analysts.

In the creation of the knowledge base as part of
the first approach users within the scope of this
thesis were interviewed in the hope to uncover a
common industry challenge that has relation to
conversational requirement elicitation or could
benefit from processed elicitation conversations.
However, while each Business Analysts was within
scope, the only thing that could be concluded in

this research was that there is a lot of variation
between projects, between, clients, and between
organizations. Challenges would present
themselves in occasion instead of structural
challenges that could try to be solved through
the introduction of multiple design solutions that
could then be validated through user testing.
The seconds approach revolved around
introducing a prototype into practice that
would include the functionalities of REConSum
and Trace2Conv. Fizor has the benefit that it
falls within the scope of this thesis and uses
Conversational RE themselves to elicit requirement
relevant information from clients. A opportunity
was identified to implement a prototype in the
workflow of Business Analysts to identify user
requirements through use in practice.
In the chapter problem analysis through the
analysis mentioned above requirements have
been formulated that the system design must
meet. The goal of this thesis is to create a system
prototype for Fizor that can be introduced in the
Conversational RE workflow without impeding
Business Analysts in their activities, tailored to a
specific use case, potentially providing value to
the organization itself, and providing Fizor with
the means to use the generated outputs and user
feedback in further research and development.
The chapter realized system will cover the system
that has been realized in the end, validated in
the chapter validation, and is accompanied with
a implementation plan (chapter implementation)
of how to implement the system within Fizor
(including pointers for further research and
development). A manual of how the prototype
has been constructed has been included in the
appendix for Fizor.

Figure 7: Sources of information to form an understanding of BA workflow and challenges.

21

2. DESIGN APPROACH & METHOD

Figure 9: Analysis format of the system and its related elements and interactions between these elements.Figure 8: Evaluation methods of user experience in different phases of the design process.

USER EXPERIENCE DESIGN AND EVALUATION METHODS (LEARY & WEST, 2023)

DATA SOURCEDESIGN PHASEMETHOD

Ethnography Single user or users

Group of users

Expert

Expert

Multiple users

Multiple users

Multiple users

Multiple users

Single, multiple or
group of of users

Front-end
Analysis

Prototyping
Paper Wireframe Functional

Focus groups

Card sorting

Cognitive
walktrough

Heuristic
evaluation

A/B testing

Think-aloud

EEG/
Eyetracking

Analystics

23

In the introduction of goals and needs of Fizor a
desired future system has been formulated. The
desired future system consists of foundational
layers (figure 6) that cannot function without the
layer beneath it. Before the analysis is discussed
let’s first define what is meant by each layer to give
directions to the requirements of such a system.
The scope of Conversational RE results in the first
two layers of Requirement Relevant Information
and conversations as they form the basis for this
type of elicitation. With capturing conversation
data is meant the recording of conversation
data and processing this into natural language
in a specific format (Conversation Artefact. This
Conversation Artefact needs to be stored in
conversation database so it can be used by the
next layer of NLP functionalities. Through different
functionalities the stored conversation is annotated
in multiple ways to enable different system
functionalities where a Graphical User Interface
needs to be present to allow users to interact with
the system. Finally use in practice entails a specific
user and use environment where the system can
be, and is used for one or multiple usecases. To
understand what is currently present a system
analysis has been performed to identify what has
been currently realized.

3.1) System analysis | REConSum
and Trace2Conv
An in-depth analysis of the initial functionalities of
REConSum and Trace2Conv has been conducted to
discern the various system components, functional
requirements, and technical specifications
necessary for their utilization. For a comprehensive
understanding of each system component within
these functionalities or sub-systems. Both systems

will be explained in depth in this chapter (and
all subsystem elements are also covered in the
appendix chapter 2) but to give a preliminary
overview of how the systems work: both systems
use Natural Language Processing (NLP) to process
conversations captured in natural language
(conversation artefacts) into data that can be used
to achieve different functionalities that can be
useful in practices related to Conversational RE.
Both systems convert conversation artefacts into a
matrix where speakerturns (rows of conversation
data) are annotated with different values so a
system can understand the contents of the text
stored within each speakerturns. REConSum
identifies relevant questions in a conversation
dataset in an effort to make it easier to detect
requirement relevant information. Trace2Conv
links a requirement artefact to corresponding
conversations allowing users to trace backwards to
speakerturns in a conversation that are linked to
the formulated requirements.
First and foremost, both subsystems require a
Conversation Artifact, abbreviated as CA, which is
essentially a file storing the conversation in natural
language. However, to enable the processing
of conversation data, this conversation artifact
needs to adhere to a specific formatting known as
“speakerturns.”

Speakerturns
A conversation can be documented using a set of
speakerturns, wherein each speakerturn groups
the spoken text transcribed in natural language
with the person speaking and the corresponding
time in the conversation. The expected format of
the speakerturns by the system is: “[time] speaker:
text” as can been seen in figure 10, an example of

a set of speakerturns. This set of speakerturns need
to be stored in a text file (.txt).

Natural language Processing
Both functionalities leverage Natural Language
Processing (NLP) capabilities. NLP can be
divided into two main parts: Natural Language
Understanding (NLU) and Natural Language
Generation (NLG), which respectively focus on
comprehending and generating text (Khurana et
al., 2023). REConSum and Trace2Conv fall under
the NLU category, where input text is analyzed
and annotated to make it understandable to
a system. Figure 11 illustrates various types of
annotations that can be associated with input text.
Automating the processing of input text to reduce
or categorize information can significantly benefit
the conversational requirement elicitation process,
given the large volume of conversation data that
needs manual processing. Multiple solutions have
been proposed in the literature to automate parts
of the elicitation process using NLP. For instance,
(Meth et al. (2013) categorize four tool categories:
Abstraction Identification, Requirements Model
Generation, Requirement Quality Analysis, and
Requirement Identification, providing valuable
insights into where and how to apply NLP to
automate parts of the Conversational RE process.
Stanford CoreNLP (figure 11) is an example of a
high-performance tool that identifies syntactic
and semantic information, as well as discourse
context (Hirschberg & Manning, 2015). REConSum
utilizes this tool to determine if a body of text
contains a question or not (Spijkman et al., 2023).
The tool offers a standard NLP preprocessing
pipeline, including Part-Of-Speech (POS) tagging
(e.g., noun, verb, preposition), identification of

named entities (e.g., people, places, organizations),
sentence parsing into grammatical structures,
and identification of co-references between noun
phrase mentions (Hirschberg & Manning, 2015).

Annotations
To read and process conversation data, the system
creates a matrix that stores each speakerturn on a
row, known as a DataFrame (refer to Figure 12 for
a visualization of such a DataFrame). At this stage,
the system can add multiple annotations to these
rows of data. Currently, three types of annotations
are added to the set of speakerturns: question,
relevant question, and token.

REConSum identifies whether a speakerturn
contains a question and further determines if
the question is relevant using Part-Of-Speech
(POS) tags and DialogTag (Spijkman et al.,
2023). REConSum determines if these questions
are relevant by assessing whether they contain
domain-specific terms; with the assumption that
the presence of those terms is an indicator of
relevance (Spijkman et al., 2023).

To make this functionality work the manually
installation of StanfordCoreNLP is required and the
installation and inclusion of the TF-Wiki Corpus (a
large dataset of natural language, see chapter 2
appendix) in the REConSum datafolder.

Meanwhile, Trace2Conv tokenizes each speakerturn
(figure 12 & 13), treating each word as a token,
categorizing them, and subsequently filtering and
lemmatizing them to retain only the most relevant
tokens.

Limitations of NLP
NLP serves as a means for systems to
comprehend human language. Despite significant
advancements, achieving a complete and accurate
understanding of human language remains
a challenge, and may always remain so. In an
ideal scenario, there would be a 100% accurate
conversion between NLP processing input and
processed output, resulting in perfect recall and
precision. Perfect recall refers to the proportion
of relevant items (all occurrences of information
that exactly matches search criteria of a user)
actually retrieved in response to a search query,
while precision denotes the proportion of retrieved
items relevant to the query, often used to measure
correctness (Meth et al., 2013).

NLP encounters difficulties with certain aspects of
human language that are inherently challenging
for systems to grasp. Examples include contextual
ambiguity, synonym handling, homonym
confusion, understanding sarcasm and irony,
ambiguity resolution, informal language and
cultural specificity, domain specificity, misspelled
or misused words, and predicting intention
(Khurana et al., 2023). Consequently, there is a
perpetual trade-off between recall and precision. In
automated elicitation processes, prioritizing recall
over precision is crucial, as errors of commission
are easier to rectify than errors of omission (Meth
et al., 2013).This implies that while systems can
streamline processing for users, humans will
always need to perform some level of processing,
which can be categorized into two phases: the
automation phase and the manual phase (Meth et
al., 2013).

System functionalities
Understanding the purposes for which REConSum
and Trace2Conv are utilized is essential since
their functionalities must be integrated into the
future system. REConSum serves to streamline the
handling of large conversation datasets by filtering
them based on the questions posed during the
conversations. In a semi-structured interview
scenario, displaying only the questions enables
rapid inspection of the corresponding answers
without the need to review the entire conversation.
However, currently, the system only outputs
the DataFrame to the user with annotations,
necessitating the design of additional functionality.
Trace2Conv facilitates swift navigation to context
regarding requirements within a requirement
artifact. This is achieved by establishing links
between the requirement artifact and related
conversations through token matching. Presently,
features such as requirement overview, token
overview, and speakerturn overview enable
seamless navigation between the requirement
artifact and the conversation(s) (refer to Appendix
Chapter 2 for details).

Conclusion: Current situation
From this analysis a current system situation has
been constructed as can be seen in figure 14. This
overview helps to visualize what is already present
on each layer needed to achieve use in practice.
As can been seen in the overview the first solution
that must be provided to the user is a method
to capture Conversation Artefacts. Later in the
chapter will be covered what is needed to make
the systems function and the implications on the
system requirements.

3. PROBLEM ANALYSIS

25

Figure 10: Example of a set of speakerturns (Example from REConSum main folder).

Figure 11: Stanford CoreNLP pipeline.

Figure 12: Visualisation of DataFrame with annotated speakerturns (important has been added in the system design)

Figure 13: Tokenization visualized. Trace2Conv utilizes NLP to tokenize each word of a sentence for each speakerturn.

3. PROBLEM ANALYSIS

27

3.2) How to generate
Conversation Artefacts
In Spijkman et al. (2023) is argued that recordings
of conversations can hold useful information
that can be missed by an Business Anaysts
during the conversation due to mental demands
of the elicitation process (as mentioned in the
introduction). While manual transcribing of the
conversation is a possibility this takes a lot of time
and effort. Therefore, the proposition is to use
modern online meeting tools like Microsoft Teams
and Zoom to generate conversation artefacts
due to its widespread use in online meetings, it’s
capabilities to record a conversation without much
effort, and automatic transcribing functionalities.
However, for this to be a suitable solution in
practice the conversation needs to be converted
accurate enough, so no requirement relevant
information is converted incorrectly as of the high
interests of the client and the development teams
for a complete and correct set of requirements.

In the analysis of different meeting software and
software to convert speech to text Microsoft
Teams was deemed to be the best choice in this
matter for a multitude of reasons that will be
covered in this paragraph. First of all, it needs to
be a system that is already used by the user and
the organization in which the user operates. If
the system prototype only works with meeting
software that is used by no one else it will not be
used because of the effort it would take to switch
to a totally new system. As the system prototype
will be first implemented within Fizor this means
using the software that is primarily used there: MS
Teams. It is also one of the mostly used meeting
software in the world as it held the second-largest

market share in 2023 (Sujay Vailshery, 2024b), 91
of the Fortune 100 companies utilize Microsoft
Teams (Redmond, 2019), and has 300 million active
daily users as of 2023 (Sujay Vailshery, 2024).
Furthermore, when compared to other speech-to-
text systems, such as Amazon Transcribe, Google
Cloud, and IBM Watson, with both clean speech
and noisy speech MS Teams performed the best
(Xu et al., 2021). While this source is now a couple
of years old it underscores that MS Teams is a
good choice to perform the necessary tasks in this
category.

Also, MS Teams integrates all the system
functionalities that are required to capture
requirement artefacts. These being recording the
conversation, converting conversation speech to
text, and formatting the text into speakerturns.
One software solution performing all these
functionalities is preferred over multiple systems
that each need to be acquired, learned, and
managed.

Furthermore, with an eye on the future, MS Teams
has already products that are integrated with MS
Teams, for example speakers, microphones, and
even whole meeting room system. Fizor also has
one of those MS Teams integrated meeting rooms
and therefore it is a logical choice. Also MS Teams
provides API’s to use generated conversation
artefacts in other systems (will be mentioned in
this thesis but the implementation falls out of
scope) and provides developers with the ability to
use the MS Teams functionalities.

By implementing MS Teams to generate
Conversation Artefacts of conversations that
took place during this thesis and analyzing the

generated results the performance of the CA
generating system as is will be analysed. A method
will be formulated and validated for users to
capture conversations in online and face to face
context.

3.3) System conceptualization
Users will need to interact with the system using
a Graphical User Interface (GUI). To visualize
this GUI and to ideate with useful interactions a
usability flow has been created that incorporates
all the system elements currently integrated in
both REConSum and Trace2Conv (figure 16). This
usability flow has been used as communication
tool with Fizor and Business Analysts. Concluded
from this activity is that the GUI needs to
included at least a set of core interactions and
functionalities.

Let’s start by examining the data that needs to be
presented to the user. All system outputs must
be accessible to the user in the GUI. This entails
presenting speakerturns of a conversation where
the text, speaker, and index/time are clearly visible
for accurate comprehension. For Trace2Conv
specific, the system must present requirement
artifacts and a token overview of all (filtered)
tokens to the user.

Users should be able to filter speakerturns
based on different system annotations, enabling
them to toggle filters for questions, relevant
questions (REConSum), and token views on and
off (Trace2Conv). As mentioned in the paragraph
on the Limitations of NLP, systems may process
a conversation not 100% correctly. Users must
have the ability to inspect and modify system

annotations in case of processing errors. Therefore,
users should be able to deselect the question and
relevant annotations from speakerturns, as well as
turn off irrelevant tokens and add relevant tokens
(In figure 17 checkboxes are suggested to turn
specific annotation on and off).

Database manipulation and navigation are crucial
aspects. Users need a method to supply the
system with desired inputs (requirement artifacts
(Trace2Conv specific) and conversation artifacts).
System data should be stored systematically
to facilitate locating desired system outputs.
Naming files and including search functionalities,
such as a search bar, can enhance usability. The
conceptualized system database (Figure 15)
stores multiple projects, each containing multiple
conversations (and one conversation artifact). To
streamline searching, various data can be linked
to a conversation, including title and description,
conversation participants, date of conversation,
and the set of speakerturns. Users should have the
capability to add, edit, and remove projects and
conversations to manage the database as needed.

Users must be able to navigate easily
within conversations, between projects, and
corresponding requirement artifacts. It’s crucial
for users to be continuously informed about the
system’s state and to include clear navigation
options for seamless movement within the
system (Johnson, 2021). Additionally, users should
have the capability to navigate to speakerturns
containing a specific token by clicking on that
token within the requirements where they occur
(Trace2Conv specific). To facilitate seamless
interaction between the requirement artifact and
speakerturns, a function has been conceptualized

to display both artifacts simultaneously
(Trace2Conv specific). The system’s processing
functionality will operate in the background after
users have provided the necessary inputs and is
not visualized in the usability flow.

3.4) What can be realized
within the scope of this thesis
To design with the algorithms already developed
for REConSum and Trace2Conv to create a
functional prototype at the supersystem (the
overarching system that runs the systems of
REConSum and Trace2Conv) needed to be
analysed and on component level (the code that
makes up the algorithms). This analysis concluded
in that REConSum was developed in Python
and Trace2Conv was developed in BettyBlocks
(a Low Code Development Platform). With
limited knowledge of python and no knowledge
BettyBlocks both systems were analysed on what
was possible to realize with these systems (within
the timeframe of this thesis and with the limited
programming skills.

After analyzing the platforms and their capabilities,
the decision was made to utilize the Python
platform. With prior experience with the system
and a wealth of documentation and a vast
database of reusable codes (packages) that python
offers it was deemed easier to realize a functional
prototype compared to using a LowCode platform,
especially given the limited experience with the
latter. This doesn’t mean that Low Code can’t be
used to develop the future system, it only means
that with the available resources of time and skill
this proved to be the best solution.

Using python, and therefore designing with the
algorithms of REConSum comes with the added
benefit of having access to the ‘preprocessing
algorithm’. This algorithm converts a conversation
artefact into data that can be used by a system,
a functionality that is necessary to make any NLP
functionality work.

Developing an application in Python necessitates
that users have Python installed, along with the
required packages, on the hardware running the
system. However, the installation process for
Python, with its specific package versions, presents
a significant use effort and time commitment.
Knowledge of python or other programming
languages should not be required knowledge of
users and therefore a solution must be usable
without any prior knowledge of or installing of
python.

Figure 18 presents an overview of all the things
that need to be realized to make REConSum
usable.

3.5) Defining main user,
implementation environment,
and design problem.
To understand which activities related to
Conversational RE can be supported, a stakeholder
analysis identified four key stakeholder groups
closely involved in the requirement elicitation
process. The primary stakeholder is the Business
Analyst (BA), responsible for conducting all
Conversational RE processes. Additionally, clients/
stakeholders and development teams have

3. PROBLEM ANALYSIS

29

Figure 14: The starting point of this project. What has been yet realized with REConSum and Trace2Conv. *BB=BettyBlocks (LowCode Platform).

Figure 15: Conversation database concept. Figure 16: Wireframe of full usability flow. Separating managing function, transcript functions, requirement artefact functions, and the token settings

3. PROBLEM ANALYSIS

31

significant interaction with Conversational RE
activities. The organization in which the BA and
development team operate constitutes the final
stakeholder group. It’s assumed that stakeholders
closer to the Conversational RE process have
a greater interest in functionalities utilizing
processed conversation data. Therefore, focusing
on the activities of Business Analysts, who perform
all Conversational RE activities, is a logical starting
point.

A literature review provided insights into
various Conversational RE activities across the
agile software development process (Project
Management Institute, 2016),best practices for
conducting conversational requirement elicitation
interviews (Bano et al., 2019), challenges associated
with ambiguity in requirements and the cognitive
processing demands on BAs during elicitation
interviews (Ferrari et al., 2016), limitations in
clients’ and stakeholders’ ability to effectively
communicate needs (C. J. Davis et al., 2006),
and the need for BAs to extract tacit knowledge
from clients based on unique domain knowledge
unknown to the BA. Meth et al. (2013) provided
an extensive overview of automation in the RE
process, serving as input for potential challenges
in RE activities and a source of inspiration for
different use cases in system design.
To gather anecdotal information, interviews were
conducted with seven Business Analysts from
different organizations within the scope of this
research (interview plan in Appendix Chapter
4). These interviews aimed to gather insights
into the various conversational requirement
elicitation activities performed throughout the
agile software development process. Discussions
covered activities such as needs assessment,

requirement management planning, requirement
elicitation, requirement analysis, requirement
monitoring and controlling, solution evaluation,
and project closure, constituting the phases
of the Conversational RE process (Project
Management Institute, 2016). The goal was to
verify BA workflows, identify challenges within
these activities, and brainstorm different use cases
for REConSum and Trace2Conv functionalities.
These interviews yielded valuable information.
Fizor’s objective is to address industry challenges
using the functionalities of REConSum and
Trace2Conv. Ideally, a robust case could have
been identified in this problem analysis where
these functionalities are applicable, validated
using measurable variables. Applying a case
study approach to design potential solutions
for a specific industry problem, with high user
involvement in development and validation, could
have been effective. Metrics such as effectiveness
(achieving desired goals), efficiency (reduced time
for specific activities), and user-friendliness (clarity
and enjoyment of use) could have been applied
to evaluate different design concepts. Figure 8
illustrates the type of design process focused on
user experience that could have been applied
when identifying use cases (Leary & West, 2023)

However, conversations with Business
Analysts revealed significant variability in the
(conversational) requirement elicitation process
between organizations (e.g., work methods,
available resources, experience levels) and projects
(e.g., client differences, types of problems). This
necessitated a different problem interpretation.
The problem shifted from “what problems can be
solved in practice?” to “how to make the system
functionalities of REConSum and Trace2Conv

usable for users in practice?” Solving this problem
would enable the use and testing of the systems in
real-world scenarios.

To create a use experience, defined as “ the
experience of someone using a product, system, or
service, for example whether they find it enjoyable
and easy to use: “ (Cambridge University Press
& Assessment, 2024), a usable system must be
designed for test users. A viable solution must
first meet the requirements of availability, low use
effort, and scalability.

To illustrate, consider a carpenter and his toolbox.
For a tool to be useful, it must be available
when needed. Additionally, a carpenter may find
alternative uses for a hammer beyond its primary
function, by making the solution available during
the user’s workflow, different use cases may
emerge besides the intended use case. Moreover,
a carpenter prefers tools that make their life
easier, a solution will only be adopted by users
if they improve their life in some way. Finally,
to adequately test a new tool’s effectiveness, a
sufficient sample size is necessary. The paragraph
about use requirements will go into detail what
this means for the system design.

3.6) Use case definition
An initial use case needs to be defined to which
the functional prototype is tailored to and that,
as mentioned in a previous paragraph, integrates
the algorithms of REConSum. When considering
that conversations can take up to multiple days
and Business Analysts need to juggle multiple
mental tasks simultaneously. They must maintain
conversational flow, actively listen to participants,

and provide appropriate responses (Bano et al.,
2019). Concurrently, they’re constructing a mental
framework of domain goals, rules, and application
views to interpret client information (Ferrari et al.,
2016). Amidst these mental activities, BAs must
also capture requirement-relevant information
for later processing. Notetaking serves this
purpose, but the constraints of multitasking limit
the depth and context captured in notes. Human
memory supplements notes but isn’t sufficient for
comprehensive data retention. Factors such as the
duration of the conversation (hours to multiple
days), the number of participants (up to 10), and
the frequency of conversations can further impact
the ability to recall specific details. For instance,
longer conversations or those with multiple
participants increase mental load and complexity,
reducing the ability to memorize all relevant
information. Additionally, if multiple conversations
occur in quick succession, there may be overlap
in memories when recalling specific information.
Time pressure to process conversations into
requirements can also impair processing ability.
Given the imperative for complete and accurate
requirements, these challenges underscore the
value of tools to aid in conversation processing
for BAs. Prompted questions serve as a primary
method to elicit requirement-relevant information
as it is likely that answers to these questions
contain this information. Detecting if a speaker
turn contains a question can enable the reduction
of the conversational dataset by presenting only
the questions of the interview to the user. This
approach minimizes the amount of data needing
inspection. While some BAs already record
conversations for later review, this method is
time-consuming, requiring listening to the entire
conversation. A more efficient solution is needed.

To be valuable, such a system must reduce the
amount of conversation data requiring inspection
and expedite the search for relevant information.

Figure 17: Usability flow screens examples (Transcript view showing the filter function left and marker function right).

3. PROBLEM ANALYSIS

33

Figure 18: What needs to be realised to use REConSum functionality. The red outlined blocks need to be designed.

REConSum | WHAT NEEDS TO BE REALIZED TO USE IT?

Data Folder

Categorise
Relevance

Stanford
CoreNLP

Overarching
Algorythm

Identify
questions

Preprocessing

Conversation
Artefact

preprocessing.
xlsx

identify
_question.xlsx

categorise_
relevance.xlsx

Set of
Speakerturns

Transcript .txt
data

Transcript .txt
data

preprocessing
output .xlsx

identify_question
output .xlsx

Set of annotated
speakerturns

Method to run
algorithm

Method to
run and stop

algorithm

Method to run
algorithm

Method to run
algorithm

Set of annotated
speakerturns

categorise_
relevance output

.xlsx

Screenprinted
DataFrame

output

Set of
Speakerturns

3. PROBLEM ANALYSIS

35
Figure 19: PACT analysis results, activities during elicitation conversations.

Face to face elicitation setting: one Business Analyst Face to face elicitation setting: two Business Analysts

Capture Capture
Requirement Requirement

relevant relevant
information from information from
client answers in client answers in

notesnotes

Semi structured interview Semi structured interview
questions + prompted questions + prompted

questions based on questions based on
provided answersprovided answers

Answers (that may Answers (that may
contain requirement contain requirement
relevant information)relevant information)

Bussiness Analyst 1Bussiness Analyst 2 1-10 Client(s)/
Stakeholder(s)

Device usable for
presentation,

recording, and
note taking

Optional Recording
Device

Capture Capture
Requirement Requirement

relevant relevant
information from information from
client answers in client answers in

notesnotes

Semi structured interview Semi structured interview
questions + prompted questions + prompted

questions based on questions based on
provided answersprovided answers

Answers (that may Answers (that may
contain requirement contain requirement
relevant information)relevant information)

Bussiness Analyst 1 1-10 Client(s)/
Stakeholder(s)

Device usable for
presentation,

recording, and
note taking

Optional Recording
Device

3. PROBLEM ANALYSIS

37
Figure 19: PACT analysis results, activities during elicitation conversations. Figure 19: PACT analysis results, Processing requirement relevant information.

Online elicitation setting Requirement processing

Bussiness Analyst Bussiness Analyst1-10 Client(s)/
Stakeholder(s)

Audio & VideoAudio & Video
Ouput DataOuput Data

Audio & VideoAudio & Video
Ouput DataOuput Data

Audio & VideoAudio & Video
Input DataInput Data

Audio & VideoAudio & Video
Input DataInput Data

Online Meeting Online Meeting
RoomRoom

Capture Capture
Requirement Requirement

relevant relevant
information from information from
client answers in client answers in

notesnotes

Processing Processing
captured captured

elicitation dataelicitation data

Formulating Formulating
structured structured

requirementsrequirements

REQUIREMENT FORMAT USER STORIES
“AS A <ROLE>,
I WANT <GOAL>,
[SO THAT <BENEFIT>]”
(LUCASSEN ET AL., 2016)

3. PROBLEM ANALYSIS

39

within the reduced dataset. A baseline criterion
for usefulness is that inspecting the reduced
conversational dataset should take less time than
listening to the entire conversation. Additionally,
the system should enable BAs to locate specific
conversation data within one hour, using features
like search functions and filters to facilitate
navigation.

With the functionalities of REConSum questions
and relevant questions are annotated for each
speakerturn. As previously noted, NLP systems
have limitations in fully comprehending human
language. Who better to understand human
language than humans themselves? There exists
an opportunity to leverage and enhance the
capabilities of BAs to recognize and capture
relevant data during elicitation conversations.
BAs already need to process conversation
data in real-time and determine its relevance,
essentially annotating for themselves which parts
of statements are pertinent. Given the existence
of systems that can convert conversations into
natural language in real-time, could BAs annotate
conversations as they are captured? Notetaking, a
common practice among analysts during elicitation
conversations, serves as a form of annotated data
capture, focusing on the most critical information
due to limited capacity for data capture while
simultaneously performing other mental activities.
Since this data capture activity already exists,
what if it were enhanced through design and
integrated with the existing system prototype? This
integration could facilitate the capture of more
perceived relevant information by BAs.

3.7) Defining use requirements
To introduce a system to be used during
Conversational RE and Requirement analysis it
is important to understand the people present
(P), the activities they perform (A), the context in
which it is performed (C), and the technologies
or products used in these activities (T). A PACT-
analysis (Benyon et al., 2005),based on the input
from BA interviews and the general workflow
based on literature (Project Management Institute,
2016), was used to formulate requirements for
systems that are introduced in both activities.
Figure 19 presents an overview of the PACT
analysis results. BAs will need to use the system
during Elicitation Interviews to enable its intended
functionality. Understanding this process is crucial.
various location settings where the elicitation
conversations occur are identified.

At each elicitation there is at least 1 business
analyst and 1 client present. However the amount
of analysts varies between 1 and 2, and the amount
of client(s) or stakeholder(s) can vary between 1
and up to 10. The amount of analysts determines
the amount of tasks that need to be performed
simultaneously, if 2 analysts are present one will be
working on maintaining the conversation while the
other is tasked with documenting the requirement
relevant information. If an analyst is on their own
all these tasks need to be performed by the single
analyst.

These locations can range from within the
company premises to external locations, such as
client sites. BAs should rely only on the systems
they bring to the conversation. Thus, the system

design must fit within the everyday carry capacity
of BAs, fitting into standard laptop bags or
suitcases.

During elicitation interviews, BAs typically have
multiple systems at hand to aid conversations
and capture data. Laptops serve various
purposes, including visualization support
(e.g., presenting PowerPoint slides or relevant
charts) and note-taking using text processors or
recording capabilities. Other tools aiding data
capture include portable conference speakers,
improving recording quality, and traditional
tools like notebooks and writing utensils. Online
conversations often require laptops with audio and
video recording hardware.

Currently, several systems on the market
integrate seamlessly with tools already used
during elicitation conversations, enhancing their
functionalities. These systems include drawing
tablets and smart pens that merge writing/
documentation with digital notetaking, enabling
various computer-based interactions like copy-
paste and moving notes. Additionally, conference
speakers facilitate integration with conference
software, enhancing conversation management
with features like microphone controls.

From this analysis the following use requirements
are extracted. As stated in throughout the
introduction and the problem analysis the
Conversational RE process is a mentally demanding
activity for Business Analysts with high interests in
precision and completeness.

•A system used during the conversation should
mostly rely on touch or require minimal interaction

to minimize distractions.
•Given the importance of eliciting requirements,
system usage should not distract from the
conversation.

•Interactions during conversations should be
intuitive and require little to no mental processing.

•Additionally, interactions should be limited,
considering that one hand may be occupied with
writing (with a pen and notebook) or both hands
with typing (when using a laptop for notes).

•The possible variation in amount of clients/
stakeholders will result in an variable amount
of background noise and people talking
simultaneously during the conversation, especially
in a face to face conversation. The speech to text
conversion should perform as desired despite this.

•As conversations can take place at external
locations it should have a form-factor that fits
within a laptop bag or case.

•The inspection of the system
outputs to search for specific conversation data
should take less time then listening back to the
whole conversation.

To keep the use effort low more requirements are
considered.

•The system design must integrate with products
and systems already used by the user.

•As elicitation interviews can take place in
uncontrolled environments a Business Analyst
should only have to rely on systems or products,

they bring themselves to the interview.

•The effectiveness and efficiency of tasks
performed should never decrease.

•No prior knowledge of for example python needs
to be required to use the system.

•Therefore, a solution must not require installation
or setup by the user (if so no more then 10
minutes and only require users to press ‘next’)
and should not significantly disrupt workflow
(Use of the system should not add more than
approximately half an hour of time).

•The system should not require more than 10
minutes of installing.

•Conversation Artefacts generated with Microsoft
Teams can be directly imported into the system
prototype without the user needed to make any
changes to the contents of the generated artefact.

3.8) Defining functional
requirements
Database requirements
•All inputs and outputs need to be stored in a
database, stored per conversation.

•The database should include everything needed
to run the system (code/systems/assets)

•The TF-Wiki dataset should be accessible by the
system in the database to make the REConSum
functionalities work.

•To enable the annotation and processing of
the speakerturns, the StanfordCoreNLP system
needs to be stored within the system database.
StanfordCoreNLP needs to be accessible by the
system in the database to start when it is needed
and stop automatically when the necessary
processing is finished.

•System outputs stored in the system database
need to be accessible by the user through the
system GUI.

•As stated in the system analysis NLP has for
multiple reasons sometimes troubles with
understanding human language (Natural
Language) correctly. To validate the functionality
of the NLP outputs, outputs will need to be
systemically stored making it easy for researchers
to inspect produced outputs and allows the GUI to
locate conversations at a consistent location.

Overall system requirements
•The system prototype should easily fit into
a laptop bag or case and must be usable and
accessible at any time.

•The system should run on any (windows) system.
To validate the functionality of the system and
support research in its use, it’s important to
use a datatype that can be easily inspected by
researchers.

GUI requirements
•A GUI needs to be realized where a BA is allowed
to import a generated conversation artefact.

3. PROBLEM ANALYSIS

41

•A user must be able to view the set of
speakerturns for each imported conversation.

•For each speakerturn in a set of speakerturns the
time index, the person speaking, and the spoken
text need to be clearly communicated to the user.

•The BA needs to be able to filter a conversation to
view only the questions.

•The BA needs to be able to filter a conversation to
view only the relevant questions.

•For each question the user should be able to
view the answer as answers are likely to contain
requirement relevant information.

Navigation requirements
•The BA needs to be able to navigate between
conversations and to be able to easily locate a
desired conversations from the database.

•At all times the current state of the system
(current conversation, current filter, etc) needs to
be communicated to the user.

Implementation requirements
To implement the prototype into practice a couple
of implementation requirements need to be met.
•Outputs are systematically stored to be analysed
at a later point.

•The system prototype can be easily duplicated to
supply 10-20 people with the prototype.

•Conversation Artefacts are captured without any

speech to text conversion errors in requirement
relevant information.

Note that these requirements contain performance
factors as for example ‘easy’ and ‘clearly’. In this
phase of development it is hard to specifically
define measurable performance factors. Based on
user feedback, gathered from using the system
prototype, requirements can be further specified,
added, or changed.

3.9) Design Brief
This thesis will provide a prototype that has the
potential to be useful for Business Analysts in the
activity of processing captured elicitation data
into structured requirements. While it may not
always be of use, in longer real-life conversations
the ability to filter conversations to search for
specific conversation data has the potential to
be valuable for a Business Analyst (Spijkman et
al., 2023). The main functionality on system level
will be to capture all conversation data generated
during the elicitation interview (so no conversation
data is lost) and allowing a Business Analyst to
locate requirement relevant information in this
conversation dataset with filters. The prototype
will allow users to import conversations and to
view the conversation using a designed system
GUI. Processing and storing user inputs. The
conversation can be filtered using the annotations
and for each question it will be made possible to
view the answer to the question.

Also, as humans are better in understanding
human language then systems, and the goal is to
capture more requirement relevant information
while reducing to listening back to a full

conversation, a proof of concept will be realized to
enable Business Analysts to annotate conversations
themselves in real time during the conversation.
This interaction will be integrated with notetaking,
an activity already performed where conversation
data is annotated. The goal is not impeding the
notetaking process with the inclusion of such a
prototype.

To make this possible Business Analysts need to
be able to capture elicitation conversations with
high accuracy in natural language. Through test
conversations the performance of the MS Teams
speech to text functionality will be tested and a
method will be formulated how a conversation
can be captured and formatted to be used by the
system prototype in a online, and face to face
setting.

The prototype and this method will be validated
where the performance is evaluated to the
specified criteria mentioned above.
An implementation plan has been included how
this prototype can be implemented for further
research and development also in regard to the
results of the validation phase.

The next chapter will present the prototype that
resulted from the design process. A manual
has been included in the appendix chapter 0 as
deliverable for the client explaining in steps how
the whole system is built and behaves.

3. PROBLEM ANALYSIS

43

3. PROBLEM ANALYSIS

CA Generation

NLP Functions

Database

GUI Functions

Elicitation
Notes

Requirement
Artefact

University of
Utrecht

University of
Twente

BA

Client

Dev. Team

Elicitation
Conversation

Elicitation
Conversation

Input list of
Requirements

Requirement
Relevant Data

Conversation
Audio User Input

Creating RA
Based on Conv.

Data

Conversation
Audio

Conversation
Artefact

Processed
Conversation

Processed
Conversation

Conversation
Data Interactions

Data
Manipulation

User Input

Input for
Development

Process

Speakerturn
Data

Figure 20: Analysis results: The humans, environment and systems that should be considered in the system design and the interactions between them.

an
al

ys
ed

 r
el

at
ed

 e
le

m
en

ts

45

4. REALIZED SYSTEM

Requirement Relevant Information

Conversations

MS Teams Speech-To-Text (Base Model)

Use In Practice

Importance Annotation

Advanced Notetaking
Prototype System Functionality

Use in practice

NLP

Storing Conv. Data

Capturing Conv. Data

USB Portable Database

Question & Relevant Question Annotation

REALIZED SYSTEM

Figure 21: Realized System, the realized solution on each ‘foundational layer‘.

Table 1: Overview of all the algorithms that are present within the system.

Figure 22: Example speakerturn from test conversation generated with
MS Teams.

Figure 23: Conversations stored in the MS Stream environment.

Figure 24: Main folder of the system database containing the
functional prototype, python to run the prototype and a bootloader
called ‘RUN GUI.bat’ used to start the system GUI.

Figure 25: Home screen of GUI design.

project folder, a conversation folder is created
and named with the name supplied by the user. In
this conversation folder outputs are systematically
stored in separate folders using consistent names.
MS Teams-generated conversation artefacts
contain visual elements and text formatting that do
not conform to the system’s expected formatting
structure. To format the artefact correctly without
any user involvement an algorithm automates this
process (figure 27, step 2). The algorithm operates
in two stages: First, it removes all visual elements
from the conversation artefact, converts it to a
text file format, and stores it in the database as
raw_transcript. This initial step ensures that the raw
conversation data is stripped of any unnecessary
formatting (chapter 10 of the appendix). Next,
the algorithm formats the speakerturns according
to the system’s requirements, preparing them
for further processing. This formatted version
of the transcript is then stored in the system as
formatted_transcript (chapter 10 of the appendix).
Note that the algorithm is programmed to how
MS Teams currently formats their artefacts as of
this moment. If MS Teams would change this, if
other software is used, or if languages other than
English and Dutch is used the algorithm needs to
be adapted.

As it is important that the conversation is
processed correctly it was important to validate
that the system processed the conversation
correctly throughout the processing steps. It be
able to inspect the processing output at each stage
the output is stored in the conversation database
as an excel file. Storing the outputs as an excel
file has the added benefit of being easy to inspect
as data is stored in a matrix (figure 33) but it also
enables for quantitative analysis of processed

This chapter provides an in-depth exploration of
the system prototype developed to address the
identified problem. Serving as an initial stride in
the development journey, this prototype aims
to generate conversation artefacts from natural
language, process them, and store them in a
central database for utilization across the agile
software development process. The primary
objective of this prototype is to furnish a functional
model capable of practical application, facilitating
user feedback collection to enhance various facets
of the system. Figure 21 presents the realized
system in the context of the foundational layers
that make up the desired system.

The prototype that has been realized is a
system that consists of multiple subsystems or
functionalities, each with their own behaviour
and components, that together achieve the main
functionality of the system. To illustrate this table
1 presents an overview of all the algorithms that
have been created or integrated to realize the
system. The main functionality on system level
is to capture all conversation data generated
during the elicitation interview (so no conversation
data is lost) and allowing a Business Analyst to
locate requirement relevant information in this
conversation dataset through the use of filters.
The system can be split up into 4 subsystem
functionalities labeled in this thesis as GUI
(allowing the user to interact with the system), NLP
(automating and tying all algorithms together to
process and annotate conversations to store them
into the conversation database), Data storage (a
usb drive storing all the necessary components
to make the system run), and finally a method for
users to annotate conversations themselves during
the elicitation interview themselves. Appendix

the installation of java, necessary to run part of the
processing functionality and takes approximately
5 minutes only needing to press ‘next’. The rest
of the system can directly be used without any
installing).

As users will need to process multiple
conversations, conversations are systematically
stored and can be accessed through the dropdown
menu in the GUI. From here the user can select a
desired conversation to load into the GUI.

To search for specific conversation data the
amount of conversation data can be reduced
through the use of the different filters. The user
has the ability to view the whole conversation
(through full view, figure 28), all questions of the
conversation (through question view, figure 29), all
relevant questions (through summary view, figure
30). Using the ‘show in context’ button (figure
31) the user can navigate to answers to specific
questions (as it can show up to 10 speakerturns
before and after the selected question) without the
need to read through the whole conversation.

4.2) NLP & Database storage
The two main functionalities besides the GUI
functionalities that make up the system are
importing conversations and loading processed
conversations as described in the use flow.

For the importing of conversations
To structure the storage of outputs, and providing
them with consistent file names and locations
so they may be located by the system the first
step when a conversation is imported a database
entry is created (figure 27, step 1). In the selected

chapter 0 will cover each part of the system in
detail explaining the behaviour of the system and
how it all ties together so it can be replicated by
Fizor.
This system is built and tailored to use with
Conversation Artefacts that are generated with
MS Teams. However as mentioned earlier, for the
system to be usable in practice this Conversation
Artefact needs to be of high accuracy (no
requirement relevant information translated
incorrectly). Two main challenges were uncovered
during test conversations to test the performance
of using MS Teams to generate CAs being the
correct formatting of speakerturns (matching the
captured audio to the correct person and time),
and accurate conversion of speech to text by MS
Teams. In the use flow that will be presented online
conversation will be used as the elicitation setting
as this requires as-is no steps of the user.
First the realized use flow will be covered from
conversation to use of the processed conversation
data by the Business Analyst. After that the
separate systems will be covered how they make
this functionality possible. Note that the marker
functionality is not integrated in this flow as use in
practice has not been realized, it will be covered
later in the chapter.

4.1) Use Flow
For the new project that has started a Requirement
Elicitation conversation takes place between the
Business Analyst and a new client. Because it is for
both parties more convenient for the conversation
to take place online a MS Teams meeting has been
scheduled.

At the start of the meeting the Business Analyst

activates the record and transcribe functionality
and selects the conversation language (only
English and Dutch function correctly because of
how the system is programmed)

In the background MS Teams generates a CA
converting speech to text and linking it to the
person speaking and the time of speaking (set of
speakerturns, figure 22).

At the end of the conversation the generated CA is
stored in MS Stream (cloud storage of MS Teams),
as can be seen in figure 23.

The Business Analyst searches the desired
conversation and downloads it on a (windows)
laptop or pc.

The Business Analyst takes the system prototype
,a usb drive, out of his bag and selects the GUI
bootloader located in the main folder (figure 24)
resulting in the GUI opening (figure 25).

In the GUI the user can import a conversation by
selecting the desired conversation (figure 26) and
provide the conversation with a name (so it can
be recognized later in the conversation database),
and (as MS Teams may included for example email
addresses in the speaker names) the ability is
given to change the names of the speakers (The
prototype only works for now with 2 speakers but
can be easily increased).

In about 15 minutes (not requiring the user to
be there in person) the system has formatted,
processed, and annotated the conversation and
stored the outputs in the conversation database
(note that the processing functionality requires

conversation by researchers if a large volume of
conversations has been processed by users. In
figure 27, step 3 the first excel file is created of the
preprocessed DataFrame.
StanfordCoreNLP, the system that enables the
processing and annotating of speakerturns for
REConSum has been integrated into the system
removing the need for users to manually install
and run it manually. The system is correctly started
and stopped (figure 27, step 4 and 7) at the right
time automating this process. The integration of
this system also enables the opportunity to easily
add more NLP functionalities such as tokenization,
to enable Trace2Conv functionalities.
The algorithms responsible for identifying
questions and relevant questions have been left
unchanged besides the fact that they store their
outputs in the database for validation. They are run
at the correct time (figure 27, step 5 and 6) and the
Wiki-TF dataset is included in the system database.
With the user in mind python is installed on the
usb drive with the correct packages needed to run
the system. The prototype takes no more then 3gb
of space and the processed conversations can be
inspected without any installment needed.

Loading conversations
To present the speakerturns to the user correctly
an algorithm has been designed called turn_frame.
py that creates for each speakerturn a ‘turn
frame’ that presents the index, speaker, and
text of a speakerturn to the user. the algorithm
turn_frame.py has been designed to present time,
speaker, and text data to the user. If another
conversation is loaded, the existing data is first
cleared before loading the currently selected

47

4. REALIZED SYSTEM

49

4. REALIZED SYSTEM

Figure 26: Within a couple of clicks the user can locate and import conversations from the Stream database.

51

4. REALIZED SYSTEM
ALL NLP FUNCTIONALITIES LINKED WITH EACH OTHER AND
THE DATABASE

Figure 27 Designed system functionalities

53

4. REALIZED SYSTEM

Figure 28: All speakerturns of the conversation. Figure 29: Question view. The conversation filtered to show only the questions of the conversation.

55

4. REALIZED SYSTEM

Figure 31: Speakerturn presented in the context of the conversation.Figure 30: Summary view. The conversation is filtered to show only questions relevant to the conversation.

by documenting keywords and sentences. What if
these notes could be linked to the conversation?
The word keyword would suggest a factor of
importance for a specific part of conversation
data. If notes would be made in sequential fashion
and the speakerturns could be annotated each
time a note would be written down the index
of the notes could be matched with the index
of the marked/annotated speakerturns. Index 1
of the notes would match for example index 1
of the marked speakerturns. This would provide
an overview of all the parts of the conversation
that were deemed as important by the analyst,
providing a filtered dataset of conversation data.
This assumption proved to be flawed during user
testing as the Business Analyst doesn’t only make
notes to capture data but also uses them during
the conversation, so the interaction needs to
be designed further. There could be iterated on
this by for example providing separate areas for
data capture where sequence can be applied or
iterating with the strategy of providing inputs or
allow multiple kinds of inputs, however this needs
to be researched further.

Design of interaction
Humans create an order to everything they see
where there are a couple of principles about how
we perceive hierarchy that hold true for every
human (Johnson, 2021). Big > small, high contrast
> low contrast, color > grays, red> other colors
(Johnson, 2021). There is already an action that
humans widely use in their daily live to bring
hierarchy to natural language and that is the act of
Marking information. By marking, or coloring text
people perceive it as more important (color>grays).
You can also see the action of marking everywhere

conversation. Please note that these features are
included with the intent to provide a positive user
experience of navigating the conversation to filter
the speakerturn dataset to search for specific
information.

To address the likelihood of requirement-relevant
information being contained in answers to
prompted interview questions, each speakerturn
includes a “Show in Context” button (disabled in
the Full View). Clicking this button opens a pop-
up where the user can view up to 10 speakerturns
before or after the selected speakerturn. By default,
the first speakerturn after the selected one is
presented to the user, as there’s a high probability
that it contains the answer to the question. This
feature is enabled in all views except the Full View.
To differentiate the annotation based on which the
speakerturns are filtered, distinct icons are used
for the Full View, Questions View, Summary View,
and Marker View. This functionality enhances the
user’s ability to navigate speakerturns effectively,
ensuring they can access relevant information with
ease.

4.3) Conversation Artefact
Generation
Microsoft Teams offers a unique capability to
convert speech to text in real-time through Azure
cognitive speech services (Speech Studio, n.d.), a
feature not found in other conferencing software.
This functionality, coupled with automatic linking
of converted text to the respective speaker with
timestamps (referred to as Speakerturns), enhances
the efficiency of converting conversations into
natural language (figure 22 presents an example of
a generated speakerturn).

text into a single speakerturn (refer to the
validation chapter). To address this limitation,
a “push-to-talk” system was implemented. This
solution entails the use of two laptops, each
equipped with a microphone and a push button
(as depicted in Figure 38). Both laptops share
a single MS Teams account and are situated in
the same meeting room, thereby facilitating
accurate separation of speakerturns. Notably, the
online setting already operates as intended, as all
participants are inherently present in the virtual
meeting room with their respective accounts.
In the chapter implementation a solution is
presented that makes use of the MS Teams
meeting room system (currently being used in
Fizor), a custom speech model of MS Teams
that can be trained, and a MS Teams integrated
smart speaker that have the potential to solve the
problems related to accuracy and speakerturn
formulation but could not be tested within the
scope of this thesis.

4.4) Marker functionality
This section discusses the prototype that has been
realized in an effort to enhance the notetaking
process. This prototype, that uses two Arduinos
to function, interacts with the system that has
been realized in this thesis. As a first step to
enable enhanced notetaking an interaction has
been designed that enables Business Analysts to
annotate important 1/0 to the current speakerturn
by means of an impulse. Providing an impulse 1/0
can be easily detected and needs almost no effort
to perform.

The idea on which is built is the notion that BAs
will capture important parts of the conversation

Microsoft Teams offers a unique capability to
convert speech to text in real-time through Azure
cognitive speech services (Speech Studio, n.d.), a
feature not found in other conferencing software.
This functionality, coupled with automatic linking
of converted text to the respective speaker with
timestamps (referred to as Speakerturns), enhances
the efficiency of converting conversations into
natural language.

The utilization of MS Teams has been analysed in
both online and face-to-face settings. However,
it’s essential to acknowledge certain limitations
associated with MS Teams that were uncovered
during testing the performance of the system.
One such limitation pertains to the generation and
sorting of speakerturns by the system. MS Teams
generates speakerturns by associating transcribed
text with the source of the audio, typically the
MS Teams client from which the audio originates.
Consequently, it’s imperative for each user to
be present in the MS Teams meeting using their
respective MS Teams client to ensure accurate
differentiation of speakerturns.

During the performance testing of the speech-to-
text functionality (refer to Chapter 5 for validation
details), a notable challenge arose in face-to-face
conversations conducted using a single laptop with
only one MS Teams client. In this scenario, only one
speakerturn containing all conversation text was
generated, highlighting the necessity for individual
MS Teams clients for accurate speakerturn
differentiation. While online conversations
inherently overcome this limitation, face-to-face
settings necessitated the development of an online
conversation configuration. This configuration

involved the use of two laptops, each equipped
with its own MS Teams client, within a single
meeting room. Additionally, to ensure proper
linkage of speakerturns to respective individuals, a
manual microphone mute button was integrated
with the MS Teams client (refer to Figure 38).
To ensure the usability of the system, several
enhancements were incorporated into the
conversation artefact generation process to
align with the requirements of documenting
speakerturns and capturing accurate requirement-
relevant data. The efficacy of MS Teams’ speech-
to-text functionality was evaluated through various
test conversations. However, the system in its
current state cannot be deemed practical due
to the inadequate accuracy of the conversation
artefacts. In both online and face-to-face settings,
factors such as unfamiliar words, pronunciation
variations, and foreign language terms contribute
to this accuracy challenge. Specifically, in face-
to-face scenarios, hardware quality, microphone
capabilities, room acoustics, background noise,
and simultaneous conversations further exacerbate
the issue.

To elevate the accuracy to usable levels within
the broader system design, as-is a crucial
procedural step is necessary. This step involves
comparing the conversation artefacts with the
audio recordings of the conversations and making
necessary corrections. However, this correction
process is time-intensive, as elaborated upon in
the validation chapter, rendering it impractical for
direct implementation.

In instances where only one laptop and one
MS Teams account are used during meeting
recordings, MS Teams consolidates all conversation

from paper documents to digital systems such as
excel and word. There have been ideated with two
types of marking, marking of relevant conversation
moments after the conversation, by marking
speakerturns in a GUI (figure 17, on the right) or
marking conversation speech as being important
in the moment. The latter has been considered
more impactful as the marking afterwards requires
the user to read the whole conversation again to
process if a speakerturn is important.

Different impulse types
Three types of impulse have been considered. All
types of impulses integrate with the note taking
process but each in a different way. First, a button
that is integrated in the systems that are already
used such as a pen and a laptop. Another being
the detection of when a note is being taken, and
finally a board with only button inputs relying
solely on annotations. Figure 32 presents an
overview of each of these types of impulses.

As proof of concepts a button prototype has
been created that allows Business Analysts to
annotate a speakerturn with important 1/0. In
later development this button can be integrated
in systems such as smart pens, or in a keyboard
for example (figure 32) to make use of the
advantages making notes has on digital devices.
It can for example be integrated with systems
such as remarkable (figure 36), a product that acts
as a ‘paper tablet’(ReMarkable, n.d.) or drawing
tablets that allow direct digitalization of notes or
integration with word processing software such
as Microsoft word. Besides the ability to provide
an input this input needs to be linked to the

57

4. REALIZED SYSTEM

59

Figure 32: Interaction ideas to integrate with ‘enhanced
notetaking‘ functionalities.

An idea to bind different annotators
(such as different topics/keywords)
to different buttons to allow to bind
speakerturns in realtime to different
topics to pre-sort the requirement
relevant information.

A idea to use a smart pen to integrate
different input methods such as
buttons and the touch detection of
the tip of the device. Used with the
interaction of writing.

When using the keyboard it may be
more beneficial bind functionality to
specific keys on the keyboard or to
bind buttons that are located next to
the keyboard.

Use the touch detection as
input

Ergonomic
Pushbuttons

Wireless connection for
freedom of moving

4. REALIZED SYSTEM

speakerturns that are being generated. While it
may be possible in later development using the
Speech Software Development Kit (Speech SDK)
of the Microsoft Azure speech services (Speech
SDK, n.d.) this could not be realized in the prove
of concept. Microsoft Teams itself allows from
itself no direct interaction with the speakerturns
while they are being generated so the annotation
functionality has been realized by synchronizing
the prototype with the conversation. By using
this method, the device can store all the inputs
of the Business Analyst with the time it was
inputted. Afterwards the system can compare
the timestamps of the inputs and annotate the
corresponding speakerturn.

Synchronizing and storing user
inputs
As Microsoft Teams allows for almost no
interaction with its data during the conversation
(no access to speaker, time, or text data while it is
being generated, with no ability to remotely start
and stop the conversation with external signals)
some trickery needed to be applied to allow the
synchronisation of the conversation with the
prototype. Two arduinos have been used to make
this possible in the end where the Arduino Uno
keeps track of the time and the Arduino Pro Micro
allows the external start and end of the meeting
recording functionality. By setting the current time
on 0:00:00 when the start signal is given the time
of the device and the recording can be synched.
These signals of the Arduino Pro Micro can be
realized as it can provide keyboard inputs (by
connecting it to a laptop using usb), making it able
to input keybindings that could be used to manage
MS Teams functionalities. While this solution

allowed the synchronization between MS Teams
and the protoype it proved very difficult to setup
and is not suited to be used by users in practice at
it can easily go wrong needing the meeting to be
restarted to reset the prototype, or no inputs are
able to synch. It can however currently be used in
controlled test settings where a researcher sets up
the device.

Linking markers to imported
conversations
After the user has imported the corresponding
conversation into the system the created marker
array can be linked to the conversation through
the system GUI. Using the marker file overview
in the correct markerfile can be selected and
linked. The create_markerfile.py algorithm is
run, annotating the speakerturns that have
been marked (the time marker compared to
between which speakerturn times it is positioned)
and storing the annotated speakerturns in the
conversation database. To give an example, if
there is a speakerturn with the time [0:00:50]
and another with [0:02:30], the speakerturn with
[0:00:50] will be annotated as marked with a time
marker of [0:01:30] as it occurs before the start of
the next speakerturn. After annotating the output
is again stored under a different name in the 3)
markerfiles folder (appendix chapter 16).

As can be seen in figure 37 the marked
speakerturns can be inspected in the GUI using the
marker view filter.

4.5) Potential of advanced
notetaking interaction

When Business Analysts participate in an elicitation
conversation, they are already annotating the
conversation data through note taking and
mentally. With MS Teams converting speech to
text in real time already to capture a Conversation
Artefact containing the whole conversation dataset
it can be of value if Business Analysts can annotate,
based on their own experience, what parts of the
conversation are relevant. In the GUI the user could
then view only the conversation data that was
deemed relevant.

This concept is still in the proof-of-concept stage
and requires additional refinement and validation
of its value. Enabling Business Analysts to annotate
real-time conversations with basic inputs has
the potential to significantly enhance note-
taking capabilities or serve as a research tool for
extracting requirement-relevant insights without
interrupting the conversation.

61

4. REALIZED SYSTEM

Figure 33: Annotated part of a mock elicitation conversation between
me and the company supervisor using both the marker prototype and
the system design.

Figure 34: Idea to link notes to marked speakerturns. If notes would be made in sequence
and a signal is provided each time a note is made note 1 would match with the first
marked speakerturn providing more information on that specific note.

Figure 35: Functional marker prototype ideas integrating inputs into a pen and button
board. The functionality of the pen protype has been realized.

PEN/BUTTON PROTOTYPE

KEYBOARD PROTOTYPE

Figure 36: remarkable (ReMarkable, n.d.)

63

4. REALIZED SYSTEM

Figure 37: Marker view output. All speakerturns that were marked as important by the Business Analyst during an elicitation conversation.

65

5. VALIDATING THE REALIZED SYSTEM

Figure 38: Validation results of the conversation artefact generation process and the necessary step to make the output usable for the system.

Any uncontrolled face to face setting Microsoft Teams Microsoft Stream Laptop/PC Realized system GUI

Controlled environment,
online conversation

Low quality
recording
hardware,

background noises,

echos,

domain language,

words of other
languages,

unknown words or
names

Low quality
recording
hardware,

domain language,

words of other
languages,

unknown words or
names

Record Record
conversation conversation

audioaudio

Convert speech Convert speech
to text (~80% to text (~80%

accurate)accurate)

Match text, Match text,
speaker, and time speaker, and time

100% accurate100% accurate

Store Conversation Store Conversation
Artefact & Artefact &
RecordingRecording

Download Download
Conversation Conversation

Artefact & RecordingArtefact & Recording

Play back the Play back the
RecordingRecording

Compare Compare
Conversation Conversation

Artefact to recordingArtefact to recording

Correct conversion Correct conversion
mistakes in mistakes in

Conversation Conversation
ArtefactArtefact

Format Transcript Format Transcript
AlgorithmAlgorithm

Store formatted Store formatted
conversation artefact conversation artefact

in systemin system

In what setting can the system be
used as is to capture conversation
data?
As mentioned, utilizing a dedicated meeting
room equipped with high-quality audio recording
equipment, particularly an ‘MS Teams meeting
room setup’ (hardware with its own operating
system tailored to the functionalities of MS Teams
for optimal hybrid collaboration), is likely to
yield the highest quality conversation artifacts.
Employing this environment initially offers several
advantages, which will be discussed here.
In the dedicated meeting room, both in-person
and online conversations are supported, facilitating
the accurate formulation of speakerturns.
However, the absence of speakerturns in online
conversations can be remedied by integrating
a smart speaker, which is also cited as one of
the potential benefits of utilizing an MS Teams
meeting room.

Ability to train the base model of MS Teams
To achieve conversation artifacts with 100%
accuracy, a custom speech model and word list can
be employed (as per MS Teams source). Currently,
MS Teams utilizes a standard base model for
converting speech to text, leading to inaccuracies
due to factors like unrecognized domain-specific
terms, background noise, language variations, and
pronunciation issues. Microsoft acknowledges
the influence of domain-specific language
and speaking styles on transcription accuracy
(Microsoft Custom Speech, n.d.). Although not
integrated into the realized system, a solution for
this challenge is already available in the market.
Microsoft has introduced a custom speech-to-text
model (figure 39) and phrase lists, offering the

In the validation of the realized system, the focus is
on assessing whether the system can be practically
used, whether its design facilitates the capture and
search for specific conversation data, and whether
the concept of advanced notetaking proves
useful. While the system has been validated for
functionality, further validation and development
through practical use are necessary. Key questions
addressed in this chapter include:

1. Can the system be used as-is in practice?
2. Does the system design facilitate the capture
and search for specific conversation data?
3. Is the concept of advanced notetaking useful?

Although the system has been validated for
functionality, practical validation through real-
world usage is crucial. Suggestions for validating
different aspects of the system are provided in this
chapter.

The subsequent chapter will detail an
implementation plan for integrating the system
into the workflow of Fizor. It will explore how this
implementation can add value to the company and
facilitate the capture of research data.

such as background conversations and echoes,
significantly affecting transcription accuracy.
Additionally, occasional spikes in the laptop
microphone resulted in audio that was sometimes
illegible, leading to inaccurate text conversion.
Furthermore, speakerturns were not generated
correctly in this setting, as outlined earlier, system
1. This issue has been addressed through the
method illustrated in Figure 38 .

In contrast, the online setting demonstrated better
performance due to its isolated environment
and individual presence in MS Teams meetings,
mitigating environmental noise issues and
ensuring accurate speakerturn generation.
Dedicated meeting rooms performed the
best overall in terms of transcription accuracy,
primarily due to superior recording hardware
and controlled environments. However, no
setting proved accurate enough as-is. MS Teams
employs a standard base model for speech-to-
text conversion, but inaccuracies occur due to
factors such as unrecognized domain-specific
terms, background noise, language variations, and
pronunciation issues. Microsoft acknowledges the
impact of domain-specific language and speaking
styles on transcription accuracy accuracy (Microsoft
Custom Speech, n.d.).

It’s worth noting that the manual correction
of conversation artifacts renders the system
unsuitable for practical use by users. However,
if the aim is for researchers to test and improve
system functionalities utilizing conversation
artifacts, the correction step can be performed by
researchers to enable the inputs to be used by the
rest of the system.

5.1 Can the system be used as-is?
To assess the system’s usability in its current
state, various aspects must addressed. First,
must be determined its effectiveness in
capturing conversations across different settings.
Understanding any limitations in specific
environments is crucial for identifying where the
system can be most effectively utilized. Beyond
mere capture, the system’s ability to automatically
process these conversations is paramount. Without
this capability, its practical utility may be limited.
Users should also be able to inspect the processed
results to ensure accuracy and relevance.
Moreover, accessibility and ease of use are key
factors. A system that is cumbersome or difficult to
operate will likely face adoption challenges. Thus,
evaluating its accessibility and user-friendliness
is essential. Finall must be considered whether
the system generates useful data. The ability to
derive actionable insights from the processed
conversations adds significant value. Overall, a
comprehensive assessment of these factors will
provide insights into the system’s current usability
and areas for improvement.

Can the system be used to capture
conversations in any conversation
setting?
The interviews conducted during the analysis
phase were utilized as a case study to analyze
the performance of MS Teams’ speech-to-text
functionality across three environments. These
environments were as follows:
1. Online Setting: Participants were situated
externally, using laptop microphones for audio
recording.
2. Face-to-Face Setting (Uncontrolled
Environment): Conversations were recorded using
a single laptop and its microphone in public spaces
or study areas. Only one MS Teams client was
utilized for recording.
3. Dedicated Meeting Rooms: Equipped with high-
quality recording hardware and sound isolation.

In each setting, conversations were recorded
and transcribed using MS Teams’ speech-to-text
functionality. The performance of each transcript
was evaluated by comparing it to the conversation
audio to identify transcription errors. Appendix
chapters 8 and 9 present the raw captured
conversation and the corrected conversations,
highlighting the differences. This captured
conversation constitutes the output generated
from the final test conversation between the client
supervisor (playing the client for a fictive case) and
a business analyst expert.

A crucial requirement for the conversation artifact
to be usable is high accuracy, ensuring that no
crucial conversation elements are transcribed
incorrectly. The face-to-face setting exhibited the
poorest performance due to environmental noise,

potential for near-perfect transcriptions (Microsoft
Custom Speech, n.d.).

Phrase lists offer a lightweight approach to
enhance speech recognition of unique words and
phrases, thereby improving transcription accuracy.
These lists are presented in advance to optimize
recognition and can be implemented just-in-time
before speech recognition begins. Additionally,
phrase lists are lightweight and can be integrated
into various programming languages, including
Python. By combining a custom speech-to-text
model with phrase lists, transcription accuracy
can be significantly enhanced, ensuring that
transcriptions meet the required standards for
readability and content accuracy.

The custom speech model enables the recognition
of complex and diverse speech patterns, language
variations, and domain-specific terminology,
thereby enhancing transcription accuracy. This
model can be trained to recognize specific
domains such as medical terminology, financial
jargon, or IT terminology. Moreover, the training
of the custom speech model is conducted using
training data (conversation audio). Figure 41
illustrates the difference in transcription accuracy
between the base model and the trained
custom speech model. As part of the speech
model training, ambient noise filtering can be
implemented based on training data comprising
audio data of the ambient noise, thereby
improving the accuracy of the speech conversation.
However, this can only be achieved in a consistent
environment.

67
Figure 39: MS Teams custom speech model.

5. VALIDATING THE REALIZED SYSTEM

system functionality differently, or desire more
customization options. Gathering user feedback
from system usage is crucial for addressing these
requirements. Figure 8 provides an overview
of different techniques for evaluating user
interactions (Leary & West, 2023). Performance
metrics such as effectiveness in task performance,
efficiency, and user-friendliness should be assessed
using a sufficiently large sample size (10-20) to
draw conclusive statements.

5.2 Does the design aid in the
capture of and searching
for specific conversation
data? & Does the design aid in
the amount of requirement
relevant information that can
be captured with notetaking
using the marker prototype?
As referenced earlier in this thesis, a final test was
set up to provide answers to these questions. The
test involved an interview and a group discussion,
with a total of 9 experts, including the client
supervisor and their PhD supervisor.

A simulated elicitation interview was conducted,
where a fictive client (represented by the client
supervisor) was interviewed by a Business Analyst
(played by one of the experts). The interview took
place face-to-face, utilizing a setup (as shown
in Figure 44) to ensure the correct separation
of speakert urns. These buttons were managed
to keep the focus of the participants on the
conversation. The interview focused on eliciting

It’s important to note that the accuracy of
conversation artifacts after implementing the
aforementioned solutions needs validation, as this
was not possible in this thesis. Both the custom
model, the phrase list, and the high-quality audio
recording equipment require resource investments
that need to be considered for evaluating the
solution.

Ability to recognize multiple speakers in a
face-to-face setting
The ability to accurately recognize multiple
speakers in a face-to-face setting using just one
laptop was not achieved during this thesis. The
push-to-talk method (illustrated in Figure 38) was
explored but found to be impractical for elicitation
interviews as it requires participants to manage
their microphone’s status, leading to potential
distractions and lapses in concentration.

To enhance the system’s capability to capture and
generate conversation artifacts, an improvement
could involve integrating a smart speaker
(designed to seamlessly integrate with Microsoft
Teams functionalities, and depicted in Figure 40)
into the meeting room environment. This smart
speaker facilitates face-to-face conversations
involving up to 10 participants by setting up
voice profiles for each individual. By recognizing
participants’ voices, the smart speaker (figure
40) can accurately attribute speakerturns to the
corresponding individuals, thus addressing the
challenge of incorrect speakerturn formulation
in face-to-face conversations. Integrating such a
product would enable the processing of client/
stakeholder meetings into conversation artifacts
and facilitate the documentation of brainstorming
sessions involving multiple participants in the

to be accessible, meaning users have physical
access and permissions to access the data. To
address this requirement, a portable database
stored on a USB flash drive has been created,
allowing users to access it anywhere. However,
in organizations with multiple users, a shared
centralized conversation database is necessary.
This centralized database should employ a
consistent strategy for storing generated
conversations.

Integration with the MS Teams Graph API enables
automatic access to conversations generated by
MS Teams. Users can effortlessly import transcripts
generated in Stream directly into the database,
enabling prompt processing post-conversation.
Microsoft Graph APIs for Microsoft Teams meeting
transcripts facilitate this seamless integration,
requiring only MS Teams login credentials to
authorize automatic importation (Microsoft Graph
API, n.d.).

GUI
Users can inspect the processed results through
the graphical user interface (GUI), as illustrated
by the GUI visuals in the chapter realized system.
The visualization of speakerturns was validated
by comparing the processed outputs stored in
the system to the data visualized in the GUI. All
GUI functionalities have been tested using small
test conversations to compare expected system
behavior with actual behavior. The GUI underwent
iterations until it performed as expected.

However, while the system behaves as expected,
it’s essential to ensure that information is
presented to users as desired. Users may have
additional or different requirements, perceive

same room. It’s worth noting that the smart
speaker needs to be connected to a Microsoft
Teams meeting room setup and is therefore not a
portable solution.

By incorporating both of these additional solutions,
the envisioned system (as illustrated in Figure 66)
can be realized, offering improved capabilities for
capturing and generating conversation artifacts in
various settings.

Is the system capable of
automatically processing a
conversation?
Yes, the system in its current state can
automatically process conversation artifacts (if
generated using MS Teams) by detecting which
speakerturns contain questions and determining
the relevance of these questions, as outlined in the
NLP functionalities chapter. All outputs generated
at each processing stage are stored within the
system for analysis.

The functionality of these processes has been
validated by processing multiple conversations
numerous times, analyzing the outputs at each
stage to ensure correct functionality and timing.
Appendices 8-16 present the outputs generated at
each stage, including the results from processing
the test conversation used in the final user test.
It should be noted that while not all questions
have been validated to be identified correctly,
manual inspection of conversations can aid in
quantitatively proving the effectiveness of this
functionality. By manually processing system
outputs on a large scale, conclusive results can
be obtained, demonstrating the system’s ability

to accurately identify all questions present in
the speakerturns. If it is determined that the
processing is not 100% accurate, the system
should prioritize recall over precision, ensuring that
all questions are at least identified. Additionally, an
expert evaluation should be conducted to assess
whether any relevant questions are filtered out
(again, prioritizing recall over precision).

Running the processing functionality requires only
an average of 10 mouse clicks and the provision
of a conversation title, two speaker names, and a
file path, taking up approximately 2 minutes. The
processing itself takes an average of 10-15 minutes
and can be run in the background. Additionally,
users are required to install Java, which takes a
one-time investment of approximately 5 minutes
with no need for complicated installation steps.
Given the minimal time required to process a
conversation into measurable outputs, the system
presents an opportunity to generate a significant
amount of research data while minimizing user
effort.

Can the processed results be
inspected?
Database
The processed results are valuable for both
researchers and users of the system, with
researchers interested in analyzing the results and
users wanting to utilize the processed conversation
data for various activities. By storing outputs in
consistent locations and formats (using consistent
names and Excel format), researchers can easily
locate specific processing outputs for research
purposes.
It’s essential for any processed conversation data

requirements for a fictive case formulated for this
purpose (included in the test plan in Chapter 7 of
the appendix).

The Business Analyst was provided with the
marker prototype (with the pen input replaced by
a button) and received a short introduction on its
functionality beforehand. They were asked to use
the marker prototype while taking notes when
requirement-relevant information was provided
by the client. The other experts were instructed
to take notes of the conversation for comparison.
However, due to a desynchronization between
the marker time and the conversation time, this
comparison could not be made as planned. This
issue arose from the setup of the prototype in
advance, which resulted in an unforeseen conflict
between MS Teams and the prototype. Chapters
8-16 of the appendix display all the outputs
generated during the session.

Following the interview, a demonstration of the
system design and processes was conducted. One
of the experts was tasked with performing various
actions within the prototype, highlighting areas
for improvement in button wording and icon
clarity. Subsequently, a group discussion ensued,
covering topics to assess the performance of both
the system design and the marker prototype.
While a group discussion with experts cannot lead
to definitive conclusions (Eger et al., 2012), it can
provide valuable insights into the validity of the
designs.

The main discussion points included questions
such as ‘Would you use the systems as-is, why

69

5. VALIDATING THE REALIZED SYSTEM

(not)?’, ‘Does the marker prototype aid in the
notetaking process, how (not)?, and can it fully
replace notetaking?’, and ‘Does the system
design provide value to the Business Analyst by
allowing the filtering of conversations?’ Alongside
brainstorming for further improvements, these
questions guided the discussion.

Due to time constraints, the interview was limited
to 15 minutes, resulting in a small conversation
dataset. With such a short duration, manual
processing of the data is less burdensome, as
the conversation is easily remembered, leaving
little room for irrelevant data to be generated.
Consequently, the utility of the systems for such
small datasets may be questioned, especially
considering that processing time is comparable
to the conversation duration. While the necessary
test conditions could not be fully realized during
the thesis, allowing the experts to experience the
systems’ functionality in practice facilitated an
insightful discussion.

Overall, the consensus among the experts was
that both the system design and the marker
prototype show significant potential and warrant
further development. Despite the limitations of the
small dataset and time constraints, the discussion
highlighted the interest and enthusiasm for
advancing these systems.

During the discussion, the marker prototype’s
function of marking speakerturns to aid in
capturing requirement-relevant information
was scrutinized. It was acknowledged that while
dedicated transcribers could serve this purpose,
not all companies have the resources for such an
option. The cost-effectiveness and performance

of each approach remain inconclusive, with mixed
opinions among the experts regarding the use
of the marker prototype as-is for data capture.
However, further development was deemed
necessary, especially considering that the push-
button interaction was novel and required some
time for analysts to adjust during the conversation.
Nevertheless, aside from its data capture capability,
the marker prototype was deemed valuable
for providing measurable data from elicitation
conversations without disrupting the natural flow
of the discussion. Gaining insights into when
and how analysts take notes could significantly
contribute to further research in conversational
requirement elicitation.

The potential to interact with speakerturns in
real-time was recognized as offering valuable
opportunities, such as quickly collecting,
manipulating, and presenting speakerturns
during the conversation, thereby enhancing
communication between analysts and clients.
However, realizing this functionality requires
further research.

The ability to identify and filter questions,
particularly relevant ones, was highly valued and
deemed useful for practical use as-is. Suggestions
for multiple changes, primarily focused on
improving the GUI to better align with personal
preferences, were also mentioned.

In conclusion, both the system design and the
marker prototype were seen to hold high potential
for providing value to business analysts. However,
practical testing and development are necessary
to fully realize this potential. A development
roadmap, informed by the results of the validation

phase, has been created for the client, outlining
recommendations for further system development.
The next chapter will detail how the system can
progress from the current state to a realizable
system, addressing accuracy and speakerturns
issues. Additionally, the next chapter will outline
plans for further research and development,
including a roadmap for implementing
conversation data processing into Fizor’s workflow.

A MS Meeting room consists
of a console that is used
to manage the meeting
room and runs on it’s own
operating system. To this
console different kinds
of hardware are usaually
connected such as cameras
speakers and monitors to
enable hyrbrid collaboration.

71

Figure 41: Example of domain specific words being mistranslated. Using the custom speech model of MS Teams makes it so it is translated correctly (from speech.microsoft.com).

Figure 40: MS Teams integrated smart speakers of different brands.

Figure 42: MS Teams meeting room setup.

5. VALIDATING THE REALIZED SYSTEM

73
Figure 43: Realizable system making use of MS Teams hybrid meeting rooms and compatible smart speakers.

Controlled MS Teams
hibryd meeting room

Microsoft Teams Microsoft Stream MS TEAMS API Realizable system GUI

Controlled environment,
online conversation

words of other
languages,

unknown words or
names

words of other
languages,

unknown words or
names

Record Record
conversation conversation

audioaudio

Convert speech Convert speech
to text (~100% to text (~100%

accurate)accurate)

Custom speech Custom speech
model & phrase model & phrase

listlist

Match text, Match text,
speaker, and time speaker, and time

100% accurate 100% accurate
using voice profilesusing voice profiles

Store Conversation Store Conversation
Artefact & Artefact &
RecordingRecording

Access and transfer Access and transfer
Conversation Conversation

Artefact Artefact
automaticallyautomatically

Format Transcript Format Transcript
AlgorithmAlgorithm

Store formatted Store formatted
conversation artefact conversation artefact

in systemin system

5. VALIDATING THE REALIZED SYSTEM

75

Any uncontrolled face to face setting

Figure 44: Setting used during the elicitation
interview of the final test using the marker
prototype.

Figure 45 Use of marker prototype in the created test setting.

5. VALIDATING THE REALIZED SYSTEM

77

6. IMPLEMENTATION ROADMAP

Figure 46: Implementation and further research and development of the designed system.

6.3 Implementation step 3:
Use Evaluation
Following the conclusion of the test period, users
will undergo interviews aimed at evaluating
the collected usage data. Through these
interviews, users will be prompted to provide
detailed feedback, elucidating any encountered
issues, positive experiences, or suggestions
for improvement. This feedback will serve to
establish a comprehensive knowledge base of user
requirements and enhancement opportunities.
Subsequently, research and development initiatives
will be initiated to enhance various layers of the
system based on insights gleaned from the user
evaluation process.

Implementing an automated conversation capture
and processing system holds significant promise
for organizations, especially those heavily reliant
on conversations to gather requirement-relevant
information. While the system prototype still
requires further validation and development,
it is ready for internal implementation at Fizor.
By integrating the system into our workflows
and continuously evaluating its performance,
functionalities can be refined over time. This
iterative process, informed by a growing
knowledge base, will enable us to enhance
different aspects of the system while preserving its
core functionality.

6.2 Implementation step 2:
Utilizing Processed
Conversation Data
Access to automatically generated high-accuracy
conversation artifacts holds intrinsic value by
eliminating the need for manual transcription, thus
providing stakeholders with comprehensive access
to the entire conversation without additional
time investment. This accessibility facilitates
retrospective review of discussions, enabling
stakeholders to revisit and reflect on conversations
without delay. Moreover, diverse conversation
types, such as brainstorms, can be effectively
captured, preserving ideas and considerations
articulated during meetings for future reference
and communication.

Additionally, the groundwork has been laid to
integrate the system design into the manual
processing of conversations into requirements.
Initially, the system design will be distributed
to 10-20 Business Analysts, a process requiring
minimal resources, including USB drives and a few
minutes for duplication. Over the course of several
months, analysts will utilize the system in various
scenarios, documenting their experiences through
questionnaires. These questionnaires will capture
feedback on usability, performance, and any
encountered limitations or missing functionalities.
Subsequently, the collected feedback will
undergo evaluation to inform future development
endeavors.

6.1 Implementation step 1:
Standardizing Layers One and
Two (Capturing & Storing)
The initial phase of implementation focuses on
establishing a robust foundation for capturing
and storing conversation data effectively. This
entails building upon the requirement-relevant
information elicited from conversations. It is
essential to prioritize the implementation of
the first two layers, which involve accurately
capturing conversations and storing them in a
centralized conversation database. Without access
to accurately processed conversation data, the
other functionalities of the system cannot operate
optimally.

Fortunately, Fizor already possesses a dedicated
meeting room equipped with high-quality
recording equipment and a tailored MS Teams
meeting room setup. Assuming that the training
of MS Teams’ speech model ensures the necessary
accuracy in conversation data capture, generating
conversation artifacts merely requires users
to activate the record button during online
conversations. Additionally, the inclusion of a smart
speaker, coupled with the setup of voice profiles
for each participant, facilitates the accurate capture
of face-to-face conversations held in the meeting
room.

However, capturing conversations alone does not
suffice to provide value; the captured data must
be accessible to relevant stakeholders. Thus, it
is imperative to establish a standard for storing
conversations at consistent, shared locations
accessible to authorized individuals. Furthermore,

linking various types of data to the conversation
artifact, such as recognizable names, descriptions,
participants, and dates, could enhance accessibility
and usability (database concept of figure 15).
It provides an overview of this standardized
approach. While MS Teams already shares a copy
of the meeting recording with all participants,
creating a standardized shared database ensures
accessibility for individuals interested in the
conversation but unable to participate. This
includes those unable to attend due to illness
or stakeholders like developers keen on staying
informed about developments. Moreover,
standardizing the storage of conversation data
lays the necessary groundwork for subsequent
implementation steps.

6.4 Implementation step 4:
Research and development
The improvement journey begins by leveraging
the insights gathered from user feedback and
evaluation to refine the system’s performance and
functionality. The modular nature of the system
allows for targeted enhancements to individual
layers without necessitating a complete overhaul,
ensuring seamless integration and continuity
of operations. Incremental improvements pave
the way for sustained progress over time, with
foundational advancements often unlocking new
possibilities in higher layers.

Conversation Artefact Generation – The quest for
accurately capturing conversations across diverse
settings remains an ongoing pursuit, necessitating
continued research and development efforts.
Evaluating the performance of speech conversion
using the trained speech model of MS Teams
represents a crucial step in validating its efficacy.
Through systematic evaluation of generated
conversation artefacts and iterative model
refinement, strides can be made towards achieving
higher levels of accuracy and reliability.
Additionally, identifying and rectifying incorrectly
converted words offers a pathway to enhancing
conversion accuracy. By curating a comprehensive
phrase list that encompasses names of frequently
encountered companies and individuals, domain-
specific terminology related to Low Code practices,
processes, and other IT jargon, conversion accuracy
can be bolstered. This list serves as a foundational
resource that evolves over time, reflecting the
dynamic nature of language and communication

79

6. IMPLEMENTATION ROADMAP

81
Figure 47: GUI functionalities realized in Low Code Development Platform Thinkwise. Figure 48: GUI functionalities realized in Low Code Development Platform Thinkwise.

6. IMPLEMENTATION ROADMAP

within Fizor’s ecosystem.

Anticipating advancements in speech-to-text
functionalities, the prospect of future innovations
holds promise for broader applicability. The
emergence of new products facilitating seamless
integration with platforms like MS Teams presents
opportunities to expand the scope of conversation
artefact generation. Technological breakthroughs
enabling the accurate separation of speaker turns
in various conversation settings could revolutionize
artefact generation, paving the way for enhanced
versatility and utility.

Moreover, exploring methods for recognizing
speakers in portable solutions and enabling real-
time interaction with speaker turn data represents
fertile ground for further inquiry. By delving into
these areas, Fizor can stay at the forefront of
technological innovation, driving advancements
that empower more effective communication and
collaboration.

NLP Functionalities – Expanding the repertoire of
annotation functionalities within the system
represents a pivotal avenue for enriching its
capabilities. Leveraging the existing integration
of the StanfordCoreNLP system provides a
solid foundation for incorporating additional
annotations, such as tokenization, into the system’s
framework. By harnessing these annotations,
synergies with advanced tools like Trace2Conv
can be explored, opening avenues for enhanced
functionality and utility.

The integration of more annotations not only
broadens the system’s feature set but also
unlocks new possibilities for data analysis and

Figure 72 serves as a testament that the interface
can be swiftly replicated in Thinkwise within a
day, realizing the ability to navigate and filter
conversations. This demonstrates the platform’s
agility and adaptability to Fizor’s requirements.
However, to ensure seamless integration between
the GUI and the underlying processing system,
it’s essential to establish an API interface that
facilitates bidirectional communication.

By establishing an API interface, both the
GUI and the processing system can evolve
independently while preserving interoperability
and system functionality. For instance, the GUI
seamlessly integrates with Excel files, facilitating
streamlined data communication from the system
design output. This interoperability ensures
data consistency and integrity across different
components of the system architecture.

Furthermore, implementing numerous UI
enhancements can significantly enhance the overall
user experience. Elements such as tooltips, icons,
and informative messages play a pivotal role in
enhancing clarity and providing guidance to users,
particularly in error scenarios. These enhancements
contribute to a more intuitive and user-friendly
interface, empowering users to navigate the
system with confidence and efficiency.
Moreover, enforcing checks to ensure correct data
input is crucial for maintaining data accuracy and
integrity. For example, mandating the use of only
MS Teams conversation artifacts helps prevent
formatting discrepancies that may disrupt Natural
Language Processing (NLP) functionality. By
enforcing data input standards and error handling
mechanisms, the system enhances reliability and
consistency in processing conversation data.

manipulation. For instance, enabling finer-grained
search capabilities and more granular conversation
filtering can empower users to extract deeper
insights from conversation data. By leveraging
NLP outputs to analyze system performance,
valuable insights can be gleaned, driving iterative
improvements and fueling further research in this
domain.

Moreover, the exploration of NLP outputs holds
potential to catalyze research endeavors aimed at
advancing the understanding of conversational
dynamics and linguistic patterns. Through
systematic analysis of NLP-generated outputs,
trends, correlations, and anomalies can be
identified, paving the way for innovative research
initiatives and breakthroughs in natural language
processing.

By prioritizing the enhancement of NLP
functionalities, Fizor can augment the
sophistication and effectiveness of its conversation
processing capabilities, ultimately empowering
users with more robust tools for information
extraction, analysis, and decision-making.

Database – Expanding the capabilities of the database
management system represents a critical step
towards enhancing the system’s usability and
scalability. Presently, the system’s database
structure lacks flexibility, as it only supports
a single project folder without provisions for
additional folder creation or organization within
the GUI. To address this limitation, the system
should be augmented with comprehensive file
management functionalities, empowering users to
create, edit, delete, and move folders to suit their
organizational needs.

By enabling users to establish a hierarchical file
structure within the system, they can effectively
organize and manage conversation data according
to project, department, or any other relevant
categorization scheme. This enhanced flexibility
not only streamlines data management processes
but also fosters greater user autonomy and
efficiency.

Furthermore, to facilitate seamless integration with
the existing infrastructure of organizations, the
database should incorporate capabilities for linking
to cloud storage platforms. By leveraging APIs and
integration frameworks, such as those provided
by leading cloud service providers, the system
can enable direct storage of conversation data in
shared cloud repositories. This integration not only
enhances data accessibility and collaboration but
also ensures data security and compliance with
organizational policies.

Also, to enable functionalities of, for example
Trace2Conv, the system must enable more NL
artefacts to be stored and linked to specific
projects and conversations such as requirement
artefacts.

Interaction Systems – Recognizing the prototype nature
of the system’s graphical user interface (GUI),
there’s a clear imperative for further development
to elevate its effectiveness, efficiency, and user-
friendliness. Leveraging Fizor’s proficiency in Low
Code Development (LCD), platforms like Thinkwise
offer distinct advantages. By harnessing existing
platform knowledge, development efforts become
more streamlined, minimizing the need for
extensive coding and accelerating time-to-market. 83

6. IMPLEMENTATION ROADMAP

85

7. CONCLUSION & EVALUATION

Requirement Relevant Information

Conversations

Capturing Conversation Data

NLP Processing

System Functionalities

Use In Practice

Storing Conversation Data

Requirement Relevant Information

Conversations

Capturing Conversation Data

Token Annotation

BB* Database

Question & Relevant Question Annotation

System Functionalities

Use In Practice

Data folder

Token navigation

DESIRED SYSTEM CURRENT SYSTEM

Figure 49: Thesis results presented in sequence.

87

Requirement Relevant Information

Conversations

MS Teams Speech-To-Text (Base Model)

Use In Practice

Importance Annotation

Advanced Notetaking
Prototype System Functionality

Use in practice

NLP

Storing Conv. Data

Capturing Conv. Data

USB Portable Database

Question & Relevant Question Annotation

Requirement Relevant Information

Conversations

Standardizing the generation of conversation artefacts in the agile software

Use In Practice

Advanced Notetaking
Prototype

Realise Usability In
PracticeNew Usecases / New Users

New Functionalities

Adding More NLP Functionalities

Improving
Database

Improving Conv.
Generation

NLP Functionalities
(Question/Relevant Question/Marked)

Creating a shared conversation database where the people who should have access can
locate the generated conversations in a standardized location

REALIZED SYSTEM

IMPLEMENTATION &
FURTHER RESEARCH AND
DEVELOPMENT

7. CONCLUSION & EVALUATION

This thesis has produced a prototype that has the
potential to be useful for Business Analysts in the
activity of processing captured elicitation data into
structured requirements. While it may not always
be of use, in longer real-life conversations the
ability to filter conversations to search for specific
conversation data has the potential to be valuable
for a Business Analyst (Spijkman et al., 2023).

The initial problem statement has been translated
to a desired system consisting of multiple system
layers that build on elicitation interviews used to
elicit requirements and ends in a use case to use
this (processed) data (figure 49). The initial system
has been analysed and with this initial system a
system prototype has been realized.

The main functionality on system level that has
been tried to realize is to capture all conversation
data generated during the elicitation interview
(so no conversation data is lost) and allowing a
Business Analyst to locate requirement relevant
information in this conversation dataset using
filters.

The prototype that has been realized is a system
that consists of multiple subsystems labeled ‘MS
Teams, NLP, GUI, and Marker’, each with their own
behaviour and components, that together achieve
the main functionality of the system.

The components of REConSum have been
used as start of the system design and have
been integrated into one system prototype
that can be used through a GUI. This removed
the need for installing python and the desired
packages, writing code that runs the algorithms
of REConSum, and manually downloading and

installing of StanfordCoreNLP (a system necessary
for functioning, requiring the downloading and
installing of java) and running it manually. This
solution was necessary as the knowledge and time
needed to run REConSum would ask to much of
any user.

A solution has been provided for users to interact
with the outputs that are being generated by the
system through the design of the system GUI,
storing the system outputs in excel files, and
realizing the systematically accessing and storing
of information.

To create a seamless transition between the MS
Teams Conversation Artefact output and the
expected input an import function has been
integrated that performs all necessary steps to
format, process and view the conversation in the
background. This in total takes 5-10 minutes in
total from start to end, and takes 15 minutes of
processing time after which the conversation can
be directly used by the Business Analyst.

Within the scope of this thesis only the systems
functionality could be realized and validated.
The system will most definetley need to
see improvements to fit more specific user
requirements for example. With how the system is
designed future research questions can be tailored
to test the effectiveness, efficiency, and user
friendlyness in regards to capturing, processing,
and using requirement relevant information from
conversation.

Within the scope of this thesis conversation
artefact with enough accuracy could be realized.
Furthermore, in face to face conversations,

speakerturns are formulated as required because
of how MS Teams functions. Solutions with
high chance to solving these problems have
been provided in a implementation plan that
provides guidelines for further research and
development and how to implement the prototype
within the workflow of Fizor as a first step. This
implementation provides initial requirements
of implementing and validating the method to
accurately capture requirement artefacts. It also
provides for each part of the system suggestions
for further research and development.

This prototype is not a finished product but
should be considered as a tool designed for Fizor
to get useful feedback from users to be used in
further research and development while minimally
disrupting the current workflow of Business
Analysts.

89

7. CONCLUSION & EVALUATION

2023. https://www.statista.com/statistics/1331323/
videoconferencing-market-share/

Sutcliffe, A., & Sawyer, P. (2013). Requirements
elicitation: Towards the unknown unknowns. 2013
21st IEEE International Requirements Engineering
Conference, RE 2013 - Proceedings. https://doi.
org/10.1109/RE.2013.6636709

tkinter — Python interface to Tcl/Tk. (n.d.).
Retrieved April 26, 2024, from https://docs.python.
org/3/library/tkinter.html

Waszkowski, R. (2019). Low-code platform for
automating business processes in manufacturing.
IFAC-PapersOnLine, 52(10). https://doi.
org/10.1016/j.ifacol.2019.10.060

Xu, B., Tao, C., Feng, Z., Raqui, Y., & Ranwez,
S. (2021). A Benchmarking on Cloud based
Speech-To-Text Services for French Speech
and Background Noise Effect. http://arxiv.org/
abs/2105.03409

8. REFERENCES
Al-Saqqa, S., Sawalha, S., & Abdelnabi, H. (2020).
Agile software development: Methodologies and
trends. International Journal of Interactive Mobile
Technologies, 14(11). https://doi.org/10.3991/ijim.
v14i11.13269

Bano, M., Zowghi, D., Ferrari, A., Spoletini, P., &
Donati, B. (2019). Teaching requirements elicitation
interviews: an empirical study of learning from
mistakes. Requirements Engineering, 24(3). https://
doi.org/10.1007/s00766-019-00313-0

Benyon, D., Turner, P., & Turner, S. (2005).
Designing interactive systems: People, Activities,
Contexts, Technologies. Pearson Education.

Berrezueta, S. (2023). Proceedings of the 18th Latin
American Conference on Learning Technologies
(LACLO 2023). Springer.

Cambridge University Press & Assessment.
(2024). Cambridge Dictionary. https://dictionary.
cambridge.org/dictionary/english/user-experience

Carrier, C. A., & Titus, A. (1979). The effects of
notetaking: A review of studies. In Contemporary
Educational Psychology (Vol. 4, Issue 4). https://doi.
org/10.1016/0361-476X(79)90050-X

Davey, B., & Cope, C. (2008). Requirements
Elicitation – What’s Missing? Issues in Informing
Science and Information Technology, 5. https://doi.
org/10.28945/1027

Davey, B., & Cope, C. (2009). Consultants’
experience of requirements elicitation
conversations - An empirical model. 17th European
Conference on Information Systems, ECIS 2009.

webcast
reMarkable. (n.d.). Retrieved April 26,
2024, from https://remarkable.com/?utm_
source=google&utm_medium=paid&utm_
campaign=brand&gad_source=1&gclid=Cj
wKCAjwoa2xBhACEiwA1sb1BGswUuieTBCg
pc2DgbA4VeFKb-3WGZMk22XygB9pp3UF-
lokj0UScxoCu5cQAvD_BwE

Speech SDK. (n.d.). Retrieved April 26, 2024,
from https://learn.microsoft.com/en-us/azure/ai-
services/speech-service/speech-sdk

Speech Studio. (n.d.). Azure Cognitive Services
Speech. Retrieved January 10, 2024, from Azure
Cognitive Services Speech

Spijkman, T., Dalpiaz, F., & Brinkkemper, S.
(2022). Back to the Roots: Linking User Stories
to Requirements Elicitation Conversations.
Proceedings of the IEEE International Conference
on Requirements Engineering, 2022-August.
https://doi.org/10.1109/RE54965.2022.00042

Spijkman, T., de Bondt, X., Dalpiaz, F., &
Brinkkemper, S. (2023). Summarization of
Elicitation Conversations to Locate Requirements-
Relevant Information (pp. 122–139). https://doi.
org/10.1007/978-3-031-29786-1_9

Sujay Vailshery, L. (2024a, February 5). Microsoft
Teams: number of daily active users 2019-2023.
https://www.statista.com/statistics/1033742/
worldwide-microsoft-teams-daily-and-monthly-
users/

Sujay Vailshery, L. (2024b, October 10). Statista:
Global market share of videoconferencing software

Davis, A., Dieste, O., Hickey, A., Juristo, N.,
& Moreno, A. M. (2006). Effectiveness of
requirements elicitation techniques: Empirical
results derived from a systematic review.
Proceedings of the IEEE International Conference
on Requirements Engineering. https://doi.
org/10.1109/RE.2006.17

Davis, C. J., Fuller, R. M., Tremblay, M. C., &
Berndt, D. J. (2006). Communication challenges
in requirements elicitation and the use of the
Repertory Grid technique. Journal of Computer
Information Systems, 46(5 SPEC. ISS.). https://doi.or
g/10.1080/08874417.2006.11645926
E
ger, A., Bonnema, M., & Lutters, E. (2012). Product
Design (1st ed.). Eleven.

Ferrari, A., Spoletini, P., & Gnesi, S. (2016).
Ambiguity and tacit knowledge in requirements
elicitation interviews. Requirements Engineering,
21(3). https://doi.org/10.1007/s00766-016-0249-3

Hirschberg, J., & Manning, C. D. (2015). Advances
in natural language processing. In Science (Vol.
349, Issue 6245). https://doi.org/10.1126/science.
aaa8685

Johnson, J. (2021). Designing with the Mind
in Mind. In C. Hockaday (Ed.), Designing with
the Mind in Mind (3rd ed.). Morgan Kaufmann
Publishers.

Khurana, D., Koli, A., Khatter, K., & Singh, S. (2023).
Natural language processing: state of the art,
current trends and challenges. Multimedia Tools
and Applications, 82(3). https://doi.org/10.1007/
s11042-022-13428-4

Leary, H., & West, R. (2023). Foundations of
Learning and Instructional Design Technology. In
Foundations of Learning and Instructional Design
Technology. https://doi.org/10.59668/473

Lucassen, G., Dalpiaz, F., van der Werf, J. M. E. M., &
Brinkkemper, S. (2016). The use and effectiveness
of user stories in practice. Lecture Notes in
Computer Science (Including Subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 9619. https://doi.org/10.1007/978-
3-319-30282-9_14

Meth, H., Brhel, M., & Maedche, A. (2013). The
state of the art in automated requirements
elicitation. In Information and Software Technology
(Vol. 55, Issue 10). https://doi.org/10.1016/j.
infsof.2013.03.008

Microsoft Custom Speech. (n.d.). Retrieved April 26,
2024, from https://speech.microsoft.com/portal/
customspeech/overview

Microsoft Graph API. (n.d.). Retrieved April 26,
2024, from https://devblogs.microsoft.com/
microsoft365dev/microsoft-graph-apis-for-
microsoft-teams-meeting-transcripts-now-
generally-available/

Mohammad Rajabali Nejad. (2020). Safety by
Design - Engineering Products and Systems.
SafetyCube.com.

Project Management Institute. (2016).
Requirements management : a practice guide.
Redmond, W. (2019, April 24). Microsoft: Earnings
Release FY19 Q3. https://www.microsoft.com/en-
us/Investor/earnings/FY-2019-Q3/press-release- 91

93

9. APPENDIX 0: REALIZED SYSTEM DEVELOPMENT MANUAL

Figure 22 & 23: Realized System, presenting the realized solution on each ‘foundational layer‘.

System Database
Storing (Processed) Conversations

System Processing
Make the conversation

understandable by the system

System GUI
Interacting with the system

Conversation conversion
Speech to natural language

This chapter provides an in-depth exploration of
the system prototype developed to address the
identified problem. Serving as an initial stride in
the development journey, this prototype aims
to generate conversation artefacts from natural
language, process them, and store them in a
central database for utilization across the agile
software development process. The primary
objective of this prototype is to furnish a functional
model capable of practical application, facilitating
user feedback collection to enhance various facets
of the system.

The chapter is organized around the realization
of four subsystems, as delineated in the problem
analysis. Subchapter System 1 delves into the
rationale and methodology behind harnessing
Microsoft Teams to generate conversation
artefacts. System 2 provides an intricate exposition
of the graphical user interface (GUI) developed
to enable the desired user interactions. System
3 elucidates the natural language processing
(NLP) functionalities incorporated into the system
design and delineates their operational processes.
System 4 delineates the mechanisms governing
data storage and retrieval within the system
design. Lastly, System 5 unveils a prototype design
harmonizing with such a system, seamlessly
integrating with the notetaking process.

into a DataFrame (data that the processing
algorithms can interact with).

To ensure the usability of the system, several
enhancements were incorporated into the
conversation artefact generation process to
align with the requirements of documenting
speakerturns and capturing accurate requirement-
relevant data. The efficacy of MS Teams’ speech-
to-text functionality was evaluated through various
test conversations. However, the system in its
current state cannot be deemed practical due
to the inadequate accuracy of the conversation
artefacts. In both online and face-to-face settings,
factors such as unfamiliar words, pronunciation
variations, and foreign language terms contribute
to this accuracy challenge. Specifically, in face-
to-face scenarios, hardware quality, microphone
capabilities, room acoustics, background noise,
and simultaneous conversations further exacerbate
the issue.

To elevate the accuracy to usable levels within the
broader system design, a crucial procedural step
is necessary. This step involves comparing the
conversation artefacts with the audio recordings
of the conversations and making necessary
corrections. However, this correction process
is time-intensive, as elaborated upon in the
validation chapter, rendering it impractical for
direct implementation.

In instances where only one laptop and one
MS Teams account are used during meeting
recordings, MS Teams consolidates all conversation
text into a single speakerturn (refer to the
validation chapter). To address this limitation,
a “push-to-talk” system was implemented. This

System 1: Generating
conversation artefacts
Microsoft Teams offers a unique capability to
convert speech to text in real-time through Azure
cognitive speech services (Speech Studio, n.d.), a
feature not found in other conferencing software.
This functionality, coupled with automatic linking
of converted text to the respective speaker with
timestamps (referred to as Speakerturns), enhances
the efficiency of converting conversations into
natural language (figure 25 presents an example of
a generated speakerturn).

The utilization of MS Teams is illustrated in Figure
24, depicting its application in both online and
face-to-face settings. However, it’s essential
to acknowledge certain limitations associated
with MS Teams that were uncovered during
testing the performance of the system. One
such limitation pertains to the generation and
sorting of speakerturns by the system. MS Teams
generates speakerturns by associating transcribed
text with the source of the audio, typically the
MS Teams client from which the audio originates.
Consequently, it’s imperative for each user to
be present in the MS Teams meeting using their
respective MS Teams client to ensure accurate
differentiation of speakerturns.

During the performance testing of the speech-to-
text functionality (refer to Chapter 6 for validation
details), a notable challenge arose in face-to-face
conversations conducted using a single laptop with
only one MS Teams client. In this scenario, only one
speakerturn containing all conversation text was
generated, highlighting the necessity for individual

solution entails the use of two laptops, each
equipped with a microphone and a push button
(as depicted in Figure 27). Both laptops share
a single MS Teams account and are situated in
the same meeting room, thereby facilitating
accurate separation of speakerturns. Notably, the
online setting already operates as intended, as all
participants are inherently present in the virtual
meeting room with their respective accounts.

The conversation artefact is retrieved from the
Stream environment (refer to Figure 26) and can be
stored anywhere on the Business Analyst’s desktop
or laptop. Subsequently, the user can locate the
conversation artefact via the system’s GUI (figure
28). The user has the option to assign a name to
the conversation for easy identification within
the system and provide names for each speaker.
While the current prototype accommodates two
speakers, this can be easily scaled to include more
speakers in the future. This transition from MS
Stream to system input is designed to require
minimal effort, involving just a few clicks.

Upon pressing the “create” button, a formatting
algorithm is triggered. This algorithm, which has
been designed, executes two key functions. Firstly,
it converts the file to a text format (.txt) while
eliminating all unnecessary visual elements. The
resulting output, referred to as “raw_transcript,”
is stored in the system for validation purposes
(figure 30). Subsequently, the algorithm removes
extraneous text introduced by Microsoft Teams,
retaining only the speakerturns. This refined
output is stored as “formatted transcript” within
the system. Both outputs are provided in Appendix
Chapter 10 for reference, these have been
generated as part of a test case. As depicted in

MS Teams clients for accurate speakerturn
differentiation. While online conversations
inherently overcome this limitation, face-to-face
settings necessitated the development of an online
conversation configuration. This configuration
involved the use of two laptops, each equipped
with its own MS Teams client, within a single
meeting room. Additionally, to ensure proper
linkage of speakerturns to respective individuals, a
manual microphone mute button was integrated
with the MS Teams client (refer to Figure 27).

Upon conclusion of a conversation or termination
of the recording function, an audio/video file
(.mp4) and its corresponding transcript (.docx) are
automatically stored in the cloud environment
known as MS Stream. This cloud environment
facilitates easy access to these files, enabling users
to download them effortlessly (refer to Figure
26). User interaction beyond activating the record
and transcribe functions at the conversation’s
outset is minimal. Users simply select the desired
conversation for processing and storage within
the system. Subsequently, they can download the
conversation to any location on their desktop,
ensuring accessibility. With just a few clicks within
the GUI, users can swiftly locate and process the
chosen conversation, requiring only a few minutes.

This seamless transition is made possible
through a designed algorithm. This algorithm
effectively eliminates extraneous visual elements
and superfluous text introduced by MS Teams.
Additionally, it formats the set of speakerturns
to align with the preprocessing (.py) algorithm
of REConSum. Leveraging this algorithm as the
foundational component of the system design
facilitates the conversion of conversation artefacts

Figure 29, the conversation artefact supplied by
MS Teams is a Word file (.docx) containing images
and additional components, which are stripped
away during the reformatting process.

95

APPENDIX 0: REALIZED SYSTEM DEVELOPMENT MANUAL

97
Figure 24: MS Teams functionality in online setting (left) and face to face setting (right).

ease.

Figure 25: Example speakerturn from test conversation generated with
MS Teams.

Figure 26: Conversations stored in the MS Stream environment.

MS Teams | Online Setting

MS Teams | Face to face Setting

MS Teams
Recording

MS Teams
Recording

MS Teams
Speech-to-Text

MS Teams
Speech-to-Text

MS Teams
Cloud Storage

MS Teams
Cloud Storage

MS Teams
(Analyst)

MS Teams
(Analyst)

MS Teams
Meeting Room

MS Teams
Meeting Room

MS Teams
(Client)

Conversation
Artefact

.docx & .vtt

Conversation
Artefact

.docx & .vtt

Conversation
Artefact.docx,

Recording.mp4

Conversation
Artefact.docx,

Recording.mp4

Recording
.mp4

Recording
.mp4

Start/stop
meeting

recording

Start/stop
meeting

recording

Audio/video data
of Client

Audio/video data
of Analyst

Audio/video data

Audio/video data
analyst and client

Audio/video data

All audio &
video data

All audio &
video data

Current time,
speaker, and
audio data

Current time,
speaker, and
audio data

APPENDIX 0: REALIZED SYSTEM DEVELOPMENT MANUAL

99
Figure 27: Realized system to capture and process conversation artefacts.

Any uncontrolled face to face setting Microsoft Teams Microsoft Stream Laptop/PC Realized system GUI

Controlled environment,
online conversation

Low quality
recording
hardware,

background noises,

echos,

domain language,

words of other
languages,

unknown words or
names

Low quality
recording
hardware,

domain language,

words of other
languages,

unknown words or
names

Record Record
conversation conversation

audioaudio

Convert speech Convert speech
to text (~80% to text (~80%

accurate)accurate)

Match text, Match text,
speaker, and time speaker, and time

100% accurate100% accurate

Store Conversation Store Conversation
Artefact & Artefact &
RecordingRecording

Download Download
Conversation Conversation

Artefact & RecordingArtefact & Recording

Play back the Play back the
RecordingRecording

Compare Compare
Conversation Conversation

Artefact to recordingArtefact to recording

Correct conversion Correct conversion
mistakes in mistakes in

Conversation Conversation
ArtefactArtefact

Format Transcript Format Transcript
AlgorithmAlgorithm

Store formatted Store formatted
conversation artefact conversation artefact

in systemin system

APPENDIX 0: REALIZED SYSTEM DEVELOPMENT MANUAL

101
Figure 28: Within a couple of clicks the user can locate and import conversations from the Stream database.

Figure 29: Speakerturn format of stored Conversation Artefact in the MS Stream environment.

Figure 30: Outputs of both formatting steps stored in the database.

APPENDIX 0: REALIZED SYSTEM DEVELOPMENT MANUAL

103
Figure 31: GUI flowchart each end of this flowchart will be continued in the other sections of this chapter.

Figure 32: Main folder of the system database containing the functional prototype, python to run the prototype and a
bootloader called ‘RUN GUI.bat’ used to start the system GUI.

Figure 33: Home screen of GUI design.

APPENDIX 0: REALIZED SYSTEM DEVELOPMENT MANUAL

 5.2 System 2: GUI
The system’s graphical user interface (GUI) serves
as the primary means for users to interact with the
system. Developed using Python, the GUI leverages
tkinter, which is the standard interface toolkit for
Python (Tkinter — Python Interface to Tcl/Tk, n.d.).
Comprising multiple screens, the GUI facilitates
various types of interactions. These screens
include:

1. Home Screen: The central hub where users can
access different functionalities and navigate to
other sections of the system.
2. Import Conversation Pop-up: Allows users to
import conversation artefacts into the system
seamlessly. This pop-up streamlines the process
of bringing conversation data into the system for
analysis.
3. Speakerturn Canvas: Provides a visual
representation of speakerturns within the
conversation artefact. This canvas enables users to
view and interact with speakerturns efficiently.
4. Speakerturn in Context Pop-up: Offers additional
contextual information for individual speakerturns,
enhancing the user’s understanding of the
conversation flow and content.
5. Create Markerfile Pop-up: Enables users to
create marker files, which serve as annotations
or markers within the conversation artefact. This
functionality aids in organizing and annotating the
conversation data for further analysis.

Development and pre-use
requirements
The GUI has been developed using Python 3.11,
utilizing the tkinter module, which encompasses
all standard GUI components available in Python.

is provided accurately, the user can press the
“Create” button to initiate the processing steps
described in the next section, “System 3: NLP
Processing.” It’s important to note that the
prototype will import the conversation artefact into
the project folder that is currently selected. Please
be aware that this process may take approximately
10-15 minutes to complete fully. Once processed,
the resulting output can be located in the database
by clicking the “Update” button (refer to figure 34,
8).

Load conversation
To display processed conversations, the user can
load any conversation in the Speakerturn Canvas
by clicking the “Load Conversation” button (see
figure 34, 3). Activating this button triggers the
execution of the load_transcript.py algorithm.
Upon clicking the button, the algorithm enables
the Viewbar, which provides access to several
filtering options for the set of speakerturns (this
flow is visualised in figure 38). These options
include:

1. Full View Button: Displays all speakerturns of the
conversation.
2. Question View Button: Shows only the
speakerturns that contain a question.
3. Summary View Button: Presents the user with all
the speakerturns containing a relevant question.
4. Marker View Button: This functionality will be
discussed in System 5.

Additionally, the algorithm turn_frame.py has been
designed to present time, speaker, and text data
to the user. For each speakerturn, a turn_frame is
created with the corresponding data. If another

The system is self-contained on a single USB flash
drive, comprising a folder that stores all system
data, the Python interpreter necessary to run
the algorithms, and a bootloader responsible for
initiating the GUI upon user selection.
To ensure a seamless and user-friendly experience,
all essential packages have been pre-installed on
the USB drive. Presently, the system is compatible
only with Windows operating systems. Appendix
chapter 6 provides a comprehensive overview of
all required packages, including their versions,
needed to execute the system. To replicate the
system, simply copy this list into a .txt file and
install the packages using the command ‘pip install
-r requirements.txt’ in python.
Moreover, approximately 2.5 GB of free space is
required to run the system effectively. Additionally,
it is imperative to have Java pre-installed on the
system to enable certain functionalities within the
system.

Starting the system
To initiate the system, the user simply runs the
‘Run GUI’ bootloader, which directs them to the
home screen of the system GUI (refer to figure 33).
Here, the user can engage in various interactions
pertaining to the conversation database and
marker functionality (as described in system 5).
Interactions related to the conversation database
include:

1. Viewing the contents of the conversation
database.
2. Navigating to specific conversations within the
database.
3. Loading conversation artefacts.
4. Importing conversation artefacts.

conversation is loaded, the existing data is first
cleared before loading the currently selected
conversation. Please note that these features are
included with the intent to provide a positive user
experience of navigating the conversation to filter
the speakerturn dataset to search for specific
information. When the load conversation algorithm
is run, the filter is set to full view by default.

Speakerturns navigation
Page navigation
The system presents a maximum of 100
speakerturns at a time (due to technical limitations
in python). To navigate through the pages of
speakerturns, the user can utilize the page
navigation buttons.

Show speakerturns in context
To address the likelihood of requirement-relevant
information being contained in answers to
prompted interview questions, each speakerturn
includes a “Show in Context” button (disabled in
the Full View). Clicking this button opens a pop-
up where the user can view up to 10 speakerturns
before or after the selected speakerturn. By default,
the first speakerturn after the selected one is
presented to the user, as there’s a high probability
that it contains the answer to the question. This
feature is enabled in all views except the Full View.
To differentiate the annotation based on which the
speakerturns are filtered, distinct icons are used
for the Full View, Questions View, Summary View,
and Marker View. This functionality enhances the
user’s ability to navigate speakerturns effectively,
ensuring they can access relevant information with

Navigating the conversation
database
The navigation of the conversation database
involves the use of two dropdown menus
displaying all available projects and conversations
within the database (refer to figure 34). When a
new conversation is imported into the system, it
may not immediately appear in the dropdown
menu. To update the database and display the
newly imported conversation, the user can either
click the update button (see figure 34, 8) or restart
the application. Figure 31 illustrates the flow of
information between the GUI, the user, and the
database.

Import new conversation
To import a new conversation into the system, the
user can select the “Import Conversation Artefact”
button in the GUI (refer to figure 34, 4). This action
triggers the execution of the algorithm, which
has been specifically designed for this purpose.
Upon clicking the button, a pop-up window
appears, prompting the user to provide necessary
data linked to the conversation. The required
information includes:

1. Conversation Name: This serves as an identifier
for the conversation within the database.
2. Speaker Names: Currently, the system supports
two speakers, but this capacity can be easily
expanded. The names of the speakers can be
derived from the profile names of the meeting
room participants in MS Teams.
3. Filepath of the Conversation Artefact: The user
can locate the conversation artefact by using the
browse function included in the pop-up.
After ensuring that all required information 105

Figure 34: Navigating the system database in the GUI. (1)Project
and (2)conversation navigation, (3)load conversation, (4)import
conversation artefact, (5)select markerfile, (6)link markerfile, (7)create
markerfile, (8)update database, (9)close application.

Figure 35: Browse for the desired conversation artefact to import.

Figure 36: Pop-up to import a conversation artefact.

1. 3. 6. 7.
89

4.2. 5.
APPENDIX 0: REALIZED SYSTEM DEVELOPMENT MANUAL

107

Figure 37: Flowchart of the import conversation pop-up.

Figure 38: Flowchart of how a conversation is loaded in the GUI.

APPENDIX 0: REALIZED SYSTEM DEVELOPMENT MANUAL

109
Figure 39: All speakerturns of the conversation. Figure 40: Question view. The conversation filtered to show only the questions of the conversation.

APPENDIX 0: REALIZED SYSTEM DEVELOPMENT MANUAL

111
Figure 41: Flowchart of speakerturn in context pop-up. Figure 42: Speakerturn presented in the context of the conversation.

APPENDIX 0: REALIZED SYSTEM DEVELOPMENT MANUAL

113
Figure 43: Summary view. The conversation is filtered to show only questions relevant to the conversation.

APPENDIX 0: REALIZED SYSTEM DEVELOPMENT MANUAL

115

ALL NLP FUNCTIONALITIES LINKED WITH EACH OTHER AND
THE DATABASE

APPENDIX 0: REALIZED SYSTEM DEVELOPMENT MANUAL

Figure 44: Designed system functionalities

5.3 System 3: NLP
Functionalities
This subchapter delineates the various processes
integrated into the system prototype. These
processes are activated when a user imports a
conversation and provides essential information
such as the file location of the conversation
artefact, participant names, and a recognizable
conversation name. Upon confirmation of the data,
the system executes multiple process steps (Figure
44) , including:

1. Create Database Entry: This step involves
creating an entry for the conversation in the
database, enabling efficient storage and retrieval
of conversation data.
2. Format MS Teams Transcript: The system formats
the conversation transcript obtained from MS
Teams, removing unnecessary visual elements and
standardizing the format for further processing.
3. Create Excel File: The system generates an Excel
file containing the formatted conversation data,
facilitating easy analysis and manipulation of the
information.
4. Run Stanford CoreNLP: This process utilizes the
Stanford CoreNLP library for natural language
processing tasks such as tokenization, sentence
splitting, part-of-speech tagging, and named entity
recognition.
5. Find Questions: The system identifies and
extracts questions from the conversation
transcript, recognizing them as potential sources of
requirement-relevant information.
6. Categorize Relevance: This step involves
categorizing speakerturns based on their relevance
to the elicitation goals, ensuring that requirement-

algorithm and for annotating speakerturns based
on relevance.
To simplify the process for users and eliminate
the need for manual installation and execution of
StanfordCoreNLP, the system includes this tool
in its database. When the processing reaches the
stage where StanfordCoreNLP is required, the
system automatically calls and runs it. Users only
need to have Java installed on their devices, and
the execution of StanfordCoreNLP is handled
seamlessly by the system with just a few clicks. This
eliminates the need for users to undertake any
complex installation steps. Once the processing
is complete and the categorise_relevance.py
algorithm finishes its task, the StanfordCoreNLP
system is automatically stopped, ensuring efficient
resource utilization and system management.

find_questions
The find_question.py algorithm is executed
concurrently with the StanfordCoreNLP tool,
leveraging its capabilities to process each
speakerturn from the processed_excel.xlsx file.
For each speakerturn, the algorithm utilizes the
StanfordCoreNLP system to determine whether it
contains a question. It annotates this information
in the speakerturn matrix by assigning a value
of 1 if the speakerturn contains a question and 0
otherwise.

categorize_relevance
Exactly. The categorize_relevance.py algorithm
follows the completion of find_questions.py. It
accesses the annotated speakerturn data stored in
processed_excel_questions.xlsx and employs the
wiki_tfidf_terms.csv dataset. For each speakerturn
containing a question, the algorithm assesses

relevant information is appropriately identified and
categorized for further analysis.
Figure 45 depicts the initial configuration of the
REConSum components that required connection
through algorithm programming. The realized NLP
processing comprises multiple process steps, with
each step producing output stored in the database.
The outputs are stored in the system as Excel files,
organized systematically for each conversation.
This organization allows for the analysis of
processing results after each process step, as
further elaborated in System 4: Data Storage.

format_msteams_transcript
The algorithm format_msteams_transcript was
developed to address the formatting issues
present in the conversation artefacts generated by
MS Teams, as discussed in System 1: Generating
Conversation Artefacts. As illustrated before, MS
Teams-generated artefacts contain visual elements
and text formatting that do not conform to the
system’s expected structure (Chapter 5, System 1).
This algorithm operates in two stages.

First, it removes all visual elements from the
conversation artefact, converts it to a text file
format, and stores it in the database as raw_
transcript. This initial step ensures that the raw
conversation data is stripped of any unnecessary
formatting (chapter 10 of the appendix).

Next, the algorithm formats the speakerturns
according to the system’s requirements, preparing
them for further processing. This formatted version
of the transcript is then stored in the system as
formatted_transcript (chapter 10 of the appendix).

its relevance by comparing the text with the
NL dataset. Speakerturns are then labeled as
relevant (assigned 1) or irrelevant (assigned 0). The
resulting annotations are integrated into a new
DataFrame named processed_excel_summary.xlsx.
This process helps summarize the conversation by
pinpointing key information.
In chapter 13 of the appendix an output has been
included, generated as part of a test case.
Once the annotation process is complete, the
algorithm saves the newly annotated DataFrame
under a different name, processed_excel_questions.
xlsx. This annotated DataFrame provides valuable
insights into the presence of questions within
the speakerturns, facilitating further analysis and
processing of the conversation data.
In chapter 12 of the appendix an output has been
included, generated as part of a test case.

create_excel_file
The create_excel_file algorithm plays a crucial role
in the NLP processing pipeline of the system. This
algorithm operates on the formatted_transcript.
txt output generated by the format_msteams_
transcript algorithm. Here’s how it works:

1) Input Data Access: The algorithm accesses the
formatted_transcript.txt file, which contains the
correctly formatted speakerturns obtained from
the MS Teams conversation artefact.
2) Preprocessing: The preprocessing.py algorithm
of REConSum is executed using the formatted
transcript as input. This preprocessing step
involves converting the formatted transcript into
a DataFrame, which essentially organizes the
speakerturn data into a structured matrix format.
The algorithm is modified to facilitate the input-
output interaction and incorporate additional
functionalities such as annotation of important or
marked speakerturns (figure 48).
3) DataFrame Creation: Once the preprocessing is
complete, the resulting DataFrame is stored in the
database as processed_excel.xlsx. This DataFrame
contains all the speakerturn data organized in
rows, along with any annotations or markings
added during the preprocessing stage.

In chapter 11 of the appendix an output has been
included, generated as part of a test case.

run_StanfordCoreNLP
To enable the detection of questions and annotate
speakerturns accurately, the StanfordCoreNLP
tool needs to be run locally to process the text
of speakerturns. This functionality is crucial for
the proper functioning of the find_questions.py

117

REConSum | WHAT NEEDS TO BE REALIZED TO USE IT?

Data Folder

Categorise
Relevance

Stanford
CoreNLP

Overarching
Algorythm

Identify questions

Preprocessing

Conversation
Artefact

preprocessing.
xlsx

identify
_question.xlsx

categorise_
relevance.xlsx

Set of
Speakerturns

Transcript .txt
data

Transcript .txt
data

preprocessing
output .xlsx

identify_question
output .xlsx

Set of annotated
speakerturns

Method to run
algorithm

Method to run and
stop algorithm

Method to run
algorithm

Method to run
algorithm

Set of annotated
speakerturns

categorise_
relevance output

.xlsx

Screenprinted
DataFrame output

Set of
Speakerturns

Figure 45: What needs to be realised to make REConSum function.

Figure 46: Outputs generated by the format_msteams_transcript.py
algorithm.

APPENDIX 0: REALIZED SYSTEM DEVELOPMENT MANUAL

119

Figure 43: REConSum | Current flow of information.

Data Folder

Categorise
Relevance

Identify
questions

Preprocessing

Conversation
Artefact

Wikipedia
TF-IDF

Stanford
CoreNLP

Conversation
Artefact .txt

Wikipedia TF-
IDF .csv Corpus

Wikipedia TF-
IDF .csv Corpus

Set of annotated
speakerturns

Set of annotated
speakerturns

Set of
speakerturns

Set of
speakerturns

Set of
speakerturns

Dataframe filled
with speakerturn

data

Dataframe
with annotated
speakerturns

Screen print
of annotated
DataFrame

To start using ReConSum, users should first ensure that the Conversation Artefact is correctly
formatted and placed in the system’s data folder. Additionally, they need to manually download
the Wikipedia TF-IDF file and move it to the same data folder. Setting up StanfordCoreNLP is also
required, which involves downloading it and ensuring it runs smoothly. Once these initial steps are
completed, users will need to manually execute the systems using Python. It’s important for users to
define the paths to their input data to ensure the systems operate effectively. If all done correctly this
is the resulted flow of information.

Figure 48: DataFrame visualised. Each row contains all the data of a single speakerturn. Using NLP speakerturns can be annotated with different annotations such as the ones
realised in the system design.

APPENDIX 0: REALIZED SYSTEM DEVELOPMENT MANUAL

System 4: Data storage
The system employs a structured data storage
approach, utilizing a USB drive with approximately
3GB of storage space. This choice offers portability,
scalability (allowing easy duplication onto multiple
drives), and accessibility. The USB drive hosts
various types of data, including a complete
installation of Python 3.11 and the required
packages to execute the code.

Within the USB drive, the “Functional_Prototype”
folder houses the fully developed system. In the
following sections, we’ll delve into the specifics of
the data structure employed and how outputs are
organized within the system.

Interfacing with algorithms | using
relative paths
To ensure that algorithms, assets, and input/output
data are accessible throughout the system, paths
are included in the code to specify their storage
locations. Relative paths are used to define the
location of the system on the drive, allowing the
system to run seamlessly on different systems
where the drive name may vary (e.g., ‘C:’ and ‘D:’).
Within the system, all components are defined
using absolute paths to maintain consistency in
their location.

Functional_Prototype | code folder
The code folder serves as the repository for all the
algorithms essential for the system’s functionality.
In total, there are 13 algorithms housed within
this folder. Table 1 provides an overview of all the
algorithms present, along with their functionality
and whether they were included or developed for
this system.

In addition to the algorithms, the code folder also
houses the Stanford CoreNLP system (version 4.5.4)
and the Wikipedia_tfidf_terms.csv dataset. Both
of these components are crucial for the system to
operate as intended, as outlined in System 3.

Functional_Prototype | assets folder
The interface design uses multiple icons that need
to be accessed from somewhere. The assets folder
provides a storage solution for this purpose.

Functional_Prototype | markerfiles_
unsorted folder
(see system 5)

Functional_Prototype | data folder
The data folder serves as the repository for all
the inputs and outputs generated by the system.
To enhance the organization of data within the
data folder and facilitate the locating of specific
conversations, a decision was made to organize
conversations at the project level. In the prototype,
only one project has been added, where all
conversations are stored.

Given that the system produces multiple outputs
associated with each conversation, all conversation
outputs are grouped per conversation, with each
conversation having its own designated folder. For
each imported conversation, the following folders
are created automatically:

1. txt_files: Contains the text files generated during
processing.
2. processed_excel_files: Contains the Excel files
generated during processing.
3. marker_files: Stores marker files associated with

the conversation.
4.summary_files: Holds summary files generated by
the system.

Excel files as data format
Storing the outputs in Excel format was chosen for
its accessibility and familiarity, eliminating the need
for users to install complex software while enabling
easy interaction with the data. Additionally, Excel
allows for the analysis of conversations on a large
quantitative scale, which is beneficial for research
purposes.

Figure 52 provides an overview of how the output
of a conversation is structured in Excel format, as
demonstrated with a test conversation. This format
facilitates the validation of outputs generated
throughout the system processing.

121

Figure 49: Conversation database concept.

Figure 52: Annotated part of a mock elicitation conversation between me and the company supervisor using both the mark-
er prototype and the system design.Figure 50 & 51: Data structure of the Functional_Prototype,

and main folder.

Table 1: Overview of all the algorithms that are present within the system.

APPENDIX 0: REALIZED SYSTEM DEVELOPMENT MANUAL

123

Figure 53: Interaction ideas to integrate with ‘enhanced
notetaking‘ functionalities.

An idea to bind different annotators
(such as different topics/keywords)
to different buttons to allow to bind
speakerturns in realtime to different
topics to pre-sort the requirement
relevant information.

A idea to use a smart pen to integrate
different input methods such as
buttons and the touch detection of
the tip of the device. Used with the
interaction of writing.

When using the keyboard it may be
more beneficial bind functionality to
specific keys on the keyboard or to
bind buttons that are located next to
the keyboard.

Use the touch detection as
input

Ergonomic
Pushbuttons

Wireless connection for
freedom of moving

APPENDIX 0: REALIZED SYSTEM DEVELOPMENT MANUAL

125

iterating with the strategy of providing inputs or
allow multiple kinds of inputs, however this needs
to be researched further.

Design of interaction
Humans create an order to everything they see
where there are a couple of principles about
how we perceive hierarchy that hold true for
every human (Johnson, 2021). Big > small, high
contrast > low contrast, color > grays, red>
other colors (Johnson, 2021). There is already an
action that humans widely use in their daily live
to bring hierarchy to natural language and that
is the act of Marking information. By marking, or
coloring text people perceive it as more important
(color>grays). You can also see the action of
marking everywhere from paper documents to
digital systems such as excel and word. There
have been ideated with two types of marking,
marking of relevant conversation moments after
the conversation, by marking speakerturns in a
GUI (figure 11) or marking conversation speech
as being important in the moment. The latter has
been considered more impactful as the marking
afterwards requires the user to read the whole
conversation again to process if a speakerturn is
important.

Different impulse types
Three types of impulse have been considered. All
types of impulses integrate with the note taking
process but each in a different way. First, a button
that is integrated in the systems that are already
used such as a pen and a laptop. Another being
the detection of when a note is being taken, and
finally a board with only button inputs relying
solely on annotations. Figure 53 presents an

System 5: Improving Manual
Language Processing
This section discusses the prototype that has been
realized in an effort to enhance the notetaking
process. This prototype, that uses two Arduinos
to function, interacts with the system that has
been realized in this thesis. As a first step to
enable enhanced notetaking a interaction has
been designed that enables Business Analysts to
annotate important 1/0 to the current speakerturn
by means of an impulse. Providing a impulse 1/0
can be easily detected and needs almost no effort
to perform.

The idea on which is built is the notion that BAs
will capture important parts of the conversation
by documenting keywords and sentences. What if
these notes could be linked to the conversation?
The word keyword would suggest a factor of
importance for a specific part of conversation
data. If notes would be made in sequential fashion
and the speakerturns could be annotated each
time a note would be written down the index
of the notes could be matched with the index
of the marked/annotated speakerturns. Index 1
of the notes would match for example index 1
of the marked speakerturns. This would provide
an overview of all the parts of the conversation
that were deemed as important by the analyst,
providing a filtered dataset of conversation data.
This assumption proved to be flawed during user
testing as the Business Analyst doesn’t only make
notes to capture data but also uses them during
the conversation, so the interaction needs to
be designed further. There could be iterated on
this by for example providing separate areas for
data capture where sequence can be applied or

overview of each of these types of impulses.

As proof of concepts a button prototype has
been created that allows Business Analysts to
annotate a speakerturn with important 1/0. In
later development this button can be integrated
in systems such as smart pens, or in a keyboard
for example (figure 55) to make use of the
advantages making notes has on digital devices.
It can for example be integrated with systems
such as remarkable (figure 56), a product that acts
as a ‘paper tablet’(ReMarkable, n.d.) or drawing
tablets that allow direct digitalization of notes
or integration with word processing software
such as Microsoft word. Besides the ability to
provide a input this input needs to be linked to
the speakerturns that are being generated. While
it may be possible in later development using the
Speech Software Development Kit (Speech SDK)
of the Microsoft Azure speech services (Speech
SDK, n.d.) this could not be realized in the prove
of concept. Microsoft Teams itself allows from
itself no direct interaction with the speakerturns
while they are being generated so the annotation
functionality has been realized by synchronizing
the prototype with the conversation. By using
this method, the device can store all the inputs
of the Business Analyst with the time it was
inputted. Afterwards the system can compare
the timestamps of the inputs and annotate the
corresponding speakerturn.

Figure 54: Idea to link notes to marked speakerturns. If notes would be made in sequence
and a signal is provided each time a note is made note 1 would match with the first
marked speakerturn providing more information on that specific note.

Figure 55: Functional marker prototype ideas integrating inputs into a pen and button
board. The functionality of the pen protype has been realized.

PEN/BUTTON PROTOTYPE

KEYBOARD PROTOTYPE

Figure 56: remarkable (ReMarkable, n.d.)

APPENDIX 0: REALIZED SYSTEM DEVELOPMENT MANUAL

127Figure 57: Graphical representation of the hardware used in the marker prototype and how it is build. Figure 58: Method to link the marker prototype with the system GUI to allow the communication of time markers.

APPENDIX 0: REALIZED SYSTEM DEVELOPMENT MANUAL

Synchronizing and storing user
inputs
As Microsoft Teams allows for almost no
interaction during the conversation (no access
to speaker, time, or text data while it is being
generated, with no ability to remotely start and
stop the conversation with external signals)
some trickery needed to be applied to allow the
synchronisation of the conversation with the
prototype. Two arduinos (figure 57) have been
used to make this possible in the end where the
Arduino Uno keeps track of the time and the
Arduino Pro Micro allows the external start and
end of the meeting recording functionality. By
setting the current time on 0:00:00 when the start
signal is given the time of the device and the
recording can be synched. These signals of the
Arduino Pro Micro can be realized as it can provide
keyboard inputs (by connecting it to a laptop using
usb), making it able to input shortcuts that could
be used to manage MS Teams functionalities.

There was however no shortcut available to start
and stop a recording (what would be preferable
as this would make the solution a lot more usable
in practice). A convoluted solution has been used
by needing the user to click on the ‘…’ button
and press escape. With the start signal of the
user the Arduino Pro Micro inputs a sequence of
multiple keyboard presses containing <tab> and
<enter> presses making it able to start and stop
the recording. This proved to be a method that
is very difficult to setup and is not suited to be
used by users in practice at it can easily go wrong
needing the meeting to be restarted, or no inputs

markerfiles folder (appendix chapter 16).

Viewing the marker outputs in the
GUI
When the markerfile is correctly linked and
processed the outputs of the marker functionality
can be viewed in the marker view in the system
GUI. Just as the question and summary view the
speakerturns can be viewed in context (see system
2:GUI).

are able to synch. It can however currently be used
in controlled test settings where a researcher sets
up the device.

The storing of the inputs is also realized by a
usb connection, this time between the Arduino
Uno and the laptop. Two algorithms have been
designed to make the functionality possible, a
Arduino algorithm that is run when it is powered
and a python algorithm that is initiated using the
system GUI design. To use the prototype the user
first connects both arduinos by usb to a laptop
that will be in the MS Teams meeting. In the
system GUI the user needs to select the Create
Markerfile button (see system 2: GUI, figure 34, 7).
This will open a pop-up (generate_markerfile_pop_
up.py) where the user can name the Markerfile
that will be generated and selects the correct
COM (Arduino Uno), pressing confirm will connect
the Arduino prototype to the system design and
create_marker_array.py will start running in the
background.

Now to the Arduino prototype. A casing has
been 3d modelled and FDM printed to secure all
necessary hardware. The prototype consists of
a Arduino UNO and PRO MICRO, 5 1k resistors,
a marker button, a start/stop button, and a red,
a yellow, and a green LED, wired as shown in
figure 57. When the Arduinos are connected (and
powered) to the laptop the red LED turns on
indicating that the system is powered (state 1). The
internal clock of the Arduino UNO starts when it is
powered, pressing the start/stop button resets the
time to 0 and the Arduino PRO MICRO is signaled
to start the meeting recording. This moves the
system to state 2 and turns on the orange LED.
Now each time that the marker button is pressed

the system will access the current time and convert
this in a string formatted as expected, ‘[0:04:10]’
for example, a button press on minute 4 and 10
seconds. The system stores a list of all the markers
that it has generated, each time sending a list of all
markers that have been created this conversation
over serial communication to the system design
(and blinking the green LED). If the start/stop
button is pressed again (the green LED blinks
twice and then moves the system back to state 1)
the marker ‘stop’ is send via serial communication
(and removed from the marker list afterwards)
to the system design indicating that it can store
the markers into the system as a .npy file (in the
markerfile_unsorted folder) , also the meeting
recording is ended. Figure 59 shows the marker
array that is stored in the system.

After the user has imported the corresponding
conversation into the system the created marker
array can be linked to the conversation. Using the
marker file overview in the GUI (system 2: GUI,
figure 34, 5) the correct markerfile can be selected
and linked using the link markerfile button (system
2: GUI, figure 34, 6). When this button is pressed
the create_markerfile.py algorithm is run, storing
the markerfile in the folder 3) markerfiles of the
corresponding conversation, accessing the output
processed_excel_summary.xlsx, annotating the
speakerturns that have been marked (the time
marker compared to between which speakerturn
times it is positioned). To give an example, if
there is a speakerturn with the time [0:00:50]
and another with [0:02:30], the speakerturn with
[0:00:50] will be annotated as marked with a time
marker of [0:01:30] as it occurs before the start of
the next speakerturn. After annotating the output
is again stored under a different name in the 3) 129

APPENDIX 0: REALIZED SYSTEM DEVELOPMENT MANUAL

“NUMPY v {'descr': '<U10', 'fortran_
order': False, 'shape': (10,), }
 [0 : 0 1 : 4 0]
 [0 : 0 2 : 3 2]
 [0 : 0 4 : 5 3]
 [0 : 0 8 : 2 5]
 [0 : 0 9 : 1 6]
 [0 : 1 0 : 1 1]
 [0 : 1 4 : 2 5]
 [0 : 1 5 : 0 1]
 [0 : 1 8 : 5 1]
 [0 : 2 0 : 4 8]
 Figure 59: Marker array output (.npy).

131
Figure 60: Marker view output. All speakerturns that were marked as important by the Business Analyst during an elicitation conversation.

APPENDIX 0: REALIZED SYSTEM DEVELOPMENT MANUAL

