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Abstract

Duchenne Muscular Dystrophy (DMD) is a progressive degenerative neuromuscular disor-
der, causing 1:5000 boys and men to lose functionality in their muscles from a young age.
From age 10-13 the upper extremity functionality is affected and patients are unable to
function individually. The DAROR-01 is a robotic exoskeleton for the right upper arm,
designed to aid these patients during Activities of Daily Living. For this, a gravity and
stiffness compensation model is required. This work compares an a priori modelling ap-
proach with data driven models. For the data driven models, a white box approach using
the kinematic structure and a grey/black box approach using Neural Networks (NN), are
designed and validated. The data for the data-driven model is acquired with an identi-
fication protocol of 15 minutes in which the system moves through the workspace. The
white box model that used the kinematic structure with an extension to also contain joint
stiffness proved to be able to learn the gravitational and stiffness compensation model
from very few data. This model achieved a Root Mean Square Error (RMSE) of 0.7 Nm,
whereas the A Priori model had a RMSE of 1.2 Nm. The grey box model performed better
than the black box model, with an RMSE of 2.4 Nm and 2.6 Nm respectively. From this
offline analysis can be concluded that a data-driven white box modelling approach thus
yields a better compensation model than a an A Priori model.

Keywords: Duchenne Muscular Dystrophy (DMD), Gravity compensation, Data driven
models, Linear regression, Parameter Linear Form (PLF), Neural Networks (NN), Back-
propagation, Conservative vector fields
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Chapter 1

Introduction

Duchenne Muscle Dystrophy (DMD) is a x-linked [1] progressive degenerative neuro-
muscular disorder. It affects about 1:5000 boys and men [2],[3]. People with DMD tend to
be non-ambulant from the age of 10–13 [4] and their upper extremity (UE) functionality
is already affected at this point. Being bound to a wheelchair and losing UE function-
ality from a young age greatly impacts the Quality of Life (QoL) of these people. The
loss of UE functionality can be offset by corticosteroid treatment or physical therapy but
eventually patients will require some form of UE assistance[4]. Furthermore, there is ev-
idence that suggests that moving —with the aid of assistive devices— might prolong UE
functionality [5].

1.1 Improving Quality of Life

Aiding DMD patients in Activities of Daily Living (ADL) will greatly improve QoL. In
particular improving the UE functionality through assistance will make patients depend
less on caretakers and might even offset the further deterioration of their functionality. If
a healthy person is considered, in order to move the UE, the generation of force in the
relevant joints is required. This in turn requires relevant muscle force. From Newtonian
mechanics it is known that these forces must adhere to some equilibrium. During ADL the
most amount of human force production is required to move limbs against gravity. This
becomes obvious from the equation

FADL = m(g + a), (1.1)

where FADL is the force required for some ADL, m is the mass of the limb performing the
ADL, g is the gravitational acceleration of 9.81 m/s2 and a is the acceleration of the limb
during the ADL. During ADL it can be assumed that g ≫ a. It can therefore be concluded
that moving against gravity requires the most force during ADL. Therefore a method of
assisting DMD patients against gravity should greatly improve their UE functions.

Furthermore, DMD patients suffer from increased passive joint stiffness [6] that can be
up to five times the remaining muscle force (at joint level). This force therefore should
also be compensated for if the patient should regain UE functionality.

Compensation for both the gravitational force and the joint stiffness should allow DMD
patients to regain upper extremity functionality.
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1.2 Arm Support Technologies

Many attempts to design arm supports for people with arm disabilities have been
made [7]. Commercially available arm supports generally are of two types. They are either
passive, i.e. non-motorized support through the use of passive elements such as springs
and counterweights. The other type is semi-active, i.e. weight support through the use of
passive elements, which are adjustable through actuation. A major limitation of passive [8]
or semi-active supports is that they do not provide equal support of the arm over the entire
workspace. The passive elements are tuned to work well in a specific range, but outside
this range they cannot provide the required support. Furthermore, as the required level
of support increases, likely the provided passive support will not match the needs of the
user. An active arm supporting device would not have the same challenges, as the level of
support would be equal over the entire workspace and could be tuned to needs of the user.

The assistance of people that suffer from movement disability can also be done using
an external robotic manipulator, which ‘replaces’ the human arm, rather than supporting
it. These manipulators are active assisting devices. Often such systems are operated by a
joystick that controls the end effector of the manipulator. While such devices definitely do
improve the QoL of patients —especially in higher disease stages— they do not incorporate
any significant physical contribution of the user. It has been shown that use and training
of the physical arm slows down the progression of DMD [5]. Therefore the use of an arm
supporting device is more desirable.

Given the drawbacks of passive, semi-active arm supports or external robotic manip-
ulators, Filius et al. [7] argued that an active exoskeleton should be developed to provide
and aid people with DMD with better arm support technology.

1.3 DAROR-01

To realise and test this hypothesis, a robotic exoskeleton for the right upper arm was
developed: the DAROR-01. The DAROR-01, shown in Fig. 1.1, is a lightweight 4DoF
exoskeleton designed such that it could be mounted on an electric wheelchair. It is de-
velopment platform to test and research design requirements of an active arm support
device. The DAROR-01 is developed as project 7 of the Wearable Robotics program
(https://www.wearablerobotics.nl/) as a continuation of the Flextension project. The
design is based on the Yumen arm design. The actuators and the other hardware are de-
signed and developed by DEMO from the TU Delft. The hardware and low-level software
of the exoskeleton were developed before the start of this thesis.

1.3.1 Gravity Compensation

As mentioned before, reducing the effects of gravity on the UE improves the QoL of
a person with DMD. To compensate for gravity, a gravitational (compensation) model is
required. The effect of gravity on a rotatory joint depends on the mass and the horizontal
distance of the Centre of Mass (CoM) with respect to the Centre of Rotation (CoR). The
CoM will induce a torque in the joints CoR, depending on the horizontal distance and thus
for rotatory joints on the joint angle. For a 4 DoF system, the gravitational torque of all
the joints thus depends on all joint angles. The gravitational torque thus is configuration
dependent.

A gravity compensation model thus consists of a function that maps the joint configu-
rations to joint torques. When the device delivers the gravitational joint torque, these will

2
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Figure 1.1: The DAROR-01: a 4-DoF (right) upper extremity exoskeleton. Left is a
CAD generated figure, right is a picture of the actual system.

oppose the effect of gravity. Such a model is thus referred to as a gravity compensation
model.

1.3.2 Stiffness Compensation

Joint stiffness is also a configuration dependent force. Since DMD patients show in-
creased joint stiffness, a stiffness compensation model would further improve the QoL. The
stiffness compensation model is similar to the gravity compensation model in that it also
maps joint position to joint torque.

1.3.3 Challenges

Developing a gravity and stiffness compensation model for robotic devices has its chal-
lenges. Furthermore the addition of a human to the device only makes for a more complex
system.

Through inaccuracies during production, the actual mass and CoM differ from those of
the initial design. Accurate weighing and measuring after production still depends on the
accuracy of the tools used in this process. Furthermore, where weighting and measuring
robotic parts is relatively trivial, doing the same for a human upper arm is more complex.
Assumptions made during this process —even when supported by literature [9]— can all
cause modelling errors. Therefore, this work will explore the use of data-driven models
that use actual measurements of the system (device + human) to generate gravitational
models.

3



1.4 State of the Art

Models for gravity compensation in orthotics literature can be divided into two cat-
egories. The first category consists out of passive gravity compensation and the second
proposes active compensation strategies.

Arakelian et al. [10] review many passive compensation strategies. These are based on
counter weights or springs to compensate the gravity of the robotic device. These methods
are, however, unable to deal with a change in load, given that their passive elements cannot
quickly be adapted. Therefore a passive compensation method is does not meet the needs
of this project.

Active approaches require some model of the gravitational structure of the system. Ott
et al. [11] use a discretized workspace of which each segments has constant, preidentified
gravitational compensation torques. Moubarak et al. [12] proposes a gravity compensation
method based on the geometric structure of the exoskeleton. Using data they are able
to train a compensation model. Liu et al. [13] has a similar approach but instead uses
the system dynamics to formulate a model. They finally use linear regression to train a
compensation model.

Ugartemendia et al. [14] discuss a similar approach but use this to compare a more
novel machine learning approach using decision trees to find the gravitational structure.
Lutter et al. [15] do not directly propose a method for gravity compensation in robotics,
but instead have developed a method for learning Lagrangian dynamics using a grey-box1

neural network.
The work of Moubarak et al. and Lui et al. is applicable for the objective of this work.

The challenge both authors faced was in the formulation of structure of their device on
which a model could be trained. Black-box models as in the work of Ugartemendia et
al. and Lutter et al. would circumvent this problem. The work presented in this thesis
compares a newly developed gravity compensation neural network, based on the work of
Lutter et al., as a modelling method to modelling methods that are require the kinematic
structure of the system.

1.5 Goal

The goal of this work is to develop several compensation models and compare their
performance. A compensation model that requires a priori knowledge is designed, next
to two types of data-driven compensation models: an approach based on the kinematic
structure of the system and an approach using neural networks. The a priori model will
serve as a benchmark for the data driven compensation models. Next to the compensation
performance, the ease of use and training time are also considered. Furthermore, this work
explores a novel greybox, data-driven gravitational modelling approach.

1.6 Thesis Outline

This thesis is outlined as follows: Chapter 2 discusses the kinematic structure and
the hardware of the robotic system. Chapter 3 explores the mathematical method used
for modelling. In Chapter 4 these methods are applied to the actual systems and the
compensation models are derived. This Chapter also discusses the implementation of the
models and other required software tools and it introduces how the different modelling

1Since this model does contain some preprogrammed knowledge of the data structure it is between a
black and white box model
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methods will be validated. Chapter 4 discussed the results of the modelling methods. In
Chapter 6 the limitations of this work are discussed as well as other factors that affected
this work. This is followed by an exposition of future steps in Chapter 7. Finally, in
Chapter 8 the conclusion of this work is drawn.
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Chapter 2

Kinematics, Dynamics and Control

The system used for this thesis is the DAROR-01. The DAROR-01 is a 4 Degree of
Freedom (DoF) robotic orthotic device —also referred to as an ‘exoskeleton’— containing
three DoFs in the shoulder and one DoF at the elbow. The device is connected to the user
with a sleeve around the lower arm and support around the elbow. Filius et. al. docu-
mented the technical requirements of the system [7]. The following chapter will describe
the kinematic structure and relevant hardware and software of the robotic system.

2.1 Kinematics

Kinematics describes the motion of system of bodies without considering the accompa-
nying forces. The following section will describe how the movement of the system and/or
the pilot1 is defined in the world frame Ψ0 and how the joints move w.r.t. each other.

2.1.1 ISB Angles

In order to describe the movement of the glenohumeral (GH) joint2 the anatomical
expressions are flexion/extenstion, abduction/adduction, internal/external rotation, hori-
zontal abduction/adduction, and horizontal flexion/extension. These, however, overdefine
the movements possible in the shoulder. Since the shoulder joint is 3 DoF, only three ex-
pressions should be required, Fig. 2.1 shows these expressions. The International Society
for Biomechanics (ISB) [16] proposes the following definitions:

• (GH) Elevation: rotation of amount γe over the global x-axis
• (GH) Horizontal Rotation: rotation of amount γh over the global y-axis that is

rotated by the elevation
• (GH) Axial Rotation: rotation of amount γa around the vector pointing from the

CoR to the elbow, rotated by both elevation and horizontal rotation.

2.1.2 System Kinematics

The kinematic structure of the DAROR-01 is expressed in one world frame and four
actuator frames. The world frame (Ψ0 - see Fig. 2.2) is located at Centre of Rotation
(CoR) and has a vertical y-axis, pointing up w.r.t. the user.

1The pilot is the individual who is wearing and using the exoskeleton
2Commonly known as the shoulder joint
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Figure 2.1: Definitions of the ISB angles [16]

Following typical choices for robotics, each actuator rotates around its z-axis. The Axis
of Rotation (AoR) of the first actuator is rotated with respect to the vertical. It is rotated
backwards (around x) by −30◦, towards the head of the pilot (around x) by −10◦ and
around its own z-axis by −45◦. This gives the following expression for the rotation of the
first motors stator frame 0R1,s

Ra = Rx(−30◦), (2.1)
Rb = Rz(−10◦), (2.2)

v1 = −
[
1 0 0

]
Rb ×

[
0 0 1

]
Ra, (2.3)

v1 = v1/∥v1∥, (2.4)

v2 = v1 ×
[
0 0 1

]
, (2.5)

v2 = v2/∥v2∥, (2.6)
v3 = v2 × v1, (2.7)

R̄ =

−1 0 0
0 0 1
0 1 0

 , (2.8)

0R1,s =
[
v2 v1 v3

]
R̄Rz(−45◦), (2.9)

where Rx,y,z are canonical rotations around the specified principle axis. Constant rotation
matrix R̄ is required since the local z-axis needs to be rotated to the global y-axis.

In order to determine the kinematics of the system, the robot has been schematically
drawn in one plane in Fig. 2.3. In this schematic it is shown that the AoR of the first three
actuators intersect in the CoR of the shoulder. Vectors ipi,c, i = [1, 2, 3, 4] are expressed
in the rotor frame of their respective actuator i,sHi,r. In order to be able to express any
coordinate in the Ψ0-frame, homogeneous transformations are required.

that the the z-axis is the AoR, the homogeneous transformation matrix between the

7



Figure 2.2: Free-body diagram of the DAROR-01 and pilot.

Ψ0-frame and the stator of R1 is

0H1,s =

[
0R1,s 03×1

01×3 1

]
, (2.10)

1,sH1,r(q1) =

[
Rz(q1) 03×1

01×3 1

]
, (2.11)

0H1,r(q1) =
0 H1,s

1,sH1,r(q1). (2.12)

The super-/subscript ()s and ()r denotes the frame of the stator (stationary in its frame)
and rotor (dynamic) respectively. The expression of Eq. 2.11 hold for all the actuators
since all rotate around their z-axis

i,sHi,r =

[
Rz(qi) 03×1

01×3 1

]
, i = 1, 2, 3, 4. (2.13)

Furthermore, actuator R2 is rotated 60◦ with respect to R1 (see Fig. 2.3). The same is
true for R3 w.r.t. R2

1,rH2,s =

[
Ry(60

◦) 03×1

01×3 1

]
, 2,rH3,s =

[
Ry(60

◦) 03×1

01×3 1

]
. (2.14)

For actuator R4 the AoR does not cross the CoR of the shoulder. It does however rotate
over the same axis as R3 but is translated along the upper arm segment of the device

3,rH4,s =

[
I3×3 δ
01×3 1

]
. (2.15)
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Figure 2.3: Schematic of the DAROR-01 in plane. Four actuators that rotate around
their own z-axis. Vector ipi,c points to the centre of mass of the link i expressed in the
frame of actuator i

Now all homogeneous transformation matrices have been defined and coordinates ex-
pressed in any of the actuator frames can be expressed in the Ψ0-frame.

2.2 Actuation and Control

The hardware and software for the actuation of the DAROR-01 is discussed in the
following section.

2.2.1 Series Elastic Actuation

For the actuation of the DAROR-01, Series Elastic Actuators (SEAs) are used. In
the theoretical design of these actuators, an elastic element (such as a torsion spring) is
placed in series between the output of the gearbox and the load. This design enables the
measurement of the joint torque of the actuator, measuring the interaction between the
actuator and the load. Absolute encoders are placed before and after the spring, essentially
measuring the spring deflection. The spring is assumed to be linear

τ = k∆q, (2.16)

where τ is the spring torque —and thus the joint torque—, k(= 289 Nm/rad) is the spring
constant and ∆q is spring deflection. The spring constant is assumed to be accurate
to the specified unit. The precision of the spring deflection measurements is 10−4 rad.

9



Since the lowest precision is three digits, three significant digits can be reported for torque
measurements.

2.2.2 Torque Measurement Error

The SEAs are subject to some phenomenon (or phenomena) that cause an error on the
measured joint torque. This is shown in Fig. 2.4. The DAROR-01 executed a trajectory
(the training trajectory to be precise, see Sec. 4.3.1) in position control mode (see Sec.
2.2.4). Joint q1, q2 and q3 first run the path forward and thereafter the exact same path
but in reverse, which is not true for q4, so it is excluded. The joint torques of the reverse
paths are flipped and the waypoints of the paths are synchronised. Given that the system
does not change during the reverse path, the torque required for holding a position should
be independent of the path. When comparing the measured joint torque (from the SEA)
there is a difference between the joint torque of the forward path and the reverse path, as
is shown in Fig. 2.4.

This measurement error is attributed to the SEA joint torque measurement system.
We are not sure what causes this error. A hypothesis is that the encoder that measures
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Figure 2.4: Representation of the difference between the joint torque measured on the
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error in torque measurement. The title of the plots also give the Root Mean Square (RMS)
difference
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the deflection of the torsion spring moves slightly when the rotor of the actuator rotates.
Another hypothesis is that there is static friction between the elements on either side of the
torsion spring. This static friction would cause torque measurement errors, since not all
force is applied from the actuator to the joint through the spring but through this friction.
Both of these hypotheses account for the difference in measurement torque depending on
rotation.

From the analysis, actuator 2 (of joint q2) was found to have the largest measurement
error. This error is expressed as the Root Mean Square (RMS) difference between the
forward and reverse. This RMS difference can increase or decrease when the path changes.
but given the design of the trajectory used for the analysis should still be a good indication
of the magnitude of the measurement error.

2.2.3 Torque Control

Torque control is used to control the joint torque applied to load by the actuator. If
the reference torque is set to zero the system is in minimal impedance mode.

In this mode, the actuators are controlled to deliver zero joint torque and thus (theo-
retically) only external forces act on the joints. Essentially, the controller tries to minimize
the spring deflection of the SEA. Thus, intrinsic motor forces are reduced in this mode.
Fig. 2.5 shows the control loop.

The torque controller is used for the gravity and stiffness compensation. The reference
torque is by the compensation model. This will cause the system to deliver the required
compensation torque while still being compliant to external forces. For perfect compen-
sation the net reference is still zero: (τg + τs) + τc = 0 Nm (where τg is the gravitational
torque, τs the stiffness torque and τc the compensation model torque). Thus the mode will
still have all the properties of the initial minimal impedance mode but with the external
forces of gravity and joint stiffness removed.

Figure 2.5: Torque controller loop for SEAs of Rampeltshammer et al. [17]. The SEA is
represented with Hc (grey) containing actuator torque saturation, communication sensor
delay To and Ti. The feedback controller C and torque feedforward controller Cff form the
inner control loop C(blue). The apparent actuator impedance is shaped by the Disturbance
Observer (Based controller) DOB (orange), with nominal model Hn, DOB low-pass filter
Q and DOB gain α on the outer loop. The load side velocity input ωl is omitted.
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Disturbance Observer

An extension of the torque controller is the Disturbance Observer Based (DOB) con-
troller (see Fig. 2.5), designed by Rampeltshammer et al. [17]. The DOB decreases the
apparent impedance by rejecting disturbances to the system. The DOB results in a system
that is much more admittant to an external force.

2.2.4 Position Control

Position control is required for the identification protocol (see Sec. 4.3.1). A simple,
joint level PD controller was designed. The controller is essentially a position and velocity
controller, with a reference position and reference velocity as input. Thus, the position and
velocity error are both computed. The controller is manually tuned, KP = 700 Nm/rad,
KD = 175 Nms/rad are found to have good performance.

The reference position and velocity are determined with a trajectory generator (see Sec.
4.3.1), in which ISB target positions (and velocities) can be inserted and the generator
determines the contribution of each of the joints.
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Chapter 3

Modelling

This work uses several methods for modelling gravity and joint stiffness in a multi-body
system. The theoretical foundation of these methods is explained in this chapter.

3.1 Dynamic Modelling

A dynamic model of a controlled system describes the behaviour of the system given
its states and the external states that act on the system [15]. Essentially, a controlled
dynamic model is a function that relates the control and external forces to a change of
internal states

f(x, ẋ, τ, Fi) = ẍ, (3.1)

f−1(x, ẋ, ẍ) = τ + JT
i Fi, (3.2)

where f is a dynamic model, x are the states of the system; τ is the control input; Fi are
the interaction wrenches with Ji the geometric interaction Jacobian. A typical 2nd order
dynamic model [18] is written as

q̈ = M−1(q)(τ + JT
i Fi − C(q, q̇)q̇ − g(q)), (3.3)

τ + JT
i Fi = M(q)q̈ + C(q, q̇)q̇ + g(q), (3.4)

where q, q̇ and q̈ are the generalized position, velocity and acceleration vectors of a system
respectively. τ is the vector of the generalized forces due to actuators and Ji are the
geometric interaction Jacobian and Fi the interaction wrenches acting on the system. The
system dynamics are represented by inertia matrix M(q), a vector of force terms that
account for centrifugal and Coriolis forces C(q, q̇) and the forces due to gravity g(q). The
expression of equations 3.1 and 3.2 hold for equations 3.3 and 3.4

Eq. 3.4 is a typical form achieved through solving the Euler-Lagrange equations. When
deriving the model using knowledge of the system, such a model can be defined as a
parameterized model. Thus the equation is built up of (at least somewhat) interpretable
terms that have some physical interpretation.

3.1.1 Artificial Neural Networks

Artificial Neural Networks (ANN) are a family of models that are able to fit to both
linear and non-linear data. These models are inspired by the operation of biological neu-
rons [19]. ANN are models that are able to do various tasks, such as decision making and
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classification, pattern recognition and non-linear mapping [20]. This last ability allows
ANN be used to map dynamic systems.

The model uses series of non-linear functions, consisting of many layers in series. Each
layer is expressed as

zi+1 = αi+1(wi+1zi + bi+1), (3.5)

where zi is the input vector of layer i+ 1, and thus zi+1 is the output vector of this layer;
Activation function αi+1 is a non-linear function, for layer i+1; wi+1 is the weight matrix
between layer i and i+1 and bi+1 is the bias vector of layer i+1. The number of layers, the
size of the layer and the activation function are all part of the structure of the network and
are so-called hyperparameters (HP). When a ANN consist out of multiple hidden layers it
is referred to as a deep ANN.

As mentioned, an ANN used the expression of Eq. 3.5 in series. The expression then
becomes

fNN(x, θ) = αN (wN (αN−1(wN−1...α1(w1x+ b1)...+ bN−1) + bN ), (3.6)

where ()N denotes the total number of layers of the network. The network output fNN(x, θ),
which depends on the network parameters θ and the network input x. The expression of
Eq. 3.5 substitutes the output of each layer with the symbol z, which becomes more clear
from this total series expression.

a0
x1

x2

x3

x4

a1 a2

b1 b2

aN-1

bN-1

aN

bN

z0

w1

z1

w2

z2 zN-1

wN

zN

Input Hidden Layers Output

Figure 3.1: Schematic of a deep ANN. The notation is only given for the top neuron to
make the figure readable; b is a vector. The input x of the model flows from left to right
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The network parameters θ are critical for the performance of the ANN, but do not have
any interpretable meaning. This makes designing this vector manually challenging. The
vector θ is therefore chosen such that the output of the network mimics some target data
that is labelled to every respective input. The performance of the network is expressed
using Loss, also referred to as Cost

ℓ(fNN(x, θ), τt) = ∥fNN(x, θ)− τt∥22 + λ ∥θ∥1 , (3.7)

where τt is the labelled target data; λ is the regularization rate and ∥θ∥1 is the L1 norm
of the parameter vector. This last term causes the Loss to not only depend on the fit to
the data, but also with the smallest parameters value. This reduces overfitting and thus
leads to a better generalizing model. λ is part of the hyperparameters. Sec. 3.3.2 shows
how this Loss is used to find the optimal solution θ∗ is discussed further.

Eq. 3.6 is similar to Eq. 3.1 if the input vector x is defined as the system state
and the output of the equation is torque. However, since the ANN and its parameters
do not model any physical attributes and the model is data-driven (and thus only learn
structures present in the data) there is no method to prove that the resultant model will
model the corresponding system in all possible states. In other words, there is no guarantee
that the model will obey to the laws of physics. In this work an ANN that uses no system
information or predefined structure will referred to as a Naive Neural Network (NNN).

3.1.2 Lagrangian Neural Networks

Lutter et al. propose a method for dynamical modelling using neural networks and
Lagrangian mechanics [15], [21]. This tackles the previously stated issue regarding the
use of ANN to model physical systems,as the network is now forced to learn an energy
conservative function.

In the work of Lutter et al., the structure of Lagrangian mechanics is forced on the
network. This is achieved by formulating the Loss of the network as

θ∗ = argmin
θ

ℓ(f−1(x, ẋ, ẍ, θ), τt), (3.8)

where θ∗ are the optimal parameters. Some Loss ℓ is chosen that expresses the difference
between the model estimation and the targets τt. The network input is represented x and
its derivatives. Since a physical system is being modelled, x is, for example, the position.
The parameters of the network are denoted by θ.

The work done by Lutter et al. [15] is used as inspiration for Potential Energy Neural
Networks, which is explored in Sec. 3.2.2

3.1.3 Conservative Vector Fields

The concern expressed in Sec. 3.1.1 can be generalised better. There is no guarantee
that an ANN will mimic a Conservative Vector Field (CVF).

The definition of a CVF is that it is a vector field that is the gradient of some scalar
function [22]. A property of a CVF is that its line integral is path independent. That
means that the line-integral for vector field v is∫

P1

v · dr =
∫
P2

v · dr (3.9)∮
PC

v · dr = 0, (3.10)
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where P1 and P2 are two different paths between the same endpoints in the vector field
and dr a step along that path; PC is a closed path in the vector field. This entails that
returning to the initial position in the vector field must yield a line integral equal to zero. A
well-known example of a CVF is gravitational force [22], which is the gradient of potential
energy (PE), regardless of which coordinates are used to describe this PE. Moving an
object first up and then down to its initial location will not yield any net gain or loss in
PE of the object. This illustrates that the gravitational vector field is conservative.

3.2 Gravitational Modelling

Gravitational modelling is part of dynamic modelling, only taking static effects acting
on the system due to gravity into account.

The most well-known method for deriving a gravitational model is Newtons method,
where the equation

Fg = mg, (3.11)

is solved. Fg is the gravitational force, m is the mass of the system and g is the gravitational
acceleration. For systems that rotate around some axis usually the gravitational torque is
more relevant than the force. The expression can be rewritten to

τg = mgl sin(q), (3.12)

where l is the length of the rod, from the origin to the Centre of Mass(CoM), as shown for
an example system in Fig. 3.2.

Figure 3.2: Single pendulum with rod-length l, joint angle q, mass m, height h gravita-
tional force Fg and torque τg

Alternatively, Lagrangian dynamics can be used to derive a gravitational model. In this
method, the equations of motion are derived by finding the potential and kinetic energy
equations of the system. For the PE of the system in Fig. 3.2,

V = mgh = mgl(1− cos(q)), (3.13)
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can be found, where V is the PE of the system, and q is the (joint) angle . The gravita-
tional model can be derived by taking the partial derivative of the PE with respect to the
configuration of the system

τg =
∂V

∂q
= mgl sin(q), (3.14)

which yield the same model as Eq. 3.11.
By using the partial derivative of the PE, it is ensured that the resultant force or torque

must a CVF (see Sec. 3.1.3). However, this method is unable to discern between different
types of conservative forces. When the PE of a system is made up of, for example, both
gravitational and spring forces the both are encapsulated in system torque τ (following
from Eq. 3.14). In this work, a method for finding distinguishing gravity and spring
torque is designed. This is discussed in Sec. 4.2.1.

3.2.1 Parameterized Models

Using the kinematics of a system, the PE function and thus a gravitational model can
be derived.

A Priori

The expression for PE due to gravity is

V = mgpy,c(q), (3.15)

where py,c is the vertical distance of the CoM w.r.t. the frame in which the vector p is
expressed. In robotic systems, if the CoM belongs to a joint of the device, py,c(q) depends
on the joint angle q. Thus, when q is and the mass of the joint are known, the PE is
known. Given Eq. 3.14, the required joint torque to compensate gravity can determined.
In this work such an approach —where the mass m and py,c(q) are known and determined
beforehand— is referred to as an A Priori (AP) gravity compensation model.

Parameter Linear Form

Following the expression for the PE derived equation for the gravitational model, Eq.
3.14, the equation can be split into two parts. The first terms contains the configuration
dependent terms (referred to as the Regressor-block K(q)) and the other contains the
respective parameters

τ = K(q)θ, (3.16)

where τ is torque, K(q) contains configuration dependent term based on the kinematics
and θ are the respective parameters. Rewriting the equation in such a way is referred to
as Parameter Linear Form (PLF); the regressor can contain non-linear terms, but the
function is linear with its parameters.

3.2.2 Potential Energy Neural Network

Derived from the work of Lutter et al. is the so called Potential Energy Neural
Network (PENN). This model uses the same principle as the Lagrangian NN. The
difference between Lutter et. al. their method and the PENN that only conservative
forces can be learned by the network. This is achieved by taking the partial derivative of
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the output with respect to the joint configurations q. This is achieved by defining the Loss
as

ℓ(V (θ, q), q, τt) =

∥∥∥∥∂V (θ, q)

∂q
− τt

∥∥∥∥2
2

, (3.17)

where τt are the targets torques for the model. The input of the model is q, which represents
the joint angles. As discussed in Sec. 3.1.3, by using the partial derivative of the PE w.r.t.
the joint angles, the resultant torque must be a conservative vector field. Therefore the
model learned by the PENN must be a conservative vector field.
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Figure 3.3: Schematic of a deep PENN. The notation is only given for the top neuron to
make the figure readable; b is a vector

3.3 Identification

While a priori knowledge of the system will solve the gravitational model equations,
the correctness of the model relies fully on how well the parameters are determined. This
can be avoided by using measurement data of the actual physical system and using this to
generate the gravitational model.

Both the PLF and the NN models are data-driven. They rely on input data with
respective target data and aim to find the structure between input and target. In the
following section how these models find this structure is be discussed. In all cases the
input data is denoted with q and target data as τt.

3.3.1 Linear Regression

Eq. 3.16 proposes that if the regressor and the parameters are known, the gravitational
torque can be calculated. If there is some estimate of the parameters θ̂, an estimate of the
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gravitational torque is found

τ̂ = K(q)θ̂, (3.18)

where .̂ implies that this is an estimate of the real system. The best estimation θ∗ can be
found by finding the argument of θ̂ that minimizes the squared difference (Least Squares
(LS)) between the target τt and the model output τ̂

θ∗ = argmin
θ̂

∥∥∥K(q)θ̂ − τt

∥∥∥2
2
. (3.19)

Considering the expression of Eq. 3.19, finding the minimizing argument for θ̂ can be done
by

argmin
θ̂

||K(q)θ̂ − τt||22 ⇐⇒ ∂((K(q)θ̂ − τt)
T (K(q)θ̂ − τt)

∂θ̂
= 0. (3.20)

If a solution for this equation exists, it must be the parameter vector θ̂ which best fits
the data in a least squares sense. The equation above is expanded to

X = (K(q)θ̂ − τt)
T (K(q)θ̂ − τt) (3.21)

= θ̂TKT (q)K(q)θ̂ − θ̂TKT (q)τt − τTt K(q)θ̂ + τTt τt (3.22)

X = θ̂TKT (q)K(q)θ̂ − 2τTt K(q)θ̂ + τTt τt. (3.23)

Now, the expression of Eq. 3.20 can be inserted

∂X

∂θ̂
= 2KT (q)K(q)θ∗ − 2KT τt = 0 (3.24)

KT (q)K(q)θ∗ = KT (q)τt (3.25)

θ∗ = (KT (q)K(q))−1KT (q)τt. (3.26)

The expression (KT (q)K(q))−1KT (q) of Eq. 3.26 is often referred to as the pseudo-inverse
or the Moore-Penrose inverse [23]. However, KT (q)K(q) is not always invertable and
therefore this method for finding the pseudo-inverse is not always possible. There are,
however, other methods for determining the pseudo-inverse. With Matlab function pinv()
the pseudo-inverse is determined through a Singular Value Decomposition (SVD) [24].
Important to note is that for rank-deficient (see Sec. 4.2.1 for the more extensive analysis
of the Regressor-block) matrices, pinv() does not determine the pseudo-inverse as defined
in this section. Instead —when K is rank deficient— it returns

svd(K) = UΣV T =
[
U1 U2

] [Σ1 0
0 0

] [
V T
1

V T
2

]
, (3.27)

K† = V1Σ
−1
1 UT

1 , (3.28)

where U are the left singular vectors of K, Σ are the singular values of K and V are the
right singular vectors. Note that the bottom right of matrix Σ is zero. This is caused by
the rank deficiency of K.

This definition of the pseudo-inverse K† gives

θ∗ = K†τt, (3.29)
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where θ∗ is the minimum norm solution [25].
Having obtained this expression and assuming that the model is linear in the param-

eters, the optimal linear parameters can be determined. In turn these can be used as a
forward gravitational model as:

τ̂g = K(q)θ∗. (3.30)

3.3.2 Backpropagation

For non-linear systems the method of Sec. 3.3.1 cannot be used since they have no
unique solution. However, a function for expressing the performance of the model is still
required. To illustrate, the following Loss is defined (see Eq. 3.17)

ℓ(fNN(θ, x), τt) = ∥fNN(θ, x)− τt∥22 , (3.31)

where fNN(θ, x) is the expression of the neural network, θ denotes the collection of all
network parameters (weights wi and biases bi) and x is the input of the network. In
order to find a minimal solution for the Loss, an algorithm called backpropagation is
used [26]. This algorithm computes the gradient of the Loss of the model with respect to
the parameters w and b. If Eq. 3.5 is considered as one layer in a NN, backpropagation
computes the partial derivatives w.r.t. the model parameters

∂ℓ

∂wi
,

∂ℓ

∂bi+1
. (3.32)

As is shown in Eq. 3.6, a network can be build up of many layers and thus many weights
and biases. Computing the gradient requires the chain rule [27]

∂ℓ

∂wN−2
=

∂zN−1

∂wN−2

∂αN−1

∂zN−1

∂zN
∂αN−1

∂αN

∂zN

∂ℓ

∂αN
, (3.33)

where the conventions of Eq. 3.5 and 3.6 are used. While the expression above itself does
not contain any repeating terms, the same method has to be applied in order to find ∂L

∂bN−2
,

∂L
∂w1

or any of the partial derivatives. When computing all these, a lot of repeating terms
occur. Backpropgagation recognises these terms and only computes them once, storing
each partial into memory during every iteration.

Once all the partials have been computed, the network can use these to learn using
gradient descent

wt+1
N = wt

N − η
∂ℓ

∂wN
, (3.34)

where t here denotes the iteration step and η is the learning rate. Eq. 3.34 is the most
basic implementation of the parameter update step. In this work, a well-known parameter
update algorithm, ADAM [28], is used.

3.4 Model Validation

To check the implementation of the models, a validation method is proposed. A.
Vallinas Prieto developed a Recursive Newton Euler (RNE) model of the DAROR-01 (see
Sec. 4.1 for more details). This algorithm can be used as a noise-free feed-forward model
of which the gravitational torques can be isolated τg,model = fmodel(q). The data generated
by the RNE model is in coherence with the actual physical system. If the data-driven
models (Sec. 4.2) are able to find the structure of the RNE model, they are assumed to be
correctly implemented.
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Chapter 4

Methods

The following section outlines the implementation of the models aming to find a relation
between the joint angles q and the respective (gravitational) joint torques τ , as described
in Sec. 3.1.

A distinction is made between the A Priori method and the data-driven models: Pa-
rameter Linear Form (PLF) and Neural Networks (NN).

Subsequently the other functionality developed to facilitate the implementation and
performance of these models is discussed.

4.1 A Priori

The AP model uses information of the system that is retrieved before the pilot is
installed. Information of the design and production of the DAROR-01 provide system
parameters for the exoskeleton. When a pilot is installed in the device, this can be seen
as a new system, added to the DAROR-01. Given that the PE of a system is additive
—therefore so is gravitational torque— the two systems can be evaluated individually.

The gravitational model for the DAROR-01 is derived through different approach than
the one described in 3.2.1. Essentially an expression similar to Eq. 3.2 —with q̇ = 0 rad/s
and q̈ = 0 rad/s2— is required for determining the gravitational model. This function is
derived through the Recursive Newton-Euler (RNE) algorithm. This algorithm was
implemented into Matlab by A. Vallinas Prieto within the department of Biomechanical
Engineering and adapted to only determine gravitational torques.

To determine the gravitational model of the pilot the method described in Sec. 3.2.1
is used. In order to determine the PE, the masses and CoMs of the segments of the
user are required. For this, Suzanne Filius, derived estimations for these parameters from
literature [9], [29]. The literature proposes estimation methods based on total body mass
and length and sex of the subject. From this, the vector

θh = g
[
m1I3×3 m2I3×3 m3I3×3 m4I3×3

] 
1p1,c
2p2,c
3p3,c
4p4,c

 , (4.1)

that contains the human parameters (θh ∈ R12) can be formulated, where
ipi,c =

[
ipi,cx

ipi,cy
ipi,cz

]T . With this, the PE of the pilot as a function of q can be
determined

V (q) = K(q)θh, (4.2)
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where K(q) contains the transformations of the vectors ipi,c to 0pi,c. How K(q) is derived
will be explored extensively in Sec. 4.2.1.

Now, a vector for the PE V (q) is found, where Vx(q) and Vz(q) should be removed since
gravity only acts on vertical displacements

Vy(q) =
[
0 1 0

]
V (q). (4.3)

From here, the gravitational torque is obtained

τg(q) =
∂Vy(q)

∂q
. (4.4)

The human shoulder is complex in its movement. For the method that was selected
—expressing the gravitational torque as a function of q, mi and 0pi,c— the vector ipi,c is
required and this vector is determined analytically. The assumption was made that there
is no mass or CoM in actuator frame 1 and 2. Furthermore, the assumption is made that
3p3,c only has an x-component1 (see Fig. 2.3). A similar assumption is made for 4p4,c,
which also only contains an x-component. Finally, from the derivation of Sec. 4.2.1, Eq.
4.12 the segment length of the upper arm is required in order to complete the parameter
vector as suggested in Eq. 4.19.

These values have to be directly or indirectly [9], [29] measured. As a result a method
for estimation the gravitational torque model of the pilot can be derived a priori.

In this thesis instead of testing with a pilot, only the DA is used for testing the system
with load. Sec. 4.4.3 mentions the required parameters for setting up the parameter vector
θh ≡ θDA

θDA =
[
01×6 (3p3,cxmua +mlaδua)g 0 0 4p4,cxmlag

]T
, (4.5)

=
[
01×6 5.0963 0 0 1.1559 0 0

]T
. (4.6)

Furthermore, similar to the method described in Sec. 4.2.2 the AP model can be
extended to also contain elbow stiffness. Different from the method in Sec. 4.2.2, a
1st order polynomial is used to estimate the joint stiffness. The reason here is that the
parameters of a 1st order polynomial are quite easy to interpret and thus could be tweaked
to suit the wishes of the pilot. The additional joint stiffness torque is

τs =

[
03×1 03×1

1 q4

] [
µ0

µ1

]
, (4.7)

where µ0 = 1.3 Nm and µ1 = 1.14 Nm/rad, resulting from the work of Suzanne Filius.

4.2 Data-Driven Models

As discussed in Sec. 3.1 both the PLF and the NNs depend on data from the sys-
tem. Sections 4.3.1 and 4.3.2 describe how this data was gathered. The input data for
these models are the joint angles q at iterations where the DAROR-01 was stationary
(||q̇|| < 0.001 rad/s) and the target data for these models is τ . The output of the models
is an estimation of the gravitational joint torque.

In this work, four data-driven models are explored. Three were already introduced in
Sec. 3.1: PLF, PENN and NNN . The fourth model is PLF but extended to also contain

1This is based on the assumption that actuators 1-3 and the human shoulder have the same CoR
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a PLF stiffness compensation structure. This is achieved by including a specific regressor
with the aim to encapsulate joint stiffness. The aim is to separate the two conservative
forces (gravitational and spring force) acting on the PE. This model is referred to as PLF+

Since these models use data to train, it is important to comment on the process of data
gathering and how this might effect the models. Sec. 4.3.2 will go into more depth on how
the data was gathered.

For the analysis of the performance of the models, two systems are considered. The first
system is the DAROR-01 without any load attached. This explores ability of the model
to find the gravitational structure of the system without any perturbations introduced
by a pilot (or other load). The second system is the DAROR-01 with the Dummy Arm
attached. The performance of the models in this configuration provide a good prediction
of the model their performance when used with a human pilot.

4.2.1 PLF

Following from the kinematic structure of the DAROR-01 the Parameter Linear Form
can be derived (see Eq. 3.16). This equation is derived from 3.14 and thus first the
expression for the PE is found.

Constructing the PLF

First, an expression for the vector 0Pi,c(=
[
0pTi,c 1

]T
) is required

0P1,c(q1) =
0H1,r(q1)

1,rP1,c =
0H1,r(q1)

[
1p1,c
1

]
, (4.8)

0P2,c(q1, q2) =
0H1,r(q1)

1,rH2,s
2,sH2,r(q2)

2,rP2,c =
0H2,r(q1, q2)

[
2p2,c
1

]
, (4.9)

0P3,c(q1, q2, q3) =
0H2,r(q1, q2)

2,rH3,s
3,sH3,r

3,rP3,c =
0H3,r(q1, q2, q3)

[
3p3,c
1

]
, (4.10)

0P4,c(q)
0H3,r(q1, q2, q3)

3,rH4,s
4,sH4,r

4,rP4,c =
0H4,r(q)

[
4p4,c
1

]
, (4.11)

where Pi,c is the augmented version of pi,c Eq. 4.11 is the only homogeneous trans-
formation that contains a translation: 3,rH4,s. This causes the product of the final three
terms of the middle equation to become[

I3×3 δ
01×3 1

] [
Rz(q4) 0
01×3 1

] [
3p3,c
1

]
= δ + Rz(q4)p4,c. (4.12)

For the next part of the derivation, for the ease of notation PE is pretended to exist
in x, y and z. Eventually only the vertical Vy is used. Now, the PEs for every link can be
computed as

V1(q1) = gm1
0p1,c(q1) =

0R1,r(q1)θ1, (4.13)

V2(q1, q2) = gm2
0p2,c(q1, q2) =

0R2,r(q1, q2)θ2, (4.14)

V3(q1, q2, q3) = gm3
0p3,c(q1, q2, q3) =

0R3,r(q1, q2, q3)θ3, (4.15)

V4(q) = gm4
0p4,c(q) =

0R3,r(q1, q2, q3)gm4δ +
0R4,r(q)θ4 (4.16)

= 0R3,r(q1, q2, q3)θδ +
0R4,r(q)θ4. (4.17)
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And these PEs can be summed to obtain the total PE of the system

V = 0R1,r(q1)θ1 +
0R2,r(q1, q2)θ2 +

0R3,r(q1, q2, q3)(θ3 + θδ) +
0R4,r(q)θ4, (4.18)

V =
[
0R1,r(q1)

0R2,r(q1, q2)
0R3,r(q1, q2, q3)

0R4,r(q)
]︸ ︷︷ ︸

K̄(q)


θ1
θ2

θ3 + θδ
θ4


︸ ︷︷ ︸

θ

. (4.19)

From here, only the Vy is considered. This is done through Eq. 4.3. Furthermore, the
expression for the parameter vector θ is found

θ =


θ1
θ2

θ3 + θδ
θ4

 =


m1g

1p1,c
m2g

2p2,c
m3g

3p3,c +m4gδ
m4g

4p4,c

 , (4.20)

where ipi,c ∈ R3 is the vector pointing to the CoM of element i. Thus, the values in θ have
a physical meaning.

The final step is to take the partial derivative to obtain the gravitational torque τg.

∂Vy

∂q
=
∂K̄y(q)θ

∂q
=


∂Vy,1(q1)

∂q1

∂Vy,2(q1,q2)
∂q1

∂Vy,3(q1,q2,q3)
∂q1

∂Vy,4(q)
∂q1

∂Vy,1(q1)
∂q2

∂Vy,2(q1,q2)
∂q2

∂Vy,3(q1,q2,q3)
∂q2

∂Vy,4(q)
∂q2

∂Vy,1(q1)
∂q3

∂Vy,2(q1,q2)
∂q3

∂Vy,3(q1,q2,q3)
∂q3

∂Vy,4(q)
∂q3

∂Vy,1(q1)
∂q4

∂Vy,2(q1,q2)
∂q4

∂Vy,3(q1,q2,q3)
∂q4

∂Vy,4(q)
∂q4

 θ, (4.21)

⇒∂K̄y(q)

∂q
θ =


∂Vy,1(q1)

∂q1

∂Vy,2(q1,q2)
∂q1

∂Vy,3(q1,q2,q3)
∂q1

∂Vy,4(q)
∂q1

0
∂Vy,2(q1,q2)

∂q2

∂Vy,3(q1,q2,q3)
∂q2

∂Vy,4(q)
∂q2

0 0
∂Vy,3(q1,q2,q3)

∂q3

∂Vy,4(q)
∂q3

0 0 0
∂Vy,4(q)

∂q4

 θ = K̃(q)θ. (4.22)

Considering the definitions of Sec. 2.1 the chain rule is applied to ∂Vy,j

∂qi
. All parts

not containing qi are zero. Therefore only the partial derivative of the rotation matrix
i,sRi,r(qi) = Rz(qi) has to be taken. This results in

∂Rz(qi)

∂qi
=

− sin(qi) − cos(qi) 0
cos(qi) − sin(qi) 0

0 0 0

 = R′
z(qi), (4.23)

and substituting this term in K̄y(q) gives K̃(q). Therefore all parts of the Eq. 3.30 and
the PLF expression, are found

Algorithm Implementation

The algorithm is implemented in Matlab. A function is written that receives (station-
ary) joint positions and joint torques from the training dataset (see sections 4.3.1 and
4.3.2). With the training data, the algorithm described in Sec. 3.3.1 is employed to find θ.
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Regressor Rank

The Regressor K(q) is build up out of (at least) 3 Regressor blocks K̃(q) ∈ R4×12.
Considering that the Regressor K(q) ∈ R4N×12 (Where N ≥ 3 is the number of datapoints),
the expected rank of this matrix would be 12. However, Matlab function rank() returns
8.

Rank is an expression of the dimensionality of the image of a matrix. Given a full-rank
matrix of N columns (with more than N rows), that matrix expresses information in N
dimensions. When the rank of a matrix is smaller than the number of columns, the matrix
is rank-deficient. This means that a subspace of the matrix is mapped to the null-space.
Given that K(q) has rank 8 and 12 columns, a 4D subspace of K(q) is mapped to the null-
space. Thus the parameters corresponding to those dimensions are linear combinations of
the eight base parameters. As a consequence there is no unique solution for Eq. 3.26 and
the values found for the parameters are not physically explanatory. Since the goal of this
method was torque reproduction, this is not an issue.

4.2.2 PLF+

As mentioned in Chapter. 1, DMD patients experience high joint stiffness. In Sec. 3.2
it is pointed out that the distinction between PE due to gravity or some other configuration
dependent force —such as joint stiffness— cannot be made. This fact is also true for the
training data (see Sec. 4.3.2).

If a model for the joint stiffness can be found, the resultant compensation torque can
be added to the gravitational compensation torque

τgs = τg + τs, (4.24)

to obtain the gravity + stiffness compensation model τg+s. From data on the joint stiffness
of the elbow, gathered by Suzanne Filius, was concluded that the profile of joint stiffness
(of the elbow) can be approximated with a fifth order polynomial. This polynomial can
be written in Parameter Linear Form

τs = Ks(q4)µ, (4.25)

Ks(q4) =

[
03×6

1 q4 q24 q34 q44 q54

]
, (4.26)

µ =
[
µ0 µ1 µ2 µ3 µ4 µ5

]T
, (4.27)

where µi are the parameters that are found by the LS method of Sec. 3.3.1.

Algorithm Implementation

There is essentially no difference between the implementation of the PLF and the PLF+
training algorithm. PLF+ does contain the extension of training the parameter vector µ
for the joint stiffness as well. This is also done using linear regression (Sec. 3.3.1).

4.2.3 PENN

The implementation of the PENN (and NNN) models follow quite directly from how
they are described in Sec. 3.2.2 (and 3.1.1 respectively).

These HP of the PENN influence the performance of the network. It is, however, quite
difficult to predict what choice of HP will give the best performance; Sec. 4.2.5 will go into
more depth for some of HP and how they are selected.
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Considering the kinematic structure of the system, joint angle q never appears purely
in the kinematic equations. Furthermore, q has 2π rotation invariance. In order to avoid
the NN having to learn this invariance, an additional layer is proposed. One layer is added
between the input of the network and the first hidden layer

zSC =
[
sinT (q) cosT (q)

]T
, (4.28)

where zSC is the output of the new layer containing periodic functions. The hypothesis is
that this improves the performance, but this has to be validated.

For the batch size, 50% of the dataset was selected (see Sec. 4.3.2 for more information
on the dataset). Every 10 batches, the model is tested and the validation loss is returned.

ADAM is used to set the learning rate (see Sec. 3.3.2).

Algorithm Implementation

The PENN was written in Python with the help of JAX [30]. This is a library that con-
tains auto-differentiation algorithms. This was required since not only the partial derivative
of the loss function w.r.t. the network parameters θ (see Sec. 3.2.2, Eq. 3.17) had to be
taken —which is handled by most machine learning libraries— but also w.r.t. the input
q. Furthermore, JAX runs on the GPU (or TPU) of a system, which are more efficient in
running the types of computations of JAX. Finally, JAX only is configured for Linux OS.
This all contributed to switching systems to run the PENN and interfacing with this Linux
system. The dataset is used for training is sent to the Linux system and once training is
complete the Linux system sends back the trained network parameters θ.

For the final implementation, the networks were trained for 35 batches of data, testing
every 5 batches.

As Sec. 4.2.5 will point out, random initialization can dictate the final performance
of a network. From Table I it becomes clear that the best performing network would not
be in the top 10 if it had been for the other randomly initialized network. To circumvent
this problem, the algorithm is implemented in such a way that 5 networks are trained in
series, and the network parameters θ with the lowest Minimal Validation Loss (MVL) are
selected.

Taking the expression of Eq. 3.17, it should be noted that, since the extra layer was
added between the input and the first HL, the partial derivative of this layer also had to
be computed

∂zSC

∂q
= I8×8

[
cos(q)
− sin(q)

]
, (4.29)

as the final step in the backpropagation.

4.2.4 NNN

The Naive Neural Networks attempt to find a model using no information of the system
except for the data and the input 4.28. The operation of this model follows from how it
is described in Sec. 3.1.1. Different from the PENN model, the joint torque τ is directly
computed by the network. The performance of this network logically also depends on the
set on HPs. How these are selected is described in Sec. 4.2.5).
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Algorithm Implementation

Since the environment was already set up for the PENN, NNN was also developed using
JAX. The main difference is that the partial derivative w.r.t. the input is not computed;
the joint torques τ are the output of the network. The rest of the implementation of the
algorithm is the same as the for PENN.

4.2.5 Hyperparameter Search

In order to find the best configuration, a brute force search was done. Below is an
overview of the HPs that were considered in this search.

• Number of layers: 1, 2, 8, 21
• Neuron per layer: 5, 10, 25
• Activation functions: Hyperbolic Tangent (Tanh), Rectified Linear Unit (ReLU),

Sigmoid
• Regularization rate; 10−5, 10−3, 10−1

• Input type: q, SC (see Eq. 4.28)
Every configuration was trained twice with random initialization. The dataset classified

as training dataset (see Sec. 4.3.2) of the DAROR-01 was used for this search. Per batch,
75% is used as training data, the remaining 25% is validation data. For the selection of
the train vs. validation data, k-fold cross validation [31] is used. The performance of the
different HP sets is expressed in terms of the minimal validation loss: the lowest value
the validation loss is during the training process. The reason this performance indicator
is selected is that it provides the best prediction for generalization2 without requiring a
forward computation of the network.

The set of HPs found for PENN and NNN on dataset A (see Sec. 4.3.2) is assumed to
also be optimal for dataset B. This assumption is made since both datasets contain identical
kinematic structures with only different parameters for mass and CoM. Furthermore, the
advantage of using data-driven models for gravity compensation is that the compensation
for different pilots can be learned without to much trouble. If a brute force search for
the best set of HP is required for every different system this method would be too time
consuming.

PENN HP Optimization Results

In total, 432 (= 3 · 4 · 3 · 3 · 2 · 2) networks were trained with the specifications men-
tioned above. The selected performance indicator is the MVL, computed for all network
configurations. Ten networks are selected based on the performance indicator. Fig. 4.1
shows the progression of the validation loss

The smallest MVL occurs around Epoch 20000. This could indicate that the network
has coincidentally overfitted to the validation dataset. However, given the progression of
the validation loss of that network and the fact that k-fold cross validation is used, this
seems very unlikely.

Table I shows the ten networks with the MVL. The best performing network config-
uration is a network consisting of two layers with ten neurons per layer. The layers have
the Sigmoid activation function, input of Eq. 4.28 and use a L1 regularization rate of 0.1.

It is quite clear from Table I, column MVL that the order and performance of the
networks depends greatly on the random initialization of the network. From the tested

2Assuming that the validation data contains a good representation of the system. There is no direct
proof of this assumption but given the cross validation, overfitting should be very incidental

27



0 1 2 3 4 5 6 7

Epochs 104

0

1

2

3

4

5

6

7

8
Lo

ss

PENN validation loss

2-10-Sigmoid-1e-01-SC
2-10-ReLU-1e-05-q
2-10-Sigmoid-1e-05-SC
2-10-Sigmoid-1e-05-q
1-25-Tanh-1e-03-SC
1-25-ReLU-1e-01-q
2-10-ReLU-1e-05-SC
1-25-ReLU-1e-03-q
1-25-Tanh-1e-03-q
1-10-Sigmoid-1e-05-q
Min. validation loss

Figure 4.1: Training and validation losses of the ten PENNs with the best performance
indicator

networks, small networks (referring to few layers and few neurons per layer) perform better
than larger networks. No clear conclusion can be drawn for the other HPs. For this, a
larger scale global search with more random initialized networks would be required in order
to perform proper statistical analysis.

While finding the set of HP with the highest probability of getting the lowest MVL
would be interesting, there still would be no guarantee that a newly trained network would
have a good performance. Finding the best network would still require training multiple
random versions. Since this is also true for the results of this brute force search, this is
solved in the algorithm implementation.

Table I: PENN - The results of the brute force search over all combinations of the hyper-
parameters in their specified range. HL is the number of Hidden Layers, N/L is the number
of Neuron per Layer. α denotes the type of activation function. λ is the regularization
rate and the min. validation loss is the minimum value of the validation loss during the
learning process of that network. The green value is the smallest MVL, the other MVL is
of the other randomly initialized network.

HL N/L α log10(λ) Network input MVL
2 10 Sigmoid -1 SC 1.2106 0.8293
2 10 ReLU -5 q 1.1299 0.8671
2 10 Sigmoid -5 SC 1.3656 0.8873
2 10 Sigmoid -3 q 0.9379 1.2093
1 25 Tanh -3 SC 0.9538 1.3053
1 25 ReLU -1 q 0.9728 1.2339
2 10 ReLU -5 SC 1.2229 0.9916
1 25 ReLU -3 q 0.9905 1.0791
1 25 Tanh -3 q 1.0011 1.1448
1 10 Sigmoid -5 q 1.2469 1.0019
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Figure 4.2: Training and validation losses of the ten NNNs with the best performance
indicator

NNN HP Optimization Results

Again, the smallest min. validation loss —shown in Fig. 4.2— is not a unique occur-
rence and therefore the model has not incidentally overfitted to the validation data.

In Table II the results of the search of NNN network configurations is shown. The best
performing network has two layers with five neurons, the hyperbolic tangent activation
function, a L1 regularization rate of 10−5 and Eq. 4.28 as the input layer of the network.

Table II: NNN - The results of the brute force search over all combinations of the hyper-
parameters in their specified range. HL is the number of Hidden Layers, N/L is the number
of Neuron per Layer. α denotes the type of activation function. λ is the regularization
rate and the min. validation loss is the minimum value of the validation loss during the
learning process of that network. The green value is the smallest MVL, the other MVL is
of the other randomly initialized network.

HL N/L α log10(λ) Network input Min. validation loss
2 5 Tanh -5 SC 0.9675 1.2472
1 10 ReLU -3 q 1.3807 1.0138
2 5 ReLU -1 SC 1.0161 1.1851
1 10 Sigmoid -5 SC 1.0375 1.2667
1 10 Sigmoid -3 q 1.0807 1.1723
2 5 Sigmoid -5 q 1.2100 1.1129
2 5 Tanh -5 q 1.2512 1.1270
2 5 Sigmoid -3 SC 1.1283 1.2170
1 25 Tanh -3 q 1.1343 1.1725
2 5 Sigmoid -5 SC 1.1400 1.2407
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4.2.6 HP Analysis and Conclusion

From the analysis performed in Sec. 4.2.5 can be concluded that small networks are able
to best represent the structure within the data. No clear conclusion can be drawn w.r.t.
the activation function, regularization rate or network input. This would require more
randomly initialized networks per HP set to enable proper statistical analysis. However,
as can be seen from both Tables I and II random initialization has a much larger impact
than these HPs. The same is true for specific numbers of layers or neurons per layer.

The statistical analysis potentially would result in the ‘best’ combination of HPs but
then still, there is no absolute guarantee that a new and randomly initialized network
will perform well. Finding a NN with good performance is more likely to be the result of
random initialization with a HP set in the top ten (see Sec. 4.2.4 on how this conclusion
is used). Therefore no further action is taken into optimizing the performance of HP sets.

4.3 Facilitative Functionality

The setup of the DAROR-01 consist of three systems that correspond using specific
protocols, as is shown in Fig. 4.3. The main software —e.g. the torque and position
controllers and the compensation models— runs on the Base Station (on TwinCAT 3) and
communicates with the motor drives and sensors to actuate the exoskeleton and retrieve
data. In turn, the Base Station also communicates, using ADS, with the Operator PC,
where the Graphical User Interface (GUI) displays relevant data and allows interaction
with the software of the exoskeleton on the Base Station.

Aside from the aforementioned compensation methods, functionality within the sys-
tem was developed to assist and/or facilitate the implementation of those methods. The
following sections will highlight the most important functionalities.

Base Station
TwinCAT 3

ADS Operator PC
Matlab GUI

EtherCATMotor Drives
& Sensors

Figure 4.3: Schematic representation of the electronic systems used during operation of
the exoskeleton, with the corresponding communication protocols.

4.3.1 Trajectory Generation

A trajectory generator is designed that used the position control mode. The trajectory
generator generates the reference joint position q and joint velocity q̇ for the system. The
input of the generator are the waypoints of a trajectory, consisting an elevation, horizontal
rotation, axial rotation and elbow flexion angle. During the identification protocol, the
exoskeleton moves from waypoint i to waypoint i+1. The trajectory generator is designed
by dr. ir Arvid Keemink.

Using forward kinematics, the pose of a waypoint can be transformed to a rotation
matrix of the shoulder and elbow angle. Since the trajectory of the elbow is trivial to
determine, it is not regarded in the following analysis. The ISB angles of the shoulder
joint are transformed to a rotation matrix. From here, Eulers Rotation Theorem says that
there must be a single AoR ω between the rotation matrix i and rotation matrix i+1. The
required shoulder rotation velocity from pose i to i+ 1 is constructed as the product vω,
where v is some scalar speed. This ISB angular velocity is then converted to joint velocity
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using differential inverse kinematics:

q̇ =

[
J−1(q)vω

q̇4

]
, (4.30)

where J(q) is the analytic Jacobian of the shoulder joint. The actual implementation of
also contains a feedback correction velocity for the shoulder rotation. This is omitted for
simplicity.

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

A
ng

le
 [d

eg
]

Elevation

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

A
ng

le
 [d

eg
]

Horizontal rotation

0 100 200 300 400 500 600 700 800 900 1000
-150

-100

-50

0

A
ng

le
 [d

eg
]

Axial rotaiton

0 100 200 300 400 500 600 700 800 900 1000
Time [s]

0

50

100

A
ng

le
 [d

eg
]

Elbow flexion

Train trajectory
Validation trajectory

Figure 4.4: Training and validation trajectories in ISB space

Two trajectories (see Fig. 4.4) are designed; one used for the training of the data-driven
models, the other to validate the performance of the models once trained. The training
and validation trajectories contain the same waypoints but in a different order. This causes
trajectory to differ while still spanning the same workspace. Furthermore, once the final
waypoint is reached, the algorithm runs through the trajectory in reverse. The reason for
this is that, if the system contains any forces that depend on the direction of the rotation
(as discussed in Sec. 2.2.2), that effect is mitigated.

The results of the conversion from ISB-space to q-space is shown in Fig. 4.5.

31



0 100 200 300 400 500 600 700 800 900 1000
-1

0

1
A

ng
le

 [r
ad

]
q1

0 100 200 300 400 500 600 700 800 900 1000
-2

-1

0

A
ng

le
 [r

ad
]

q2

0 100 200 300 400 500 600 700 800 900 1000

-2

-1

0

1

A
ng

le
 [r

ad
]

q3

0 100 200 300 400 500 600 700 800 900 1000
Time [s]

0

1

2

A
ng

le
 [r

ad
]

q4

Train trajectory
Validation trajectory

Figure 4.5: Training and validation trajectories in q-space

4.3.2 Data Acquisition

The dataset required for the training of the models contains the configuration of the
joints q and the associated joint torque τ . The data should contain only gravitational
(or spring) torques. During movement, the SEAs also measure velocity- and acceleration
induced torques. Thus, only data at stationary points should be considered. A dataset is
built up out of datapoints at which the norm of the velocity vector is near zero.

Using the trajectory generator, the waypoints in ISB space are converted to path in
global frame rotation, which is then converted to q-space. Given that the models require
data at which the system is stationary, the trajectory is build up out of small movements
with short breaks between each movement. Sec. 4.3.1 describes the design of the trajectory
using waypoints. The path between these waypoints is interpolated and divided into smaller
sections, creating sub-waypoints. At every (sub-) waypoint, the system is briefly stationary.

Once the trajectory has finished, the norm of the joint velocities is determined and only
data at which ||q̇|| < 0.0002 rad/s is selected for the dataset. Since the joint velocity data is
quite noisy, a lowpass butterworth filter with cut-off frequency ωc = 0.1 Hz is used to filter
the joint velocity data. Both the lower bound for q̇ and ωc are chosen such that data was
stationary enough and the signal looked smooth but still contained all information. From
this, both datasets contain about 25000 stationary datapoints. For the training dataset,
all data was randomly shuffled before training to ensure that the models would not overfit
to substructures in, for example, the first 5% of the dataset. While the large size of the
dataset is no immediate problem for the training dataset, for validation of the model such
a large dataset can be hard to interpret and display. Therefore, another method is chosen
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for the selection of data.
Given the fact that at every waypoint the system is stationary, these indexes are in-

stead selected for constructing the validation dataset; reducing the dataset to only 166
datapoints.

Two different training and validation datasets were recorded, one where the DAROR-
01 alone performed the trajectories and a second one where the DA was installed into the
system and then the trajectories were run. The first dataset, with only the DAROR-01, is
referred to as dataset A and the other is referred to as dataset B.

In order to ensure that the models will note learn substructures in the data, the data
is randomly permutated.

4.3.3 Finite State Machine

Given all the required functionality contained in the software, a Finite State Machine
(FSM) that controls the program and information flow is designed. Also, the Finite State
Machine will ensure a safe testing protocol with a pilot installed in the device by requiring
numerous safety checks. A schematic of the FSM can be found in App. A

The FSM has three distinct super states, a pre-op(erative) state, an installation state
and an operative state. The pre-op superstate is the state which contains the start-up
state and all states that include the checks and settings required before a pilot is installed
in the device. The DAROR-01 can be conservatively turned on in this state but only to
check the disabling and contributing safety functions.

The installation superstate contains the states in which the pilot is installed in the
device with the contributing safety checklists. It also contains the setting of the ISB limits
of the user and a state in which the user can test and experience the safety mechanisms of
the device.

Finally, the operative superstate contains the identification protocol, an idle state in
which the different compensation models are trained3 and finally a state in which the
different compensation models can be selected and tuned.

State transition only through input of the device operator. The operator has to actively
press an ‘advance’ button to induce a state transition. Only in some unique cases where
a state transition directly causes more user safety such a transition is triggered within the
logic of the FSM itself.

4.3.4 Graphical User Interface

Operating all the functionality is done through a GUI. This GUI was designed for the
operator of the device during experiments. It contains the controls for the Finite State
Machine and provides visual feedback for the operator.

The GUI is mainly designed for development and relies on a experienced operator to be
used correctly. However, the integration of the FSM in the GUI should inform and prevent
an unfamiliar operator to make any large mistakes that could cause harm to the pilot.

The GUI currently contains many functionalities that should be removed when actual
tests are performed with human pilots. These features purely exist to ease the development
of the GUI and all other software. While these features are still present in the system,
they can be easily removed without altering the required functionality of the GUI.

3Training is optional and can be skipped if trained models already exist or if only the AP model is
required.
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4.4 Validation methods

Now that the mathematical tools have been applied to the DAROR-01, the resulting
models require validation. For this, a performance parameter is required to express the
performance of the models. Furthermore, the design and implementation of the models
also needs to be checked. Finally, whether the method for checking if the models are a
CVF is explained.

4.4.1 Performance Validation

In the next Chapter the performance of all models are compared and discussed. For
this comparison the validation datasets (see Sec. 4.3.2) are used. For both systems a
separate validation dataset was recorded, which is used for the performance analysis. The
performance of the compensation models is expressed in terms of the Root Mean Squared
Error (RSME)

RMSE =

√√√√ 1

N

N∑
i=1

(τv,i − τm,i)
2, (4.31)

where τv is the validation torque and taum is the compensation model torque. RMSE
(in Nm) thus is the error between the torques of the validation dataset and the torques
predicted (given the attributing joint angles) by the compensation models.

While RMSE is a relatively good measure for expressing how well the compensation
model predicts the validation data, there are two main drawbacks. Both are caused by the
fact that RMSE is an expression of absolute error.

The first drawback (of this implementation) of RMSE is caused by the fact that not all
actuators have to deliver the same range of torque. If the model is able to learn the structure
of the actuator that has the highest torque range well and structure of the other actuators
poorly, the RMSE could still be quite low. It could be argued that performing well on
’stronger’ actuators is more important. However, this makes comparing the performance
of the compensation models less fair, since RMSE is biased for performance on high torques.

Secondly, using regular RMSE, the model performance on dataset A cannot be com-
pared to its performance on dataset B. This is because dataset B contains much higher
torques (since the system had higher mass and added joint stiffness).

To circumvent this bias in RMSE, it needs to be normalized. This is done by dividing
the error between the validation torque and the model torque with the peak validation
torque, per individual actuator over N samples

nRMSE =

√√√√ 1

N

4∑
j=1

N∑
i=1

(
τv,i,j − τm,i,j

max(τv,j)

)2

, (4.32)

where τv is the validation torque of the dataset and τm the prediction of the compensation
model. Subscript j represents actuator 1, 2, 3, 4. Due to this normalization, nRMSE has
no unit.

4.4.2 Model Validation

The method for validating the implementation of the models described in Sec. 3.4 is
executed. The results of the PLF and PLF+ are shown in Fig. 4.6. The training RMSE4

4Here the training RMSE is considered since the outcome of this test is to find whether the models are
able to sufficiently find the structure of the data
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is 3.52 · 10−15 Nm and 8.87 · 10−15 Nm for the PLF and the PLF+ method respectively.
Such a small fitting error validates that the implementation of the model is assumed to be
correct.
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Figure 4.6: Validation of the implementation of the PLF models

The same method is employed for the PENN and NNN. Since these models have not
been provided the structure of the system, they might not necessarily get as small of a
RMSE as the PLF(+) models. The results are shown in Fig. 4.7. Training RSMEs of
0.8962 Nm and 1.0099 Nm are found for the PENN and the NNN respectively.

That these values are this high is most likely caused by the fact that the HP set is
selected based on validation loss. As discussed in Sec. 4.2.6 the smallest MVL is found
for small networks. It would seem that these small networks lack the ability to find the
gravitational structure of the DAROR-01. Neglecting this fact and choosing larger network
structures decreases the training RMSE but increases the validation RMSE. Form Fig. 4.7
can be observed that the compensation model torque does follow the trend of the training
torque.
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Figure 4.7: Validation of the implementation of the NNs

4.4.3 Dummy Arm

The compensation models must also be validated under load. A healthy pilot might
use some muscular force during the identification protocol and therefore would introduce
inaccuracies. Therefore, a passive representation of the upper extremity is developed.

The Dummy Arm (DA) is a model representation of a human (upper and lower) arm,
developed by Bas van der Burgh with the goal to be used as testing system in the DAROR-
01. The DA has similar DoF, mass, CoM and stiffness to a human arm. The arm can
easily be installed in the DAROR–01 and used for testing the system as if a DMD patient
is in it. Two springs are attached similarly from the upper arm to the lower arm. One
spring resists flexion, like the triceps. The other resists extension, like the biceps. The
stiffness of these springs is 2.84 Nm/rad.
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Figure 4.8: The Dummy Arm

From Fig. 4.8 it can be seen that the DA consist out of two main parts, the upper arm
and the lower arm. The DA has the following properties:

• The mass of the upper arm is 1.710 kg
• The mass of the lower arm is 1.053 kg
• The CoM of the upper arm is located at 13.6 cm (w.r.t. the CoR)
• The CoM of the lower arm is 10.9 cm (w.r.t. the elbow joint)
• The distance between the CoR and the elbow joint is 27.5 cm.

4.4.4 Energy Conservation

Sec. 3.1.3 introduces the concept of conservative forces. Since gravitational force is a
typical conservative force, the compensation model should also be conservative. Further-
more, given the interaction with humans/patients, the compensation model should not
gain —and ideally not cost— energy during use.

Determining whether the output of a model is a conservative vector field can be done
numerically. As mentioned in Sec. 3.1.3 either two unique paths with the same start and
end point should cause the same increase or decrease of (potential) energy, or taking a
closed path should result in zero energy gain. The latter method is selected for validating
whether the compensation models return a conservative force.

To check whether the models have gained/lost energy when returning to the starting
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location of the closed path, Eq. 3.14 can be used. If rewritten to∑
δV =

∑
τgδq, (4.33)

the total energy to take the closed path can be computed. Here, δq is the size of the step
in q-space, τg is the gravitational torque computed by the model. The sum of all steps
over the path is taken to get δV ; the net PE over the closed loop.

Since this is a numerical integration, computation errors might cause the net energy to
not be zero. However, if the stepsize is decreased this should in turn also decrease the PE.
In that case, the resultant value of δV can be attributed to computation errors.
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Chapter 5

Results

The performance of all methods is analysed through offline methods. This implies
that the performance of the models is tested outside of the actual environment of the
DAROR-01. They instead are tested on validation datasets.

5.1 Offline Results

The offline performance of the models is analysed through the (n)RMSE of the fit
given the validation data. In Fig. 5.1 the validation torque τv (blue) is displayed with
all five compensation models when only the DAROR-01 is considered. Fig. 5.2 shows the
validation torque and the compensation models when the DA is added to the system. The
results for both datasets are shown in Table III.

Figures 5.1 and 5.2 display the validation torque τv measured during the validation
trajectory. As mentioned in 4.3.2 for the validation dataset only a single datapoint at
every waypoint, at which the system is stationary.

Considering the results from Table III, it is clear that for the dataset A, both PLF and
PLF+ compensation models perform the best, followed by the AP model and PENN and
NNN have the worst performance.

The performance of the compensation models on dataset B should be the most repre-
sentative for how the models will perform when a pilot is using the DAROR-01. Clearly the
PLF+ model has the best performance. This model is able to learn both the gravitational
model of the DAROR-01 and the DA but also is able to find a compensation model for
the added joint stiffness. The AP and PLF model have very similar performances when
considering RMSE on this dataset. The AP model contained a compensation function for
the joint stiffness (see Sec. 4.1). If this stiffness compensation is set to zero, the RMSE of
the AP model increases to 1.39 Nm, which is quite a lot higher then the RMSE of PLF
(= 1.24 Nm). Thus, the PLF algorithm is better at learning the gravitational structure
of dataset B, but when a priori knowlegde of the joint stiffness is used in the AP model,
this stiffness compensation makes up for the worse gravity compensation. This is also clear
when comparing the performance of AP with PLF+, two models that both contain stiffness
compensation modules, where PLF+ has a much lower RMSE than AP. The PENN and
NNN perform the worst. The PENN model outperforms the NNN on both datasets with a
small margin. This shows that adding Eq. 3.17 slightly improves the overall performance
of a NN model. The difference in performance is larger for dataset B.
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Figure 5.1: Validation data and the compensation models on the dataset of only the
DAROR-01

Table III: Results of the compensation models w.r.t. the validation dataset (A/B) ex-
pressed in (normalized) Root Mean Squared Error (RMSE) and nRMSE.

Model RMSE A (Nm) nRMSE A () RMSE B (Nm) nRMSE B ()
A Priori 0.909 0.231 1.21 0.176

PLF 0.476 0.134 1.24 0.190
PLF+ 0.475 0.140 0.742 9.32 · 10−2

PENN 1.18 0.327 2.38 0.315
NNN 1.21 0.338 2.59 0.345

The nRMSEs of the models between dataset A and B should be similar if the proposed
normalization was fair. This is the case for all values except for the PLF model, of which
the nRMSE increases, and thus the performance decreases. This is to be expected since
dataset B introduces joint stiffness on the fourth joint, where this model is unable to learn
that structure.

Finally, the performance of the NNs is relatively constant for dataset A and B. This
is expected as these models contain no extra terms or knowledge on how the system of A
differs from B. However, it is noteworthy that the nRMSE of NNN increases when the DA
is added to the system, whereas the nRMSE of PENN decreases.
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Figure 5.2: Validation data and the compensation models on the dataset of the DAROR-
01 and the Dummy Arm

5.2 Conservative Force Analysis

The path through q-space is shown in Fig. 5.3. It is a four-dimensional path, stepping
(first positive, then negative) π/4 in every q.

This q-space is used as input for the PLF, PLF+, PENN and NNN model. The results
of these tests is shown in Table IV.

For models PLF, PLF+ and PENN the value for δV decreases with δq. Thus the
remaining value for δV can be attributed to computational inaccuracies and δV = 0 can
be concluded. Thus, the output of these models is a conservative vector field.

For NNN this is not the case. δV has decreases slightly over the closed path, indepen-

Table IV: The results from the cvf test of the data-driven models

Model δV (δq = pi
400) δV (δq = pi

4000) δV (δq = pi
40000)

PLF 0.014 0.0014 1.35·10−4

PLF+ 0.013 0.0013 1.29·10−4

PENN 0.0178 0.0018 1.76·10−4

NNN -0.0223 -0.0298 -0.0305
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Figure 5.3: Closed path in q-space

dent of the stepsize δq and therefore it cannot be a CVF. This decrease means that PE is
lost relative to the start position and therefore the model delivers energy to the system.
Thus, when a pilot is moving with this model the system would deliver energy and thus
make it easier to move. However, this is unpredictable and undesirable.

5.3 Ease of Use

The online performance of the different models is hard during examine. Furthermore,
most likely the offline analysis is the best indication for determining the best compensation
model. Still, the practical (online) use of the compensation models can be explored. The
main obstacle of the data-driven models is the identification protocol, consisting of the
trajectory for the data acquisition and the training of the models.

The models all require some input of either a priori knowledge of the human body
or data acquired during the identification protocol. Furthermore all data-driven models
require some duration of both the identification protocol and thereafter computation of
the gravitational models. On the other hand the AP model requires taking measurements
of the pilot before installation. The durations of these processes can be compared with
respect to the offline performance.

Table V shows how long it takes to train a single instance of the data-driven models.
Clearly, training PENN requires a lot of time, which can be contributed to taking the
partial derivatives with respect to the inputs. More precisely, the computation of the
partial derivative of Eq. 4.29 is quite slow, since the auto-differentation is not really being
exploited here.

Furthermore, Sec. 4.2.6 concludes that PENN and NNN require several trained net-

Table V: Training duration of one model

Model Training time (s)
PLF 4.5

PLF+ 4.5
PENN 36.7
NNN 15.3
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works to have a higher probability for finding a good performing network. This will scale
the training time with however many random initialized networks are chosen to be trained.

Next to training time, the identification protocol also requires quite some time to be
executed. Given that this requires between 5-15 minutes (see Sec. 4.3.1), this is the
time determining step for the data driven models. However, as Sec. 5.3.1 mentions, the
identification protocol can be reduced, thus also decreasing training time.

For the generation of the AP model, the minimal measurements of the human pilot that
are required are body mass, body length and sex. Using only these three measurements
for the estimation of the human parameters logically requires more assumptions, which
introduce uncertainty into the system since they most likely do not hold for the specific
pilot. Still, only taking these measurements takes several minutes, given that the pilot has
DMD.

5.3.1 Trajectory Optimization

From the analysis performed in Chapter 5 PLF+ (and PLF for the case with no joint
stiffness) are the best performing compensation models. However, these models require
quite some time to be trained, especially if the long identification protocol is considered
to be part of the ‘training’ time. This raises the question of how much data is actually
required for a good model. With this information, a shorter and more optimal identification
trajectory could be designed. This would increase the ease of use of the compensation
model.

In order to determiner how much training data is required, a PLF+ model is trained
using only n datapoints. These datapoints are randomly selected from the training dataset.
Per n datapoints, 100 models are trained, to avoid effects of overfitting. The four models
are validated and the RMSE is stored. Thereafter, n is increased. This is repeated until
n = N , the total training dataset.
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Figure 5.4: Performance (expressed in validation RMSE) of PLF+ trained on increasing
training dataset sizes

During this process, it became clear that using all 25000 datapoints was not required.
Training a model with 100% of the dataset yields a mean validation RMSE of 0.743 Nm,

43



where the mean validation RMSE of 5% of the dataset is 0.744 Nm. Therefore, the choice
was made to run the analysis up to this (0.05N) point. Fig. 5.4 shows the results of the
analysis for 1266 (5% of N) datapoints. The figure shows that instead of using 1266 training
datapoints only 200-300 (≃ 1% of N) are required. After this point the mean validation
RMSE (blue line) is nearly constant. This means that the identification protocol could be
reduced by a large margin without seeing a difference in performance of the gravity and
stiffness compensation. Important to note is that for a larger randomly sampled training
dataset, the standard deviation decreases. This does point to an upside of a larger training
dataset if only a single model is trained.

This conclusion was obtained after all datasets had been gathered. Given that the
performance is similar1 for larger datasets, the choice was made to use these datasets for
the analysis and results of this work. However, to speed up training, the datasets were
downsampled to approximately 1250 datapoints2.

1Larger datasets yield a slightly better RMSE: (RMSEn=320 = 0.748 Nm, RMSEn=1266 =
0.744 Nm, RMSEn=N = 0.743 Nm)

2This choice was made before obtaining this fact, but is now validated
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Chapter 6

Discussion

The goal of this work was to design and compare gravity and stiffness compensation.
The eventual goal of the larger research team is to see whether a well performing gravity
and stiffness compensation model in this active exoskeleton aids people with DMD.

This work thus focused on modelling strategies with data-driven models at its core.
From literature we know that finding the structure for such a data-driven model is a chal-
lenge. Also, non-linearities introduced by incorrect modelling assumptions could reduce
the performance of parameterized models. This let us to attempt using NNs that auto-
matically find some structure from data and are able to map non-linearity. The models in
literature that did use a predefined structure followed the same method as we did in this
work; separating the EoM into PLF.

6.1 Limitations

This work focuses on the different model types and how their performances compare.
During the design of the models the main goal was to find a good gravity and stiffness
compensation model. The 3 main model types (AP, PLF and NN) were the chosen at
the start of the design phase. However, when either of the model types started working
well, that type got more attention then the others. This meant that there is a bias in the
comparison towards the best performing model types; the PLF models.

The PLF model is constructed from the kinematic structure of the DAROR-01. Within
the defined structure, several constant rotation matrices are used. While the production
of the DAROR-01 was surely done with care, there is no direct guarantee that these actual
static rotations exactly match the theoretical design. Especially since we deal with gravity,
a slight deviation in angle could misalign the models direction of gravity with the actual
direction.

Other limitations of this work is that it focuses fully on the DAROR-01. While Chapter
3 described the generic forms of the models, these were specifically selected with this system
in mind.

The rest of this Chapter will discuss more specific parts of the work where maybe some
other choices could have been made.

6.2 Model Performance Resolution

In Chapter 5 the RMSE and nRMSE are shown per compensation model. While the
conclusion drawn from Table III is quite clear, it should be noted that the analysis did not
take into account the performance resolution.
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Here, with performance resolution, the range in which the model performance can
be, is meant. This depends on the random initialization of the training data. In Sec.
4.3.2 it is mentioned that before training, the data is randomly shuffled. This shuffling
occurs before the downsampling in the algorithm. These two factors together cause every
training dataset to be (slightly) different. This causes the data-driven models to find
slightly different solutions during training and in turn the performance on the training
data is different every time a model is trained (with randomly selected training data).

To avoid this problem, we propose training multiple models and see what the perfor-
mance (RMSE) range is. For the PLF+ model, Sec. 5.3.1 this process has been done.
From this, we see that the range is quite small for the downsampling rate that was selected
for the results of Table III. Furthermore, during the design and implementation process
(of the models but also of the facilitative functions), many models were trained and their
performance was compared. The performance ranking of the models has always been as
is concluded from Chapter 5. If we were to estimate a performance resolution from the
experience of the aforementioned phases, it would be three significant digits, which is the
same as the resolution chosen for the torque measurements.

It certainly would have been better to train multiple randomly initialized models to be
able to report the performance resolution. However, the above arguments are valid and
point to no significant changes in the conclusion drawn from this work.

6.3 Torque Measurement Error

Critical to data-driven models is good quality data. As Sec. 2.2.2 discusses, the torque
measurements contain some error. What causes this error is not clear, but we expect either
static friction on between the elements on either side of the torsion spring, or movement of
the encoder that measures the spring deflection. Either way, the data used for training the
(data-driven) models thus contains quite a large measurement error. Most likely this phe-
nomenon (or multiple phenomena) are non-linear and therefore decrease the performance
of the PLF(+) models. The NN models should suffer less from this non-linearity but given
their worse performance it is difficult to say whether this is actually true.

Decreasing this measurement error is not trivial. First, more research is required to
the cause of the error, which most likely requires taking the actuator apart. Suggestions
on how this error might be reduced on the model-side are given in Sec. 6.6.

6.4 Brute Force Search over HP

In Sec. 4.2.5 the brute force search to find the best performing HP set was explored.
However, such an approach does come with several assumptions.

First of all, only 2 random initialized networks per HP set were trained. This was done
to speed up the computation, since training 432 networks for a long enough time to have
proper results already lasted several days. Introducing more randomly initialized networks
, i.e. 4 instead of 2, would double the total computation time and give no guarantee for a
more ‘optimal’ HP set. Furthermore, it is not clear if a more extensive search over a larger
range of HP would have yielded better results. It might be possible that a more extensive
search would only find worse HP sets for example.

Once the results from the HP optimization were found, they could be interpreted in
several ways. One would be to say that the set best performing HP could be taken as the
overall best performing set. Another method would be to consider every HP individually
and take some weighted average of the top 10. However, this method does not consider
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interaction between HPs and therefore was not selected. The current approach —selecting
the best performing set— is very prone to change, given that the random initialization
could be very optimal for that HP set during the brute force search. Due to the random
initialization, the change that such an optimal initialization occurs again is small. This
problem could be avoided by selecting the best average MVL but doing so might introduce
the same random occurrence of the worst random initialization for that set of HP and then
the average would still not account for much. Therefore, the method now used selects for
network that has the highest potential of being the ‘best’ and that why it is selected.

6.5 Implementation and Design of the NNs

While the implementation of both NNs was extensively tested and checked, no proper
explanation is found for the bad performance. Eventually, the implementation and design
was deemed to be correct and we drew the conclusion that the structure of the data was
too complex for such simple networks. However, given the power of NNs in other areas of
science, it would seem strange that the structure of the data of this system would be ‘too
complex’. A more likely explanation would be some implementation or design flaw that
was not found during the research.

Given that the PENN was proven to model a CVF, this hints towards proper implemen-
tation of the network. Also, this fact is promising in that a random, non-linear function
can be forced to learn a function that adheres to Lagrangian dynamics. More research into
the design of a PENN (or LNN) could possibly yield better results and be very useful. The
upside of using PENN remains that it would be able to also learn non-linearity present in
the system.

Furthermore, in Sec. 5.1 the nRMSE of PENN is observed to decrease when the DA is
added to the system, while the nRMSE of NNN increases. This difference could be a good
first step into figuring out what part of the implementation is incorrect. Quite some time
was invested in tuning the type and size of the training dataset but it could be possible
that something was overlooked.

While further work on PENN could potentially yield better results, it seems likely that
a lot of data will be required for training. When working with DMD patients the duration
of the identification protocol must be considered. The protocol used for the generation of
the datasets of this work was deemed too long for a DMD patient to carry out. This, in
combination with the longer training duration decrease the usability of this compensation
model, even if the results are improved.

6.6 Residual RMSE

While the performance of the PLF+ compensation model is good, some error remains
between the actual validation and the prediction torque: the RMSE is not zero. Three
explanations for this residual error are given.

The first is that it is caused by sensor noise or sensor inaccuracies. Both the joint
position and the joint torque depend on the absolute encoders of the SEA, which are
subject to noise. Furthermore, if the spring constant used for the computation of the
joint torque is slightly different, the sensor data no longer complies with the actual torque
experienced by the system. For the PLF+ model this effect should be reduced in the
elbow due to the stiffness compensation. However, this is not observed from the nRMSE
of dataset A. These uncertainties remain challenging to determine or avoid. Furthermore,
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the measurement error of Sec. 2.2.2 falls in this category, greatly reducing the quality of
the torque measurement data.

The second explanation is that the assumptions made in the model on the physical
configuration of the system might not be correct. Sec. 2.1 discusses the kinematic structure
of the system and introduces some rotation matrices with constant values based on the
design of the system. However, production and construction can only be done with limited
accuracy. Even validation of these rotations after the construction of the system is finished
is limited. Errors in these values essentially introduce non-linearity into the compensation
model.

Finally, the actual system contains more complexity than the PLF+ system is designed
to handle. Non-linearity caused by, for example, the joint torque measurement error or
static friction could influence the joint torque, while PLF+ is unable to recognise and
compensate for such effects.

6.7 External Challenges

An external challenge influenced the process of this thesis quite significantly. In January
2024 it was discovered that the file that contained all variable names contained an error.
This caused six variable names per actuator to be shifted w.r.t . the actual variable in
the datastruct. Sadly, the two variables (per actuator) used for the data driven models
were among these six variables. This meant that instead of finding a relation between joint
angle and joint torque, a relation between gearbox angle and motor torque was attempted
to be found. Since the unit of the signal was similar, the models were able to find some
structure but they were off by quite a large margin. This was deemed to be caused by
measurement error of the joint torque (see Sec. 2.2.2). A lot of work was poured into
trying to solve or circumvent this problem. This was all for nothing once the mistake was
discovered and the performance of the models improved. If this error had not been there
maybe more work could have been done (see Chapter 7).
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Chapter 7

Future work

7.1 Trajectory Optimization

Sec. 5.3.1 touches on the fact that the current identification protocol could potentially
be reduced by a factor 100 without significantly decreasing the performance. Something
that was not touched on in that section is that more unique the input training data (q) of
the regressor is causes the model to better generalise. These two factors raise the question
whether an optimized trajectory exists which contains optimal configurations. Potentially,
using such training data could reduce the standard deviation observed in figure 5.4, thus
requiring only very few data while maintaining the compensation model performance.
Further research into this subject has led to expressing the quality of waypoints in terms
of how well they decrease the estimated parameter covariance of the model fit.

Given the good performance of the data driven PLF+ model, optimizing the identifi-
cation protocol is a final step towards making the software actually applicable in the lives
of DMD patients.

7.2 Online Validation

While (normalized) RMSE is a good performance indicator, it does not take user expe-
rience into account. How these models perform when used by a pilot remains speculation
in this work, as does the subjective experience of the pilot. Possibly, some objective perfor-
mance indicators could be developed for online analysis and validation of the compensation
models. Finally, some method for objectively scoring the compensation models based on
user experience would be good to develop.

Initial informal blind comparative tests show that RMSE is a good indicator for how
‘good’ a compensation methods feels for a healthy pilot. Furthermore, the PLF+ model
provided a healthy pilot with good gravity and stiffness compensation, although stiffness
compensation in healthy subjects is much less of a factor than gravity.

7.3 Compensation Model Combinations

In chapter 6, the residual error of the PLF+ system is discussed. Whatever the specific
cause of the residual error is, the effect is most likely non-linear. Further reduction of the
error could be achieved by isolating the residual error and trying to find a compensation
model for it. This might be possible using another parameter linear form where another
structure and/or another input-output pair is considered. This would require knowledge
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about the cause of the effect. Another, easier, method would be use a (PE)NN and see if
it is able to map the non-linear structure. For PENN to work, the non-linear behaviour
would have to adhere to Lagrangian mechanics.

7.4 Testing with People with DMD

For now, only either offline tests with the DAROR-01 and DA, or online tests with a
healthy pilot have been done. The goal of the larger research project of the DAROR-01
is to discover whether such an exoskeleton —with the proposed compensation models—
would increase the QoL of people with DMD and could maybe even postpone the diseases
progression. This all remains a question for now and it would be very interesting to find
out how much this system can aid these people.

For now, a proof of concept for the gravity and stiffness compensation models is devel-
oped. Further tests in healthy subjects and initial tests in subjects with DMD are required
to see whether the models and the corresponding protocols are viable.
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Chapter 8

Conclusion

Data-driven approaches for gravity and joint stiffness compensation models can yield
better results than generating a model using only a priori knowledge of the system. For
this, the kinematic structure of the system is required as a structure for the model. The
Parameter Linear Form + joint stiffness compensation method (PLF+) is able to learn the
gravity and stiffness compensation model from a dataset containing only stationary data.

More (grey and) black-box type models, such as the proposed PENN and NNN are
able to learn the gravity and stiffness models to some extent but are not able to find
the complete complex structure of the data. The PENN model was proven to be energy
conservative and it outperformed NNN.

Given the current identification protocol and training duration, in some cases an AP
model might still be preferred. However, the identification protocol can be optimized by a
large margin, possibly reducing the identification and training time to only several minutes.

Data-driven modelling methods are proven to be a viable concept for the compensation
models required for active arm support devices for people with DMD.
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Appendix A

Finite State Machine Diagram

Fig. A.1 is a schematic of the Finite State Machine (FSM) designed for the DAROR-01.
The SM was designed for the experimental use of the DAROR-01 and therefore is carefully
built up, gradually allowing the system more functionality when more safety precautions
are met.

State 0
User Selection

Super State:
Pre-operative

Super State:
Installation

Super State:
Operative

revert /
advance

State 1
Checklist A

revert / 
advance

             advance

revert                                    

State 2
Checklist B &

Stop Button Check

revert /
advance

State 3
Checklist C 

revert /
advance

State 4
Set ISB Limits

           advance

revert              

State 5
Test Graceful

Collapse with User

revert /
protocol finished

State 6
Identification

Protocol

revert /
advance

State 7
Model Training - Idle

State 8
Gravity and Stiffness

Compensation 

State FAIL
Fail mode detected

Reset

State 0.5
Force Sensor

Calibration

Calibrate

advance

Figure A.1: Diagram of the Finite State Machine designed for the development and
testing of the DAROR-01

The ‘advance’ state transition requires at least two conditions. The first is that the
Advance button in the GUI has to be pressed by the operator. This ensures that the
operator is always attending the system and the pilot when a state transition occurs. The
other condition is state dependent and can be read from the italics in Fig. A.1. These
actions have to be executed by the operator, the system and/or the pilot. Only when this
condition is met, can the operator press the Advance button.

The ‘revert’ state transition is always possible but can only step back one state. The
‘Reset’ state transition is always possible from any state and requires a button press by
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the operator. From most states (not 2, 5 and 7) the FAIL state can be entered when
either the system, the operator or the pilot detects a fail condition. This can either be
an internal error of the system, or the press of the emergency button by the pilot or
operator. The states where the FAIL state cannot be entered the emergency buttons,
and their corresponding safety features, are tested and therefore should not trigger a state
transition.
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