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Abstract

This thesis presents the implementation of inertial parameter identification using least-squares estima-
tion, comparing four methods to solve the resulting equations. In the first chapters the equation of
motion is written linearly in the inertial parameters, which leads to a least squares problem that cannot
be solved directly.

In the included paper, the least squares problem is scaled using measurement uncertainty in the joints
and a prior estimation, and solved using a singular value decomposition. The effects of scaling are
examined by comparing the results of the unscaled, and multiple scaled problems. Using simulation data
of the Symbitron lower-limb exoskeleton, it is shown that the row- and column-scaled version performs
best, despite being sensitive to a prior estimation.
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Chapter 1

Introduction

1.1 Research goal

The primary goal of this research is to develop an effective method for estimating the inertial parameters
of bipedal systems, focusing particularly on the Symbitron lower-limb exoskeleton (LLE), which is shown
in Fig. 1.1. These devices can enhance the quality of life for people with paraplegia by enhancing their
mobility and autonomy [2, 3], as well as mitigating health issues associated with prolonged immobil-
ity such as muscle deterioration and cardiovascular complications [2, 4, 5]. Despite these benefits, the
widespread adoption of LLEs is hindered by their limitations in robust balance control, often requiring
users to rely on additional supports like crutches.

Current research efforts predominantly aim to refine gait replication through pre-programmed joint tra-
jectories, possibly adjusting to unexpected disturbances [6–8]. However, these strategies do not fully
replicate the stable locomotion observable in humans. Therefore, advancements in robust balance con-
trol are essential.

The University of Twente is currently performing research in this field, using the Symbitron exoskeleton
to explore advanced control strategies. One promising strategy is controlling the Center of Mass (CoM)
and Whole Body Angular Momentum (WBAM), called centroidal dynamics control. This strategy effec-
tively reduces the complex, high-dimensional problem of individually controlling each joint into a more
manageable, low-dimensional task focused on broader system dynamics [1].

This thesis specifically targets the development of a method for the identification of inertial parameters
crucial for model-based control strategies like centroidal dynamics control. These parameters are funda-
mental for accurately predicting the necessary actuation forces to achieve desired movements. Given that
manual estimation methods are labor-intensive and computer-aided design (CAD) models offer limited
accuracy, this research aims to use statistical learning algorithms on measurement data from integrated
or external sensors to improve the repeatability and precision of parameter estimation.

The objectives of this thesis are outlined as follows:

• Provide a proof of concept of parameter identification for the Symbitron LLE, that uses its existing
sensors with the potential addition of two force-measuring platforms

• Outline the implementation of the method

• Evaluate the effectiveness of the estimated parameters within a centroidal dynamics control frame-
work

This research does not extend to estimating human inertial parameters, nor does it delve deeply into the
theories underpinning centroidal dynamics control.

1



Figure 1.1: The symbitron exoskeleton [1].

1.2 Thesis structure

The main part of this thesis is presented in the paper in chapter 3. chapter 2 is intended to introduce
concepts that are used, and expand on topics that are only briefly addressed in the paper. chapter 4
contains additional results and analysis, and reasons on why some choices are made in the analysis of
the paper. Finally chapter 5 concludes on the combination of the paper and additional results.
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Chapter 2

Background knowledge

This chapter will provide a brief overview of the concepts that are needed to understand the theory in
the paper in chapter 3. For full derivations or definitions, the reader is referred to the sources.

2.1 Floating base rigid body dynamics

The LLE is able to move with respect to the inertial frame. In the context of robot dynamics, such system
is said to have a floating base. The additional degrees of freedom (DOFs) introduced by a floating base
add some degree of complexity to the dynamics of the system. Furthermore, the links can be assumed
to be rigid, because of their thickness and the relatively stiff materials that are used. This assumption
is always inaccurate to some extend, so if it appears that the used method produces flawed results, the
validity of this assumption should be tested.

This section is by no means intended to be a complete overview of the dynamics, but it will introduce
some concepts associated with modelling rigid floating base systems, that are needed to understand the
following chapters.

2.1.1 Homogeneous transform and Spatial vectors

The position of the origin of a coordinate frame Ψl with respect to another Ψi can be represented as

ipl =



ipl,x
ipl,y
ipl,z


 , (2.1)

where subscript x, y and z denote the x, y and z components, respectively. The orientation of Ψl w.r.t.
Ψi is represented by the 3× 3 rotation matrix

iRl =



x̂i · x̂l ŷi · x̂l ẑi · x̂l

x̂i · ŷl ŷi · ŷl ẑi · ŷl

x̂i · ẑl ŷi · ẑl ẑi · ẑl


 (2.2)

where x̂i, ŷi and ẑi denote the x-, y- and z-coordinate unit vector of Ψi, respectively, and (·) the dot
product between two vectors.

The homogeneous transformation matrix iHl transforms the position representation of a point ex-
pressed in Ψl to a representation in Ψi:

[
ir
1

]
= iHl

[
lr
1

]
=

[
iRl

ipl

01×3 1

] [
lr
1

]
(2.3)
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where ir is a position represented in Ψi coordinates. The position of a reference frame origin and a point
are assigned different symbols for clarity.

An important property of H is that it can be chained, i.e.

iHl =
iHk

kHl. (2.4)

The spatial motion vector is a generalization of linear and angular velocity which is useful to describe
the motion of a rigid body. A motion vector can be a velocity as well as an acceleration. The spatial
velocity and acceleration vectors ivk

l and iakl describe the motion of rigid body l with respect to body k,
and are expressed in Ψi coordinates. If all quantities are expressed in the same frame and describe the
motion w.r.t. the same frame, the upper-left and upper-right index can be omitted. The motion vectors
are defined as

vl =

(
ωl

ṙl,o

)
=

(
ωl

ṙl,p − ωl × rl,p

)
, al =

(
ω̇l

r̈l,o

)
=

(
ω̇l

r̈l,p − ωl × ṙl,p

)
(2.5)

where rl,p, ṙl,p and r̈l,p are the position, linear velocity and linear acceleration of a point p attached to
body l with respect to the frame in which the motion is expressed, respectively. The quantities ṙl,o and
r̈l,o can be seen as the linear velocity and acceleration of a point attached to body l, coinciding with the
origin of the frame in which vl is expressed. Symbols ωl and ω̇l represent the rotational velocity and
acceleration of body l, respectively. In some literature v is called a ‘twist’.

A similar vector can be defined for forces, called a spatial force vector. The spatial force acting on
body l, expressed in Ψi coordinates is expressed as

if l =

[
iwl,o
inl

]
, (2.6)

where iwl,o is the total moment acting on body l around the origin of Ψi, and
inl the force acting on

body l, both expressed in Ψi coordinates.
While vl and al describe different motion quantities, they are both motion vectors and therefore

abide by the same mathematical laws. The same can be said for any force vector.

Changing coordinates is done using the spatial transform and the spatial force transform, X and XF ,
respectively, such that

im = iXl
lm, if = iXF

l
lf . (2.7)

where m denotes any motion vector.
The transformations are defined as

iXl =

[
iRl 0

S(ipl)
iRl

iRl

]
, iXF

l = iX−T
l =

[
iRl S(ipl)

iRl

0 iRl

]
, (2.8)

where S(x) is the skew operator, defined as

S(x) =




0 −x3 x2

x3 0 −x1

−x2 x1 0


 , (2.9)

which can be seen as the matrix-vector form of a cross-product, in the sense that x× y = S(x)y. Both
X and XF can be chained, similar to the homogeneous transformation in Eq. (2.4).

The following cross-products are defined for spatial vectors:

mi ×mk =

[
m̄i

m̄i,o

]
×

[
m̄k

m̄k,o

]
=

[
m̄i × m̄k

m̄i × m̄k,o + m̄i,o × m̄k

]
, (2.10)
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and

m× f =

[
m̄
m̄o

]
×

[
f̄o
f̄

]
=

[
m̄× f̄ + m̄o × f

m̄× f̄

]
. (2.11)

where the bar indicates that it is a 3× 1 part of the spatial vector.
Similar to Eq. (2.9), a matrix form can be defined for these products as well, which is defined as

S(m) =

[
S(m̄) 0
S(m̄o) S(m̄)

]
, (2.12)

so that

mi ×mk = S(mi)mk, m× f = −ST (m)f . (2.13)

The linear and angular momentum of a rigid body expressed in its center of mass c are h̄ = mṙc and
h̄c = Īcω, respectively, where Īc is the 3 × 3 inertia matrix and m is the mass. Expressing the latter
about another point p yields h̄p = h̄c + cp × h̄, where cp is the center of mass position relative to point
p. In spatial vector form this yields

hc =

[
h̄c

h̄

]
, hp =

[
I S(cp)
0 I

]
hc (2.14)

where I is the identity matrix.
The spatial inertia expressed in the center of mass Ic can be obtained from its spatial momentum

hc = Icvc, which implies

Ic =

[
Īc 0
0 mI

]
. (2.15)

If this is the spatial inertia of link i can be expressed in the link i origin using Eq. (2.14), i.e.

hi =

[
I S(ci)
0 I

]
Icvc =

[
I S(ci)
0 I

] [
Īc 0
0 mI

] [
I 0

S(ci)T I

]
vi

=

[
Īc +mS(ci)S(ci)T mS(ci)

mS(ci)T mI

]
vi,

(2.16)

in which Ii can be identified as

Ii =

[
Īc +mS(ci)S(ci)T mS(ci)

mS(ci)T mI

]
=

[
Īi mS(ci)

mS(ci)T mI

]
(2.17)

The equation of motion of rigid link i is given by differentiating its spatial momentum in time, i.e.

f i =
d

dt
(Iivi) = Iiai + İivi = Iiai + vi × Iivi (2.18)

as shown by [9].
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Figure 2.1: A schematic of the LLE.

2.1.2 Joint space representation

In the context of rigid body modelling, the LLE can be represented as a kinematic tree with each leg
being a branch and the body link connected to the world by a ‘free’ or ‘6 degree-of-freedom’ (6-DOF)
joint. With the j = 10 rotational joints, this makes a total of n = 16 degrees of freedom.
The configuration of a rotational joint i can be represented by its joint angle θ with respect to a reference
qi = θi. The configuration of the 6-DOF joint qb can be represented by the position and orientation
of the floating base origin with respect to an inertial frame Ψ0. There are multiple methods for this,
but a straightforward way to describe the position is the position expressed in the inertial frame. The
orientation can conveniently be described by a unit quaternion, since this is a concise and unique repre-
sentation of an orientation. Therefore, the joint configuration has n+1 = 17 elements: four for the base
orientation, three for the base position, and j = 10 for the rotational joint configurations:

q =
[
qT
b qT

r

]T ∈ Rn+1, (2.19)

where qT
b =

[
ηT 0pT

b

]T ∈ R7 the concatenated unit quaternion and position of the floating base origin,

and qr =
[
θ1 θ2 . . . θj

]T ∈ Rj the concatenated joint angles. A schematic of the LLE is shown in
Fig. 2.1

The first and second time derivatives of the joint configuration q̇r and q̈r, can be described by the
joint velocities and accelerations, respectively:

q̇r =
[
θ̇1 θ̇2 . . . θ̇j

]T
, q̈r =

[
θ̈1 θ̈2 . . . θ̈j

]T
(2.20)

The first and second time derivatives of the 6-DOF joint configuration can be described by the angular
and linear velocity and acceleration in body frame, respectively. I.e.
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q̇b =

[
bω0

b
bṗ0

b

]
∈ R6, q̈b =

[
bω̇0

b
bp̈0

b

]
∈ R6, (2.21)

where all quantities are w.r.t. the inertial frame. Therefore, q̇, q̈ ∈ Rn.

2.1.3 Dynamic model of the LLE

A dynamic model relates the motion of a system to the forces acting on the system. One way to describe
this relation is using the joint-space dynamics of the system, which can be expressed in joint-space using
the Euler-Lagrange formulation as

M(ϕ,q)q̈+C(ϕ,q, q̇)q̇+ g(ϕ,q) + ξ(ϕ, q̇) = τ , (2.22)

where the left-hand side only contains motion-induced forces, and the right-hand side all other forces.
The elements of this are as follows:

• q̇, q̈: the first and second time derivative of the system configuration q, respectively

• ϕ: the inertial and frictional parameters

• M(ϕ,q) ∈ Rn×n: the mass matrix

• C(ϕ,q, q̇) ∈ Rn×n: the centripetal and Coriolis effects matrix

• g(ϕ,q) ∈ Rn: the gravitational force vector

• ξ(ϕ, q̇) ∈ Rn: the friction torque vector

• τ ∈ Rn: the applied force vector

The gravity, friction, Coriolis and centripetal effects are often summed in the bias torque vector h(ϕ,q, q̇) ∈
Rn

h(ϕ,q, q̇) = C(ϕ,q, q̇) + g(ϕ,q) + ξ(ϕ, q̇), (2.23)

and the applied forces are often expanded as a sum of external forces fe ∈ Re and joint actuation torques
fa ∈ Ra as

τ = ST fa + JT
g (q)fe, (2.24)

where S ∈ Fn×a
2 is the actuated joint selection matrix and J(q)Tg ∈ Rn×e the transpose of the geometric

Jacobian that maps fe to joint space. Using Eq. (2.24) and Eq. (2.23), Eq. (2.22) can be written as:

M(ϕ,q)q̈+ h(ϕ,q, q̇) = ST fa + JT
g (q)fe. (2.25)

2.2 Least squares for parameter identification

This section introduces the concept of linear least squares (LS) estimation for the purpose of parameter
identification.
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2.2.1 Least squares parameter estimation

As shown by [10], the system dynamics from eq. Eq. (2.25) can be expressed linearly w.r.t. the inertial
parameters ϕ, i.e.

K(q, q̇, q̈)ϕ = τ (2.26)

where K(q, q̇, q̈) ∈ Rn×p is a matrix representing the systems current motion, which will be constructed
in section Sec. 2.2.2. In more detail, the inertial parameter vector ϕ is the concatenated vector of inertial

and frictional parameters of the body and links, ie. ϕ =
[
ϕT

b ϕT
1 ϕT

2 ... ϕT
j dT

v dT
c

]T
, with

ϕi =
[
mi cTi mi l(Ii)

T
]T

, ∀i ∈ b, 1, 2, . . . , j (2.27)

and

dv =
[
dv1 dv2 . . . dvj

]T
, dc =

[
dc1 dc2 . . . dcj

]T
(2.28)

where mi is the mass of link i, cimi the first moment of inertia, i.e. ci =
[
cxi

cyi
czi

]T
is the center of

mass position as seen from the link origin, l(Ii) =
[
Ixxi

Ixyi
Ixzi Iyyi

Iyzi Izzi
]T

are the second
moments and the products of inertia, and dvi and dci are the viscous and coulomb friction coefficients,
respectively. This makes ϕi ∈ R10 and dv,dc ∈ Rj and therefore p = 10 + 12j. These are referred to as
the ’standard inertial parameters’.
Note that eq. Eq. (2.26) only holds under the assumption that friction appears linearly w.r.t. K, all
quantities are noise-free, the robot links are rigid and there is no backlash in the system [11].

If N samples are recorded during a motion of the joints, K and τ can be constructed for each of the
samples and stacked, such that for the complete trajectory their relation is described by

Wϕ = y, (2.29)

with

W =




K1

K2

...
KN


 ∈ R(nN)×p, y =




τ 1

τ 2

...
τN


 ∈ RnN .

In practice, measurement noise and modelling errors cause y to have some residual component ϵ ∈ RnN

such that

Wϕ+ ϵ = y. (2.30)

If N > p
n , eq. Eq. (2.30) will be an over-determined system of equations, which generally has no exact

solution. However, a solution can be approximated by minimizing the squared l2-norm of the residual
||ϵ||22 = ϵ21 + ϵ22 + . . .+ ϵ2nN to find an estimation ϕ̂ of ϕ, as

ϕ̂ = argmin
ϕ̂

||ϵ||22 = argmin
ϕ̂

(y −Wϕ̂)T (y −Wϕ̂). (2.31)

This is referred to as the Ordinary Least Squares (OLS) solution. We can find it by setting the partial
derivatives w.r.t. ϕ to zero, finally arriving at

8



ϕ̂OLS = W+y = (WTW)−1WTy, (2.32)

involving the Moore-Penrose pseudoinverse of W, W+. This results in a solution where also ||ϕ̂||22 is
minimized [12]. Therefore, the result is in general not physically consistent. Note that this solution is
only valid if we assume that ϵ has zero-mean, is heteroskedastic and serially uncorrelated [11].

The regressor matrix W is in general not full column rank, and therefore (WTW) will not be invertible.
Furthermore, the regressor matrix will usually be scaled by left or right multiplication with a matrix.
Both of these topics will be addressed in the paper of chapter 3.

2.2.2 Building the regressor matrix

In most literature about parameter identification, the matter of building the regressor matrix is not
addressed. However, this is a complicated task and crucial for parameter identification. Most infor-
mation from this section is gathered from [13], where the process is explained for fixed-base systems.
In this section, the method is explained and adapted to floating-base kinematic-tree systems, starting
from the linearity in parameters. For the full derivation, the reader is referred to above-mentioned source.

The EoM of the last link j of a kinematic chain, can be expressed using Eq. (2.18) in Ψj coordinates as

f j = Ija
0
j + v0

j × Ijv
0
j (2.33)

where v0
j and a0j are the spatial velocity and acceleration, respectively, and Ij the spatial inertia expressed

in the link j origin. All motion quantities are w.r.t. the inertial frame, so the superscript 0 will be omitted
from now on.

Using Eq. (2.17) and substituting the frame j origin velocity and acceleration in Eq. (2.5), the first
term can be expanded as

Ijaj =

[
Īj mjS(cj)

S(cj)
T mjI

] [
ω̇j

p̈j − ωj × ṗj

]
=

[
Ījω̇j +mjS(cj)(p̈j − ωj × ṗj)
S(cj)

T ω̇j +mj(p̈j − ωj × ṗj)

]
(2.34)

The second term of Eq. (2.33) can be expanded using Eq. (2.13) and Eq. (2.5) as

vj × Ijvj = −S(vj)
T Ijvj =

[
S(ωj) S(ṗj)

0 S(ωj)

] [
Īj mjS(cj)

S(cj)
T mjI

] [
ωj

ṗj

]

=

[
S(ωj )̄Ijωj +mjS(cj)S(ωj)ṗj

S(ωj)mjS(cj)
Tωj + S(ωj)mjṗj

]
.

(2.35)

Combining Eq. (2.34) and Eq. (2.35) and simplifying results in the expanded form of Eq. (2.33)

f j =

[
Ījω̇j + S(ωj )̄Ijωj − S(p̈j)mjcj

mjp̈j + S(ω̇j)mjcj + S(ωj)S(ωj)mjcj

]
(2.36)

This equation can be written linearly in the inertial parameters as

f j = Aj(q, q̇, q̈)ϕj , (2.37)

where ϕj is the vector of inertial parameters of link j, and Aj(q, q̇, q̈) is a matrix capturing its current
motion expressed in Ψj coordinates, such that

Aj =

[
03×1 −S(p̈j) L(ω̇j) + S(ωj)L(ωj)
p̈j S(ω̇j) + S(ωj)S(ωj) 03×6

]
. (2.38)
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The L(·) operator is defined as

L(x) =



x1 x2 x3 0 0 0
0 x1 0 x2 x3 0
0 0 x1 0 x2 x3


 (2.39)

Generalizing Eq. (2.37) to all links, the force ‘felt’ at joint i is the result of the forces induced by the
motion of all distal links, such that

if i =

j∑

l=i

if il =

j∑

l=i

iXF
l

lAlϕl, (2.40)

where if il is the force on joint i as a result of the motion of link l. If we put this in matrix-vector form,
we get




if i
i+1f i+1

...
jf j


 =




Ai
iXF

i+1Ai+1 . . . iXF
j Aj

0 Ai+1 . . . i+1XF
j Aj

...
...

. . .
...

0 0 . . . Aj







ϕi

ϕi+1
...
ϕj


 , (2.41)

where Ai =
iAi for readability.

The formulation can be adapted to be valid for kinematic trees as well by including a function δ, such
that




if i
i+1f i+1

...
jf j


 =




Ai δi(i+ 1) iXF
i+1Ai+1 . . . δi(j)

iXF
j Aj

0 Ai+1 . . . δi+1(j)
i+1XF

j Aj

...
...

. . .
...

0 0 . . . Aj







ϕi

ϕi+1
...
ϕj


 , (2.42)

where

δi(l) =

{
I if joint l is distal to joint i,

0 otherwise.
(2.43)

A link i is said to be distal to another link j, if it is located farther along the kinematic chain from the
base or root of the system, such that link j lies between the base and link i in the sequence of connected
joints and links.

Generally only the joint torques can be measured, so not the full left-hand side is known. Therefore, f
must be projected on the measured axes of the joint β, reducing the system of equations to

τ = Kϕϕϕ, (2.44)

with

τ i = β · if i, Kϕ,il = β · δi(l) iXF
l Al (2.45)

If DH-parameters are used for the kinematic model, a rotational joint will always turn around its z-axis.

Therefore, the most relevant realizations of β are βr =
[
0 0 1 0 0 0

]T
and βf = 16×1 for a

rotational joint and a floating base, respectively.

10



Until now the friction has been ignored. If we only assume friction in the joints modelled as a
combination of dry and viscous friction, Eq. (2.44) changes to

τ − τ f = Kϕϕϕ, (2.46)

where τ f is the friction torque vector with only entries at rotational joint indices, such that

τ f =
[
01×6 ff,1 ff,2 . . . ff,j

]T
and

ff,i = dv,i θ̇i + dc,i sign(θ̇i), (2.47)

where θ̇i is the rotational velocity of the joint, dv the viscous friction coefficient and dc the dry (or
Coulomb) friction coefficient. The friction can be integrated into K by adding columns and adding all
viscous and dry friction coefficients to ϕ, i.e.

τ = Kϕϕ+ τ f =
[
Kϕ Kd

]


ϕϕ

dv

dc


 = Kϕ, (2.48)

where dv and dc are vectors with the viscous and dry friction coefficients of each joint, respectively, and

Kd =

[
06×j 06×j

diag(θ̇) diag(sign(θ̇))

]
, (2.49)

where θ̇ =
[
θ̇1 θ̇2 . . . θ̇j

]
. Note that zeros are added in Eq. (2.49) to account for the fact that the

6-DOF joint of the floating base has no joint friction.

Finally, we arrived at Eq. (2.26), which can be stacked to form Eq. (2.29). It must be noted that the
friction can be modelled in any way, as long as it is linear in its parameters, i.e. the system can be
written as τ = Kϕ.

11
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Least Squares Inertial Parameter Identification
of Bipedal Systems: A Simulation-Based
Comparison
N. Van der Gaag

Abstract— This work presents an evaluation of a least
squares approach to inertial parameter estimation of a
bipedal system. Four different methods for scaling the
regressor matrix are implemented and compared on their
usability for centroidal dynamics control. The comparison
is done using simulation data of an under-actuated lower-
limb exoskeleton with limited range of motion. The results
show that scaling the rows of the regressor matrix with
the uncertainty in the joints, and columns with a prior esti-
mate before solving the system, increases the accuracy of
predictions of generalized forces, joint torque, and center
of mass position and momentum. Additionally, scaling the
columns has a large positive influence on the estimated pa-
rameter accuracy, but this depends heavily on the accuracy
of the prior estimation.

Index Terms— System identification, inertial parameter es-
timation, centroidal dynamics control

I. INTRODUCTION

Lower-limb exoskeletons (LLEs) can play a pivotal role in
enhancing the autonomy of paraplegic individuals by restoring
their ability to walk and engage in daily activities [1], [2].
By moving the paralyzed legs, LLEs are not only facilitating
mobility but are also helping to mitigate secondary health
issues associated with immobility [1], [3], [4].

Despite their potential, LLEs are less commonly employed
than wheelchairs. An important limitation is their current
inability to provide robust balance support. Challenges arise
particularly on slippery or uneven terrain, where the exoskele-
ton’s response to disturbances is inadequate. Consequently,
paraplegic users must rely on crutches and external assistance
to maintain or regain balance, diminishing the exoskeleton’s
appeal as a tool for regaining independence.

Current research primarily focuses on the pre-calculation
or recording of joint trajectories that replicate a natural gait,
adjusting these in response to unexpected perturbations [5]–
[7]. While these approaches are promising, they fall short in
ensuring balance in some conditions.

A. Centroidal dynamics control
Authors [8], [9] and more recently [10] have shown that

controlling the dynamics of the Center of Mass (CoM) and
Whole Body Angular Momentum (WBAM) of bipedal sys-
tems is effective in maintaining balance under destabilizing
conditions. Controlling the CoM and WBAM dynamics can
be beneficial, because it simplifies the high-dimensional task

of controlling all joints to a high-level, low-dimensional task.
As a result, it can clear the path for more complex tasks, such
as walking, where the CoM plays a large role in maintaining
stability.

B. Dynamic model identification
Controlling the centroidal dynamics of a system requires

an accurate description of its CoM. More generally, model
based approaches for control benefit from having an accurate
dynamic model available. Therefore, gaining knowledge of the
Body Segment Inertial Parameters (BSIPs) is a crucial step in
the design of such controllers. The BSIPs can be acquired from
Computer Aided Design (CAD) data or found by performing
measurements on the individual parts of the robot. However,
these methods can be inaccurate and cumbersome if the robot
must be disassembled, so BSIPs are often estimated from
movement data using statistical learning algorithms [11].

Roughly two implementations of these algorithms can be
distinguished: offline and online identification. The first fo-
cusses on processing pre-collected data to derive the system’s
characteristics. On the other hand, online identification in-
volves continuously updating the model parameters in real-
time as new data becomes available. Since each method has
its strengths and weaknesses, exploiting the benefits of both
using a hybrid implementation could be a step in the direction
of robust balance control for LLEs.

Another topic of interest for an accurate dynamic model,
is finding the kinematic parameters. Although this work will
focus on finding the inertial parameters, the reader should be
warned that the availability of an accurate kinematic model
is crucial for estimating the inertial parameters, as well as
controlling the centroidal dynamics. If interested, for exam-
ple [12] can provide useful methods for estimating kinematic
parameters.

C. Related work
The subject of system identification of bipedal systems

is a heavily researched topic. Perhaps the most widely used
technique is to make use of the (under certain assumptions)
linearity in the inertial parameters (Sec. II-B) to perform a
least squares (LS) optimization. In [13], the inertial parameters
were estimated using only joint torques, only ground reaction
forces (GRFs) and both measurements combined. While joint
torques only performed best in some cases, the combined
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measurements performed better in general. In [14], the inertial
parameters are estimated using only the dynamics of the
floating base, to eliminate the need for joint torque estimates.

Some authors make use of constrained optimization tech-
niques to enforce the physical consistency of the estimated
parameters. In [15] a hierarchical optimization is performed
to find estimates of the inertial parameters under physicality
constraints. In [16] the inertial parameters of an LLE are
estimated using a constrained quadratic program (QP) to
enforce physical consistency. Notable is that in this work
only affordable sensors are used for kinematic and inertial
parameter identification, and inertial parameters of both the
LLE and human in it.

While it seems desirable to have physically consistent
estimates, [17] showed that the constrained problem is
ill-posed, and estimates will often lie on the user-specified
boundaries of physical consistency [18] [19]. Moreover, [17]
provides an alternative using differential geometry. While
the method was proven to be effective in finding physically
consistent parameters, it is computationally much more
expensive and thus not suitable for online identification.
Furthermore, the optimization suffers because it is non-
convex and has multiple local minima. Some of these issues
are addressed in their more recent work [20].

Although a variety of other methods exist, most remain
evaluated only on fixed-base systems. A broad overview of
methods is given by [11], in which each method is evaluated
on multiple fixed-base systems, based on noise immunity,
estimation accuracy, convergence and numerical complexity.
The author also presents a decision process which gives the
desired identification procedure for a specific scenario.

D. System under evaluation
The system used in simulation for this work is the Symbi-

tron exoskeleton from the University of Twente [1] as shown
in Fig. 1, with modifications made by [10]. It consists of
eleven links, interconnected by ten rotational joints. Therefore,
it has a total of n = 16 degrees of freedom (DOFs): three
body position, three body rotation and ten rotational. The
five joints per leg allow the following movements: hip ab-
/adduction and flexion/extension, knee flexion/extension, ankle
plantar-/dorsi-flexion and ankle in-/eversion. Each joint is
equipped with a position measuring device and, except for
the ankle in-/eversion, are torque-actuated. The body contains
an inertial measurement unit (IMU) and a gyroscope at the
body link to sense its linear acceleration, angular velocity and
orientation with respect to the world. For experiments, the
ground reaction forces (GRFs) can be measured using two
force-sensing platforms, one for each foot.

E. Contribution of this work
The aim of this research is to evaluate different implementa-

tions of least-squares inertial parameter identification, based on
the usability of their results in a centroidal dynamics controller.
Two sub-goals can be differentiated:

Fig. 1: The symbitron exoskeleton [10].

• Providing a proof of concept of parameter identification
of the evaluated system, given its limited range of motion

• Compare different approaches in the context of centroidal
dynamics control

F. Outline of this paper
Sec. II lays some foundations to explain the used methods

in Sec. III. Sec. IV-A describes the performed simulation
experiments, of which the results are presented in Sec. VI.
Finally, conclusions are drawn in Sec. VII.

II. PRELIMINARIES

This section will introduce some concepts that will lead to
the used solution techniques in Sec. III.

A. System model
A schematic of the LLE is shown in Fig. 2. The links and

body are considered rigid, so the dynamics can be modelled
as those of a kinematic tree with a floating base, connected
to the world by a 6-degree-of-freedom (DOF) joint. Therefore
its joint configuration can be described by the 6-DOF joint
coordinates qb ∈ R7 (a unit quaternion and position w.r.t. the
world) for the body, with the joint configuration vector qr ∈
Rj . Concatenating those gives the full system configuration

q =
[
qT
b qT

r

]T ∈ Rn+1. (1)

The joint space formulation of the equation of motion
(EOM) relates the joint motion quantities q and q̇, q̈ ∈ Rn
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q9
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q14

q16

q17

q15

qb

Ψ0
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Translational DOF

CoM

Actuated DOF

Fig. 2: A schematic of the LLE. The symbols Ψ0 and Ψb

denote the inertial and body coordinate frame, respectively.

to the applied forces τ in the presence of inertial parameters
ϕ. Using the Euler-Lagrange formalism, it can be expressed
as [21]

M(ϕ,q)q̈+C(ϕ,q, q̇)q̇+ g(ϕ,q) = τ , (2)

with the variables as follows:
• q̇, q̈: the first and second time derivative of the system

configuration q, respectively
• M(ϕ,q) ∈ Rn×n: the mass matrix
• C(ϕ,q, q̇) ∈ Rn×n: the centripetal and Coriolis effects

matrix
• g(ϕ,q) ∈ Rn: the gravitational torque vector
• τ ∈ Rn: the applied force vector

In the context of rigid body dynamics, the gravity, Coriolis
and centripetal effects are often summed in the bias torque
vector h(ϕ,q, q̇) ∈ Rn

h(ϕ,q, q̇) = C(ϕ,q, q̇) + g(ϕ,q), (3)

and the applied forces are often expanded as a sum of external
forces fe ∈ Re and joint actuation torques fa ∈ Ra as

τ = ST fa + JT
g (q)fe, (4)

where S ∈ Fn×a
2 is the actuated joint selection matrix and

J(q)Tg ∈ Rn×e the transpose of the geometric Jacobian that
maps fe to joint space. Substitution of Eq. (4) and Eq. (3) in
Eq. (2) gives:

M(ϕ,q)q̈+ h(ϕ,q, q̇) = ST fa + JT
g (q)fe. (5)

For simplicity the dependencies of matrices and vectors
M,C,g,S,Jg on the dynamic model and joint motion
quantities ϕ,q, q̇ are omitted in further evaluation.

B. Linearity in inertial parameters

As shown by [22], the system dynamics from Eq. (5) can
be expressed linearly w.r.t. the inertial parameters, i.e.

K(q, q̇, q̈)ϕ = τ (6)

where K(q, q̇, q̈) ∈ Rn×p is a matrix representing the
system’s current motion, which is often called the model
regressor. In more detail, ϕ is a vector containing all
inertial parameters of the body and links, ie. ϕ =[
ϕT

b ϕT
1 ϕT

2 ... ϕT
j

]T ∈ Rp, with

ϕi =
[
mi cTi mi ITi

]T
, ∀i ∈ b, 1, 2, . . . , j (7)

where mi is the mass of link i, cimi the first moment
of inertia, i.e. ci =

[
cxi

cyi
czi

]T
is the center of

mass position as seen from the link origin, and Ii =[
Ixxi

Ixyi
Ixzi Iyyi

Iyzi Izzi
]T

are the second mo-
ments and the products of inertia. This makes ϕi ∈ R10, and
therefore p = 10(j+1). These are referred to as the ‘standard
inertial parameters’.

Note that Eq. (6) only holds under the assumption that all
quantities are noise-free, the robot links are rigid and there is
no backlash in the system [11].

C. Least squares estimation

If N samples are recorded during a motion of the joints, K
and τ can be constructed for each of the samples and stacked,
such that for the complete trajectory their relation is described
by

Wϕ+ ϵ = y. (8)

with residual ϵ ∈ RnN , and

W =




K1

K2

...
KN


 ∈ R(nN)×p, y =




τ 1

τ 2

...
τN


 ∈ RnN .

If N > p
n , Eq. (8) will be an overdetermined system of

equations, which generally has no exact solution. However,
a solution can be approximated by minimizing the squared
l2-norm of the residual ||ϵ||22, which results in

ϕ̂OLS = W+y = (WTW)−1WTy, (9)
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involving the Moore-Penrose pseudoinverse of W, W+. This
solution is referred to as the Ordinary Least Squares (OLS)
solution, which minimizes ||ϕ̂||22 as well [15]. Therefore, the
result is in general not physically consistent.

If W does not have full column rank, (WTW) will not be
invertible, which will be solved in Sec. III-A. Note that this
solution is only valid if we assume that ϵ has zero-mean, is
heteroskedastic and serially uncorrelated [11].

D. Building the regressor matrix

K can be constructed from inertial forces of each link on
another. The entry at the ith row and lth column, Kil, is the
generalized force on joint i as a result of the movement of
link l, which can be expressed as [12]

Kil = β · δi(l) iXF
l Al(q, q̇, q̈), (10)

where (·) denotes the dot product, β is the measured
DOF, which for rotational joints and 6-DOF joint is βr =[
0 0 1 0 0 0

]T
and βf = 16×1, respectively. The

function δi(l) results in the identity matrix if l is a child link
of i, and zeros otherwise. The matrix Al(q, q̇, q̈) captures the
current motion of link l, such that

Al =



03×1 −S(p̈0

l ) L(ω̇0
l ) + S(ω0

l )L(ω
0
l )

p̈0
l S(ω̇0

j ) + S(ω0
l )S(ω

0
l ) 03×6


 (11)

where all variables are expressed in link l coordinates, and
p̈0
l is the acceleration of the origin of the link l frame with

respect to the inertial frame, ω0
l and ω̇0

l the angular velocity
and acceleration, respectively, and the functions S(·) and L(·)
are given by

S(x) =




0 −x3 x2

x3 0 −x1

−x2 x1 0


 , (12)

L(x) =



x1 x2 x3 0 0 0
0 x1 0 x2 x3 0
0 0 x1 0 x2 x3


 . (13)

In Eq. (10), the motion matrix Al is transformed from link j
to link i coordinates by the so-called ‘spatial force transform’
iXF

l , which is given by

iXF
l =

[
iRl S(ipl)

iRl

0 iRl

]
(14)

with iRl the rotation matrix from l to i coordinates, and ipl

the origin of the link l frame expressed in link i coordinates.
Now K can be constructed for each time step and stacked

to form W, as in Eq. (8).

E. Base parameters
As mentioned in [23] and [22], the column rank of W is

determined by the geometric structure of the robot as well
as the motion that is captured by W. This makes that the
regressor matrix will generally be column rank deficient. As
a result, some inertial parameters will only appear in linear
combinations in y and some will not be present at all. There-
fore, a minimum number of necessary parameters m exists
to reconstruct the joint torque for a given regressor matrix
W. These are often called ‘base parameters’ in literature. In
contrast to the standard inertial parameters, base parameters
do in general not have any physical meaning.

While analytical tools exist to determine the base parameters
for a given system [24], literature usually resorts to numerical
methods such as the QR-decomposition or Singular Value De-
composition (SVD) of the regressor matrix [23]. In this work,
only the SVD is considered, since it gives some additional
insights.

F. Singular value decomposition
Using the SVD, the regressor matrix can be decomposed as

W = UΣVT , where U and V are both orthogonal matrices,
and Σ =

[
ST 0

]T
is diagonal with Sii = si the singular

values of W, where s1 ≥ s2 ≥ ... ≥ sp ≥ 0.
Since W is generally rank deficient, there will only be

m < p non-zero singular values and it is only necessary to
identify the m base parameters to completely reconstruct the
joint torque for the given W. Therefore, it is useful to divide
U, S and V in the part essential for reconstructing the joint
torque, and in a part corresponding to the nullspace:

U =
[
Ue Un

]
,S =

[
Se 0
0 Sn

]
,V =

[
Ve Vn

]
(15)

with Ue ∈ RN ·n×m, Se ∈ Rm×m, Ve ∈ Rp×m and subscript
e and n denote the essential and nullspace parts, respectively.
The values on the main diagonal of Sn will be (close to) zero.

III. SOLUTION METHODS

This section will provide methods to solve for the inertial
parameters without taking the inverse (WTW)−1 directly, as
in Eq. (9).

A. Solving the LS problem using the SVD
The SVD offers a solution to the least squares problem in

which (WTW)−1 does not have to be calculated explicitly.
Multiplying Eq. (8) with UT and using the SVD on W yields

UTUΣVTϕ+UT ϵ = ΣVTϕ+UT ϵ = UTy. (16)

Where the orthogonality of U is used. Substitution of Eq. (21)
and using VTV = I (identity) yields

Σα+UT ϵ = UTy. (17)
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Since the orthogonality of U implies that UT ϵ preserves the
Euclidean length of ϵ, it is possible to minimize ||UT ϵ||22
instead:

α̂ = argmin
α

||UT ϵ||22 = argmin
α

||UTy −Σα||22 (18)

Substituting Eq. (15) and d = UTy yields

α̂ = argmin
α

∣∣∣∣∣∣

∣∣∣∣∣∣
d−



Se 0
0 Sn

0 0



[
αe

αn

]∣∣∣∣∣∣

∣∣∣∣∣∣

2

2

. (19)

From this equation can be seen that the choice of α̂n does not
matter, since Sn = 0, and that ||UT ϵ||22 is minimized, if

α̂e,i =
di
si
, ∀i = 1, 2, . . .m. (20)

The orthogonal matrix VT can be used to rotate the base
parameters to standard parameters space using

ϕ̂ = Vα̂ = Veα̂e +Vnα̂n. (21)

B. Exploiting the nullspace

The OLS solution of Eq. (20) minimizes ||ϵ||22, without
providing any guarantees to the correctness of ϕ̂. However,
the estimated parameters will be used for control of the LLE,
possibly without using the full EoM of Eq. (5), but rather its
components. Therefore, it is preferred to find a ϕ̂ that is close
to the real physical values.

This can be achieved by changing the nullspace parameters
α̂n, as this will not impact the residual ϵ. In [25] the nullspace
parameters are altered so that the l2-norm of the difference
between the estimated parameters and a prior estimate ϕ̄ is
minimized:

α̂n = argmin
αn

||ϕ̂− ϕ̄||22 (22)

which results in the solution for the nullspace parameters

α̂n = V+
n (ϕ̄−Veα̂e) = VT

n (ϕ̄−Veα̂e). (23)

The standard parameters can again be found using Eq. (21).
The prior estimate ϕ̄ can be found from CAD data or previ-
ously collected measurements.

C. Scaling the least squares problem

Scaling the least squares problem is good practice in
general, since it can solve some issues related to the OLS
solution [26].
Overfitting can be reduced by left multiplication of W by
a weight matrix G with the relative uncertainties. If G is
diagonal, left multiplication amounts to scaling the elements
of ϵ, as it becomes

ϵ̃ = Gϵ = Gy −GWϕ, (24)

effectively changing the norm with which the estimation is
evaluated. The new minimization problem yields,

ϕ̂ = argmin
ϕ

(y −Wϕ)T (GTG)(y −Wϕ) (25)

with solution

ϕ̂ = (GW)+Gy. (26)

Note that in most cases it is numerically inefficient to go
through the multiplication of GW, since G ∈ R(nN)×(nN)

will mostly consist of zeros. It is much more efficient to scale
the ith row of W with Gii.

Additionally, the problem can be scaled by right multipli-
cation of W by a diagonal matrix H. This requires changing
variables, such that

ϵ̃ = ỹ − W̃ϕ̃ (27)

with

W̃ = WH, ỹ = y −Wγ, ϕ = Hϕ̃+ γ

and amounts to scaling the columns of W. A solution for ϕ̃
with W̃ and ỹ is found similarly as for ϕ̂ in Eq. (9).

Using right multiplication does not change the problem
mathematically, i.e. ϕ̂ minimizing ||ỹ − W̃ϕ̃|| is the same
as when ||y − Wϕ̂|| is minimized. However, if H is not
orthogonal, the singular values of W̃ will be different from
W, which can have implications on selecting the base
parameters, as will be explained in Sec. II-F [26].

There is not one best procedure for selecting G and H.
However, since scaling with G alters the norm with which
ϕ̂ is selected, it can be used to balance the uncertainty in
the joint measurements. Loosely speaking, a row of W and
corresponding y value is ’trusted’ more when a larger weight
is assigned to it. Therefore, one possibility is to scale the rows
with the standard deviation of the corresponding joint torque
sensor, such that for joint i,

Gii =
1

στ,i
, (28)

with στ,i is the standard deviation of the noise of the torque
sensor in joint i. However, this does account for the fact that
the regressor matrix W contains noisy measurements. There-
fore, [27] proposed weighting every row with the standard
deviation of the residual of the OLS solution, i.e.

Gii =
1

σ̂ϵ,i
, (29)

with σ̂ϵ,i the standard deviation of the residual in joint i of
the OLS solution, such that
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σ̂2
ϵ,i =

||ϵ̂OLS,i||22
N − p

=
||yi −Wiϕ̂OLS ||22

N − p
, (30)

where ||ϵ̂OLS,i||22 is the l2-norm of the residual of joint i, and
yi and Wi the values of y and W corresponding to joint i.
The resulting matrix G will have repeating values on its main
diagonal:

G = diag(
[
B1 B2 . . . BN

]
) (31)

with

Bi =
[

1
σ̂ϵ,1

1
σ̂ϵ,2

. . . 1
σ̂ϵ,n

]
, i = 1, 2, . . . , N. (32)

Right multiplication of W by H can be beneficial if the
uncertainty in the initial guess of inertial parameters is known,
or can be used to balance the singular values of W to have
a condition number close to 1 [26]. However, knowing the
uncertainty of the initial guess is only useful if the relative
uncertainty is known, which is generally not the case. Scaling
the condition number would have as effect that the solution
ϕ̃ is less susceptible to changes in W̃ and ỹ, which is
desirable. However, this requires H = T−1 where T is
the triangular matrix from the Householder triangularization,
which is generally unknown.

In [25], right multiplication of W with the prior estimation
ϕ̄ is proposed. This has as advantage that the singular values
are scaled according to the influence of the corresponding base
parameter on the torque prediction, which will be explained
in more detail in Sec. III-D.

D. Truncated SVD method
The uncertainty in the estimated parameters can be found

from the residual variance. If W is scaled as in Eq. (30), the
residual variance in each joint should the same size. Therefore
the variance can be determined by [25]

σ2
ϵ =

||ϵ||22
N −m

=
||UT ϵ||22
N −m

, (33)

because of the preservation of length under multiplication of
UT . Therefore, the variance of the ith base parameter estimate
is inversely related to the corresponding singular value:

var(α̂i) =
σ2
ϵ

s2i
. (34)

This shows that for a small singular value, the uncertainty in
the corresponding base parameter will be large.

A solution to this problem is the truncated SVD
method [26]. This method uses only z < m singular values and
base parameters to keep the uncertainty in the base parameters
small. A similar analysis as in [25] can be done to determine
the amount of singular values that should be taken into account
to keep the residual small. If the amount of singular values z
is too large, the estimation will result in an over-fit, which

means that the estimated parameters are too specific for the
data. If too few singular values are used, it will result in a
under-fit, making the residual larger than necessary.

For the selection of base parameters, scaling of the columns
of W is useful. The unscaled regressor matrix only contains
data about the movement, but the selection should contain the
base parameters with the most influence on the generalized
forces. Therefore, scaling the columns of W with H =
diag(ϕ̄) before performing the SVD, could have a positive
impact on this selection, as it should scale the singular values
according to the expected influence on the generalized forces.
Looking at Eq. (34), it will also make sure that the base pa-
rameters with the most expected influence on the generalized
forces, will have the most accurate estimation.

E. Low-pass filtering

Various authors showed that low-pass filtering the noisy
measurements has a positive impact on the estimation [11].
Therefore, this will be included in the comparison as well. The
joint positions qr will be filtered before differentiating to joint
velocity and acceleration q̇r and q̈r, respectively. Additionally,
the body rotational velocity is filtered before differentiating
to rotational acceleration. The joint velocities, acceleration
and body rotational acceleration are filtered again after the
differentiation.

IV. SIMULATION EXPERIMENTS

The methods described in Sec. III are tested and compared
based on their performance. This is done by applying them to
simulation data of the LLE, and evaluating their output based
on some important quantities for centroidal dynamics control,
and inertial parameter identification in general.

A. Simulations

Separate data sets are obtained from simulation; training
and validation data. For each data set, the LLE is tasked to
perform 20 straight-lined movements of the CoM within its
base of support (BoS), standing on both feet. A cubic trajectory
is used as position reference of the CoM, which gradually
increases and then decreases in velocity, to prevent the LLE
from falling.

For controlling the CoM of the LLE, the controller from [10]
is used, without the torso stabilization task to maximize torso
movement. The controller runs on Simulink, and sends the
torque signals via an UDP port to a Mujoco program, which
simulates the dynamics and sends the measurements back to
Simulink. Ideal measurements are taken of the joint positions
and torques during each movement. Additionally, the body
rotational velocity, linear acceleration and orientation w.r.t. the
world is measured.

During post-processing, wrenches on both feet are estimated
using a least squares estimation, to simulate force-plate mea-
surements. Noise with the same variance as measurement data
from the real LLE is added to the measurements of the training
data. The validation data will only contain ideal measurements,
to make the analysis unaffected by noise.
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B. Comparison

The solution techniques of the least squares problem, es-
tablished in this work are evaluated using the simulation
data. An overview of the assessed techniques and if the
nullspace (Eq. (21)) is used, is shown in Table I. Because
the CoM position and momentum prediction is important for
centroidal dynamics control, additional attention is given to
the estimation of these quantities. The methods are evaluated
based on the following attributes:

1) Generalized force prediction
2) Joint torque prediction
3) CoM position prediction
4) CoM momentum prediction
5) Estimation accuracy of the inertial parameters

Attributes 1 to 4 are all measured by their root-mean-squared
error (RMSE). Attribute 5 is quantified by the average estima-
tion error: | ϕ̂−ϕ

ϕ | × 100%.
Because the estimations partly rely on prior estimate ϕ̄, the

identification process is repeated several times with different
randomly generated prior estimates. Results are compared with
ϕ̄ generated within ± 12.5% and ± 25% of the real ϕ value.

In each iteration, the optimal amount of singular values z is
found for each weighting scheme to minimize the RMSE of
the generalized force prediction ŷ. The z singular values are
used to estimate parameters. After 20 iterations, all metrics
are calculated over all iterations. To provide a reference, the
prior estimate ϕ̄ will be evaluated on all qualities as well.

The process is repeated with data that has been filtered
with four different cut-off frequencies: 30, 50, 70 and 100 Hz.
The applied filter is a second order low-pass Butterworth
filter, which is applied phase-less using the filtfilt()
command in Matlab.

TABLE I: Overview of evaluated solution techniques

Name Solution technique Nullspace used
Ref. - (prior estimate ϕ̄) -
OLS OLS Yes

WLS-R WLS (rows scaled with 1
σ̂ϵ,i

as Eq. (31)) Yes

WLS-C WLS (columns scaled with ϕ̄) No
WLS-RC WLS (combining WLS-R and WLS-C) No

V. RESULTS

Table II shows the best metric values for each solution
method. Given that the metrics vary across different filter
frequencies, only the best results are presented here. Therefore
each value is still calculated over 20 iterations, but the filter
frequency may not be the same for each metric.

Fig. 3 shows a CoM position prediction, Fig. 4 a joint
torque prediction and Fig. 5 a CoM momentum prediction.
All have been made using a WLS-RC estimation with prior
estimation accuracy of ±25%, trained on filtered data with a
cut-off frequencies of 70, 100 and 50 Hz, respectively. As a
reference, the same predictions are done using ϕ̄, presented
as ‘Ref.’. The sample time in these figures is 0.02 s, but some
data points are filtered out for reasons explained in Sec. VI.

Fig. 3: CoM position prediction using an WLS-RC estimation.

Fig. 4: Joint torque prediction using an WLS-RC estimation.
Note that this prediction is made using perfect knowledge of
the external forces to make the results independent of the
measurement noise.

Therefore, the x-axis shows the sample number and not the
time.

Finally, Fig. 6 shows the average estimation error with prior
estimation accuracy of ±25%, for the each link separate. Link
1 corresponds to the body, followed by the right and left leg
links, respectively. The leg links are numbered from proximal
to distal, with link 2 and 7 corresponding to right and left first
hip links, respectively.

VI. DISCUSSION

This section presents a more elaborate analysis of the
results, and possible implications of the methods on the results
are discussed.



8

TABLE II: Best results after 20 iterations with different prior estimates.

Prior est. uncertainty ±12.5% ±25%
Solution Method OLS WLS-R WLS-C WLS-RC Ref. OLS WLS-R WLS-C WLS-RC Ref.
Gen. force RMSE (N & Nm) 5.34 9.69 3.17 1.45 18.3 9.21 13.5 4.23 1.85 26
Torque RMSE (Nm) 2.47 5.18 0.784 0.641 1.99 4.11 7.91 1.03 0.712 3.61
CoM position RMSE (mm) 12 14 3.5 1.0 12 20 18 3.3 1.0 26
CoM momentum RMSE (Ns & Nms) 0.094 0.099 0.045 0.022 0.13 0.18 0.17 0.064 0.029 0.27
Avg. estimation error (%) 85.2 616 5.87 5.74 6.2 283 3480 11.5 11.2 12.5
Avg. amount of singular values (#) 19.9 19.7 5.81 10.3 - 23.2 33.1 8.35 13.3 -

Fig. 5: CoM momentum prediction using an WLS-RC esti-
mation over the validation data.

Fig. 6: The average estimation error over 20 iterations for each
link.

A. Analysis of results

While the generalized force RMSE improves using all
methods, the joint torque prediction does not. One explanation
is that the least squares estimation minimizes the generalized
force residual, so no direct attention is given to any of the
other evaluation attributes. In additional analysis the prior
estimation accuracy was decreased to ±50%, which showed
that the gap between the performance of the reference and least
squares estimations increases as the prior estimations become
less accurate. However, these results are not included since

prior estimations of most parameters are thought to be more
accurate.

Table II the WLS-C and WLS-RC perform better on all
attributes and therefore show that scaling the columns im-
proves the estimations. The impact is especially large on the
estimation accuracy. While scaling the columns should not
mathematically change the minimization, it does change which
singular values are taken into account with the truncated SVD
method, and therefore the resulting estimations.

The table also shows that scaling the rows is beneficial. The
row-scaled methods use more singular values and decrease
the prediction errors, indicating that more information from
the regressor matrix can be used for the estimation without
overfitting on the data.

The effect of using the nullspace for more accurate esti-
mations (Eq. (21)) can be observed through the difference in
estimation error between OLS and WLS-R estimations. OLS
uses fewer singular values, which leaves a larger nullspace.
While OLS has better estimation accuracy, it is still low com-
pared to the column-scaled methods, and therefore indicates
that using the nullspace is not sufficient to produce accurate
estimations.

Table II shows that the combination of row and column
scaling is more effective for most metrics than the effects
separately. This can be caused by the larger amount of singular
values the WLS-RC is using, which is up to four times
as high as WLS-C. Since the singular values are sorted on
relevance, being able to use more results in much better
predictions. The small influence of row scaling compared to
no scaling at all accentuates the conclusion that minimizing
that generalized force residual does not necessarily result in
improved performance on the other metrics.

The column scaled methods show a large dependency on
the prior estimation accuracy, looking at the estimation error.
In tests with ±50% prior estimation accuracy, this trend was
continued, indicating that the estimations will only be a little
more accurate than the prior estimations.

Finally, Fig. 6 shows that there are large differences in the
estimation accuracy over the links. This is caused by the fact
that the distal links are almost stationary during all movements,
which results in unexcited inertial parameters. This could be
improved by including movement on one leg, such as walking.
However, for that advancements are needed in the controller
software.

B. Evaluation of methods
The analysis in this work is done using simulation data.

Therefore, some real-world disturbances are omitted, which
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makes the conclustions drawn from this experiment less reli-
able than testing on a real LLE.

To begin with, it is assumed that all kinematic parameters
are known very accurately. This makes that the used model
could in theory be exactly identified. In the real world, such
accurate measurements of kinematic parameters are hard to
obtain. This could potentially have a large effect on the CoM
prediction.

Also, prior estimations are generated within a percentage of
the real values. In the real world, their accuracy would depend
on measurement errors, or parts added after measurements or
that are not modelled in CAD software. Therefore the prior
estimations could be inaccurate in many ways, not depending
on the ‘real’ parameter value.

Another issue in a real-world implementation is related
to the measurement of the GRFs. Measurements would be
obtained using force-sensing platforms that are not rigidly
connected to the LLE, since no force sensors are present in
the feet. However, an accurate mapping of the GRFs to joint
space via JT

g requires the position of the force platforms w.r.t.
the LLE to be known, which could be hard to achieve.

Additionally, the noise is now assumed to be additive. How-
ever, especially for the force measurements this assumption is
not valid, since in real life these are constructed from a set of
strain gauges which are multiplied and added. Therefore, the
total force measurement will contain some combination of the
strain gauge noise, unknown to the author.

Furthermore, the amount of used singular values is deter-
mined using the validation data, which is also used to perform
the analysis. In a real-world scenario, the identification could
be done in a similar fashion, but the performance could not
be determined using ideal measurements. One way to assess
the performance would be using the parameters in a feed-
forward controller and measuring the relative amount that it
contributes to the total control signal. However, only the joint-
torque prediction accuracy is measured with this method.

In the real LLE it would be hard to implement the move-
ments used in simulation, since its inertial and kinematic
parameters are not yet accurately known and might cause
the LLE to fall. To mitigate this issue, in real experiments
the identification could be done iteratively, increasing the
amplitude of the movements closer to the edge of the BoS
as more accurate inertial parameters are estimated.

To conclude, the IMU data is now taken as directly in
the origin of the body frame. However, in the real LLE
there will be a mapping from the IMU acceleration to body
acceleration, involving multiplication of noisy measurements.
Furthermore, in the simulation the orientation of the body is
taken as ideal, since it is represented as a unit quaternion,
which is in real-life measured from a combination of sensors.
Also, the effects of different sampling of different sensors
and their resolution are omitted.

One issue that could not be resolved were oscillations in
the joints with much higher frequency than the movements,
possibly leading to unreliable filtering of the data. Attempts
to solve this issue involved adding damping to the control
torques, but were ineffective. Therefore, an appropriate filter

must be found when implementing the techniques into the real
LLE.

While this work uses an LLE to evaluate identification
methods, no attention has been given to human interaction.
While [16] showed that human BSIPs can be estimated in
a similar fashion, humans will introduce all kinds of distur-
bances, such as reflexes to maintain balance.

In this research, not much attention has been given to
trajectory optimization, although multiple sources mention it
as essential step in the identification [28] [MORE SOURCES].
Although it may not be applicable to this work, [25] showed
that trajectory optimization mostly affects the excluded singu-
lar values and therefore has only little influence on the results.
Trajectory optimization could be more relevant to systems with
limited range of motion, such as the LLE in this work.

C. Future research
A natural extension of this work is to resolve the issues
stated in Sec. VI-B, by including frictional parameters, and the
parameters of the LLE user. Additionally, better results could
be obtained using trajectory optimization and other methods
for filtering the training data, possibly filtering in a way that
preserves consistency of the EoM. Furthermore, the methods
should be implemented in the real LLE to evaluate the methods
in a real situation where modelling errors are present and less
ideal signals can be used, and human parameters should also
be estimated.

The amount of used singular values z is in this work chosen
to minimize the generalized force RMSE. However, often other
metrics, such as the torque RMSE, are more important and
might be more interesting to minimize.

This research only implements one of many possible iden-
tification techniques. For example [11] gives an overview of
some techniques, with a flow chart to choose one applicable
to the situation. If the controller structure is known, other
techniques might be more relevant than the one implemented
in this work.

Next steps could include online methods, which if imple-
mented correctly, could have benefits for example when a user
is picking up an object. Also, looping the methods as described
in this work, using an estimation as ‘prior estimation’ for a
next estimation procedure on other data, could be investigated.
Since one of the limiting factors in this work is that noisy
joint velocities and accelerations are used, it could potentially
benefit from using IMUs on the legs to obtain more accurate
accelerations. Finally, to account for nonlinearities or other
unmodelled dynamics, a combination with more advanced
machine learning methods such as neural networks could be
used.

VII. CONCLUSION

Feasibility of least squares estimation of the BSIPs for
the evaluated system is demonstrated in this work. While
all metrics can be improved by using WLS-RC compared to
the reference, the estimation accuracy shows a large depen-
dency on the prior estimates. Moreover, some techniques even
showed decreased performance on some metrics. Therefore,
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experiments should evaluate the usability of the methods in
the real world.

REFERENCES

[1] C. Meijneke, G. Van Oort, V. Sluiter, E. Van Asseldonk, N. L. Taglia-
monte, F. Tamburella, I. Pisotta, M. Masciullo, M. Arquilla, M. Molinari,
A. R. Wu, F. Dzeladini, A. J. Ijspeert, and H. Van Der Kooij, “Symbitron
Exoskeleton: Design, Control, and Evaluation of a Modular Exoskeleton
for Incomplete and Complete Spinal Cord Injured Individuals,” IEEE
Transactions on Neural Systems and Rehabilitation Engineering, vol. 29,
pp. 330–339, 2021.

[2] R. B. van Dijsseldonk, I. J. W. van Nes, A. C. H. Geurts, and
N. L. W. Keijsers, “Exoskeleton home and community use in people
with complete spinal cord injury,” Scientific Reports, vol. 10, p. 15600,
9 2020.

[3] F. Tamburella, N. L. Tagliamonte, I. Pisotta, M. Masciullo, M. Arquilla,
E. H. F. van Asseldonk, H. van der Kooij, A. R. Wu, F. Dzeladini,
A. J. Ijspeert, and M. Molinari, “Neuromuscular Controller Embedded
in a Powered Ankle Exoskeleton: Effects on Gait, Clinical Features
and Subjective Perspective of Incomplete Spinal Cord Injured Subjects,”
IEEE Transactions on Neural Systems and Rehabilitation Engineering,
vol. 28, no. 5, pp. 1157–1167, 2020.

[4] C. Baunsgaard, U. Nissen, A. Brust, A. Frotzler, C. Ribeill, Y. Kalke,
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Chapter 4

Additions to paper

In this chapter, additional results are presented, as well as reasoning behind certain choices that are
made. It also expands on some discussion points in the paper, about the methods used in the analysis.

4.1 Additional results

In chapter 3 some predictions of joint torques and CoM position and momentum are shown. These are
made with ideal data which would be impossible in the real LLE. Therefore, to get an idea of the real
performance, the same predictions are shown here, but using noisy measurement data as would be done
in the real LLE.

First of all, the joint torque prediction in the real LLE is made using a prediction of the GRFs on the
foot, and noisy position and velocity data, of which the latter is filtered using a second-order butterworth
low-pass filter in real time. The GRFs can be predicted from the regressor matrix and noisy joint torques
using a least squares optimization as follows:

f i+1
e = (Jg(q

i+1
d )T )+(K(qi+1

d , q̇i+1
d , q̈i+1

d )ϕ̂− ST f ia), (4.1)

where subscript d indicates a desired joint motion quantity and superscript i and i + 1 the current
and next time step, respectively. The pseudo-inverse of the geometric Jacobian (JT

g )
+ is taken for a

least-squares estimation, K is the current motion matrix, ST the actuated joint selection matrix and fa
the actuation torques. Additionally, the torque prediction should give the necessary joint torques as a
function of the desired accelerations, which are therefore put in as ideal values. The torque predictions
over the same data as in chapter 3 are shown in Fig. 4.2.

The CoM position prediction only uses joint position data, which can be measured accurately (with a
standard deviation of 9 · 10−6 rad). Its performance with noisy data will therefore not vary visibly from
chapter 3. Additionally, the real-time CoM momentum calculation in the LLE is done using the same
joint velocities as for the torque predictions, and will therefore also contain some noise. Both the CoM
position and momentum predictions using realistic data, are shown in Fig. 4.1.

In addition to the results in Table II in chapter 3, the estimations are done using prior estimations with
an absolute offset from the real values, to see what will happen if the manual measurements would be off
by an absolute number, instead of a percentage. A similar table as Table II from chapter 3, is shown in
Table D.1. For these results, prior estimations are generated within ±0.125 of the real parameters (unit
depends on the specific parameter). Note that these results are obtained from 20 iterations as well.
In addition to Table II in chapter 3, the full table of results is shown in appendix C. Finally, appendix D
shows a table with full estimations using each solution method.
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Table 4.1: Best results after 20 iterations with different prior estimates.

Solution Method OLS WLS-R WLS-C WLS-RC Ref.
Gen. force RMSE (N & Nm) 24 12.9 22.6 12.8 29.4
Torque RMSE (Nm) 15 7.05 13.9 7.25 18.9
CoM position RMSE (mm) 6.5 4.8 8.5 3.7 11
CoM momentum RMSE (Ns & Nms) 0.084 0.076 0.11 0.094 0.13
Avg. estimation error (%) 22300 8540 17200 13200 22600
Avg. amount of singular values (#) 26.7 27.5 21.5 33.4 0

(a) Position. (b) Momentum.

Figure 4.1: Realistic CoM predictions.

4.2 Additional discussion

4.2.1 Analysis of results

The reason that the torque predictions from Fig. 4.2 do not contain noise is twofold: the prediction is
done using desired ‘ideal’ accelerations, which would otherwise be the largest source of noise. Addition-
ally, the predictions are done using predicted GRFs that are obtained by an optimization. Therefore,
the GRFs will contain noise to compensate for noise in the regressor matrix.

From a comparison of Fig. 4.2 and Fig. 3 from chapter 3 can be concluded that the torque prediction
benefits more from the parameter estimations in the real situation than in the idealized simulation. The
CoM predictions of Fig. 4.1 are compared to Fig. 4 of chapter 3 only affected by additional noise.

Table D.1 shows the large dependency of the column-scaled methods on the prior estimations. The
WLS-R method does not have this dependency as much, which could explain why it performs better
on some metrics as compared to the paper. However, WLS-RC still performs better on CoM position
prediction and only marginally worse on CoM momentum prediction and torque prediction. Therefore,
it can be concluded that WLS-RC is generally the best choice of these methods, since the error in the
prior estimations could be some combination of absolute and relative.

4.2.2 Evaluation of methods

As mentioned in the discussion of chapter 3, the data contained some vibration of the legs in most
movements, with high frequency compared to the prescribed motion. This leads to issues when filtering
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Figure 4.2: Realistic torque predictions.

the data, since the high-frequency vibrations are filtered out, which results in large differences between
the ideal signals and the filtered signals.

Fig. 4.3 shows the ideal joint accelerations of two data sets: the training data used in the analysis of
chapter 3, and data of the LLE ‘floating in space’, without the vibration in the legs. The spikes in
Fig. 4.3a correspond to moments when the legs are vibrating.

Calculating the difference between the filtered and ideal joint accelerations, yields

ea = q̈j,f − q̈j , (4.2)

where q̈j,f is the filtered joint acceleration and q̈j the real joint acceleration.

Taking the RMSE of Eq. (4.2) for both signals in Fig. 4.3, results in an RMSE of 57 Nm and 5.0 Nm for
the training and floating data, respectively, when filtered at 70 Hz. The large ea for the training data
set could decrease the estimation accuracy, because the EoM using the filtered data would be inconsistent.

Additionally, the legs have very limited movement, since the LLE is not yet able to perform movements
standing on one leg. Since the goal of the LLE is to assist people with walking, it is expected that the
identification procedure will have such movement data available in the future.

Because of these issues and those mentioned in chapter 3, the presented analysis will have different results
than a real implementation in the LLE.

Finally, appendix B provides an explanation of why friction is mentioned in chapter 2, but was not taken
into account in the analysis of chapter 3.
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(a) With vibrating legs. (b) Floating in space.

Figure 4.3: Ideal joint acceleration data.
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Chapter 5

Conclusion

This thesis investigates if least-squares parameter estimation can be used for a floating-base, bipedal
system. chapter 2 explains how the regressor matrix can be built so that the equation of motion can be
expressed linearly in the inertial parameters. In chapter 3, multiple methods of solving this system are
compared on their performance in general, and for implementation in the controller that is currently used.

The paper shows that appropriate scaling of the regressor matrix is essential for finding parameters
that perform well on the evaluated metrics. A combination of scaling the rows with the measurement
uncertainty, and the columns with a prior estimation, leads to the best results. However, without proper
scaling, least-squares estimations do not generally lead to better performance on torque and CoM posi-
tion prediction. Furthermore, performance relies partly on the accuracy of the prior estimations, which
is assumed to be a percentage of the real values.

Therefore, this assumption was changed in additional analysis where instead of a percentage, an absolute
error was added to the prior estimations. This showed that scaling only the rows might be better in this
situation, but that scaling both the rows and columns might be a safe choice. Finally, it was found that
predictions using noisy data also benefit from parameter estimations.
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Appendix A

Statement of use of large language
models

During the preparation of this work the author used ChatGPT 4 [14] in order to restructure text and
provide linguistic suggestions. After using this tool/service, the author reviewed and edited the content
as needed and takes full responsibility for the content of the work
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Appendix B

Motivation for excluding friction in
analysis

The analysis of chapter 3 excludes friction parameters. However, they are still mentioned in the thesis,
because friction parameters can be hard to measure manually and cannot be obtained from CAD data.
Furthermore, they could potentially change quickly over time, due to lubrication, dirt or wear. There-
fore, it is important that they will be included in the real LLE. The following will explain why friction
is excluded in chapter 3.

The regressor matrix was tested on correctness during its construction using the EoM error

ϵe = ye −Weϕ, (B.1)

where ye and We are the noiseless versions of y and W, respectively, and ϕ the inertial parameters that
are used in the simulation. This was done using simulation data from Simulink and Simscape, including
joint friction as stated in Sec. 2.2.2 and GRFs. With that data it resulted in an EoM RMSE of order
10−14. However, during preliminary testing, the EoM error using the Mujoco environment increased to
order 100, and the presence of friction was found to be the largest source.

At that time the GRFs were directly saved from Mujoco as simulation output. In a later stage of the
thesis, the GRFs were reconstructed from the regressor matrix and joint torques instead of saved from
Mujoco, since the GRFs obtained from Mujoco produced large errors in the EoM as well.

After the analysis was finished, it appeared that reconstructing the GRFs using Eq. (4.1) decreased the
EoM RMSE including friction to order 10−5, which is still more than twice as large as without friction
(RMSE of order 5 · 10−6), but small enough for analysis.

While it would be interesting to perform additional analysis including friction, the software for the
analysis does currently not allow for that.
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Appendix C

Full table of results

Table C.1 shows all the results that were found during the comparison of chapter 3.
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Table C.1: Results over 20 iterations with different prior estimates.
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12
.5
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Ref. - 18.3 1.99 12.3 0.128 6.2 -
OLS 0 31 18.4 173 0.628 21700 67

30 8.29 2.47 12.4 0.113 85.2 6.85
50 8.44 2.81 14.2 0.107 195 6.4
70 5.94 2.51 16 0.096 153 9.45
100 5.34 2.64 15.4 0.0938 203 9.55

WLS-C 0 8.75 2.07 9.65 0.122 6.06 1.45
30 7.81 2 9.33 0.102 6.38 6.15
50 8.03 1.9 10.5 0.106 6.16 4.3
70 3.89 0.784 3.52 0.0498 5.87 10.9
100 3.17 1.73 6.73 0.0446 5.96 6.3

WLS-R 0 15.3 6.62 39.7 0.307 2240 18.3
30 10.7 5.18 14.7 0.101 616 19.6
50 12.9 8.14 13.7 0.0995 1060 17.6
70 10.6 6.58 16.3 0.103 1620 21.1
100 9.69 5.27 16.2 0.109 1940 22

WLS-RC 0 10.3 2.08 11.1 0.135 6.09 1.15
30 1.45 1.1 1.02 0.0221 5.8 13.6
50 1.83 1.09 1.72 0.0298 5.74 11.9
70 2.16 0.641 3.01 0.044 5.82 18.5
100 3.13 1.52 5.55 0.0458 5.95 6.65

±
25
%

Ref. - 26 3.61 25.6 0.268 12.5 -
OLS 0 31 18.4 173 0.624 22100 66.9

30 11.2 4.58 28.9 0.191 283 13.5
50 11.9 4.11 20.4 0.199 481 14.4
70 9.21 5.02 27.7 0.177 392 10.8
100 10 5.59 29 0.198 492 10.7

WLS-C 0 13.1 3.23 16.2 0.182 12.4 2.1
30 8.59 2.42 9.73 0.113 12.1 9.55
50 9.25 2.65 11 0.122 12.1 9
70 4.23 1.03 3.28 0.0643 11.5 12.4
100 4.35 2.46 11.9 0.0724 11.8 8.7

WLS-R 0 18.8 9.22 57.5 0.465 5810 36.5
30 17.2 11.1 23.1 0.186 24800 37.3
50 18.1 12.7 18.5 0.168 8460 29.4
70 14.4 8.77 27 0.177 3480 27.6
100 13.5 7.91 20.5 0.173 4640 35

WLS-RC 0 15.9 3.66 26 0.217 12.6 2.4
30 1.85 1.37 1.15 0.0335 11.4 15.2
50 2.18 1.41 0.996 0.0292 11.3 17.6
70 2.26 0.712 3.33 0.0444 11.2 19.3
100 4.4 2.32 8.99 0.0733 11.7 12.1
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Appendix D

Full table with estimations

As requested, a table with estimations. Note that these are specific for the training data and the (within
a percentage of the real value) randomly generated used prior estimation

Table D.1: Estimations with prior estimation accuracy of ±25%, trained on data filtered at 50 Hz.

Parameter Link Real OLS WLS-R WLS-C WLS-RC
Mass 1 13.5 15 15 13.2 13.7

2 4.35 3.85 3.9 4.7 4.11
3 5.18 5.94 6.01 5.11 5.04
4 3.5 3.29 3.29 3.92 3.82
5 0.198 -0.0569 -0.0631 0.234 0.244
6 0.547 0.211 0.204 0.53 0.557
7 4.35 3.75 3.8 3.24 3.84
8 5.18 4.94 5.01 5.66 5.62
9 3.5 4.03 4.03 3.62 3.41
10 0.198 -0.101 -0.103 0.189 0.183
11 0.547 0.226 0.223 0.614 0.522

CoM (x) 1 -0.773 -0.863 -0.799 -0.842 -0.829
2 0.36 0.355 0.347 0.294 0.347
3 1.04 0.915 0.75 0.962 0.944
4 0.39 0.371 0.362 0.357 0.342
5 0.000492 -0.00208 -0.0249 0.000494 0.000495
6 0.0268 0.0213 0.0361 0.0221 0.0222
7 0.36 0.292 0.298 0.322 0.316
8 1.04 1.08 0.924 1.07 1.04
9 0.39 0.334 0.366 0.411 0.392
10 0.000492 -0.00286 -0.0212 0.000403 0.000403
11 0.0268 0.0293 0.0496 0.0303 0.0303

CoM (y) 1 0.0715 0.108 0.105 0.085 0.0884
2 0.0594 0.00734 -0.0917 0.0639 0.0634
3 0.0425 -0.0721 -0.0538 0.0392 0.0405
4 -0.0299 -0.0329 0.0518 -0.0307 -0.0298
5 -0.00409 0.00683 -0.00222 -0.00487 -0.0049
6 -0.000725 0.0124 -0.000685 -0.000689 -0.00069
7 0.0594 -0.00221 -0.115 0.0595 0.0597
8 0.0425 -0.035 0.047 0.0489 0.0526
9 -0.0299 -0.0122 0.0887 -0.0221 -0.0224
10 -0.00409 0.0193 0.000175 -0.00339 -0.00343
11 -0.000725 -0.0161 -0.00134 -0.000681 -0.000681

CoM (z) 1 4.94 5.91 5.76 5.1 4.9
2 -0.328 -0.289 -0.348 -0.35 -0.355
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3 -0.0258 -0.047 -0.0533 -0.0295 -0.0294
4 -0.0423 -0.0382 -0.0286 -0.0476 -0.048
5 -0.00768 0.00721 0.0127 -0.00667 -0.00668
6 0.0676 0.0493 0.0492 0.0586 0.0646
7 0.328 0.187 0.249 0.247 0.248
8 0.0258 0.00815 0.00153 0.0248 0.025
9 0.0423 0.049 0.0486 0.0377 0.0375
10 0.00768 0.0205 0.0252 0.00593 0.00593
11 -0.0676 -0.0391 -0.0526 -0.0535 -0.0664

Ixx 1 2.29 2.7 2.71 2.19 2.18
2 0.0808 0.155 0.209 0.0762 0.0758
3 0.0155 0.0185 0.0167 0.0186 0.0186
4 0.00868 0.00795 0.00584 0.00795 0.00795
5 0.00174 0.0019 0.000392 0.00201 0.00201
6 0.0131 0.00999 0.01 0.01 0.01
7 0.0808 0.165 0.218 0.0862 0.0857
8 0.0155 0.0192 0.0178 0.0192 0.0192
9 0.00868 0.00861 0.00611 0.00854 0.00854
10 0.00174 0.002 0.000869 0.00202 0.00202
11 0.0131 0.0151 0.0153 0.0152 0.0152

Ixy 1 0.00621 0.00149 -0.0183 0.00663 0.00664
2 -0.00483 -0.0115 -0.0143 -0.00374 -0.00374
3 -0.00747 -0.00699 -0.0058 -0.00679 -0.00679
4 0.00161 0.00217 0.00204 0.00192 0.00192
5 3.97e-05 0.000286 -0.00187 4.55e-05 4.55e-05
6 5.17e-05 -4.71e-05 -0.0223 3.92e-05 3.92e-05
7 -0.00483 0.00386 0.00711 -0.00478 -0.00478
8 -0.00747 -0.00812 -0.00548 -0.00802 -0.00802
9 0.00161 0.00165 0.000178 0.00145 0.00145
10 3.97e-05 0.000186 -0.00262 3.49e-05 3.49e-05
11 5.17e-05 -0.00134 0.0169 4.72e-05 4.72e-05

Ixz 1 0.312 0.307 0.312 0.314 0.318
2 0.0545 0.0559 0.0635 0.0656 0.0625
3 0.0175 0.00388 0.0119 0.0213 0.0214
4 0.00258 -0.00477 0.00437 0.00297 0.00297
5 8.46e-06 -0.000561 -0.000112 9.37e-06 9.37e-06
6 -0.00333 -0.00375 -0.00284 -0.00371 -0.00371
7 -0.0545 -0.0551 -0.0613 -0.0605 -0.0576
8 -0.0175 -0.0273 -0.0443 -0.0156 -0.0155
9 -0.00258 -0.00851 -0.0194 -0.00261 -0.00261
10 -8.46e-06 0.000914 -0.0036 -6.88e-06 -6.88e-06
11 0.00333 0.00463 0.0125 0.00414 0.00414

Iyy 1 2.31 1.95 2.01 2.52 2.44
2 0.128 0.127 0.125 0.127 0.127
3 0.326 0.385 0.386 0.387 0.385
4 0.0834 0.0762 0.0775 0.0764 0.0763
5 0.000446 0.00052 0.00119 0.000489 0.000489
6 0.0145 0.0151 0.0937 0.0169 0.0169
7 0.128 0.105 0.103 0.105 0.105
8 0.326 0.325 0.325 0.327 0.328
9 0.0834 0.0652 0.0657 0.0652 0.0652
10 0.000446 0.000504 -0.000405 0.000368 0.000368
11 0.0145 0.00969 0.0576 0.0123 0.0123

Iyz 1 -0.029 -0.00516 0.0199 -0.0356 -0.0357
2 0.00249 0.00178 0.00292 0.00202 0.00202
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3 0.00328 -0.0132 -0.00433 0.00282 0.00281
4 0.00137 0.0129 0.0116 0.00115 0.00115
5 -4.94e-05 0.000356 0.00302 -6e-05 -6e-05
6 9.73e-05 -0.000393 -0.0481 0.000121 0.000121
7 -0.00249 -0.0023 -0.00498 -0.00245 -0.00245
8 -0.00328 0.00522 0.00324 -0.00269 -0.00268
9 -0.00137 -0.00475 -0.00403 -0.00159 -0.00159
10 4.94e-05 -0.00139 -0.00855 6.11e-05 6.11e-05
11 -9.73e-05 0.00371 -0.0481 -0.00012 -0.00012

Izz 1 0.0951 0.103 0.0975 0.0991 0.0985
2 0.0587 0.0694 0.0707 0.0695 0.0695
3 0.323 0.232 0.215 0.287 0.293
4 0.0822 0.0578 0.0605 0.0622 0.0683
5 0.00132 -0.000146 0.08 0.00159 0.00159
6 0.00229 0.0024 0.00174 0.00242 0.00242
7 0.0587 0.0549 0.055 0.0549 0.0549
8 0.323 0.205 0.214 0.361 0.357
9 0.0822 0.141 0.033 0.0658 0.064
10 0.00132 -0.00169 0.0475 0.001 0.001
11 0.00229 0.00267 0.00123 0.0022 0.0022
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