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Abstract—In the ever expanding world of machine learning,
where advancements continually push the boundaries of what’s
possible, the efficiency of deploying tree-based ensembles is often
a point of interest. Renowned for their interpretability and
minimal training data requirements, models such as random
forests and extremely random forests have been found as effective
tools across many different industries.

In this paper, we integrate FLInt, a promising accuracy-
preserving technique for accelerating inference speed, into the
established TL2cgen framework. Through experimental analysis
conducted on both x86 and ARM devices, we empirically demon-
strate that FLInt consistently outperforms the baseline across a
range of maximum tree depths. Additionally, we examine an
established optimization technique, Quantization. However, our
findings reveal that Quantization yielded mediocre results, often
resulting in slowed inference times across most scenarios.

I. INTRODUCTION

Recent developments in machine learning have been made
that focused on enhancing its capabilities and integration with
popular machine learning frameworks. Specifically, tree-based
models like decision trees and random forests are widely
adopted tools for tasks across various industries, such as
data science [1]. These models are explainable and require
relatively little training data, which makes them particularly
useful for applications in fields like finance, healthcare and
national security [2].

Researchers have been exploring ways to improve the effi-
ciency and performance of deploying tree ensemble models,
addressing challenges such as reducing latency and optimiz-
ing resource utilization. Two well-known frameworks in this
realm are TREEBEARD and Hummingbird. TREEBEARD
for instance, uses new, advanced compilation techniques at
various abstraction levels in order to lower inference times
substantially [3]. On the other hand, Hummingbird aims to
bridge the gap between traditional machine learning models
and deep learning frameworks along with adding various
other optimization to cut down on inference time [4]. A third
framework that aims to contribute to the ongoing effort is an
open-source library called “Treelite”, and the now decoupled
sub-module “TL2Cgen”. Treelite lets users convert various
well-known tree models into a common specification which
is very useful when dealing with multiple applications that
exchange and store decision trees. TL2Cgen can then use
the Treelite model to generate highly optimized platform-
independent C code, that can be compiled and run on any

hardware. This is particularly useful for deploying tree models
on devices where resources may be limited [5].

One technique that is used to improve efficiency is called
“Quantization”, which is commonly considered in other op-
timization problems such as binarized neural networks [6].
The problem with quantization is often the potential loss of
accuracy. Furthermore, the overhead costs at prediction time
may outweigh the gained latency reduction, thus making it
counterproductive. The goal is to implement a novel method,
called “FLInt”, which is fully accuracy preserving, and see
whether latency reduction can be achieved [7].
Our Contributions: In this project, we integrate FLInt into
the existing TL2cgen framework, we evaluate inference times
of decision trees from various datasets with different tree
depths on two devices, and we answer the following research
questions:

• What is the impact of optimization techniques, specifi-
cally Quantization and FLInt, on the inference times of
random forest models generated by TL2cgen compared
to the baseline scenario?

• Are there specific architectures or scenarios where FLInt
or Quantization has superior performance compared to
baseline?

The resulting code is publicly available at: https://github.com/
Kolcenter/speedTest2

II. RELATED WORK

This section discusses works related to the topic of reducing
inference times for tree-based machine learning models. First,
an overview of TL2cgen and arch-forest, then we discuss
an existing optimization technique in TL2cgen and lastly we
review FLInt.

A. Deployment Frameworks

Besides TL2cgen, we already mentioned the TREEBEARD
and Hummingbird framework, which both aim for perfor-
mance increase in decision tree during inference. Another
important framework to mention is “arch-forest”, first devel-
oped by Buschjäger and Morik [8]. This framework has many
overlapping features with TL2cgen and was the framework
that was used to demonstrate FLInt’s effectiveness. Some of
the overlapping key features involve the following:

1) C code generation: Although greater optimization can
be achieved by making platform-specific modifications
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to decision trees, arch-forest and TL2cgen both aim
to generate platform independent code. This is accom-
plished by creating the trees in C, which is widely used
and relatively low-level because it provides direct access
to memory addresses and hardware components, making
it more efficient than some other languages like Python.

2) if-else implementation: The tree nodes, along with their
respective values, can be stored in an arbitrary form. One
way is to store the data as an array-like data structure and
let a small loop read out node values while keeping track
of the node’s index, this is called a native tree. if-else
trees, on the other hand, employ nested if-else blocks
to represent nodes. When evaluating a branch condition,
the code for the left subtree is enclosed within the if-
block, and the code for the right subtree is within the
else block. It has been empirically shown that an if-else
implementation outperforms other structures, including
the native implementation [9]. Hence, it is used in both
arch-forest and TL2cgen.

3) Cache-awareness: Cache-awareness refers to the strate-
gic utilization of computer memory hierarchy in soft-
ware design to optimize performance. Computers gen-
erally have multiple types of memory with varying
speeds and capacities, ranging from fast but limited
cache memory to slower but larger main memory (RAM)
and even slower storage devices like hard drives. In case
of arch-forest, this feature is exploited by strategically
placing child nodes within if-else statements, so that the
more probable child is in the if-statement while the other
child is in the else clause.
In contrast, TL2cgen uses the built-in compiler fea-
ture __builtin_expect() to inform the compiler
about the likelihood of different branches within the if-
else statements. Both approaches essentially achieve the
same thing; it ensures that the most frequently accessed
parts of the decision tree are in faster (cache) memory.

B. Quantization

One optimization that is implemented in TL2cgen is referred
to as Quantization. In this optimization, the test nodes undergo
a transformation where all threshold values are substituted with
integers, they are quantized. The result is that each threshold
condition now involves integer comparisons instead of the
usual floating-point comparisons. A simple example is shown
in Listing 1

// Floating-point comparison
if (data[3].fvalue < 1.5) {
...

}
...
// Integer comparison
if (data[3].qvalue < 3) {
...

}

Listing 1. A simple example of a floating-point comparison (top) being
quantized into an integer comparison (bottom)

As stated by the TL2cgen developer, this helps performance
by reducing executable code size and improving data locality
on some architectures, such as x86-64 [10]. This is due to the
fact that, on these platforms, integer constants can be embed-
ded as part of the comparison instruction, whereas floating-
point constants cannot. Consequently, integer comparisons
may produce fewer assembly instruction compared to floating-
point comparison. However, using integer threshold will add
overhead costs at prediction time, therefore it is not guaranteed
that this optimization actually increases performance. Potential
accuracy-loss is often a problem with quantization, but not
in here since this quantization algorithm is fully accuracy-
preserving.

C. FLInt

FLInt enables floating-point comparisons using only in-
tegers and logic operations [7]. In theory, this is useful
particularly for devices lacking hardware floating-point units,
such as small embedded systems, since those would require
using software floating-points, which takes more time and
energy. Other devices also typically experience execution
time increase due to overhead introduced by floating-point
operations. Theorem 1 shows the relation between a floating-
point comparison and a signed integer comparison.

Theorem 1 (Restated from [7]). Given two arbitrary bit
vectors X, Y ∈ {0, 1}k where the positiveness of FP(X)
(equivalently SI(X)) is known a priori, the ≥ relation can
be computed between the floating-point interpretation of these
bit vectors, using only two’s complement signed integer arith-
metic:

FP (X) ≥ FP (Y )

⇔{
−1 · SI(Y ) ≥ −1 · SI(X) if SI(X) < 0

SI(X) ≥ SI(Y ) otherwise

Here, FP (X) and SI(X) stand for the Floating Point
representation and the Signed Integer representation of bit
vector X respectively. Simply put, a computer can interpret
the bit vector of a floating-point number as a signed integer
and (with some extra steps in case the number is smaller than
0) the outcome of the comparison will be the same.
In [7], Hakert et al. have observed that FLInt integrated into the
arch-forest framework results in an improvement of execution
time for almost all evaluated cases. Considering the similarities
between arch-forest and TL2cgen, it is only logical to expect
FLInt to also have a positive impact on inference times for
trees produced by TL2cgen.

III. PORTING OF FLINT INTO TL2CGEN

The first step is to create a new branch for the package that
will extend the capabilities of the current version to enable
the user to pick FLInt as the applied optimization. Unlike
Quantization, FLInt doesn’t require manipulating thresholds
and can directly be implemented at the section of code where
the trees are generated. Listing 2 shows a simplified version
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of the function ExtractNumericalCondition, which
generates one if-statement for the decision tree based on the
attributes of node.

std::string ExtractNumericalCondition(Node
const* node) {

std::string result;

// Quantized threshold
if (node->quantized_threshold_) {
...
result = fmt::format("{lhs} {opname}

{threshold}", ...
}
// Regular threshold
else {
...
result= fmt::format("{lhs} {opname}

({threshold_type}){threshold}", ...
}
return result;

}

Listing 2. Simplified version of the ExtractNumericalCondition function in
the TL2cgen source code

As can be seen, the code first checks whether the
quantized_threshold_ attribute of node is non-zero,
and if it is, returns a string that contains the numerical
condition of the decision tree for a quantized node. If
quantized_threshold_ is 0, the returned string is the
numerical condition for a decision tree without optimizations
(baseline). A similar approach can be taken for FLInt: add
FLInt_ as an attribute to node, which is set to 1 when the
user wants to apply FLInt and 0 otherwise. Then, we edit
the code shown in Listing 2 so that the attribute is checked,
just like quantized_treshold_. Inside the if-statement,
a numerical node for the decision tree is created based on
theorem 1. A simplified version of the resulting code can be
seen in Listing 3.

std::string ExtractNumericalCondition(Node
const* node) {

// Quantized threshold
if (node->quantized_threshold_) {
...
result = fmt::format("{lhs} {opname}

{threshold}", ...
}
// FLInt threshold
else if (node->FLInt_) {
...
result = fmt::format("{lhs} {opname}

{threshold}", ...
}
// Regular threshold
else {
...
result= fmt::format("{lhs} {opname}

({threshold_type}){threshold}", ...
}
return result;

}

Listing 3. Simplified version of the ExtractNumericalCondition function after
FLInt implementation

Creating a new decision tree with FLInt as the optimization
is done in exactly the same way as one would with
Quantization. Listing 4 shows the Python code that creates
3 decision trees: the baseline, with Quantization and with
FLInt. These trees are stored at the specified directory path.

tl2cgen.generate_c_code(model,
dirpath=path_no_param, params={})

tl2cgen.generate_c_code(model,
dirpath=path_quantize, params={"quantize": 1})

tl2cgen.generate_c_code(model,
dirpath=path_FLInt, params={"FLInt" : 1})

Listing 4. Python code that generates 3 decision trees, The first with no
parameters (baseline), the second with Quantization parameter applied, and
the third one with FLInt parameter applied

Listing 5 shows a snippet of the decision trees from all 3
cases; baseline, Quantization and FLInt, respectively.

// Baseline
if (data[3].fvalue < (float)1.7999999523) {
if (data[2].fvalue < (float)5) {

...
// Quantization
if (data[3].qvalue < 4) {
if (data[2].qvalue < 6) {

...
// FLInt
if ((*( ((int*)(data)) + 3 )) <

((int)(0x3fe66666))){
if ((*( ((int*)(data)) + 2 )) <

((int)(0x40a00000))) {
...

Listing 5. snippet of the decision trees from all 3 cases; baseline, Quantization
and FLInt

Note that Quantization and FLInt only impact numeric splits
and not categorical splits. This means inference times for
categorical splits are unaffected by Quantization or FLInt.

IV. EVALUATION

To evaluate the performance of the generated decision trees,
we focus solely on measuring inference time, including possi-
ble overhead time costs. The general steps are straightforward:
generate decision trees, then measure how long it takes to do
a certain amount of inference tasks on those trees.

To do this, we create a program in Jupyter notebook because
it allows for writing and executing code in small, manageable
chunks, which is particularly useful when analysing data.
The algorithm first creates all the decision trees that we
are interested in testing. The program then creates random
validation instances that are to be used on the decision trees.
Some decision trees have more features than others, depending
on the dataset, which means each dataset has to have a set
of validation instances specific to that dataset. At last, the
program generates a different C program that can load in the
decision trees along with their respective validation set and
test the inference times of the trees one by one. The times are
collected by the C program and stored to a file to be used for
further analysis.
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A. Setup parameters

In order to comprehensively evaluate the speed of the
generated decision trees across different scenarios, we ex-
plore various setup parameters. As mentioned in Section II,
conditional thresholds may be handled differently based on
the computer architecture. Hence, it is useful to evaluate
different architectures. For this project, the evaluation is done
on a desktop PC with an x86 architecture and on an ESP32-
S3-DevKitC-1 running ARM. Because these devices have a
significant difference in computational power, it is not suitable
to create one test for both. Therefore, we have created two sets
of parameters tailored to resemble real-life tasks in order to
obtain a representative test for both devices.

It is important to emphasize that the goal of this evaluation
is not to compare the hardware devices against each other,
but rather to assess the performance of different optimizations
with respect to each hardware platform. The parameters are
as follows:

1) Number of root nodes: Less powerful devices such as
embedded systems generally opt for decision trees with
fewer root nodes in order to be computationally viable.
This choice reduces the computational complexity of the
tree, making it more feasible to deploy and execute on
resource-constrained hardware. Therefore, the trees have
20 and 7 root nodes for x86 and ARM, respectively.

2) Maximum tree depths: Different maximum tree depths
will be investigated to assess their impact on inference
time. By varying the maximum tree depth, we simulate
varying levels of complexity encountered in real-world
scenarios. The following maximum tree depths will be
evaluated:
(3, 5, 10, 15, 20) for x86 and (2, 3, 5, 8) for ARM

3) Datasets: The properties of a dataset can greatly impact
inference times of its produced decision tree; for exam-
ple the number of attributes. It is therefore important
to use a diverse pack of datasets in order to get a
good representation of the impact of an optimization
on the inference time. Table I shows the list of datasets,
along with the number of instances and the number of
features. All eight sets will be used for the x86 eval-
uation, while for ARM, datasets “Covertype”, “Spam”,
and “Bankruptcy” are omitted. This is because these sets
have relatively many features, which causes issues due
to the hardware limitations of the ESP32-S3-DevKitC-1.
These datasets are taken from the UC Irvine machine
learning repository [11].

By systematically varying these parameters, we obtain an
understanding of the speedups or slowdowns that are offered
by Quantization or FLInt. This approach ensures that the
findings are rigorous, plus relevant and applicable to practical
applications.

B. Results

1) x86: Figure 1 shows the average speedup factors per
dataset for baseline, FLInt and Quantization. FLInt is faster

Dataset # Instances # Features
Breast cancer 569 30
Covertype 581012 54
Rice 3810 7
Wine 178 13
Magic 19020 10
Spam 4601 57
Glass 214 9
Bankruptcy 5306 95

TABLE I
DATASETS TAKEN FROM THE UCI DATABASE [11]

than baseline in all cases except for Spam (≈ 0.5x). Quanti-
zation is slower than baseline in all cases, especially for Spam
and Bankruptcy (≈ 0.2x).

Fig. 1. Average speedup per dataset for baseline (red), FLInt (green) and
Quantization (blue) with x86

Fig. 2. Average speedup per tree depth for baseline (red), FLInt (green) and
Quantization (blue) with x86

Figure 2 depicts the average speedup factors per maximum
tree depth for all 3 cases. FLInt is faster and Quantization
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is slower compared to baseline for all tested maximum tree
depths. at tree depth 5, FLInt has the greatest speedup fac-
tor at around 1.25x and Quantization the lowest factor of
around 0.45x. The speedup factor for FLInt gets closer to 1
as maximum tree depth increases after tree depth 5, while
Quantization stays relatively constant at around 0.5x.

Overall, FLInt was faster than baseline in 32 out of 40
experiments and faster than Quantization in all tested cases,
while Quantization was faster than baseline in 3 out of 40
instances (see fig. 6 in the appendix).

2) ARM: The speedup factor per dataset for baseline, FLInt
and Quantization can be seen in Figure 3. FLInt outperforms
baseline and Quantization for all datasets, especially for the
”Magic” and ”Rice” datasets (1.9x and 1.5x compared to
baseline). These two averages are skewed by the results for
tree depth = 8: As can be seen by fig. 7 in the appendix,
the baseline time for ”Magic” dramatically increases between
depths 5 and 8. The same is true for ”Rice”, though less
extreme. Quantization outperforms baseline in three out of five
datasets.

Fig. 3. Average speedup per dataset for baseline (red), FLInt (green) and
Quantization (blue) with ARM

Figure 4 shows the average speedup factor per maximum
tree depth for baseline, Quantization, and FLInt. Initially,
Quantization is slower than baseline (maximum tree depth
3&5) but then slightly outperforms baseline at depth 5 and
significantly at depth 8. On the other hand, FLInt outperforms
the others in all cases, showing a similar curve as Quantization
where the speedup factor gets larger as depth increases.

Furthermore, Figure 5 shows the average inference time
per maximum tree depth. This plot shows that the increasing
upwards slopes for Quantization and FLInt from Figure 4 are
caused by the exponentially-appearing increase in inference
time for the baseline, while Quantization and FLInt increase
relatively linearly as the depth gets bigger.

Overall, FLInt was faster than baseline and Quantization in
all 20 experiments, while Quantization was faster in 6 out of
20 instances (see fig. 7 in the appendix).

Fig. 4. Average speedup per tree depth for baseline (red), FLInt (green) and
Quantization (blue) with ARM

Fig. 5. Average inference time per tree depth for baseline (red), FLInt (green)
and Quantization (blue) with ARM

C. Discussion

a) FLInt performance: Across architectures, FLInt con-
sistently outperformed the baseline and Quantization, show-
casing substantial speedup factors across datasets and tree
depths. FLInt did especially well on the ARM device, where
it had the lowest inference time for every experiment.

Cases where FLInt was only slightly faster may be caused
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by a high number of categorical splits as opposed to numerical
splits in a dataset, as those remain unaffected by FLInt.
One might also think that numerical splits on features with
integer values are unaffected by FLInt as well, but this is
not true. Currently, TL2cgen doesn’t generate different code
for numerical splits with strictly integer values compared to
floating-point splits.

Exploring FLInt’s performance on a broader range of hard-
ware, particularly on embedded systems lacking a floating-
point unit may also give interesting insights. Unlike the
ESP32-S3-DevKitC-1, many embedded systems do not feature
a floating-point unit, relying on software-based floating-point
operations that typically incur performance overhead, which
could make FLInt even more effective on these devices.

b) Quantization: Quantization’s performance was mixed
at best, showing some promising results on ARM, but always
falling short compared to FLInt. In extreme cases, quantize
was almost 6.5x slower than baseline and over 8x slower
than FLInt (see appendix, x86, bankruptcy3 and bankruptcy5-
20, respectively). These slowdowns can likely be attributed to
these factors: Firstly, the overhead introduced by the quanti-
zation process might be too substantial, negating any potential
gains in inference speed. Secondly, while quantization aims
to improve inference times by mapping threshold to integer
values, the actual inference process may not have had a
substantial speed improvement, leading to negligible latency
reductions.

Further analysis could focus on identifying desirable dataset
properties for the successful application of quantization. For
example, Quantization may benefit from large trees, as in those
cases, the relative time loss from the initial overhead might be
outweighed by the gained inference latency reduction.

V. CONCLUSION

This project aimed to investigate the impact of optimization
techniques, specifically Quantization and FLInt, on the infer-
ence times of random forest models generated by TL2cgen
compared to the baseline scenario. Additionally, we were
interested to see if there are specific architectures or scenar-
ios where FLInt or Quantization have superior performance
compared to the baseline.

In conclusion, our empirical analysis highlights FLInt as
a promising addition to the TL2cgen toolbox. Our findings
consistently demonstrate that FLInt outperforms both the base-
line and Quantization in optimizing inference times. Although
FLInt’s effectiveness has been shown across a wide range
of scenarios, it is not guaranteed to outperform the baseline
in all of them. Conversely, Quantization has emerged as a
rather mediocre optimization technique on the tested datasets,
showcasing superiority over the baseline in only a handful of
scenarios.

Further research is needed to understand which dataset or
hardware properties are expected to benefit the most from
FLInt and quantization, enabling more targeted optimization
strategies in the future.
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APPENDIX

Fig. 6. Inference times for all experiments conducted on the x86 desktop PC
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Fig. 7. Inference times for all experiments conducted on the ARM ESP32-S3-DevKitC-1
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