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Preface
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phase of writing this report. I would also like to thank the Interaction Lab at the Uni-
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to all the participants. Your reliability was a gift. Finally, I would like to thank my
friend Vanessa Markos for providing accommodation during the experiment execu-
tion and testing beforehand. Without you, writing this thesis while living in Cologne
would not have been possible.
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Summary

This master’s thesis explores the mitigation of effects of robot unpredictability on
trust from the perspective of ”predictive coding”. The introduction of robots into
people’s daily lives holds great potential but also presents challenges, as successful
interaction and collaboration require trust in robots. An important aspect for forming
trust in a robot is its predictability. However, predictability is not always possible.
Sometimes robots will act in ways we do not expect, and this can affect how much
we trust them. However, there are ways to lessen these unexpected effects.

This report firstly discusses the scientific lense ”predictive coding”, taken in this
study. Predictive coding is an approach from neuroscience that describes how peo-
ple predict the behavior of others. The theory describes the brain as an inference
machine. To form expectations, the brain uses a hierarchical forwarding model that
compares sensory inputs with what is already known about the situation – internal
models. By comparing information from the internal models and the actual sensory
input, expectations are formed and rules of behavior are learned. In this report, the
theory is for human-robot interactions operationalized as a learning process. In this
process, a robot’s predictability becomes more important over time after being con-
sistent in its behavior. As a reason for this we identify the observer’s high confidence
in the robot model, which developed through learning the rules and structures of its
behavior.

Reducing this confidence in the model is identified as our main goal. To achieve
that, two time slots are defined: Before the interaction with the robot and before the
unpredictable action. Per time slot and based on implications from current related
research, a mitigation strategy is developed. This results in two applied strategies:
foreshadowing movements before the robot acts unpredictably and informing the
observer about changes before interacting with the robot.

These strategies are tested in a quantitative study. An experiment is conducted in
which participants experience unpredictable robot behavior and evaluate the robot’s
predictability and trustworthiness afterwards. The statistical analysis does not pro-
vide evidence for the effectiveness of the applied strategies. This does not nec-
essarily mean that the approaches should be completely discarded, but rather that
changes to the experimental design should be considered. We eventually discuss
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what we learned from this study and how we can address the problem better in
future research.
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Chapter 1

Introduction

Today, the potential for utilizing robots in social tasks is being investigated in various
sectors. One of these sectors is healthcare. Societies are aging [1]. Thus, the need
for medical treatments increases. At the same time, healthcare facilities struggle to
satisfy the need with sufficient employees [2]. Covering this need with robots offers
hope in the daily work of doctors and nurses [3] [4].

However, using robots for social interactions in healthcare facilities presents chal-
lenges. Interacting with robots requires trusting the robot [5] [6] [7], similar to inter-
acting with humans [8]. People need to be sure that a robot is willing and capable
of protecting their interests to follow its suggestions or accept given information as
valuable [6]. A key component of robot trust is its predictability [5] [6]. Predict-
ing the actions of others is a part of daily life for everyone. People are constantly
trying to understand what others are going to do next [9], because understanding
what others will do is fundamental for successful (social) interactions [10]. While
predictability is an important factor for robot trust, it is not always given. In many
situations, unpredictability can be unavoidable [11], for example when a robot has
new functionalities. Thus, it is important to look into the effects of unpredictability in
human-robot interactions (hereafter ”HRI”).

Research on designing for predictability goes mostly in the direction of motion
predictability [11]. Thus, it requires further scientific intention [11] [12] [13] [14] [15].
There is currently a lack of scientific research on the effects of unpredictable behav-
ior. As a result, the research question for this master project is:

RQ: How can the effects of unpredictable robot behavior on trust in the
robot be mitigated?

The research question was further developed and addressed through an exper-
imental study. In the study, participants experienced a task consisting of unpre-
dictable behavior. The expected effects of this behavior on trust were addressed
with mitigation strategies. Participants were then asked how they perceived the
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2 CHAPTER 1. INTRODUCTION

robot. This report follows a structured format, beginning with an introduction and
explanation of the project’s motivation in this first chapter. In the second chapter,
the background for understanding the executed study is given 2. In chapter 3, the
research question is fully developed. This includes deciding on timing and potential
strategies to deal with the effects of unpredictability. In chapter 4, the developed
study to answer the research questions is described. The results of the study are in
chapter 5 presented and in chapter 6 discussed. Eventually, a conclusion is made
in chapter 7.



Chapter 2

Background

This chapter develops the background for understanding the research question.
First, the relationship between trust and predictability is explained in section 2.1.
Here, we decide on a trust measure as well. Second, predictability in HRI is dis-
cussed as a complex concept to define the term for this work in section 2.2. In
section 2.3, based on the theory ”predictive coding”, it is explained how people pre-
dict the actions of others to create an understanding of the scientific perspective
taken in this research project. Eventually, predictive coding is operationalized for
HRI in section 2.4.

2.1 The Relationship of Trust and Predictability

Many academic fields, including sociology, psychology, philosophy, and neuroscience,
have studied the concept of trust. Predictability is critical to trust in human-human
interactions (hereafter HHI). In the early stages of scientific trust research, Rempel
et al. [8] define trust as an interplay of dependability, predictability – the consistency
of someone’s behavior over time – and faith. They identify predictability as a key
component for developing trust in someone.

Predictability is important not only for developing trust in humans but also for
developing trust in robotic technologies. The dynamics of trust in humans and auto-
mated trustees are similar [16]. Lee and See [5] identify three components of trust
in automation: process, performance, and purpose, with predictability as a key com-
ponent of the performance attribute. In HRI, predictability is a facet of trust in most
concepts as well [17]. In a meta-analysis, Hancock et al. [6] identified predictability
as a critical factor for developing trust in robots. Predictability is also related to the
robot’s performance attributes. Performance factors greatly influence perceived trust
in the robot and should be considered when designing robots regardless of context.

How trust evolves from predictability in detail is not yet finally defined. Lewis
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et al. [16] identify three aspects of trust formation: predictability, dependability, and
faith. These aspects exist in three phases of robot trust: formation (i.e., developing
trust over time), dissolution (i.e., lowering trust after a violation), and restoration
(i.e., developing trust after a violation). They define predictability as a component of
early trust development before dependability and faith develop. Thus, predictability
predicts trust in a robot in the early development stages.

2.1.1 Evaluating Human-Robot-Interactions

While many researchers measure trust, it is a multi-dimensional concept that is
under-theorized in HRI research [18] [19] [20]. Thus, there is no standardized con-
cept and no resulting standardized and validated set of measures for trust. This re-
sults in confusion about the term itself (within studies and when comparing them [18]
[19] [20]), the goals for which researchers aim (i.e. relation-based or performance-
based trust [19] [20]) and the necessary measurement approaches to evaluate these
goals (i.e. subjective or objective measures [19] [20]). Some measures are used
repetitively, but they are not executed in a standardized way [20]. When trust is de-
fined, measures often do not evaluate the defined aspects of trust, but other [18].
As a result, many studies measure different aspects but call them trust [20]. This
demonstrates a need for standardization and alignment to an agreed-upon concept
and a resulting model and validated measure.

When comparing robot trust questionnaires today, two seem to be mainly used
currently in scientific research: ”The Multi-Dimensional Measure of Trust” (MDMT)
questionnaire by Malle & Ullmann [7] and the ”Trust Perception Scale-HRI” by Schäfer
[21]. In Malle & Ullmann [7], trust is understood as a multi-dimensional concept
that incorporates moral and performance aspects with a specific focus on social
tasks. These aspects are explained to be reasonable based on findings in human-
automation and human-human trust research. Schäfer [21]’s approach is more
general. The goal was to develop a trust scale that addresses all robot domains
and tasks while incorporating trust-relevant environmental, human, and robot ele-
ments [21]. For the purpose of this study and based on current discussions on the
multi-dimensionality of trust, from our perspective, following Malle & Ullmann [7]’s
approach is reasonable. In the next section, we discuss predictability, as we aim to
mitigate the effects of unpredictability in this project.

2.2 Predictability in Human-Robot Interactions

Before we can discuss predictability, the term first needs to be defined. Defining
predictability in HRI is complicated. This is because the topic is discussed in var-
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ious scientific fields and is used ambiguously [11]. Predictability can be analyzed
and optimized using multiple approaches. Thus, there is no standardized concept
of predictability in scientific research today. While some researchers define what
they mean by predictability in their work, others use the term without discussing its
ambiguities.

According to Dragan et al., [13] [12], expectations regarding robot behavior vary
greatly based on people’s subjective perceptions. They describe two terms: pre-
dictability and legibility. Legible motion allows deriving the goal from (a part of) the
motion. The quicker this goal can be inferred, the higher the legibility of the motion
is. Contrary to that, predictability is defined as the quality of an action to match an
expected action. Accordingly, a movement is predictable if it matches the expected
movement – the higher the match, the higher the predictability. They argue that
legibility and predictability stem – especially in highly ambiguous situations – from
opposing directions: predictability follows the concept of “action-to-goal” by deriving
the goal from the ongoing action, while legibility follows “goal-to-action” by predict-
ing necessary actions based on the goal. They state that legibility and predictability
are “fundamentally different” and can be contrary aspects of robot motion. Higher
legibility can result in decreased predictability and vice versa.

Lichtenhähler et al. [22] [15] investigate the concept of predictability as well,
naming Dragan et al.’s legibility ”goal-predictability” and predictability ”trajectory-
predictability.” They define legible motion as the overall goal. Legible robot be-
havior is achieved from their perspective if both goal-predictability and trajectory-
predictability are given. As a result, robot behavior is legible if an observer can
understand intentions and predict the goal with high confidence [22] [15] and accu-
racy while the executed behavior meets the expectations of the observer [15]. Unlike
Dragan et al., they do not perceive legibility and predictability as opposing attributes
of robot actions [15].

Schadenberg et al. [11] describe predictability as a dynamic aspect of a robot
that is influenced by its perceived novelty and experiences. From their perspective,
robot behavior is predictable if the human observer can learn quickly and accurately
how to predict the robot’s behavior. The level of predictability is determined by the
action’s structural regularities. Structural regularities in behavior allow the observer
to infer rules from behavior that can be used to predict behavior in future interactions.
It is not only relevant whether these structural regularities exist by design, but also
whether they can be perceived by the observer. Their definition of predictability dif-
fers between behavioral and attributed predictability. The difference between the two
is that robots that behave predictably are not necessarily perceived as predictable.
Robots with high behavioral predictability are programmed to be highly predictable,
i.e., to do what is understood to be predictable. Robots with high attributed pre-



6 CHAPTER 2. BACKGROUND

dictability are perceived as highly predictable by their human observer. They state
that both concepts are related but do not necessarily lead to the same design impli-
cations. From their perspective, the relationship between behavioral and attributed
predictability depends on the interaction context, thus on aspects like familiarity and
previous experiences with the robot. For example, somebody who worked with the
robot often may perceive unexpected actions more negatively than somebody who
is newly introduced to the robot and does not yet know what to expect.

The variety of used terms shows the current challenge of agreeing on a com-
mon concept. This missing shared understanding results in different approaches to
design for predictability in HRI [11]. To address this issue and with the goal of con-
tributing to a transparent, standardized term in the future, we do not define a new
term for this project. For this work, our understanding of predictability follows the
definition of Schadenberg et al. [11]. Thus, predictability is a dynamic robot charac-
teristic that depends on the context, the human user, and their earlier experiences
with the robot. Predictable robot motion contains structures and rules that can be
interpreted by a human observer as typical for that particular robot. Robot behavior
can be predictable by attribution through the observer and by behavior design [11].

2.3 How Humans Predict

It is necessary to understand how humans predict the actions of others before strate-
gies to address this process can be developed. Interacting with others relies on un-
derstanding what they will do next. This is achieved through brain signals in the en-
tire cortex, using lower cognition areas for low-level processes like vision and higher
cognition areas for high-level processes like intention attribution. Various theories
try to explain how people predict the behavior of others. An influencing theory from
the area of neuroscience is ”predictive coding” [23] [24]. The concept of predictive
coding is heavily influenced by Rao and Ballard’s [23] theory that the brain contains
internal statistical models of the world and a hierarchical structure of predictions.
Predictive coding is today a dominant concept in cognitive neuroscience [24] and
has become more relevant in other scientific fields like philosophy as well [25].

Rao and Ballard [23] describe that the brain compares sensory inputs with in-
ternal models (synonymously called ’generative models’). Models exist on different
levels of abstraction. On every level, the brain compares (multi-)sensory input with
the most probable model and forwards mismatches (called ’prediction errors’) to a
higher hierarchical level (see Figure 2.1). Every time, the estimate is corrected by
using the error signal. As a result, higher-level information influences what is es-
timated on lower levels, while lower-level models’ errors influence how higher-level
models are updated [23]. This system is embedded into a higher hierarchical system



2.3. HOW HUMANS PREDICT 7

Figure 2.1: Predictive coding

that processes information about the surrounding context. As a result, the sensory
input is not only compared to what is known about similar inputs but the processing
itself is influenced by the context [26]. Growing evidence shows that social knowl-
edge, like stereotypes and biases, influences how we deal with sensory input in
the early processing stages. Thus, even when not knowing something, it can be
expected that the brain processes sensory input after perceiving a stimulus by com-
paring it with prior knowledge, forming a final perception result. This is in contrast
to classical models of perception, which assume bottom-up processing of perceived
information without any influence from higher cognitive levels [27].

Predictions based on internal models are not necessarily correct, as they can
come from incomplete, immature, or downright wrong internal models, for example,
resulting from lacking knowledge about the experience. This is especially true when
something is experienced for the first time since then, no well-developed model ex-
ists. In most cases, prediction errors impact an internal model when the error cor-
rects the model. However, there are prediction errors that do not result in updating
the internal model due to the stochastic nature of specific cases. For example,
when tossing a fair coin, the experience that the result was other than predicted is
still in line with experiences and expectations about the 50-50 chance to toss each
side [28]. Thus, prediction errors differ in their impact on internal models. Whether
the prediction error influences the model building depends on the error’s confidence.
How confident somebody is about an error depends on the cause of the uncertainty,
so if the uncertainty is reducible (e.g., by increasing knowledge) or irreducible (e.g.,
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because the situation is naturally the way it is, like the fair coin with a 50/50 chance
for each side). This is called the precision of the prediction error. The higher the
precision, the higher the confidence that the error occurred [28].

Precision does not only exist for errors but for internal models as well. The pre-
cision of the prediction describes the confidence about the outcome. As a result, in
new situations where one does not yet know what to expect, internal models have
low precision [28]. Consequently, unexpected behavior is less impactful than when
one is aware of a person’s typical behavior over an extended period [11].

Another theory closely related to predictive coding is the free energy principle.
They are closely related because the free energy principle says that the brain tries to
match the perceived reality to its internal models and reduce free energy as much as
possible. Free energy is the surprise and uncertainty resulting from internal models
not matching reality. Karl Friston, who proposed the concept, states that humans
strive to reduce free energy by actively adapting the world to their expectations, to
maximize the probability that the internal model is correct [29].

As learned in this section, people predict their surroundings by comparing what
they perceive with the experiences and learnings from previous experiences. This
manifests in internal models. The brain always tries to match experiences to the
most probable model. With every new experience, internal models update with the
help of the error signal and its precision. At the beginning of a learning process,
models have low precision – the perceived person is unpredictable. When knowing
somebody well and this person behaves in a consistent manner, models become
more detailed and have higher precision – the person becomes more predictable.
This concept is mapped onto interactions with robots in the following.

2.4 Modelling Predictability from the Perspective of
Predictive Coding

When applying predictive coding to interactions with robots, it can be assumed that
similar processes happen. In the beginning, when somebody interacts with the robot
for the first time, they do not know what to expect. Since related models are vague
and the precision that errors are correct is high, the perceived sensory input has
a strong influence while the models do not influence the overall experience (see
Figure 2.2: Initialization phase). Still, it can be assumed that there are models to
which the brain tries to relate, as it always tries to reduce free energy [29]. As a
result, it can be assumed that no acquaintance process starts without any referred
model, but there is a related experience to what the brain refers to (see Figure 2.2:
Related experience).
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Figure 2.2: Influence of Internal Model, Sensory Input and Predictability of a Robot
on the Overall Experience

When interacting further with a robot, assuming that it always behaves consis-
tently, the model of the robot becomes clearer. Here, the influence of the model
on the robot currently being built increases with each interaction in which it shows
structural regularities [11]. Simultaneously it can be expected that how the robot
acts has less impact on the overall experience (see Figure 2.2: Learning phase).

When interacting with a robot for a longer period, assuming that robot behavior
is perceived similarly over time, how the robot acts has only low influence since
the observer strongly relies on the developed model after experiencing consistent
behavior over time. Suppose now, the robot acts differently and is, as a result,
unpredictable. In that case, we can assume that this can negatively affect the overall
interaction (see 2.2: Habituation phase) and thus trust as well.

Thus, the internal model, which is re-evaluated with each interaction, can be
described by

model0 = relatedExperiencest<0

modeln+1 = modeln + predictionErrort>0 ∗ precision

where ”relatedExperiences” describe the previous experience before the situation,
consisting of anything relatable, such as seeing robots in movies. The ”prediction-
Error” describes the new incoming information with each interaction, starting with the
first interaction. Its influence depends on the confidence that it is correct, reflected
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by ”precision.”
To sum it all up, it can be assumed that the influence of predictability on the

overall experience with a robot increases over time when experiencing consistent
robot behavior with structural regularities. Since predictability is connected to trust,
it can be assumed that trust is lowered when a robot behaves unpredictably after
being used to it. Unpredictability is expected to have the most impact when being
used to a robot. As a result, it is most reasonable to intervene with strategies for
dealing with the adverse effects of unpredictability when unpredictable behavior has
the most impact: in the habituation phase. Here, the robot model is detailed, and
the precision of this model is high.

To minimize the impact of unpredictability on trust, we aim to set the observer
back into a state where we do not expect predictability to matter: the initialization
phase. This phase requires low precision of the robot model. Thus, we aim in this
project to mitigate the effects of unpredictability by reducing the confidence (i.e.,
precision) in the expectation about the robot (i.e., the internal model). To the best
of our knowledge, no similar approach aims to achieve this goal with interaction and
robot design techniques. In chapter 3, we describe how we address this goal.



Chapter 3

The Problem Statement

After explaining the necessary background, this chapter further develops the re-
search question. This includes discussing the most reasonable part of the inter-
action to intervene with mitigation strategies. In section 3.1, this is accomplished
by combining predictive coding with implications from the health care use case and
existing research in HRI. After discussing when strategies should be applied, it is
discussed where potential mitigation strategies could come from in section 3.2, re-
sulting in three specific sub-research questions.

3.1 Intervening with Mitigation Strategies: The ’When’

As discussed in section 2.4, predictability has the lowest influence in the early stages
of model development and the highest when models are well-developed. Thus, it is
aimed at intervening in the habituation phase with the goal to let the observer rely
less on models, like in the initialization phase. This is expected to be achievable by
reducing the robot model’s precision.

Before discussing strategies to achieve this goal, a decision must be made on
when to apply mitigation strategies in the explicit situation with the robot. Timing
is an essential aspect of developing strategies to deal with the consequences of
unpredictability since the timing of an intervention can affect how trust the robot is
developed [30].

To discuss applicable strategies, we assume two phases surround unpredictable
behavior: The action and the interaction layer. Behavior that occurs in the vicinity of
unpredictable behavior, i.e., immediately before, during, or immediately after, occurs
in the action layer. Behavior that occurs during the interaction but is separated from
the unpredictable action happens in the interaction layer (see Figure 3.1).

Addressing every time slot is neither feasible due to this project’s scope nor rea-
sonable. Much research has already been conducted, although with slightly different
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Figure 3.1: (Optimal) Time slots to intervene in with behavior design strategies

objectives, as the definitions of predictability vary. Scientific research addresses the
time slot during the unpredictable action by surrounding the action with motions to
increase predictability [13] [12] [9]. Intervening after unpredictable behavior has oc-
curred is also a topic in research [31] [32] [33]. Especially the area of trust repair
is a broadly investigated scientific field where repair strategies are mostly based on
apologies, explanations, denials, promises [30], regretting and expressing repara-
tion [32] [33]. To the best of our knowledge, there is a research gap in preventing
the effects of unpredictable behavior in HRI.

The project is being carried out within a hospital use case context. In this use
case, users vary from children to seniors, including those who have never seen a
robot before and those familiar with robotic technologies in real life and entertain-
ment. It can be assumed that all users have in common the experience of health
problems that require medical treatment or visiting close relatives who are receiving
medical treatment. These situations can lead to mental stress. Given the specific
use case of this project, it is important to anticipate that stress may arise as a men-
tal state during interactions with the robot. Being stressed needs to be considered
since when stressed, individuals often withdraw from social interactions and may
exhibit irritability and hostility [34]. Therefore, the observer may be less receptive to
positive responses, such as robot apologies.

Thus, for this project, we address the two time-slots ”before the interaction” and
”before the unpredictable behavior” with strategies dealing with the effects of unpre-
dictability (see Figure 3.1). Choosing the specific time windows leads to the question
of which strategies can be used to address the precision of an existing model. This
is discussed in the following sections.

3.2 Intervening with Mitigation Strategies: The ’How’

There are several opportunities to address the issue of defining strategies. This
section discusses related work from current HRI research and approaches based
on bias research, resulting in two mitigation strategies applied in the following study.
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3.2.1 Reducing Unpredictability through Behavior Design

As introduced in chapter 1, research on predictability is mainly from robot motion
design research. Especially for isolated, functional motions (e.g., moving an arm to-
wards a box or grasping), using additional motions to signal the robot’s actions and
improve understanding is a well-established approach [13]. As researchers define
predictability differently (see section 2.2), approaches to address it aim at slightly dif-
ferent terms. Takayama et al. [9] aim to increase the readability of actions, defined
as more accurate and confident descriptions of subsequent actions, using pre- and
post-actions as forethought. Their results show a positive influence of foreshadow-
ing design on actions’ readability. Forethought robot behavior consists in their study
of the expressive elements engagement, confidence, and timing. Engagement is
achieved by taking small steps forward. Confidence is expressed by raising the
torso slightly. Timing is used when the expressive part is performed just before the
functional movement. Dragan et al. [12] investigated adding and changing robot mo-
tions in different studies. They conclude that functional, efficient actions should be
accompanied by foreshadowing movements to increase legibility, as this positively
influences cooperation with humans and the overall perception of the robot in tasks
that require close collaboration. Camblor et al. [35] aim to enhance predictability
through situational awareness during collaboration with robots in an industrial work
setting. Situational awareness is achieved from their perspective when humans cor-
rectly perceive the environment in terms of time and space, understand the current
state, and can predict future events based on their own perceptions. The study
found that adding elbow tilting to a woodworking task improved predictions about
future robot actions.

When choosing an approach, it is essential to consider that different methods
are suitable for various use cases. Differences in users, the situation, the task, its
context, and the robot’s specific abilities must be considered when designing mitiga-
tion strategies. Users can strongly differ in their needs (e.g., autistic children [36]),
their capabilities to interact with the robot (e.g., deaf and hard of hearing people),
their cultural background (e.g., different socially accepted behaviors) and their prior
experiences with robotic technologies and this robot in particular. The context of the
interaction (e.g., a dangerous factory area, other people, noisiness) can affect the
ease of the interaction, the possible robot features, and how the robot is perceived.
Moreover, the robot design itself influences which strategies can be applied. A robot
might not have a speech module or arms to create specific behaviors.

From the predictive coding perspective, it can be assumed that generative mod-
els are associated with specific sensory inputs. The idea at hand for mitigating the
effects of unpredictability might be adding more sensory inputs. Adding more sen-
sory inputs could create a discrepancy between the model and reality large enough
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to rely on another model since, as Friston [29] states, the brain refers to the most
probable one. While this might be possible, we assume that actively creating a
strong mismatch between model and perception could also cause a high prediction
error and a negative user experience. This remains unclear. Thus, we expect adding
completely new sensory inputs is not reasonable as a mitigation strategy based on
robot behavior design. Instead, we aim to adjust our current capabilities by follow-
ing the idea of foreshadowing. Foreshadowing movements are – as best to our
knowledge – used in scientific research to increase predictability, but not with the
goal of decreasing the effect of unpredictable actions. Furthermore, the research
focuses on foreshadowing independent, small movements instead of holistic robot
capabilities. As a result, a sub-research question of this research project is:

RQ.a: To what extent can a behavior, added in the action phase, influ-
ence the negative effects of unpredictability on trust through foreshadow-
ing the ability to move?

3.2.2 Reducing Unpredictability through Applying Anti-Bias Re-
search

Another approach investigated in this research project is applying the goals of anti-
bias strategies to the interaction. Anti-bias strategies educate individuals to avoid
relying on unconscious bias actively. It seems reasonable to expect a relationship
between the formation of unconscious (also known as cognitive) bias and predictive
coding since bias can cause predictions [25]. Until today, the relationship between
predictive coding and cognitive bias has not been thoroughly researched, but current
research indicates that similar processes take place [37] [38] [39]. Biases shape
the way we perceive, think, and act. When the brain develops complex models
through predictive coding, it takes – since prejudices exist in every society – biased
information into account. Thus, training a predictive brain with biased information is
similar to training AI algorithms with biased data: The result will be biased, too [39].

The forwarding process in predictive coding can potentially introduce and further
develop bias. This can happen if the confidence in the bias (i.e., the precision of
the model) is strong because repeated stimuli approve it often. An example of this
could be repeatedly reporting on terrorist incidents and implying that all terrorists
come from a particular country. This would be a biased and inaccurate assumption.
Additionally, models are typically corrected for errors. When the error signal is too
weak or its precision too low – e. g., by not attending enough to the situation or due
to the influence of emotions such as fear on the error signal –, what actually happens
is perceived, but the error is not strong enough to alter future predictions. Thus, the
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observer relies on the bias, no matter that they perceived contrary information [37].
Biases might not be challenged but self-confirmed with every perception cycle [39].

Especially in work environments, various approaches are used to educate people
on their biases. Companies spend billions to minimize the consequences of biased
thinking and decision-making [40]. Current research suggests some promising di-
rections for the reduction of bias. One option to reduce bias can be becoming more
aware of the existence of this bias [41] [42] [43] [44]. Another option to reduce bias
is by informing a person about the advantages of lowering bias [45] [41] [43]. Also,
fostering curiosity about new aspects can lead to a reduction of bias [45]. Setting
expectations and providing explanations, as done in bias research, is a technique
for reducing the impact of robot mistakes on trust in HRI as well. One approach is
setting people’s expectations of the robot’s (in-)capabilities in advance [46] [47]. Lee
et al. [32] followed a similar approach by informing participants beforehand about
robot (in-)capabilities, resulting in a more positive perception of the robot.

Figure 3.2: Assumed potential influence of anti-bias
strategies on internal models

Based on this, for
this project, we as-
sume that biases are
similar to high preci-
sion internal models
trained with inaccurate
input. Suppose this
is the case; this would
mean that there is a
strong belief in bias,
which results in a bi-
ased model with high
precision. Anti-bias
trainings aim to re-
duce bias. Thus it
may be possible that
approaches from anti-
bias research might be
able to trigger change in internal models (see Figure 3.2). Furthermore, current re-
search from HRI [46] [47] [32] indicates that informing about potential changes can
be a reasonable. As a result, a sub-research question of this research project is:

RQ.b: To what extent can an anti-bias-training inspired explanatory text,
used in the interaction phase, influence the effects of unpredictability on
trust?
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Combining an explanatory text with foreshadowing could be useful since the
strategies might act complementary when applied in different interaction phases.
As a result, the third sub-research question of this research project is:

RQ.c: To what extent can the combination of an explanatory text and
a foreshadowing movement influence the effects of unpredictability on
trust?

We expect that applying the strategies will positively influence the impact of the
unpredictable action. This influence is expected to be less severe, resulting in sig-
nificantly higher ratings in moral and performance trust. Furthermore, we hypoth-
esize that this happens through increasing robot predictability. Thus, the observer
attributes significantly more predictability to the robot than without the text or fore-
shadowing. Finally, we expect that combining the two approaches will increase this
positive influence.

As discussed earlier, we address the time before an unpredictable action hap-
pens. It is difficult to determine when the learning phase stops and the habituation
phase begins. Thus, while still aiming for the user to be in the habituation phase,
participants are observed in an experiment when accustomed to the robot. In the
next chapter, it is described which approach is applied to answer these research
questions.



Chapter 4

Materials and Methods

This chapter describes the methodology of the executed study. Section 4.1 de-
scribes the participant sample and ethical considerations. Materials and methods
are explained in section 4.2. This includes a description of the used robot. Then,
the interaction design is in section 4.3 described. Here, we explain the experiment
task, how we developed it, and which strategies we applied to mitigate the expected
effects of unpredictability. In section 4.4, we describe the applied research design.
Then, in section 4.5 and 4.6, we describe which setup we used during the experi-
ments and how we executed them. In the last two sections, we describe the mea-
surements (see section 4.7) and the data analysis approach (see section 4.8).

4.1 Participants

The participant sample consisted of 25 people: 15 were male, nine were female, and
one identified as diverse. 96% were younger than 341 (see Figure 4.1). The majority
of the participants was studying2 and had completed higher education3. 52% of
them are studying robotics-related fields4 and 32% study other STEM5 studies6.
Their disposition to trust in technologies was high (M = 3.92, SD = 0.587). There
is no visible tendency for a negative attitude towards robots, as it is neutral in the

1Age 18-24: 56%, 25-34: 40%, 35-44: 4%
2Studying: 88%, employed for wages: 8%, looking for work: 4%
3Bachelor’s degree: 68%, Master’s degree: 16%, High school degree: 16%
4Interaction Technology 48%, Biorobotics 4%
5The natural sciences including chemistry, physics, biology, mathematics and all its derivative

disciplines.
6Biomedical Engineering 4%, Mechanical Engineering 4%, Business Information Systems 8%,

Data Science 4%, Electrical Engineering 4%, Systems, Control & Biomechatronics 4%, Technical
Medicine & Psychology 4%

7disposition to trust was measured on a scale from 1 (low disposition) to 5 (high disposition).

17
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Figure 4.1: Participant ratings by age groups

sample as a whole (M = 2.64, SD = 0.478). Robot experience is also high (M =
4.48, SD = 1.169). Thus, the average participant tends to trust technologies and
has already interacted with robotic toys or social robots. This is consistent with the
sample group’s current jobs, education levels, and age. The participant sample is
young, tech-savvy, and well-educated.

The ethical integrity of this research project has been reviewed. This was achieved
by submitting the experimental settings to the University Ethics Committee (applica-
tion number: 240013). The informed consent form used was also submitted for
review. Positive advice was given on January 25, 2024, and the experiments were
carried out after the ethical review of the procedure. The participants were informed
about the study and signed the consent form before the experiments took place.

Participants were recruited following positive ethical advice. First, social media
channels were used. Two study WhatsApp groups were used with 58 and 261 peo-
ple, respectively, resulting in 16 participants. Second, people from the ”EEMCS
Graduation Support Group” were asked, resulting in two participants. Third, the
Canvas course ”Recruitment of participants for I-Tech” was used, and the topic was
added there, resulting in one participant. As no further participants could be found

8Negative attitude towards robots measured on a scale from 1 (positive attitude) to 5 (negative
attitude).

9Robot experience was measured on a scale of 0 (no experience) to 6 (robot programming expe-
rience).
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Figure 4.2: Pepper robot

through these channels, six participants were found by asking around the building
and campus.

4.2 Materials

For this study, we used the ”Pepper” robot. Pepper (see Figure 4.2) is a humanoid
robot developed by SoftBank Robotics. It is 120 cm tall and has 20 degrees of
freedom to facilitate movements. The robot has the ability to interact with humans
through its touch screen. Furthermore, it can communicate via voice in 15 languages
and with gestures. To achieve that, it uses touch sensors, LEDs, and microphones
[48].

The robot is used in pilot projects in various health-related scenarios, for example
in guiding and informing patients [49], in treating dementia patients through learning
their daily schedules, and reminding them [50], making doctor appointments, check-
ing health measures and making contacts with families [51] or in exercising with
older adults, to keep them mentally and physically healthy [52]. While the usability
of Pepper for these use cases and the use of Pepper in real hospitals in general may
be questionable in the long term, for this research project it offers opportunities to
be used for the experimental task. Compared to other robots, it is relatively easy
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to program using the open platform ”Choregraphe”, for which there are also expla-
nations on Github. Furthermore, it is designed to interact socially through different
modalities and to be perceived as a social being. Thus, we decided to use Pepper as
the research platform to answer the research questions based on the experimental
task.

4.2.1 Programming the Robot

The desired task was programmed using the open-source platform Choregraphe.
Choregraphe is a modeling tool that allows the design of robot behavior based on
libraries. A separate behavior was programmed for each interaction, resulting in
seven robot behaviors that differ in task instructions and behavior based on manip-
ulation and applied strategies. The code mainly consists of functions for generating
and recognizing speech and for moving the robot’s head, arms, and body. Both ani-
mated and static speech modules were used for communication. Natural turn-taking
was simulated through the speech recognition module. The threshold for correct
recognition was set to zero to ensure similar interactions for all participants. As a
result, every interaction was hard-coded. The robot was not programmed to react
dynamically to the user’s input. This deliberate decision aimed to ensure that inter-
actions were as comparable as possible and to avoid participants becoming stuck
in interactions with the robot or having more interactions than others. This would
be useful in a real-life scenario, but it is not applicable in this case. Additionally, the
robot’s tablet was used to ensure that no one got stuck while interacting with the
robot. The tablet was programmed to display parts of the task as visual support. A
website was created to display the information on a full screen, using a module to
display apps or web pages on the tablet in Choregraphe. This aimed to ensure that
the participant can successfully complete the task.

Figure 4.3: Pick up table with items
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4.3 Interaction Design

The goal of the task was to deliver a medical parcel to a specific doctor in time.
This was achieved by filling an empty parcel with a particular amount of items and
then delivering the parcel to a doctor’s post box (see Figure 4.4). Four different item
colors existed: blue, green, red, and yellow (see Figure 4.3). The robot initiated the
interaction, informing the participant that it could help and asking who the addressee
was. The participant then answered with the doctor’s name. Pepper told the partic-
ipant which items to take for this person and where to bring them (see interaction
structure in Table 4.1). The participant had to take the same amount of items in ev-
ery interaction. The number of items was also shown on the tablet screen to ensure
the task could be executed fluently without the help of the researcher.

Figure 4.4: Post boxes

4.3.1 Pilot Test of the Experiment Task

We executed a pilot test for the experiment task. In the pilot, the task was tested with
three potential participants. The goal was to determine whether the unpredictable
action is perceived as unpredictable. The initial task idea differed from the final ver-
sion in that it aimed to introduce unpredictability by upgrading the robot’s capabilities
to include real-time location tracking of addresses. To indicate that Pepper was pro-
cessing information, the initial plan was to show idle movements for approximately
ten seconds before making a statement about where to bring the parcel. When test-
ing this first setup, it became clear that the line between an error and unpredictability
was thin. The subject immediately asked if he had done something wrong or if Pep-
per was broken. As a result, the time for the second test setup was reduced from
ten to five seconds. While the behavior was now less likely to be perceived as an er-
ror, another problem arose. It seemed difficult not to design mitigation strategies as



22 CHAPTER 4. MATERIALS AND METHODS

Conversation
Robot
behavior

Applied
Approach
Explanatory
text

Part 1

Robot: ”Hi, I am Pepper. I can
help you pack and deliver
the parcel you need to deliver.
Behind you, you find the
resources table with the items.
The post boxes or on this floor
as well. To which person do
you want to deliver the parcel?”

none

Participant: ”I have a parcel
with important medicine
for Doctor Wilson.”

none

Foreshadowing

Part 2

Robot: ”Okay, Doctor Wilson’s
office is on this floor. You need
to deliver one yellow, two red, two
green and one blue item. You find
the items on the pickup table
behind you. After pickup, you
need to bring the items to his
postbox, right behind the black
wall. If you are unsure about the
task, please have a look at my
tablet. I hope this was helpful,
you can start now.”

moving
and
gesticulating

Table 4.1: Interaction Design
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a researcher automatically. The second participant said the behavior was strange
and surprising, but it was still okay because she got an explanation immediately
afterward. It seemed that in the second task design, a mitigation strategy was un-
intentionally applied, as it was explained immediately afterward why the robot acted
as it did.

In the following process, the task was completely redesigned and tested in a
third pilot trial, resulting in the above-described experiment task. The unpredictable
action was made more obvious to elicit reactions better. The complexity of the setup
was reduced to ensure comparability. The time per interaction was reduced to one
minute because the walking distances in the experiment were shorter with the new
setup. In addition, the speech rate was decreased to 90%, and the tablet view
was added, as participants in the test reported that it was difficult to understand
the robot and needing help from the researcher was not desired. The experimental
protocol was also tested, resulting in minor changes and highlighting the most critical
aspects. The pilot also revealed some strategies for dealing with frequent hardware
problems. The connection to the robot was lost, or the robot or the software crashed.
As a result, the robot and Choregraphe were rebooted between each participant,
and ample time slots of 60 minutes per participant were scheduled to deal with
potential problems.

Unpredictability was eventually designed to be a change in robot capabilities.
When showing predictable behavior, the robot is only capable of speaking. When
unpredictable, the robot can gesticulate, move around, and move its head. After
asking the participant to which person they want to deliver, the robot acts in the task
unpredictably by moving in the direction of the participant and lifting its head to make
eye contact. Then, it describes the task using gestures, moving and looking toward
the mailboxes.

4.3.2 Applied Strategies

Different approaches were considered to influence the impact of robot unpredictabil-
ity. From the predictive coding perspective and when aiming for a potentially stressed-
out user group, intervening with strategies before the unpredictable action happens
was considered more valuable than afterward. The applied methods are explained
below.

Getting informed via Text about Robot Changes in the Interaction Phase

The first approach, which was applied in the interaction phase before the unpre-
dictable action, consisted of a text that informed the participant. In a real-life sce-
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nario, a text could be shown on a screen when entering a hospital or be sent be-
forehand via email. This approach was chosen and considered relevant based on
anti-bias training [41] [42] [43] [44] [45]. In addition, current research suggests that
setting expectations about what a robot can and cannot do can have a positive im-
pact on how it is perceived [32] [46] [47]. As described in section 3.2.2, we expected
that aiming for anti-bias goals might positively influence the perception of unpre-
dictable behavior. To test this, a text was created based on similar goals. The goal
of the text is to make the observer more aware and curious about unexpected
behaviors to happen. Furthermore, the benefits of being open to changes and
that it is normal to be confused by something new are outlined in the text. The
exact new robot feature was not revealed in the text. The goal was to set the ob-
server back into the initial phase, where they expect something completely new and
unexpected. The wording was chosen based on Google research for synonyms
and related words for the specific goals. To achieve this, ”www.thesaurus.com” and
”www.dictionary.cambridge.org” were used. As input, the words ”awareness”, ”cu-
riosity”, ”benefits” and ”confusion” as well as their verbs and adjectives were used.
The following text resulted and was displayed to the participants:

Dear participant!

Please be aware that the robot has some new features.

It’s normal to be confused by new things, so don’t worry.

You can be sure that each new feature will be of great benefit to you!

Foreshadowing the Ability to Move and Gesticulate

The second approach, applied in the action phase, uses foreshadowing to indi-
cate that the robot is about to move. As described in section 3.2.1, foreshadowing
can help increase the predictability of the robot. In contrast to other research like
Takayama et al. [9] or Dragan et al. [13], in this project, specific, single movements
are not to be foreshadowed. Instead, the holistic capability of the robot to move is
foreshadowed. This was done through foreshadowing, moving, and gesticulating.
After not being capable of any movements, when foreshadowing was applied, Pep-
per moved its arms carefully. Then, Pepper lifted the right hand in front of its face,
stretched its fingers, and looked at them. Afterward, the unpredictable behavior pro-
ceeded. Pepper moved towards the person but stopped at a safe distance of 30
centimeters and used gestures and movements for the remaining interaction. The
sensory inputs used in the strategy are the same as in the manipulation: voice and
movements.
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4.4 Research Design

We executed a quantitative 2x2 between-subjects study with a manipulation check.
We expected it to be challenging to recruit a sufficient number of participants. Still,
a between-subjects design was chosen because strong learning effects were ex-
pected between the conditions due to the task and unpredictable behavior being the
same in all conditions. In addition, participants may miss applied strategies from
other conditions, leading to a negative experience or perceiving the robot as more
unpredictable as they experience more different conditions. We expected learning
and transfer effects to be essential to avoid accidentally triggering predictive coding
mechanisms. The conditions were randomly assigned to the participants to increase
validity. Ten interactions with the robot were performed, divided into two sessions of
five interactions each. Between each session, there was at least one night of sleep.

Foreshadowing and the explanatory text served as the independent variables
in this study. There were four conditions in the experiment (see Table 4.2 and the
videos of the conditions). The robot acted predictably in C-Predictable, so its behav-
ior did not differ from the other interactions. In C-Unpredictable, the robot started
gesticulating and moving toward the participant in the second part of the interac-
tion. The robot behaved unpredictably in the other three conditions, but strategies
to mitigate this were applied. In C-Text, the participant was informed beforehand
about behavior changes. In C-Foreshadowing, the robot executed a foreshadowing
movement. In C-Both, both strategies were applied.

Independent Variable 2 (Foreshadowing)
Not applied Applied

Independent Variable 1
(Explanatory text)

Not applied C-Unpredictable C-Foreshadowing
Applied C-Text C-Both

Table 4.2: Experiment Conditions

4.5 Experiment Setup

The experiment was conducted entirely in a meeting room of the Interaction Lab
at Citadel (University of Twente). The room was prepared to avoid distractions.
During the experiment, the researcher sat at a table on the right side of the room.
The participant sat on a chair facing the researcher to answer questions on the
researcher’s laptop. The participant interacted with the robot placed next to the
researcher’s table. The items were placed on a table behind the participant. The

https://universiteittwente-my.sharepoint.com/:f:/g/personal/l_z_s_prumm_student_utwente_nl/EpMvoUnM_hZPqN9qm-bnJC0B0yhb2sl12y_oSDPtm07X9w?e=rwX5yA
https://universiteittwente-my.sharepoint.com/:f:/g/personal/l_z_s_prumm_student_utwente_nl/EpMvoUnM_hZPqN9qm-bnJC0B0yhb2sl12y_oSDPtm07X9w?e=rwX5yA
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post boxes were placed behind two black partition walls, so they were not visible
directly (see Figure 4.5).

Figure 4.5: Experiment room setup

4.6 Procedure

The experiments took place from 06/02/2024 to 16/02/2024. Every session was
a 1-on-1 session. On day 1, the participants entered the room and sat at the re-
searcher’s table. First, they were informed about the study, signed the consent form,
and completed a questionnaire. Then, the participants were asked to imagine work-
ing in a hospital, delivering important packages to doctors. It was described that
the package was important. The participant was also told they would be under time
pressure, similar to working in a hospital. Initially, the participant was asked to stand
in a specific place in the room. The robot was also placed in a particular place to
ensure all participants experienced the same distance. The researcher told the par-
ticipants the goal and handed them an empty parcel. The participant was told to
fill the parcel and deliver it somewhere. It was said that the robot would be able to
help with this. The participant was told that the robot would initiate the interaction
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and that if they wanted to respond to a question, they would have to wait for the
robot’s ”beep” sound, which indicates that it is listening. A timer was then set to
one minute to deliver the package. The participant took the package and stood in
front of the robot. The robot then began to speak, asking the participant to whom
the package should be delivered. The participant named the doctor. The robot then
told the participant what to pick up and where to give it. The participant walked to
the table, picked up the items, and placed them in the desired location. They expe-
rienced an entirely predictable robot that did not move or gesticulate. After five of
these interactions, the first day of the experiment was done.

On the second day, the participants started with the same four similar interactions
as on the first day, constantly experiencing the predictable condition but delivering
different items. In the last interaction with the robot, different conditions were expe-
rienced. A questionnaire was filled out, and the participants were debriefed. The
debriefing included being informed about the actual capabilities of the robot. In ad-
dition, the participant was asked not to discuss the aim of the study with anyone until
the experiments had been completed to ensure that no one knew that the study was
investigating predictability. Finally, it was noted if the participant wanted to read the
study results afterward.

4.7 Measures

Moral trust, performance trust, and attributed predictability were measured as de-
pendent variables. Negative attitudes towards robots, robot experience, and dispo-
sition to trust were taken as control measures. The measurements were taken in
two questionnaires, a pre-experiment (see Appendix A.1) and a post-experiment
questionnaire (see Appendix A.2). The pre-experiment questionnaire measured
negative attitudes towards robots, robot experience, and disposition to trust. The
post-experiment questionnaire measured moral trust, performance trust, attributed
predictability, and demographics.

4.7.1 Trust

Moral and performance trust were expected to be influenced negatively by the un-
predictable action. To measure these attributes, the ”multidimensional measure of
trust (MDMT)” by Malle & Ullmann [7] was used. The questionnaire offers two sub-
scales for performance trust, the reliable subscale (items: ”reliable”, ”predictable”,
”dependable”, ”consistent”) and the competent subscale (items: ”competent”, ”skilled”,
”capable”, ”meticulous”). For moral trust, three subscales exist: the ethical (items:
”ethical,” ”principled,” ”moral,” ”has integrity”), the transparent (items: ”transparent,”
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”genuine,” ”sincere,” ”candid”) and the benevolent subscale (items: ”benevolent,”
”kind,” ”considerate,” ”has goodwill”). As suggested by the authors and since it
was guaranteed to do the questionnaire on a desktop computer during the experi-
ment [53], an 8-point Likert scale (0 = ”not at all” to 7 = ”Very”) with a ”Does not fit”
option was used. Two question blocks were presented, each consisting of ten items.
Since the participants were expected to be no English natives, ”I do not know what
this word means” was offered to reduce the risk of participants falsifying the data by
not knowing a word but still rating it.

Subscale Cronbach’s α
Excluded cases
due to missing values

Performance trust
”reliable” .68 0
”competent” .73 11

Moral trust
”ethical” .62 13
”transparent” .57 15
”benevolent” .84 20

Table 4.3: Reliability analysis of trust measurement tool

The internal consistency was analyzed per scale using Cronbach’s α to ensure
reliability. Offering ”Does not fit” and ”I don’t know what this word means” for per-
formance trust and moral trust led to few answers for some scales (see Table 4.3).
Thus, the reliability of the scales is difficult to interpret (see Appendix A.5 for in-depth
information about missing values). For the reliable subscale, no answers were miss-
ing. Internal consistency was questionable (α = .68). For the competent subscale,
internal consistency of the items was acceptable (α = .73), but 11 out of 25 cases
were excluded from the test due to missing values. For the ethical subscale, the reli-
ability test indicates questionable internal consistency (α = .62), and 13 cases were
excluded. Due to missing values for all items, the ethical subscale has only 21 en-
tries instead of 25. Here, a pattern is observable in the data: four participants did not
rate any item, and two participants only rated one out of four items. The data show
only a few typical similarities between these participants. Their robot experience is
slightly lower (M = 3.67 in comparison to MallParticipants = 4.48), their dispositional
trust is similar (M = 4.17 in comparison to MallParticipants = 3.92) and their negative
attitude towards robots is similar (M = 2.78 in comparison to MallParticipants = 2.64).
For the transparent subscale, the reliability test indicates poor internal consistency (
α = .57), and 15 cases were excluded. While excluding the item ”transparent” from
the scale would mathematically increase α by 0.2 to α = 0.77, this step is not done
because ”transparent” is the only item with sufficient answers (24/25) and many
cases of the scale were excluded. For the benevolent subscale, the reliability test
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indicates good internal consistency (α = .84), but 20 cases were excluded due to
missing values.

4.7.2 Attributed Predictability

We measured attributed predictability to assess how the participant perceived the
robot’s predictability. The self-report questionnaire by Schadenberg et al. [11] was
used. The scale measures attributed unpredictability through the six items ”unpre-
dictable,” ”irregular,” ”inconsistent,” ”random,” ”variable,” and ”erratic” based on a 7-
point Likert scale (1 = ”definitely not associated” to 7 = ”definitely associated with”
and ”I do not know what this word means”), randomly presented. In contrast to
Schadenberg et al. [11]’s suggestion, besides the sample were no English natives,
no translations were used not to threaten scale validity.

Internal consistency was measured using Cronbach’s α. In the attributed pre-
dictability questionnaire, answers are complete for the first four items. For attributed
predictability, the reliability test indicates excellent internal consistency (α = .93).

4.7.3 Control Measures

As there were many different participants, individual differences may threaten valid-
ity. Being used to (robotic) technologies [54] and negative attitudes toward them [55]
influence how interactions with them are perceived. To address the issue of con-
founding influences, we aimed to minimize individual differences by excluding them
as control variables. As defined in the working definition in chapter 2.2, it can be
expected that previous experience and the learning that results from it will influence
how people perceive robots. From the predictive coding perspective, it can also be
assumed that previous experiences or a negative attitude lead to (immature) mental
models, which then (negatively) influence the interaction with Pepper.

To control whether the robot is perceived as unpredictable or whether the ob-
server does not like robots in general, the observer’s negative attitude towards
robots negative attitude towards robots was measured using the ”Negative Attitude
Towards Robots Scale (NARS)” [55]. Robot experience was evaluated through a
self-made question that asked about the participant’s experience using an order
from no experience to programming experience with physical robots. Finally, the
disposition to trust in technologies was measured. A high disposition to trust was
assumed to falsify the trust measures if people trust technology easily. While dis-
positional trust is a complex concept, the benefits of not overloading the participant
with questions are considered high enough to justify using a short questionnaire
for this control measurement. This is done through adapting three questions from
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Nissen & Jahn [56].
Internal consistency of the control variables was tested using Cronbach’s α. The

data was complete for disposition to trust and negative attitude towards robots; no
values were missing. The reliability analysis indicated acceptable internal consis-
tency of disposition to trust (α = .74) and negative attitude towards robots (α = .69).

4.8 Data Analysis

As in the hypotheses defined, it was expected that the applied strategies C-Text, C-
Foreshadowing, and the combination of both influence perceived trust, measured as
performance trust and moral trust. Furthermore, this influence was expected to hap-
pen through positively influencing predictability, measured as attributed predictabil-
ity. To test these relationships, we used IBM’s SPSS. In this study, the samples were
independent, and three dependent variables (attributed predictability, moral trust,
and performance trust) existed.

First, the non-parametric Mann-Whitney U test was executed to compare for sta-
tistically significant differences in attributed predictability between the predictable
and the unpredictable condition. Since the normality requirement for parametric ap-
proaches was not met, we chose a non-parametric test (see Appendix A.3).

Then, a MANOVA was executed. A MANOVA was more reasonable than an
ANOVA to reduce the risk of type I errors due to multiple tests and eliminate the risk
of overlooking existing effects since combinations of variables are not tested. Fur-
thermore, covariates were measured and included in the analysis through a MAN-
COVA. All requirements for executing a MAN(C)OVA are given besides linearity (see
Appendix A.4). This was ignored because the presence of non-linear relationships
among variables does not necessarily invalidate the results of a MANOVA.

4.8.1 Data Preparations

Before analyzing the results, the data was prepared. In the test, the influence of
the strategies on attributed predictability, performance trust, and moral trust com-
pared to the unpredictable condition C-Unpredictable is analyzed. As a result, all
data samples of condition C-Predictable were excluded from the analysis. For the
dependent variables and dispositional trust, the items were averaged. ”Does not
fit” and ”I don’t know what this word means” were treated as missing values. For
the negative attitude towards robots, the items 3 (”I would feel relaxed talking with
robots.”), 5 (” If robots had emotions I would be able to make friends with them.”) and
6 (”I feel comforted being with robots that have emotions.”) were inverted since they
are positive statements, while the other statements are negative. Afterward, all 14



4.8. DATA ANALYSIS 31

items were averaged. Since the robot experience was based on one item, this value
represents the user’s robot experience.
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Chapter 5

Results

In this chapter, we report on the results. First, we describe the results of the manip-
ulation check. Then, we describe the results of the hypothesis testing and observa-
tions during the experiments.

Figure 5.1: Participant ratings for attributed predictability

5.1 Manipulation check

For the manipulation check, we executed a Mann-Whitney U test. This test com-
pares the mean rank of each group by converting scores into ranks. Looking at
attributed predictability, lower ranks indicate that the robot was perceived as more
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predictable. While the mean rank of C-Predictable is 3.60 and the mean rank of
C-Unpredictable is 7.40, the results of the Mann-Whitney U test indicate that there
was no significant difference between the two conditions, U = 3, z = -2.117, p = .056.
The difference was only approaching significance. Since the sample size for the ma-
nipulation check was small (n=10), the exact significance was interpreted instead of
the asymptotic significance. Looking at the ratings, we see only slight difference
between the conditions (see Figure 5.1).

Figure 5.2: Participant ratings for performance trust

5.2 Testing the Hypotheses

The one-way MANOVA showed no statistically significant difference between the
conditions on the combined dependent variables, F (3, 34.223) = 0.908, p = .530.
This is reflected in the distributions of answers as well among the conditions (see
Figure 5.2 for performance trust and Figure 5.3 for moral trust).

In the next step, we aimed to determine if the control variables’ disposition to
trust, robot experience, and negative attitude towards robots statistically significantly
influenced the dependent variables using MANCOVA. There was no statistically
significant difference between the conditions on the combined dependent variables
after controlling for disposition to trust, F (9, 31.789) = 0.789, p = .628, robot ex-
perience, F (9, 31.789) = 0.887, p = .547, or negative attitude towards robots, F (9,
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31.789) = .712, p = .694. As a result, it can be concluded that the statistical anal-
ysis indicates no significant differences between the conditions and no significant
influence of the control variables. Excluding moral trust due to many missing values
from the study did not result in significant differences based on MANOVA, F (6, 30) =
1.1, p = .385, or MANCOVA when accounting for the effect of robot experience, F (6,
28) = .929, p = .490, negative attitude towards robots, F (6, 28) = .766, p = .603, or
disposition to trust, F (6, 28) = .897, p = .511.

Figure 5.3: Participant ratings for moral trust

5.3 Observations during the Experiments

During the experiment, observations were taken to understand the results better.
We have noticed that people use the tablet in very different ways. Some did not
look at it, others checked it immediately after interacting with the robots, and others
checked it twice (before and after picking up the items). When looking into how
participants behaved, in C-Unpredictable, 4 out of 5 participants moved backward
and created distance between them and the robot. In C-Predictable, 5 out of 5
participants stayed where they were. In C-Text, 1 out of 5 stayed where they were,
and 4 out of 5 moved to make way for the robot. In C-Foreshadowing, 4 out of 5
stayed where they were, and 1 out of 5 moved to make space for the robot. In C-
Both, 4 out of 5 participants stayed where they were, and 1 out of 5 stepped aside
to make way.
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All in all, the task seemed to be appropriate for the desired goal. The participants
learned quickly (interaction 3, day 1) what they had to do and remembered it on the
second day. At the beginning of each day (interactions 1 and 6), they checked by
looking at the pickup table where the items were. No difficulties with the task were
observed; it seemed to be clear. 24 out of 25 participants immediately understood
where to bring the items. One participant needed a hint but explained beforehand
that he was not feeling well.

The following aspects appeared to be not optimal in the experiments: Partici-
pants were asked to wait until the interaction with the robot was over before starting
the task, but they did not always follow this. It seemed that once they knew what
to do, they found it difficult to wait. This meant that sometimes, they were not close
enough to read the tablet and had to go back. Also, in at least one session of 21
out of 25 participants1, the items were not long enough visible on the screen when
they wanted to recheck the amount. As a result, participants could not walk back
because the tablet no longer showed the items. For one participant, this resulted
in a problem since she did not know the amount of items anymore and asked the
researcher for help. Others relied on their memory. The visibility time was increased
after session 32, but it may still cause confusion or affect trust in the robot and its de-
sire to help. A timer was also set to increase the stress of delivering on time. Except
for one person, this did not seem to have any effect, as the participants walked re-
laxed and took their time picking up the items. It may be that the participants found
it counter-intuitive to wait until the interaction was over and to be in a hurry. Fur-
thermore, seven participants2 experienced the robot crashing. In these cases, the
participant was asked to leave the experiment room, and a complete robot reboot
was performed. The participant was asked to wait outside because the robot would
automatically move during the restart. Finally, although participants were asked to
wait until the robot listened and spoke loudly and clearly, some spoke too early or
quietly. It was, therefore, necessary to give them a sign during the interaction to
repeat what they had said. This happened with eight participants3. They needed a
hint from the researcher to repeat what they said.

110 participants experienced one session with this setup, 11 participants both sessions
2Condition C-UP: 2, C-PR: 1, C-Text: 2, C-Text: 1, C-Both: 2
3Condition C-UP: 1, C-PR: 1, C-Text: 2, B: 3, C-Both: 1; 18 out of 250 interactions with the robot
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Discussion

In this study, we investigated influencing a robot’s moral and performance trust by
mitigating the effects of its unpredictable behavior. We hypothesized that foreshad-
owing an unpredictable action can reduce a robot’s unpredictability and thus in-
crease trust in its performance and morals. We expected similar effects for inform-
ing the participant before the interaction about new robot features and applying both
approaches together. We found no statistical evidence for these hypotheses. We
looked into the influence of confounding variables as well by measuring the partic-
ipants’ attitude towards robots, previous robot experience, and disposition toward
trust. There is no statistical indication that one of the measured confounding vari-
ables had impacted performance, trust, or attributed predictability.

We performed a manipulation check to confirm that the intended unpredictable
behavior negatively impacts predictability. While there is no statistically significant
evidence, the results are approaching significance. We expect this insignificance is
due to the limited sample size, which reduces the likelihood of statistically significant
effects. Furthermore, we need to consider that, due to a lack of normality in the pre-
dictable condition, we executed a non-parametric, less powerful test. Based on the
numbers, all participants from the unpredictable condition rated the robot as highly
predictable, while for the unpredictable sample, the ratings were more mixed. Look-
ing further into the participants’ behavior indicates a difference in how predictable
the robot was perceived. In the predictable sample, participants reported feeling
at ease with the robot. They stated that they had a positive experience with Pep-
per, as they knew what to expect throughout the experiment. Furthermore, they
stayed the whole interaction at the desired spot without moving away. In contrast,
participants from the unpredictable sample group appeared confused. Four out of
five participants attempted to distance themselves from the robot when it started
to move. Three participants frequently looked toward the researcher, seeking clar-
ification. Two participants reported that the robot had attacked them, while others
expressed fear that it might run them over. Comparing these observations indicates
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that the robot was perceived more unpredictable in the unpredictable condition. But,
the statistical results provide no evidence. Thus, we conclude that we are uncertain
whether the manipulation worked.

6.1 Scientific Research is More than P-values

Finding no significant effect for the applied strategies does not necessarily mean
that there is no effect, but that this experiment could not show effects given the re-
search approach. A quantitative approach was considered reasonable in the plan-
ning phase for this research project. This enabled us to objectively and reliably
test the complex connections between the approaches, predictability, and trust, as
aimed for in this study. A quantitative approach was appropriate because we have
a theoretical foundation for the relationship between unpredictability, trust, bias, and
foreshadowing, and our goal was to make general statements about how to influence
this relationship.

To test the relationship reliably, we lacked sufficient participants in this study. Un-
derpowered tests are a general problem, not only in HRI but in other sciences. Nev-
ertheless, many studies have low power and find effects [57]. To analyze the power
of our statistical test, we conducted a post-hoc power analysis using G*Power. The
results find that if we had found a large effect in this study, given the sample size of
20 and a significance criterion of α = .05, the power of this test would have only been
.40. Our goal was to achieve a higher number of participants to increase the statis-
tical power of the study. However, the recruitment process proved to be challenging
despite utilizing several channels. The experiments were conducted in the Interac-
tion Lab on campus, and although people near the lab were also approached, only
a few participants were found. The reason for this may be, on the one hand, that
participants were required to schedule a second session with the researcher. Partic-
ipants cited time constraints as the reason for not being able to attend both sessions
on separate days. On the other hand, the smaller participant sample may be at-
tributed to the timing of the experiments, which took place after the week on campus
following exams. This may have decreased individuals’ motivation to participate in
university-related activities. Thus, many participants came from personal contacts
and did not reflect an average person but were tech-savvy and robot-experienced.

But, research is more than p-values. Interpreting a single index [58] should not
replace scientific reasoning. While non-significant studies are common but often
not published [57], we can still learn from them for future research. In the follow-
ing sections, we discuss what we learned regarding the approaches, task design,
methodology adjustments, and learnings for recruitment and measurements.
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6.2 Recommendations for Further Investigation of the
Independent Variables

We applied foreshadowing and explanatory text based on anti-bias strategies. The
following discusses whether we recommend looking into these approaches again
and why.

6.2.1 Applying Foreshadowing

For foreshadowing, we applied the approach of foreshadowing small movements
from other research [9] [13] [12] [35] to a broader scope, as the robot foreshadowed
moving and gesticulating as a whole. When we reflect on this, we recommend fol-
lowing this approach further. Comparing the participants’ behavior in the different
conditions indicates that foreshadowing influenced their behavior. In the predictable
setting, they did not move and seemed relaxed. In the unpredictable setting, they
act confused, creating distance between them and the robot. When using foreshad-
owing, they reacted similarly to the predictable setting and were not surprised by the
robot’s behavior. This indicates that foreshadowing did influence how they perceived
the robot acting unpredictably afterward. We must be careful when interpreting this
since no structured observations were taken. But, besides the statistical results, we
do not find any indication of why foreshadowing was unsuccessful. Instead, we ex-
pect that problems with the task (see section 6.3) had an impact. Thus, we conclude
that these findings are a sufficient indication for further looking into this approach.

6.2.2 Applying Anti-Bias Strategies

Leichtmann et al. [57] state that many research projects in HRI lack a theoretical ba-
sis. While this might be the case in other HRI studies, we do not find a lack of theory
on the relationship of internal models and bias the problem. Instead, we expect that
the anti-bias strategies had an influence, but their implementation was not strong
enough. Observing the participants indicates that the approach had some impact.
They mostly tried to make way for the robot when using the explanatory text. We
carefully interpret that they might have predicted what the robot was planning to do
and tried to react since they expected something new to happen based on the text.
But reading the explanatory text took only a few seconds. It might be possible that
achieving anti-bias goals requires more extended periods and repetition since anti-
bias training often takes whole days. Another thought is that some biases cannot be
reduced by training [37]. We do not yet know which biases this applies to or does
not. Thus, we recommend diving deeper into the question of when anti-bias strate-
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gies are successful and when not, and which requirements must be fulfilled. This
could be achieved through a literature review of existing anti-bias approaches, re-
sulting in recommendations for successfully designing anti-bias training. We expect
a literature review to be reasonable because it is difficult to evaluate the effects of
anti-bias training since they mostly rely on self-reports, and it is difficult to measure
actual long-term behavior change [42]. Thus, we recommend further investigating
the extent to which it is possible to reduce the effects of robot unpredictability on trust
using anti-bias training, with the advice to dive deeper into the design of anti-bias
training beforehand.

6.3 Recommendations for Task Design

The following discusses what we learned from designing the task for this study and
the choice of the robot.

6.3.1 The Task

HRI is highly context-sensitive. Effects might be visible only under certain condi-
tions [57]. We asked participants to imagine working at a hospital while being in a
university project room, delivering a parcel to an imaginary doctor. We expect that
this influenced the task. Due to the project’s scope, it was impossible to create a
real situation in a hospital. Thus, the experiment was conducted in an artificial lab-
oratory setting. A laboratory experiment had advantages. It reduced the influence
of confounding factors. Moreover, it contributed through the controlled setting to
standardization and replicability. These were important for the reliability of our study
since we were aiming to make generalized statements through hypothesis testing.

But, participants stated that they struggled to imagine the situation. This was also
visible because only one participant hurried, as asked, to finish the task. Observing
the participants further indicated that having the same interaction in all trials led to
paying less attention to the situation. After executing the third session on day one
and the second session on day two, many participants had problems waiting until
the robot was finished talking since they already knew what it would say. Some par-
ticipants turned their backs on the robot early since they already knew what they had
to do. From a predictive coding perspective, this appears to be positive. The partici-
pants seem to have successfully built a model of the situation since they were able
to predict what the robot would say and what they had to do. We wanted to achieve
this by showing structural regularities. But, we expect that achieving this would have
been possible without creating this unrealistic situation. Thus, when redoing the
project, we recommend creating a less artificial task requiring less imagination. We
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recommend stepping back from the hospital use case and fitting the task into the
experiment environment. A similar task could be executed in a university setting. A
participant could bring important documents to professors in the building. Design-
ing a more realistic task would reduce repetition as well. Furthermore, we advise
that the researcher remain outside of the experiment room to avoid any potential
involvement with the participants during the experiment.

Another interesting aspect we would like to mention is that since the robot could
still help with the task, it might not be perceived as less trustworthy. In the ques-
tionnaires, trust in the robot’s performance and the robot’s morals was measured.
The robot did not lie or fail to help. It might be possible that unpredictable body be-
havior does not influence trust if it is still capable of helping to achieve the desired
goal since the ability to depend on the robot is an aspect of robot trust as well [6].
Overall, we expect it to be reasonable to design a realistic task in which no goal has
to be reached. This could be achieved by creating an interaction mainly based on
communicating about a topic instead of fulfilling a task.

6.3.2 The Robot

Additionally, we recommend considering another robot. Pepper was chosen be-
cause it was easily programmable and available at the university, but it comes with
its own (in-) capabilities, which must be taken into account. First, Pepper is a robot
that is known by the (interested) public through the news. Especially in the study
of interaction technology, Pepper is known, as it is presented by professors at the
beginning of studying and used for projects. Many participants came from this study
so they may have known Pepper already. Second, choosing another robot would
be reasonable due to the unstable hardware- and software, which, for seven partici-
pants, led to problems.

From the predictive coding perspective, we expect that the choice of the robot
influenced the experiment. Human-like robots can trigger with their appearance
expectations of human-like behavior [56] [59] [60]. In this experiment, the unpre-
dictable behavior (i.e., moving and gesticulating) was executed through visible as-
pects of the robot (i.e., wheels at the bottom of the robot, arms). One could question
why a robot has wheels and arms if it cannot move or gesticulate. Thus, only a robot
that does not provide any information by visual inspection may not activate related
models regarding its capabilities. If the participant had already expected movements
and gestures, there would have been nothing to question about the model. It might
be possible that we tried to lower precision in a model that is not questioned because
there is no prediction error. Thus, we recommend having no visible cues to indicate
the unpredictable behavior beforehand for the experiment.
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6.4 Recommendations for the Methodology

Furthermore, we recommended doing a complete pilot which also tests the mea-
surement. In this study, only the task itself was tested since we expected most
problems with designing the unpredictable action. Designing unpredictability was
expected to be difficult because the robot should have only been perceived as un-
predictable, not erroneous, to follow our theoretical framework. We anticipated that
erroneous behavior would have other effects and thus confound the results. The ex-
periment was tested beforehand with three participants, asking open-ended ques-
tions afterward to assess the experiment’s quality. In the third pre-test, the partic-
ipant had few questions, showed no uncertainty about the final task, and did not
have questions during it. In the complete experiment then, participants often looked
to the researcher for help, or questions were asked. Thus, the pre-testing results did
not reflect how the experiment was perceived afterward. The reason for this might
be that in the pilot, the participants only experienced five sessions without a night of
sleep in between, so it did not represent the actual study. Furthermore, in the pilot
tests, no participant experienced a software crash or problems with communicating
with Pepper. There were problems, but participants were unaware since we asked
them to start later. Lastly, the measurements were not tested in the pilot. In a pi-
lot study, we recommend testing if the participants understand all items (and their
translations) well since this was a problem in this study.

6.5 Recommendations for Recruiting

As one of the last aspects, we recommend increasing the power of the study. We
conducted an a-priori power analysis using G*Power. The analysis indicates that
for this study, 11 participants for each of the four conditions would be necessary to
find a large effect considering Cohen [61]’s criteria (small effect: .01, medium effect:
.0625, large effect: .14) with a significance criterion of α = .05 and power = .80.
Thus we advise to recruit 44 participants. The participants should reflect the general
public because factors like employment, income, and educational background can
influence the adoption of new technologies [62] and trust in others [63]. Although
the data does not demonstrate this influence, we expect that it is probable that the
participants’ prior experience with robots had an impact. From the perspective of
predictive coding, knowing robots already results in predictions on how they will
behave. Thus, more requirements for the recruitment process are necessary. First,
participants should have no experience interacting with, programming, or developing
physical robots to reduce the risk of triggering related models. Second, participants
should come from all educational levels. Third, the goal should be to find participants
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with no Pepper-related internal models, such as participants who have never seen
the robot in person.

6.6 Recommendations for Measurements

Lastly, reflecting on the measurement results in the following learnings. The MDMT
questionnaire was chosen for trust, which measures performance trust and moral
trust but is still in development. Choosing this questionnaire was reasonable since
trust is a multi-faceted concept [7]. In the final participant sample, many participants
were not English natives and did not know many words. We did not exclude these
items from the scale to avoid risking the scale’s validity. While we still believe it was
the right choice to include these options to avoid a type II error, this influenced the
results. Due to a lack of data, the moral trust scale cannot be reliably interpreted.

For future research, we recommend waiting for another publication cycle or choos-
ing another questionnaire. This is because while Malle et al. [7] indicate high internal
consistency for the questionnaire, we could not show this. The reliability analysis
suggests that the questionnaire items for each scale do not seem to address the
same issue well, but many cases were excluded. Thus, we are uncertain about the
questionnaire’s reliability. When using a revised version of the questionnaire, we still
recommend offering ”Does not fit” and ”I don’t know what that means” as answer
options to ensure the validity of the results. Depending on the expected participant
sample, we recommend translating the scale. Here, the cost-benefit ratio of invest-
ing in the translation and validation should be considered.

All in all, depending on the environment in which the study is executed, we rec-
ommend either waiting for the next development stage of the questionnaire, consid-
ering translations, and validating these translations, or choosing another question-
naire that addresses the multi-facet characteristics of trust.
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Chapter 7

Conclusion

In conclusion, this master’s thesis explores mitigating the impact of unpredictable
robot behavior on trust using the perspective of predictive coding. Recognizing the
pivotal role of trust in human-robot interactions, this study acknowledges the chal-
lenges posed by unpredictable robot behavior, which can undermine trust forma-
tion [16] [6] [17].

The strategies developed in this study were built based on insights from pre-
dictive coding, existing HRI, and anti-bias research. These strategies, consisting
of foreshadowing movements and information provision, were subjected to empir-
ical testing in a quantitative study. However, the statistical analysis did not yield
evidence of their effectiveness in the context of the experimental design employed.

Although the results may indicate that the applied strategies did not achieve the
desired effects, it is essential to consider them valuable contributions to the ongo-
ing discourse surrounding human-robot interaction because they provide important
information about future research design and how to develop and test for unpre-
dictable behavior. Instead of dismissing the strategies outright, we highlight the ne-
cessity for further refinement and reconsideration of experimental methodologies in
future research efforts. We recommend looking further into the research questions
by executing a quantitative study with a different setup. Participant amounts and re-
quirements during recruiting should be increased. We recommend redesigning the
task to be more realistic and aiming to have fewer trigger-related models. Further-
more, we advise reconsidering the measurement tool. We recommend investigating
the requirements for successful anti-bias training more profoundly, including the anti-
bias approach.

This research contributes through implications for developing experiments and
the challenges of designing for and mitigating unpredictable robot behavior. In the
future, it is crucial to investigate further and create new approaches in this field to
build stronger and more reliable relationships between humans and robots. This will
enable us to fully incorporate robots into our everyday activities.
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Alcorn, and E. Pellicano, “Predictable Robots for Autistic Children-Variance
in Robot Behaviour, Idiosyncrasies in Autistic Children’s Characteristics, and
Child Robot Engagement,” ACM Transactions on Computer-Human Interaction,
vol. 28, no. 5, 2021.

[37] T. W. Hung, “Why Human Prejudice is so Persistent: A Predictive Coding
Analysis,” Social Epistemology, vol. 00, no. 00, pp. 1–19, 2023. [Online].
Available: https://doi.org/10.1080/02691728.2023.2237942

[38] J. Fridman, L. F. Barrett, J. B. Wormwood, and K. S. Quigley, “Applying
the Theory of Constructed Emotion to Police Decision Making,” Frontiers
in Psychology, vol. 10, no. 1957, 2019. [Online]. Available: https:
//doi.org/10.3389/fpsyg.2019.01946

[39] Z. A. Neemeh, “Bootstrap Hell: Perceptual Racial Biases in a Predictive Pro-
cessing Framework,” Proceedings for the 42nd Annual Meeting of the Cognitive
Science Society: Developing a Mind: Learning in Humans, Animals, and Ma-
chines, CogSci 2020, no. January 2020, pp. 815–821, 2020.

https://doi.org/10.1080/02691728.2023.2237942
https://doi.org/10.3389/fpsyg.2019.01946
https://doi.org/10.3389/fpsyg.2019.01946


BIBLIOGRAPHY 51

[40] R. Kirkland and I. Bohnet, “Focusing on what works for workplace diver-
sity.” 2017. [Online]. Available: https://www.mckinsey.com/featured-insights/
gender-equality/focusing-on-what-works-for-workplace-diversity

[41] S. Barsade, “How Companies Can Develop Anti-bias Strategies that
Work,” 2018. [Online]. Available: https://knowledge.wharton.upenn.edu/article/
how-companies-can-develop-anti-bias-strategies-that-work/

[42] D. Atewologuh, T. Cornish, and F. Tresh, Unconscious bias training : An as-
sessment of the evidence for effectiveness, 2018.

[43] E. R. Carter, I. N. Onyeador, and N. A. Lewis, “Developing & delivering
effective anti-bias training: Challenges & recommendations,” Behavioral
Science and Policy, vol. 6, no. 1, pp. 57–70, 2020. [Online]. Available:
https://doi.org/10.1177/237946152000600106

[44] J. Nordell, The End of Bias: A Beginning: The Science and Practice of Over-
coming Unconscious Bias. Henry Holt and Company, 2021.

[45] F. Gino and K. Coffman, “Unconscious Bias Training That Works,” 2021. [On-
line]. Available: https://hbr.org/2021/09/unconscious-bias-training-that-works

[46] M. Desai, M. Medvedev, M. Vázquez, S. McSheehy, S. Gadea-Omelchenko,
C. Bruggeman, A. Steinfeld, and H. Yanco, “Effects of changing reliability on
trust of robot systems,” HRI’12 - Proceedings of the 7th Annual ACM/IEEE
International Conference on Human-Robot Interaction, pp. 73–80, 2012.

[47] P. Kaniarasu, A. Steinfeld, M. Desai, and H. Yanco, “Robot confidence and trust
alignment,” ACM/IEEE International Conference on Human-Robot Interaction,
vol. 1, pp. 155–156, 2013.

[48] Aldebaran United Robotics Group, “Pepper,” 2023. [Online]. Available:
https://www.aldebaran.com/en/pepper

[49] Aldebaran (part of United Robotics Group), “Robots for Healthcare,”
2021. [Online]. Available: https://www.youtube.com/watch?v=2TcmjL6ZQzc&
ab channel=Aldebaran%2CpartofUnitedRoboticsGroup

[50] RobotLAB Inc., “Pepper Robot for Healthcare,” 2021. [Online]. Available:
https://www.youtube.com/watch?v=ZFrwk5auOvU&ab channel=RobotLABInc.

[51] Aldebaran (part of United Robotics Group), “Pepper and NAO robots solutions
for healthcare,” 2020. [Online]. Available: https://www.youtube.com/watch?v=
PlVR10xLI6c&ab channel=Aldebaran%2CpartofUnitedRoboticsGroup

https://www.mckinsey.com/featured-insights/gender-equality/focusing-on-what-works-for-workplace-diversity
https://www.mckinsey.com/featured-insights/gender-equality/focusing-on-what-works-for-workplace-diversity
https://knowledge.wharton.upenn.edu/article/how-companies-can-develop-anti-bias-strategies-that-work/
https://knowledge.wharton.upenn.edu/article/how-companies-can-develop-anti-bias-strategies-that-work/
https://doi.org/10.1177/237946152000600106
https://hbr.org/2021/09/unconscious-bias-training-that-works
https://www.aldebaran.com/en/pepper
https://www.youtube.com/watch?v=2TcmjL6ZQzc&ab_channel=Aldebaran%2CpartofUnitedRoboticsGroup
https://www.youtube.com/watch?v=2TcmjL6ZQzc&ab_channel=Aldebaran%2CpartofUnitedRoboticsGroup
https://www.youtube.com/watch?v=ZFrwk5auOvU&ab_channel=RobotLABInc.
https://www.youtube.com/watch?v=PlVR10xLI6c&ab_channel=Aldebaran%2CpartofUnitedRoboticsGroup
https://www.youtube.com/watch?v=PlVR10xLI6c&ab_channel=Aldebaran%2CpartofUnitedRoboticsGroup


52 BIBLIOGRAPHY

[52] FOX 9 Minneapolis-St. Paul, “Robots providing helping hand at nursing home
— FOX 9 KMSP,” 2022. [Online]. Available: https://www.youtube.com/watch?
v=BXpgiT51CoQ&ab channel=FOX9Minneapolis-St.Paul

[53] B. F. Malle and D. Ullman, “Presentation Format for MDMT question-
naire,” 2021. [Online]. Available: https://research.clps.brown.edu/SocCogSci/
Publications/Pubs/Malle & Ullman 2021 Trust chap.pdf

[54] M. M. De Graaf and S. Ben Allouch, “Exploring influencing variables for the
acceptance of social robots,” Robotics and Autonomous Systems, vol. 61,
no. 12, pp. 1476–1486, 2013. [Online]. Available: http://dx.doi.org/10.1016/j.
robot.2013.07.007

[55] T. Nomura, S. Tomohiro, K. Takayuki, and K. Kensuke, “Measurement of neg-
ative attitudes toward robots,” Interaction Studies, vol. 7, no. 2, p. 437–454,
2006.

[56] A. Nissen and K. Jahn, “Between Anthropomorphism, Trust, and the Uncanny
Valley: A Dual-Processing Perspective on Perceived Trustworthiness and Its
Mediating Effects on Use Intentions of Social Robots,” in Proceedings of the
54th Hawaii International Conference on System Sciences. University of
Hawai’i at Manoa, 2021, pp. 360–369.

[57] B. Leichtmann, V. Nitsch, and M. Mara, “Crisis Ahead? Why Human-Robot
Interaction User Studies May Have Replicability Problems and Directions for
Improvement,” Frontiers in Robotics and AI, vol. 9, no. March, pp. 1–15, 2022.

[58] R. L. Wasserstein and N. A. Lazar, “The ASA’s Statement on p-Values: Context,
Process, and Purpose,” The American Statistician, vol. 70, no. 2, pp. 129–133,
2016. [Online]. Available: http://dx.doi.org/10.1080/00031305.2016.1154108

[59] J. Wirtz, P. G. Patterson, W. H. Kunz, T. Gruber, V. N. Lu, S. Paluch, and A. Mar-
tins, “Brave new world: service robots in the frontline,” Journal of Service Man-
agement, vol. 29, no. 5, pp. 907–931, 2018.
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A.1 Pre-Experiment Questionnaires

Please share your overall thoughts on the robot. There is no right or wrong, it is
your subjective perspective that matters. To achieve that, please rate all items on
the given scales.

1. Question

Please rate the following statements based on your personal thoughts on a
scale from 1 (I do not agree at all) to 5 (I agree completely). There is no right
or wrong.

• I generally trust technologies.

• I generally have faith in technologies.

• I generally trust technologies unless they give me reason not to.

2. Question

Please rate the following statements based on your personal thoughts on a
scale from 1 (I do not agree at all) to 5 (I agree completely) . There is no right
or wrong.

• I would feel uneasy if robots really had emotions.

• Something bad might happen if robots developed into living beings.

• I would feel relaxed talking with robots.

• I would feel uneasy if I was given a job where I had to use robots.

• If robots had emotions I would be able to make friends with them.

• I feel comforted being with robots that have emotions.

• The word “robot” means nothing to me.
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• I would feel nervous operating a robot in front of other people.

• I would hate the idea that robots or artificial intelligences were making
judgements about things.

• I would feel very nervous just standing in front of a robot.

• I feel that if I depend on robots too much, something bad might happen.

• I would feel paranoid talking with a robot.

• I am concerned that robots would be a bad influence on children.

• I feel that in the future society will be dominated by robots.

3. Question

This question addresses your previous experience with robots. Please choose
the one which describes your experience with robots before today best. Please
view the options as an order, starting with ”0 - I have never heard of robots.”
as no experience and ”6 - I have previously participated in the development
(building, programming, testing) of a physical social robot like Nao, Pepper, or
Sophia myself.” as the most experience.

• 0 - I have never heard of robots.

• 1 - I know robots only from fictional stories (movies, books, TV-shows).

• 2 - I know robots only from fictional stories (movies, books, TV-shows)
and from real-life formats (TV news, newspaper)

• 3 - I have already interacted with robot vacuums.

• 4 - I have already interacted with robot toys such as furby or with anima-
tronics from theme parks.

• 5 - I have interacted with physical social robots like Nao, Pepper, or
Sophia.

• 6 - I have previously participated in the development (building, program-
ming, testing) of a physical social robot like Nao, Pepper, or Sophia my-
self.

A.2 Post-Experiment Questionnaires

Please share your overall thoughts on the robot. There is no right or wrong, it is
your subjective perspective that matters. To achieve that, please rate all items on
the given scales. If you don’t know the word, choose ”I don’t know what this word
means”.
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1. Question

Please rate the fit of the robot you just got to know and the following statements
on a scale from 0 (Not at all) to 7 (Very). There is no right or wrong:

The robot I just experienced...

• is reliable.

• is competent.

• is ethical.

• is sincere.

• is benevolent.

• is predictable.

• is skilled.

• is principled.

• is candid.

• is kind.

2. Question

Please rate the fit of the robot you just got to know and the following statements
on a scale from 0 (Not at all) to 7 (Very). There is no right or wrong:

The robot I just experienced...

• is dependable.

• is capable.

• is moral.

• is transparent.

• is considerate.

• is consistent.

• is meticulous.

• has integrity.

• is genuine.

• has goodwill.

3. Question

Regarding these questions, please think about the last session with the robot.
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Please rate the fit of the robot you just got to know and the following statements
on a scale from 1 (definitely not associated) to 7 ( definitely associated). There
is no right or wrong:

The robot I just experienced is...

• unpredictable.

• irregular.

• inconsistent.

• random.

• variable.

• erratic.

4. Demographics

My gender is...

• female.

• male.

• diverse.

My age group is...

• younger than 18.

• 18 to 24.

• 25 to 34.

• 35 to 44.

• 45 to 54.

• 55 to 64.

• 65 or older.

What is the highest degree or level of education you have completed?

• No schooling completed.

• High School.

• Bachelor’s Degree.

• Master’s Degree.

• Ph.D. or higher.
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• Other ... .

I am currently...?

• Employed for wages.

• Out of work and looking for work.

• Out of work but not currently looking for work.

• A homemaker.

• A student.

• In Military.

• Retired.

• Unable to work.

• Other ... .

If you are studying currently, what is your main course?

• Interaction Technology.

• Data Science.

• Business Information Systems.

• Creative Technology.

• I am not studying.

• Other ... .

A.3 Mann Whitney U Test

To see if the manipulation during the experiment worked, it was aimed to execute
a one-way analysis of variance (ANOVA) with two groups or a t-test, since for two
groups, the results are the same. The requirements for an ANOVA are independent
groups and normal distributions of the dependent variable attributed predictability.
By research design, the groups are independent. In this study, more than five in-
dependent samples exist. Normal distribution is given for four of the five conditions.
For the predictable condition, the data was not normally distributed. For testing
statistically if the manipulation worked, only the two samples of C-Predictable, the
predictable robot behavior, and C-Unpredictable, the unpredictable robot behavior,
were relevant. The data sets per group were small, so the risk of false positive re-
sults is increased when using an ANOVA with data which is not normally distributed.
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As a result, a non parametric test was executed. Non parametric tests are less
statistically powerful but allow making statistical inferences without assuming normal
distribution. The Mann-Whitney U test is a reasonable non parametric alternative
for a test with two independent groups. The requirements for this test are: 1) the
dependent variable must be continuous, 2) data is non-normal, 3) data is shaped
similarly (if medians are to be analyzed), 4) independent samples and 5) a minimum
of five observations per group. 1), 2), 4) and 5) are given by research design. The
analysis in SPSS showed that the distributions per group do not have the same
variability, so 3) is not given, but medians are not compared, so this is irrelevant.

A.4 MANOVA and MANCOVA

For executing a MANOVA, ten requirements need to be given: 1) independent sam-
ples, 2) interval scaled dependent variables, 3) nominal scaled independent vari-
ables, 4) per group at least as many cases as dependent variables, 5) linearity
between the dependent variables for each group of independent variables, 6) no
multicollinearity, 7) homoscedasticity, 8) homogeneity of covariances, 9) multivariate
normal distribution and 10) checking for univariate or multivariate outliers. 1-4) are
given by research design. The other requirements are described in the following.

In a first step, the data was controlled for univariate outliers. There was one
extreme outlier (case 22) in the data. Due to the small sample size and since the
answer was plausible, the case not excluded. SPSS does not offer an option to test
for multivariate normality of distributions. As a result, the univariate normality was
tested. If univariate normality is given, it is assumed that multivariate normality is
given as well, since univariate normality is a requirement for multivariate normal-
ity. The Shapiro-Wilk test is more suitable for small samples, so it is interpreted
regarding normality. All groups were normally distributed across all three dependent
variables, as assessed by the Shapiro-Wilk test (α = .05). Another requirement for
executing a MANOVA is a no multicollinearity. On the one hand, multicollinearity
leads to logical and statistical problems because this indicates that variables are re-
dundant since they measure the same aspect. This weakens the analysis through
increasing errors. On the other hand, if multicollinearity is too low, statistical power
is reduced as well. The optimal value seems not to exist yet. Research indicates r
< .90 as a reasonable threshold. The analysis shows that correlations between de-
pendent variables were low (r < .90), indicating that multicollinearity was not a con-
founding factor in the analysis. Another requirement for the MANOVA is checking for
multivariate outliers. To achieve that, the Mahalanobis distance can be interpreted.
The cut-off value for three dependent variables is 16.266. The highest Mahalanobis
distance in the data set is 3.19. As a result, no multivariate outliers were found (p
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> .001). As a next step it is necessary to check for linearity, since when there is no
linear relationship between all pairs of dependent variables, the statistical power is
reduced. Linearity could not be observed for the dependent variables through visu-
ally analyzing scatter plots. Thus, the statistical power of the MANOVA is reduced.
Furthermore, it is necessary to test for homoscedasticity. This was done using the
Levene test. There was homogeneity of the error variances for all dependent vari-
ables (p > .05). It is necessary as well to test for homogeneity of covariances. This
was done using the Box test. There was homogeneity of covariances (p > .05).

For a MANCOVA, another requirement exist: the covariates have to be continu-
ous. This is given by research design.

A.5 Further Explanation of Missing Values for Relia-
bility Testing

In the following it is reported on items of the trust questionnaire and the attributed
predictability questionnaire which are lacking more than three entries.

For the ”reliable” subscale of the trust questionnaire, no answers were missing
and internal consistency was questionable (Cronbach’s αPT−reliable = 0.68). For the
”competent” subscale, the item ”meticulous” showed 6 missing values due to not
knowing the word and 4 because of a perceived missing fit. Internal consistency
of the items was acceptable (Cronbach’s αPT−competent = 0.73), but 11 cases were
excluded from the test.

In the ”ethical” subscale data, for ”ethical”, 7 participants chose it does not fit,
for ”principled”, 6 chose does not fit, for ”has integrity”, 9 chose ”does not fit” while
3 did not know what the item means and for ”moral”, 9 thought it does not fit. This
results in four missing values for the whole subscale, so the ethical subscale has
only 21 entries instead of 25. The reliability test indicates questionable internal
consistency (Cronbach’s αMT−ethical = 0.62) and 13 cases were excluded. For the
”ethical” subscale, a pattern is observable in the data: four participants did not rate
any item on the scale of 1-7 and two participants did only rate one out of four items
of the scale. There are no typical commonalities about these participants in the
data. Their robot experience ranges from 2 (”I know robots only from fictional stories
(movies, books, TV-shows) and from real-life formats (TV news, newspaper)”) to 5
(”I have interacted with physical social robots like Nao, Pepper, or Sophia.”) with an
average of 3.67, their dispositional trust ranges is relatively high, ranging from 3.33
to 5 with an average of 4.17 and their negative attitude towards robots is neutral,
ranging from 2.46 to 3.29 with an average of 2.78.

In the ”transparent” subscale, for ”sincere”, 4 people thought it does not fit. For
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”candid”, 5 thought it does not fit and another 5 did not know the word. For ”is
genuine”, 5 people thought it does not fit. The reliability test indicates poor internal
consistency (Cronbach’s αMT−transparent = 0.57) and 15 cases were excluded. While
excluding ”transparent” from the scale would mathematically increase αMT−transparent

by 0.2 to αMT−transparent = 0.77, this step is not done because ”transparent” is the
only item with sufficient answers (24/25) and many cases of the scale were excluded.

In the ”benevolent” subscale, for ”considerate”, four people thought it does not
fit. For ”benevolent, 17 people did not know what it meant. For ”has goodwill”, 8
participants thought it does not fit. The reliability test indicates good internal consis-
tency (Cronbach’s αMT−benevolent = 0.84), but 20 cases were excluded due to missing
values.

In the attributed predictability questionnaire, answers are complete for the first
four items ”unpredictable”, ”irregular”, ”inconsistent” and ”random”. For ”variable”,
two participants did not know what the word meant. For ”erratic”, five participants
did not know the meaning. There is no pattern observable for not knowing something
in the data. For attributed predictability, the reliability test indicates excellent internal
consistency (Cronbach’s αAP = 0.93).
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