
PATAT: An Open Source Attestation Mechanism for Trusted
Execution Environments on TrustZone devices

Frank Nijeboer

May 27, 2024

Abstract As technology evolves, secure comput-
ing environments become increasingly critical. Arm
TrustZone, a hardware-based security extension for
Cortex processors, provides a trusted environment
for applications requiring high levels of confiden-
tiality and integrity. However, effective attestation
mechanisms to verify the integrity of TrustZone
applications have not been standardized yet.

In this research, we investigate the state of at-
testation mechanisms for Arm TrustZone and pro-
pose a novel mechanism, called PATAT, based on
Merkle Trees — a data structure for secure data
verification — and the Noise Protocol Framework,
a framework for building cryptographic handshakes
for secure communication. PATAT is designed to
fit the Remote Attestation and Trusted Systems
(RATS) Architecture, an architecture for attesta-
tion mechanisms defined in RFC 9334. We formally
verify PATAT using the Tamarin prover, a tool for
security protocol analysis, and implement a proof-
of-concept to evaluate its performance.

Keywords attestation · TrustZone · Arm
· security · cryptographic protocols · Tamarin

1 Introduction

In today’s digital era, the rise of connected de-
vices and the Internet of things (IoT) has led to
an explosion of data being generated at the edge
of the network. This has resulted in a signifi-
cant shift towards distributed architectures that
leverage the power of edge computing, enabling
data to be processed near its source for faster
response times and reduced latency [1]. As a
result, the field of edge computing is expected
to grow rapidly in the near future [2]. Arm chips
such as the Cortex-A family [3] are often used in
these edge devices due to their cost effectiveness
and power efficiency. However, as the number
of edge devices continues to grow, so does the
risk of cyber threats, making security a critical
concern for developers and manufacturers.

Hardware-based security mechanisms like
Trusted Execution Environments (TEEs), have
emerged as a solution to address security con-
cerns in edge computing environments [4]. TEEs
provide an isolated execution environment, sep-
arate from the operating system, which allows
sensitive applications to run securely. TEEs can
also run on Arm chips that feature the Trust-
Zone technology [3] [5]. However, while the con-
cept of attestation, where a (remote) party can
verify the integrity of the code running in a
TEE, is well-established in alternative technolo-
gies like Intel SGX, an open-source attestation
implementation within TrustZone has yet to
emerge, despite TrustZone being available since
2004 [4].

This work explores the state of attestation
mechanisms for TrustZone in Section 5. This
is then followed by Section 6 where we present
PATAT: a novel attestation mechanism for
TrustZone. PATAT is based on the concept of
Merkle Trees and the Noise Protocol Framework
with the aim of being easy to implement. This
novel attestation mechanism is then accompa-
nied by a formal proof using the Tamarin Prover
in Section 7.1 and a proof-of-concept implemen-
tation in Section 7.2 and practical examination
in Section 7.3.

This work’s use case originated from Scalys:
the developers of TrustBox [6], a networking
device designed for use in zero-trust environ-
ments, powered by an NXP chip that features
the Arm TrustZone [7]. These devices operate in
various untrusted environments, necessitating
additional security measures. While attestation
can provide this security, the lack of a stan-
dardized attestation mechanism in TrustZone
necessitates this research.

1

2 Background

This section is a brief introduction to some
topics which are relevant to this research. In
Section 2.1, we provide a high level overview of
the TrustZone technology as well as some in-
formation about the computer chips which are
equipped with TrustZone. Section 2.2 discusses
the concept of a TEE. Then Section 2.3, intro-
duces the concept of attestation. Section 2.4
discusses the set of features that distinguishes
attestation mechanisms. Then, Section 2.5 de-
scribes cryptographic principles that are used
in this work. Finally, Section 2.6 introduces the
formal verification tool which we use in this
work.

2.1 Arm TrustZone

The Arm TrustZone is a System-on-Chip (SoC)
security solution, which is available on most
devices with an Arm chip nowadays. It has
already been available since 2004, but only in
recent years, with the industry becoming more
security focused has it seen more widespread
adoption [4].

The TrustZone technology centers around the
idea that there are two domains in the computer
that must be isolated from each other: the se-
cure world and the normal world. TrustZone not
only controls the CPU state, but the concept
of being secure or normal also extends to other
parts of the SoC, such as peripherals and buses
(the communication lanes between the parts of
the SoC). Arm TrustZone provides hardware iso-
lation between the Secure and Normal worlds.
The processor’s current state is determined by
the Non-Secure (NS) bit that Arm has added
to the processors. The secure world consists of
everything that runs when the processor is in
the secure (S) state and the normal world of
everything when the state is NS. The hardware
is created in such a way that the normal world
is incapable of accessing the regions of the SoC
that are considered secure [8] and the processor
can only work in one of the states at a time.
Switching between secure and normal depends
on the type of chip that is used. This can be ei-
ther a Cortex-A [3] or Cortex-M [5] chip . Since
this research will mainly focus on the Cortex-A,
the Cortex-M TrustZone will not be explained
in-depth. Lastly, it is important to note for this

Figure 1: TrustZone in Cortex-A SoCs, adapted
from [8]

research that the Arm TrustZone itself lacks
any form of attestation.

2.1.1 TrustZone for Cortex-A

Cortex-A processors are made for devices that
feature a full Operating System [3]. In this
SoC, the secure monitor software provides the
context switching functionality between worlds
in the TrustZone. Code from both the Secure
and the Non-Secure worlds can switch between
the processor state by using the smc exception.
Thus changing the state of the NS bit. This is
shown in a schematic way in Figure 1.

Within these systems, the secure world ex-
tends beyond the processor: also the mem-
ory can be in either a secure or non-secure
state. The TrustZone Address Space Controller
(TZASC) handles this for DRAM and the Trust-
Zone Memory Adapter (TZMA) does this for
the SRAM and ROM [8].

2.2 Trusted Execution Environment

GlobalPlatform, a standardization organization,
was the first to come up with the term Trusted
Execution Environment (TEE) [9] [10]. They
also create standards which developers and man-
ufacturers of devices with a TEE can use by

2

providing Application Programming Interfaces
(APIs) and device specifications [4].

GlobalPlatform’s definition of a TEE is “a
secure area of the main processor of a connected
device that ensures sensitive data is stored, pro-
cessed and protected in an isolated and trusted
environment” [11]. In another paper by Sabt,
Achemlal and Bouabdallah [9] about the defi-
nition of a TEE, the authors denote a Trusted
Execution Environment as a tamper-resistant
processing environment with guarantees about:
authenticity of the executed code, integrity of
the runtime states, and confidentiality of data
and state of the system.

Furthermore, they state that the content in a
TEE should not be static but should allow for
secure updates [9]. In a survey about TrustZone,
Pinto and Santos [4] dedicate a significant por-
tion to TEEs and their ability to address issues
arising from the complexity of large (bloated)
Trusted Computing Bases (TCBs). They ex-
plain that a TEE can host critical applications
in an environment that is smaller and more se-
cure than a Rich OS serving as a TCB. They
define a TEE as "an isolated environment in
which Trusted Application (TA)s can execute
without the interference of the local (untrusted)
OS" [4]. A TA is software that runs inside a
TEE. These Trusted Applications are isolated
from each other and from the Rich Execution
Environment (REE), which only runs regular
applications.

As seen above, the definitions of TEEs can
vary in the details. For example, from Glob-
alPlatform’s definition, it would seem as only
the processor is placed in a secure state when
entering the TEE. But, Pinto and Santos define
a TEE as an environment and, as such, the
peripherals and memory are also in a secure
state inside the TEE. In this research, we will
follow the latter definition, due to our focus
on Arm devices which support secure states for
peripherals and memory, as Section 2.1 shows.

An example of a TEE for TrustZone is OP-
TEE (Open Portable Trusted Execution Envi-
ronment) [12]. The Arm TrustZone itself is not a
TEE, but the TrustZone enables the creation of
a TEE through the isolation, authenticity, and
integrity features that it provides. Examples of
TEEs for other architectures are: Intel SGX [13]
for Intel chips, and Multizone for RISC-V [14].

2.3 Attestation

Trusted Execution Environments make sure
that the code and data inside the TEE can-
not be reached from the regular OS. However,
this does not provide safeguards against all
attacks; attackers with physical access to the
device can tamper with memory on the device
and change data or firmware on the device. Fur-
thermore, remote attackers can abuse flaws in
device software, such as stack-buffer overflows
and command injection [15] [16], to overwrite
the code on the device to run malicious appli-
cations. Since the contents of a TEE cannot be
observed from the outside, changes in the TEE
cannot be detected.

Attestation mechanisms aim to prevent such
attacks from succeeding. With an attestation
architecture and attestation mechanisms, one
party can prove to another party that it is run-
ning trusted (attested) software and that it has
not been subject to any other form of tampering.
Attestation mechanisms can aid in putting more
trust in the Trusted Execution Environments
and likewise, TEEs can strengthen attestation
mechanisms [17].

2.3.1 Terminology

Existing works on attestation make use of differ-
ent terminology for the same actors and parts
in the attestation architecture. This work will
adopt the terminology as described in RFC 9334
by the IETF [18], which Ménétrey et al. also
explain in their work [17]. Therefore we have
the following definitions for attestation:

Attester The actor that proves some proper-
ties about itself to another party.

Claim A Claim is a piece of asserted informa-
tion, such as a cryptographic hash of the
code on the device.

Evidence Information which the Attester uses
to prove their identity to the Relying Party.
It consists of a set of Claims which the
Attester has gathered on the system, which
are then signed such that the Relying Party
can check its validity.

Relying Party The actor that (ultimately)
decides whether the Attester can be
trusted.

3

Trusted Application An Attester implemen-
tation in the form of an application.

Verifier A Verifier appraises a part of the Evi-
dence of an Attester . They might e.g. be a
third-party that appraises a piece of third-
party code running on the Attester device.

2.3.2 Core Concepts for Attestation

As described by Coker et al. [19], attestation
mechanisms should consist of building blocks on
top of which the attestation mechanism can be
built. These concepts are: Types of Evidence,
Separate Domains and Trust Base, and they
are explained in further detail in the following
paragraphs.

Types of Evidence The number of evidence
types which the Attester can use to prove their
identity to the Relying Party (RP) has no limit.
But it is important that the mechanism utilizes
useful information during the attestation pro-
cess. Most existing attestation mechanisms use
the compiled application software as one of the
Claims in some form, usually a hash.

Another example of a trivial type of Claim
for a running TEE, would be to create a hash
over the current memory contents. However,
such information would not be useful to an
attestation protocol, because this memory may
change rapidly and unpredictably depending
on the application. For these situations, Coker
et al. suggest to use only certain parts of the
memory which do not change often [19].

In addition to that, freshness of the total
Evidence is also a goal according to Coker et
al. That means that in addition to performing
the measurement before executing a program
the Attester must deliver Evidence as often as
possible. With some attestation mechanisms
this means that the Relying Parties can trigger
a new measurement to get fresh measurement
information. Ménétrey et al. also use freshness
as one of the fields in their comparison between
Attestation Mechanisms for TEEs [17].

Separate Domains Attestation measure-
ment tooling must be able to provide accurate
results about the state of the target, even when
the target has been compromised. The measure-
ment tool must have access to the target to be

able to determine whether its state is still un-
compromised. But the other way around should
be impossible. This is to make sure that a com-
promised target cannot influence the results of
the measurement tool.

Coker et al. state that using VMs can be a
good way to achieve this separation [19]. They
describe a measurement tool which resides in a
VM and the target which resides in another VM.
The Virtual Machine Monitor should then con-
figure cross-VM visibility such that the measure-
ment VM can inspect the target, and protect
the measurement VM from the target. Creating
separate TEE enclaves would be an alternative
method for separating domains. The measure-
ment tool in this case can be rooted in secure
hardware, such as the CPU in the case of Intel
SGX [13].

Trust Base Having domain separation and
reasonable types of Claims will not be useful
without a base of trust in the system. Without
this trust base, the fundamental parts of the at-
testation architecture cannot be verified. Phys-
ical compromise of the hardware may enable
attackers to overwrite firmware on the device
in order to trick the parts of the attestation
architecture into attesting parts of the system
which are in fact compromised.

Such a trust base should start in the boot
process and it should be hardware enforced.
Secure Boot or Authenticated Boot are good
options to use as a trust base, and many other
works also utilize these technologies [9] [8] [20].
Secure Boot or Authenticated Boot can be of-
fered by hardware vendors for their devices with
an Arm chip [8] [21]. This secure boot process
makes sure that only verified software/firmware
can run on the SoC. Usually, the device veri-
fies the firmware that it wants to boot with a
public-key that is specific for a software vendor.
The software vendor generates a signature of
the firmware binary with their secret key and
pushes both the firmware and the signature
to the device. The device holds the public key,
which should be stored in such a way that it can
be read but not replaced by a public key from
the attacker. UEFI systems also have a similar
secure boot process, which can be enabled [22].

4

2.3.3 Governing Incentives

The realm of Attestation and Trusted Execu-
tion Environments (TEEs) has been subject to
a number of incentives that aim to standardize
the various aspects that are relevant to this
area. Two notable examples of such incentives
are the aforementioned Confidential Computing
Consortium (CCC) [23] and the Internet Engi-
neering Task Force (IETF) with their Remote
Attestation Procedures (RATS) [18]. These ini-
tiatives aim to provide a common framework
and guidelines that facilitate the development,
deployment, and interoperability of TEE-based
systems.

Despite the efforts of these entities, however,
there remain many open questions that must
be addressed before suitable standards can be
established without the risk of unintended con-
sequences. For example, there is the need to
ensure that the standards are flexible enough to
accommodate a variety of hardware platforms
and use cases, while still providing robust secu-
rity guarantees. Another area of concern is the
question of interoperability between different
attestation solutions, particularly as the indus-
try continues to evolve and new technologies
emerge. And as such, these standards have not
yet been established. This still leaves room for
industry and researchers as well as open source
initiatives to experiment with attestation.

RATS Concepts The Remote Attestation
Procedures (RATS) RFC 9334 [18] is a notable
RFC which aims to bring concepts about at-
testation together in a centralized document to
aid standardization across attestation mecha-
nisms. Since we adopted the terminology from
RATS, the terms can be found in Section 2.3.1.
This section will shortly address some concepts
within RATS.

RATS contains a dedicated section discussing
Topological Patterns, which outline how At-
tester , RP , and Verifier exchange Evidence.
These patterns describe two main communi-
cation models: the passport model and the
background-check model, shown respectively
in Figures 2 and 3. In the Passport Model, the
Attester first sends evidence to a Verifier before
sending the result to the RP . The Background
Check Model the Attester sends Evidence to
the RP who forwards (some) of the Evidence to

Figure 2: The RATS Passport Model

Figure 3: The RATS Background Check Model

the Verifier . The RFC also mentions the possi-
bility of combining these models. Additionally,
privacy considerations are emphasized for attes-
tation implementations, as not all trust models
permit the Verifier to trust the Attester with
sensitive data, and vice versa. This highlights
the importance of careful protocol design. At
the time of writing there are no TrustZone at-
testation mechanism works which feature the
RATS Procedures in their protocol.

2.4 Attestation Features

This section discusses the distinguishing fea-
tures between attestation mechanisms. Creators
of these mechanisms must make decisions about
which features will be supported by the mecha-
nism, and some features may or may not make it
into the final version of a mechanism. Therefore,
implementations of attestation mechanisms will
each have their own set of supported features.
A comparison between attestation mechanisms
can be made by looking at the differences in fea-
ture sets. Section 5 in this work provides such
a comparison. In this section, we present a list
of features that we have defined by examining
existing works on attestation mechanisms.

5

2.4.1 Functional Features

The term “Functional Features” refers to the spe-
cific functionality of an attestation mechanism
that makes it appealing for software manufac-
turers to incorporate into their systems. These
features are closely tied to the overall design of
a particular attestation architecture and as such
the implementation of Functional Features can
vary significantly across different attestation
mechanisms.

Local Attestation (LA) Local Attestation
enables an Attester TEE to authenticate its
identity to a RP TEE residing on the same
device. The process can then, for example, be
based on a key that is bound to the hardware
on which the software runs [24].

Intel SGX is a good example of a local attes-
tation mechanism since local attestation serves
as one of the key pillars for SGX’s security en-
claves [13], and as such, has a well-researched
implementation. In SGX, local attestation re-
lies on the fact that both TEEs share the same
CPU. This CPU is provisioned with a secret
that serves as a message authentication code
(MAC) for the attestation mechanism. The At-
tester TEE generates a MAC, which is then
checked by the RP TEE to validate the identity
of the Attester .

Remote Attestation (RA) Remote attes-
tation is a natural extension of the concept of
local attestation, since the latter is typically
used to ensure that a device’s hardware and
software components have not been tampered
with. However, local attestation is limited in its
scope, as it only provides assurance about the
trustworthiness of the local platform.

Remote attestation, on the other hand, en-
ables a remote entity to verify the trustwor-
thiness of a Trusted Application (TA). Remote
attestation can provide a higher level of assur-
ance about the trustworthiness of a platform
compared to local attestation, as it enables ver-
ification from a trusted third party. It can, for
example, block execution of code if the remote
device is not in a known state, possibly pre-
venting malicious software from running. As an
example of this concept, the CoCo project uses
remote attestation to get decryption keys for

software binaries, preventing them from running
without attesting first [25].

Remote- and local attestation are not mu-
tually exclusive. On the contrary: remote- and
local attestation can complement each other to
create a “chain of trust” that utilizes both mech-
anisms to achieve the desired level of security
in a product. Some remote attestation mech-
anisms, such as Intel SGX [13], require local
attestation as part of the remote attestation
procedure.

Mutual Attestation (MA) Mechanisms
which feature mutual attestation have the capa-
bility of doing attestation on both sides of the
(remote) connection. Some Trusted Applications
need this as a stronger assurance of trust.

Secure Channels (SC) Attestation mecha-
nisms might have the option to create (or re-
tain) a long lasting secure channel after the
attestation was performed. Since this channel
was created as part of the attestation, it has
a higher level of trust compared to secure con-
nections which are shared only through a secret
key. This idea is also explored by using attes-
tation in TLS connections [26]. These secure
channels are most useful in cases where Remote
Attestation is used, since this secure channel
can be used to transfer application data that is
not related to the attestation while still having
the same level of trust as the attestation.

Session Resumption (SR) Mechanisms
that provide this functionality do not need to
perform the full attestation process each time.
Such protocols typically feature a temporary
key or “session cookie” that the parties can use
to resume their connection without repeating
all the steps normally necessary in the attesta-
tion process. This key usually expires after a
set period, after which a full attestation must
occur again. An example of this is detailed in
the paper by Shepherd et al. [27], which we
explore in more depth in Section 3.1.

TEE Agnostic (TA) Between different hard-
ware implementations on which Trusted Execu-
tion Environments run, the TCB could differ
drastically. The TEE agnostic feature shows
the extent to which the attestation mechanism

6

relies on specific hardware features that pre-
vent it from running on a different hardware
architecture. Usually, hardware-specific imple-
mentations allow for a greater amount of trust
in the attestation mechanism, but at the cost
of software portability between devices.

Open Source (OS) An attestation mecha-
nism that fulfills this feature has an open source
implementation. Although this is not a funda-
mental difference between mechanisms, an open
source attestation mechanism may see greater
adoption due to it being available to many soft-
ware manufacturers without a Non-Disclosure
Agreement or additional cost.

Attester Anonymity (AA) Attestation
must strike a balance between privacy and the
level of trust required between the Attester and
the RP . If an attestation mechanism uses fewer
uniquely identifying features in the Evidence,
it will be harder to trace the attesting device
(and possibly the device’s owner). However, this
may also result in less convincing Evidence for
the RP .

2.4.2 Security Features

In the context of attestation mechanisms, se-
curity features refer to the features that im-
pact the security of the scheme being evaluated.
These features are used in ensuring the integrity
and confidentiality of the attestation process,
and help to ensure that attestation mechanisms
are resistant to a range of potential attacks
which could compromise the trustworthiness of
the attestation.

Message Confidentiality (MC) To ensure
confidentiality of the an attestation, the mes-
sages used in the process should all be en-
crypted. Disclosing information about the Evi-
dence can be used by attackers to read potential
private information.

Message Verification (MV) From a secu-
rity perspective, message verification can help
ensure the authenticity and integrity of mes-
sages exchanged during the attestation process,
which prevents man-in-the-middle attacks.

(Mutual) Key Establishment (KE) This
feature determines how the protocol establishes
new keys during the attestation mechanism and
what kind of key agreement protocol it uses for
this.

Forward Secrecy (FS) This refers to the
property of an attestation scheme that states
that sessions in the past are not compromised
when an attacker gets access to the session
key in another communication session. Attesta-
tion mechanisms typically achieve this by using
ephemeral session keys. When taken into con-
sideration that devices which use attestation
mechanisms could have lifespans of 10 years
or more, forward secrecy becomes an impor-
tant security feature to take into consideration.
Lastly, this property is typically only useful in
the context of remote attestation.

Non-Repudiation (NR) Non-Repudiation
is the ability of an attestation mechanism to
prevent the sender of a attestation from denying
that they ever sent the attestation message.
This also means that these attestations should
arrive unaltered at their destination, or that
receivers can detect modifications to the original
messages. Attestation mechanisms can achieve
non-repudiation by using digital signatures or
other cryptographic techniques.

Runtime Verification (RV) Runtime Ver-
ification enables an attestation mechanism to
monitor and verify the integrity and security
of software and firmware components during
runtime. This feature is necessary for detecting
any tampering that may occur after the initial
attestation process has completed. By continu-
ously verifying the runtime environment, attes-
tation mechanisms can ensure that any devia-
tions from the expected behavior are detected.
Additionally, runtime verification can also play
a role in enabling the attestation mechanism
to detect and respond to potential zero-day
vulnerabilities. The downside is that runtime
verification can be unique per piece of software,
and a general solution might not work in each
situation. Picking the wrong pieces of Evidence
for Runtime Verification could even result in
incorrect rejection of attestations that should
be correct.

7

Hardware Verification (HV) This feature
allows an attestation mechanism to detect tam-
pering or unauthorized modifications to the
hardware components, as opposed to only de-
tecting software modifications. Usually mecha-
nisms which implement this take some values
read from hardware and use those as a piece
of Evidence during the attestation. In the case
that unique hardware features are used, this con-
tradicts the Attester Anonimity feature, which
would make this a trade-off, as described in the
explanation of that feature.

Root of Trust (RT) This is not so much a
feature as it is a question of where the root of
trust lies in the attestation mechanism. Some
attestation mechanisms require a root of trust
at the hardware level, such as a unique hardware
key or a TPM, whereas others might place their
trusted components in kernel modules on the
device, which is more software-based.

Freshness (FR) Freshness of attestation ev-
idence refers to ensuring that the evidence pre-
sented for attestation is recent and not reused.
Every attestation protocol should strive for
freshness to prevent replay attacks.

2.5 Cryptography

This work introduces a novel attestation mech-
anism for TrustZone. It relies on cryptographic
principles such as Merkle Trees, AEAD encryp-
tion, and Diffie-Hellman key exchanges. There-
fore, this section outlines these concepts to pro-
vide the reader with basic information about
them.

2.5.1 Merkle Trees

A Merkle Tree is a form of Tree-Based Data
Structure where each leaf is the hash of its
actual value, and each node is the hash of its
children, concatenated [28]. They are sometimes
also referred to as Hash Trees.

Despite its simplicity, Merkle Trees are use-
ful in many different scenarios; ranging from
Blockchain [29], and Digital Signatures [28] to
Certificate Transparency Logs [30].

Figure 4 shows a simple example of a Merkle
Tree. The leafs of the tree are the hashes of
A, B, C and D (H{A,B,C,D})). Then, those

Figure 4: A simple Merkle Tree

hashes are concatenated in their parent node
and the concatenation is hashed as well (e.g.
HAB = H(HA|HB)). Finally, these parents are
also concatenated and hashed in the root of
the tree. The idea is that when a single leaf in
the tree changes, the root of the tree will also
change. Therefore, inconsistensies in the leaf
data will result in a different root.

Merkle Proof A Merkle Proof can be utilized
to establish the inclusion of a specific value
within a Merkle Tree root. In the example proof
in Figure 5, the objective is to demonstrate
that A is part of the tree, and the prover has
already transmitted the Merkle Tree root to the
verifier. The prover must subsequently transmit
HB and HCD to the verifier. Now they can
independently compute HA and HAB since HB

has been provided. Subsequently, by hashing
HAB and the transmitted HCD, the verifier can
compute the root of the tree and check if it
matches to the previously received root.

Figure 5: A simplified Merkle Tree Proof

8

Notice that the prover is not necessarily re-
quired to sent the plaintext value of A to the
verifier. If the verifier knows the expected value
A, they can calculate the hash of A themselves.

2.5.2 Diffie-Hellman

One of the key components of secure communi-
cation is the exchange of cryptographic keys be-
tween parties. The Diffie-Hellman key exchange
algorithm is a function which can be used by 2
parties to securely arrive at a shared key over
an insecure channel. Each party generates its
own secret value and uses it along with a public
value to compute a shared secret. Even if an
eavesdropper intercepts the public values, they
cannot easily derive the shared secret without
knowing the parties’ secret values. This shared
secret can then be used for secure communi-
cation or as a basis for further cryptographic
operations. Diffie-Hellman key exchanges are
built on a variant of the discrete logarithm prob-
lem [31]. A simple example of a Diffie-Hellman
exchange is a communication between Alice and
Bob, where they publicly agree to use modu-
lus p and base g. Then Alice chooses the secret
value a and Bob chooses b. Alice sends ga mod p
to Bob, who sends gb mod p to Alice. Alice
computes the secret key as (ga)b mod p = gab

and Bob as (gb)a mod p = gba mod p and
since gab mod p = gba mod p, they now have
a shared secret key. If the values are chosen
sufficiently large, it is very hard to compute the
secret key for an eavesdropper.

2.5.3 AEAD Encryption

AEAD encryption, which stands for Authen-
ticated Encryption with Associated Data, is
a cryptographic primitive that provides both
confidentiality and integrity for data. Each mes-
sage encrypted with Authenticated Encryption
(AE) contains an Authentication Tag which the
receiver can use to verify the message on de-
cryption. To get from AE to AEAD encryption,
an AE scheme also needs to provide the op-
tion to send Associated Data. This data is not
confidential, but it is protected against tamper-
ing by an attacker. The receiver of an AEAD
message can decrypt the confidential data and
verify the integrity of the Associated Data with
the same key [32]. Examples of AEAD encryp-

tion algorithms are ChaCha20Poly1305 [33] and
AES-GCM [34].

2.6 Tamarin Prover

In addition to creating a new protocol, this
work also introduces a method for formally ver-
ifying the protocol using the Tamarin Prover.
The Tamarin Prover [35] is a security protocol
verification tool that “supports falsification and
unbounded verification of security protocols in
the symbolic model” [36]. It was developed by
David Basin and Cas Cremers, who also cre-
ated the Scyther tool [37] which is used in other
research involving attestatino mechanisms in
TrustZone [27]. This section aims to provide
the reader with a basic understanding of the
concepts within the Tamarin Prover.

In the Tamarin Prover, the state of the sys-
tem, e.g. encryption keys and the current phase
of a secure handshake, is modeled as a collection
of facts. This collection of facts, the multiset,
can be modified using multiset rewriting rules.
In the Tamarin Prover, a security protocol is
represented as a set of multiset rewriting rules.
These rules take a certain subset of the facts in
the system as input and produce a new set of
facts as output.

Tamarin provides built-in facts for generating
fresh values and sending data over the network.
Generating a fresh value is done through the
Fr() fact. Interactions with the network are rep-
resented by the Out(x) and In(y) facts, which
model the sending of data x out to the network
and the receiving of data y from the network.
By default, the network operates under the as-
sumption of the Dolev-Yao adversary model.
This means that the adversary is presumed to
have the capability to intercept, alter, and read
all messages exchanged between parties. How-
ever, they cannot break the cryptography used
in the messages. In general, facts can only be
consumed once, but in addition to regular facts
Tamarin also knows persistent facts. These can
be consumed an arbitrary number of times.

In addition to the facts and rules, Tamarin
also allows for the use of functions which let
users model concepts like encryption and hash
functions. The built-in functions used in this
work are hashing and diffie-hellman.

The previous concepts form the basics re-
quired to formulate a lemma. Lemmas are used

9

to prove properties desired in the overall proto-
col. They are typically formulated by defining
variables and points in time, indicated by a
leading #, followed by specific action facts. An
example is the following lemma:

lemma my_lemma :
"
Al l x y #m #n #o .
Action1 (x) @m
& Action2 (y) @n
==>
Action3 (x , y) @o
"

Everything preceding the arrow represents
our assumptions regarding the action facts
that have occurred, while everything following
the arrow signifies the conclusion we want the
Tamarin Prover to prove. In this case, we want
to prove that if both Action1 and Action2
have occurred, then Action3 must also have oc-
curred with x and y as input. If the assumption
turns out to be incorrect, Tamarin can create a
graphical representation of a counterexample.

With the rules and facts, a user of Tamarin
can create a model of their envisioned proto-
col. Using lemmas, they can then prove proper-
ties they wish to verify in the protocol. The
tamarin-prover command-line tool can be
instructed to verify these lemmas using the
--prove argument followed by the path to the
file containing the model description.

3 Related Work

In the following section, we will discuss other
works that have explored attestation in the con-
text of the Arm TrustZone and created their
own protocols. Section 5 provides a comparison
between these protocols, including the ones dis-
cussed here. These two works are highlighted
because they, like this work, provide a formal
proof for their attestation mechanisms. This
section aims to give the reader a more in-depth
understanding of how other works go about
designing their protocols.

3.1 Shepherd et al.

Shepherd et al. [27] address the challenge of
trusting data from unattended sensing devices.
In their work they present a new trusted channel

protocol for performing attestation and setting
up a secure channel between two remote TEEs
on devices for use in trusted sensing devices
(e.g. IoT health devices). Their end result is
a bi-directional attestation mechanism, with
the capability to also do only uni-directional
attestation for situations where bi-directional
attestation is not possible.

3.1.1 System Design

From an operational perspective the attestation
architecture runs inside a Trusted Execution
Environment (as opposed to the TPM based
attestation mechanisms which they state are
not sufficient for their use case). They use the
’quote’ abstraction in their architecture to send
the current state of the TEE. In this work, we
refer to a ’quote’ as Evidence. The mechanism
is TEE-agnostic so it does not require TEE
features specific to any manufacturer. What
they do suggest, is using a Trusted Measurer
(TM) to sign the Evidence with a key that
resides on the device. The Trusted Measurer
should be verified in the authenticated boot
process. Lastly, they mention that the use of
a TPM could increase hardware level tamper
resistance, but that would go at the cost of
additional required hardware.

We will now discuss the bi-directional pro-
tocol. We also have a more formal notation in
Protocol 1. Here, there are two Trusted Applica-
tions on both sides of a connection; we call these
A and B. One of these initiates the protocol
by sending the identifier (ID) of both Trusted
Applications (IDA and IDB respectively), a
nonce nA, a Diffie-Hellman exponentiation GA,
an attestation request for the other application
ARB and a session cookie Scookie, which is a
hash of all the attributes that A sent to B ex-
cept the attestation request. The parties can
use this cookie to pick up an already established
attestation session, without performing the full
attestation again. This increases efficiency, be-
cause it means that the devices do not have
to calculate new DH exponentiations. It does,
however, mean that the loss of a session key
can have a larger impact compared to systems
which do not feature session resumption.

After A has sent the first message, B will
respond with a message that consists of both
IDs, a nonce which they generated (nB) an-

10

Protocol 1: Bi-Directional Trust Protocol (BTP) by Shepherd et al. [27]
(1) TAA → TAB : IDA || IDB || nA || GA || ARB || Scookie

Scookie = H(GA || nA || IDA || IDB)
(2) TAB → TAA : IDB || IDA || nB || GB || [σTAB

(XTAB
) || σTAB

(VTAB
)]KE
KMAC

|| ARA

XTAB
= H(IDA || IDB || GA || GB || nA || nB)

VTAB
= QTAB

|| nB || nA

(3) TAA → TAB : [σTAA
(XTAA

) || σTAA
(VTAA

)]KE
KMAC

|| Scookie

XTAA
= H(IDA || IDB || GA || GB || nA || nB)

VTAA
= QTAA

|| nB || nA

other Diffie-Hellman exponentiation GB. Then
B also sends a part which is encrypted with sym-
metric key KE and has a MAC with key KMAC ,
denoted by: [σTAB

(XTAB
)||σTAB

(VTAB
)]KE
KMAC

.
Where XTAB

is a hash of the IDs, nonces
and DH exponentiations and VTAB

is Evidence
from B’s TEE, concatenated with both nonces.
σx(m) denotes that message m is signed with
x’s public/private key pair.

In the final step of the protocol, A responds
with an encrypted message which contains:
[σTAA

(XTAA
)||σTAA

(VTAA
)]KE
KMAC

along with
Scookie, where XTAA

should be the same as
XTAB

and VTAA
is now Evidence generated by

the TEE of A along with both nonces. Note
that the protocol supports both bi-directional
as uni-directional attestation, and in the latter
case, the Evidence by A is not required.

A secure connection between the trusted sens-
ing device and the remote server has now been
established. According to Shepherd, this connec-
tion provides stronger security guarantees than
a regular TLS connection because it operates
within a Trusted Execution Environment, which
is entirely verified by a Trusted Measurer. The
sensing device now possesses a secure environ-
ment (a TEE) that has been attested, enabling
it to transmit sensing data securely. As a result,
the remote server enjoys a higher level of trust
compared to a regular connection that relies
solely on a secret key, as the data comes from
a source that has been attested.

3.1.2 Limitations

In their article, Shepherd et al. provide a clear
explanation of their protocol, which has the abil-
ity to function in both bi-directional and uni-
directional modes, a promising feature. How-
ever, the authors acknowledge that their proto-

col yields a 4x overhead compared to conven-
tional TLS with Diffie-Hellman and RSA. This
could have an impact on tightly constrained de-
vices. Furthermore, due to its multi-architecture
compatibility, the protocol is unable to leverage
advanced hardware features that offer stronger
security assurances for uncompromised devices.
Lastly, the protocol requires that both devices
always have an active network connection to sat-
isfy the protocol. This makes sense for the use
case of trusted sensing devices, but this makes
the protocol not suitable for certain other de-
ployment scenarios.

3.2 Ménétrey et al.

Ménétrey et al. [38] implemented a secure We-
bAssembly runtime environment for TrustZone,
called WaTZ (WebAssembly TrustZone). We-
bAssembly (Wasm) [39] is a binary instruction
format designed for efficient execution of code
on modern web browsers and other platforms.
Since many programming languages can now
compile to Wasm, WaTZ offers a secure runtime
for numerous applications. As part of WaTZ,
the authors developed an attestation mecha-
nism. We will now focus on that attestation
mechanism. The goal of this mechanism is to
provide a way to attest to the code in the WaTZ
environment while keeping the implementation
of the connection to the remote server small.
After the attestation of the WaTZ environment
the RP has a stronger guarantee that the code
running in the environment is secure.

3.2.1 System Design

In WaTZ, a kernel module generates Evidence
which includes:

• An anchor value that binds the parameters

11

to a session

• The WaTZ version number

• The hash of the Wasm bytecode

• The public key of the attestation service

• The signature of the evidence

We rewrote their (SGX inspired) protocol in
the same style as the previous section, which is
shown in Protocol 2.

The protocol starts with the TA sending the
public part of a session key-pair that the TA
generated (GTA) to the RP . Then, the RP re-
sponds by generating their own session key pair
(with public part GRP) Both the session key
pairs are combined to create a Key Derivation
Key which is subsequently derived in two shared
secret keys: Km and Ke for generating MACs
and encrypting messages with a symmetric key,
respectively. RP sends a message to TA with
the GRP , its public key PkRP and a signature
of the session keys. After receiving and verifying
the message, TA gathers evidence locally and
responds with a message that contains GTA,
the evidence (with a so-called anchor which
is the hash of the public session keys) along
with the TA’s public key, a signature of the
evidence and a MAC of the entire message. RP
receives and verifies this message again. Then
it checks the evidence that it received and it
makes the decision whether the device is in a
known state. If that is the case, RP can send
a new message with arbitrary confidential data
that is encrypted with AES-GCM.

3.2.2 Limitations

The authors have verified the remote attestation
mechanism with Scyther to ensure its formal
correctness and have provided a useful example
of how a remote attestation mechanism could
work in TrustZone. However, there are several
limitations to this mechanism that should be
considered.

First, the protocol is specific to WaTZ and
as such can only support Wasm applications.
This may not be easily adaptable for other ap-
plications, since these may have specific require-
ments and build environments. Second, the pro-
tocol sends the messages in plain-text over the
network. More privacy oriented applications
might require higher levels of confidentiality.

The authors also mention this in their paper
and state that these messages could also be
encrypted with AES-GCM. Finally, the Wasm
application does not perform local attestation
and relies on Secure Boot to ensure the device
is uncompromised. If the software does not have
network access, it cannot determine whether it
is running on an uncompromised device.

4 Research Questions

The Related Work and Background demon-
strate that there is a lack of a well-documented,
standardized attestation mechanism for appli-
cations running on TrustZone-enabled devices,
which enables remote attestation with an open-
source implementation or an easy to implement
concept using open source building blocks.

To address this challenge, this research aims
to design a new attestation protocol by com-
paring existing attestation mechanisms for the
TrustZone. The proposed protocol will be de-
signed to fit the RATS model [18] and will take
into account the limited computational power
of some TrustZone enabled devices to aid in the
use case which is outlined in the Introduction.
We have formulated a set of research questions
that will guide our investigation and design
process.

4.1 Comparing Mechanism Designs

RQ1 How do existing works in research and
open source projects compare to each
other in the context of the feature sets
that the specific mechanisms support?

4.2 Protocol Design

RQ2 What would a design for a TrustZone-
based attestation mechanism that sup-
ports both local and remote attestation
look like?

RQ2.1 How can we make use of exist-
ing open source projects to imple-
ment the aforementioned attesta-
tion mechanism protocol?

12

Protocol 2: Remote attestation protocol by Ménétrey et al. in WaTZ [38]
(1) TA → RP : GTA

(2) RP → TA : XRP || MACKm(XRP)
XRP = GRP || PkRP || σRP (GRP || GTA)

(3) TA → RP : YTA || MACKm(YTA)
YTA = GTA || evidence || σTA(evidence)
evidence = (H(GTA||GRP)||PkTA||...)

(4) RP → TA : iv || AES −GCMKe(data)

4.3 Evaluating the protocol

RQ3 What is the performance of the pro-
posed protocol in terms of speed, mem-
ory footprint and security?

RQ3.1 How can we formally verify the cor-
rectness of the protocol?

RQ3.2 How does the performance of a de-
vice running our protocol compare
to the scenario where the device
does not use it?

5 Comparing Protocols

To gain a good grasp of the current state of
attestation mechanisms in Arm TrustZone for
answering RQ1, we conducted a literature re-
view on existing attestation mechanisms avail-
able for Arm TrustZone. We gathered references
from the online database Google Scholar [40]
using the search term “"TrustZone" "Attesta-
tion"”. We filtered these results to only include
works that implemented their own protocols.
From this list, we selected the first 15 papers.
In this section, we discuss these papers in less
detail compared to Section 3, where the goal
was to provide the reader with a more in-depth
understanding of those two mechanisms. Here,
the works are compared based on the feature
sets described in Sections 2.4.1 and 2.4.2. The
results are presented in the following sections.

5.1 Functional Features

Table 1 shows the results of our comparison as
answer to RQ1 with regards to the Functional
Features from Section 2.4.1.

First, we can observe that most of the mech-
anisms discussed in the research support Re-

mote Attestation (except for SofTEE). On the
other hand, only half of the examined mech-
anisms from the papers support Local Attes-
tation. However, all mechanisms that do not
support local attestation do support remote at-
testation. Among the mechanisms supporting
remote attestation, only three provide mutual
attestation, while six out of fourteen support
Secure Channels with the remote server. There
is only one mechanism that supports session re-
sumption. Additionally, there are only five TEE-
agnostic mechanisms; the others are TrustZone-
only. Furthermore, six of the papers also of-
fer an Open-Source implementation for their
mechanism or enclave implementation. Lastly,
measuring attester anonymity is challenging,
resulting in three unknowns in this regard. Five
of the papers lack this anonymity, potentially
allowing user data to be sent during attesta-
tion. In contrast, the remaining papers can usu-
ally uniquely identify a device (this seems to
be inherent to many attestation mechanisms)
without obtaining user data.

5.2 Security Features

The security features are challenging to com-
bine into one table since the protocols differ sig-
nificantly in their core. Consequently, the KE
and RT columns contain text instead of sym-
bols. Moreover, two papers (ERAMO [44] and
SANCTUARY [20]) leave the choice of the key
algorithm to the system implementer. Hence,
certain fields in the table are marked with “✍”
to indicate that the answer for that particular
field depends on the specific implementation.

The tables uses some abbreviations for
brevity which we explain more in-depth here:

KDF (Key Derivation Function) A key
derivation function is a cryptographic algorithm

13

Table 1: Functional Features Table

Paper Name LA RA MA SC SR TA OS AA Ref
AdAttester ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗✓ [41]
C-FLAT ✓ ✓ ✗ ✗ ✗ ? ✓ ✗ [42]

End-to-End Security for Distributed... ✓ ✓ ✓ ✓ ✗ ✓ ✓ ? [43]
ERAMO ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ [44]

Establishing Mutually Trusted Channels ✗ ✓ ✓ ✓ ✓ ✗ ✗ ? [27]
Komodo ✓ ✓ ✗ (✓) ✗ ✗ ✓ ? [45]

Practical Runtime Attestation for ... ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ [46]
Remote Attestation for Embedded ... ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ [47]

SANCTUARY ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ [20]
SecTEE ✗ ✓ ✗ ✓ ✗ ✗ ? ✓ [48]
SofTEE ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓ [49]
SWATT ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ [50]

TrustZone based Attestation in ... ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ [51]
VRASED ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✗ [52]

WaTZ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✓ [38]
This work (PATAT) ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓

✓ − Supported. (✓) − Supported by design, but no implementation. ✗ − Unsupported.
? − Unclear whether supported.

Table 2: Security Features Table

Paper Name MC MV KE FS NR RV HV RT FR Ref
AdAttester ✓ ✓ Device Keys ✗ ✓ ✓ ✓ Secure Boot ✓ [41]
C-FLAT ✓ ✓ ? ✗ ✓ ✓ ✗ TrustZone ✓ [42]

End-to-End Sec... ✓ ✓ KDF which? ✓ ✓ ✗ ✓* HUK ✓ [43]
ERAMO ✓ ✍ ✍ ✍ ✍ ✓ ✓* TrustZone ✓ [44]

Establishing M... ✓ ✓ DH ✓ ✓ ✗ ✍ TM in TrustZone ✓ [27]
Komodo ✓ ✓ MAC with secret ✓ ✓ ✗ ✓* Hardware chain ✓ [45]

Practical Runt... ✓ ✓ KDF for asym ✗ ✓ ✗ ✗ TrustZone & HUK ✓ [46]
Remote Attesta... ✓ ✓ Key from TPM ✗ ✓ ✗ ✗ TZ, kernel & SB ✓ [47]

SANCTUARY ✓ ✍ ✍ ✍ ✍ ✗ ✓ TrustZone & HUK ✓ [20]
SecTEE ✓ ✓ DH ✓ ✓ ✗ ✗ TrustZone & HUK ✓ [48]
SofTEE ✓ ✓ Key in security monitor ✓ ✓ ✗ ✗ TPM ✓ [49]
SWATT ✓ ✓ Random generated MAC ✓ ✗ ✓ ✗ Random MAC ✓ [50]

TrustZone base... ✓ ✓ Same root key ✓ ✓ ✓ ✗ TrustZone & HUK ✓ [51]
VRASED ✓ ✓ ✗ ✓ ✓ ✓ ✓ HUK and form. ver. ✓ [52]

WaTZ ✍ ✓ ECDHE ✓ ✓ ✗ ✓* HUK & SB ✓ [38]
This work (PATAT) ✓ ✓ DH ✓ ✓ ✓ ✍ TrustZone & HUK ✓

✓ − Supported. ✓* Supported with a caveat. (✓) − Supported by design, but no implementation. ✗ − Unsupported.
? − Unclear whether supported. ✍ − Depends on chosen algorithms/implementation

14

that derives a secret key from another secret
value, such as a master secret key. Such algo-
rithms typically make use of a pseudorandom
function, with the master secret acting as input
to calculate the eventual key. One of its primary
uses is to prevent the exposure of the actual
secret key in the event that a derived key is
leaked.

DH (Diffie Hellman) Diffie-Hellman func-
tions are explained in Section 2.5.2. They are
used for secure key exchange between parties.

ECDHE (Elliptic Curve Diffie-Hellman
Ephemeral) ECDHE is a modern variant of
the Diffie-Hellman key exchange, using an ellip-
tic curve (EC) public-private key pair. Unlike
e.g. RSA, which relies on factorization of large
numbers, EC cryptography is based on scalar
multiplication on points on an elliptic curve. At
its core it works because it is considered a “hard”
problem to find the private key from the pub-
lic key and the public parameters of the curve.
This approach allows for the use of smaller key
sizes compared to alternative public-key cryp-
tography methods [53].

TZ (TrustZone) Some attestation mecha-
nisms leverage the unique features provided
by TrustZone to serve as a root of trust. This
can be achieved, for example, by employing a
Trusted Measurer within a TrustZone applica-
tion. Given the properties of TrustZone, the
Trusted Measurer is expected to remain secure.

HUK (Hardware Unique Key) Attesta-
tion mechanisms may require devices to pos-
sess a hardware unique key serving as a root
of trust, enabling the generation of additional
keys using a KDF. Typically, these devices are
prepared in the factory by fusing the key onto
the board to prevent tampering. Furthermore,
access to these keys is generally restricted to
trusted components of the software residing on
these devices.

SB (Secure Boot) Secure Boot [22] is a com-
puter security feature that ensures only trusted
software is loaded during the boot process. It
works by verifying the digital signature of each

piece of code, from the firmware to the oper-
ating system kernel, before allowing it to run.
This prevents unauthorized or malicious soft-
ware from executing during startup, thereby
enhancing the overall security of the system.

In the comparison, we first note that all mech-
anisms perform message verification and de-
pending on the implementation, WaTZ is the
only mechanism to omit message confidentiality.
However, one of them lacks non-repudiation: in
SWATT, the challenge key is transmitted in
plain text over the network without an addi-
tional key, allowing others to intercept it and
generate their own responses. Additionally, four
mechanisms lack forward secrecy in the trans-
mitted messages (SofTEE does not support re-
mote attestation, hence it is marked with an
(✗)). Furthermore, six mechanisms support run-
time verification. Lastly, we observe that only
three mechanisms support hardware verifica-
tion, while others rely on secure boot for this
security feature.

6 Protocol Design

Answering RQ2 requires us to come up with
a protocol which can be implemented as an
open source library for use on TrustZone de-
vices (most notably Cortex-A devices). We take
the learnings from Section 5 to create our own
protocol design, while making sure that this
remains easy to implement with open source
building blocks, which answers RQ2.1. We call
this the Protocol for ATestation in Arm Trust-
zone (PATAT).

6.1 Goals & Assumptions

With the use-case of Scalys described in the
Introduction in mind, the goals of our newly
created attestation mechanism are as follows:

• Implement the concepts from RATS [18]
as described in Section 2.3.3.

• Allow third parties to perform attestation
for their own applications but not necessar-
ily for the device manufacturer features.

• Allow device manufacturers to perform at-
testation on the device features such as its

15

firmware but not necessarily on third-party
applications.

• Ensure that the device manufacturer and
app developer are not required to share
sensitive information about the attestation.

• Provide an option to retain a secure con-
nection between the TA and the RP after
successful attestation.

• Ensure that the mechanism is relatively
easy to implement in any programming
language.

These goals aim to make the protocol attrac-
tive to software manufacturers who want to run
part of their application on a TrustZone-enabled
device, with the added benefit of allowing attes-
tation. They ensure that software vendors do
not have to be responsible for the attestation of
firmware and hardware, which may be outside
their expertise. Additionally, these goals are
designed to appeal to hardware manufacturers
who create their own hardware equipped with
TrustZone-enabled SoCs. The option to retain
a secure connection after successful attestation
enhances efficiency by allowing an established
secure connection to be reused instead of being
dropped. The final goal, making the mecha-
nism easy to implement in any programming
language, aims to reduce development costs,
thereby increasing the adoption rate among
software vendors.

We assume that, the RP has a secure connec-
tion to the Verifiers . Man-in-the-middle attacks
and other interference should not be possible
here. An option could be to set up an IPSEC
connection with pre-shared symmetric keys over
a secure channel, but the exact implementation
is out of scope for this work. These parties can
also opt to use the handshake from this work
as a means to setup a secure connection. We
do not define this in detail here to allow for
flexibility in setting this up later and keeping
the proof of the protocol simple.

6.2 Proposed Protocol High Level

This section describes this work’s protocol on
a high level. It starts by describing the way
in which Evidence is packaged in Section 6.2.1
followed by an explanation of the attestation
flow in Section 6.2.2.

Figure 6: Merkle tree with evidence for the
protocol

6.2.1 Evidence Format

Figure 6 shows our implementation of a Merkle
Tree to use as Evidence in our proposed pro-
tocol. In this specific implementation of the
Merkle Tree, we have a subtree for each role
in the attestation process. Figure 6, e.g. has a
subtree with information that the RP knows,
and 2 Verifier subtrees: Vx and Vy. Together,
they form the root of the tree: E. The root of
the tree, E, will be sent by the Attester appli-
cation/device to the RP . Structuring the data
which is sent to the RP in this way makes sure
that Verifiers and the RP do not learn private
information about each other, since that infor-
mation is stored in the Merkle Tree and thus
only available in a Merkle Proof.

6.2.2 Attestation Flow

Figure 7 shows a high level overview of the
attestation flow in the PATAT Protocol. We
will now provide a description to the numbers
in the image.

0. The TA and RP perform a handshake to set
up a secure connection for performing the
actual attestation. During this handshake,
basic information about the TA may also
be communicated, such as software version
numbers used during verification later.

1. The TA assembles Claims into our pro-
posed Evidence Merkle Tree denoted as
the box with the blue key in the Figure.
This tree is split into a subtree with Claims
related to the RP (e.g., device manufac-
turer) and another subtree with Claims
related to the Verifier (third-party appli-
cation developer). It sends this as E to the
RP .

16

Figure 7: The Attestation flow in the proposed protocol

Algorithm 3: The Hash Key Derivation Function
Function HKDF(old_chaining_key, input_data):

temp_key = HMAC(old_chaining_key, input_data)
new_chaining_key = HMAC(temp_key, 0x01)
new_symmetric_key = HMAC(temp_key, output_1 || 0x02)
return new_chaining_key, new_symmetric_key

2. The RP calculates the hash of its part
of the Merkle Tree with the information
received about the device during the hand-
shake.

3. Over the pre-existing connection between
the RP and the Verifier , the Evidence
Merkle Tree and the RP ’s side of the
Merkle Proof are sent to the Verifier . Ad-
ditionally, the Verifier is provided with
the same basic (non-private) information
about the TA.

4. The Verifier uses the RP ’s part of the
Merkle Tree to perform a Merkle Proof
on the Evidence Merkle Tree, checking the
Claims sent along the Merkle Tree.

5. If the Verifier has successfully checked the
Evidence, it responds to the RP with the
Verifier ’s proof of the Merkle Tree. Other-
wise, it returns that the validation failed.

6. The RP checks the Evidence with the in-
formation from the Verifier to validate the
total attestation.

7. It responds to the TA whether the attesta-

tion was successful or it breaks the secure
connection if the attestation failed.

6.3 Proposed Protocol Handshake

Before sending the Merkle Tree, described in
Section 2.5.1 to the RP a secure connection
should be set up between the TA and the RP .
The comparison study outlined in Section 5 re-
veals that numerous existing protocols employ
either a symmetric encryption algorithm or a
variant of Diffie-Hellman key exchange. The
symmetric key approach poses difficulties with
regards to scalibility. Moreover, it is desirable
for the protocol to be capable of generating a
new key for each attestation-performing appli-
cation. Finally, a secure channel should be es-
tablished after the handshake to enable fast and
secure message exchange. A promising frame-
work for designing new handshake protocols is
the Noise Protocol Framework developed by
Trevor Perrin [54].

The Noise Protocol Framework is a frame-
work for constructing secure cryptographic pro-
tocols that support authentication, forward se-
crecy, and identity hiding. It is not a handshake

17

protocol by itself, but a framework to develop
handshake protocols with certain security guar-
antees. Additionally, protocols created using the
Noise Framework are simple and require only
a hash function, a symmetric cipher function
(in AEAD mode), and a Diffie-Hellman func-
tion. The simplicity of this framework makes
it a logical choice for adopting it in our attes-
tation mechanism, particularly considering the
constraints that are associated with develop-
ing embedded systems (where ARM devices are
often used). The framework has also been inves-
tigated in research [55] and been used to create
secure handshake protocols for services such as
WhatsApp [56], Wireguard [57] and the Light-
ning Network [58]. Lastly, due to its relatively
simple nature, noise protocols can be proven in
a formal manner, which is useful in answering
RQ3.1. We will now continue by explaining the
handshake mechanism.

In this handshake protocol, we will use the XK
variant of the Noise Protocol Framework. This
variant allows the TA to send their static public
key to the RP during the handshake (X means
transmitted), while already having knowledge
of the RP ’s static public key (K means known).
The handshake is shown in Protocol 4. It is
also displayed in simplified form in Figure 8
(note that the optional encrypted payload for
each message has been ommited for clarity).
The next paragraph aims to explain in more
detail what has been described in the protocol
notation.

In the following section Gx denotes a public
ephemeral key from x and gx denotes static
public key from x.

During the setup of the TA, it should have
received the RP ’s static public key (0). Man-
ufacturers of devices should be free to decide
in what manner this key ends up on the device
with the TA. However, the key must remain
protected from tampering.

Then, the handshake starts with the TA gen-
erating an ephemeral Diffie-Hellman key and
sending it to the RP in (1). Along with that, the
TA can also encrypt some additional payload
data with a temporary key that has been gen-
erated from Algorithm 3 by using the previous
chaining key ck and the Diffie-Hellman calcu-
lation between the private part of the TA’s
Diffie-Hellman key and the (already known)

Figure 8: Simplified representation of the proto-
col handshake (Gx denotes a public ephemeral
key from x and gx denotes static public key
from x).

public part of the RP ’s static DH key. However,
the payload in this first message should not be
treated as trusted input by the server, because
the plaintext is encrypted with an ephemeral
key. Therefore, the server cannot yet know if it is
interacting with a genuine TA. Since the encryp-
tion is a form of AEAD, we also encrypt with
associated data and a nonce that increments
after encryption and resets after every HKDF
function. Each time encryption is mentioned
from now on, we refer to AEAD encryption with
h as associated data and this nonce. In this pro-
tocol, that is h; a hash chain of data which both
the TA and RP learn during the handshake. We
denote AEAD encryption with these values as
[payload]hkey. In the case of this first message,
the previous h value is hashed together with
the public part of the Diffie-Hellman key to act
as associated data. After the encryption of the
payload, h is updated by hashing its previous
value with the ciphertext. Note that in the case
that there is no payload, we will still be per-
forming AEAD, just with 0 bytes as the input.
Once the RP receives the message from the TA,
they will first calculate the value of h with the
TA’s public key, then decrypt the payload and
verify the AD and lastly calculate the current
value of h by hashing with the ciphertext.

For step (2), the RP also generates an

18

Protocol 4: Protocol Handshake
(0) RP → TA : SRP

(1) TA → RP : GTA || ciphertext
h = HASH(h||GTA)
ck, k1 = HKDF(ck, DH(gTA, SRP))
ciphertext = [payload]hk1
h = HASH(h || ciphertext)

(2) RP → TA : GRP || ciphertext
h = HASH(h||GRP)
ck, k2 = HKDF(ck, DH(gRP , GTA))
ciphertext = [payload]hk2
h = HASH(h || ciphertext)

(3) TA → RP : encrypted_key || ciphertext
encrypted_key = [STA]

h
k2

h = HASH(h || encrypted_key)
ck, k3 = HKDF(ck, DH(sTA, GRP))
ciphertext = [payload]hk3
h = HASH(h || ciphertext)

(4) TA → RP : [payload]c1 , RP → TA : [payload]c2
c1, c2 = HKDF(ck, _)

ephemeral DH key. This key will be the first
part of the message which it will send back
to the TA. The RP further chains the h value
with the generated ephemeral public key and
calculates a new key to encrypt the payload for
this message by ’mixing in’ their ephemeral key
with the TA’s ephemeral public key. Then a
new value for h is calculated by adding the new
ciphertext to the hash chain. The TA receives
the ephemeral key along with the ciphertext
and mirrors these steps to decrypt the payload.

Step (3) is a bit different, since the TA will
send their static public key in encrypted form
to the RP . To encrypt the static public key,
they use the same key as used in the payload
encryption from step (2) and the updated h.
Then, the encrypted key is hash-chained to h
and a new DH calculation occurs between the
TA’s static key and the RP ’s ephemeral key.
Again, an optional payload is encrypted with
the new key and afterwards h gets a new value.

Step (4) finishes the handshake by creating
2 “CipherStates”: c1 for traffic from TA to RP
and c2 for messages from RP to TA. From
this moment on, all messages are encrypted
symmetrically with these 2 keys and associated
data set to zero length and an incrementing
nonce per cipher state. So secret data can now
be exchanged safely between TA and RP . This

includes the Merkle Tree as well as any other
secret data that may be exchanged between
these parties.

7 Examining the Protocol

In this section, we delve into the security and
performance aspects of the proposed protocol,
as described in Section 6. We start by demon-
strating the correctness of the handshake in
Section 7.1, followed by a Proof-of-Concept im-
plementation of the protocol in Section 7.2 and
an analysis of the protocol’s performance in
Section 7.3.

7.1 Protocol Proof

As a partial answer to RQ3 and, more specifi-
cally, RQ3.1, we verified the formal correctness
of the PATAT protocol. To achieve this, we
modeled it in the Tamarin Prover of which the
basics already been explained in Section 2.6. At
a high level, we created two Tamarin files with
the proofs: one for verifying the Integrity of the
protocol and one for verifying the Confidential-
ity of the protocol. With these proofs, we aim
to provide a formal way of demonstrating that
messages in the PATAT Protocol cannot be
tampered with or read without compromising

19

secret keys. The complete Tamarin Model for
PATAT, along with the output of the Tamarin
Prover, can be found on GitLab [59].

7.1.1 Modeling Functions

We began the model by defining the require-
ments for built-in hash and Diffie-Hellman func-
tionality. Additionally, we created custom func-
tions for AEAD encryption, decryption, and ver-
ification. We also defined a function with 2 pa-
rameters for HMAC. For the AEAD functions,
we included specific equations in Tamarin to
represent how these functions work. The HMAC
function doesn’t need an equation because it is
modeled as a one-way function. However, since
Tamarin only recognizes state, not functions,
equations are required for modeling the encryp-
tion and AEAD verification processes. These
equations are as follows:

enc = aead (k , n , a , p)
decrypt (enc , k , n , a) = p
v e r i f y (enc , k , n , a) = true

7.1.2 Tamarin Rules

With the functions from the previous section,
we can create the rules. To provide the model
with an opportunity to "win", we begin by creat-
ing a rule that takes the persistent fact KeyPair,
which contains a public and private key. This
implies that a KeyPair should already exist in
the multiset. The arrow indicates that the previ-
ous state is transformed into the state after the
arrow, signifying that the Out fact containing
the private key is now part of the multiset, in-
dicating that the private key has been revealed.
The arrow also carries the name of the trans-
formation RevealSecretKey as the action fact,
which we can use later in the lemmas.

r u l e reveal_private_key :
[! KeyPair (pubkey , ∼pr ivkey)]

−−[RevealSecretKey (pubkey)]−>
[Out(∼pr ivkey)]

We created a similar rule for revealing the
ephemeral keys to the multiset. Then, we mod-
eled the setup stage of the protocol by creat-
ing an initialize rule for both the RP and
the TA. The TA variant takes the a freshly
generated ID, a generated static KeyPair, the
server’s public key, and prologue data that has

been agreed on beforehand. This becomes the
following Tamarin block:

Fr (∼ta_id) ,
! KeyPair (ta_pub_s , ∼ta_priv_s) ,
In (server_pub_s) ,
In (pro logue)

Then, the rule outputs the following facts:

! Stat icKey (
∼ta_id , ta_pub_s , ∼ta_priv_s

) ,
TAIn i t i a l i z edS ta t e (

∼ta_id , h3 , ck1 , server_pub_s
)

The variables in these output facts have the
following assignments:

ta_pub_s = ’g ’^∼ta_priv_s
h1 = h (’PROTOCOL_NAME’)
ck1 = h1
h2 = h(<h1 , prologue >)
h3 = h(<h2 , server_pub_s>)

With these assignments, we have modeled the
steps from the handshake setup from Section
6.3. The RP initialize rule is modeled very
similarly to the rule above.

With the setup modeled, we can move on to
the actual handshake. We split this part up into
4 rules, one for each message from each actor in
the handshake. We show the rule for the TA’s
first message as an example in Listing 1. The
others can be found in the complete model on
GitLab [59].

In the rule, we model the input as a fresh
ephemeral key and a previously generated static
keypair associated with the TA’s ID. The rule
also takes the TAInitializedState fact from
the initialize rule. Additionally, we model
the payload that the TA will send as a fresh
random value. We model the payload this way
in the Confidentiality version because the adver-
sary should not be aware of its contents. In the
Integrity version, we always take the payloads
from the network, as this modeling accounts for
the possibility that an attacker may have knowl-
edge of or influence over the payload, thereby
creating a stronger adversary model.

The output of this rule includes a persistent
EphemeralKey fact, representing that the TA
has generated a new ephemeral key pair. Along
with it is a TAAfterFirstMessageState fact

20

Listing 1: Tamarin rule for the TA’s first message
ru l e ta_f irst_message :

l e t
ta_public_s = ’g ’^∼ta_private_s
ta_public_e = ’g ’^∼ta_private_e
h4 = h(<h3 , ta_public_e >)
dh_es = (server_publ ic_s^∼ta_private_e)
temp_k = hmac(ck1 , dh_es)
ck2 = hmac(temp_k , ’0 x01 ’)
k1 = hmac(temp_k , <ck2 , ’0 x02 ’>)
n1 = ’0 ’
c i phe r t ex t1 = aead (k1 , n1 , h4 , ∼payload1)
h5 = h(<h4 , c ipher t ext1 >)
message = <ta_public_e , c ipher t ext1 >

in
[

Fr (∼ta_private_e) ,
! Stat icKey (∼ta_id , ta_public_s , ∼ta_private_s) ,
TAIn i t i a l i z edS ta t e (∼ta_id , h3 , ck1 , server_publ ic_s) ,
Fr (∼payload1)

]
−−[

SendMessage (∼ta_id , ’ payload1 ’ , ∼payload1) ,
SendCiphertext (∼ta_id , ’ payload1 ’ , c i phe r t ex t 1) ,
SetOwnEphemeralKey (∼ta_id , ta_public_e) ,
RunningTA(∼ta_id , ∼ta_private_s) ,
TAKeyUsed(∼ta_id , ’m1’ , k1 , n1 , h4)

]−>
[

! EphemeralKey (∼ta_id , ta_public_e , ∼ta_private_e) ,
TAAfterFirstMessageState (∼ta_id , h5 , ck2 , k1) ,
Out(message)

]

21

with the current state of the variables h, ck,
and k in the handshake. Finally, we model the
message in an Out fact, indicating that the ad-
versary can also interact with it. The action
facts in the middle are used later in the lem-
mas for proving the protocol. In the let block,
we model the transformation of the variables
during the handshake and the encryption of
the message with AEAD encryption. The other
three rules, representing the different messages
sent during the handshake, are modeled simi-
larly.

7.1.3 Tamarin Lemmas

The rules from the section model the PATAT
protocol and Tamarin action facts were assigned
in the rules. These action facts are used to
model the lemmas which are used to provide
the actual proofs for the PATAT Protocol.

In Listing 2, we have included one of the
lemmas used in the Tamarin proof for the con-
fidentiality of the handshake messages. This
lemma aims to prove that even if an adver-
sary gains access to the RP ’s ephemeral se-
cret key, the confidentiality of the messages is
maintained. We start by defining the variables
used in the lemma. Then, we denote in the
ReceiveMessage action fact that the TA has
received the second message. The section after
that describes the other setup steps that have
occurred during the handshake. We also specify
that only the RP ’s ephemeral secret key was
compromised by the adversary. Using the ==>
arrow, we indicate that these action facts to-
gether imply that the adversary is not aware of
the payload. When we run the Tamarin Prover,
it will either verify or falsify this lemma, allow-
ing us to determine whether this confidentiality
assumption holds.

7.1.4 Proof Results

Running the verification on all the lemmas in
Tamarin outputs for each whether they are fal-
sified or verified. Table 3 shows the results of
the integrity and confidentiality lemmas. In the
table we see that the security of the handshake
messages remains, even when some of the inter-
mediate keys have been stolen by an attacker.
The table does not include cases where both TA
and RP lose their keys because it is trivial to

see that such cases cannot be secure. The proof
shows that payload secrecy for all handshake
messages is guaranteed when all the keys re-
main secure. The integrity for the first message
cannot be guaranteed, since that message only
includes an ephemeral key from the TA. The
following handshake messages all have a static
key mixed in, which guarantees the integrity of
the handshake messages. An interesting finding
is that the third handshake message’s secrecy
can be guaranteed when two keys have been
stolen by the attacker, except for the case in
which both ephemeral keys are compromised.

7.2 Protocol Implementation

We implemented our protocol in Rust in the
OP-Tee [12] environment. For that, we made
use of the OP-TEE Rust SDK available from
Apache [60]. With this, we created a client ap-
plication in OP-TEE which spawns a TA that
sets up a connection with a remote RP . The
cryptographic operations in the implementa-
tion make use of the cryptographic primitives
exposed in the Teaclave SDK. We emulated a
system with TrustZone using QEMU [61] on a
regular x86_64 machine to test the protocol in
a controlled environment.

For the implementation, we use a 32-byte
hash size and set the Diffie-Hellman output
length to 32 bytes with a 2048-bit key. For sym-
metric encryption, we chose ChaCha20Poly1305
due to its faster software implementation com-
pared to AES-GCM. This algorithm uses a
key size of 32 bytes (256 bits). Consequently,
the Noise protocol handshake pattern string
is Noise_XK_25519_ChaChaPoly_SHA256. This
string is used at the beginning of the protocol
to ensure compatibility with any implementa-
tion of the Noise spec. This approach allows for
easier implementation if the protocol needs to
be developed in another programming language
that also has a ready-made Noise implementa-
tion. Due to the limited size of the computing
base in the TA, not all modern Rust libraries
can be used, making it more challenging to
quickly develop a Proof-of-Concept application.

To provide additional verification for our im-
plementation on the TA side, we implemented
the RP side of the protocol in Rust for an
x86_64 machine. For this, we used the snow
package in Rust [62] and the built-in hash meth-

22

Listing 2: An example of a lemma.
lemma payload_payload2_conf ident ia l i ty_lost_s ing le_rp_eph_st i l l_sa fe :

"
// For a l l the va lue s that these v a r i a b l e s can hold . . .
A l l ta_id ta_pubkey payload2 server_pubkey

server_id ta_e_pubkey server_e_pubkey
#a #b #c #d #e #f #g #i #j .

// I f the RP r e c e i v e s payload2 . . .
ReceiveMessage (ta_id , ’ payload2 ’ , payload2) @a

// After a c o r r e c t setup . . .
& SetOwnStaticKey (ta_id , ta_pubkey) @b
& AcceptStaticPubKey (server_id , ta_pubkey) @c
& SetOwnStaticKey (server_id , server_pubkey) @d
& AcceptStaticPubKey (ta_id , server_pubkey) @e
& SetOwnEphemeralKey (ta_id , ta_e_pubkey) @f
& AcceptEphemeralKey (server_id , ta_e_pubkey) @g
& SetOwnEphemeralKey (server_id , server_e_pubkey) @i
& AcceptEphemeralKey (ta_id , server_e_pubkey) @j

// And TA Ephemeral key i s s a f e
& (not Ex #n . RevealEphemeralKey (ta_e_pubkey) @n)

// But RP Ephemeral s e c r e t key i s s t o l e n
& (Ex #n . RevealEphemeralKey (server_e_pubkey) @n)

// And TA Long term key i s s a f e
& (not Ex #n . RevealSecretKey (ta_pubkey) @n)

// And RP Long term key i s s a f e
& (not Ex #n . RevealSecretKey (server_pubkey) @n)

==>
// Then an at tacke r should not know the contents o f
// the second handshake message
(not Ex #x . K(payload2) @x)
"

Table 3: Formal Proof Results

Lost keys Final 1C 1I 2C 2I 3C 3I
None ✓ ✓ ✗ ✓ ✓ ✓ ✓

GTA ✓ ✗ ✗ ✗ ✗ ✓ ✓

GRP ✓ ✓ ✗ ✓ ✓ ✓ ✓

gTA ✓ ✓ ✗ ✓ ✓ ✓ ✓

gRP ✓ ✗ ✗ ✓ ✓ ✓ ✓

GTA&GRP ✗ ✗ ✗ ✗ ✗ ✗ ✗

GTA&gRP ✓ ✗ ✗ ✗ ✗ ✓ ✓

gTA&GRP ✓ ✓ ✗ ✓ ✓ ✓ ✓

gTA&gRP ✓ ✗ ✗ ✓ ✓ ✓ ✓

23

Figure 9: Measurements of the protocol runs

ods for creating the Merkle Tree data format.
Using a tried and tested implementation of the
Noise protocol and Merkle Tree on this side of
the connection grants us additional confidence
in the TA’s implementation when the attesta-
tions are verified. The application in the QEMU
environment can communicate with the x86_64
machine, acting as the TA and RP , respectively.
Both sources are available on GitHub [63] [64].

7.3 Protocol Measurement

We evaluated our protocol by measuring the
time it takes to run Trusted Applications with
this work as remote attestation protocol. The
measurements were done in a QEMU environ-
ment, simulating an Arm Cortex V8 chip. The
QEMU environment ran on Fedora 39, powered
by an AMD Ryzen™ 9 5900X and 32GB DDR4
RAM. The measurements were performed six
times, varying the amount of Claims used. Start-
ing with 5 pieces of evidence strings, then 25
incrementing in steps of 25 until 125. The ev-
idence strings were hard-coded to ensure that
the protocol’s performance was assessed inde-
pendently of the measuring process.

To answer RQ3.2 each configuration was
tested 1000 times. Figure 9 shows the mean
and standard deviation of the time elapsed (in
ms) for each amount of Claims in the Evidence.
The red line shows mean time to run the appli-
cation for which no attestation was performed
to run the application in the TEE. This acts
as a baseline to compare the execution times of
the other runs.

We also measured the payload sizes for send-
ing the Evidence during our measurements.

These lie between 183 bytes for the smallest
number of Evidence objects and 311 for the
maximum number that we used in the runs.

8 Discussion

This section discusses the protocol’s design from
Section 6, its verification from Section 7.1 and
the protocol PoC implementation and examina-
tion from Section 7.2.

8.1 Protocol Considerations

The protocol provides a novel way of perform-
ing remote attestation. Its main contribution
is the elegant combination of Merkle Trees as
the Evidence format and the use of the simple-
to-implement Noise protocol for setting up a
secure connection. Given that these concepts
are already known and implementations already
exist, they can be combined relatively easily to
create the PATAT Protocol.

Although this work primarily focuses on re-
mote attestation, the protocol could technically
also be performed locally on the device. En-
cryption and TrustZone concepts ensure that
no malicious software on the device can eaves-
drop on the connection between the trusted
part, acting as the RP , and the TA. A hybrid
between local and remote attestation is also
possible, and future work could explore the pos-
sibility of creating a Merkle Tree chain that
holds results of previous remote attestations
and uses them for local attestation.

Furthermore, since the handshake is per-
formed using Diffie-Hellman, some applications
that must be quantum-proof might hesitate to
apply the PATAT Protocol. For such cases, it
is relatively easy to extend the protocol with a
symmetric key. However, this would require an
extension to the proof from Section 7.1 and lead
to slightly more overhead in key distribution.

8.2 Verification Results

The results from the protocol verification, out-
lined in Section 7.1, indicate that the proto-
col maintains security under normal conditions.
Additionally, the analysis confirms that the se-
curity assumptions regarding authenticity and
secrecy remain intact even if certain protocol
keys are compromised. The only exception is

24

when both ephemeral keys are lost to an at-
tacker. It should be noted, however, that the
ephemeral keys are designed to be neither stored
nor reused. The Noise protocol’s security con-
siderations also explicitly state that reuse of
ephemeral keys is prohibited. Hence, this sce-
nario is not likely to occurr in practice.

Next to that case, the proof shows that the
authenticity of the first message cannot be guar-
anteed. Therefore, any additional data that is
sent along that message should not be trusted
until the long term key is mixed. This outcome
was anticipated, given that the initial message
contains only an ephemeral key integrated into
its encryption, which cannot be authenticated
by the RP . Thus, there is a potential vulnerabil-
ity that could be exploited by an active attacker
if data from message 1 is handled as trusted
data.

Furthermore, if we consider the scenario
where the ephemeral key of the TA is compro-
mised, the attacker gains the ability to intercept
the second message. Given that the second mes-
sage originates from the RP and is directed
to the TA, the authenticity is perceived from
the TA’s perspective. Consequently, assuming
that the TA initiated the first message and its
ephemeral key was indeed compromised, the
TA cannot be sure that the second message
came from the RP . Even if they were the ones
that sent the message, the attacker with the
ephemeral key is able to read its contents. Again,
this was expected, as the ephemeral key from
the TA is the only key they mixed in, and its
compromise inevitably compromises the secu-
rity of the second message as well.

Lastly, we see that in all the other cases,
confidentiality and integrity of the messages
hold. Which gives us a set of practical security
considerations for this protocol:

1. The first message must not include any
confidential payload.

2. Trust in any payload data from the first
message is only justified after verification
of message 3.

3. Message 2 should not contain secret infor-
mation, since the receiver has not been
verified.

4. Message 3 can be used to send some se-
cret information before the actual secret
channel has been setup. This message has
similar security guarantees as the secure
channel.

5. Ephemeral keys must not be reused.

8.3 Implementation

The implementation discussed in Section 7.2
provides a way to perform attestation on itself,
but it is unfinished. Currently it can perform a
handshake to setup a connection from the TA
to a server and combine different Claims into
Merkle Tree Evidence. The RP can then verify
that result and respond.

What is missing at this point is a trusted way
of measuring the system for Claims. Having a
separate trusted measurer is important, as we
outlined in Section 2.3.2, so this must be imple-
mented before using the protocol in production
environments. This Proof-of-Concept (PoC) can
serve as a reference or basis for another imple-
mentation. Future improvements in the Rust
SDK for OP-TEE could also help make it easier
to maintain.

Furthermore, the protocol can be imple-
mented in other languages as well, due to its sim-
plicity and the availability of existing libraries
that provide the building blocks for this work.
Such works should also aim to implement a
Trusted Measurer to acquire evidence for the
protocol and a mechanism to prevent Trusted
Applications from running without performing
attestation. Furthermore, the PoC shows a way
to perform remote attestation, whereas future
implementation may also consider implement-
ing local attestation. The nature of this work
does allow for such a use-case which can also
be implemented in another work.

8.4 Measurement Results

The measurements outlined in Section 7.3
demonstrate that the protocol does not intro-
duce severe overhead on a fast connection. The
measurements extend up to 125 distinct pieces
of Evidence, whereas a range between 10 to 20
would be more realistic, particularly considering
the limited computational capacities of embed-
ded devices. Nevertheless, these results show

25

that the protocol itself can sustain higher num-
bers of evidence if necessary. Compared to the
baseline without attestation it does introduce
some overhead, but remote attestation always
introduces some overhead due to the additional
steps and network traffic.

As also discussed in that Section, the payload
sizes lie between 183 and 311 bytes. The maxi-
mum number of bytes in a single TCP packet
are 1500 bytes, so these payloads fit in one
packet. However, future improvements to the
implementation and packaging of the Evidence
may be possible.

However, it is important to acknowledge that
in real-world applications, the measurement pro-
cess itself can also be time-consuming. Future
implementations need to account for this as-
pect when integrating Trusted Measurers, as
they could significantly influence the overall
performance of the attestation process.

9 Conclusion

In this study, we have examined existing attes-
tation mechanisms and devised a novel attesta-
tion protocol tailored for the Arm TrustZone
environment. Noteworthy is the fact that our
protocol leverages established technologies such
as the Noise Protocol and Merkle Trees, further
validated through formal verification via the
Tamarin Prover. This protocol aligns closely
with the specified goals outlined in Section
6.1. Section 5 provides an analysis of existing
TrustZone attestation mechanisms, categorized
based on predefined Functional and Security
Features. Building upon this groundwork, Sec-
tion 6 presents the PATAT Protocol, a novel
attestation protocol using the Noise Protocol
and Merkle Trees. Section 7.1 demonstrates its
formal verification using the Tamarin Prover, af-
firming its integrity in maintaining both secrecy
and authenticity. Lastly, Section 7.2 describes
the implementation of a Proof-of-Concept appli-
cation and the performance of said application
which show that our work runs under 500ms
when utilizing 125 or less pieces of Evidence.

References

[1] F. Almeida, J. Duarte Santos, and J. Au-
gusto Monteiro, “The Challenges and Op-

portunities in the Digitalization of Com-
panies in a Post-COVID-19 World,” IEEE
Engineering Management Review, vol. 48,
no. 3, pp. 97–103, 2020, issn: 1937-4178.
doi: 10.1109/EMR.2020.3013206.

[2] M. Satyanarayanan, “The Emergence of
Edge Computing,” Computer, vol. 50,
no. 1, pp. 30–39, Jan. 2017, issn: 0018-
9162. doi: 10.1109/MC.2017.9. [Online].
Available: http : / / ieeexplore . ieee .
org/document/7807196/.

[3] A. Ltd, TrustZone for Cortex-A – Arm®,
Arm | The Architecture for the Digital
World. [Online]. Available: https://www.
arm . com / technologies / trustzone -
for-cortex-a.

[4] S. Pinto and N. Santos, “Demystifying
Arm TrustZone: A Comprehensive Sur-
vey,” ACM Computing Surveys, vol. 51,
no. 6, 130:1–130:36, Jan. 28, 2019, issn:
0360-0300. doi: 10.1145/3291047. [On-
line]. Available: https://doi.org/10.
1145/3291047.

[5] A. Ltd, TrustZone for Cortex-M – Arm®,
Arm | The Architecture for the Digital
World. [Online]. Available: https://www.
arm . com / technologies / trustzone -
for-cortex-m.

[6] Networking ecosystem ⋆ Scalys - NXP
Layerscape TrustBox Edge, Scalys. [On-
line]. Available: https://scalys.com/
solutions/networking-ecosystem/.

[7] Trustbox Family ⋆ Scalys - Cyber se-
cure IoT Edge devices, Scalys. [Online].
Available: https : / / scalys . com /
solutions / networking - ecosystem /
trustbox-edge/.

[8] B. Ngabonziza, D. Martin, A. Bailey,
H. Cho, and S. Martin, “TrustZone Ex-
plained: Architectural Features and Use
Cases,” in 2016 IEEE 2nd International
Conference on Collaboration and Inter-
net Computing (CIC), Pittsburgh, PA,
USA: IEEE, Nov. 2016, pp. 445–451,
isbn: 978-1-5090-4607-2. doi: 10.1109/
CIC.2016.065. [Online]. Available: http:
/ / ieeexplore . ieee . org / document /
7809736/.

26

https://doi.org/10.1109/EMR.2020.3013206
https://doi.org/10.1109/MC.2017.9
http://ieeexplore.ieee.org/document/7807196/
http://ieeexplore.ieee.org/document/7807196/
https://www.arm.com/technologies/trustzone-for-cortex-a
https://www.arm.com/technologies/trustzone-for-cortex-a
https://www.arm.com/technologies/trustzone-for-cortex-a
https://doi.org/10.1145/3291047
https://doi.org/10.1145/3291047
https://doi.org/10.1145/3291047
https://www.arm.com/technologies/trustzone-for-cortex-m
https://www.arm.com/technologies/trustzone-for-cortex-m
https://www.arm.com/technologies/trustzone-for-cortex-m
https://scalys.com/solutions/networking-ecosystem/
https://scalys.com/solutions/networking-ecosystem/
https://scalys.com/solutions/networking-ecosystem/trustbox-edge/
https://scalys.com/solutions/networking-ecosystem/trustbox-edge/
https://scalys.com/solutions/networking-ecosystem/trustbox-edge/
https://doi.org/10.1109/CIC.2016.065
https://doi.org/10.1109/CIC.2016.065
http://ieeexplore.ieee.org/document/7809736/
http://ieeexplore.ieee.org/document/7809736/
http://ieeexplore.ieee.org/document/7809736/

[9] M. Sabt, M. Achemlal, and A. Bouab-
dallah, “Trusted Execution Environment:
What It is, and What It is Not,” in
2015 IEEE Trustcom/BigDataSE/ISPA,
Helsinki, Finland: IEEE, Aug. 2015,
pp. 57–64, isbn: 978-1-4673-7952-6. doi:
10.1109/Trustcom.2015.357. [Online].
Available: http : / / ieeexplore . ieee .
org/document/7345265/.

[10] Trusted Execution Environment (TEE)
Committee, GlobalPlatform. [Online].
Available: https : / / globalplatform .
org/technical-committees/trusted-
execution - environment - tee -
committee/.

[11] Introduction to Trusted Execu-
tion Environments, GlobalPlat-
form. [Online]. Available: https :
/ / globalplatform . org / resource -
publication / introduction - to -
trusted-execution-environments/.

[12] Open Portable Trusted Execution En-
vironment, Linaro. [Online]. Available:
https://www.op-tee.org/.

[13] V. Costan and S. Devadas, Intel SGX Ex-
plained, 2016. [Online]. Available: https:
//eprint.iacr.org/2016/086, preprint.

[14] MultiZone Security TEE for RISC-V, Hex
Five Security, Jun. 30, 2019. [Online].
Available: https : / / hex - five . com /
multizone-security-tee-riscv/.

[15] CWE - CWE-121: Stack-based Buffer
Overflow (4.10). [Online]. Available:
https : / / cwe . mitre . org / data /
definitions/121.html.

[16] CWE - CWE-78: Improper Neutralization
of Special Elements used in an OS Com-
mand (’OS Command Injection’) (4.10).
[Online]. Available: https://cwe.mitre.
org/data/definitions/78.html.

[17] J. Ménétrey, C. Göttel, A. Khurshid, et
al., “Attestation Mechanisms for Trusted
Execution Environments Demystified,” in
Distributed Applications and Interoperable
Systems, D. Eyers and S. Voulgaris, Eds.,
vol. 13272, Cham: Springer International
Publishing, 2022, pp. 95–113, isbn: 978-3-
031-16092-9. doi: 10.1007/978-3-031-
16092-9_7. [Online]. Available: https:

//link.springer.com/10.1007/978-3-
031-16092-9_7.

[18] H. Birkholz, D. Thaler, M. Richardson, N.
Smith, and W. Pan, “Remote ATtestation
procedureS (RATS) Architecture,” RFC
Editor, RFC9334, Jan. 2023, RFC9334.
doi: 10.17487/RFC9334. [Online]. Avail-
able: https://www.rfc-editor.org/
info/rfc9334.

[19] G. Coker, J. Guttman, P. Loscocco, et
al., “Principles of remote attestation,” In-
ternational Journal of Information Se-
curity, vol. 10, no. 2, pp. 63–81, Jun.
2011, issn: 1615-5262, 1615-5270. doi:
10.1007/s10207-011-0124-7. [Online].
Available: http://link.springer.com/
10.1007/s10207-011-0124-7.

[20] F. Brasser, D. Gens, P. Jauernig, A.-R.
Sadeghi, and E. Stapf, “SANCTUARY:
ARMing TrustZone with User-space En-
claves,” in Proceedings 2019 Network and
Distributed System Security Symposium,
San Diego, CA: Internet Society, 2019,
isbn: 978-1-891562-55-6. doi: 10.14722/
ndss . 2019 . 23448. [Online]. Available:
https://www.ndss-symposium.org/wp-
content/uploads/2019/02/ndss2019_
01A-1_Brasser_paper.pdf.

[21] ARM Security Technology Building a
Secure System using TrustZone Tech-
nology. [Online]. Available: https : / /
developer . arm . com / documentation /
PRD29 - GENC - 009492 / c / TrustZone -
Software - Architecture / Booting - a -
secure-system/Secure-boot.

[22] R. Wilkins and B. Richardson, “UEFI se-
cure boot in modern computer security
solutions,” in UEFI Forum, 2013.

[23] About – Confidential Computing Con-
sortium. [Online]. Available: https://
confidentialcomputing.io/about/.

[24] J. Ménétrey, C. Göttel, M. Pasin, P. Fel-
ber, and V. Schiavoni, An Exploratory
Study of Attestation Mechanisms for
Trusted Execution Environments, Apr. 15,
2022. arXiv: 2204.06790 [cs]. [Online].
Available: http://arxiv.org/abs/2204.
06790, preprint.

27

https://doi.org/10.1109/Trustcom.2015.357
http://ieeexplore.ieee.org/document/7345265/
http://ieeexplore.ieee.org/document/7345265/
https://globalplatform.org/technical-committees/trusted-execution-environment-tee-committee/
https://globalplatform.org/technical-committees/trusted-execution-environment-tee-committee/
https://globalplatform.org/technical-committees/trusted-execution-environment-tee-committee/
https://globalplatform.org/technical-committees/trusted-execution-environment-tee-committee/
https://globalplatform.org/resource-publication/introduction-to-trusted-execution-environments/
https://globalplatform.org/resource-publication/introduction-to-trusted-execution-environments/
https://globalplatform.org/resource-publication/introduction-to-trusted-execution-environments/
https://globalplatform.org/resource-publication/introduction-to-trusted-execution-environments/
https://www.op-tee.org/
https://eprint.iacr.org/2016/086
https://eprint.iacr.org/2016/086
https://hex-five.com/multizone-security-tee-riscv/
https://hex-five.com/multizone-security-tee-riscv/
https://cwe.mitre.org/data/definitions/121.html
https://cwe.mitre.org/data/definitions/121.html
https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/78.html
https://doi.org/10.1007/978-3-031-16092-9_7
https://doi.org/10.1007/978-3-031-16092-9_7
https://link.springer.com/10.1007/978-3-031-16092-9_7
https://link.springer.com/10.1007/978-3-031-16092-9_7
https://link.springer.com/10.1007/978-3-031-16092-9_7
https://doi.org/10.17487/RFC9334
https://www.rfc-editor.org/info/rfc9334
https://www.rfc-editor.org/info/rfc9334
https://doi.org/10.1007/s10207-011-0124-7
http://link.springer.com/10.1007/s10207-011-0124-7
http://link.springer.com/10.1007/s10207-011-0124-7
https://doi.org/10.14722/ndss.2019.23448
https://doi.org/10.14722/ndss.2019.23448
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_01A-1_Brasser_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_01A-1_Brasser_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_01A-1_Brasser_paper.pdf
https://developer.arm.com/documentation/PRD29-GENC-009492/c/TrustZone-Software-Architecture/Booting-a-secure-system/Secure-boot
https://developer.arm.com/documentation/PRD29-GENC-009492/c/TrustZone-Software-Architecture/Booting-a-secure-system/Secure-boot
https://developer.arm.com/documentation/PRD29-GENC-009492/c/TrustZone-Software-Architecture/Booting-a-secure-system/Secure-boot
https://developer.arm.com/documentation/PRD29-GENC-009492/c/TrustZone-Software-Architecture/Booting-a-secure-system/Secure-boot
https://developer.arm.com/documentation/PRD29-GENC-009492/c/TrustZone-Software-Architecture/Booting-a-secure-system/Secure-boot
https://confidentialcomputing.io/about/
https://confidentialcomputing.io/about/
https://arxiv.org/abs/2204.06790
http://arxiv.org/abs/2204.06790
http://arxiv.org/abs/2204.06790

[25] Understanding the Confidential Contain-
ers Attestation Flow. [Online]. Available:
https : / / www . redhat . com / en /
blog / understanding - confidential -
containers-attestation-flow.

[26] H. Tschofenig, Y. Sheffer, P. Howard,
I. Mihalcea, and Y. Deshpande, “Us-
ing Attestation in Transport Layer Se-
curity (TLS) and Datagram Transport
Layer Security (DTLS),” Internet Engi-
neering Task Force, Internet Draft draft-
fossati-tls-attestation-03, Mar. 13, 2023,
27 pp. [Online]. Available: https : / /
datatracker . ietf . org / doc / draft -
fossati-tls-attestation-03.

[27] C. Shepherd, R. N. Akram, and K.
Markantonakis, “Establishing Mutually
Trusted Channels for Remote Sensing De-
vices with Trusted Execution Environ-
ments,” in Proceedings of the 12th Inter-
national Conference on Availability, Reli-
ability and Security, Reggio Calabria Italy:
ACM, Aug. 29, 2017, pp. 1–10, isbn: 978-
1-4503-5257-4. doi: 10.1145/3098954.
3098971. [Online]. Available: https://
dl.acm.org/doi/10.1145/3098954.
3098971.

[28] R. C. Merkle, “A Digital Signature Based
on a Conventional Encryption Function,”
in Advances in Cryptology — CRYPTO
’87, C. Pomerance, Ed., red. by G. Goos,
J. Hartmanis, D. Barstow, et al., vol. 293,
Berlin, Heidelberg: Springer Berlin Hei-
delberg, 1988, pp. 369–378, isbn: 978-3-
540-18796-7 978-3-540-48184-3. doi: 10.
1007/3-540-48184-2_32. [Online]. Avail-
able: http://link.springer.com/10.
1007/3-540-48184-2_32.

[29] S. Nakamoto, “Bitcoin: A Peer-to-Peer
Electronic Cash System,”

[30] R. Dahlberg, T. Pulls, and R. Peeters,
“Efficient Sparse Merkle Trees,” in Secure
IT Systems, B. B. Brumley and J. Röning,
Eds., vol. 10014, Cham: Springer Inter-
national Publishing, 2016, pp. 199–215,
isbn: 978-3-319-47559-2 978-3-319-47560-
8. doi: 10.1007/978- 3- 319- 47560-
8_13. [Online]. Available: http://link.
springer.com/10.1007/978- 3- 319-
47560-8_13.

[31] E. Rescorla, “Diffie-Hellman Key Agree-
ment Method,” 2631, Jun. 1999, 13 pp.
doi: 10.17487/RFC2631. [Online]. Avail-
able: https://www.rfc-editor.org/
info/rfc2631.

[32] J. Black, “Authenticated encryption,” in
Encyclopedia of Cryptography and Secu-
rity, H. C. A. van Tilborg, Ed., Boston,
MA: Springer US, 2005, pp. 11–21, isbn:
978-0-387-23483-0. doi: 10.1007/0-387-
23483-7_15. [Online]. Available: https:
//doi.org/10.1007/0- 387- 23483-
7_15.

[33] Y. Nir and A. Langley, ChaCha20 and
Poly1305 for IETF Protocols, RFC 8439,
Jun. 2018. doi: 10.17487/RFC8439. [On-
line]. Available: https : / / www . rfc -
editor.org/info/rfc8439.

[34] J. A. Salowey, D. McGrew, and A. Choud-
hury, AES Galois Counter Mode (GCM)
Cipher Suites for TLS, RFC 5288, Aug.
2008. doi: 10.17487/RFC5288. [Online].
Available: https://www.rfc- editor.
org/info/rfc5288.

[35] B. Schmidt, S. Meier, C. Cremers, and
D. Basin, “Automated Analysis of Diffie-
Hellman Protocols and Advanced Secu-
rity Properties,” in 2012 IEEE 25th Com-
puter Security Foundations Symposium,
Jun. 2012, pp. 78–94. doi: 10.1109/CSF.
2012.25.

[36] David Basin, Cas Cremers, Jannik
Dreier, Simon Meier, Ralf Sasse, and
Benedikt Schmidt, Tamarin Prover,
https://tamarin-prover.github.io/. [On-
line]. Available: https : / / tamarin -
prover.github.io/.

[37] C. J. F. Cremers, “The Scyther Tool: Ver-
ification, Falsification, and Analysis of
Security Protocols,” in Computer Aided
Verification, A. Gupta and S. Malik, Eds.,
vol. 5123, Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 414–418,
isbn: 978-3-540-70543-7 978-3-540-70545-
1. doi: 10.1007/978- 3- 540- 70545-
1_38. [Online]. Available: http://link.
springer.com/10.1007/978- 3- 540-
70545-1_38.

28

https://www.redhat.com/en/blog/understanding-confidential-containers-attestation-flow
https://www.redhat.com/en/blog/understanding-confidential-containers-attestation-flow
https://www.redhat.com/en/blog/understanding-confidential-containers-attestation-flow
https://datatracker.ietf.org/doc/draft-fossati-tls-attestation-03
https://datatracker.ietf.org/doc/draft-fossati-tls-attestation-03
https://datatracker.ietf.org/doc/draft-fossati-tls-attestation-03
https://doi.org/10.1145/3098954.3098971
https://doi.org/10.1145/3098954.3098971
https://dl.acm.org/doi/10.1145/3098954.3098971
https://dl.acm.org/doi/10.1145/3098954.3098971
https://dl.acm.org/doi/10.1145/3098954.3098971
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/3-540-48184-2_32
http://link.springer.com/10.1007/3-540-48184-2_32
http://link.springer.com/10.1007/3-540-48184-2_32
https://doi.org/10.1007/978-3-319-47560-8_13
https://doi.org/10.1007/978-3-319-47560-8_13
http://link.springer.com/10.1007/978-3-319-47560-8_13
http://link.springer.com/10.1007/978-3-319-47560-8_13
http://link.springer.com/10.1007/978-3-319-47560-8_13
https://doi.org/10.17487/RFC2631
https://www.rfc-editor.org/info/rfc2631
https://www.rfc-editor.org/info/rfc2631
https://doi.org/10.1007/0-387-23483-7_15
https://doi.org/10.1007/0-387-23483-7_15
https://doi.org/10.1007/0-387-23483-7_15
https://doi.org/10.1007/0-387-23483-7_15
https://doi.org/10.1007/0-387-23483-7_15
https://doi.org/10.17487/RFC8439
https://www.rfc-editor.org/info/rfc8439
https://www.rfc-editor.org/info/rfc8439
https://doi.org/10.17487/RFC5288
https://www.rfc-editor.org/info/rfc5288
https://www.rfc-editor.org/info/rfc5288
https://doi.org/10.1109/CSF.2012.25
https://doi.org/10.1109/CSF.2012.25
https://tamarin-prover.github.io/
https://tamarin-prover.github.io/
https://doi.org/10.1007/978-3-540-70545-1_38
https://doi.org/10.1007/978-3-540-70545-1_38
http://link.springer.com/10.1007/978-3-540-70545-1_38
http://link.springer.com/10.1007/978-3-540-70545-1_38
http://link.springer.com/10.1007/978-3-540-70545-1_38

[38] J. Menetrey, M. Pasin, P. Felber, and V.
Schiavoni, “WaTZ: A Trusted WebAssem-
bly Runtime Environment with Remote
Attestation for TrustZone,” in 2022 IEEE
42nd International Conference on Dis-
tributed Computing Systems (ICDCS),
Bologna, Italy: IEEE, Jul. 2022, pp. 1177–
1189, isbn: 978-1-66547-177-0. doi: 10.
1109/ICDCS54860.2022.00116. [Online].
Available: https://ieeexplore.ieee.
org/document/9912246/.

[39] WebAssembly. [Online]. Available: https:
//webassembly.org/.

[40] Google, Google Scholar. [Online]. Avail-
able: https://scholar.google.com/.

[41] W. Li, H. Li, H. Chen, and Y. Xia, “AdAt-
tester: Secure Online Mobile Advertise-
ment Attestation Using TrustZone,” in
Proceedings of the 13th Annual Interna-
tional Conference on Mobile Systems, Ap-
plications, and Services, Florence Italy:
ACM, May 18, 2015, pp. 75–88, isbn: 978-
1-4503-3494-5. doi: 10.1145/2742647.
2742676. [Online]. Available: https://
dl.acm.org/doi/10.1145/2742647.
2742676.

[42] T. Abera, N. Asokan, L. Davi, et al.,
C-FLAT: Control-FLow ATtestation for
Embedded Systems Software, Aug. 17,
2016. arXiv: 1605.07763 [cs]. [Online].
Available: http://arxiv.org/abs/1605.
07763, preprint.

[43] G. Scopelliti, S. Pouyanrad, J. Noor-
man, et al., “End-to-End Security for
Distributed Event-Driven Enclave Appli-
cations on Heterogeneous TEEs,” ACM
Transactions on Privacy and Security,
Apr. 13, 2023, issn: 2471-2566. doi:
10 . 1145 / 3592607. [Online]. Available:
https://dl.acm.org/doi/10.1145/
3592607.

[44] J. H. Ostergaard, E. Dushku, and N.
Dragoni, “ERAMO: Effective Remote At-
testation through Memory Offloading,”
in 2021 IEEE International Conference
on Cyber Security and Resilience (CSR),
Rhodes, Greece: IEEE, Jul. 26, 2021,
pp. 73–80, isbn: 978-1-66540-285-9. doi:
10.1109/CSR51186.2021.9527978. [On-

line]. Available: https://ieeexplore.
ieee.org/document/9527978/.

[45] A. Ferraiuolo, A. Baumann, C. Haw-
blitzel, and B. Parno, “Komodo: Using
verification to disentangle secure-enclave
hardware from software,” in Proceedings
of the 26th Symposium on Operating Sys-
tems Principles, Shanghai China: ACM,
Oct. 14, 2017, pp. 287–305, isbn: 978-
1-4503-5085-3. doi: 10.1145/3132747.
3132782. [Online]. Available: https://
dl.acm.org/doi/10.1145/3132747.
3132782.

[46] S. Hristozov, J. Heyszl, S. Wagner, and
G. Sigl, “Practical Runtime Attestation
for Tiny IoT Devices,” in Proceedings
2018 Workshop on Decentralized IoT Se-
curity and Standards, San Diego, CA: In-
ternet Society, 2018, isbn: 978-1-891562-
51-8. doi: 10.14722/diss.2018.23011.
[Online]. Available: https://www.ndss-
symposium.org/wp-content/uploads/
2018 / 07 / diss2018 _ 11 _ Hristozov _
paper.pdf.

[47] M. Kylänpää and A. Rantala, “Remote
Attestation for Embedded Systems,” in
Security of Industrial Control Systems
and Cyber Physical Systems, A. Bécue,
N. Cuppens-Boulahia, F. Cuppens, S.
Katsikas, and C. Lambrinoudakis, Eds.,
vol. 9588, Cham: Springer International
Publishing, 2016, pp. 79–92, isbn: 978-3-
319-40384-7 978-3-319-40385-4. doi: 10.
1007/978-3-319-40385-4_6. [Online].
Available: http://link.springer.com/
10.1007/978-3-319-40385-4_6.

[48] S. Zhao, Q. Zhang, Y. Qin, W. Feng, and
D. Feng, “SecTEE: A Software-based Ap-
proach to Secure Enclave Architecture
Using TEE,” in Proceedings of the 2019
ACM SIGSAC Conference on Computer
and Communications Security, London
United Kingdom: ACM, Nov. 6, 2019,
pp. 1723–1740, isbn: 978-1-4503-6747-9.
doi: 10.1145/3319535.3363205. [On-
line]. Available: https://dl.acm.org/
doi/10.1145/3319535.3363205.

[49] U. Lee and C. Park, “SofTEE: Software-
Based Trusted Execution Environment
for User Applications,” IEEE Access,

29

https://doi.org/10.1109/ICDCS54860.2022.00116
https://doi.org/10.1109/ICDCS54860.2022.00116
https://ieeexplore.ieee.org/document/9912246/
https://ieeexplore.ieee.org/document/9912246/
https://webassembly.org/
https://webassembly.org/
https://scholar.google.com/
https://doi.org/10.1145/2742647.2742676
https://doi.org/10.1145/2742647.2742676
https://dl.acm.org/doi/10.1145/2742647.2742676
https://dl.acm.org/doi/10.1145/2742647.2742676
https://dl.acm.org/doi/10.1145/2742647.2742676
https://arxiv.org/abs/1605.07763
http://arxiv.org/abs/1605.07763
http://arxiv.org/abs/1605.07763
https://doi.org/10.1145/3592607
https://dl.acm.org/doi/10.1145/3592607
https://dl.acm.org/doi/10.1145/3592607
https://doi.org/10.1109/CSR51186.2021.9527978
https://ieeexplore.ieee.org/document/9527978/
https://ieeexplore.ieee.org/document/9527978/
https://doi.org/10.1145/3132747.3132782
https://doi.org/10.1145/3132747.3132782
https://dl.acm.org/doi/10.1145/3132747.3132782
https://dl.acm.org/doi/10.1145/3132747.3132782
https://dl.acm.org/doi/10.1145/3132747.3132782
https://doi.org/10.14722/diss.2018.23011
https://www.ndss-symposium.org/wp-content/uploads/2018/07/diss2018_11_Hristozov_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/07/diss2018_11_Hristozov_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/07/diss2018_11_Hristozov_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/07/diss2018_11_Hristozov_paper.pdf
https://doi.org/10.1007/978-3-319-40385-4_6
https://doi.org/10.1007/978-3-319-40385-4_6
http://link.springer.com/10.1007/978-3-319-40385-4_6
http://link.springer.com/10.1007/978-3-319-40385-4_6
https://doi.org/10.1145/3319535.3363205
https://dl.acm.org/doi/10.1145/3319535.3363205
https://dl.acm.org/doi/10.1145/3319535.3363205

vol. 8, pp. 121 874–121 888, 2020, issn:
2169-3536. doi: 10.1109/ACCESS.2020.
3006703. [Online]. Available: https://
ieeexplore . ieee . org / document /
9131703/.

[50] A. Seshadri, A. Perrig, L. van Doorn,
and P. Khosla, “SWATT: Software-based
attestation for embedded devices,” in
IEEE Symposium on Security and Pri-
vacy, 2004. Proceedings. 2004, Berkeley,
CA, USA: IEEE, 2004, pp. 272–282, isbn:
978-0-7695-2136-7. doi: 10.1109/SECPRI.
2004.1301329. [Online]. Available: http:
/ / ieeexplore . ieee . org / document /
1301329/.

[51] M. M. Quaresma, “TrustZone based At-
testation in Secure Runtime Verification
for Embedded Systems,” 2020. [Online].
Available: https://mquaresma.github.
io/assets/dissertation.pdf.

[52] I. D. O. Nunes, K. Eldefrawy, and N. Rat-
tanavipanon, “VRASED: A Verified Hard-
ware/Software Co-Design for Remote At-
testation,” in Proceedings of the 28th
USENIX Conference on Security Sympo-
sium, ser. SEC’19, Santa Clara, CA, USA:
USENIX Association, 2019, pp. 1429–
1446, isbn: 978-1-939133-06-9.

[53] J. H. Silverman, “An Introduction to the
Theory of Elliptic Curves,”

[54] The Noise Protocol Framework. [Online].
Available: http://www.noiseprotocol.
org / noise . html # dh - functions -
cipher - functions - and - hash -
functions.

[55] B. Dowling, P. Rösler, and J. Schwenk,
“Flexible Authenticated and Confidential
Channel Establishment (fACCE): Ana-
lyzing the Noise Protocol Framework,” in
Public-Key Cryptography – PKC 2020,
A. Kiayias, M. Kohlweiss, P. Wallden,
and V. Zikas, Eds., vol. 12110, Cham:
Springer International Publishing, 2020,
pp. 341–373, isbn: 978-3-030-45373-2 978-
3-030-45374-9. doi: 10.1007/978-3-030-
45374-9_12. [Online]. Available: https:
//link.springer.com/10.1007/978-3-
030-45374-9_12.

[56] Meta, WhatsApp Encryption Overview:
Technical White Paper. [Online]. Avail-
able: https : / / www . academia . edu /
50744993 / Whatsapp _ encryption _
overview_technical_white_paper.

[57] J. A. Donenfeld, WireGuard: Fast, mod-
ern, secure VPN tunnel. [Online]. Avail-
able: https://www.wireguard.com/.

[58] Lightning Network In-Progress Specifica-
tions, Lightning Network, Jun. 25, 2023.
[Online]. Available: https : / / github .
com/lightning/bolts.

[59] Nijeboer, F.J. (Frank, Student M-CS) /
PATAT Proof · GitLab, GitLab, Sep. 7,
2023. [Online]. Available: https : / /
gitlab.utwente.nl/s2011972/patat-
proof.

[60] Rust Teaclave TrustZone Sdk, GitHub.
[Online]. Available: https : / / github .
com / apache / incubator - teaclave -
trustzone-sdk.

[61] QEMU, Qemu. [Online]. Available: https:
//www.qemu.org/.

[62] Snow - Rust. [Online]. Available: https:
//docs.rs/snow/latest/snow/.

[63] Nijeboer, F.J. (Frank, Student M-CS) /
PATAT Protocol · GitHub, GitHub. [On-
line]. Available: https://github.com/
NijeboerFrank/patat-protocol.

[64] Nijeboer, F.J. (Frank, Student M-CS) /
PATAT Server · GitHub, GitHub. [On-
line]. Available: https://github.com/
NijeboerFrank/patat-server.

30

https://doi.org/10.1109/ACCESS.2020.3006703
https://doi.org/10.1109/ACCESS.2020.3006703
https://ieeexplore.ieee.org/document/9131703/
https://ieeexplore.ieee.org/document/9131703/
https://ieeexplore.ieee.org/document/9131703/
https://doi.org/10.1109/SECPRI.2004.1301329
https://doi.org/10.1109/SECPRI.2004.1301329
http://ieeexplore.ieee.org/document/1301329/
http://ieeexplore.ieee.org/document/1301329/
http://ieeexplore.ieee.org/document/1301329/
https://mquaresma.github.io/assets/dissertation.pdf
https://mquaresma.github.io/assets/dissertation.pdf
http://www.noiseprotocol.org/noise.html#dh-functions-cipher-functions-and-hash-functions
http://www.noiseprotocol.org/noise.html#dh-functions-cipher-functions-and-hash-functions
http://www.noiseprotocol.org/noise.html#dh-functions-cipher-functions-and-hash-functions
http://www.noiseprotocol.org/noise.html#dh-functions-cipher-functions-and-hash-functions
https://doi.org/10.1007/978-3-030-45374-9_12
https://doi.org/10.1007/978-3-030-45374-9_12
https://link.springer.com/10.1007/978-3-030-45374-9_12
https://link.springer.com/10.1007/978-3-030-45374-9_12
https://link.springer.com/10.1007/978-3-030-45374-9_12
https://www.academia.edu/50744993/Whatsapp_encryption_overview_technical_white_paper
https://www.academia.edu/50744993/Whatsapp_encryption_overview_technical_white_paper
https://www.academia.edu/50744993/Whatsapp_encryption_overview_technical_white_paper
https://www.wireguard.com/
https://github.com/lightning/bolts
https://github.com/lightning/bolts
https://gitlab.utwente.nl/s2011972/patat-proof
https://gitlab.utwente.nl/s2011972/patat-proof
https://gitlab.utwente.nl/s2011972/patat-proof
https://github.com/apache/incubator-teaclave-trustzone-sdk
https://github.com/apache/incubator-teaclave-trustzone-sdk
https://github.com/apache/incubator-teaclave-trustzone-sdk
https://www.qemu.org/
https://www.qemu.org/
https://docs.rs/snow/latest/snow/
https://docs.rs/snow/latest/snow/
https://github.com/NijeboerFrank/patat-protocol
https://github.com/NijeboerFrank/patat-protocol
https://github.com/NijeboerFrank/patat-server
https://github.com/NijeboerFrank/patat-server

	Introduction
	Background
	Arm TrustZone
	TrustZone for Cortex-A

	Trusted Execution Environment
	Attestation
	Terminology
	Core Concepts for Attestation
	Governing Incentives

	Attestation Features
	Functional Features
	Security Features

	Cryptography
	Merkle Trees
	Diffie-Hellman
	AEAD Encryption

	Tamarin Prover

	Related Work
	Shepherd et al.
	System Design
	Limitations

	Ménétrey et al.
	System Design
	Limitations

	Research Questions
	Comparing Mechanism Designs
	Protocol Design
	Evaluating the protocol

	Comparing Protocols
	Functional Features
	Security Features

	Protocol Design
	Goals & Assumptions
	Proposed Protocol High Level
	Evidence Format
	Attestation Flow

	Proposed Protocol Handshake

	Examining the Protocol
	Protocol Proof
	Modeling Functions
	Tamarin Rules
	Tamarin Lemmas
	Proof Results

	Protocol Implementation
	Protocol Measurement

	Discussion
	Protocol Considerations
	Verification Results
	Implementation
	Measurement Results

	Conclusion

