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ABSTRACT

Traditional SHM methods often face challenges in scaling and accuracy due to their depen-

dency on manual inspection and non-explainable ML models. Recent advancements in big

data analytics, machine learning, cloud data storage systems, and wireless sensor network tech-

nologies have significantly expanded the potential for data-driven Structural health Monitoring

(SHM) systems for large-scale engineering projects. The application of machine learning meth-

ods in SHM has seen considerable growth in recent years. However, given the cross-domain na-

ture of this technology, there emerges a critical need for Explainable Artificial Intelligence (XAI)

within the realm of SHM. This study investigates the application of XAI frameworks to enhance

the interpretability and reliability of SHM systems, specifically targeting damage classification

using vibration data. This research employs accelerometer sensor networks to collect vibration

data from composite structures, utilizing various ML models such as Random Forest, Support

Vector Machine, XGBoost, Convolutional Neural Networks (CNN), and Transformer networks.

The study underscores the superior performance of advanced models, particularly CNNs and

Transformer networks, in accurately identifying structural defects. The thesis also addresses

the challenges of data corruption in SHM systems. Data corruption, caused by sensor faults,

transmission errors, environmental interference, and software bugs, can lead to false positives

and false negatives, severely impacting the reliability of SHM systems. To mitigate these ef-

fects, robust data validation and cleaning mechanisms are implemented, including anomaly

detection algorithms. Future research directions include optimizing sensor coverage, integrat-

ing advanced sensing technologies, and fostering interdisciplinary collaborations to develop

economically viable and technically proficient SHM solutions.
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1
INTRODUCTION

1.1. BACKGROUND

Traditionally, the SHM for large-scale civil structures, such as bridges and dams, as well as

mega-projects like power plants and manufacturing units, has been conducted through hu-

man intervention or manual inspection. However, as the scale of these projects increases, the

reliance on human presence for monitoring the health of these structures becomes challeng-

ing, time-consuming, and expensive process. Recent advancements in computational capa-

bilities, along with improvements in sensors, communication, and storage technologies, have

facilitated the implementation of comprehensive, data-driven SHM systems [6] to monitor the

maintenance of infrastructure with composite structures. The data driven approach depends

in various sensors to collect data, Mukhopadhyay and Ihara [7] highlights the most commonly

utilized sensors in SHM system development that include strain gauges, piezoelectric sensors,

accelerometers, and acoustic sensors. These devices are instrumental in extracting features

such as strain displacements, accelerations, and acoustic vibration of structures. In our case,

we have installed an accelerometer sensor network to detect vibration features of structure at

multiple positions.

Today, data-driven SHM is pivotal in ensuring the maintenance and safety of various composite

structures across engineering disciplines. The evolution stages of an SHM system, as theorized

by Tibaduiza Burgos et al. [1], categorize SHM systems into hierarchical stages based on the ex-

tent to which they are data-driven. This transformation is represented as a hierarchical pyramid

1.1, where each ascending level signifies a more advanced stage of data collection and analysis.

The stages are briefly described below.

• Damage Detection: At the base level of the pyramid, the primary goal is the detection

of damage within the structure. This is commonly achieved by strategically positioning

1
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Figure 1.1: SHM evolution pyramid [1]

sensors at locations sensitive to damage detection. The data collected by these sensors,

which includes various features(acceleration, displacement), is used to determine the

damage status of the structure. However, at this stage, the exact location of the damage

is not yet identified.

• Damage Localization: Once damage is detected, the next stage is to pinpoint its location.

Damage localization is more complex than detection and often requires a denser network

of sensors. These sensors are placed in various sub-parts of the composite structure to

gather more detailed data, enabling the precise identification of where the damage has

occurred.

• Type of Damage Identification: Different structures can suffer from various types of dam-

ages like cracks, corrosion, delamination, or breakage. At this stage, the specific type of

damage is identified. This requires a more sophisticated analysis of the data collected.

For instance, different types of damage can affect the structure’s response in unique ways,

and understanding these patterns is key to identify the type of damage. This stage may

involve the use of advanced algorithms and machine learning techniques to interpret the

sensor data.

• Lifetime Estimation: This stage involves predicting the remaining useful life of compo-

nents in structure. By comprehensively understanding the extent and type of damage,
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the material properties of the structure and prevailing environmental conditions, it is

possible to estimate the remaining functional lifespan of the structure accurately. This

stage is crucial for planning maintenance, repairs, or replacements before catastrophic

failures occur.

• Smart Structures: At the top of the pyramid are smart structures. Smart structures are

designed from the outset with a SHM perspective. This could include structural compo-

nents that adapt their properties in response to damage, thereby maintaining structural

integrity. This is achieved with the integration of various disciplines such as mechanics ,

structural properties, sensors, and control systems.

Traditional Machine learning models, especially deep learning models, are often seen as “ black

boxes ” due to their complex and opaque decision-making processes. XAI seeks to enhance the

acceptance and clarity of Machine Learning (ML) algorithms by offering explanations and in-

terpretations. In SHM, this means engineers and decision-makers of diverse backgrounds can

understand why an AI system has identified a potential issue or recommended a particular

course of action. Integrating explainable ML algorithms into contemporary smart SHM sys-

tems is helpful to improve the acceptance of AI solutions in SHM problems. There is a notable

shortage of literature for implementing XAI methods in data-driven SHM applications.

1.2. RESEARCH QUESTIONS:
To effectively achieve the research objective, a series of research questions have been devel-

oped. These questions provide a structure for examining the relevant existing literature and

formulating solutions to to enhance the accuracy and interpretability of SHM models in de-

tecting and localizing structural defects through vibration analysis.

MAIN RESEARCH QUESTION:

How to develop an interpretable data driven SHM model for damage classification that uses

vibration data?

SUB RESEARCH QUESTION:

• What are the current ML models and techniques used in the SHM methods to identify

defects based on accelerometer data?

• What ML methods are suitable for damage localisation ?

• How can we integrate XAI frameworks to explain SHM models?

1.3. THESIS STRUCTURE

This thesis is divided into six chapters, each unfolding systematically to cover various aspects of

the research. Chapter 1 sets the stage by offering background context and posing the research

questions. Chapter 2 conducts a comprehensive literature review to tackle these questions,
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while pinpointing existing research gaps. Also, introduces theoratical background of analytical

models utilized in the research, including model-agnostic explanatory methods such as SHAP

and LIME.

Chapter 3 outlines the core research methodology employed, specifically the CRISP DM frame-

work tailored for engineering data mining. Chapter 4 explores the process of data collection

and the initial steps involved in Exploratory Data Analysis (EDA), which include data prepro-

cessing, feature engineering, and the examination of various models for data modeling and

individual classification, along with their respective evaluations.

Building on this, Chapter 5 elaborates on the findings from applying specific machine learning

techniques to predict customer investment behaviors, highlighting the insights gained through

SHAP analysis. Conclusively, Chapter 6 synthesizes the thesis’s findings, addressing the re-

search questions and emphasizing both the scholarly and practical contributions of the study.

Additionally, it critically evaluates the limitations encountered and suggests directions for fu-

ture research endeavors.



2
BACKGROUND

This chapter begins with the systematic literature review we conducted to address the ques-

tions posed in Chapter 1. Later, the chapter provides an overview of various machine learning

and time series analysis methodologies that have been applied in subsequent chapters. By ex-

amining these methodologies, we aim to offer insights into how they have been adapted and

optimized for Structural Health Monitoring (SHM) applications. Furthermore, this chapter will

analyze the evaluation methods used to assess the performance of machine learning models

in time series analysis. Through this analysis, we intend to elucidate the standard metrics and

validation strategies, such as cross-validation and techniques specific to time series, that un-

derscore the robustness of machine learning predictions in SHM scenarios. This chapter not

only serves to inform future research directions but also aims to bridge gaps in the literature,

paving the way for advancements in the use of interpretable machine learning methods for

SHM.

2.1. REVIEW METHODOLOGY

In this section, we discuss the selection of databases, the queries used for literature search, and

the criteria for determining eligibility. In the literature review multiple databases were consid-

ered instead of one to minimize bias. These include Scopus, Web of Science, and IEEE Xplore.

To import relevant articles, specific modifiers were applied during the database search. These

modifiers included language, restricting the search to English-only articles. Accessibility was

another criterion, ensuring the articles were obtainable through University of Twente subscrip-

tions. Finally, the publication date was a crucial modifier; we limited our search to papers

published after 2010. This was done to exclude outdated methods from our review.

5
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2.1.1. SEARCH QUERIES:

The train of thought underlying the formulation of search queries is to comprehensively cover

academic literature related to data-driven SHM systems. Recognizing the broad scope of this

topic, it is essential to narrow our focus on at least two fronts:

1. The types of sensors used in experiments, particularly those measuring acceleration of

structural vibration,

2. The specific structures under study. Consequently, our research primarily considers stud-

ies related to wind turbine blades and other related composite structures with rotating

components.

Key words such as ‘Structural Health Monitoring ’ and ‘accelerometer’, as detailed in the list

below, were utilized in the search process. These keywords were combined using the logical

operators ‘AND’ and ‘OR’ to optimize the search results. The search process was repeated for

Scopus; Web of Science; IEEE explore; dblp. Query results are exported in RIS(Research Infor-

mation Systems) format.

1. Structural AND Health AND Maintenance OR Management AND accelerometer

2. Structural AND Health AND Maintenance OR Management AND accelerometer AND Ro-

tate

3. Structural AND Health AND Maintenance OR Management AND XAI OR explainable OR

interpretable

4. Structural AND Health AND Maintenance OR Management AND accelerometer AND

Data-driven

The collected data from various databases were amalgamated using Covidence, a software

tool designed to streamline and manage literature from multiple sources. Covidence begins

by identifying duplicates in the initially imported set of references and maintains this check

throughout the importation process. The first unique instance of a reference is treated as the

primary reference, with any subsequent instances marked as duplicates. Covidence then con-

tinuously checks for duplicates in each new import, cross-referencing both the current import

batch and all previous ones. The software performs these checks by comparing titles, publica-

tion years, volumes, and author names.

Once uploaded RIS format results, Covidence removes the duplicate papers repeated in these

query results. We had combined count of 257 entries uploaded to Covidence from all the se-

lected databases, Covidence removed duplicates and reduced the number to 186. In the next

phase, title and abstract screening, here 32 papers are selected for full text review. Selection cri-

teria for these selection and exclusion is documented in Section 2.1.2. From the 32 selected for

full text review, they are further reduced to 25 after full text review of these papers. These steps

are visualised a PRISMA(Preferred Reporting Items for Systematic Reviews and Meta-Analyses)
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flow chart Figure 2.1.

Figure 2.1: Systematic Literature Review flow diagram

2.1.2. SELECTION CRITERIA:

This, section we establish eligibility criterion considered to exclude or include a paper in our

systematic literature review. The objective of this sub-section is to have systematic knowledge

of why we are including certain papers in the review, and while excluding other. We are in-

cluding most papers regarding XAI in SHM. Because as shown in Section 2.2, there is limited

literature available for implementing XAI techniques in SHM. On the other hand, literature for

data-driven techniques originates from diverse backgrounds. To narrow the scope of our study,

we have selectively included papers that conduct experiments on Dynamic Load-Generating

Components of composite structures. These are elements within a mechanical or structural

system that produce forces or loads as a result of their motion or operation. In this process

we are excluding stationary structures, like bridges. Additionally, our scope explicitly excludes

papers with engineering informed modeling of SHM and papers without any data-driven meth-

ods.

Table 2.1: Table containing a summary of the criteria used to select the articles

Criteria Decision

The pre-defined keywords are included in the title, abstract or in the keyword list of the paper Included

The paper was written in English Included

If the paper is on XAI in SHM Included

If experiments focus on Dynamic Load-Generating structures Included

If experiments focus on stationary structures excluded
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The paper was published before 2010 Excluded

Duplicates of an original paper Excluded

The paper was not available through UT subscription Excluded

2.2. RELEVANT TRENDS IN LITERATURE

2.2.1. YEAR WISE DISTRIBUTION:

The year-wise distribution of selected papers depicted in Figure 2.2a. We can see the sudden

surge of research in data-driven SHM in recent times. Extracted papers, literature which we

are specifically interested can be seen in comparison with excluded papers Figure 2.2b. This

show, there’s nouveau trend in usage of selected keywords?? in academic literature. Literature

regarding usage of XAI in SHM context is seen only in last couple of years, which may suggest

a growing interest in explainability among institutions. Among the selected papers published

in time span of 2010-2023, there are few years, in early half of the range there are no papers

regarding XAI implementation in context of SHM. We can conclude from this there are only

efforts in recent times to publish interpretable SHM systems.

figure

(a) selected papers (b) selected vs excluded papers

Figure 2.2: Temporal trend

2.3. DOMINANT THEMES

In this section, we outline the dominant themes observed in the literature pertaining to data-

driven SHM and XAI in SHM. Our analysis will be conducted from the following perspectives:

the setting in which the studies were conducted, the data-driven techniques adopted and the

observed themes in the implementation of XAI. The settings of experiments can be categorised

based on how the experiment in generating its data from, this can be developed multiple set-

tings, most common models are following:
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2.3.1. CONTEXTUAL ANALYSIS OF EXPERIMENTAL SETTING:

In this subsection, we examine various experimental setups encountered in the literature on

data-driven SHM . A key feature distinguishing these setups is the methodology employed for

data collection in the experiments. The three primary types of setups identified are: Simula-

tion based, Physical prototypes and real-time monitoring. These data collection methods are

compared in Table 2.2.

Table 2.2: Differences between experimental setups

Aspect Simulation prototype Physical prototypes Real-time monitoring

Methodology Data generated using digital proto-
types, often through finite element
models.

Utilizes scaled physical models of
structures in controlled lab environ-
ments.

Involves monitoring structures in op-
erational environments without in-
duced vibrations

Advantages Ability to generate data under con-
trolled factors, effective for simulating
damaged behavior in structures.

Facilitates study of material responses
under stress and damage with con-
trolled vibrations, allows for various
damage inductions.

Provides data from natural forces,
leading to variability and complexity
in data, offering a realistic scenario for
SHM systems.

Limitations Difficulty in replicating real-world sce-
narios perfectly, leading to discrep-
ancies between simulated and actual
field data.

Size constraints of lab-tested struc-
tures affect data accuracy, challenges
in extrapolating to full-scale struc-
tures.

Unpredictable and uncontrollable nat-
ural forces, inability to deliberately in-
flict damage for monitoring purposes.

• Simulation: In these experiments, data is generated using digital prototypes. [8, 9] and

[10] utilise finite element models to simulate data. The primary advantage of simulated

experimental setups is their ability to generate data under various controlled factors. This

approach is particularly effective in simulating the damaged behavior of structure, a sce-

nario that is challenging to replicate in physical setups. Based on this simulated data,

multi-class SHM models are developed.

However, simulation-based experiments also present certain limitations. A major chal-

lenge is the difficulty in replicating real-world scenarios perfectly. In actual conditions,

structures face a multitude of factors, including varying load conditions, environmen-

tal influences, and unpredictable events, which are often challenging to fully simulate.

This gap in replicating real-world conditions leads to inevitable discrepancies between

the simulated data and actual field data. Such discrepancies can impact the effectiveness

of SHM systems when deployed in real-world scenarios.

• Use of Physical prototypes: This is most commonly observed setting in literature[11–22].

In a controlled lab environment, scaled physical models of structures are used. These

models are subjected to controlled vibrations using actuators, allowing for precise ma-

nipulation of frequency, amplitude of vibration. This approach facilitates the study of

material responses under various stress and damage. Similar to simulation we can in-

duce various types of damages. Sensors networks on these models collect data on vibra-

tion responses. Based on this data SHM systems area developed and validated.

However, this approach is not without limitations. A significant challenge is the con-

straint imposed by the size of structures that can be realistically tested in a lab. The need

to scale down models can affect the accuracy of the data, as size is a critical factor in-
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fluencing stress distribution and vibration characteristics. This issue of scaling presents

challenges in extrapolating findings from these models to full-scale structures. Unlike in

lab setup , it is also not feasible to induce controlled vibrations on structures in real-time

field conditions.

• Real-time monitoring: This scenario is less commonly covered in the literature, as noted

by [23]. Unlike lab-based experiments, real-time monitoring does not permit the use of

actuators to induce controlled vibrations. In operational environments, structures are

subject to natural forces like wind, seismic activity, which are inherently unpredictable

and uncontrollable. Consequently, the resulting data tends to be more variable and com-

plex to analyze. Unlike laboratory settings where damage can be intentionally inflicted

to study its impact, real-world structures cannot be damaged deliberately for monitoring

purposes. This limits SHM systems development with real-time monitoring data.

2.3.2. DAMAGE SENSITIVE FEATURES:

Damage sensitive features (DSF) are features extracted from raw data which are helpful for

models to predict or quantify damage. These damage discriminative features can be classified

into two types, as shown in Figure 2.3 domain knowledge based and automatic discriminative

feature extraction.

Figure 2.3: Damage sensitive features

DOMAIN KNOWLEDGE BASED:

These are manually extracted features, features are manually identified, selected, and extracted

from the data by experts or analysts, rather than being automatically derived by an algorithm.

These are features or properties extracted from raw data, which strongly help models to dis-

criminate damage classification. These features observed in literature review, can be classified
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into three categories based on domain knowledge statistical features, Modal features, physics

informed features. Formula-based features are often easy to understand and helpful building

interpretable models.

• Statistical features: The statistical features of data in time or frequency domain tend to

give some information regarding health of structure. Raw data samples can be repre-

sented with an array of descriptive statistical features of data in both time and frequency

domain. correlation and auto-correlation features also can help with damage discrim-

inating model. In frequency domain features like power spectral density or frequency

domain representations can be crucial. The study by Xu et al. [24] utilizes harmonic fre-

quencies of rotational frequency as a damage-sensitive feature. Peng et al. [25] calcu-

late the similarity between data distributions, using this similarity as an indicator of the

health state of wind turbines. Movsessian et al. [26] develop covariance based damage

indicators.

• Modal features: This technique involves extracting changes in modal properties [11, 13]

of a structure, such as natural frequencies, damping ratios, and mode shapes. Modal

analysis is used to determine these characteristics, which are sensitive to changes in the

physical properties of a structure, such as mass, stiffness, and damping. Any significant

changes in these modal parameters can be indicative of damage.

• Physics-Informed Damage Detection: This approach integrates the principles of physics

with data-driven methods. Cross et al. [27] combines the understanding of physical be-

havior of structures with data analytics and machine learning techniques to detect, lo-

cate, and quantify damage. This method often involves the use of computational models

that are informed by physical laws (like mechanics of materials) and are calibrated or

updated based on actual data from the structure.

AUTOMATIC DISCRIMINATIVE FEATURE EXTRACTION:

Automatic discriminative feature extraction process, automation in feature extraction involves

using algorithms to automatically identify and extract these features, without requiring manual

intervention. Other than neural networks learning discriminative features, [10] and [22] employ

(Principal component analysis(PCA) and Polynomial Chaos-Kriging respectively) to extract de-

scriminative features.

• Principal compenent analysis(PCA): The data is linearly transformed onto a new coor-

dinate system such that the directions capturing the largest variation in the data can be

easily identified.

• PC-Kriging: Polynomial Chaos Expansion(PCE) is a method used in uncertainty quan-

tification. It represents a model’s output as a series of polynomial functions of random

variables. Raw data is reduced in dimensonality by polynomial chaos expansions. Krig-

ing is then applied to the coefficients of the polynomial chaos expansion, rather than to

the original data points.
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2.3.3. ANALYSIS OF DATA-DRIVEN TECHNIQUES IN SHM:

Data-driven techniques in SHM literature are primarily divided into two categories: Statistical

Hypothesis Testing and Machine Learning-Based Damage Detection.

HYPOTHESIS TESTING:

IIn this category, approaches for statistical analysis are highlighted, as exemplified by the method-

ologies developed by [28] and [19]. [19] focuses on the quantitative evaluation of damage using

statistical performance metrics. These metrics are obtained from the analysis of dynamic re-

sponses in structures. The method involves scrutinizing changes in statistical properties, which

can reveal anomalies potentially indicative of damage. Features derived from sensor data, aid-

ing in the classification of a structure’s health status, are thus regarded as health or damage

indicators. Predominantly relying on domain-specific knowledge, these methods are effective

for feature extraction. However, when dealing with real-time data subject to environmental in-

fluences, the task of accurately classifying the health condition using these descriptive features

becomes more challenging.

Based on [28], learning and inspection phases are null and alternative hypothesis. In learning

phase the selected characteristic quantities(Q) of healthy(Qh), damaged(Qd ), various damaged

levels(Qd1,Qd2, ..) and unknown state(Qu). The problem can now be framed as hypothesis test-

ing statemnts as:

H0 : Qu ≈Qo Null hypothesis, unknown state of structure is healthy

H1 : Qu≈Qo Alternative hypothesis, unknown state of structure is damaged

Hd1 : Qu ≈Qd1 unknown state of structure is damage type 1

Hd1 : Qu ≈Qd2 unknown state of structure is damage type 2

MACHINE LEARNING METHODS:

This approach utilizes machine learning algorithms to analyze data collected from structures. It

takes both domain knowledge features and learns automatically discriminating features. These

models are capable of learning complex patterns and relationships within the data, facilitating

applications such as predictive maintenance, anomaly detection, and damage identification. A

variety of data sources, including sensor data, environmental factors, and operational condi-

tions, can be utilized for training predictive machine learning models.

Most commonly used models in literature can be observed in Table 1. Principal Component

Analysis (PCA) is frequently employed for dimensionality reduction of raw data, as seen in stud-

ies by [10, 17, 18]. However, in [19] uses Singular spectrum analysis to decompose the raw vi-

bration data.

In literature after extracting required features from senor data, following methods are used to

classify the structure as shown in Table 2.3. KNN, Support Vector Machine (SVM), XGBoost
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and neural networks classifiers are used on tabular statistical features, Convolutional Neural

Networks (CNN) are specifically used in cases where tabular data or statistical feature matrix is

transformed into image data. Features like short term fourier transform spectrum images are

used as DSF. Among other neural networks [9]implemented bi-directional LSTM(Long short-

term memory) and [21] adapted transformer to train on sequential time series data.

Table 2.3: ML techniques in literature

Features Machine learning techniques in literature Papers

Tabular features KNN, SVM, XGBoost and neural network classifiers [8, 10, 14, 17,
18, 20, 23,
26]

Feature matrix CNN [15, 29]

Sequential data LSTM and Transformmer [9, 21]

2.3.4. XAI TECHNIQUES FOR DATA-DRIVEN SHM SYSTEMS:

Though there is limited literature for implementation of XAI in SHM, common methods used

are Layer-wise relevance propagation (LRP), SHAP, LIME.

• LRP: This method is employed to explain the decision-making process in deep neural

networks. Studies by [15, 29] transform the feature matrix into a grayscale image for each

sample. These image samples are classified using CNN. LRP works by reverse propagat-

ing a network’s prediction to interpret it, adhering to a predefined set of rules as outlined

in [30]. LRP explanations highlight the most relevant features of an image that influenced

the prediction results.

• SHAP(SHapley Additive exPlanations): This isa model agnostic method in XAI doamin.

It is grounded in the Shapley values, derived from game theory, to interpret predictions.

SHAP assigns a Shapley value to each feature value of an instance, representing the fea-

ture’s contribution to the prediction’s deviation from the average outcome. Studies by

[8, 31] and [26] have employed SHAP tools for interpreting their results.

• LIME(Local Interpretable Model-agnostic Explanations): LIME helps in understand-

ing complex, black-box machine learning models by approximating them locally with

interpretable models. It is used to explain individual predictions, making it easier to un-

derstand why a model made a particular decision. explanations are local, meaning they

explain individual predictions and don’t necessarily provide a global view of the model’s

behavior.

2.4. GAP ANALYSIS

Significant findings from the review highlighted three primary areas: damage detection, which

has seen an uptick in research, particularly utilizing sensors and mechanical signals; damage
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classification, enhanced by multi-sensor networks aiding in more precise localization; and the

emergent role of Explainable Artificial Intelligence (XAI) in SHM, with tools like LIME and SHAP

beginning to illuminate the contributions of specific frequencies and features in classification

tasks.

However, the literature review also underscored notable gaps, particularly the nascent stage

of XAI within SHM and a conspicuous scarcity of real-time data applications in existing stud-

ies. This gap not only underscores the field’s nascent recognition of XAI’s importance but also

highlights a critical avenue for future research— the validation of SHM models using real-time

data. Such efforts are vital for advancing SHM’s capabilities and ensuring the practical appli-

cability and understanding of these complex models, thus providing a fertile ground for future

investigations to enrich the domain’s literature and practical implementations.

2.5. MACHINE LEARNING METHODS

This section explores the theoretical underpinnings of the machine learning algorithms ap-

plied in this study, which were selected to answer the posed research questions. The choice of

these algorithms stems from a detailed evaluation of machine learning strategies as revealed

through the Systematic Literature Review (SLR). Specifically, these algorithms were chosen for

their relevance to the domain of SHM. Each algorithm offers a unique method of modeling and

classification, with specific strengths that correspond to the aims of this research. Through an

examination of their principles and capabilities, this section endeavors to thoroughly elucidate

the approaches used to construct the machine learning models for this research framework.

2.5.1. RANDOM FOREST CLASSIFIER

Applying a Random Forest Classifier to time series data involves unique considerations com-

pared to its application on static datasets. Random Forest is an ensemble learning method, that

operates by constructing a multitude of decision trees at training time and outputting the class

that is the mode of the classes.

2.5.2. SUPPORT VECTOR MACHINE CLASSIFIER

Support Vector Machine (SVM) is a powerful and versatile machine learning model used for

classification, regression, and outlier detection tasks. The goal of SVM is to find the best sep-

arating hyperplane that divides the data points of one class from another with the maximum

margin. Hyperplane is like a line (in 2D) or a plane (in 3D) that separates data points. The

equation 2.1 for this hyperplane in case of binary classfication. Where, w is direction and b is

offset from origin.

w · x −b = 0 (2.1)

Support vectors are the data points that are closest to the hyperplane and directly influence its

position and orientation. These points essentially support the hyperplane.
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2.5.3. XGBOSST CLASSIFIER

XGBoost, or Extreme Gradient Boosting, is an advanced implementation of gradient boosting

that is widely used in machine learning for regression, classification, and ranking tasks. It builds

upon the principle of boosting, where decision trees are added sequentially to correct the errors

made by previous models until a highly accurate ensemble model is constructed.

Components of XGboost:

• The objective function that XGBoost optimizes consists of a loss function and a regular-

ization term. The loss function evaluates how well the model predicts the target variable,

and the regularization term controls the model’s complexity to prevent overfitting.

Ob j (Θ) = L(Θ)+Ω(Θ) (2.2)

where:

L is loos function,

Ω is regularization term

Θ represents parameters of model

• XGBoost performs optimization by calculating gradient and Hessian of loss function.

This allows for more efficient and accurate updates. The update for the weight of each

leaf in a tree.

ω∗
j =−

∑
i∈I j

gi∑
i∈I j

hi +λ

I j is the set of indices of instances in j th leaf.

gi , hi are the first and second order gradients of .

• XGBoost uses a depth-first approach and prunes trees backward. It starts by growing the

tree to a maximum depth and then prunes it using the gain from each split. The gain is

calculated using the gradient and Hessian, and splits with negative gain are pruned.

2.5.4. CONVOLUTIONAL NEURAL NETWORK

Convolutional Neural Networks (CNNs) are a class of deep neural networks, highly effective for

analyzing visual imagery. To apply CNNs to time series data, we typically use 1D convolutional

layers instead of the 2D layers used for image data. In a 1D convolutional layer, the filters slide

across the time series data, processing one-dimensional segments of the data to capture tem-

poral patterns and dependencies. This process can be particularly effective for identifying local

patterns or trends within the time series data that are indicative of broader behaviors or future

events.
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KEY COMPONENTS OF A 1D CNN FOR TIME SERIES

• 1D Convolutional Layers: These layers apply a series of learnable filters to the input time

series data. Each filter captures specific features at different scales or time frames (e.g.,

short-term trends vs. long-term patterns).

• Activation Functions: Similar to CNNs for image data, activation functions introduce

non-linearity to the model, enabling it to learn more complex temporal patterns. ReLU

and its variants are commonly used. In the hidden layers, activation functions help the

network learn complex patterns by allowing each neuron to activate (i.e., output a non-

zero value) in response to a specific feature or pattern in the input data. The choice of

activation function in the output layer depends on the type of classification task.

– Softmax: For multi-class classification tasks, where each instance can belong to

exactly one class out of many, the softmax function is used. It converts the out-

put scores from the final layer into probabilities by taking the exponential of each

output and then normalizing these values by dividing by the sum of all the expo-

nentials. This ensures that the output values are in the range (0, 1) and sum up to

1.

– Sigmoid: For binary classification tasks, the sigmoid function is used in the output

layer. It maps the output value to a probability score between 0 and 1, indicating

the likelihood of the instance belonging to the positive class. For multi-label classi-

fication, where each instance can belong to multiple classes, the sigmoid function

can be applied independently to each output neuron.

• Pooling Layers: 1D pooling layers reduce the dimensionality of the data, summarizing

the features extracted by the convolutional layers. This step helps in reducing computa-

tion and in extracting more global features from the local ones identified by the convolu-

tional layers.

• Normalization and Regularization: Techniques like Batch Normalization and Dropout

are often used to improve training stability and mitigate overfitting.

2.5.5. TRANSFORMER

The Transformer model, introduced in the paper "Attention is All You Need" by Vaswani et al.

in 2017, leverages self-attention mechanisms to process sequential data, offering advantages

in capturing long-range dependencies and parallelising computations, which are crucial for

efficiently handling time series data.

Transformer uses encoder-decoder architecture, both the encoder and decoder are composed

of a series of identical layers that include self-attention mechanisms and feed-forward neural

networks.
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TRANSFORMER ARCHITECTURE FOR TIME SERIES CLASSIFICATION:

• Input layer: The raw time series data or extracted features are input to the model. If the

raw data is used, it may be beneficial to apply normalization or standardization.

• Positional Encoding: To maintain the sequence’s temporal order, positional encodings

are added to the input embeddings.

• Encoder Stack: Consists of multiple layers, each containing two sub-layers: a multi-

head self-attention mechanism and a position-wise fully connected feed-forward net-

work. Normalization is applied before each sub-layer, and residual connections are used

around each of the two sub-layers.

• Decoder Stack: While the original Transformer includes a decoder stack for sequence-

to-sequence tasks (like translation), for classification tasks, the decoder stack might be

simplified or omitted. Instead, the output of the encoder stack can be directly connected

to a classification head.

• Classification Head: The output from the Transformer encoder is fed into a classification

head, which usually consists of one or more dense layers followed by a softmax layer for

class probability prediction.

• Output Layer: : Outputs the class predictions for the input time series.

2.6. TIME SERIES ANALYSIS METHODS:

2.6.1. DTW DISTANCE:

Dynamic time warping (DTW) is an algorithm for measuring similarity between two time-

series or any sequential data. DTW finds optimal alignment between two sequences, minimiz-

ing distance between two sequences. DTW distance is a relative measure, calculated between

two timeseries. To calculate DTW distance, it follows steps shown in Algorithm 1.

It starts by creating a matrix where each cell represents the distance between points in the two

sequences, initializing the borders appropriately. The algorithm then fills this matrix by ac-

cumulating the minimum distance from either the left, above, or diagonal cell for each point,

effectively mapping points from one sequence to the other in a way that minimizes the overall

distance. Finally, by backtracking from the bottom right to the top left of the matrix, DTW finds

the path that represents the best alignment between the sequences is visualised by calculating

DTW distance between two undersampled signals from a sample in Figure 2.4a and Figure 2.4b.

2.6.2. STATIONARISING SIGNAL USING CURVE FIT:

Stationarising a time series involves removing the effects of seasonal variations to better ana-

lyze the underlying trends. One way to do this is by using curve fitting, where you model the

seasonal pattern and then adjust the data to remove this pattern.
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Algorithm 1 Dynamic Time Warping Distance Calculation

Result: The DTW distance between sequences s and t
Input: Two sequences s[1..n] and t [1..m]
Function DTWDistance(s, t):

/* Initialization of the DTW matrix with infinity */
DT W ← ar r ay[0..n,0..m] for i ← 0 to n do

for j ← 0 to m do
DT W [i , j ] ←∞

end
end
DT W [0,0] ← 0 /* Populating the DTW matrix */
for i ← 1 to n do

for j ← 1 to m do
cost ← d(s[i ], t [ j ]) DT W [i , j ] ← cost +min(DT W [i −1, j ],DT W [i , j −1],DT W [i −

1, j −1])
end

end
return DT W [n,m]

(a) (a) Down sampled Sinusoidal fits (b) (b) DTW matrix to calculate distance

• Identify the Seasonal Pattern: First, you need to identify the seasonal pattern. This could

be done through plotting and visually inspecting the data or by using statistical tests.

• Model the Seasonal Pattern: Use curve fitting to model the seasonal pattern. Common

models include sinusoidal functions for yearly patterns or polynomials for more complex

patterns.

• Fit the Model to the Data: Use the curve fitting function from a library like sci py.opti mi ze

to fit the model to your data.

• Deseasonalize the Data: Subtract the fitted model from the original data to remove the

seasonal effect, leaving you with the deseasonalized time series.

from scipy.optimize import curve_fit
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func = ... #Fuction which represents seasonal pattern

popt, pcov = curve_fit(func, data)
#popt is array of optimal values which fit the function for given data
#pcov estimated covariance of popt array.

ydata=func(**popt, xdata)

WELCH POWER SPECTRAL DENSITY:

Welch’s method for estimating the power spectral density (PSD) represents a significant ad-

vancement in signal processing, particularly in analyzing the power of a signal across various

frequencies. This method, an adaptation of the periodogram approach, enhances the esti-

mate’s reliability by reducing its variance through averaging modified periodograms of over-

lapped segments of the signal. Welch’s method can be described as follows:

• Segmentation: The time series x(n), where n is the discrete time index, is divided into L

overlapping segments. Each segment contains M points, with adjacent segments over-

lapping by D points.

• Windowing: Each segment i is multiplied by a window function w(n) to reduce spectral

leakage. This process yields windowed segments xi (n) = x(n)w(n), where n ranges over

the segment length M .

• Averaging: The PSD estimate is obtained by averaging the modified periodograms of all

segments:

P ( f ) = 1

L

L∑
i=1

Pi ( f )

• Normalisation: The PSD is normalised by sampling frequency to maintain consistency.

2.6.3. DICKEY–FULLER TEST:

The Dickey-Fuller test is a statistical test used to determine if a time series is stationary. A

time series is considered stationary if its statistical properties, such as mean, variance, and

autocorrelation, are constant over time. Stationarity is an important assumption in time series

analysis because many statistical models require the time series to be stationary to make valid

inferences.

AUGMENTED DICKEY-FULLER TEST:

ADF test is a formal statistical test for stationarity, specifically designed to help identify whether

a time series has a unit root, indicating it is non-stationary. The presence of a unit root means

the time series can be unpredictable and may hinder the effectiveness of many time series fore-

casting methods.

ADF test accounts for higher-order correlation by adding lagged differences of the time series.

ADF test expands on the Dickey-Fuller test by including lagged differences of the time series
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in the regression equation to account for autocorrelation. The regression equation used in the

ADF test is:

∆=α+βt +γyt−1 +γ1∆yt−1 +·· ·+γp−1∆yt−p+1 +ϵt

where, yt is time series,∆ is difference operator, α is constant, β is coefficent on the time trend,

ϵt is eroor or noise.

Ho : There is a unit root

H1 : Alternative hypothesis, there is no unit root and the time series is stationary.

ADF test interpretation:

• ADF Statistic: A more negative value suggests stronger evidence against the null hypoth-

esis, indicating stationarity.

• p-value: If the p-value is less than a chosen threshold (e.g., 0.05), we reject the null hy-

pothesis, suggesting the time series does not have a unit root and is stationary.

• Critical Values: The ADF statistic should be compared to these values. If the ADF statistic

is less than the critical value, we reject the null hypothesis.

2.7. EVALUATION METHODS:
• Confusion Matrix: This is a table(Figure 2.5) that shows the number of correct and in-

correct predictions categorized by their actual classes. It provides insight into the types

of errors made by the model. Matrix, which consists of four components: True Positives

(TP), True Negatives (TN), False Positives (FP), and False Negatives (FN).

– True positive: Predicted value is positive and true value is also positive.

– False positive: False positive or Type 1 error, when predicted value is positive but

actual value is negative.

– False Negative: False positive or Type 2 error, the predicted value is negative but it

is actually positive.

– True Negative: The predicted value is negative and actual value is also negative.

• Accuracy: This is the simplest metric, measuring the proportion of correctly predicted

observations to the total observations.

Accuracy = T P +T N

T P +T N +F P +F N
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Figure 2.5: Confusion matrix for binary classification

• Precision: Precision measures the proportion of correctly predicted positive observa-

tions to the total predicted positives. It’s crucial when the cost of false positives is high.

Precision = T P

T P +F P

• Recall: Recall measures the proportion of correctly predicted positive observations to all

the actual positives. It’s important when the cost of false negatives is high.

Recall = T P

T P +F N

• F1 Score: The F1 Score is the harmonic mean of precision and recall, providing a balance

between the two. It’s useful when you need a balance between precision and recall and

there’s an uneven class distribution.

F1 = 2× Pr eci si on ×Recal l

Pr eci si on +Recal l

• ROC (Receiver Operating Characteristic) Curve: This is a plot of the true positive rate

against the false positive rate for the different possible cut points of a diagnostic test.

The area under the ROC curve (AUC-ROC) is a measure of the test’s ability to distinguish

between the classes. A higher AUC indicates a better model performance.

2.8. EXPLAINABLE AI METHODS:
XAI techniques in SHM aim to make the decision-making process of AI models understandable

to human experts. This is crucial for ensuring safety, optimizing maintenance operations, and

justifying interventions. By providing insights into how AI models derive their conclusions, XAI
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helps in building trust among engineers and stakeholders, facilitating the adoption of AI in crit-

ical infrastructure monitoring, and enabling timely and informed decision-making to prevent

failures and extend the lifespan of structures.

2.8.1. SHAP

SHAP (SHapley Additive exPlanations) is a method used in the field of explainable AI (XAI) to

interpret machine learning models. It assigns each feature an importance value for a particular

prediction, making the model’s output interpretable in terms of its input features. SHAP values

are grounded in cooperative game theory and offer a unified measure of feature importance.

Shapley value, a concept from cooperative game theory. It represents the average marginal

contribution of a feature across all possible combinations of features. For a prediction model,

the Shapley value of a feature value is the average change in the prediction that the feature value

causes by being included in the model.

φi =
∑

S⊆F {i }

|S|!(|F |− |S|−1)!

|F |! [ f (S ∪ i )− f (S)]

Where, F is the set of all features, S is subset of features excluding i , |S| is the size of S and |F | is

total number of features. [ f (S ∪ i )− f (S)], represents contribution of features when added to a

subset of features S.

PLOTTING SHAP VALUES

• SHAP Summary Plot: Shows the importance of each feature across all the data points. It

displays each point’s SHAP value on a color scale, indicating the impact of that feature on

the model’s output.



3
METHODOLOGY

This chapter outlines methodologies undertaken to answer the research questions. It begins

with adopting the CRISP-DM framework to SHM problems. This involves a systematic ap-

proach to using data mining techniques for monitoring and assessing the health of structures.

SHM aims to detect, localize, classify, and assess. damage and degradation over time to ensure

safety and efficiency while reducing maintenance costs.

3.1. CRISP-DM
CRISP-DM was introduced as a cross industry template for data mining in [3], Figure 3.1 illus-

trates basic framework of CRISP-DM. Huber et al. [2] expanded the basic framework to adapt

engineering applications, Figure 3.2 depicts expanded CRISP-DM framework. Applying the

CRISP-DM framework to SHM entails a systematic methodology for leveraging data mining

techniques as theorised by [4] to monitor and evaluate the health of structures, with the goal

of detecting, localizing, classifying, and assessing damage and degradation over time. This ap-

proach not only aims to ensure safety and efficiency but also seeks to minimize maintenance

costs by tailoring CRISP-DM specifically for the unique challenges and objectives of SHM.

3.1.1. BUSINESS UNDERSTANDING

In CRISP-DM business understanding phase sets the direction for rest of the steps by under-

standing requirements and then translating this knowledge in terms of data mining. In the

context of SHM, Gordan et al. [4] translates this step to target identification. Defining specific

objectives for SHM, such as early damage detection, life expectancy prediction, maintenance

need identification, or structural performance under various loads and conditions. Under-

standing requirements from a structural engineering perspective, including safety criteria, and

operational demands. In our work this literature review and process of framing the research

questions Chapter 1.

23
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Figure 3.1: CRISP-DM framework [2]

Figure 3.2: Data Mining Methodology for engineering applications [3]
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Figure 3.3: Generalised CRISP-DM for SHM [4]

3.1.2. TECHNICAL UNDERSTANDING:

This task aims to convert business objectives into quantifiable technical objectives, compile

existing knowledge on relevant physical phenomena and process effects, and outline a plan

for experimentation. The process encompasses several critical steps, starting with an exami-

nation of the system’s structure, processes, and pertinent parameters. It then involves setting

clear technical objectives and identifying target variables, from which specific technical anal-

ysis tasks are derived. An important part of this task is the collection and documentation of

existing expertise concerning the relevant physical effects and foundational conditions. It also

requires specifying the physical parameters and effects that will be crucial for future measure-

ments, along with devising measurement strategies for each significant physical parameter.

The culmination of this process is the creation of a detailed experimental plan to guide the

execution of measurements.

3.1.3. TECHNICAL REALIZATION:

The purpose of this phase is to evaluate and choose the appropriate measurement method-

ologies and to implement the planned experiments. This phase is designed to produce data

that encompasses all necessary details and characteristics for the following data analysis phase,

aimed at achieving the specified business objectives. The steps involved include constructing

a technical testing framework by identifying the most suitable data collection methods from

the proposed measurement concepts. Following this, the experimental plan is executed. Doc-

umentation of every aspect of the data collection process is crucial, including any technical



CRISP-DM 26

constraints, potential error sources, and the overall quality of the data gathered.

3.1.4. DATA UNDERSTANDING

Once we understand business problems, the next step is understanding available data. This

phase is crucial as it lays the foundation for how well you can prepare and model your data. It

involves collecting, exploring, and familiarizing yourself with the data to identify quality issues,

discover first insights into the data, or detect interesting subsets to form hypotheses for hidden

information. The collection of data and integrating various datasets and exploring this data

in different dimensions like in time and frequency domains. Another important aspect of this

step is to identify quality issues in data. This part of methodology is addressed in Chapter 4.

3.1.5. DATA PREPARATION

Combine data from disparate sources into a unified database, ensuring consistency and ac-

cessibility for analysis. Address data quality issues, such as missing values, outliers, and noise.

Standardize formats and scales to make the data suitable for further analysis. Develop fea-

tures that are indicative of structural health, such as derived statistics from sensor readings,

frequency domain features, or time series features capturing temporal patterns. Important

process at this step is labelling the data and train test splitting data. This helps in unbiased

evaluation of the model.

3.1.6. MODELING

Once the data is prepared for training the next step is to apply machine leaning or statistical

models on the data. Choose appropriate data mining and machine learning models suited for

SHM tasks. This may include regression models for predicting life expectancy, classification

models for damage detection, or clustering for anomaly detection. Train models using histori-

cal data, ensuring that they are validated using techniques suitable for time series data, such as

time-based cross-validation.

The next step after model evaluation is interpreting the results. To make the model inter-

pretabile, we use SHAP method. This provides insights into the output of machine learning

models. SHAP is grounded in the Shapley value—a concept from cooperative game theory.

SHAP library comes with visualisation which help us understand feature importance in multi-

ple dimensions.

3.1.7. EVALUATION

This phase plays a crucial role in assessing the performance of developed models, using metrics

like accuracy, precision, and recall for classification, or MSE and R-squared for regression. This

phase also involves reviewing the entire modeling process to ensure proper methods were used

and deciding if the model needs further refinement or is ready for deployment.
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3.1.8. TECHNICAL IMPLEMENTATION:

This task focuses on making the validated model operational during production by feeding it

real-time data. It involves converting the data acquisition methods outlined in the "Technical

Realization" phase of DMME into a system capable of functioning in real time. Key activities in-

clude verifying the long-term data streaming capabilities of all employed sensor technologies.

This verification process covers ensuring adequate power supply, managing potential connec-

tion losses, and incorporating self-monitoring features, possibly through the use of redundant

sensors. Additionally, it requires the development or selection of a software framework that

can efficiently collect, pre-process, and analyze data streams from machine control systems

and sensors over extended periods.

3.1.9. DEPLOYEMENT

Integrate the models into the SHM system, ensuring that they can process data in real-time

or near-real-time as required. Set up systems to monitor the performance of the SHM system,

including automated alerts for detected issues and regular model updates based on new data

or structural changes.



4
EXPERIMENT SETUP

This chapter outlines the experimental framework used in the study, offering an in-depth look

at data comprehension and the Exploratory Data Analysis performed to uncover insights within

the dataset. Additionally, it clarifies the basic needs for the suggested solution, and describes

the critical features and attributes that the solution must possess.

4.1. TECHNICAL UNDERSTANDING:
Wind turbine are complex structures designed to convert wind energy into mechanical power

efficiently. Wind turbines can vary in size from small applications powering individual homes

to large utility-scale turbines contributing to the electrical grid. Wind turbine with its main

components depicted in Figure 4.1, and below we describe these components:

• Rotor Blades: These capture the wind’s energy and transfer it to the rotor hub. Typically,

turbines have two or three blades made of lightweight, durable materials like fiberglass

or carbon fiber.

• Rotor Hub: The hub connects the blades and transfers the rotational motion to the gen-

erator through the main shaft.

• Nacelle: Mounted on top of the tower, the nacelle houses the generator, gearbox (in some

turbines), drive train, and other mechanical components. It also contains control sys-

tems that adjust the blade pitch angle and yaw orientation system changes the Nacelle

direction to maximize efficiency.

• Tower: The structure that supports the nacelle and rotor assembly. Towers are made from

steel or concrete and are designed to elevate the turbine components to capture higher

wind speeds at higher altitudes.

The wind turbine blades are engineered with several sections, each serving a specific function

28
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Figure 4.1: Wind turbine front and side view [5]

in aerodynamics and structural integrity. The sections of wind turbine blade are depicted in

Figure 4.2 and Figure 4.3. Here’s an overview of the different sections and features commonly

found in wind turbine blade literature [32] and [33]:

• Root Section: This is the innermost part of the blade that attaches to the rotor hub. The

root section is characterized by its large diameter and is engineered to withstand sub-

stantial forces and moments transmitted between the blade and the hub. It usually has a

circular or polygonal cross-section for a secure connection.

• Maximum Chord Section: The chord of an airfoil is the straight line connecting its lead-

ing and trailing edges. The maximum chord section is where the blade’s cross-section

is widest. This section is crucial for generating lift and is often located near the root to

maximize the blade’s aerodynamic efficiency while minimizing structural loads.

• Suction Side: The suction side is the part of the airfoil (blade cross-section) that faces

away from the direction of the wind. It’s typically smoother and more curved than the

pressure side. Air moving over the suction side speeds up and decreases in pressure,

contributing to the lift generated by the blade.

• Pressure Side: The pressure side faces the oncoming wind and is the part of the airfoil

that experiences increased air pressure. It is usually less curved than the suction side.

The difference in pressure between the suction side and the pressure side creates lift,

propelling the blade and turning the rotor.

• Leading Edge: The leading edge is the front part of the blade that first contacts the wind.

It is designed to be aerodynamic to reduce drag and is often reinforced to withstand im-

pact from airborne particles (e.g., rain, hail, debris).



TECHNICAL IMPLEMENTATION: 30

Figure 4.2: Wind turbine blade sections

• Trailing Edge: The trailing edge is the rear part of the blade where the air flowing over the

suction and pressure sides meets. It is thinner than the leading edge and optimized for a

smooth airflow exit, minimizing turbulence and drag.

• Tip Section: The outermost part of the blade, farthest from the rotor hub. The tip section

moves the fastest and generates a significant portion of the blade’s lift. It is often tapered

and twisted to ensure optimal performance across various wind speeds and to reduce

noise and vibration.

• Spar Cap: A structural component running along the length of the blade, usually on both

the suction and pressure sides, providing strength and stiffness to resist bending mo-

ments.

• Shear Web: Internal structures that connect the pressure side and suction side of the

blade, providing shear stiffness and contributing to the overall structural integrity of the

blade.

4.2. TECHNICAL IMPLEMENTATION:
Data is gathered via a series of accelerometers embedded within a wind turbine mechanism

identified to have a defective blade. This turbine features blades each extending 45 meters,

with every blade hosting a collection of 6 sensors, totaling 18 sensors across the system for data

accumulation. These sensors are organized as s1, s2, s3, s4, s5, s6 within each blade, with each

blade acting as a distinct channel (e.g., the first sensor on the first blade is denoted as ch1s1).

Sensors sharing the same number are positioned identically across all blades. The sensors and
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their respective placements and direction of measurement is summarised in Table 4.1.

Each of these sensors is a uni-directional accelerometer, encased within cubes for placement

on the blades. Specifically, a cube containing only the second sensor is located 5 meters from

the blade’s root on the pressure side. Another cube, positioned 15 meters from the root (one-

third down the blade), houses accelerometers (sensors 1, 3, 4) that monitor in three different

directions. At the same 15-meter mark, but on the suction side, another cube is positioned to

measure acceleration in two directions (sensors 5, 6). Sensor 1 is aligned with the blade’s length

(z-axis), while sensors 2, 4, and 6 track acceleration across the leading and trailing edges (x-

axis). Meanwhile, sensors 3 and 5 capture movements between the suction and pressure sides

(y-axis).

Figure 4.3: Wind turbine blade cross-sectional view

Table 4.1: Sensor placements

Sensor Placement Direction

Sensor 1 15m from Root section, Wind ward side Z-axis

Sensor 2 5m from Root section, Wind ward side X-axis

Sensor 3 15m from Root section, Wind ward side Y-axis

Sensor 4 15m from Root section, Wind ward side X-axis

Sensor 5 15m from Root section, Leeward side Y-axis

Sensor 6 15m from Root section, Leeward side X-axis

4.3. DATA UNDERSTANDING

4.3.1. WIND TURBINE BLADE MOVEMENT:

During the motion of wind turbine blade as seen in front view in Figure 4.1 the motion is in

zx-plane of wind turbine blade. Senors 1, measuring in z-axis and Sensors 2, 4, 6 measuring

in x-axis capture this dominant motion of wind turbine blade. Once we neglect this dominant

motion from wind turbine blade movement the blade is subjected to loads based on their direc-

tion and the type of stress they cause. Three primary types of loads are edgewise, flapwise, and

torsional. These loads play a significant role in the structural design and operational integrity

of wind turbines. Let’s explore each of these load types in more detail:

• Edgewise vibration: Edgewise loads act parallel to the plane of rotation and are mainly

due to wind pressure hitting the side of the blade, gravity (when the blade is in the hor-
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izontal position), and centrifugal forces. While generally smaller than flapwise loads,

edgewise loads are significant, especially in large blades where the effects of gravity and

centrifugal forces become more pronounced. Sensors 2, 4, 6 capture edgewise vibrations

of the blade.

• Flapwise vibration: Flapwise loads act perpendicular to the plane of rotation, that is in

y-axis of wind turbine blade as shown in Figure 4.3. These are primarily caused by the

aerodynamic lift forces that enable the rotor to turn. Flapwise loads can lead to bending

of the blades in the direction of the wind flow. They are significant because they directly

relate to the primary function of the blades—capturing wind energy. Sensors 3, 5 measure

flapwise vibration.

• Torsional vibrations: Torsional loads refer to the twisting forces that act along the length

of the blade. These can be caused by variations in wind speed across the blade length

(wind shear), changes in blade pitch, and aerodynamic imbalances. Sensor 1 measuring

along z-axis of blade measures this vibration.

Table 4.2: Vibrations

Vibration Sensors Direction

Edgewise vibration Sensors 2, 4 and 6 X-axis

Flapwise vibration Sensors 3 and 5 Y-axis

Torsional vibrations Sensor 1 Z-axis

WIND TURBINE BLADE ROTATION:

The motion of a wind turbine blade is a complex combination of the blade’s rotation around the

turbine hub and its vibrations. As the blades rotate to capture wind energy, they also experience

various forces that cause them to bend and vibrate. The rotation which is also the dominant

motion of the blade can be observed in sensors 1, 2, 4 and 6. The acceleration responses of these

sensors can be seen in Figure 4.4. So, one complete rotation of blade can be represented as one

sinusoidal wave in accelerometer response signal. We can represent this dominant motion as

sinusoidal-fit of the response signal. Sensor 1 and 2, 4, 6 in a same blade have phase difference

of 90◦, since they are measuring in perpendicular axes. In case of comparing blades, in a tri-

blade wind turbine system angle which has between adjacent blades is 120◦. This implies, that

when comparing the readings from the same sensors on different blades, there is a 120◦ phase

difference as shown in Figure 4.6.

ESTIMATING ROTATIONAL FREQUENCY:

In movement of a wind turbine blade primary load is the rotational motion to generate energy,

this is also reflected in frequency response of the acceleration signal. When we represent accel-

eration data in frequency domain rotational frequency is dominant frequency with maximum
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Figure 4.4: Accelerometer measuring in yz-axes of a sample

Figure 4.5: Comparing phase difference of sinusoidal fits of sensor 1 and 4 of channel 1

Figure 4.6: Comparing phase difference of sensor 1 sinusoidal fits, across channels

amplitude. This can be observed observed across the sensors in a sample. In Figure 4.7 fre-

quency bin with maximum amplitude is 0.18Hz, so estimated RPM of this sample is 60 times

0.18.
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Algorithm 2 Rotational frequency estimation

Data: Signal time series of a sensor with data points y y and time order t t
Result: Rotations per minute r pm
RPMestimate y y, t t :

f s ← 1/(t t [2]− t t [1]) f f ← np.fft.fftfreq(len(t t ), (t t [2]− t t [1])) F y y ← abs(np.fft.fft(y y))
max_i ndex ← np.argmax(F y y[1 :]) + 1 max_ f r eq ← abs( f f [max_i ndex]) return
max_ f r eq ∗60

Figure 4.7: Estimating dominant frequency

4.3.2. DATA INCONSISTENCY:

Data collection via sensors commenced on June 17th, 2023. However, the dataset exhibits some

discrepancies in the samples collected from some of sensors during the data acquisition pro-

cess. The observed inconsistencies shown in Figure 4.8a and Figure 4.8b, corruptions noticed

can be categorized into several types of corruption:

• Extreme Values:A few sensors recorded extreme values of the orders of 106, which stand

out as anomalies. These outliers can easily be identified by examining basic statistical

parameters such as the maximum, minimum, and range of the sensor data.

• Asynchronous Vibration:This category differs from the extreme values in that the recorded

data falls within the typical range of accelerometer readings but lacks synchronization

with other sensor channels. While the data from two channels might resemble sinusoidal

waves, the affected sensor displays stochastic vibrations that do not align with the read-

ings from other channels. Identifying this type of discrepancy involves comparing statis-

tical features such as range, root mean square (RMS), standard deviation, and Dynamic

Time Warping (DTW) distance between the blades.

• Time Gap: This issue is characterized not by data corruption per-se but by interruptions
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(a) (a) Asynchronous vibration (b) (b) Extreme values with time gap

in the data collection process. Instead of a continuous 30-second sample, there are in-

stances where the data is split into two 15-second segments separated by a 20-second

gap. Such occurrences should be treated as distinct samples for analysis purposes.

The initial phase in the data processing flow involves excluding corrupted samples from sub-

sequent modeling efforts. This entails the elimination of asynchronous samples and those ex-

hibiting extreme values. The process commences with the manual labeling of data, which in-

volves examining the time series plots of the samples. Following this, classifiers that have been

trained on manually labeled data are utilized to distinguish between healthy and unhealthy

samples. As depicted in the data flowchart Figure 4.9, we construct and evaluate models based

on statistical features alongside neural network models trained on time series data to identify

corrupted samples.

Figure 4.9: Overview of methodology
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4.4. DATA PREPARATION

In our research, we utilized three distinct types of models, each based on the specific nature

of the data on which they were trained. The process of preparing the data was segmented into

three sub-categories, tailored to accommodate the different models we employed.

• Statistical features

• Sequential features

– Time series sequences

– Frequency response

4.4.1. STATISTICAL FEATURES BASED CLASSIFIER:

In the data analysis process, feature engineering is essential for preparing the dataset for the

predictive model. This involves extracting important statistical features from the time series

data, capturing the dataset’s distribution. During feature engineering, we extract relevant sta-

tistical features from the time series data. The computed features are described below:

• DTW distance: We consider DTW distance measure of a sensor response from similar

senors in remaining blades to measure the similarity of the sensor response.

d t wchannel 1 =
d t wchannel 1 and 2 +d t wchannel 1 and 3

2

• Standard deviation: To measure variation of data from it’s mean. The standard deviation

of the given time series data is the value that quantifies the dispersion of the data points

around their mean, indicating how spread out the values are in the series.

σ=
√∑

(xi −µ)

N

σ= standard deviation;

N = length of the time series;

xi = data points in timeseries;

µ= mean of time series data points;

µ=
∑

xi

N

• Root mean square value: The Root Mean Square (RMS) value is a statistical measure of

the magnitude of a varying quantity. It is particularly useful in contexts where variations

are both above and below a mean value, especially when dealing with waveforms or al-
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ternating amplitude.

RMS =
√

1

n

∑
x2

i

• Inter-quartile range:The Interquartile Range (IQR) is a measure of statistical dispersion,

which is the spread of the data points in a dataset. The IQR is calculated as the differ-

ence between the 75th percentile (the upper quartile, Q3) and 25th percentile (the lower

quartile, Q1)of the data. This range covers the middle 50% of the data points and is used

to evaluate the variability while ignoring outliers and extreme values. The IQR is partic-

ularly useful in identifying outliers and understanding the overall spread of the central

portion of a dataset.

• Skewness: Skewness is a measure of the asymmetry of the probability distribution of a

real-valued random variable about its mean. The skewness value can be positive, nega-

tive, or undefined. In a perfectly symmetrical distribution, the skewness would be zero.

The signals with high skewness are with varying RPM.

µ3 =
∑N

i (Xi −µ)

(N −1)∗σ3

Figure 4.10: Statistical features extracted from sample

EXPLORATORY DATA ANALYSIS OF STATISTICAL FEATURES

The correlation matrix of statistical features along with labels, as illustrated in Figures Fig-

ure 4.12a, reveals none of the metrics have strong correlation with the labels. This matrix aids

in understanding the relationships among variables, yet it does not necessarily imply causa-

tion. Figure Section 4.4.1 presents distribution plots for selected statistical features, including

standard deviation, skewness, inter-quartile range, RMS, and range, which are log-transformed

to correct for skewness and facilitate the understanding of their distribution. Additionally, Fig-
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ure Figure 4.12b depicts the distribution of manually labeled samples for corruption classifier,

comprising 250 healthy and 328 corrupted datapoints.

Figure 4.11: Distribution of features

(a) a. Correlation between features

(b) b. Labels

4.4.2. SEQUENTIAL FEATURES:

We use two kinds of sequential data in our experiments. One is time series data, responses from

senors and other being frequency domain representation of these. In case of training with time

series data we decimated raw data in time domain from 90,000 data points to 900 data points

by selecting every 100th point to avoid time complexity.

The frequency response of data is used to train Transformer neural network. In the context
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of training Transformer neural networks, leveraging the frequency response of datasets as in-

put has been identified as a strategic approach to enhance learning efficiency. Transformers,

when trained on decimated raw data, often struggle to identify underlying patterns, a chal-

lenge primarily attributed to the inherent noise present within raw datasets. Contrarily, fre-

quency response sequences, characterized by their reduced noise levels compared to raw data,

offer a more conducive environment for Transformer models to learn. This distinction under-

scores the potential of frequency domain representations to facilitate more effective pattern

recognition by Transformer neural networks, suggesting that preprocessing data to emphasize

frequency response may significantly improve learning outcomes. This approach aligns with

the broader understanding that data quality and representation critically influence the per-

formance of deep learning models, particularly in complex tasks where pattern discernment is

fundamental. Welch power spectral density response of the signal is estimated with parameters

shown in Table 4.3, to obtain frequency domain representation of the data.

Table 4.3: Welch estimation parameters

Parameter Value

Signal Raw data (90,000 data points)

Length of segment (1) 1000

Sampling frequency 20

Averaging method Median

Features extracted from raw data are not very helpful to learn about damage classification.

Shown in Figure 4.9, damage classification can be done with features extracted from station-

ary signal. Detrending helps in making the time series stationary:

• Removing trend and seasonal properties.

• Standardise the data

• Extract statistical and frequency response features from the raw signal

Data may exhibit sinusoidal trends or seasonal patterns. To address this, we can eliminate these

trends by subtracting a sinusoidal fit from the signal, thereby rendering the data stationary. This

process also effectively removes rotational motion from a blade in a structural context, allowing

for the identification of patterns in the stationary vibration signal. The curve fit equation to be

removed from signal can be assumed in the form as shown below where, A is amplitude, w is

frequency of signal, t is time index, φ being phase difference, and C is a constant.

A∗ si n(w t +φ)+C

Signal can be decomposed into a sinusoidal component and stationary component, stationar-

ity of vibration is tested by Dickey Fuller test mentioned in Chapter 3.
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These stationary signals frequency responses are standardised using standard scaler test men-

tioned in Chapter 3. The responses are labeled as binary labels if the data collected is from

damaged blade or healthy blade. This response is trained on transformer with similar archi-

tecture as we used for corrupted sample detection. Similarly, statistical features extracted from

stationary signal along with Standard deviation, Root mean square, Inter-quartile range, skew-

ness we also consider normalised responses of rotational frequency and it’s harmonics.

4.5. MODELING:
Based on kinds of data, we have to model for statistical data and sequential data. Simultane-

ously, we need to model for classifying corrupted samples and later for damage detection as

show in Figure 4.13.

Figure 4.13: Models

4.5.1. STATISTICAL FEATURE BASED MODELS:

We used tabular classifier models to train both corruption and damage detection. For corrup-

tion classifier we chose, standard deviation, average of DTW distance, RMS, IQR and skewness

but for damage classifier DTW is redundant as data is detrended. We included frequency re-

sponse amplitudes of harmonic frequencies.
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We applied Random Forest, SVM, and XGBoost classifier models to a normalized array of ex-

tracted statistical features. These baseline models are compared and later the XGBoost model

underwent tuning via RandomSearchCV on grid of values Table 4.4. We then compared these

models based on various parameters to identify the most effective method for classification.

Table 4.4: XGB optimisation parameters

Parameter Range

max depth 3 to 18 at steps of 3

gamma 1 to 9 at steps of 1

reg alpha 40 to 180 at steps of 20

reg lambda 0 to 1 at steps of 0.2

colsample bytree 0.5 and 1

min child weight 0 to 10 at steps of 2

4.5.2. SEQUENTIAL DATA BASED MODELS:

As shown in Figure 4.13, sequential data is used to train CNN and transformer models. Data is

under sampled ten times to reduce computational and time complexity for convolutional neu-

ral network in classifying corrupted data.

Architecture of a convolutional neural network (CNN) designed for processing time series data

with an input shape of 900 time steps and a single feature per time step. The model’s archi-

tecture comprises a series of convolutional layers, each followed by batch normalization and

ReLU activation functions to introduce non-linearity and normalize the outputs for improved

training stability. This pattern is repeated two more times, followed by a global average pooling

layer condenses the feature maps from each of the 900 time steps into a single 64 feature vector

by averaging, effectively reducing the data’s dimensionality and preparing it for classification.

The model concludes with a dense layer consisting of two neurons, intended for binary clas-

sification. Model optimized with Adam optimizer and loss function used is sparse categorical

crossentropy. Model is evaluated by sparse categorical accuracy.

Architecture of a convolutional neural network (CNN) designed for processing time series data

with an input shape of 900 time steps and a single feature per time step. The model’s archi-

tecture comprises a series of convolutional layers, each followed by batch normalization and

ReLU activation functions to introduce non-linearity and normalize the outputs for improved

training stability. This pattern is repeated two more times, followed by a global average pooling

layer condenses the feature maps from each of the 900 time steps into a single 64 feature vector

by averaging, effectively reducing the data’s dimensionality and preparing it for classification.

The model concludes with a softmax dense layer consisting of two neurons, intended for binary

classification.
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We developed a Transformer-based neural network tailored for sequential data analysis, ca-

pable of processing frequency response sequences of 257 elements with a single feature di-

mension. Our model initiates with a dense layer to enhance the representational capacity of

the input data, followed by the strategic incorporation of positional encoding to capture se-

quence order—crucial for the Transformer’s self-attention mechanism. The architecture com-

prises three Transformer blocks, each featuring a multi-head attention module with four heads

and a subsequent feed-forward network, integrating residual connections and layer normal-

ization to facilitate efficient learning. The sequence information is condensed via global aver-

age pooling and then classified using a dense softmax layer for binary classification. CNN and

transformer models optimised with the Adam optimizer and evaluated on "sparse categorical

accuracy" through "sparse categorical crossentropy" loss.

4.6. EVALUATION:

4.6.1. PERFOMANCE:

Key metrics to evaluate classifier models, Confusion matrices, Accuracy, Precision, recall, F1

score and ROC. For, tabular data based models first the base-line model are compared using

cross validated metrics, best among them is further fine-tuned using Random search algorithm.

In case of Neural networks we used sparse categorical values to calculate and cross validate

accuracy.

4.6.2. EXPLAINABILITY:

To demystify the rationale behind blackbox model predictions, particularly in complex scenar-

ios, it is crucial to render the decision-making process of models transparent. In this context,

the utilization of post-hoc explanation methodologies becomes indispensable. In our study,

SHAP (Shapley Additive exPlanations) and LIME (Local Interpretable Model-agnostic Explana-

tions) are employed to explain these results.

We used SHAP to explain tabular data models, by visulaising shap values using visulisation

techniques provided in SHAP library. Bar plot to explain importance of a particular feature.

Beeswarm plots, where feature values are compared to SHAP values which give us insights into

how model prediction and feature values are related. The Neural network models are explained

using LIME, by visualising top 10 features and how they are influencing the model predictions.
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RESULTS

5.1. CORRUPTION CLASSIFIER:

5.1.1. PERFORMANCE:

This segment delves into the efficacy of models designed for tabular and sequential data in

identifying corrupt samples within a dataset. We trained and assessed these models on man-

ually tagged datasets, comprising 500 samples for tabular data and 1,000 samples for models

based on neural networks. Subsequently, these models were applied to label the entire dataset,

and the outcomes of this process are examined in the following discussion.

Table 5.1: Evaluation of models to detect corrupted data

Model Accuracy Precision Recall F1 ROC AUC

Random Forest classifier 0.90 0.91 0.93 0.90 0.90

SVM classifier 0.85 0.89 0.87 0.87 0.89

XGBoost classifier 0.92 0.90 0.96 0.93 0.93

XGBoost classifier (fine
tuned)

0.94 0.91 0.97 0.94 0.93

CNN 0.96 0.97 0.92 0.94 0.94

Transformer 0.95 0.97 0.95 0.94 0.94

Table Table 5.2 presents evaluation of models designed for detecting corrupted data within a

dataset, various models were assessed based on their performance metrics including Accuracy,

Precision, Recall, F1 Score, and ROC AUC. The Random Forest classifier showed commendable

results with an accuracy of 90%, precision of 91%, recall of 93%, an F1 score of 90%, and an ROC

AUC of 90%. Following this, the SVM (Support Vector Machine) classifier demonstrated an ac-

curacy of 85%, precision of 89%, recall of 87%, an F1 score of 87%, and an ROC AUC of 89%.
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The XGBoost classifier initially reported an accuracy of 92%, precision of 90%, recall of 96%,

an F1 score of 93%, and an ROC AUC of 93%. Further improvement was noted in the XGBoost

classifier upon fine-tuning, achieving an accuracy of 94%, precision of 91%, recall of 97%, an F1

score of 94%, and maintaining an ROC AUC of 93%.

The Neural Network models outperformed others with better metrics. These results highlight

the efficacy of advanced models, particularly CNN and Transformer models, in accurately iden-

tifying corrupted samples in dataset.

5.1.2. EXPLAINABILITY:

To interpret the prediction of data corruption by machine learning models, we utilized the XAI

frameworks SHAP and LIME to determine the influential features in classifying samples. Fig-

ure 5.1 highlights the primary contributors—IQR, DTW, and the rotational frequency of wind

turbines—to the determination of sample data corruption. IQR identifies samples with extreme

values, DTW distance measures the similarity across three channels, and rotational frequency

is a significant factor as the data encompasses various IQR and RMS values per rotational fre-

quency.

Figure 5.1: SHAP values bar plot of XGBoost model

In the beeswarm plot displayed in Figure 5.2, which illustrates how feature values are influ-

encing SHAP values. Samples with low IQR, though spread across the x-axis, are denser and

more likely to predict uncorrupted data, whereas samples with high IQR are densely clustered

on the corruption side. For DTW, high values lean towards predicting uncorrupted data, while

low DTW values are densely associated with corruption. Regarding frequency, instances are
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distributed throughout the x-axis, a pattern that holds true for the other features as well.

Figure 5.2: SHAP values, beeswarm plot of XGBoost model

The LIME framework is used to analyze decimated time series data trained on neural networks,

as illustrated in the plots for uncorrupted data Figure 5.3 and corrupted samples Figure 5.4

shown below. These plots reveal the top 10 time-related features that influenced the classifica-

tion decisions for the respective instances.

5.2. DAMAGE CLASSIFIER:

5.2.1. PERFORMANCE

Unlike the corruption classification for damage detection, the tabular data doesn’t help us

much with classification of damage detection. Similarly, time domain data don’t seem to learn

any patterns to detect damage from data even for lower decimation factors. But the frequency

domain representations of the data show good results in damage detection.

Table 5.2: Evaluation of models to detect damage data

Model Accuracy Precision Recall F1 ROC AUC

Random Forest classifier 0.70 0.72 0.70 0.75 0.68

SVM classifier 0.70 0.71 0.68 0.74 0.67

XGBoost classifier 0.74 0.72 0.68 0.73 0.69

XGBoost classifier (fine
tuned)

0.75 0.72 0.72 0.73 0.71

Transformer 0.98 0.97 0.98 0.99 0.96
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Figure 5.3: LIME feature values of top 10 features of corrupted sample

Figure 5.4: LIME feature values of top 10 features of corrupted sample

5.2.2. TESTING MODELS ON UNTRAINED DATA:

Comparing the models Figure 5.5 by extending the anomaly detection on 10,000 samples, which

were not part of training process. Channel 2 sensors show high corrupted samples. Tabular

data based XGBoost model detects bit more corrupted samples than models trained on time

and frequency domain raw data.

Deploying damage detection model shown in Figure 5.6. Frequency response data of 2,000
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samples, which were not part of training process are considered. As expected channel 3(dam-

aged blade) sensors are classified as damage samples in significantly high numbers.

Figure 5.5: Comparing percentage of corrupt files detected through different models

Figure 5.6: Comparing percentage of damaged samples detected from frequency domain responses
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CONCLUSION

This thesis has explored the application of explainable artificial intelligence (XAI) frameworks,

particularly SHAP and LIME, in structural health monitoring (SHM) systems using vibration

data to predict damage and ensure the integrity of engineering structures. The comprehen-

sive literature review, experimental setups, and methodological applications discussed in the

preceding chapters underscore the emerging capabilities of machine learning models in ad-

vancing the field of SHM.

Throughout this study, several key findings have highlighted the transformative impact of XAI

in SHM systems. The integration of XAI has significantly enhanced the transparency and in-

terpretability of predictive models, which is crucial for building trust among engineers and

stakeholders who rely on these systems for critical decision-making. The use of sophisticated

machine learning algorithms like XGBoost and convolutional neural networks has also demon-

strated superior performance in detecting and classifying damage, benefiting from the robust

feature extraction and selection capabilities that XAI methods facilitate. Moreover, the prac-

tical application of these systems in monitoring large-scale structures, such as wind turbines,

offers a promising framework for future deployments. The insights provided by XAI into model

predictions are invaluable, helping to fine-tune systems for better accuracy and reliability.

6.1. PRACTICAL IMPLICATIONS OF DATA CORRUPTION IN SHM SYSTEMS:
Data corruption represents a significant challenge in the effective implementation of SHM sys-

tems, particularly when these systems rely on accurate and reliable data to make critical deci-

sions regarding the health and safety of infrastructure. Corruption in data can occur due to a

variety of factors, including sensor faults, transmission errors, environmental interference, and

software bugs, among others. The implications of such corruption are profound, particularly

in fields requiring high reliability and precision.
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Corruption in data can lead to incorrect assessments of structure health, potentially resulting

in two primary adverse outcomes: false positives and false negatives. False positives, where

the system incorrectly identifies damage that does not exist, can lead to unnecessary inspec-

tions and maintenance, thus wasting resources and increasing operational costs. More criti-

cally, false negatives, where actual damage goes undetected, can pose serious risks to the safety

and integrity of structures, potentially leading to catastrophic failures.

To mitigate the effects of data corruption, SHM systems must incorporate robust data valida-

tion and cleaning mechanisms. Implementing anomaly detection algorithms that identify and

isolate corrupted data before it impacts the system is crucial. Moreover, the development of

adaptive models that can handle some level of data imperfection without significant perfor-

mance degradation is also vital. Techniques such as data imputation, robust outlier detec-

tion, and advanced noise filtering can enhance the resilience of SHM systems against corrupted

data.

6.1.1. ROLE OF XAI IN ADDRESSING DATA CORRUPTION:

Explainable AI (XAI) can play a crucial role in addressing data corruption by making the decision-

making processes of SHM systems transparent. By using XAI frameworks like SHAP and LIME,

engineers can understand how the model processes data, including how it deals with anoma-

lies and potential data corruption. This transparency allows for more informed adjustments to

the model and the data processing pipeline, enhancing the system’s ability to accurately assess

structural health despite the presence of corrupted data.

In conclusion, addressing data corruption is fundamental to the deployment of reliable SHM

systems. By implementing robust mechanisms for data validation, maintaining sensor integrity,

and employing XAI, the practical implications of data corruption can be significantly mitigated,

thereby ensuring the safety, efficiency, and reliability of critical infrastructure monitoring.

6.2. ANSWERS TO RESEARCH QUESTIONS:
How can we implement explainable structural health monitoring (SHM) for damage classifica-

tion based on vibration data?

The research demonstrated that implementing explainable SHM for damage classification us-

ing vibration data is feasible and highly effective with the integration of XAI methods like SHAP

and LIME. These tools enhanced the interpretability of complex machine learning models,

such as XGBoost, CNNs and transformers, allowing for greater transparency in damage detec-

tion and classification processes. The application of these XAI frameworks provided valuable

insights into the feature contributions and decision-making processes of the models, ensuring

that the SHM systems are not only accurate but also trustworthy.

What are the current ML models and techniques used in the SHM methods to identify defects
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based on accelerometer data?

The study identified several machine learning models and techniques prominently used in

SHM, including Random Forest, Support Vector Machines, XGBoost, Convolutional Neural Net-

works and transformers. These models proved capable of effectively identifying defects in

structures from accelerometer data, especially when enhanced by feature extraction techniques

that improve data interpretability and model accuracy.

What ML methods are suitable for damage localization?

The study faced challenges in effectively localizing structural damage due to an insufficient

number of sensors. This limitation significantly hampered the precision and accuracy of the

damage localization process, a critical component in structural health monitoring (SHM) sys-

tems. The lack of extensive sensor coverage meant that data collected was not comprehensive

enough to accurately pinpoint the specific areas of damage, leading to potential gaps in the

monitoring process. This shortfall underscores the importance of deploying a well-distributed

sensor network to ensure that SHM systems can perform their intended functions effectively,

particularly in large-scale infrastructure projects where the identification of exact damage lo-

cations is crucial for timely and cost-effective maintenance and repairs.

How can we integrate XAI frameworks to explain SHM models?

successfully achieved, providing clear explanations of model predictions. These explanations

were instrumental in validating the models’ reliability and in facilitating their acceptance among

engineers and decision-makers. The use of XAI allowed for a deeper understanding of the un-

derlying dynamics of the models, which is crucial for critical applications where safety and

precision are paramount.

These conclusions align with the specific research questions posed at the beginning of the

study and provide targeted insights based on the comprehensive analysis conducted through-

out the thesis. This structured approach to concluding ensures that each research question is

addressed with clear evidence and outcomes from the research.

6.3. FUTURE IMPLICATIONS:
The study has provided valuable insights into the application of XAI in SHM systems and demon-

strated the potential of advanced machine learning models. However, the challenge of accu-

rately localizing damage due to insufficient sensor coverage has highlighted a critical area for

improvement in SHM systems. Addressing this gap is essential for enhancing the functional-

ity and reliability of future deployments, particularly in monitoring large-scale structures like
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wind turbines.

6.3.1. ENHANCING SENSOR COVERAGE

Future research should focus on optimizing sensor deployment strategies to ensure compre-

hensive coverage and data collection capabilities. Developing guidelines for sensor placement

that maximize the area covered while minimizing costs and logistical complexities could sig-

nificantly improve damage localization accuracy.

Incorporating advanced sensing technologies, such as distributed fiber optic sensors or wire-

less sensor networks, could provide a higher resolution of data across structures. These tech-

nologies offer the potential for real-time monitoring and a greater density of data points, which

could enhance the SHM system’s ability to detect and localize structural damages more pre-

cisely.

6.3.2. DEVELOPING ADAPTIVE SHM SYSTEMS

There is a need to develop adaptive SHM systems that can adjust to varying data availability

and quality. Such systems could use machine learning algorithms to optimize their perfor-

mance based on the data input they receive, which would be particularly useful in scenarios

with limited sensor data.

Further exploration into the integration of XAI methods to enhance the interpretability of SHM

systems remains a priority. Future developments should aim to make these systems more

transparent and understandable to a broader range of stakeholders, including those without

deep technical knowledge of machine learning, facilitating better decision-making.

6.3.3. COLLABORATIVE AND INTERDISCIPLINARY APPROACHES

Adopting a collaborative and interdisciplinary approach that includes engineers, data scien-

tists, and industry professionals could lead to more innovative solutions to the challenges faced

in SHM. Collaborations can also help in designing SHM systems that are not only technically

proficient but also economically viable and easy to implement on a larger scale.

In conclusion, while the study has made significant contributions to the field of SHM through

the use of XAI and machine learning, the challenges encountered with sensor coverage and

damage localization highlight the need for continued research and development. By addressing

these challenges, future SHM systems can achieve higher accuracy, reliability, and practicality

in real-world applications.
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Table 1: Techniques and motivations observed in selected papaers

Author Year Journal Settings Main Purpose Data-Driven Technique1

Ou, YW;
Chatzi, EN;
Dertimanis,
VK; Spiri-
donakos,
MD [11]

2017 STRUCTURAL
HEALTH
MONITORING-AN
INTERNATIONAL
JOURNAL

Experimental setup of
wind turbine blade.

Damage detection in
wind turbines blades.
Data is collected from
healthy and induced
damages.

Statistical and Modal fea-
tures are compared with
healthy and various in-
duced damages.

Angeletti,
F; Iannelli,
P;Gasbarri,
P; Panella,
M; Rosato, A
[9]

2023 SENSORS - Develop a deep learning
based damage detection
system, damage type de-
tection and localisation

Neural networks LSTM.
bi-directional LSTM

Carone, S;
Pappalet-
tera, G;
Casavola, C;
De Carolis,
S; Soria, L
[12]

2023 SENSORS Experimental prototype vibration-based detec-
tion of bolt loosening
in a rotating joint of a
custom sewer cleaning
vehicle transmission was
performed using support
vector machines (SVM)

Statistical features of vi-
bration signal classified
using SVM

Hsiung, WY;
Huang, YT;
Loh, CH;
Loh, KJ;
Kamisky, RJ;
Nip, D; van
Dam, C [13]

2014 SENSORS AND
SMART STRUC-
TURES TECH-
NOLOGIES
FOR CIVIL, ME-
CHANICAL, AND
AEROSPACE SYS-
TEMS 2014

Experimental setup of
prototype and induced
damage

Identify changing modal
features with the induced
damage

Modal feature extraction

Movsessian,
Artur and
Cava, David
Garcia and
Tcherniak,
Dmitri[26]

2021 Engineering
Archive

Simulated data The study involves us-
ing DSF to calculate a
Mahalanobis Distance-
based Damage Index
(MD-based DI), training
an XGBoost regression
model with these DSFs
and environmental vari-
abilities as predictors,
and employing SHAP
analysis to interpret the
model’s outputs, specifi-
cally the impact of each
DSF and environmental
variable on the DI.

XGBoost regression,
SHAP

Goyal, D.;
Choudhary,
A.; Pabla,
B.S.; Dhami,
S.S. [14]

2020 Journal of Intelli-
gent Manufactur-
ing

Experimental prototype Comparing classification
results of non-contact
sensor and accelerome-
ter.

extract statistical fea-
tures from vibration
singal;SVM, KNN classi-
fiers

AbadÃa,
J.J.P.; Fritz,
H.;Dadoulis,
G.; Dragos,
K.; Smarsly,
K.[31]

2021 EG-ICE 2021 Work-
shop on Intelligent
Computing in
Engineering, Pro-
ceedings

Review Literature XAI in SHM, comparing
damaged and healthy
states

SHAP

Pandey, P.;
Rai, A.; Mi-
tra, M.[8]

2022 Mechanical Sys-
tems and Signal
Processing

FE model simulations XAI in SHM to explain
classification of damaged
and healthy signal

CNN, LIME, SHAP

Parziale, M.;
Lomazzi,
L.; Giglio,
M.; Cadini,
F.[15]

2023 Lecture Notes in
Civil Engineering

Experimental prototype. Transmissibility Function
based engineered fea-
tures are used to generate
matrix which are used as
gray-scale image data to
train CNN classifier for
various damaged scenar-
ios.

CNN; LRP used to explain
results

1Note: KNN refers to K-Nearest Neighbour, SVM is Support Vector Machine, CNN is Convolution Neural Networks,

GB is Gradient Boosting, SVDD is Support Vector Domain Description, LSTM is Long Short-Term Memory
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Lomazzi,
L.; Fabiano,
S.; Parziale,
M.; Giglio,
M.; Cadini,
F.[29]

2023 Mechanical Sys-
tems and Signal
Processing

Lamb wave, acutators GSI images generated
from Lamb waves which
are trained on CNN to
classify

LRP used to explain re-
sults

Luckey, D.;
Fritz, H.;
Legatiuk,
D.; Peralta
AbadÃa,
J.J.; Walther,
C.; Smarsly,
K.[34]

2022 Structural Integrity Review paper Framework for imple-
menting XAI in SHM
done using ML algo-
rithms

Conceptual XAI frame-
work

Moradi, M.;
Komninos,
P.; Bene-
dictus, R.;
Zarouchas,
D.[10]

2022 Proceedings of the
Annual Conference
of the Prognostics
and Health Man-
agement Society,
PHM

Simulated data Formulate a HI(Health In-
dex) based on PCA de-
rived features and classify
HI using neural networks
with custom weights, ad-
ditive and multiplicative
weights to make model
predictive.

PCA, neural networks

Jin Xu and
Xian Ding
and Yongli
Gong and
Ning Wu and
Huihuang
Yan [24]

2022 Wind Engineering Real-time monitoring Demodulated raw data
using CWT, complex
wavelet transforms. PSD
of these transformed
signals are used to for-
mulate a health indicator
based on amplitudes of
harmonics of rotational
frequency. Compared
this health indiacators on
different scenario.

Complex wavelet trans-
form(CWT)

Mudabbiruddin,
M.; Mosavi,
A. [35]

2023 SACI 2023 - IEEE
17th International
Symposium on
Applied Computa-
tional Intelligence
and Informatics,
Proceedings

Review paper Frame work for modeling
structural aging process.

neural networks

Baquerizo,
J.; TutivÃ©n,
C.; Purun-
cajas, B.;
Vidal, Y.;
Sampietro,
J.[16]

2022 Mathematics Experimental WT jack 256 values from each
column were reshaped
into 16 × 16 matrices to
train and test classifi-
cation neural network
model. Various classes of
induced damage data is
generated.

convolutional neural net-
works

Leon-
Medina, J.X.;
Anaya, M.;
ParÃ©s, N.;
Tibaduiza,
D.A.; Pozo, F.
[17]

2021 Sensors Experimental WT jack data from sensor network
is reduced in dimensions
by PCA, this data used
to train, test and validate
an XGBoost multi class
model.

XGBoost, PCA

GarcÃa, D.;
Tcherniak,
D. [19]

2019 Mechanical Sys-
tems and Signal
Processing

Experimental setup of WT
blade

Data driven vibration
SHM, SSA is used to de-
compose raw signal and
construct feature vectors
for statistical analysis
with mahanabolis dis-
tance as criterion.

Singular Spectrum Analy-
sis (SSA)

Vidal, Y.;
Aquino, G.;
Pozo, F.;
GutiÃ©rrez-
Arias, J.E.M.
[20]

2020 Sensors (Switzer-
land)

Experimental setup of WT
jack

Signals decomposed
using PCA and trained
to classify damaged and
healthy states.

KNN, SVM

Santos,
F.D.N.;
Noppe, N.;
Weijtjens,
W.; De-
vriendt, C.
[23]

2021 International
Conference on
Structural Health
Monitoring of
Intelligent Infras-
tructure: Transfer-
ring Research into
Practice, SHMII

Real time monitoring Fatigue assessment, using
acceleration and SCADA
data. Features selection
using Wrapper type fea-
ture selection and trained
on NN classifier.

neural Networks(NN)
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Leon-
Medina, J.X.;
ParÃ©s, N.;
Anaya, M.;
Tibaduiza,
D.A.; Pozo, F.
[18]

2023 Bulletin of the
Polish Academy of
Sciences: Techni-
cal Sciences

Experimental setup of WT
jack

Classifying healthy and
damaged scenarios.

XGBoost, PCA

TutivÃ©n,
C; TriviÃ±o,
H; Vidal, Y;
Sampietro, J
[21]

2023 EUROPEAN
WORKSHOP ON
STRUCTURAL
HEALTH MONI-
TORING (EWSHM
2022), VOL 1

Experimental setup of WT
jack

Transformer network to
train damage detection
classifier.

Transformer network

Peng,
Jieyang and
Kimmig,
Andreas and
Niu, Zhibin
and Wang,
Jiahai and
Liu, Xiufeng
and Wang,
Dongkun
and
Ovtcharova,
Jivka [25]

2022 International Jour-
nal of Electrical
Power & Energy
Systems

Real-time monitoring The study involves col-
lecting SCADA data from
wind turbines, prepro-
cessing it for failure
classification, and using
an algorithm to compare
sensor data with standard
health benchmarks. This
approach helps in real-
time health assessment
of turbines, employing
a CNN classifier for ac-
curate failure prediction
and enabling effective
maintenance decisions.

CNN classfier, Max-Mean
discrepancy(MMD)

Pavlack, B;
Paixao, J;
da Silva, S;
Cunha, A;
Cava, DG
[22]

2022 STRUCTURAL
HEALTH
MONITORING-AN
INTERNATIONAL
JOURNAL

Experimental setup Damage detection and
quantification of Damage
Index using PC-Kriging.

PC-Kriging
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