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Abstract

Microphone arrays are arrangements of microphones that are used to capture auditory
signals within an environment. Due to the difference in the microphone’s positions the
signals from a signal source present in the environment will arrive at different points in
time depending on the microphone’s position within the array. Sound source localization
(SSL) utilizes the time difference of arrival (TDOA) to extract useful information, with the
primary goal being to determine the direction-of-arrival (DOA) of signal sources present
in the environment. SSL algorithms are either narrowband or wideband. Narrowband
algorithms focus on a narrow frequency band and are therefore only able to locate signal
sources that fall within this frequency band. Wideband algorithms observe a much larger
frequency band, which allows them to detect multiband signal sources or several narrow-
band signals emitting signals at different frequencies. Furthermore, wideband algorithms
can be used to estimate the frequencies of these signal sources. Although, these wideband
algorithms show additional capabilities when compared to narrowband algorithms, their
usages are limited due to their increased computational complexity. This increase can
however be mitigated by employing parallel processing techniques.

In this paper, four different wideband SSL algorithms will be explored to determine
their accuracy, precision and computational complexity. These algorithms are CLEAN,
SRP-PHAT, 2D-MUSIC and 2D Unitary ESPRIT. First each algorithm’s implementation
is described. Next, the computational complexity is derived for both the sequential and a
parallelized implementation of each algorithm. Lastly, simulations are performed to eval-
uate the performance of each algorithm for both single and multiple coherent narrowband
signal sources. The results show that the SRP-PHAT and CLEAN algorithm perform well
when subjected to a single narrowband signal source even when subjected to noise and
reverberation. However, when comparing the algorithms’ performance when subjected to
multiple coherent sources, only SRP-PHAT maintains consistent performance. Even when
subjected to high noise levels and reverberation. Additionally, its parallelized computa-
tional complexity belongs to one of the lowest of all the algorithms considered in this
paper.

Keywords: sound source localization (SSL), wideband signals, data dependency graphs
(DDG), parallel processing techniques, computational complexity, real-time processing



Nomenclature

λ Loop gain

λi Eigenvalue of the i-th source incident on the array

G Steering matrix

g Steering vector

ωk Center frequency of the k-th frequency bin

C Cross-spectral matrix/Covariance matrix

c Speed of sound in dry air at 20◦C

dx Distance between adjacent elements in microphone array in the x-direction

dy Distance between adjacent elements in microphone array in the y-direction

fs Sampling frequency of each element in the array

K Number of frequency bins processed by the SSL algorithms

M Number of microphones in the array

Mx Number of columns of elements in microphone array in the x-direction

My Number of rows of elements in microphone array in the y-direction

N Number of snapshots within a time-frequency bin

P Number of signal source to be found by the SSL algorithsm

ui Direction cosine of the i-th source incident on the array in the direction of u

vi Direction cosine of the i-th source incident on the array in the direction of v

1



Chapter 1

Introduction

In the realm of audio signal processing, sound source localization (SSL) stands as a pivotal
technique akin to the human sense of hearing, enabling machines to perceive and analyze
auditory scenes. At its essence, SSL refers to the process of determining the spatial coor-
dinates of sound-emitting sources within an environment. Just as our ears triangulate the
direction of sound, SSL devices utilize multiple microphones or sensors to pinpoint the ori-
gin of acoustic signals. These sensors are often organized in a geometric pattern, including
rectangular, circular, spherical and spiral patterns. Such arrangements of microphones are
also referred to as microphone arrays.

The applications of SSL span a wide spectrum of domains, ranging from robotics
[69, 41, 53], structural analysis [38, 27, 50, 28], surveillance systems, [77, 45, 64, 74],
teleconferencing scenarios [35, 2], hearing aids [46, 34, 52, 21], and leak detection [83, 8]
to mention a few. In robotics, for instance, accurate localization of sound sources enables
robots to respond intelligently to auditory cues, enhancing their interaction capabilities
with humans and their environment. In surveillance systems, SSL aids in identifying
and tracking potential threats or anomalous activities in crowded or noisy environments.
In teleconferencing scenarios and hearing aids, precise localization of speakers facilitates
clearer audio communication by focusing on the speaker of interest and suppressing back-
ground noise. In industrial environments that work with compressed air, vacuum, or gas
systems leaks can occur which can damage machinery and create hazardous working envi-
ronments. Such leaks exhibit acoustic characteristics that can be detected with specially
designed devices which employ SSL techniques to locate and analyze the characteristics of
such leaks.

Despite being a longstanding and extensively researched topic, SSL remains a formidable
challenge in the field. The propagation of sound is influenced by several factors, such as
noise and reverberation. These environmental elements add complexity to the task of dis-
tinguishing between authentic sound sources and other auditory phenomena. Noise poses
a significant challenge as it can mask the presence of genuine sound sources, while rever-
beration can influence the location at which the signal source is estimated to be located
at. Additionally, in scenarios where multiple sound sources are present, these sources can
interfere with each other, adding additional complexity to the spatial characteristics in the
environment. When dealing with coherent sources, which are sources that exhibit similar
characteristics in their intensity and frequencies, the task of isolating the desired source
locations becomes particularly challenging.

At the core of SSL devices lies an audio processing algorithm which takes the received
microphone signals from the microphone array and processes these to provide the spatial
coordinates of the sound sources. Depending on the algorithm, more information such as
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Algorithm References
CLEAN/CLEAN-PSF [73, 18, 10, 79, 5]
CLEAN-SC [73, 18, 10, 79]
High-Resolution CLEAN-SC [73]
GCC-PHAT [68, 7, 51, 16, 84, 12]
SRP-PHAT [16, 84, 85, 12]
MUSIC [83, 7, 51, 66, 59, 58]
GEVD-MUSIC [51]
GSVD-MUSIC [51]
SEVD-MUSIC [51]
ESPRIT [66, 59, 58]
DAMAS [49, 5, 18, 76, 10, 79]
DAMAS2 [49, 18, 76, 10]
DAMAS3 [18]
NNLS [10, 79]
FFT-NNLS [49, 18, 10, 79]
TBD [20]
SF-MCA [9]
BSI [68]
NMCFLMS [68]
NSM [7]
TC-NSM [7]
FPL [16]
SRPD [85]
FISTA [49, 79]
FBM [46]
SBM [46]
MWCM [46]
BSS [47, 55]
Least-squares estimators [31, 47]
Bayes-based Richardson–Lucy (RL) [79]

Table 1.1: Subset of available SSL algorithms

the signal source’s frequency and intensity can also be extracted. Some SSL algorithms
utilize the TDOA originating from the difference in positions of each microphone in the
microphone array to triangulate the DOAs of the incoming sound waves, allowing them to
determine the location in both the azimuth and elevation direction relative to the micro-
phone array. Other algorithms employ beamforming techniques by constructing spatially
selective beams in the direction of the sound sources, enhancing the signal-to-noise ratio
(SNR) of desired sources while suppressing interference from other directions. More re-
cently, machine learning-based methods have been explored which employ deep learning
and neural networks to learn the complex patterns and relationships from large datasets,
enabling robust and accurate localization in diverse environments. Table 1.1 provides only
a subset of the many algorithms developed for SSL.

When locating sound sources, it is important to determine what type of signal sources
need to be analyzed. Signal sources can either be narrowband or wideband. Narrowband
auditory signals have a small bandwidth, meaning that they occupy a narrow range of
frequencies in the audio spectrum. These signals typically consist of a single frequency or
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a narrow band of frequencies around a specific carrier frequency. Wideband signals, as the
name suggests, have a larger bandwidth, and encompass a broader range of frequencies
compared to narrowband signals.

Narrowband SSL algorithms are designed to locate narrowband signals. For this pur-
pose, the algorithm will require knowledge on the carrier frequency of the signal which it
attempts to locate. This requires knowledge of the signal sources before performing the ac-
tual localization, which might not always be available. Wideband SSL algorithms analyze
a wider frequency spectrum of the received audio signals and consider multiple frequency
components present in the wideband signals to estimate the spatial coordinates of these
sound sources. However, wideband algorithms feature a higher computational complexity
than narrowband algorithms.

Narrowband SSL algorithms can sometimes be adapted to implement wideband charac-
teristics. This adaptation involves applying the narrowband version of the algorithm with
a window function. The window function is applied to the received microphone signals,
creating separate segments of signal data. To reduce artifacts at the segment boundaries,
some overlap is included between these segments. Each of these segments is Fourier trans-
formed and the resulting magnitudes and phases for each point in time and frequency,
which will be referred to as a frequency bin in this thesis, is stored in a complex-valued
matrix. This is the basic principle behind the Short-Time Fourier Transform (STFT).

By applying the narrowband SSL algorithm to each of the frequency-bins obtained
through STFT, the algorithms will yield spatial location estimates for each of the frequency
bins. Depending on the algorithm, these estimates are used to find multiple wideband
sources or narrowband sources. Although such an approach can lead to a better spatial
resolution and additional capabilities such as signal source frequency estimation, it will
come at the price of a high computational complexity.

Algorithms that feature a high computational complexity might become impractical to
use with real-time systems. For such systems it is crucial that sound signals are processed
within strict time constraints to ensure timely response and decision-making. However,
achieving this in the context of SSL, where algorithms must analyze incoming audio data
to determine the direction of sound sources, presents a significant challenge. In response,
researchers have developed algorithms such as ESPRIT (Estimation of Signal Parameters
via Rotational Invariance Techniques) and FPL (Fast Phased-Locked Loop) to address
this challenge. These algorithms prioritize computational efficiency without compromising
localization accuracy. By leveraging innovative techniques such as rotational invariance
and efficient signal processing methods, these algorithms reduce the computational burden
associated with SSL, making them well-suited for real-time applications.

To mitigate the computational complexity one can make use of parallel processing
techniques to perform equivalent operations in parallel. This requires determining which
processes exist within the algorithm and how these are dependent on each other. To help
identify opportunities for parallelization, it is possible to make use of data dependency
graphs (DDG). These graphs are constructed of smaller elements called processing elements
(PE) which describe a single task. PEs that are not connected are independent of each
other and can be performed in parallel. Therefore, these graphs illustrate how an operation
can be performed in parallel by visualising the data dependencies present in the operation.
These DDGs can be transformed into signal flow graphs (SFGs) and eventually into systolic
array designs to develop dedicated hardware. Additionally, the DDGs can assist in creating
software implementations of the algorithms. These software implementations can prove to
be effective in exploiting the capabilities of platforms with parallel processing capabilities
such as GPUs, FPGAs and multi-core CPUs.
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Research goal

This thesis has received backing from Benchmark which provided the research topic of this
thesis. Benchmark stands as a multinational entity specializing in engineering services,
offering a diverse array of solutions to its clientele. Its offerings include design engineering,
precision machining, comprehensive electronic assembly services, and lifecycle management
support. Such provisions play a pivotal role in aiding customers across various sectors in the
advancement of technologies pertinent to defense, medical, aerospace, complex industrial,
communication, advanced computing, and semiconductor capital equipment domains.

A real-life example of products that utilize SSL techniques are the ii900-Series of acous-
tic imagers developed by the Fluke Corporation and Benchmark. These devices leverage
SSL techniques to enable its users to visually inspect environments in real-time for leaks,
partial discharges (PD), and mechanical issues in a non-intrusive and safe manner.

At the core of such products lies an algorithm which enables it to perform SSL. As
shown in Table 1.1, many SSL algorithms have been developed over the years. However, this
makes it a time-consuming process to find the optimal algorithm for the desired application.
Therefore, the goal of this research will be to perform a comparison of four different SSL
algorithms to determine how they compare to one another. The algorithms are compared
based on their accuracy, precision, and computational complexity. These three performance
metrics are described in the list below.

1. Accuracy accuracy is determined by the distance between the estimation signal
source position given by each algorithm and the actual source positions.

2. Precision is determined by the algorithm’s ability to estimate the signal source
position consistently which is represented by the standard deviation in its estimated
signal source positions.

3. Computational complexity indicates how well the algorithms total number of
operations that need to performed scales with the size of the input.

The CLEAN algorithm is the first SSL algorithm that will be investigated in this study
and serves as the reference for the other algorithms. The second algorithm is SRP-PHAT.
This algorithm has proven to be a powerful technique for SSL using microphone arrays. It
stands out for its ability to accurately localize sound sources even when subjected to noisy
and reverberant environments. Additionally, the SRP-PHAT algorithm offers a high spatial
resolution, enabling the precise localization of sound sources. Although the algorithm
has a high computational complexity, it can be implemented efficiently which makes it
suitable for real-time processing applications. The third algorithm is 2D-MUSIC. This
algorithm has been widely acclaimed for its ability to accurately determine the parameters
of multiple signal sources even when subjected to noise. It provides a high resolution
in identifying and localizing signals that are closely spaced in frequency. However, the
algorithm has a high computational complexity which makes it less suitable for real-time
applications. Hence the last algorithm that will be considered is the 2D Unitary ESPRIT
algorithm. The 2D Unitary ESPRIT algorithm is a computationally efficient alternative
to MUSIC for estimating signal parameters in array signal processing applications, making
it particularly attractive for real-time or resource-constrained systems. Furthermore, the
ESPRIT algorithm has been stated to have a high estimation accuracy and resolution
comparable to MUSIC. It achieves this by effectively utilizing the inherent structure of
the microphone array geometry to estimate the signal parameters. Lastly, the algorithm
robustness allows it to provide accurate estimates even in noisy environments.
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Using the three performance metrics three research questions are defined which con-
cretely state the goal of this research.

1. Which of the selected algorithms achieves the highest accuracy and precision for a
single signal source when subjected to noise and reverberation?

2. Which of the algorithms can estimate the direction of multiple coherent signal sources?

3. What are the sequential and parallelized computational complexities of each algo-
rithm?

This study abides by the following structure. Each of the selected SSL algorithms will
be described in more detail in Chapter 2. Their computational complexities are explored in
Chapter 3 and parallel processing techniques are applied to determine how each algorithm
can be parallelized. Simulations are performed to determine the accuracy and precision of
each algorithm when locating a single and two coherent signal sources. The results from
these simulations are presented individually for each algorithm in Chapter 4. In Chapter
5 the obtained computational complexities and simulation results for each algorithm are
compared to each other to determine what the strengths and weaknesses of each algorithm
are. Finally, the study is concluded in Chapter 6 and additional research directions are
presented for future research.

6



Chapter 2

Sound Source Localization
Algorithms

SSL algorithms seek to extract useful information from the signals received by a set of
microphones. Additionally to estimate the DOA information, algorithms can be used to
estimate the intensity of the signal, as well as its frequency. CLEAN, SRP-PHAT and
2D-MUSIC are algorithms that construct a spectrum by computing the received signal
strengths for a predetermined set of scan locations. By selecting the maxima from the
spectrum, the DOA’s are found. 2D Unitary ESPRIT however, does not use a spectrum to
locate its peaks and instead directly derives the DOA’s from eigenvectors obtained through
eigendecomposition. In this chapter, the common dependencies for each algorithm will be
discussed first, followed by a separate and detailed exploration of each algorithm.

2.1 Microphone array

The microphone array is a collection of microphones arranged in a specific configuration
to capture audio signals from various directions. Many two-dimensional as well as three-
dimensional configurations exist for microphone arrays each with different properties. Some
common configurations include, linear [82, 56, 61], rectangular [54], circular [32], spiral [57]
and spherical [42] arrays. This paper will only consider an uniform rectangular array (URA)
containing 25 elements with inter-element spacing of five centimeters in both the x- and
y-direction, which are denoted as dx and dy respectively. The exact arrangement is given
in Figure 2.1.

The inter-element spacing and its sampling rate are two important properties of the
microphone array as it determines the frequencies that the microphone can effectively cap-
ture [17]. The Nyquist-Shannon criterion states that to accurately capture and reconstruct
a signal, the sampling rate must be at least twice the highest frequency component present
in the signal. Sampling at a lower frequency results in time aliasing. The frequency
that the microphone array can effectively capture is known as the Nyquist frequency. For
the URA in Figure 2.2 a sample rate of 20 kHz was utilized, meaning that its Nyquist
frequency is equal to 10 kHz.

The inter-element distance determines the cutoff frequency at which spatial aliasing
[6] occurs. The cutoff frequency, fc, can be calculated according to Equation (2.1).

fc =
c

2∆d
(2.1)

Here, c is the speed of sound and ∆d is the inter-element distance. For the URA in Figure
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Figure 2.1: Arrangement of the URA

2.2, ∆d is equal to 0.05 meters. Hence, the cutoff frequency fc is equal to 343.0
2·0.05 = 3430

Hz.
Due to the geometric positioning of each element and depending on the direction of

the incoming signals, the time-of-arrival (TOA) of a signal will differ at each microphone.
SSL algorithms exploit this TDOA to determine the DOAs of the signals incident on the
microphone array. The size of a microphone array is important as it determines the array’s
minimum resolvable separation angle between two sound sources. This can be formally
described by what is known as the Rayleigh criterion [62]. Mathematically, the Rayleigh
criterion can be presented as shown in Equation (2.2).

θmin ≈ 1.22
λ

d
(2.2)

In the context of SSL, the criterion defines the minimum resolvable angle θ in radians, at
which two sound sources, each producing sound waves with a wavelength λ, can be resolved
by a microphone array with diameter d.

2.2 Steering vectors

The algebraic representation of the received signal x at time t for each of the M micro-
phones present in the microphone array is given in Equation (2.3).

x(t) = As(t) + n(t) ∈ CM (2.3)

The source signals emitted from P different signal sources is represented by the signal
vector s. The additive noise present at each microphone is considered to be uncorrelated
and is represented by n. Lastly, A ∈ CM×P represents the steering matrix, containing the
M -dimensional steering vectors for each of the P sources. Each steering vector describes
how the signal for a source propagates to each microphone in the array. Steering vectors
are crucial to many beamforming methods and are used to focus the microphone array
to a specific direction by steering the main lobe of the beamformer. The steering vector
represents the phase relationship between the elements in the array and different DOAs.

8



The steering vectors essentially hold the phase shifts that will maximize the signal strength
in the specified direction while minimizing interference from other directions. These phase
shifts are derived from the geometry of the array, the DOA of interest and the frequency of
interest. For a URA where its elements are uniformly distributed along the x- and y-axis,
the phase shifts for each microphone in the array in the direction of (θ, ϕ) is given by
Equation (2.4).

g(θ, ϕ, ωk) = exp

(
−j2πmxdxωk

c
sin(θ) cos(ϕ) +

−j2πmydyωk

c
sin(θ) sin(ϕ)

)
(2.4)

In this equation, dx and dy represent the inter-element spacing of the microphones in the x-
and y-direction respectively and mx and my are the vectors containing the x- and y-indices
of each microphone in the array, respectively. Lastly, ωk, θ, and ϕ represent the frequency,
azimuth angle and elevation angle that focus the beamformer towards the desired direction.
There exist many different methods to define the steering vector. However, a distinction
is made between far-field and near-field sources. Far-field sources are best represented
by assuming plane waves, whereas near-field sources are better represented by assuming
spherical waves. In this paper, the steering vectors defined in Equation (2.4) assume far-
field sources.

Instead of computing a single steering vector, it is also possible to construct the steering
matrix containing the steering vectors for each of the L possible scan directions. For this
purpose, let us define the vectors

θ = [θ0, θ1, . . . , θL−1]

ϕ = [ϕ0, ϕ1, . . . , ϕL−1]

which contain the azimuth and elevation angles of each of the L scan directions respectively.
Then the steering matrix G(ωk) ∈ CL×M is obtained by substituting the vectors into
Equation (2.4).

G(ωk) = exp

(
−j2πmxdxωk

c
sin(θ) cos(ϕ) +

−j2πmydyωk

c
sin(θ) sin(ϕ)

)
(2.5)

2.3 Scan space

The algorithms considered in this paper, with the exception of 2D Unitary ESPRIT, make
use of a grid-based search in order to determine the DOA of incident signals. Each position
in the grid represents the DOA of a signal with an associated intensity value. For this
purpose, a scan space needs to be defined which determines the DOA’s for which the
intensity value will be computed. For each algorithm, the maximum range a scan space
can encompass can be defined as θi ∈ [−180, 180] and ϕi ∈ [0, 90]. Naturally, it is possible
to to choose smaller ranges to reduce the scan space, which can be beneficial in reducing
the computational load of the algorithm as will become clear in the next sections where
each algorithm’s components and their computational complexity are explored in depth.
In this paper a reduced scan space is utilized where the elevation angle was limited to
ϕi ∈ [0, 50] degrees.

2.4 Wideband SSL

Wideband SSL algorithms have a similar goal to narrowband SSL algorithms. Both variants
seek to estimate the direction of a sound source relative to the microphone array. However,
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Figure 2.2: Illustration of a signal from a source at (θi, ϕi) incident onto the array.

narrowband algorithms are designed to work with signal sources that emit signals with
narrow frequency bands and therefore assumes that the emitted acoustic sound signals
fall with this small frequency band. Wideband SSL algorithms are designed to localize
sound sources within a wider frequency band, hence the name wideband. However, they
can also be used to estimate the DOA of narrowband source signals and additionally, their
frequency. Wideband algorithms divide the incoming signals in different frequency bins and
analyse each frequency bin independently. As mentioned in Chapter 1, this is achieved by
pre-processing the received signals by the Short Time Fourier Transform (STFT) to obtain
a set of frequency bins. The wideband implementation of each algorithms involves applying
the narrowband implementation of the algorithm to each resulting frequency bin.

2.5 CLEAN

CLEAN is an algorithm which was originally developed by Jan Högbom in 1974 to perform
deconvolution on images created in radio astronomy [29]. Deconvolution is the process of
removing optical distortion from images which enhances the resolution and contrast of these
images such that points of interest can more easily be identified. Though it was initially
used for radio astronomy, many variations of CLEAN have been developed and applied to a
wide range of scenarios, including SSL [13, 72]. In SSL, the CLEAN algorithm operates on
an acoustic image obtained through conventional beamforming (CB). The acoustic image
initially contains the source signals along with noise. Through an iterative process, the
algorithm removes the parts from the acoustic image that correspond with the peak source
until no significant peaks are left in the acoustic image. The size of the acoustic image is
dependent on the resolution of the scan grid. If this grid is too coarse or out of focus, the
error in estimating the peak location will increase [73].

Cross-spectral matrix

The Cross Spectral Matrix (CSM) (also known as the covariance matrix) is a convenient
structure which stores all the cross-power densities of each microphone pair along with their
complex conjugates for all frequencies of interest. Additionally, the auto-power spectra of
each microphone is stored along the diagonal of the CSM. To construct the CSM let us
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define the matrix X(ωk, t) which contains the power spectral density (PSD) of the received
signals for frequency ωk for each microphone in the microphone array at time t. Then the
CSM for a single snapshot can be constructed as shown in equation 2.6.

Ck,t = X(ωk, t)X(ωk, t)
H ∈ CM×M (2.6)

Here, H represents the Hermitian operator (also known as the Hermitian conjugate or
complex conjugate transpose).

The signals received by the microphone array are observed over a period of time. In
discrete time this means that the signals are represented by a consecutive series of N
snapshots, each representing the signal at a single point in time. To construct the CSM for
the whole sample period, a CSM must be created for each of these snapshots. Summing
and averaging these CSMs will yield a single CSM that describes the cross-power densities
over this sample period. The equation for this operation is shown in Equation (2.7).

Ck =
1

N

N∑
t=0

X(ωk, t)X(ωk, t)
H ∈ CM×M (2.7)

Conventional Beamforming

Conventional Beamforming (CB) involves utilizing the CSM and steering vectors to create
an acoustic image by focusing the microphone array towards each of the L scan direc-
tions. Beamforming essentially filters the incoming signals for a specific DOA candidate
by attenuating the signals that arrive from other directions than the DOA of interest. The
resulting acoustic image holds the power estimates for each of the scan directions. Ex-
amples of acoustic images are provided in Figure 2.3. Equation (2.8) shows how a single
power estimate is computed.

Ak(l) = wk(l)
HCkwk(l) (2.8)

Where, wk(l) is the weight vector which is derived from the steering vector gk(l) by dividing
it by its Frobenius norm [1] as is shown in Equation (2.9)

wk(l) =
g(l, ωk)

||g(l, ωk)||
(2.9)

With the obtained power estimates for each of the L scan directions, an acoustic image
is created. The acoustic images provided in Figure 2.3 were created for an environment
containing three narrowband signal sources located at various positions relative to the
microphone array. They are of equally powered and located at equal distances from the
microphone array. However, each signal source emits a signal at a different frequency.
These frequencies are 2400, 2500, and 2600 Hz. The Figure shows that each signal source
influence is strongest in their respective acoustic image. As the acoustic image for 2304.7Hz
does not closely match any of the signal source’s frequencies, it is nearly empty. Detecting
the peak positions is essential in determining the locations of the signal sources, but can
also be used to determine the frequency of the signals. This allows wideband algorithms
to detect multiple signal sources even when placed closely together and if the difference in
their frequencies is large enough.

Iterative peak removal

The initial acoustic images obtained with CB are referred to as dirty maps and the corre-
sponding CSM Ck as the dirty CSM. This refers to the fact that these images represent
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Figure 2.3: Acoustic images obtained through CB across multiple frequencies for
three equipowered and sources emitting a 2400 Hz, 2500 Hz, and 2600 Hz signal
respectively.

both the signal and noise incident onto the array. In the iterative peak removal process,
the CLEAN algorithm performs the actual deconvolution by separating the contributions
of the source signals from the noise present in the dirty CSM. The iterative peak removal
process starts by selecting the maximum peak from initial dirty map and its corresponding
power estimate Ak(l). The array response in the direction of the l-th source is given as
the outer product of the steering vector in that direction, with its conjugate transpose and
scaled by the loop gain, λ as shown in Equation (2.10).

R = λg(l, ωk)g(l, ωk)
H ∈ CM×M (2.10)

The loop gain, λ, is the source power estimate Ak(l) multiplied with a dampening factor
[29] between 0 and 1. This is given in Equation (2.11)

λ = ζAk(l), 0 < ζ ≤ 1 (2.11)

Here, ζ is the dampening factor. The array response is added to the clean CSM. This
CSM is initially empty, but eventually will contain the sum of all the array responses
corresponding with the peaks identified during the iterative peak removal process.

Cclean = Cclean +R (2.12)

To detect the next peak in the dirty map, the array response is removed from the dirty
CSM and the resulting CSM is used as input for the next iteration.

Cdirty = Cdirty −R (2.13)

This process repeats until a certain threshold has been reached. For instance, in our im-
plementation used for the simulations presented in Chapter 4 the iterative process was
completed if the power estimate was reduced until 15% of the initial power estimate re-
mained or when 10 iterations were reached. Furthermore, a loop gain of 0.9 was employed.
The process of iterative peak removal is illustrated in Figure 2.4. From the figure it is
apparent how the first peak, indicated by the red cross, is removed from the dirty map
using the array response. The array response is stored in the clean map and both the new
clean and dirty map are used as input for the next iteration. Eventually, after 4 iterations,
all significant peaks are removed, leaving only residuals and the contributions of noise in
the final dirty map.
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Figure 2.4: Acoustic images illustrating the iterative peak removal process for
two signal sources with an signal-to-noise ration of 10dB and no reverberation.
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DOA Extraction

Extracting the DOA’s of the sources present within the environment is quite simple for
CLEAN as each peak is sequentially removed from dirty map. Unlike MUSIC and SRP-
PHAT it is not necessary to apply grid-based search methods to find the various peak
locations as will be shown in the following sections, where 2D-MUSIC and SRP-PHAT
are discussed separately. However, for the wideband implementation of CLEAN, P or less
DOA’s are obtained per frequency bin. From these KP DOA estimates, P peak locations
need to be extracted which correspond with the P source locations. However, this is not
as simple as selecting the P peak locations that correspond with the P largest power
estimates, as these power estimates might only correspond with one of the two sources
as one source can emit a stronger acoustic signal than the other source(s). Furthermore,
when the sources are incoherent (exhibit different characteristics) their strongest power
estimate can occur in different frequency bins (see Figure 2.3), while coherent sources will
have their strongest power estimates associated within the same frequency bin (see Figure
2.4). These factors make it difficult to select the DOA’s corresponding with the various
signal sources. When dealing with a single source, this problem does not occur, and one
can simply select the DOA associated with the strongest power estimate. However, to solve
the issue involving multiple sources it has been decided to make use of K-means clustering
to create P clusters from the KP obtained DOA’s. Then from each cluster the DOA
associated with the strongest power estimate is selected, yielding P DOA’s associated with
P various sources.

2.6 SRP-PHAT

Steered response power (SRP) is another type of beamforming algorithm. Beamforming
can be defined as by a filter-and-sum process where some temporal filters are applied to the
microphone signals before they are summed to form a single focused signal [14]. Temporal
filters are filters that attenuate the frequencies of signals such that the signals that are of
interest are accentuated while other signals, such as noise, are suppressed. In SRP-PHAT
the used filter is the phase transform (PHAT) weighting function. The phase transform is
sub-optimal under reverberation-free conditions but is known to perform better in realistic
environments [14]. The SRP is equivalent to the sum of generalized cross-correlations
(GCCs [37]) of all microphone pairings. The SRP-PHAT algorithm combines both the
PHAT and SRP processing by applying the PHAT first and then summing the GCCs of
the resulting signals.

Phase Transform

The Phase Transform is a simple operation which involves an element-wise division of the
captured STFT signal data of each of the M microphones by its absolute values. Let us
represent this data by the matrix X, then the Phase Transform can be given by Equation
(2.14).

X̂(ωk) =
X(ωk)

|X(ωk)|
∈ CM×N , 0 ≤ k ≤ K (2.14)
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GCC

After the PHAT has been applied, the GCC is computed for each of the L scan locations
by steering the beamformer to each scan direction using the steering vectors.

c(l, ωk) =
∣∣∣g(l, ωk)

HX̂(ωk)
∣∣∣2 ∈ R1×N 0 ≤ l < L (2.15)

SRP spectrum

The SRP for a single scan direction is obtained by summing the GCC for that scan direc-
tion.

Ak(l) =
N−1∑
i=0

c(l, ωk)i (2.16)

By computing the SRP for each of the L scan directions, a spectrum is created similar to
the acoustic image for CLEAN.

DOA extraction

Similar to CLEAN, in the narrowband scenario, P sources corresponding with the largest
response power in the SRP spectrum are selected as the estimated DOA’s of the signal
sources. These DOA’s are extracted from the spectrum containing the contributions of
noise and other sources. Therefore, simply selecting the maximum value within the spec-
trum can result in the P selected DOA’s to be associated with only a single source location.
As stated in [15], the SRP spectrum can have many local extrema, making it difficult to
select those corresponding to the actual source DOA’s. To identify the local maxima, a
maximum filter with a 3-by-3 structuring element is applied. This involves sliding the
structuring element over the acoustic image. At each position, the maximum pixel value
within the overlapped region between the structuring element and the image is selected and
replaces the value of the corresponding pixel in the output image. In Figure 2.5 the effect
of applying the maximum filter is illustrated. The figure shows which pixels have been
identified as local maxima. The positions of these local maxima can be mapped back to
their corresponding values in the original acoustic image allowing the P largest local max-
ima to be selected as the DOA’s of the signal sources. For the wideband implementation
of SRP-PHAT, the narrowband SRP-PHAT algorithm is applied to each of the frequency
bins, as is done for every algorithm considered in this paper. P DOA estimates are ob-
tained per frequency bin by applying the aforementioned DOA extraction process. Hence,
a total of KP DOA estimates are obtained. The same process as CLEAN is employed
by utilizing K-means clustering and selecting the DOA’s associated with the largest SRP
within each of the P clusters as the final P DOA estimates.

2.7 2D-MUSIC

The MUSIC algorithm is a popular spectral estimation method which has been shown to
be particularly effective in localizing narrowband signal sources, even in adverse conditions
[22, 36]. Similar to CLEAN and ESPRIT, it utilizes the CSM, or covariance matrix,
constructed from the received sound signals after applying the Fourier transform. Though
this algorithm also constructs a spectrum (referred to as the pseudospectrum) in which
the peaks correspond with the DOAs of the signal sources. However, unlike CLEAN and
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Figure 2.5: Acoustic image before and after applying the maximum filter.

SRP-PHAT, it does not utilize CB or GCC to construct this spectrum. Instead, the
algorithm uses eigendecomposition of the CSM to obtain the noise subspace eigenvectors.
The subspace of the signal is orthogonal to that of the noise, as these are uncorrelated,
therefore it is possible to construct a spectrum where the peaks correspond with the DOAs
of the signal sources, which will be described in more detail in the following sections.
Similar to the other scan-grid based algorithms, the resolution of the scan grid needs to
be carefully chosen as it affects both the computational load as well as the minimum
obtainable error for the DOAs of the signal sources.

Cross-spectral matrix

The construction of the cross spectral matrix Ck for the MUSIC algorithm is equivalent
to that of CLEAN as described in Section 2.5. Therefore, it will not be discussed here.

Eigenvalue decomposition

The next step in the 2D-MUSIC algorithm requires the eigenvalue decomposition of the
obtained CSM, Ck. This results in M eigenvalues and eigenvectors. The eigenvalues are
not utilized, but the M − P smallest eigenvectors are. These eigenvectors represent the
the noise subspace and are used to construct the (pseudo)spectrum from which the DOA’s
associated with the P source signals can be derived. This is also where a limitation of the
MUSIC algorithm becomes apparent. Given the size of the covariance matrix, a maximum
of M eigenvalues and eigenvectors can be obtained. Hence, the total number of sources that
can theoretically be located by the algorithm is equivalent to the number of microphones
in the array.

Pseudospectrum

The noise subspace for the k-th frequency bin, En(ωk) ∈ CP×M , is constructed from
the eigenvectors associated with the smallest eigenvalues after eigendecomposition of the
covariance matrix. The noise subspace is orthogonal to the directional vectors of signals. To
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construct the spectrum or acoustic image for the k-th frequency bin, the spatial spectrum
function of 2D-MUSIC algorithm in Equation (2.17) is utilized.

Ak(θ, ϕ) =
1

gH(θ, ϕ, ωk)En(ωk)En(ωk)Hg(θ, ϕ, ωk)
(2.17)

Where g are the steering vectors as described in Section 2.2. After computing the spatial
spectrum function for each of the L scan directions, an acoustic image similar to that of
SRP-PHAT and CLEAN can be constructed.

DOA extraction

The extraction of the DOA estimates related to the sources is done in an equivalent manner
to that of CLEAN and SRP-PHAT. By constructing an acoustic image, a maximum filter
can be applied that identifies the local maxima. The largest P local maxima are selected as
the DOA estimates for the source signals for a single frequency bin. For the same reasons
described in Section 2.5, the selection of P DOA estimates corresponding with P different
signal sources from the KP available DOA estimates is not straightforward. Hence, the
same methodology as with CLEAN and SRP-PHAT is applied to derive these DOA esti-
mates. This involves forming P data clusters via K-means clustering. Subsequently, the
DOA estimates linked with the highest power estimate within each cluster are selected,
resulting in the final P DOA estimates.

2.8 2D Unitary ESPRIT

The Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT) is
a high-resolution signal parameter estimation algorithm that was introduced by Richard
Roy and Thomas Kailath in 1989 [65]. It seeks to reduce the computation and storage
costs in comparison to MUSIC. ESPRIT also has been shown to be more robust to array
imperfections than other techniques including MUSIC [43]. A major difference of ESPRIT
compared to the other algorithms is that it uses subarrays. The microphone array is
split up into subarrays, each of which can be used to obtain spatial information and is
combined to obtain the DOA of the signal source more accurately. This does require the
microphone array to be centro-symmetric. A possible choice for the selection of subarrays
for an URA is given in Figure 2.6. These subarrays both capture the displacement along
the x- and y-axis, which is essential to capture both the azimuth and elevation of the
DOA. The original algorithm proposed by Roy and Kailath was only applicable to DOA
estimation considering either the azimuth or elevation angle. Hence, extensions have been
proposed to allow for DOA estimation for both an azimuth and elevation angle. These
algorithms work by applying ESPRIT twice. Once for each displacement direction. The
obvious downside of this approach is the added computational complexity it introduces.
However, 2D Unitary ESPRIT seeks to reduce the computations required for 2D DOA
estimation by coupling the azimuth and elevation estimation. Furthermore, the eigenvalue
decomposition is performed on real-valued matrices instead of complex-valued ones unlike
2D-MUSIC. However, this is not true for the final eigendecomposition, which is performed
on a vector with its dimension equal to the number of microphones in the array [26]. In
the remainder of this section the components for the 2D Unitary ESPRIT algorithm will
be explained.

17



Jy1

Jy2

Jx1 Jx2

Figure 2.6: Four subarrays for the URA with displacement in the x- and y-axis

Selection matrices

As mentioned in the previous section, the ESPRIT algorithm works by dividing the mi-
crophone into several subarrays. To achieve this, the algorithm makes use of selection
matrices. These matrices provide a convenient way of selecting these subarrays through
matrix multiplication. Assuming the microphone is a URA containing 25 elements as de-
picted in Figure 2.6, then define the matrix J and the exchange matrix Π as shown in
equations (2.18) and (2.19) respectively.

J =

∣∣∣∣∣∣∣∣
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0

∣∣∣∣∣∣∣∣ ∈ {0, 1}5×5 (2.18)

Πp =

∣∣∣∣∣∣∣∣
1

1
.

1

∣∣∣∣∣∣∣∣ ∈ {0, 1}p×p (2.19)

Then the selection matrix Jx1 is constructed as the Kronecker product of the identity
matrix I5 and the matrix J and the exchange matrix Π.

Jx1 = I5 ⊗ J (2.20)

The selection matrix Jx2 is obtained through matrix multiplication with the exchange
matrices ΠMsub

and ΠM as depicted in Equation (2.21). Here Msub represents the number
of elements in a single subarray.

Jx2 = ΠMsub
Jx1ΠM (2.21)

Similarly, the selection matrices for Jy1 and Jy1 can be obtained as shown in equations
(2.22) and (2.23) respectively.

Jy1 = J⊗ I5 (2.22)
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Jy2 = ΠMsub
Jy1ΠM (2.23)

Extended data matrix

Unitary ESPRIT for the 1D-case makes use of a complex-valued extended data matrix
which is constructed from the data matrix X ∈ CM×N and exchange matrices ΠM and
ΠN as defined in equations (2.19) [25]. This allows for the construction of the complex-
valued extended matrix as defined in Equation (2.24), which corresponds to a square-root
version of the forward-backward averaging scheme.

[X ΠMX∗ΠN ] ∈ CM×2N (2.24)

Matrix transformation

To convert the complex-valued extended data matrix to the real-valued extended data
matrix let us first define the unitary matrix QM where M still represents the number of
microphones.

QM =



M is even 1√
2

∣∣∣∣∣ In jIn
Πn −jΠn

∣∣∣∣∣
M is odd 1√

2

∣∣∣∣∣∣∣
In 0 jIn
0T

√
2 0T

Πn 0 −jΠn

∣∣∣∣∣∣∣
(2.25)

This matrix is left Π-real [25, 40]. Unitary ESPRIT is based on the following theorem
from [40].

Theorem 1 Let Qp and Qq denote unitary left Π-real matrices of size p × q and q × q,
respectively. Then the bijective mapping

φ : X ⇒ QH
p XQq

maps the set of all p× q centro-Hermitian matrices onto Rp×q the set of all real matrices
of the same size.

Given the fact that the complex-valued extended data matrix defined in Equation (2.24) is
centro-Hermitian [25], it can be transformed into a real-valued matrix of the same size ac-
cording to theorem 1. Let us define this transformation as T (X). Then, the transformation
can be described as shown in Equation (2.26).

T (X) ≜ QH
M

∣∣X ΠMX∗ΠN

∣∣Q2N ∈ RM×2N (2.26)

Covariance matrix

The P dominant eigenvectors Es ∈ RM×d can be obtained through singular value decom-
position (SVD) of T (X) (direct-data or square root approach). Alternatively, they can be
computed through a real-valued eigendecomposition of the covariance matrix as shown in
Equation (2.27).

T (X)T (X)H ∈ RM×M (2.27)

In this paper only the covariance approach is considered.
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Real-valued eigendecomposition

Eigendecomposition of the covariance matrix in Equation (2.27) results in M eigenvalues
and eigenvectors. Only the P largest eigenvectors are chosen, which correspond with the
signal subspace. These eigenvectors are used to perform the spatial frequency estimation
described in the next section.

Spatial frequency estimation

In [25] it was shown that an estimate of the spatial frequencies in x-direction can be more
efficiently be obtained from the solutions of the overdetermined real-valued set of equations

Kx1EsYx ≈ Kx2Es (2.28)

where the selection matrices Kx1 and Kx2 are derived from Jx1 and Jx2 according to
equations (2.29) and (2.30).

Kx1 = QH
mx

(Jx1 + Jx2)QM ∈ R (2.29)

Kx2 = QH
mx

j(Jx1 − Jx2)QM ∈ R (2.30)

The estimate of the spatial frequencies in y-direction can be derived similarly from the set
of equations

Ky1EsYy ≈ Ky2Es (2.31)

where the selection matrices Ky1 and Ky2 are derived from Jy1 and Jy2 according to
equations (2.32) and (2.33).

Ky1 = QH
my

(Jy1 + Jy2)QM ∈ R (2.32)

Ky2 = QH
my

j(Jy1 − Jy2)QM ∈ R (2.33)

The solutions for Yx and Yy can both be obtained using a Least-Squares (LS) approach.
In this paper the utilization of the Total Least-Squares (TLS) is assumed. Finally, the
spatial frequency estimates are obtained through complex-valued eigendecomposition of
the "complexified" matrix

Y = Yx + jYy

which automatically pairs the spatial frequency estimation in both the x and y-direction.

Complex-valued Eigendecomposition

The final step involves the complex-valued eigendecomposition of the matrix Y which
results in P complex-valued eigenvalues λp. The resulting eigenvalues are converted into
azimuth and elevation angles that make up the P DOAs of the sources.
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DOA extraction

To convert the obtained complex eigenvalues λp to azimuth and elevation angles, first the
direction cosines up and vp are computed, which were shown in Figure 2.2.

up =
2arctan(ℜ(λp))

2πωk
c dx

vp =
2arctan(ℑ(λp))

2πωk
c dy

To convert the direction cosines into the azimuth and elevation angles, several trigonometric
operations need to be performed as described below.

τ =
√

u2p + v2p

ξp = up + jvp

θp = ∠ξp

ϕp = arcsin

(
up

cos(vp/τ)

)
Similarly to the other algorithms, a single DOA is obtained for each source for each fre-
quency bin. Hence, the wideband implementation of 2D Unitary ESPRIT also yields KP
DOAs. For the same reasons described for the DOA extraction process for CLEAN, and
consequently for the SRP-PHAT and 2D-MUSIC algorithms, it is not known which DOA
corresponds with which of the P signal sources. Hence, once again, K-means clustering
is employed to create P clusters from the KP DOA’s based on their estimated azimuth
and elevation angles. For each cluster, the DOA associated with the largest eigenvalue for
that cluster is selected as the final DOA. Resulting in P DOA’s associated with P different
sources.
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Chapter 3

Complexity analysis and Data
Dependencies

This chapter’s primary objective is to dissect the SSL algorithms discussed in the previous
chapter and compute the complexity of each constituent part of each SSL algorithm to
provide the reader with a thorough understanding on how each component influences the
algorithm’s computational complexity. Moreover, DDGs are constructed that show the
inter-element data dependencies and can be used to create parallelized implementation
of each algorithm that can accelerate the execution of the various components through
parallel processing techniques. Lastly, a comparative analysis is performed on the obtained
complexities to determine which algorithm is best-applicable to real-time implementations.
Additionally, a comparison of the applicability of each algorithm for parallel processing is
provided.

In this chapter each algorithm’s components is expressed by its computational com-
plexity using the Big-O notation. These complexities are derived from the total number
of operations required for each component. Here, operations refer to arithmetic operations
such as addition and multiplication as well as more advanced operations such as square
root and exponentiation. However, the underlying complexity for these operations does
vary. For instance, the complexity of an addition is significantly lower than that of a di-
vision. Nevertheless, for the sake of simplicity they are all considered equivalent in this
paper. Furthermore, it is important to note that no distinction will be made between
operations performed on complex numbers versus real numbers. Consequently, the compu-
tational complexities obtained in this chapter should be considered to be rough estimates.
Common symbols and their meaning are expressed used to formulate the computational
complexities are described in Table 3.1.

Symbol Description
M Number of microphones
L Number of scan points
P Number of signal sources
K Number of frequency bins

Table 3.1: Symbols used to express computational complexities
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3.1 Steering matrix

The construction of the steering matrix is given in Equation (2.5). To analyze the com-
plexity, let us rewrite the equation.

G(ωk) = exp(axbx + ayby) ∈ CL×M (3.1)

Where

ax =
−j2πdxmx

c
ωk ∈ CM

ay =
−j2πdymy

c
ωk ∈ CM

bx = sin(Θ) cos(Φ) ∈ RL

by = sin(Θ) sin(Φ) ∈ RL

Using this notation, the computation required for a single element in the steering matrix
can be described as shown in Equation (3.2).

Gij = axjb
x
i + ayjb

y
i , 0 < i < L− 1, 0 < j < M − 1 (3.2)

The equation shows that each element in the steering matrix is computed through two com-
plex multiplications and a complex addition. Hence, the computational complexity of the
steering matrix is equal to O(KLM). Clearly, bx and by can be computed independently
of the frequency ωk. Furthermore, the vectors Θ and Φ are directly derived from the scan
grid and can therefore be considered as constants. The vectors ax and ay are dependent
on the ωk, hence they need to be evaluated for each of the frequency bins obtained through
STFT. It is possible to compute the steering matrices in advance and access them through
a LUT as they are needed. This can contribute to reducing the complexity of the scan-grid
based algorithms. However, it is important to note that this may require a large amount
of storage. For example, assume a complex number is stored as two 64-bit floating points.
Then to store the steering matrices for each of the K frequency bins will require 128KLM
bits of storage. Therefore, when dealing with many frequency bins, a high-resolution scan
grid, or a large microphone array, this option might not be feasible.

Whether or not the steering matrix is pre-computed, it is possible to reduce the com-
putational complexity of the operation through parallel processing techniques. For this
purpose, the processing element (PE) and DDGs are defined in Figures 3.1a and 3.1b re-
spectively. The DDG is an example, the complete design is much larger. To be specific,
the number of required processing elements is equal to ML. If these resources are avail-
able, each element in the steering matrix can be computed in parallel and the computation
complexity of the operation is reduced to O(1). Alternatively, a block-based processing
approach can be employed. Let us denote the number of available processing elements
as B. Then B elements of the steering matrix are computed in parallel. Therefore, the
computational complexity for this approach can be given as O

(
LM
B

)
.

3.2 CLEAN

To compute the complexity of the CLEAN algorithm, the complexity of each operation
will be calculated individually, without considering the frequency bin (narrowband). Af-
terwards, the obtained complexities will be expressed for the wideband case.
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Figure 3.1: PE (A) and DDG (B) for computing the steering matrix.

Cross-Spectral Matrix (CSM)

The mathematical equation for constructing the CSM was given in Equation (2.6), which
shows that the CSM is the result of the outer product of the received microphone signals
at a single point in time x and its conjugate transpose xH . Therefore, the operation for
computing each element in the CSM can be expressed as shown in Equation 3.3.

Cij(n) = xi(n)x
H
j (n) (3.3)

Which means that the computational complexity of computing a CSM is equal to O(M2),
as a total of M2 multiplications are required. To parallelize the operation, the PE and
DDG are given in Figure 3.2. The DDG clearly shows that each element of the CSM can
be computed independently, hence the operation can be fully parallelized. As a result, the
computational complexity of the parallelized implementation for the CSM is equal to O(1).
The computational complexity for a single CSM can be used to derive the computational
complexity of the summed and averaged CSM that was shown in Equation (2.7). Let us
denote the equations for computing a single element in the summed and averaged CSM,
Ĉ, as shown in Equation (3.4).

Ĉij =
1

N

N∑
n=0

Cij(n) (3.4)
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Figure 3.2: PE (A) and DDG (B) for computing the CSM (M = 5).
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Figure 3.3: PE (A) and DDG (B) for computing the summed and averaged CSM
(M = 5, N = 2).

Then the computational complexity of the operation is given by O(NM2). To parallelize
the operation, the partial sum S

(n)
ij is defined in Equation (3.5).

S
(−1)
ij = 0

S
(k)
ij = S

(k−1)
ij + xi(n)x

H
j (n)

(3.5)

With this definition each element in the summed and averaged CSM can be expressed as
Ĉij =

1
N S

(N−1)
ij . The corresponding PE and DDG are presented in Figure 3.3. The longest

path in the DDG to compute a single element in the resulting summed and averaged CSM
will require N processing elements. Hence, the parallelized computational complexity of
computing this CSM is equal to O(N).

Conventional Beamforming

As was described in Section 2.5, the dirty map is constructed through (CB), which involves
computing the power estimate for each of the L scan directions. The equation for the power
estimate is given in 2.8. This operation consists of a matrix-vector multiplication and a
vector-vector multiplication. First, the equation is rewritten as shown in Equation (3.6).

A(l) =
M−1∑
i=0

M−1∑
j=0

gi(l)Cijg
H
j (l) (3.6)

26



Here the gi and gHj represent the i-th and j-th elements of the steering vectors g(l) and
gH(l) respectively. Cij represents the element located at the i-th row and j-th column of
the CSM.

From this notation it is determined that a total of 2M2 multiplications and M2 ad-
ditions must be performed to compute the power estimate for a single candidate DOA.
Considering that to construct the complete beamforming map a power estimate needs to
be computed for each of the L scan directions, the computational complexity of CB is
equal to O(LM2). To parallelize the operation, the partial sums Si and S are defined in
equations (3.7) and (3.8) respectively.

S
(−1)
i = 0

S
(n)
i = S

(n−1)
i + giCing

H
n

(3.7)

S(−1) = 0

S(n) = S(n−1) + S(M−1)
n

(3.8)

From these partial sums the PE and DDG in Figure 3.4 are constructed. The DDG shows
that each of the partial sums S

(n)
i can be computed in parallel. The longest path in this

DDG has a length of 2M . Given the associative properties of the operations involved in
CB, other DDG designs are possible. Some of which are more efficient. Take the alternative
design in Figure 3.5 for example which has a longest path of length M+2. For both DDGs
the obtained computational complexity is equal to O(LM). This can actually be reduced
to only O(M) as each of the power estimates for each of the L DOAs can be computed
in parallel by stacking the DDG L times. However, this will take a significant number
of resources. Nevertheless, it shows that CB can significantly benefit from a parallelized
implementation.

Extracting the DOA estimates

After CB an acoustic image is formed from which the DOA estimate of a single source is
extracted by selecting the associated azimuth and elevation angle with the position of the
maximum value within the acoustic image. This will require L comparisons and therefore
has a complexity of O(L). A parallelized approach would involve splitting up the acoustic
image into several blocks of data containing B elements and determine the maximum of
each individual block in parallel. After each maximum is found a final comparison of the L

B
obtained maxima needs to be compared to find the final maximum value. The complexity of
finding the maximum of each data block is O(B). Therefore, the computational complexity
for finding the maximum for all blocks is L

B × O(B) = O(L). Once the L
B maxima are

obtained, selecting the maximum of these maxima has a complexity of O(LB ). Therefore,
the computational complexity of the complete process is equal to O(B + L

B ). To minimize
the total complexity, the terms L and L

B need to be balanced to find the optimal ratio.
Since, L is the dominant term and independent of B, the goal is to ensure that L

B is
minimized while keeping the computational efficiency in consideration. A good heuristic is
to choose B such that B ≈

√
L. This makes sure that B is neither too small nor too large.

Substituting
√
L for B yields the computational complexity O(

√
L + L√

L
) = O(2

√
L) =

O(
√
L). For the sake of brevity however, B will not be considered further in this paper and
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Figure 3.4: PE (A) and DDG (B) for CB.
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Figure 3.5: Alternative DDG for CB

28



it is assumed that the DOA estimates are obtained by comparing each of the L elements,
which has a computational complexity of O(L).

Array response

When a DOA estimate has been identified, the array response in the identified direction
can be constructed as shown in Equation (2.10). This operation consists of computing the
outer product of the steering vector g with its conjugate transpose for each of the L scan
points. Additionally, each value in the outer product is divided by the norm of the steering
vector and multiplied by the loop gain λ.

Rij = λ
gig

H
j

∥ g ∥4
, 0 ≤ i < M. 0 ≤ j < M (3.9)

Where ∥ g ∥ represents the Frobenius Norm of the steering vector which is described in
Equation (3.10).

∥ g ∥=

√√√√M−1∑
m=0

|gm|2 (3.10)

Therefore, Equation (3.9) can be rewritten as:

Rij =
λ(∑M−1

m=0 |gm|2
)2 gig

H
j (3.11)

To simplify the equation, the term λ

(
∑M−1

m=0 |gm|2)
2 is substituted by β.

Rij = βgig
H
j (3.12)

Computing β requires dividing the loop gain, λ, by the squared sum of squares of the
vector g. This requires a total of 2M + 2 operations. The operation gig

H
j is repeated for

each of the L scan points and is therefore equal in its computational complexity to that
of the CSM. Hence, the computational complexity of constructing the array response is
equal to O(LM2). The operation can be parallelized using the PE in Figure 3.6 which can
be arranged similarly to the DDG for the CSM in Figure 3.2. Therefore, the parallelized
computation complexity of the array response is equal to O(1).

Peak reduction

When the array response is computed, it needs to be subtracted from the dirty CSM to
construct the new dirty map for the next iteration of the peak removal process. Let us
define the element-wise subtraction of the array response from the dirty CSM as shown in
Equation 3.13.

Ĉij = Cij −Rij (3.13)

Therefore, the sequential computational complexity of the peak reduction is equal to
O(M2). Each subtraction is performed on independent elements. Therefore, the paral-
lelized computational complexity is equal to O(1). To achieve this the PE and DDG in
Figure 3.7 are presented. By changing the subtraction in the PE to an addition, the same
DDG and PE can also be used to add the array response to the clean CSM, meaning that
the parallelized computational complexity of this process is also equal to O(1).

29



gi gn

x

x

Rij

β

Figure 3.6: PE for computing the array response

Cij Rij

Ĉij

(a)

C00 C01 C02 C03 C04

C10 C11 C12 C13 C14

C20 C21 C22 C23 C24

C30 C31 C32 C33 C34

C40 C41 C42 C43 C44

(b)

Figure 3.7: PE (A) and DDG (B) for subtracting the array response from the
dirty CSM.
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Iterative peak reduction

Removing the influence of each signal source from an acoustic image is an iterative process
which involves computing the array response for the DOA of the signal source, removing
the array response from the dirty CSM, and adding the array response to the clean CSM
as has been described earlier in this section. The number of iterations required to remove
the influence of the signal source is determined by the loop gain and the chosen threshold.
As mentioned in Section 2.5, the threshold that was chosen for the purpose of this research
paper required that the influence of the signal source be reduced to at least 15% of its
initial peak value or 10 iterations had been reached. Hence, it took anywhere from 1 to
10 iterations for the peaks to be removed from the dirty acoustic image. Due to this
uncertainty on how many iterations are performed, the worst-case scenario is assumed for
determining the computational complexity of the iterative peak reduction process. The
process starts with an acoustic map from which the DOA is extracted according to the
DOA extraction process described in Section 3.2. From this DOA the array response is
constructed as previously described and removed from the dirty CSM associated with the
acoustic map through peak reduction and added to the clean CSM in a similar manner to
the peak reduction process. This results in a new clean and dirty CSM which is utilized for
the next iteration. Let us define the maximum number of iterations required for the peak
reduction process as Imax. As each iteration is dependent on its previous iteration, it is
not possible perform each iteration in parallel. Hence, the computational complexities are
derived from the previous sections by summing them together and multiplying them by
Imax. Therefore, the sequential computational complexity of the iterative peak reduction
process is equal to O(ImaxLM

2). The parallelized computational complexity is equal to
O(ImaxM).

Operation Sequential Parallelized
CSM O(NM2) O(N)

CB O(LM2) O(M)

DOA Extraction O(L) O(L)

Array Response O(M2) O(1)

It. Peak reduction O(ImaxLM
2) O(ImaxM)

Total narrowband O(NM2 + LM2 + L+ ImaxLM
2) O(N +M + L+ ImaxM)

Total wideband O(KNM2 + KLM2 + KL +
KImaxLM

2)
O(KN +KM +KL+KImaxM)

Table 3.2: Complexities of CLEAN components

Total complexity

Now that all components have been investigated, the results can be combined to obtain the
sequential and parallelized computational complexities of the narrowband implementation
of the CLEAN algorithm. The sequential computational complexity is equal to O(NM2+
LM2 + L + PImaxLM

2). The parallelized computational complexity is equal to O(N +
M+L+ImaxM). The wideband computational complexity is easily obtained as it requires
the narrowband implementation of CLEAN to be repeated for each of the K frequency
bins. Hence the corresponding sequential and parallelized computational complexities are
equal to O(KNM2+KLM2+KL+KPImaxLM

2) and O(KN +KM +KL+KImaxM)
respectively. It is important however, that the wideband implementation of CLEAN will
yield KP DOA estimates from which only P need to be selected. For the purpose of
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this research, the DOA estimates were divided into P clusters of data. From each cluster,
the DOA associated with the largest peak value was chosen, yielding two distinct DOA’s.
This is one approach to this problem and other choices can be made depending on what
the requirements are. Furthermore, it should theoretically be possible to perform the
narrowband implementation for each of the K frequency bins in parallel. However, the
number of resources required for such an implementation may prove to be problematic.
Therefore, it is not considered in this paper.

In Figure 3.8 the total sequential and parallelized computational complexities are plot-
ted against the number of microphones, frequency bins, and scan points. The figure shows
that the parallelized approach leads to lower computational complexities when considering
each of these parameters. The parallelized approach enhances the algorithm’s efficiency,
especially when considering the number of microphones or scan points, as the increase in
parallelized computational complexity compared to the sequential computational complex-
ity is less significant with these parameters. When considering the number of frequency
bins this rate of increase appears to be the same between both the sequential and paral-
lelized approach. In conclusion, the parallelized approach to the CLEAN algorithm leads to
an implementation that leads to an overall reduction of computational complexity. In par-
ticular, the parallelized complexity scales well against the number of microphones present
in the array.

3.3 SRP-PHAT

Phase transform

The phase transform as shown in Equation (2.14) consists of an element-wise division of
the data matrix X ∈ CM×N with its absolute values. Hence, the data matrix after phase
transformation X̂ can be described as:

X̂ij =
Xij

|Xij |
(3.14)

Clearly, this will require MN divisions and has a sequential computational complexity of
O(MN). To parallelize the operation, a simple PE is defined and arranged in the DDG
presented in Figure 3.9. Clearly, each element of Xij can be computed independently.
Therefore, the operation can be fully parallelized and has a parallelized computational
complexity of O(1).

Steered Response Power

For each of the L candidate directions, the SRP has to be computed to construct the
complete SRP spectrum. Equation (2.16) describes how the SRP can be computed for
a single scan location. For each scan location a vector-matrix multiplication needs to be
performed. Let us consider only one frequency bin, then this operation can be described
as shown in Equation (3.15).

C(l) =
N−1∑
i=0

∣∣∣∣∣∣
M−1∑
j=0

g∗
j X̂ji

∣∣∣∣∣∣
2

(3.15)

Which means that, to compute the SRP for a single candidate DOA, a total of NM
multiplications and additions are performed. Additionally, N values have to be converted
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Figure 3.8: Sequential and parallelized computational complexity for the CLEAN
algorithm plotted against the number of microphones (A), frequency bins (B), and
scan points (C).
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Figure 3.9: PE for computing the PHAT.

into their absolute value and squared. Together, this brings the sequential computational
complexity of constructing the SRP spectrum to be equal to O(LNM). To assist in the
process of constructing a parallelized implementation for this operation, the partial sums
Si and S are defined in equations (3.16) and (3.17) respectively.

S
(−1)
i = 0

S
(n)
i = S

(n−1)
j + g∗

nX̂ni

(3.16)

S(−1) = 0

S(n) = S(n−1) +
∣∣∣S(M−1)

n

∣∣∣2
(3.17)

From the definitions of the partial sums, the PEs and DDG are easily derived. These
are presented in Figure 3.10 and show how the operation of computing the SRP for a
single candidate DOA can be parallelized. The parallelized computational complexity
of constructing the SRP spectrum for a single candidate DOA is equal to O(MN). To
construct the complete spectrum, the DDG design can be stacked, allowing each of the
SRPs for each of the L candidate DOAs to be computed in parallel, giving a parallelized
computational complexity of O(MN) for the complete SRP spectrum. However, one must
take into account that the number of resources required to achieve this complexity can
become quite substantial. To compute the SRP for a single DOA candidate, N(M + 1)
PEs are required. Hence, to compute the complete SRP spectrum in parallel a total of
LN(M + 1) PEs are required.

Extracting DOA estimates

From the SRP spectrum the P largest peaks are associated with the DOAs of the P signal
sources in the room. For a single signal source, one only needs to find the maximum value
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Figure 3.10: PEs (A, B) and DDG (B) for SRP.

in the spectrum, whose position in the spectrum determines its DOA. As an SRP value is
associated with each of the L scan points, one can sort these values using any preferred
sorting algorithm and select the P largest values. However, the issue is that when the P
largest values are directly chosen from the SRP spectrum, these values are not necessarily
associated with different signal sources as one signal source might be stronger than the
other. Therefore, the SRP values surrounding the maximum SRP value can be larger
than the value of the second peak. To solve this issue, a maximum filter is applied onto
the SRP spectrum to identify the local maxima. From these local maxima, the P largest
values can be chosen to obtain the P signal sources, each of which is more likely associated
with a different signal source. To apply a maximum filter, a kernel must be defined. The
size of the kernel was chosen to be 3-by-3 pixels large. Hence, for each pixel in the SRP
spectrum, its neighboring 8 pixels are utilized to determine the filtered value for that pixel.
This means that for a spectrum containing L pixels a total of 8L comparisons need to be
made. Therefore, the computational complexity of applying the maximum filter to the
SRP spectrum is equal to O(L). The SRP values associated with the positions of the local
maxima are then sorted and the P largest local maxima are used to determine the DOAs of
the P signal sources. Given that the number of local maxima positions will be significantly
less than the total number of scan positions, the computational complexity of extracting
the DOA estimates is roughly equal to O(L). To parallelize the operation, the Herk/Gil-
Werman algorithm can be used. This algorithm reduces the number of comparisons that
need to be performed for each pixel in the SRP spectrum. Using this algorithm less than
3 comparisons per pixel need to be performed [23], but as was shown in [24] this can
actually be further reduced. Nevertheless, each pixel still needs to be processed and the
computational complexity in the Big-O notation remains equal to O(L).
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Operation Sequential Parallelized
Phase Transform O(MN) O(1)

SRP O(LMN) O(MN)

DOA Extraction O(L) O(L)

Total narrowband O(LMN +MN + L) O(MN + L)

Total wideband O(KLMN +KMN +KL) O(KMN +KL)

Table 3.3: Narrowband computational complexities of SRP-PHAT components

Total complexity

The computational complexities for each individual component of the SRP-PHAT algo-
rithm have been summarized in Table 3.3. From this table the total computational com-
plexity of the sequential narrowband implementation of SRP-PHAT algorithm is derived
and is equal to O(LMN + MN + L). Through parallelization, the computational com-
plexity can be reduced to O(MN + L).

The wideband complexity is straightforward as each of components needs to be executed
once for each of the K frequency bins. Hence, the sequential wideband computational
complexity of SRP-PHAT is equal to O(KLMN+KMN+KL). . Through parallelization,
the computational complexity can be reduced to O(KMN +KL).

In Figure 3.11 the total sequential and parallelized computational complexities are plot-
ted against the number of microphones, frequency bins, and scan points. The figure shows
that the parallelized approach leads to lower computational complexities when consider-
ing each of these parameters. In particular, the parallelized approach seems to affect the
efficiency of the algorithm when considering the number of microphones or the number
of scan points as the parallelized computational complexity can be seen to increase less
significantly with these parameters. When considering the number of frequency bins this
increase appears to be the same between both the sequential and parallelized approach. In
conclusion, the parallelized approach to the SRP-PHAT algorithm leads to an implemen-
tation that leads to an overall reduction of the computational complexity. In particular,
the parallelized complexity scales well against the number of microphones and number of
scan points in the scan grid.

3.4 2D-MUSIC

Similar to the other algorithms discussed thus far, the computational complexity of the
2D-MUSIC algorithm will be assessed through the computation of both sequential and
parallelized complexities associated with each constituent component comprising the al-
gorithm. Subsequently, the determined computational complexities of these individual
components will be integrated to formulate the computational complexities for both the
narrowband and wideband implementation of the algorithm.

Cross-spectral matrix

The formulation of the CSM for the MUSIC algorithm mirrors that of the CLEAN al-
gorithm and has undergone comprehensive examination in Section 3.2. Consequently, to
maintain conciseness in this report, detailed discussion on this matter will be omitted in
the current section.
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Figure 3.11: Sequential and parallelized computational complexity for the SRP-
PHAT algorithm plotted against the number of microphones (A), frequency bins
(B), and scan points (C).
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Eigendecomposition

Eigendecomposition of a matrix is a complex operation which converts the matrix into an
equivalent representation in terms of its eigenvalues and eigenvectors. It is a well-studied
subject with multiple research papers analyzing its computational complexity and methods
to reduce the computational load of the operation [11, 63, 3, 67, 81, 19].

Conventional methods, such as the Jacobi method approach the eigendecomposition
of matrix using an iterative approach. They compute the eigenvalues and eventually the
eigenvectors with a complexity of O(n3) for n-by-n matrices. Due to the high complexity of
this approach, many other algorithms have been developed with the intention of reducing
the computational load of eigendecomposition. Direct methods are less commonly used as
they are limited to small matrices (n < 4). Semi-direct methods such as Lanczos and the
Householder algorithm construct an intermediate matrix and continue with an iterative
method [39, 30]. Strassen’s algorithm, developed by Volker Strassen in 1969, also known
as fast matrix multiplication, was the first discovered algorithm to reduce the problem to
a theoretical complexity of O(n2.373) [75]. More recently in 2023, Williams, Xu and Zhou,
showed a computational complexity of O(n2.371552) [80]. However, both of these algorithms
cannot be used in practice as the constant coefficient that they utilize is so large that they
are only worthwhile for matrices that cannot be handled on present-day computers. So far,
only approaches to general matrices have been considered. However, eigendecomposition
in the 2D-MUSIC algorithm is performed on a Hermitian matrix whose properties can be
exploited to achieve faster computation of the eigendecomposition. Specialized algorithms
exist that achieve lower computational loads for such matrices [48]. In this paper, the
computational complexity of eigendecomposition of the covariance matrix is based on the
Jacobi method and no distinction is made between the sequential and parallel computa-
tional complexity. Hence, the computational complexity of eigendecomposition of the CSM
is equal to O(M3) for both cases.

Pseudospectrum

The pseudospectrum is constructed by computing the power estimates for each of the L
candidate DOAs. The equation to compute the power estimate for a single DOA is given
in Equation (2.17). Let us simplify the notation and consider only a single frequency bin.
Then the corresponding equation can be written as shown in Equation (3.18).

1

A
=

M−1∑
p=0

M−P−1∑
q=0

M−1∑
r=0

gH
r ErqE

H
pqgp (3.18)

This operation is repeated for each of the L DOA candidates in the scan grid. Hence,
the sequential computational complexity is equal to O(M3 − PM2) for a single DOA
candidate. The sequential computational complexity for the complete pseudospectrum is
equal to O(LM3 − LPM2). To parallelize the operation, first define the partial sum Spq.

S(−1)
pq = 0, 0 ≤ p < M, 0 ≤ q < (M − P )

S(n)
pq = S(n−1)

pq + gH
n EnqE

H
pqgp, 0 ≤ n < M

Next, define the second partial sum Sq.

S(−1)
q = 0

S(n)
q = S(n−1)

q + S(M−1)
nq
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Figure 3.12: PE (A) and DDG (B) for computing a single candidate DOA in the
pseudospectrum.
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Figure 3.13: DDG for summing the outputs of the DDG in Figure 3.12b

which will yield M results. To obtain the power estimate, the final partial sum S is defined.

S(−1) = 0

S(n) = S(n−1) + S(M−P−1)
n

The PEs corresponding with the second and third partial sums are straightforward. How-
ever, the PE for the first partial sum is more complex and defined in Figure 3.12a. The
DDG will be three dimensional and is achieved by stacking the DDG in Figure 3.12b.
However, the DDG can be further optimized by diagonally summing the outputs of each
PE diagonally as was shown for the DDG for CB in Figure 3.5. When the DDG is stacked
as shown in Figure 3.14, a single output is produced per layer which needs to be summed
together. This can be achieved with the design presented in Figure 3.13. The complete
DDG to compute a single power estimate is therefore given as shown in Figure 3.14. From
this implementation, the longest path of PEs is equal to (M + 2) + (M − P ). Hence, the
complexity of the parallelized approach to computing a single value of the pseudospectrum
has a complexity of O(M). The computational complexity of this design for the complete
pseudospectrum is obtained by scaling this complexity by the number of scan directions, L.
Hence, the parallelized computational complexity for computing the is equal to O(LM).
However, due to the data independence between each of the L scan points, it is theoreti-
cally possible to compute the complete pseudospectrum with a parallelized computational

39



q

p

n

S3

S2

S1

S0

S

M+1

M+1

Figure 3.14: Stacked DDG for computing a single power estimate (M − P = 4)

Operation Sequential Parallelized
Cross-spectral matrix O(NM2) O(N)

Pseudospectrum O(LM3 − LPM2) O(M)

Eigendecomposition O(M3) O(M3)

DOA Extraction O(L) O(L)

Total Narrowband O(LM3 +NM2 − LPM2) O(M3 +N + L)

Total Wideband O(KLM3 +KNM2 −KLPM2) O(KM3 +KN +KL)

Table 3.4: Complexities of MUSIC components

complexity of only O(M) by computing each of the L DOAs in parallel. However, this will
require a significant amount of resources which might prove to be infeasible depending on
the number of available resources.

Extracting the DOA-estimates

Extracting the DOA estimates from the pseudospectrum is done similarly to SRP-PHAT
described in Section 3.3. However, instead of using a SRP spectrum, the pseudospectrum
is utilized instead. Hence, the sequential and parallelized computational complexity of this
operation is equal to O(L).

Total complexity

Similar to the other algorithms, the narrowband complexity of the 2D-MUSIC algorithm
is easily derived by summing each of the complexities of its individual components. Hence,
the sequential complexity of 2D-MUSIC is equal to O(NM2 + LM3 − LPM2 + M3 +
L). By eliminating the least significant terms, the total complexity can be simplified to
O(NM2 + LM3 − LPM2). The parallelized narrowband computational complexity is
equal to O(N +M +M3 +L) which can be simplified to O(N +M3 +L). The wideband
complexity is obtained through multiplication with the number of frequency bins that need
to be obtained. Hence the sequential computational complexity of the algorithm is equal
to O(KNM2+KLM3−KLPM2) and the parallelized computational complexity is equal
to O(KN +KM3 +KL).

In Figure 3.15 the total sequential and parallelized computational complexities are
plotted against the number of microphones, frequency bins, and scan points. The fig-
ure shows that the parallelized approach leads to lower computational complexities when
considering each of these parameters. In particular, the parallelized approach seems to
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Figure 3.15: Sequential and parallelized computational complexity for the 2D-
MUSIC algorithm plotted against the number of microphones (A), frequency bins
(B), and scan points (C).
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affect the efficiency of the algorithm when considering the number of scan points as the
parallelized computational complexity can be seen to increase less fast for this parameter.
When considering the number of frequency bins this increase appears to be the same be-
tween both the sequential and parallelized approach. The number of microphones seem to
have the most influence on the magnitude of the computational complexity. It can also be
seen that for a small number of microphones the difference between the parallelized and
sequential approach for the algorithm is minimal. Only when considering a large number
of microphones will the difference between these approaches become apparent. However,
having a microphone array with that many microphones would be unrealistic for real-world
application. In conclusion, the parallelized approach to the 2D-MUSIC algorithms leads
to an implementation that leads to an overall reduction of the computational complexity.
When considering the number of microphones, the algorithms parallelized approach will
not yield noticeable results unless an unrealistic number of microphones is used. However,
the parallelized complexity scales well against the number of scan points in the scan grid.

3.5 2D Unitary ESPRIT

In Section 2.8 2D Unitary ESPRIT was introduced and each of its components were ex-
plained. In this section each of its components are explored in more detail regarding their
computational complexities and data dependencies.

Selection matrices

The selection matrices used to select the microphone signals for each of the subarrays
presented in Figure 2.6 remain constant. Hence, they only need to be computed once and
can be accessed using a LUT. Therefore, the construction of these selection matrices does
not contribute to the complexity of the algorithm.

Extended Data Matrix

The construction of the extended data matrix is shown in Equation (2.24). It involves
horizontally stacking the data matrix X with the data exchange matrix ΠMXΠN . From
the definition of Π matrices in Equation (2.19) it is clear that this matrix has ones on
its antidiagonal while the other values are zero. Therefore, it is possible to define the
expression ΠMXΠN as shown in Equation (3.19).

(ΠMXΠN )ij = X(M−i)(N−j), 1 ≤ i ≤ M, 1 ≤ j ≤ N (3.19)

Hence, the operation involves flipping the data matrix along both its axes. No arithmetic
operations are required for this operation. Thus, the construction of the extended data
matrix does not contribute to the algorithm’s complexity.

Matrix transformation

The conversion of the complex-valued extended data matrix into the real-valued data
matrix T (X) is given in Equation (2.26). Let us simplify the notation to

T (X) ≜ QH
MX̂Q2N ∈ RM×2N (3.20)

where X̂ represents the extended data matrix
∣∣X ΠMX∗ΠN

∣∣ From the definition of the
sparse unitary matrix, it can be observed that QM has 2M non-zero elements if M is even
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and 4⌊M/2⌋ + 1 non-zero elements when M is odd. These elements are distributed such
that each row of the sparse unitary matrix contains two non-zero elements. When M is
odd the center row will only contain one element. This is illustrated in Figure 3.16. Due to
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Figure 3.16: Structure of the sparse unitary matrix Q for odd and even arguments.
The black boxes represent the non-zero values.

the structure of the unitary matrices, the operation R = QH
MX̂ can be described as shown

in Equation (3.21).

Rij = (QH
M )ipX̂pj + (QH

M )iqX̂qj , 0 ≤ i ≤ (M − 1) 0 ≤ j ≤ (2N − 1) (3.21)

Where p = i mod (M/2) and q = (M − 1)− p. Then, the operation X̄ = R(Q2N ) can be
described as shown in Equation (3.22).

X̄ij = Rir(Q2N )rj +Ris(Q2N )sj , 0 ≤ i ≤ (2N − 1) 0 ≤ j ≤ (M − 1) (3.22)

Where r = j mod (M/2) and s = (M − 1)− r. Substituting Equation (3.21) in Equation
(3.22) yields the equation in (3.23) which describes how each element in the transformed
data matrix can be computed.

T (X)ij = (Q2N )rj((Q
H
M )ipX̂pr + (QH

M )iqX̂qr) + (Q2N )sj((Q
H
M )ipX̂ps + (QH

M )iqX̂qs)

(3.23)

These equations hold when M is even, but as shown in Figure 3.16, when M is odd, the
center row of A will only contain one non-zero element. Hence, for i = ⌊M/2⌋ the equation
can be expressed as shown in Equation (3.24).

T (X)ij = (QH
M )iiX̂ij , i = ⌊M/2⌋, 0 ≤ j ≤ (2N − 1) (3.24)

Therefore, computing a single element of T (X) requires 9 operations. Hence, the number
of operations required to transform the data matrix is equal to 18NM when M is even
and 18NM − 2N when M is odd. Consequently, its complexity is equal to O(NM) for
both cases. The operation can be parallelized with the PE and DDG presented in Figure
3.17. It is important to note that this DDG is only applicable when M is even. However,
the DDG for when M is odd will not yield a different computational complexity as each
PE remains independent. Therefore, the computational complexity of the fully parallelized
operation for computing T (X) is equal to O(1).
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Figure 3.17: PE (A) and DDG (B) for transforming the data matrix.

Covariance matrix

Constructing the covariance matrix consists of a matrix multiplication of the transformed
data matrix T (X) ∈ CM×2N and its conjugate transpose. Hence, the operation can be
described as shown in Equation (3.25).

Cij =
2N−1∑
k=0

T (X)ikT (X)Hkj 0 ≤ i ≤ (M − 1), 0 ≤ j ≤ (M − 1) (3.25)

However, the transpose in Equation (3.25) can be omitted by rearranging the indexing
parameters as shown in Equation (3.26).

Cij =
2N−1∑
k=0

T (X)ikT (X)∗jk 0 ≤ i ≤ (M − 1), 0 ≤ j ≤ (M − 1) (3.26)

The number of operations required to compute a single element of the covariance matrix
requires 4N − 1 operations. The covariance matrix has dimensions M ×M . Consequently,
4NM2−M2 operations will need to be performed. Which yields a sequential computational
complexity of O(NM2). The number of operations can be reduced when considering that
the covariance matrix is Hermitian. Therefore, only half of its elements would need to be
computed to be able to construct the covariance matrix. This does not affect the sequential
computational complexity in the Big-O notation. When analyzing the data dependencies
of this operations, it became clear that constructing a single DDG for computing each
element of the covariance matrix proved difficult. However, the operation can certainly be
parallelized. Let us define the partial sum in Equation (3.27).

S
(−1)
ij = 0

S
(n)
ij = S

(n−1)
ij + T (X)inT (X)jn 0 ≤ n ≤ 2N − 1

(3.27)

The corresponding PE and DDG for computing a single element of the covariance matrix
are defined in Figure 3.18. It is possible to stack the DDG such that each of the co-
variance matrix’s elements can be computed in parallel. This means that the parallelized
computational complexity of this operation is equal to O(N).
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Figure 3.18: PE (A) and DDG (B) for computing a single element of the covari-
ance matrix.

Real-valued Eigendecomposition

The computational complexity of eigendecomposition of a matrix has been addressed in
Section 3.4. After eigenvalue decomposition of the covariance matrix, one obtains M eigen-
vectors. The largest P eigenvalues are selected and used as input for the next step in the
algorithm. An important difference between 2D-MUSIC and 2D Unitary ESPRIT how-
ever, is the fact that instead of a complex-valued matrix, the decomposition is performed
on a real-valued matrix. Hence, the total number of operations required for decomposition
will be less than that of 2D-MUSIC. Nevertheless, the computational complexity of the
operation is equal to O(M3).

Least-squares

The least-squares operation is performed on the obtained eigenvectors after eigenvalue de-
composition. Furthermore, four subarrays are utilized, containing 20 microphones each.
After selecting the values from the eigenvectors corresponding with the microphones of each
subarray, four R20×P eigenvectors are obtained. To find both the azimuth an elevation of
the incident source signals, two least-squares operations are performed to find the solution
for Yu ∈ RP×P and Yv ∈ RP×P according to the equations YuKU1 = KU2 and YvKV1 = KV2

respectively. Similarly to eigenvalue decomposition, the exact computational complexity
of the operation is not straightforward, and several papers have been published that ex-
plain the exact computational complexity in more detail. The main takeaway from the
papers is that a least-squares problem of m degree polynomial regression with n measured
values (Hence, Msub ≥ P + 1), has a complexity of O(M2

subP ) using traditional methods.
However, L.Li [44] shows that the arithmetic complexity of this problem does not exceed
O(Msub log

2 2P ). Parallelization of the least-square problems is a complex problem due to
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Operation Sequential Parallelized
Matrix Transformation O(MN) O(1)

Covariance Matrix O(NM2) O(N)

Real-valued Eigendecomposition O(M3) O(M3)

Least Squares O(PM2
sub) O(PM2

sub)

Complex-valued Eigendecomposition O(P 3) O(P 3)

DOA Conversion O(P ) O(1)

Total narrowband O(M3 + P 3 +NM2 +
PM2

sub)
O(M3+P 3+PM2

sub+
N)

Total wideband O(KM3 + KP 3 +
KNM2 +KPM2

sub)
O(KM3 + KP 3 +
KPM2

sub +KN)

Table 3.5: Complexities of ESPRIT components

the presence of data contra-flow and feedback loops in the underlying signal flow graph
[60, 33]. Fortunately, these papers also provide solutions to the systolic array designs for
the least-squares. However, as the operation is performed on relatively small matrices, the
effort might not outweigh the gained reduction in complexity of the operation. Hence, the
benefit of a parallelized approach might only become noticeable when dealing with a large
number of microphones and a desire to find a large number of signal sources.

Complex-valued eigenvalue decomposition

After the least-squares operation for the four subarrays that are utilized, a P × P matrix
is obtained. 2D Unitary ESPRIT performs a final complex-valued eigendecomposition on
this matrix to obtain P eigenvalues which will be used to compute the final azimuth and
elevation angles for each of the sources. It is known the complexity of this operation will
therefore be equal to O(P 3).

Extracting the DOA estimates

After the final two complex eigenvalues are obtained for 2D Unitary ESPRIT, all that
remains is converting the real and imaginary part of these eigenvalues to azimuth and
elevation angles using several trigonometric functions. Unlike the other algorithms, this
does not require a grid-based search, but instead the P source directions can be directly
derived from the eigenvalues obtained after the complex-valued eigenvalue decomposition
mentioned in the previous section. This is a big benefit of ESPRIT, as this operation has a
low computational complexity and this complexity is independent of the chosen scan range.
To be more specific the computational complexity of converting the complex eigenvalues to
DOA estimates can be expressed as O(P ). As each of the P eigenvalues can be processed
independently, the parallelized computational complexity is equal to O(1).

Total complexity

Similar to the other algorithms, the narrowband complexity of an algorithm is obtained
by summing all of the obtained number of operations and computational complexities
for each individual component. The narrowband sequential computational complexity is
equal to O(M3+P 3+NM2+PM2

sub). The parallelized computational complexity is equal
to O(M3 + P 3 + PM2

sub + N). The wideband sequential and parallelized computational
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complexity is equal to O(KM3 + KP 3 + KNM2 + KPM2
sub) and O(KM3 + KP 3 +

KPM2
sub +KN).
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Chapter 4

Simulation results

To evaluate the performance of each algorithm in determining the location of signal sources
a set of simulations was performed. For this purpose, each algorithm was implemented
using the python programming language. The input for these algorithms was provided
through use of the pyroomacoustics library [70]. This library was chosen as it provides a
convenient interface to construct simulation scenarios involving microphone arrays, multi-
ple sound sources and three-dimensional rooms. For the purpose of this research a single
room was defined. The dimensions of which are 12×12×12 metres as shown in Figure 4.1.
The microphone array was defined according to the URA in Figure 2.2 and placed on the
floor of the room. Additionally, the library provides functionality to specify signal-to-noise
(SNR) ratios and absorption coefficients among other variables. The SNR describes the
ratio of the signal power against the power of the noise and is expressed in decibels (dB).
A negative SNR indicates that the noise is stronger than the signal, whereas a positive
SNR signifies the opposite scenario. The absorption coefficient determines how efficient
the walls of the room are in absorbing sound waves. This coefficient has no unit. A value
of 1.0 means that the signal source is completely absorbed when it hits a wall. A value
of 0.0 means that it is completely reflected. By varying both the SNR and absorption
coefficient, the algorithms can be evaluated for multiple sets of parameters and provide
a comprehensive dataset to determine their performance. In this chapter, the simulation
results for two distinct scenarios are presented. The first scenario involves a single sound
source placed at different positions in the room. For the second scenario two coherent sound
sources are placed at opposite sides of the room and are increasingly placed closer together.
In both scenarios the generated noise is random, therefore Monte Carlo simulations were
performed. The obtained data is represented in graphs and analyzed to determine each
algorithm’s performance and limitations in determining not only a single source, but two
coherent sources as well.

4.1 Distance errors

The input of each algorithm are the signals obtained by each microphone in the array. The
output of these algorithms is one DOA for each signal source. These estimated DOA’s are
in spherical coordinates. Hence, they can be converted to Cartesian coordinates using the
equation in (4.1).

ẋ = r sin(ϕ) cos(θ)

ẏ = r sin(ϕ) sin(θ)

ż = r sin(ϕ)

(4.1)
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Figure 4.1: Room and array location used for simulations in pyroomacoustic (not
to scale)

Then these coordinates can be projected on the scan grid, which is a plane located at one
meter from, and parallel to the microphone array’s origin. Equation (4.2) describes how
these coordinates are projected onto the scan grid which is located at 1 meter from the
array’s origin.

x = ẋ
1

ż

y = ẏ
1

ż
z = 1

(4.2)

Using these positions, the Euclidean distance between the projected estimated position
[x0, y0, 1] and the projected actual position [x1, y1, 1] can be computed according to Equa-
tion (4.3).

d =
√

(x1 − x0)2 + (y1 − y0)2 + (z1 − z0)2 (4.3)

4.2 Single Source Localization

The first simulations involved a single sound source emitting a 2500 Hz signal placed at one
of the 80 pre-determined locations in the room, each of which is located 3 meters from the
array’s origin. Their projected locations on the 2-by-2 meter scan grid located at 1 meter
from the array’s origin is given in Figure 4.2. The frequency of 2500 Hz was chosen as
it avoids both time and spatial aliasing, the concepts of which were introduced in section
2.1. For each algorithm, a single simulation results in a single DOA estimate for the signal
source. For each combination of signal source position, SNR, and absorption coefficient,
1000 simulations were performed. To measure the performance of each algorithm in es-
timating each of the signal source position shown in Figure 4.2, the estimated distance
errors are categorized by the SNR and absorption coefficient applied to the set of 1000
simulations. The Euclidian distance between the estimated position and the i-th signal
source position obtained from the n-th simulation is defined as d

(n)
i (SNR, a). Using this

notation, the average distance error for all source positions for a given SNR and absorption
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Figure 4.2: Signal source positions projected onto the scan grid that are utilized
for the single-source simulations

coefficient can be defined as shown in Equation (4.4).

davg(SNR, a) =

∑80
i=0

∑1000
n=0 d

(n)
i (SNR, a)

80 · 1000
(4.4)

To evaluate the precision of each algorithm, we also compute the standard deviation across
all estimated distance errors.

σ(SNR, a) =

√∑80
i=0

∑1000
n=0 (d

(n)
i (SNR, a)− davg(SNR, a))2

80 · 1000
(4.5)

For each algorithm, bar charts showing the average distance error and the corresponding
standard deviation are presented in Figures 4.3, 4.4, 4.5, and 4.6 for the CLEAN, SRP-
PHAT, 2D-MUSIC and 2D Unitary ESPRIT algorithms respectively. As the projected
actual source positions are not chosen to directly coincide with the scan grid positions there
is an inherent systematic error present for the algorithms that utilize a scan grid. These
algorithms cannot achieve a lower average distance error than this systematic error. The
systematic error is equal to the average distance for each of the source positions to its closest
neighboring scan grid point, which has been determined to be equal to approximately 1.81
cm. In the graphs this is represented by the grey horizontal line along with the simulation
results in these bar charts.

In the next sections, the simulation results will be discussed separately for each SSL
algorithm. However, one observation that applies to each algorithm can already be made.
First, at an SNR of −30dB, each of the algorithms experiences a significant drop in their
accuracy and precision. At this point, the noise is too strong for each algorithm to accu-
rately and reliably identify the location of the signal source. Next each of the algorithms’
results will be discussed separately, starting with the CLEAN algorithm.
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Figure 4.3: Single source simulation results for the CLEAN algorithm
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Figure 4.4: Single source simulation results for the SRP-PHAT algorithm
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Figure 4.5: Single source simulation results for the MUSIC algorithm
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Figure 4.6: Single source simulation results for the 2D Unitary ESPRIT algorithm
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(a) (b) (c)

Figure 4.7: 80000 estimated and actual source positions illustrating the effect of
noise on the CLEAN algorithm.

CLEAN

For ideal circumstances where there is no noise and no reverberation the CLEAN algorithm
performs nearly optimal and achieves the lowest attainable average distance error of 1.81cm
and a standard deviation of 0.49cm. This behavior is consistent for an absorption rate
of 1.0 until the noise becomes stronger or equal to strength of the source signal. To
better illustrate this, the estimated and actual signal source positions are plotted using
scatterplots in Figure 4.7 for an absorption rate of 1.0 and three different SNRs. In each
of the scatterplots the results of 1000 simulations are shown for each of the 80 source
signal positions. Therefore, a total of 80000 estimated positions are plotted. When there
is a little noise, the CLEAN algorithm is able to consistently and accurately determine the
closest location to the actual source position. As noise increases, so does the variance in the
estimated positions and consequently the average distance error and the standard deviation
of the algorithm increases as well. Besides noise, the algorithm is also negatively affected by
reverberation. Though this decline in performance is gradual, there is a significant drop in
both accuracy and precision when the lowest absorption coefficient of 0.2 is utilized. When
the noise becomes stronger than the source signal this drop is less exaggerated due to
noise having a more profound effect on the average distance error than the low absorption
coefficient. To better illustrate the effect of reverberation on the estimated positions three
scatterplots are provided in Figure 4.8. Once again, the estimated positions are plotted
in each scatterplot. However, now the absorption coefficient is different in each plot while
the noise level remains equal at 20dB for each plot. The figure shows that reverberation
causes the estimated positions to be located further from the actual source positions and
introduces some variance in the estimated positions. Interestingly, the variance in the
estimations is predominant for sources that are closely located to the imaginary x and y
axis originating in the center of the scan grid. The exact reason for this could not be
determined with the data that was obtained during this research. It might be caused by
the shape of the environment, the positioning of the signal sources or perhaps due to the
shape of the microphone array.

SRP-PHAT

Next is the SRP-PHAT algorithm. This algorithm achieves its best performance when
the strength of the noise is equal to the strength of the signal sources. Although it is
not able to achieve the minimum achievable average distance error of 1.81cm, it can come
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(a) (b) (c)

Figure 4.8: 80000 estimated and actual source positions illustrating the effect of
reverberation on the CLEAN algorithm.

(a) (b) (c)

Figure 4.9: 80000 estimated and actual source positions illustrating the effect of
noise on the SRP-PHAT algorithm.

very close with an average distance error of 1.86cm and a standard deviation of 0.54cm
for an SNR of 0dB and no reverberation. To illustrate the effect of noise on the SRP-
PHAT algorithm, three scatterplots are presented in Figure 4.9. Each scatterplot shows
the positions of the 80000 estimated positions obtained from the simulations where there
was no reverberation, but for different SNRs. For an SNR of 20dB and 0dB, there is
some variation in the locations of the estimated positions. For the latter SNR there is
slightly less variation than the former SNR although it is difficult to see. For an SNR of
−20dB there is significantly more variation in the estimated positions. The SRP-PHAT
algorithm is negatively affected by reverberation. Its performance decreases gradually
as the absorption coefficient is decreased. The effect of reverberation is illustrated in
the scatterplots in Figure 4.10. The scatterplots show the estimated positions for 1000
simulations for each signal source position and an applied SNR of 20dB. The scatterplots
only differ in the applied absorption coefficient. For an absorption coefficient of 1.0 there
is some variation in the estimated positions which is partially due to the positioning of the
source positions. Source positions that are located in between scan grid points will result in
slight variation in the estimated positions for those source positions. Source positions that
are located very close to a single scan grid position will result in estimated positions that
exhibit a more deterministic pattern with little to no variation. The estimations change
as more reverberation is introduced to the simulations. Depending on the location of the
source position, reverberation causes the estimated position to be observed either closer or
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Figure 4.10: 80000 estimated and actual source positions illustrating the effect of
reverberation on the SRP-PHAT algorithm.

further away from the scan grid’s origin. Consequently, this observed position might cause
either more or less variation to the estimated positions. Although the estimated positions
change, the effect is less significant compared to the effect that noise can have. It can even
be observed that for some signal source positions reverberation has no effect. Nevertheless,
the overall average distance between estimated and actual source positions does increase.

2D-MUSIC

The simulation results obtained using the 2D-MUSIC algorithm show that the algorithm
achieves the best performance when the strength of the noise is equal to the strength of the
source signal. The lowest obtained average distance error and standard deviation obtained
by the algorithm are equal to 1.92cm and 0.64cm, respectively. To show the effect of
noise on the algorithm, another three scatterplots are presented in Figure 4.11. For each
plot, the estimated positions obtained from the 80000 simulations are plotted for a SNR
of −20, 0, and 20 decibels while no reverberation was applied. In these plots it can be
seen that at an SNR of 20dB, the algorithm has some variation in its estimations and
occasionally estimated the source position at scan grid point that are not located nearest
to the actual location of the source position. For an SNR of 0dB this is also true, however
the estimations are more concentrated around the actual source position. For these SNRs
it can also be observed that the variations predominantly occur for signal source positions
that are located near the center between of two or more neighboring scan grid points. In
contrast, source signal positions that are located very close to scan grid points experience
less variance in their respective estimations. At an SNR of −20dB it can be observed
that the strength of noise causes variation in the obtained estimated positions. Besides
noise or lack thereof, the algorithms are also affected by the presence of reverberation. The
higher the reverberation the lower the performance. In particular, when there is little noise
present, the difference between the results obtained in absence of reverberation or presence
of reverberation is exacerbated as indicated by the prominent increase in the average
distance error and standard deviation. To better illustrate the effect reverberation has on
the estimated positions three additional scatterplots are given in Figure 4.12. The plots
show that the presence of reverberation causes more variance in the estimated positions.
The maximum distances between the estimated and actual source positions do seem to be
largest for sources that are placed furthest away from the scan grid’s origin. Additionally,
the estimated positions seem to vary along an imaginary lines that originate from the scan
grid’s origin and intersects with the source signal positions.
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Figure 4.11: 80000 estimated and actual source positions illustrating the effect of
noise on the 2D-MUSIC algorithm.

(a) (b) (c)

Figure 4.12: 80000 estimated and actual source positions illustrating the effect of
reverberation on the 2D-MUSIC algorithm.
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Figure 4.13: 80000 estimated and actual source positions illustrating the effect of
noise on the 2D Unitary ESPRIT algorithm.

2D Unitary ESPRIT

The simulation results obtained for the 2D Unitary ESPRIT algorithm show that the low-
est obtained for the average distance error is equal to 2.31cm while the lowest obtained
standard deviation is equal to 3.84cm. Although these minima do not occur for the same
combination of SNR and absorption coefficient. The lowest average distance error occurs
for SNRs larger than 0dB and an absorption coefficient of 1.0, while the lowest obtained
standard deviation occurs for an SNR of 0dB and an absorption coefficient of 0.6. It can
also be seen that the algorithm’s average distance error increases along with noise and
reverberation. The algorithm exhibits a constant average distance error and standard de-
viation until the SNR drops below 10dB after which both the error and standard deviation
start to increase. To better illustrate the effect of noise on the algorithm, the estimated
positions obtained from the simulations are plotted in Figure 4.13. The results show that
the estimated positions form two groups for each source location. One of the groups almost
perfectly coincides with the source location. The second group of estimated locations is
located towards the scan grid’s origin. The further away from the center of the scan grid
the source location is located, the larger the distance between these two groups. When
the noise is increased, the area that these groups of estimated positions cover will grow. It
also reveals that the number of estimated locations is higher in the group that is closest
to the scan grid’s origin. To better illustrate the effect of reverberation on the estimated
positions, three additional scatterplots are given in Figure 4.14. The results show that in
the absence of reverberation one of the two groups of estimated positions for each source
location almost perfectly coincides with the that source location while the other group
has an offset towards the scan grid’s origin. When the absorption coefficient is set to 0.6,
estimated positions for the center ring of source locations form a cross in the center of the
scan grid. In the second-most-inner ring, the displacements occur to the left or right of the
source position. The only exceptions are for the source locations that are directly on the
x- or y-axes originating from the scan grids origin. These estimated positions only show
slight displacement towards the scan grid’s origin. This last observation also applies to the
outer two rings of source locations. However, only for some source locations the estimated
positions are displaced towards the scan grid’s origin, while for other source locations the
estimated positions move away from the array’s origin. When the absorption coefficient is
decreased further to 0.2, this displacement observed for all estimated positions increases
by a small amount. However, the distance between each set of two groups of estimated
positions remains nearly equal. This explains why the standard deviation remains constant
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Figure 4.14: 80000 estimated and actual source positions illustrating the effect of
reverberation on the 2D Unitary ESPRIT algorithm.

for scenarios where there is reverberation, while the average distance error does increase
as seen in the bar charts in Figure 4.6.

4.3 Multiple Coherent Source localization

Next, simulations are performed using the same SNR and absorption coefficients used in
the previous section. However, instead of a single source, two signal sources are placed at
opposite sides of the microphone array at an azimuth of 50 and 130 degrees respectively.
Each signal source is located at a distance of 3 meters from the microphone array’s center.
Both sources are coherent and emit a 2500Hz signal with equal amplitudes. Initially,
the sources are placed at an elevation of 25 degrees. When 1000 simulations have been
performed, the elevation is decreased by 1 degree while maintaining the distance of 3 meters
from the array’s center, which moves both signal sources closer towards each other. This
process repeats until both signal sources reach an elevation angle of 10 degrees for a total
of 16000 simulations. This is considered a single simulation run. Multiple simulation runs
are performed. For each run, a different SNR and absorption rate is applied. The applied
SNRs are −20 dB, −10 dB, 0 dB, 10 dB, and 20 dB. The applied absorption coefficients
are equal to 0.2, 0.4, 0.6, 0.8, and 1.0. Hence, to cover each possible combination of SNR
and absorption coefficient, a total of 25 simulation runs are performed.

The 2D Unitary ESPRIT algorithms always produce two DOA estimates for each fre-
quency bin. However, the CLEAN, SRP-PHAT and 2D-MUSIC algorithms produce at
most two DOA estimates for each frequency bin as it depends on the number of local
maxima identified in their respective spectra represented by acoustic images, which can
be less than two. Consequently, the number of DOA estimates obtained for each signal
source are not necessarily equivalent. From this set of DOA estimates obtained from each
frequency bin, only two are selected as the final two DOA estimates to represent the DOA
estimate for each signal source. It is unknown which of the DOA estimates are associated
with the first signal source and which is related to the second signal source. Therefore,
the data is clustered into two data sets based on their azimuth and elevation angle. From
each of these data clusters, a single DOA estimate associated with the largest intensity is
selected to obtain the final two DOA estimates. Here, the intensity refers to the largest
power estimate obtained in the algorithm’s spectrum as explained in Chapter 2 or in the
case of 2D Unitary ESPRIT, it refers to the value of the eigenvalue associated with the
eigenvector corresponding to the DOA estimate.
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Figure 4.15: Average distance error for the CLEAN algorithm for two multiple
coherent sources.

CLEAN

The results for the CLEAN algorithm indicate that the algorithm achieves the lowest
average distance errors for scenarios where the source signals are stronger than the noise.
In the scenarios where the noise is as strong as, or stronger than the signal sources, the
average distance error of CLEAN is larger than the previously discussed scenarios. Figure
4.16 illustrates how decreasing the SNR influences the estimated positions for the signal
source positions. For each plot in the figure, the estimated positions and the actual signal
source positions from 1000 simulations are plotted for an absorption coefficient of 0.8 and
elevation 20◦ while the SNR varies per plot. In Figure 4.16a the utilized SNR is 30dB.
It can be observed that the CLEAN algorithm is able to estimate the position of both
signal sources, however, there is some variation in the estimations due to noise. The
stronger the noise, the more variation there is in the estimated position. It can also be
seen that sometimes the algorithm is unable to identify one of the two signal source, instead
choosing a position that is associated with noise. As long as the signals are stronger than
the noise, the local maxima in the acoustic image will always correspond with the source
signals. However, when noise is as strong as the signal sources, the estimated positions are
sometimes associated with noise. When noise is stronger than the signals, the estimated
positions are more often associated with noise. In the iterative peak process explained in
Section 2.5 it was shown that the CLEAN algorithm will use the largest peaks detected
in the acoustic image to construct the clean map, which is then used to find the local
maxima. From these local maxima, the P largest local maxima are selected. Hence, if
noise is stronger than the signals, the largest local maxima will be associated with noise
and consequently the estimated positions will be associated with noise.
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(a) (b) (c)

Figure 4.16: 2000 estimated and actual source positions of the CLEAN algorithm
for two coherent signal sources for varying SNRs.

Furthermore, as the signal sources are coherent, they are more likely to exert influence
on each other as their influence on each other will be most prominent when both sources
are present in the same acoustic image. However, when the signal sources are placed
further apart, their influence on each other will decrease. This is also illustrated in Figure
4.17, where each of the plots contain the estimated positions of 1000 simulations where
the utilized absorption coefficient was 1.0 and the SNR is 20 dB. For each plot, a different
elevation angle was used for the signal sources, placing them increasingly closer together.
Figure 4.17a shows that at an elevation of 21◦ there is little to no influence of the signal
sources on each other. At an elevation of 20◦ the estimated positions tend towards the
center of the scan grid as illustrated by Figure 4.17b. At an elevation of 19◦, as shown
in Figure 4.17c, the estimated position of the first signal source will be in between both
signal sources and will be detected as a single source after applying the maximum filter.
Hence, the second estimated signal source position will therefore be associated with noise
or a side lobe of the radiation pattern obtained through CB. At a certain elevation, the
signal sources are placed so close together that they cannot be properly distinguished.
This results in a significant peak in the average distance error. The elevation at which this
occurs will be referred to as the algorithm’s breaking point. For the CLEAN algorithm, the
breaking point occurs at an elevation of 19◦.

Figure 4.18 shows how reverberation can affect the estimated positions produced by the
algorithm. For the three sub-figures the SNR and elevation is kept constant. Decreasing
the absorption coefficient, causes more variation in the estimated positions which in turn
causes the average distance error to increase. However, the effect that the reverberation
has on the estimated positions seems to be largely dependent on the position of the signal
sources as illustrated by the plots in Figure 4.15.

SRP-PHAT

When observing the simulation results for the SRP-PHAT algorithm, it can be determined
that the algorithm is robust against noise as the average distance errors for different SNRs
do not vary greatly. This is also illustrated by Figure 4.20, where the estimated positions
remain very close to the actual source positions. At −20 dB the algorithm starts to oc-
casionally associate its estimated positions with noise. The SRP-PHAT algorithm has a
low average distance error when the signal sources are placed further apart than 19◦ in
their elevation and an absorption coefficient of 1.0. After this point, the error significantly
increases as the algorithm is not able to distinguish the two signal sources as its estimates
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(a) (b) (c)

Figure 4.17: 2000 estimated and actual source positions of the CLEAN algorithm
for two coherent signal sources for varying elevation angles.

(a) (b) (c)

Figure 4.18: 2000 estimated and actual source positions of the CLEAN algorithm
for two coherent signal sources for varying absorption coefficients.
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Figure 4.19: Average distance error for the SRP-PHAT algorithm for two multiple
coherent sources.

tend towards the center point between the signal sources as is illustrated in Figure 4.21.
However, instead of one estimated source position being associated with the center between
both signal sources and the other with noise, both estimated positions are associated with
a position between both signal sources. This also explains why for lower elevations, the av-
erage distance error decreases, as the actual signal source positions are placed increasingly
closer to the estimated source position in the center of the scan grid. The elevation angle
at which the algorithm’s ability to distinguish multiple sources significantly decreases, or
in other words its breaking point is determined to be at an elevation of 19◦. Besides be-
ing robust against noise, the algorithm is also robust against reverberation. The average
distance error only increases slightly as the absorption coefficient is increased. However,
for an elevation of 18◦ the algorithm’s average distance error decreases. This particular
scenario is illustrated in Figure 4.22. It is assumed that the reverberation causes a shift
in the phases of the signals which just happens to perfectly align when received by the
microphone array, which allows the algorithm to accurately determine the locations of the
signal sources. However, this is only a hypothesis and should be investigated further.

2D-MUSIC

The results for the MUSIC algorithm in Figure 4.23 show that the algorithm is robust
against noise as its average distance error across every applied SNR remains constant. In
Figure 4.24 the estimated positions are plotted for different SNRs which show how the
estimated positions remain close to the actual signal source positions, even for a low SNR
of −20 dB. However, at such a low SNR it can be seen that some estimated positions
are located further away, which means that these estimated positions are likely associated
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(a) (b) (c)

Figure 4.20: 2000 estimated and actual source positions of the SRP-PHAT algo-
rithm for two coherent signal sources for varying SNRs.

(a) (b) (c)

Figure 4.21: 2000 estimated and actual source positions of the SRP-PHAT algo-
rithm for two coherent signal sources for varying elevations.

(a) (b) (c)

Figure 4.22: 2000 estimated and actual source positions of the SRP-PHAT algo-
rithm for two coherent signal sources for varying absorption coefficients.
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Figure 4.23: Average distance error for the MUSIC algorithm for two multiple
coherent sources.

with noise. However, for both high and low SNRs, the algorithm always has some variation
in its estimated positions which causes the estimated positions to form groups instead of
concentrated points. The plots in Figure 4.23 also suggest that the algorithm has a breaking
point. In Figure 4.25 the estimated positions are plotted for different elevations while
no reverberation and an SNR of 20 dB is applied. At an elevation of 21◦ the estimated
positions form two groups, each located around one of the actual source positions. However,
some of the estimated position already start to tend towards the center of both source
positions. At an elevation of 20◦ even more estimated position tend towards the center
between both signal source positions. Finally, at an elevation of 19◦, almost all estimated
positions are located between the actual source positions and some start to be associated
with random noise. Hence, the breaking point of the MUSIC algorithm occurs at an
elevation of 19◦. When it comes to reverberation, the MUSIC algorithm is also robust.
Although decreasing the absorption coefficient causes some increase in the average distance
error, this seems to be largely dependent on the position of the signal sources. Nevertheless,
the algorithm is not as robust against reverberation as it is to noise.

2D Unitary ESPRIT

The average distance errors of the 2D Unitary ESPRIT algorithm are presented in Figure
4.27. The algorithm was observed to always estimate the position of the signal sources
to be in the center of the actual signal source positions. No matter the applied noise or
absorption coefficient, the results always stay the same. As a result, the average distance
error decreases as the signal sources are placed increasingly closer towards the center by
decreasing the elevation.
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(a) (b) (c)

Figure 4.24: 2000 estimated and actual source positions of the 2D-MUSIC algo-
rithm for two coherent signal sources for varying SNRs.

(a) (b) (c)

Figure 4.25: 2000 estimated and actual source positions of the 2D-MUSIC algo-
rithm for two coherent signal sources for varying elevations.

(a) (b) (c)

Figure 4.26: 2000 estimated and actual source positions of the 2D Unitary ES-
PRIT algorithm for two coherent signal sources for varying SNRs.
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Figure 4.27: Average distance error for the ESPRIT algorithm for two multiple
coherent sources.

The average distance error also decreases as more noise is introduced. The effect of
noise on the algorithm is illustrated in Figure 4.26. As noise increases, so does the variation
in the estimated position, causing the estimated position to spread out over a larger area.
Consequently, the average distance error increases as more noise is introduced. Overall,
the algorithm is incapable of distinguishing the two coherent sources. Therefore, it will not
be considered in the next chapter where each SSL algorithm is compared to each other.
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Chapter 5

Discussion and Evaluation

In Chapter 3 we explored the complexity of each algorithm. In Chapter 4 we presented the
results of various simulations that were run to determine the accuracy of each algorithm in
regard to DOA estimation. In this chapter the results obtained in both of these chapters
will be combined to provide a comparative analysis of the algorithms, considering both
their accuracy and complexities.

5.1 Computational Complexities

Given the many variables influencing the obtained computational complexities it would be
impractical to show how each algorithm’s computational complexities scales by modifying
each variable. Moreover, some variables such as the number of microphones or snapshots
are expected to remain constant when the algorithm is implemented. Therefore, attention
is directed towards a single variable that is expected to be adjustable within an application
of the SSL algorithms. This variable is the number of frequency bins, denoted as K
throughout this paper. This decision is also based on the design of the Fluke ii910 Sonic
Industrial Imager. The device features 64 microphones arranged in a sunflower pattern
and can detect sound signals within a frequency range of 2kHz to 100kHz. The device also
supports real-time selection of any sub-range of frequencies within this spectrum. Logically,
a larger scanning sub-range will require the evaluation of more frequency bins compared
to a smaller sub-range. In Figure 5.1 the computational complexity of each algorithm
versus the number of frequency bins that need to be processed is plotted. In Figure 5.2 the
computational complexities are plotted against the number of microphones. To make sure
that the the number of microphones in the subarrays used by the 2D Unitary ESPRIT
algorithm scale realistically with the total number of microphones available, the subarray
will contain 75% of the total microphones available in the microphone array.

The figures confirm that each algorithm benefits from a parallelized approach, result-
ing in a significantly lower compared to their sequential computational complexities. The
only exception being 2D Unitary ESPRIT, which only slightly improves from its sequen-
tial complexity. Although 2D Unitary ESPRIT has the lowest sequential computational
complexity out of all the algorithms, its parallelized computational complexity is the high-
est of all the algorithms. It is slightly outperformed by 2D-MUSIC for the parallelized
approach. The sequential approach of 2D-MUSIC reflects the high complexity of the algo-
rithm with its computational complexity being the largest of all the algorithms. The large
difference between 2D-MUSIC’s sequential and parallelized computational complexity is
due to the utilization of the CSM and pseudospectrum. These constructs have shown to
be particularly suitable for a parallelized approach, greatly reducing the computational
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Figure 5.1: Computational complexities versus the number of frequency bins.
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Figure 5.2: Computational complexities versus the number of microphones.
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complexity and in the case of the pseudospectrum, largely eliminating the dependence of
the parallelized computational complexity on the resolution of the scan grid. Consequently,
the parallelized complexity is largely determined by the number of microphones in the ar-
ray due to the complexity of eigendecomposition. This also explains why the 2D-MUSIC
and 2D Unitary ESPRIT algorithm have similar parallelized computational complexities.
Both depend mostly on the number of microphones for their parallelized complexities due
to eigendecomposition and 2D Unitary ESPRIT also does not depend on the resolution
of the scan grid. Unlike 2D-MUSIC, however, it also does not depend on the scan grid
resolution for its sequential complexity, explaining why its complexity is lower in that case.

The SRP-PHAT algorithm has a higher complexity than the CLEAN algorithm for
the given parameters. Both algorithms perform better than 2D-MUSIC for the sequen-
tial implementation and better than 2D Unitary ESPRIT. Using the parallelized imple-
mentation both CLEAN and SRP-PHAT have a lower computational complexity than
2D-MUSIC and 2D Unitary ESPRIT. The SRP-PHAT algorithm has a lower sequential
computational complexity than CLEAN. However, the inverse is true for their parallelized
computational complexities. The equations for the computational complexities of CLEAN
and SRP-PHAT are presented in Tables 3.2 and 3.3 respectively. From these equations,
it is clear that the CLEAN algorithm is dependent on the maximum number of iterations
for peak removal. What is not shown however, is that more iterations are required if more
peaks are found. This causes CLEAN to require more time when the SNR is low, as more
peaks associated with noise will be present in the dirty map. However, SRP-PHAT is not
dependent on these parameters. Instead, it is largely influenced by the number of snap-
shots taken and the number of microphones. For the parameters utilized in Figure 5.1
this results in the CLEAN algorithm achieving a lower parallelized complexity than SRP-
PHAT. However, for different parameters it is possible for SRP-PHAT to achieve a lower
complexity, especially when the number of iterations allowed for iterative peak removal is
high. The formulas presented in the tables presented in Chapter 3 can be used to deter-
mine the algorithm with the lowest computational complexity for any set of parameters
considered in this paper.

5.2 Performance

Single Source Localization

In the previous chapter the simulation results for single sources and two coherent sources
were discussed. In this section the results obtained for each algorithm will be presented
in such a way that they can easily be compared to one another. First the algorithms
will be evaluated with respect to each other for the single source simulation results. In
Figure 5.3 the average distance error is plotted for each algorithm. Each plot shows the
average distance error and how it evolves with the applied SNR and a single absorption
coefficient. The values that are presented directly correspond with the bar charts presented
in Figures 4.3 - 4.6. Similar plots for the standard deviation are given in Figure 5.4. From
these comparative graphs it can be seen that the 2D Unitary ESPRIT algorithm has the
highest average distance error and standard deviation out of all the algorithms. Only in a
couple of scenarios where the SNR is high does the 2D-MUSIC algorithm perform worse.
In figure 4.13 it can be seen that the poor performance of the ESPRIT algorithm is due
to its estimated locations forming two groups for each of the utilized source locations with
the larger group of estimations being closer towards the scan grid’s origin. The further
away the source location is from the scan grid’s origin, the larger the distance between
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the groups of estimations. Consequently, average distance error and standard deviation
is mostly influenced by source locations that are placed further away from the origin.
This also suggests that the effective range of the 2D Unitary ESPRIT algorithm seems
to be smaller than that of the other algorithms. Whether the existence of two groups of
estimations for each source location is due to a behavior of the algorithm, a result of a
faulty implementation, or another unknown reason has not been determined and should
be investigated in future research.

The 2D-MUSIC algorithm exhibits a larger average distance error and standard de-
viation than the CLEAN and SRP-PHAT algorithms. This is particularly obvious for
scenarios where the strength of the noise is less than the strength of the source signal. As
previously mentioned, it sometimes has a lower performance than the 2D Unitary ESPRIT
algorithm. To be more precise, the average distance error is larger than that of 2D Unitary
ESPRIT at an SNR of 30dB for each absorption coefficient. However, in the absence of
noise it does perform better than 2D Unitary ESPRIT with the only exception occurring
when there is also an absence of reverberation. It can also be seen that the difference
in the performance of the 2D MUSIC algorithm is accentuated by the absorption coeffi-
cient. As the absorption coefficient decreases, its performance decreases. The effect on
the algorithm’s performance is particularly detrimental when reverberation is present, and
the signal is stronger than the noise. However, as noise increases, the average distance
error and the standard deviation decreases. Eventually, when the noise is stronger than
the source signals, the algorithm achieves comparable performance to the CLEAN and
SRP-PHAT algorithms. For an absorption coefficient of 0.2, it actually achieves slightly
better performance than CLEAN at an SNR of 0dB and 10dB. The difference between
the algorithm’s performance for different SNRs is likely due to the algorithm’s dependence
on the noise subspace to construct its pseudospectrum. The noise subspace is determined
by the eigenvectors associated with noise obtained after eigendecomposition. Due to this
dependence, when there is little noise present, the estimated positions obtained from the
pseudospectrum will be less accurate. However, the plots show that the absorption coeffi-
cient has a much more detrimental effect on the accuracy and precision of the 2D MUSIC
algorithm.

The SRP-PHAT algorithm performs better than the 2D Unitary ESPRIT and MUSIC
algorithms. When the noise is equal to or stronger than the noise, the algorithm’s perfor-
mance is equal to CLEAN. However, when noise is stronger the algorithm performs worse
than the CLEAN algorithm for these scenarios. However, for the lowest applied absorp-
tion coefficient of 0.2 the SRP-PHAT algorithm’s performance is better than the CLEAN
algorithm as indicated by the lower average distance error and standard deviation.

Lastly, let us discuss the CLEAN algorithm. The CLEAN algorithm obtains the lowest
average distance error of all the algorithms considered in this thesis. When there is little
noise present, the algorithm actually performs optimally and is able to select the scan grid
location that is closest to the source location. However, at a SNR of 10dB and lower the
algorithm’s performance gradually decreases. Nevertheless, it is only outperformed by the
SRP-PHAT algorithm at the minimum applied absorption coefficient of 0.2.

In conclusion, when it comes to locating a single signal source, CLEAN shows the
highest accuracy and precision. The only exception occurs at an absorption coefficient of
0.2 where it is outperformed by SRP-PHAT. However, the same cannot be stated when
it comes to locating multiple coherent signal sources. Similar to 2D Unitary ESPRIT,
the estimated positions were always located at the center, directly between both signal
sources. 2D Unitary ESPRIT, however, also performs poorly when subjected to a single
signal source with the algorithm obtaining the lowest accuracy and precision. This was
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unexpected as the lack of a scan grid would suggest that 2D Unitary ESPRIT would be
able to attain a lower average distance error than the other, scan-grid based algorithms.

Multiple Coherent Source Localization

Next, the simulation results obtained for each of the SSL algorithms for two coherent signal
sources are analyzed to determine how each of the algorithms compare to each other. The
results of the 2D Unitary ESPRIT algorithm are not included, because as shown in the
previous chapter, this algorithm cannot distinguish between two coherent signal sources
within the parameters used in this thesis. In the previous chapter it was determined
that the CLEAN, SRP-PHAT, and 2D-MUSIC algorithm were able to distinguish the two
coherent sources. Hence, these three algorithms are used to create the comparative graphs
in Figure 5.5, which display the average distance errors of each algorithm for multiple
SNRs and elevation angles that were applied to the simulations. From the comparative
graph in Figure 5.5a it becomes clear that, compared to the other algorithms, CLEAN
is severely affected by noise. As noise increases, its average distance error increases quite
dramatically compared to the other algorithms. In scenarios where there is little noise,
the CLEAN algorithm also has a higher average distance error than the other 2D-MUSIC
and SRP-PHAT algorithm when the signal sources are placed at an elevation of 21 degrees
or larger. The 2D-MUSIC algorithm achieves a respectable average distance error when
the signal sources are sufficiently distanced from each other. However, it is generally
outperformed by the SRP-PHAT algorithm. Similar to the SRP-PHAT algorithm, the
2D-MUSIC algorithm’s average distance error starts to increase around an elevation angle
of 23 degrees. However, for the 2D-MUSIC algorithm this increase is more significant
than that for SRP-PHAT and leads to a larger average distance error. The comparative
graphs in Figure 5.5 shows that the SRP-PHAT algorithm achieves the lowest average
distance error as long as the signal sources are both placed at an elevation of 21 degrees.
Between 21 and 13 degrees, the SRP-PHAT algorithm is sometimes outperformed by the
CLEAN algorithm in scenarios where the source signals are stronger than the noise. When
reverberation is present, SRP-PHAT is sometimes also outperformed by the 2D-MUSIC
algorithm for SNRs larger than −20dB. When reverberation is present, each algorithm’s
performance is afflicted. The CLEAN algorithm exhibits increased variance in its average
distance errors between consecutive elevations, especially for low SNRs. This can also be
observed for the 2D-MUSIC algorithm, although the variance is less noticeable. The same
can be stated for the SRP-PHAT algorithm. However, at an elevation of 18 degrees there
is a sudden decrease in the average distance error. The exact reason is not exactly known
and should be further investigated.

5.3 Evaluation

In this section, each algorithms computational complexity and performance regarding sin-
gle source and multiple coherent source simulations is summarized to provide the final
evaluation.

Figure 5.1 shows that the 2D-MUSIC algorithm has a high sequential computational
complexity. This is due to its dependence on eigendecomposition and its pseudospectrum,
which are both computationally intensive operations. The 2D Unitary ESPRIT algorithm
also depends on eigendecomposition but does not require the construction of a spectrum
from which to derive its estimates for the signal sources. As a consequence, it has the
lowest sequential computational complexity of all SSL algorithms presented in this the-
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Figure 5.3: Comparison of the average distance error for single-source localization
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Figure 5.4: Comparison of the standard deviation for single-source localization
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Figure 5.5: Comparison of the average distance errors for multiple coherent
sources localization
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sis. However, the construction of 2D-MUSIC’s pseudospectrum can be highly optimized
through the parallelization techniques presented in Chapter 3. Eigendecomposition is an
operation that is much harder to parallelize and warrants its own research. Eigendecom-
position for both these algorithms scales poorly with the number of microphones present
in the microphone array. Consequently, using the parameters used in Figure 5.1 causes
the 2D Unitary ESPRIT and 2D MUSIC algorithm to have the worst parallelized compu-
tational complexity out of all the SSL algorithms presented in this thesis. The CLEAN
algorithm has an average sequential computational complexity. However, its operations
can be well parallelized, leading to a significantly lower parallelized computational com-
plexity. However, a limiting factor of the CLEAN algorithm is that it can only process
each of the signal sources sequentially. Hence, the algorithm’s computational performance
scales poorly with the number of sources that must be detected. The SRP-PHAT algorithm
has a significantly lower sequential and higher parallelized computational complexity than
CLEAN for the parameters used in Figures 5.1 and 5.2. When it comes to locating a single
signal source, the 2D Unitary ESPRIT had the worst performance out of all algorithms for
every scenario that was applied. Only the 2D-MUSIC algorithm performed slightly worse
in scenarios where very little noise was present. The 2D-MUSIC algorithm had similar
performance to the SRP-PHAT and CLEAN algorithm when noise was stronger than the
signal source. However, when the signal source was stronger than the noise, its performance
was significantly worse. When reverberation is introduced, this exacerbated its poor per-
formance for low-noise scenarios. CLEAN and SRP-PHAT had very similar performance
with CLEAN slightly outperforming the SRP-PHAT algorithm. Only when the absorption
coefficient was decreased to its minimum of 0.2 did the SRP-PHAT algorithm outperform
the CLEAN algorithm. Lastly, when locating two coherent signal sources at opposite sides
in their azimuth location, the 2D Unitary ESPRIT algorithm was unable to identify the
locations of the two signal sources. Instead it always selects the location in the middle
of the signal sources. The CLEAN, 2D-MUSIC, and SRP-PHAT algorithms were able to
distinguish between both signal sources under specific scenarios. As long as the signal
sources are stronger that the noise and they are both located at an elevation of at least
20 degrees, the CLEAN algorithm is able to locate both signal sources. The 2D-MUSIC
algorithm was also able to distinguish the two signal sources and did it more accurately.
Furthermore, it was able to do so even when the noise was stronger than the signal sources.
Nevertheless, at an elevation of 22 degrees or lower, the algorithm’s performance starts to
decrease, eventually only being able to locate its first signal source estimate to be located
in between both signal sources, while its other estimate is associated with random noise.
The SRP-PHAT algorithm generally achieves the best performance when locating the two
coherent signal sources, even in adverse conditions where there is reverberation and noise
present. Similar to CLEAN, the algorithm’s performance starts to deteriorate around an
elevation of 20 degrees or lower. At an elevation of 18 degrees or lower its estimates for
the first and second signal sources are located in the middle of both signal sources and the
signal sources cannot be effectively distinguished.
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Chapter 6

Conclusions & Future Work

In this study four different SSL algorithms have been analyzed to determine their compu-
tational complexities, accuracy, and precision. In Chapter 2, each of the algorithms were
dissected and each of their components were individually explained.

Chapter 3 explored the computational complexity of each of the algorithm’s compo-
nents identified in Chapter 2. Each component’s corresponding equations were rewritten
to clearly express its computational complexity using the Big-O notation. Each of these
equations were expressed as partial sums such that corresponding PEs could be constructed
and arranged in a DDG. These DDGs show how each of the components can be imple-
mented using parallel processing techniques and the resulting reduction in computational
complexity was also expressed using the Big-O notation. The computational complexi-
ties obtained for each algorithm’s components were combined to express the sequential
and parallelized narrowband computational complexity for each algorithm. Lastly, these
computational complexities were scaled with the variable K, representing the number of
frequency-bins, to obtain the sequential and parallelized computational complexities for
their wideband implementation.

Chapter 4 presented an in-depth exploration of the simulation results for each algo-
rithm. The first set of simulations considered a single source signal. The second set
considered two coherent signal sources placed at opposite azimuth angles and equivalent
elevation angles relative to the microphone array’s center. These simulations allowed for
the determination of each algorithm’s accuracy and precision for both a single narrowband
source and two coherent narrowband sources. To determine the robustness of each algo-
rithm, different levels of noise and reverberation were applied. Lastly, the two coherent
sources were placed increasingly closer to determine the minimum elevation angles at which
each algorithm was unable to distinguish the locations of both signal sources. In Chapter
5, these findings were juxtaposed with the previously obtained computational complexities
for each algorithm to provide a final evaluation of the results.

Regarding their performance, the single source simulations showed how each algorithm’s
accuracy and precision were affected by factors such as noise and reverberation. CLEAN
and SRP-PHAT showed robust performance across all applied reverberation and noise
levels. 2D-MUSIC showed that it depends on noise to maintain satisfactory performance
as its performance degrades when little noise is present. Lastly, 2D Unitary ESPRIT had
the worst performance, as its estimates tended to be situated in two separate groups. One
of these groups coincided with the actual location of the signal source while the other was
located closer towards the center of the scan grid. The distance between these groups grew
with the distance of the actual source location from the origin of the scan grid, suggesting
that the effective range of 2D Unitary ESPRIT is limited compared to the other algorithms.
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The results obtained for multiple coherent sources showed that the 2D Unitary ESPRIT
algorithm was not able to distinguish the locations of both signal sources regardless of their
relative position to each other and the applied noise and reverberation. The algorithm
always estimated the position of both signal sources to be in the middle of both signal
sources. The other algorithms were able to distinguish both signal sources to different
extents. As the 2D Unitary ESPRIT algorithm was not able to distinguish the two coherent
sources, it was not included in the comparative graphs presented in Chapter 5. The CLEAN
algorithm’s performance when subjected to two coherent signal sources has been shown to
significantly deteriorate in scenarios where the noise is as strong or stronger than the source
signals. When the source signals were stronger than the noise the algorithm was able to
distinguish the locations of both signal sources until each of these sources was located at an
elevation of 19 degrees, at which point the sources were placed so closely together that the
algorithm could not effectively distinguish them. The 2D-MUSIC algorithm was also able
to distinguish the two coherent sources, but as the signal sources are placed increasingly
closer together, this ability started to rapidly diminish eventually leading to a large average
distance error. However, compared to the CLEAN algorithm, its performance is much
more consistent than CLEAN across the applied SNRs. Nevertheless, each algorithm was
outperformed by the SRP-PHAT algorithm. This algorithm showed the highest accuracy
even when subjected to noise and reverberation.

The computational complexities of each algorithm were compared for the same param-
eters for both their sequential and parallelized computational complexities. Using these
parameters, it was shown that 2D Unitary ESPRIT has the lowest sequential computational
complexity followed by SRP-PHAT, CLEAN, and finally 2D-MUSIC which had the highest
computational complexity. This is largely due to its dependence on both the construction
of a spectrum and eigendecomposition. Eigendecomposition is a complex operation with
intricate data dependencies which makes it difficult to apply parallel processing techniques
to it. In fact, this should be regarded as a separate subject of study and has therefore
not been explored in this thesis. The construction of spectrums, however, is an operation
that loans itself to be optimized through parallelization. Consequently, the parallelized
computational complexity of 2D-MUSIC is almost equal to 2D Unitary ESPRIT, which
does not utilize a spectrum for DOA estimation. Other spectrum-based algorithms such as
CLEAN, and SRP-PHAT also significantly benefit from parallel processing techniques. In
fact, CLEAN’s parallelized computational complexity was the lowest out of all algorithms
closely followed by SRP-PHAT. 2D-MUSIC and 2D Unitary ESPRIT also had similar
parallelized computational complexities, although much greater than CLEAN and SRP-
PHAT. Importantly, one must be aware that these results are applicable to the parameters
that were used in this thesis, other parameters can yield different results. Nevertheless, it
shows that the spectrum-based algorithms all benefit from parallelization.

With these results, the research questions presented in this paper’s introduction can
be answered as follows.

1. Which of the selected algorithms achieves the highest accuracy and preci-
sion for a single signal source when subjected to noise and reverberation?
The CLEAN and SRP-PHAT algorithm show similar performance with the CLEAN
algorithm having the highest accuracy and precision. he only exception occurs when
the absorption coefficient is equal to 0.2, at which point SRP-PHAT achieves higher
accuracy.

2. What are the sequential and parallelized computational complexities of
each algorithm? The computational complexities of each algorithm are highly de-
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pendent on the values chosen for the many parameters of which the complexities
consist of. However, the 2D Unitary ESPRIT has a low sequential complexity due
to its independence on a scan grid unlike the other algorithms. However, both 2D
Unitary ESPRIT and 2D-MUSIC have higher parallelized computational complexi-
ties due to their dependence on eigendecomposition, which is difficult to parallelize.
SRP-PHAT and CLEAN have a similar sequential and parallelized computational
complexity. However, the CLEAN algorithm is dependent on the number of signal
sources that must be found. Due to this algorithm having to process each signal
source sequentially, it cannot be parallelized to the same extent that the SRP-PHAT
algorithm can.

3. Which of the algorithms is able to estimate the direction of multiple co-
herent sources? The 2D Unitary ESPRIT is unable to distinguish between two co-
herent signal sources and always selects the position in between both signal sources.
The CLEAN algorithm can locate both signal sources, but only when little to no
noise is present. The 2D-MUSIC algorithm can also locate both signal sources and
do so more accurately than CLEAN, but when the signal sources are placed too close
together, the algorithm’s performance quickly deteriorates as its first estimate is lo-
cated between both signal sources, while the second one is associated with noise. The
SRP-PHAT algorithm achieved the highest accuracy of all SSL algorithms considered
in this thesis. The algorithms starts to break down at the same point as the 2D-
MUSIC algorithm, however, not as dramatically. Eventually, both of its estimations
are associated with a position in between both signal sources.

6.1 Future Work

In this section suggestions for future research are presented stemming from the observations
obtained in this thesis. Although many suggestions can be given, for the sake of conciseness
only three have been selected which are considered the most promising by the author of
this thesis.

Frequency estimation

One benefit of wideband SSL algorithms that was not explored in this paper is their
ability to estimate the frequencies of source signals. This ability was observed during the
simulations as the strongest peaks were detected in the frequency bins that are closest to
the frequency of the utilized signal sources. However, in this study each of the acoustic
signals considered had equivalent frequencies. Evaluating the ability of each algorithm
to estimate the frequency of the utilized source signals will require performing additional
simulations with signal sources covering a variety of different frequencies. Additionally,
one should evaluate possible influences that can tamper with the algorithm’s ability to
estimate the frequency of the signal. This can include the applied SNR, reverberation, the
size and shape of the room, and whether there are multiple coherent or incoherent signal
sources present in the environment.

Multiple incoherent sources

Another benefit of wideband SSL algorithms is their ability to distinguish multiple sources.
In this paper only two coherent sources were considered. However, when dealing with
incoherent sources, these sources might influence each other to a lesser extent as they will
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be more prominent in their respective frequency bins as was shown in Figure 2.3. The
minimum separation in frequency required for two incoherent sources to be able to be
identified as two separate sources can be an interesting subject for future research. It
would involve identifying what determines this minimum required distance in frequencies.
This can be due to the preprocessing of the signals through STFT, the properties of the
microphone array, or the utilized SSL algorithm.

Complex Environments

The simulations conducted within this algorithm focused on two key parameters: the SNR
and the absorption coefficient. Additionally, all simulations were performed within the
same room. However, pyroomacoustics offers many additional options for evaluating SSL
algorithms. Users can customize the size and shape of the room, as well as apply different
absorption coefficients to each of its surfaces. Furthermore, pyroomacoustics supports an
experimental hybrid simulator that combines the Image Source Method (ISM) [4] and ray
tracing (RT) [78, 71], enabling the modeling of additional parameters such as scattering.
While simulations provide only an abstraction of real-life scenarios, these additional options
bring us even closer to replicating real-world conditions. Therefore, future research can
consider utilizing these features to obtain more realistic results than presented in this
paper.
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