MSc Computer Science
Thesis

WAGon — A Weighted
Attribute Grammar Oriented
Notation

Rafael M. Dulfer

Supervisor: Vadim Zaytsev

June, 2024

Department of Computer Science
Faculty of Electrical Engineering,
Mathematics and Computer Science,
University of Twente

UNIVERSITY OF TWENTE.

Contents

1 Introduction

2 Weighted Attribute Grammars

2.1 Grammars
2.1.1 Expressive Power
2.2 Attribute Grammars
2.3 Weighted /Probabilistic Grammars
2.4 Weighted Attribute Grammars: What and Why?
2.4.1 Formal Definition
2.4.2 Informal Description
2.4.3 Abilitieso
244 Purpose
3 Design
3.1 The Language
3.1.1 PLIERS
3.1.2 Principles
3.2 The Ecosystem
4 The WAGon DSL
4.1 Metadata
42 Rules.
421 Weights 0L
4.2.2 Attribute Assignment
4.3 Expression Language
431 Typing.
4.4 Attributes
441 Scope
4.5 Terminals
4.6 EBNF Operators
4.7 Modular Grammars.
4.8 Complete DSL
5 The WAGon Ecosystem
5.1 The Libraries
5.1.1 User Facing
5.1.1.1 WAGon Parser
51.1.2 WAGon Codegen
512 Backend

IT

10
10
11
11
11
12
12
13
13
14
14
15
16

5.1.2.1 WAGon Value,

5.1.2.2 WAGon Lexer,

5123 WAGon Utils

5.1.2.4 WAGon Macros

5.1.2.5 WAGonIdent

52 Creating a Parser
52.1 WAGon GLL
5.2.2 WAGon TOGLL

6 Of Parser Generators and Pokémon

6.1 GLL Parsing
6.1.1 Trait-Oriented GLL Parsing
6.1.1.1 Code Generation

6.1.2 Weights & Attributes
6.1.2.1 Extending the GSS

6.1.2.2 Extending the SPPF

6.1.2.3 Left-Recursion

6.1.3 Pseudo-Code
6.1.3.1 The State Object

6.1.3.2 TheLabels

6.2 Validating Pokémon oo
6.2.1 Dataset e
6.2.2 Restrictions
6.2.3 Validation
6.2.3.1 Relaxed Order

6.2.3.2 Calculating Guards

6.2.3.3 Summarizing

6.2.4 ExampleInputs.

7 Conclusions & Future Work

7.1 Future Work
7.1.1 WAGon Expansions
7.1.1.1 Missing Features

7.1.1.2 Ecosystem Improvements

7.1.2 Possible WAG-based research
7.1.2.1 WAGs as Logic Programs

7.1.2.2 WAGs as Neural Networks

7.1.2.3 WAGs for Programming Languages

7.2 Conclusion

Appendices

A Valid Poké-paste SPPF

Bibliography

III

27
27
28
28
29
31
31
33
35
35
35
42
42
42
42
43
43
43
46

48
48
48
48
49
49
49
52
52
52

53

54

56

Abstract

Weighted Attribute Grammars (WAGs) are an emerging field of study and have been
used for a variety of different tasks. However, due to the as-of-now obscure nature of the
field, researchers are left to re-invent the wheel every time, having to implement a WAG
parser before they can start the interesting part of their research. This paper proposes the
creation of a standardized Domain Specific Language (DSL) to define WAGs, as well as a
workbench to facilitate working with this DSL and a parser generator that functions as a
business case. Keywords: weighted attribute grammars, attribute grammars, weighted
grammars, parsing, parser generator, GLL parsing, Context-Sensitive languages

Chapter 1

Introduction

“Let’s start with what we have come
into the room to do.”

Fela Ransome Kuti

Weighted Attribute Grammars (WAGs) are a currently relatively young field of study
which attempts to combine the powers of weighted grammars with those of attribute gram-
mars. Primarily, they have been used for the generation of data, such as dungeons [3]| or
smart assistant responses [43], but they could conceivably also have applications in other
fields such as context-aware parsing and machine learning [11].

Because WAGs are a relatively young area of study, researchers who would like to
use them for their applications are required to write a parser and design a DSL by hand,
which costs valuable time. Currently, when a computer scientist wants to use conventional
grammars for any purpose, they have access to a multitude of different parser generators
which purport various feature sets. Rarely will they have to design their own handwrit-
ten parsers. However, none of the current parser generators have support for Weighted
Attribute Grammars.

In this thesis, we present WAGon. A dedicated DSL and ecosystem for defining and
working with weighted attribute grammars. Additionally, in order to show the capabilities
of WAGon and Weighted Attribute Grammars in general, we present a Generalized LL
(GLL)-based parser generator which uses the DSL and ecosystem as a base. Showing how
future researchers will be able to use WAGon as a starting point, preventing them from
being required to reinvent the wheel.

The thesis is structured as follows: Chapter 2 gives some historical and mathematical
background of weighted attribute grammars in general. Chapter 3 discusses the design
approach taken towards the DSL and ecosystem. Chapter 4 explains the DSL in detail.
Chapter 5 will focus on the ecosystem, while Chapter 6 will go over the creation of the
GLL-based parser generator and an example case study. Finally, Chapter 7 concludes
by providing some possible future improvements to WAGon as well as potential research
topics that WAGon could be employed for.

Chapter 2

Weighted Attribute Grammars

“Language is a virus from outer space.”

William S. Burroughs

A Weighted Attribute Grammar (WAG) combines the powers of Attribute Grammars
and Weighted /Probabilistic Grammars. [43] As such, these must first be discussed to un-
derstand WAGs and to understand those, one must first understand grammars.

2.1 Grammars

Grammars, in the context of formal language theory, are a much studied field first popu-
larized in the 50s by Noam Chomsky [8|, but with roots as far back as Panini in the 4th
century BCE [34]. They are used everywhere in fields as diverse as computer science [20] [1],
linguistics [34], biology [29] and many more [25].

A grammar G is formally defined as a tuple (N, T, P, S) where:

e N is a finite set of nonterminal symbols.

e T is a finite set of terminal symbols. TN N =)
e P is a finite set of production rules.

e S € N is the nonterminal start symbol.

For example, the following grammar defines a language which consists of some number
n >= 1 occurrences of the terminal symbol ‘a’, followed by n occurrences of the terminal
symbol ‘b’:

(S) = (aSb)
(S) = (ab)

Each nonterminal can form the left-hand side of multiple production rules. In this pa-
per, we will refer to individual production rules of a given nonterminal X as “an alternative
of the rule X”. Each alternative is delineated with a | symbol. So the above grammar can
be rewritten as:

(S) — (aSb) | (ab)

Type Name Example

Type-3 Regular L = {a"|n > 0} LE. aaaa...
Type-2 Context-Free L = {a"b"n > 0} LE. aabb
Type-1 Context-Sensitive L = {a"b"c"|n > 0} L.E. aabbcc

Type-0 | Recursively Enumerable | L = {w|w describes a terminating Turing machine}

TABLE 2.1: Chomsky Hierarchy

Generally, grammars are usually described as “producing” text (in this case, the string
of a’s and b’s), but are in practice often used for analyzing text instead (in this case,
checking whether the given input consists out of exactly some number n a’s and then
some number n b’s and nothing else). In reality, they are capable of both (and more),
depending on how the grammar is interpreted and used.

2.1.1 Expressive Power

Not every grammar is equally “powerful”. Computational linguists commonly categorize
grammars into a type in the Chomsky hierarchy [9]. Which type the grammar belongs to
tells us what class of languages can be expressed using that type of grammar. A short
summary of this hierarchy can be found in Table 2.1. Each higher class of languages is
able to express everything the lower classes can and more (so a higher class is a superset
of the lower class).

In the domain of computer science, we usually only concern ourselves with Regular
and Context-Free Grammars (CFGs). This is because they are easy and fast to analyze
algorithmically. As such, most tools developed by computer scientists only support prob-
lems expressible in Type-3 and Type-2 grammars. Weighted Attribute Grammars (as we
will discuss in Section 2.4.3) are actually part of the Context-Sensitive class of grammars,
making them more powerful than conventional grammars. As such, WAGs (and tooling
that supports them) are able to express everything that context-free grammars can and
more. Allowing them to express and solve a completely new class of problems.

2.2 Attribute Grammars

Attribute grammars were first fully described by Knuth [21] in 1968. He introduces the
concept of “inherited” and “synthesized” attributes; where the former are evaluated from
the top-down, while the latter are evaluated from the bottom-up.

An attribute grammar is defined as a variant of a CFG G = (N,T,P,S) such as
described in Section 2.1. Additionally, we define the set V" = N UT. For each symbol
X € V we associate a finite set A(X) of attributes, which is partitioned into the disjoint
sets Ag(X) for synthesized attributes and A;(X) for inherited attributes. We define A;(.5)
to be empty, as well as Ap(X) if X € T

Attribute grammars are already pretty powerful (in Knuth’s paper, he uses them to
evaluate a binary string at parsetime) and have been researched extensively. Of the major
parser generators, Happy directly supports AGs [24], while ANTLR and Bison support
them in the form of “actions” [30] [12]'. Additionally, AG-first parser generators like
Silver [41] and JastAdd [16] allow language designers to make full use of the power of
attribute grammars. AGs have been used for a variety of purposes, such as equation

PANTLR and Bison often use “actions” only in the context of attribute grammars, but they are treated
differently in their respective documentations, with attribute grammars being less important.

discovery [5], movement sequencing in robots [22| and generating tests [15] and will continue
to be a popular research topic for some time to come.

Because our ecosystem will support Weighted Attribute Grammars and WAGs are a
superset of attribute grammars (see the discussion in Section 2.1.1) our WAGon ecosystem
is automatically also an ecosystem for attribute grammars.

2.3 Weighted /Probabilistic Grammars

As opposed to attribute grammars, weighted grammars have received less attention. They
were originally described by Chomsky and Schiitzenberger in 1963 [9] and primarily find
use in the fields of natural language processing [27| and bioinformatics [13]. A weighted
grammar is rather simply a CFG G in which each rule r € P has an associated weight.
This weight is then often used to handle ambiguity of G [28]. A probabilistic grammar is
a special case of a weighted grammar which denotes the probability that the rule will be
chosen [35]. A probabilistic grammar can easily be identified in that the weights of the
alternatives of a rule all sum up to 1. Probabilistic grammars traditionally see use in both
natural language processing and text generation as they can help disambiguate the often
ambiguous nature of natural languages and provide a schematic for structured randomized
text generation.

A major difficulty for weighted grammars is how to define the weights. Frequently, this
is done through the creation of a corpus, from which probabilities are calculated which are
then manually fine-tuned [33]. Modern developments use neural networks to define these
weights [42]. WAGs can help alleviate this problem by having the fine-tuning happen
during parsing. For example, lowering the probability of an alternative every time it is
taken (and subsequently increasing the probability of the other alternatives).

As of writing, tool support for weighted grammars is not nearly as elaborate as that
of attribute grammars. While they could be replicated using “actions” in ANTLR and
Bison, this is only possible in specific cases and requires manually checking a value, failing
the parse if required and manually redirecting to the required rule (using, for example,
the YYBackup macro in Bison) [12]| [30]. Alternatively, there are at least two tools out
there that have dedicated weighted grammar support. The first being Allauzen et al’s
GRM Library [2] which was licensed by AT&T and now seems to be lost media. The
second being ModelCC by Quesada et al., which supports probabilities, but is explicitly
not grammar based [32] as it uses object-oriented style inheritance diagrams instead.

Because WAGs are a superset of weighted grammars, our WAGon ecosystem is likely
one of, if not the first grammar-based parser workbench /generator with dedicated weighted
parsing capability.

2.4 Weighted Attribute Grammars: What and Why?

A Weighted Attribute Grammar, as said previously, is then a combination of weighted
grammars and attribute grammars. The way these two approaches compliment each other
is quite obvious. One can take the attributes derived by the attribute grammar and use
them to define probabilities or weights to be used in the further parsing of the file. For
example, you could conceivably use a WAG to, for example, analyze whether a file is in
python2 or python3 dialect and the moment you are sure which one it is, keep state and
pivot to whichever dedicated grammar you need. Or you could keep track of sentiment
earlier in a text and use this to change the probability that a later statement is sarcastic
or not.

A WAG in which every weight is equal is just an AG, whereas a WAG in which no
attribute evaluation occurs and only constants occur is just a WG.
2.4.1 Formal Definition
We define a WAG as follows (inspired by the work of Zaytsev [43]):
Definition 1. A weighted attribute grammar is a tuple ¥ = (I', Q, A, ®), where
e I'=(N,T,P,s) is a Chomskian grammar
o) = (w,p) is a tuple of type-value pairs:
— w: P — T assigns types to weights.
— [assigns weights to each production rule.

o A= (A 1k, is a tuple of attribute components:

— A is the set of attributes

7: A — T assigns types to attributes (as with weights, these types are inferred
at initialization).

— Kk : N — A* specifies inherited attributes for each nonterminal.

m: N — A* specifies synthesized attributes for each nonterminal.

e & are computation formulae to define the attributes.

2.4.2 Informal Description

We take a conventional CFG and add to it both the concepts of attributes (as defined in
Section 2.2) and weights (as defined in Section 2.3). We will denote inherited attributes
with a * and synthesized attributes with a & Every nonterminal rule S € N has a
number of attributes that it requires to use. In this paper, we define these attributes for
each rule in a comma separated list surrounded by <> (LE. S<*a, &b> -> ...).

Each alternative of a rule has a weight associated with it. Exactly what this weight
means is undefined and left to the language designer. The weights are based on the
attributes and could dictate many things, for example: “only take alternatives with the
highest weight”, “take alternatives randomly based on weight”, “just annotate the tree with
the weights” etc.

Inside of each alternative, the attributes can be modified. This is done through a series
of computational formulae. Additionally, when new nonterminals are encountered, they
are given the attributes they require (again in a comma separated list surrounded by <>).
For a more comprehensive overview over how these features are expressed in the WAGon
DSL and why these specific symbols were chosen, see Chapter 4.

2.4.3 Abilities

Because WAGs have not yet been studied much, the true extent of their abilities is still
up for speculation. The most direct hint for their true power lies in the fact that they are
fundamentally context sensitive. By combining attributes and weights, the history of the
parse influences the current states. Therefore, WAGs are a whole Chomsky hierarchy level
more expressive than conventional Context-Free Grammars. For example, while a CFG is
completely incapable of expressing the language L = {a™b"c"|n > 0}, it can be relatively
easily described in a WAG:

S -> {*n
A<&n> -> {&n
B<*n> -> [*n

0} A<*n> B<*n> C<*n>;
&n + 1} "a" A<&n> | €;
0] {#*n = *n - 1} "b" B<*n>

v

| [*n == 0] €
C<xn> -> [*n > 0] {*n = *n - 1} "c" C<x*n>
| [*n == 0] €

Many natural languages [37], as well as many programming languages and other com-
plex systems are at least context-sensitive (if not recursively enumerable). WAGs allow
us to describe at least the context-sensitive structures in a formal way, allowing us new
insights into how they work, as well as a blueprint to automatically generate tooling for
these structures (like, for example, parsers).

2.4.4 Purpose

In truth, there is nothing a WAG can do that can not be done through other means. A
sufficiently complicated series of nested if ... else ... statements could perform the
analytical and generative tasks of a WAG in much the same way and modern parser gener-
ators can be convinced to do cases and attribute evaluation. As such, the power of WAGs
lies not in its abilities but in its possibility to have a pure? and relatively concise notation.
We introduce WAGs for the same reason Knuth introduced inherited attributes [21]. Not
because they are more powerful, but because they are hopefully less complicated to write,
understand and extend than the alternative.

2Meaning, we stay in the pure declarative world of grammars

Chapter 3

Design

“Confine your attention to designs that
look good because they are good.”

Bruce MacLennan [23]

As discussed in Section 2.4.4, WAGs are only useful insofar as that they are easier to
use for their purpose than the alternatives. As such, it is incredibly important that the
language used to write them is easy to use and read. In fact, we believe the design of the
language to be the most vitally important part of this whole project. If WAGon turns out
to be difficult or annoying to use, there would be no point to its existence.

A full grammar of the WAGon DSL can be found in Listing 4.2 and an explanation
of the DSL can be found in Chapter 4. What follows here is a discussion on the design
philosophy.

3.1 The Language

The design philosophy is so important to WAGon that we will state it again. If it is not
easy to use, it is worthless. The issue, however, is that “easy to use”’ is an incredibly
nebulous concept [39]. What makes a language easy to use? What makes a tool easy to
use? How does one design a good language? While it is possible to do in-depth A /B testing
and empirical research (such as was done for the Quorum programming language [38]), this
requires a significant time investment. Since we are also developing a library ecosystem
and example case study it was decided that a full study was not feasible. Still, lessons
can be learned from the studies that have already been done. Additionally, processes exist
which, while less elaborate, require significantly less time.

3.1.1 PLIERS

PLIERS (Programming Language Iterative Evaluation and Refinement System) is a process
for programming language design developed by Coblenz et al. [10]. While the process was
designed for iterative refinement of the language (something which, as stated above, we
did not have time for), the first 3 steps did help inform our initial design.

The first step of PLIERS is “Need Finding”. We cheat a little bit here by assuming
the need for a standardized WAG DSL as a given. Additionally, the existing literature
on WAGs was analyzed to see what “conventions” (as little as there were) existed. We’ve

incorporated elements from the languages used in those papers if they fit our design goals
(for example, weights being inside [1 which was inspired by a paper by Zaytsev [43]).
The second step of PLIERS; “Design Conception” iterates between two kinds of work:

1. Develop a theoretical foundation
2. Prototype

As a DSL specifically designed for WAGs, an already existing research field, a lot of the
theoretical foundation was already laid for us (as described in Chapter 2). Therefore, we
could focus on the prototyping aspects. During the prototyping stage a number of simple
programs and ideas were sketched out in simple file editors. This was supplemented by a
few informal rounds of natural programming [10] in which some computer scientists with
knowledge of grammars were approached and asked to write a grammar on a notepad.
Then, concepts of WAGs were introduced (i.e. weights and attribute assignments) and the
subjects were asked to simply write it down in a way that seemed natural to them. The
ideas they came up with were partly absorbed into the design.

Finally, the third step of PLIERS is “Risk Analysis”. Part of this step was already done
through the natural programming from the previous step, but the authors also suggest
analyzing the language through the Cognitive Dimensions of Notations framework [4]. A
framework which, while it has received criticism in recent years [39], provides us with
a common language to talk about (programming language) design, as well as pointers
for what to look for in a language. We determined the following dimensions to be most
important for WAGon:

e High closeness of mapping. The notation should closely match the formal definitions
of grammars.

e High consistency. Symbols should mean the same thing in the same context.

e Low diffuseness. The language should not be overly verbose.

3.1.2 Principles

Having gone through the first 3 steps of the PLIERS process and establishing the important
cognitive dimensions for the language, we laid out the following design principles:

e Leverage the vocabulary of popular languages.

— This is a double-edged sword, as it may happen that users believe they have
access to certain “abilities” from the language that the vocabulary was lifted
from even though they do not. It does however mean that users are more likely
to intuitively understand how something is intended to work.

e Do not use too many arcane symbols.

— There should be a purpose behind why a symbol was chosen that can be easily
explained and intuitively assessed.

e Do not be too verbose.

— Users should be able to read a grammar without having to skim too much
uninteresting boilerplate.

— This conflicts with the above point and the two are constantly at odds.

e Stick to grammars

— The beauty of WAGs is that they incorporate concepts from the “dirty” world
of computer programming into the “clean” world of formal grammars. As dis-
cussed before, many existing parser generators can do what WAGs do, but they
require the language designer to step into the impure outside world. As such,
we should aim to use as little “programmy” aspects as possible and to stick to
the declarative nature of grammars.

These principles are still highly nebulous, as is the sad truth of any design work, but
they provide some sort of structure above simply blindly trying things.

As an example of how this process and these principles affected the design, we will use
the case of what delimiters to use when passing attributes to non-terminals:
Originally, we designed the DSL to use parentheses (()) for this purpose. However, this
conflicted with the use of parentheses for EBNF operators (e.g. (A B(xa))+). Because
consistency is valued, it was decided not to allow the grammar to become ambiguous and
to search for a new delimiter. A number of other delimiters were considered (such as [],
/\ and even ::) and presented to a few third-party computer scientists before we finally
settled on <>. This particular set of characters was chosen because it encloses the input,
just like parentheses, is not in use in this way anywhere else in the DSL (they are used to
make arrows but they are clearly differentiable) and because there is precedent for using
them in a similar manner to define generic types in languages like Rust and TypeScript.
In these cases, the value inside the angle bracket defines what exact type we are invoking
the generic struct on. We can also see the nonterminals this way. Defining what exact
attributes we are invoking the nonterminal with, or letting it be inferred (as described in
Section 4.3.1).

We go more in-depth on the language itself and some of the specific design decisions in
Chapter 4.

3.2 The Ecosystem

WAGon is a DSL, but for a DSL to be useful, tooling around it should also exist. Because
WAGs have many different possible applications, it is very difficult to write a single tool
that can do everything, but it is doable to create an ecosystem of libraries that facilitates
creating whatever tool is needed. The ecosystem was created in a modular fashion (for
example, the lexer can be used completely separately from the parser) such that a user
can step in at whatever level is necessary for them to realize their project. It also contains
various useful modules that handle generic tasks when working with WAGs (for example,
generating code that evaluates expressions). A deeper dive into the ecosystem can be found
in Chapter 5.

Chapter 4

The WAGon DSL

“Gonna paint our wagon, gonna paint
it good.”

Clint Eastwood

Let us start with an example grammar written in the WAGon DSL:

S -> A | B;

A -> {$did_a = true;} E<$did_a> B | ;
B -> {$did_a = false;} E<$did_a> A | ;
E<*did_a> -> [*did_a * 2 + 1] C

| [('%did_a) * 3 - 4] D

c -> [0.3] F

| [0.7] G

D -> [0.7] F

| [0.3] G
F -> ||1||;
G -> "1,

We will explain the constituent parts of the grammar step-by-step.

4.1 Metadata

Every grammar file can optionally start with a metadata section. Inside of the section, key:
value pairs may be written (the use of which lies with the tool designer). Additionally,
includes can be written inside of the metadata section to specify that external files should
be included in this grammar.

This section was added to allow for easy configuration options. Future users of the
WAGon ecosystem may want to allow various runtime arguments to change the behavior
of their tools (for example, the parser generator uses it to determine whether maximal
or minimal weights should be used for disambiguation). It is impossible for us to predict
all possible configuration requirements, so we simply allows developers to define them
themselves. The value of each pair can be any basic literal (see Section 4.3.1).

10

The metadata section is delineated with 3 or more = signs. This was chosen to show
a very clear separation between the section of the file which just defines meta-information
for the backend tooling and the section which actually defines the grammar. Anyone who
is not interested in the meta-information can then quickly scan over it (either with their
eyes or with a parser) to see where the line appears and the actual grammar starts.

4.2 Rules

S<*xa, &b> -> A<xa> | B<&b>;
S => "hello";

Each grammar consists of a number of “rules” which are of the form LEFT ARROW RIGHT
| ALT. Most readers should be familiar with “analytical” rules (which use the -> arrow),
but WAGon also supports “generative” rules as inspired by Zaytsev [43]. Generative rules
signify that, as opposed to parsing some data or analyzing structure, this rule is intended
to specify how some (possibly structured) data should be generated. Generative rules are
denoted using the => arrow!.

If the rule uses attributes, they must be declared at the start by proving a comma
separated list surrounded by <> (i.e. S<xa, &b -> ...). Any time a nonterminal is
encountered for a rule that requires attributes, the “input” attributes should be provided
in the same way.

Each complete rule is terminated with a C-style ;.

4.2.1 Weights

S -> [1] A | [2 - 1] B;

Every alternative of a rule optionally has a weight. The weight is a full expression that
should eventually evaluate to some numerical value. The exact meaning of the weight (as
well as what to do with the possible absence of weight) is left up to the language designer.
A comprehensive look at attribute calculations and their types is found in Sections 4.3 and
4.3.1 respectively.

Weights may only occur at the start of the alternative and are surrounded by [].

4.2.2 Attribute Assignment

S -> A {xdone = true; *map = $(external.sh)} B;

Defining attributes is similar to writing code. Therefore, we leverage the common syntax of
C-style languages by having attribute definitions take place inside “code blocks” delineated
by {} and separated by ;. Every line in a block must be an assignment. This requirement
of making every line an assignment (and consequential lack of control flow statements
like ‘for’) makes the assignment language somewhat declarative in nature, similar to how
grammars are declarative.

It may however occur that the language designer wants to do more complicated opera-
tions than is allowed by the DSL. Most parser generators solve this by allowing the writer
to fall back to the host language in the rare cases that this is required. For WAGon how-
ever, we predict that this will happen relatively often, given that the expression language

IThese separate types of rules are also the reason why arrows were chosen, since they lead themselves
to easy variation for different meanings, as opposed to something like = or :. The meanings of these arrows
are technically suggestions. A user of the ecosystem can change their meaning if they so please.

11

is rather limited. As such, to prevent requiring the writer from having to learn some new
programming language, WAGon instead allows the designer to fall back to the shell.

Leveraging the common language of bash, any statement inside of $() will be forwarded
to the shell of the host machine. This allows the user to write code in any programming
language and simply use that to perform the more complicated calculations (for example,
getting the time or reading from a database). Output from these “scripts” should be in
JSON format and will be automatically parsed into a hashmap.

However, this approach drastically increases the amount of hidden dependencies and
error-proneness of the DSL as any “program” may now depend on unknown scripts which
perform unknown functions (which may even have side-effects). As such, this is the one
design decision which is most likely to change in subsequent versions of the language.

4.3 Expression Language

{&a = *done * (3 + 4 * 7 + if !*check then 3 else 4)}

As hinted at in the previous sections, WAGon contains a mini DSL for attribute evaluation.
The expression language is a mostly conventional mathematical language, supporting all
the common operations (add, subtract, modulo etc.). Additionally, it also supports boolean
equations (such as 1 < 2 and !true) as well as a basic ternary syntax (if ... then
else ...). Anything which resolves to true should automatically be evaluated as 1
whereas anything that resolves to false should be evaluated as 0 and vice-versa.

4.3.1 Typing

Typing here refers to the common meaning as used in programming language design.
Generally, grammars only have two basic types; terminals and nonterminals. However,
when introducing attribute grammars we automatically start involving more, if only for
defining the type of data that is stored in a specific attribute. The major attribute grammar
parser generators such as Happy and Silver make extensive use of typing for their systems
[24] [7] (partly as a consequence of their functional programming origins).

While static typing is helpful for a variety of reasons (not least of which is making
the “program” less error-prone), it also introduces a considerable amount of boilerplate
metadata which makes the file harder to read. Silver, for example, becomes incredibly
verbose, as seen in the small excerpt in Listing 4.1.

For this reason, WAGon does not require the language designer to specify types. They
are instead inferred at assignment based on the provided constants. Once a type has
been inferred, it is now statically assigned to this attribute and must be cast to become a
different type. The following types are defined for the language:

e Integers

e Floats

HashMaps

o Arrays

Strings

Booleans

12

Name Prefix Explanation Reasoning

Inherited * Value is defined earlier in the grammar. Any changes stay only in the local scope. Pass by value
Synthesized & Value is defined later in the grammar. Changes are passed “upward”. Pass by reference
Local $ Is defined inside of this scope. Perl/PHP /Bash style variable instantiation

Unknown Must be inferred from the rest of the grammar.

TABLE 4.1: All types of attributes, their explanation and reasoning for the prefix

Additionally, the ecosystem provides functionality to allow language designers to define
their own custom types if needed.

syn attr c :: String;

attr ¢ occurs on Prog, Dcl, Dcls,
Type, Stmt, Stmts, Expr;
nonterminal TRep;

syn attr typerep :: TRep;
attr typerep occurs on Expr;

LISTING 4.1: Example of type metadata in Silver [41].

4.4 Attributes

In Section 2.2 we discussed that there are 2 types of attributes; inherited and synthesized.
In WAGon, we extend these with 2 more; local and unknown as described in Table 4.1.

Local attributes function essentially the same as inherited attributes. It just provides
a signifier that this location is the initial definition of the attribute. Unknown attributes
are currently reserved for non-terminals. In the future however, they could be used to
automatically infer the type of attribute to reduce boilerplate [43]. If an attribute is used
that has not yet been defined, it should evaluate to 0.

Each instance of a different type of attribute is seen as distinct, even if they share a
name. For example, *a and &a are both distinct attributes with distinct values.

4.4.1 Scope

Note that the type of attribute on the “calling” side may be different from that of the
“definition” side. For example, we may have S<*a, *b> -> A<xa, *b>; and A<&b, &c>
-> ...;. There are three possible approaches to dealing with this discrepancy:

1. The calling side defines how changes are propagated.
2. The defining side defines how changes are propagated.

3. Do not allow this at all.

The third option is self-explanatory, but the first two require some elaboration. Say we
have the following grammar:

S<&x> -> {&x 2} A<&x>;
A<xx> -> {*x = 3} ;

What is the final value of &x? If we take the first approach, then it is a synthesized
attribute and as such, it value should come from the “lower” rule, meaning the final value
is 3. If we take the second approach, that means that A will handle it as inherited and not

13

propagate changes upward, making the final value 2. The first approach is the classical
approach as already defined by Knuth [21], the second approach is easier to implement.

The ecosystem is mostly agnostic in which approach can be taken. It is ultimately left
to the language designer. However, the parser generator takes the second approach, as
it was deemed significantly easier to implement. This may require a new way of looking
at how attributes are propagated for people who are already familiar with the classical
approach. Ideally, in the future, tooling could be added to the ecosystem for the classical
approach, allowing us to standardize it into the language.

4.5 Terminals

A - > " a n ;
B -> ‘b,
Word -> /[a-zA-Z]+/;
The leafs of a parse tree are the Terminals of the grammar. WAGon allows for two
types of terminal:

1. String literals (defined using either " or ¢)

2. Regular Expressions (delineated by //)

Regular Expressions sit halfway between terminals and non-terminals. They express
more complicated rules (like non-terminals), but also function as leaves of the tree (no other
rules have to be parsed to deal with them). At the parsing level, the regular expression
should return a greedily matched string.

In the ecosystem, the Regular Expression is parsed using a native library and compiled
to a DFA. This DFA can then either be used directly or compiled to bytecode and loaded
later on in any generated code that requires it.

4.6 EBNF Operators

S -> Ax B+ C7;

EBNF operators are shorthand for more complicated rules. WAGon allows them for
both terminals and non-terminals and the ecosystem includes tooling to automatically
rewrite them to their equivalent normal form. The way these basic rewrites are done can
be found in Table 4.2.2 However, while this is relatively simple to do for normal grammars,
everything becomes much more complicated when attributes are involved. For example:

A<*a> -> B<*a, $b>+;

This essentially means we want to parse B 1 or more times, given the same attributes
each time. Any changes that are propagated upward in a singular “call” of B should thus
be propagated upward in the “recursive call” as well. If we use the classical approach as
explained in Section 4.4.1 then this will be handled automatically, but if we use the other
approach, we need to do some fancier rewrites.

Any attributes that are passed to a chunk with an EBNF operator, or that are used in-
side a grouped chunk, must be available in the helper rules. Additionally, any modifications
made to these attributes must be passed upwards as if the helper rules were completely

ZNote that these rewrites use right-recursive rules. They can trivially be implemented using left-
recursive rules if so desired.

14

Operator | Original Rewrite
A ->A.0-0;
? -> B7;
A B; A-0-0 ->B | ;
A ->A.0-0;
* -> Bx;
A B A.0-0 ->B A-0-0 | ;
A > A-0-0;
+ A -> B+; A-0-0 -> B A-0-0-p;
A-0-0-p ->B A-0-0p | ;
A -> A-0-0;
_> .
O (groups) | A (B); 4.0.0 -> B

TABLE 4.2: EBNF Rewrite Rules

inlined. As such, we pass all the required attributes encountered in the chunks as they
were originally written to the first helper rule. From then on, we treat each attribute as
synthesized, so that any changes will be properly passed up to the original calling rule.
For example:

A<*a> -> B<*a, $b>+;

A<*£> -> A-0-0<*xa, $b>;
A-0-0-p<&a, &b> -> B<&a, &b> A-0-0-p<&a, &b> | ;
A-0-0<&a, &b> -> B<&a, &b> A-0-0-p<&a, &b>;

Regardless of whether attributes are involved, EBNF rewrites require the creation of
helper rules. For each symbol X € V that contains EBNF operators, we can create helper
rules X;; where ¢ is the alternative of the rule this operator occurred in and j is the index
of the specific “chunk” (read, either nonterminal symbol or grouped collection of symbols)
the EBNF operator occurred at. For the + operator, an additional rule X;;p is needed.

If we have several layers of nested groups (for example, (A (B)+)+) we create new rules
Xijr where k is the current “depth” of the group we are rewriting.

4.7 Modular Grammars

A <- A::S;
B <= B::S;
C << C::8;
C </ 1 & 2 & 3;

In programming, we are used to being able to re-use code written by other, better, pro-
grammers to perform tasks we do not want to develop ourselves. Any major programming
language is expected to have a good library ecosystem if it wants to see any chance at
adoption, but in the world of grammar design, we are often found re-inventing the wheel.

Major parser generators do usually have some sort of “importing” mechanism [30] [12],
but grammars are not programs and it would be silly to lift the mechanisms of importing
wholesale. Instead, WAGon intends to use the concept of Modular Grammars as defined
by Johnstone et al [19].

Instead of simply copying over all the rules from the other file which are not defined
in the current file (as e.g. ANTLR does), modular grammars allow a much more modular
approach to importing grammars and leverages the language of grammars to do so.

In WAGon, rules can be defined which import rules from other files in 3 ways:

e Basic - denoted by <- <NT>, simply copies over a line from another file directly.

15

e Full - denoted by <= <NT>, copies over the rule from file B into file A but changes
every reference from B: :<NT> into A: :<NT>

e Recursive - denoted by << <NT>, the same as full but performs the reference changes
recursively downwards.

When a grammar is imported using either full or recursive arrows, any imports which
are done in that file should be resolved first.

Additionally, one can use </ <INDEX> & <INDEX> ... to remove specific alternatives
from an imported rule. Finally, one can always just include another file and refer to rules
in that file using the format <MODULE>: : <NT>.

By allowing language designers to import other grammars in such a modular manner,
it becomes possible to construct a corpora of grammars for various general purposes which
can be easily modified as needed. For example, one could simply import the Python 2 and
Python 3 grammars and use weighted attributes to decide what gets imported from which
file depending on the file that is being parsed.

This modular approach fits the design goal of sticking as close as possible to formal
grammars, by having even the importing mechanism operate in this world.

4.8 Complete DSL

A full formal description of the WAGon language (written in the DSL itself) can be found
in Listing 4.2.

Wag -> Metadata? Rulex*;

// Metadata Section

Metadata -> Metax*x MetaDelim;

MetaDelim -> M"==n" M=ty

Meta -> Include | Config;

Include -> Identifier? "::" Identifier Include?;
Config -> Identifier ":" Expression ";";

// Production Rules
Rule -> Identifier NTArgs? "->" Rhs;
Rhs -> Weight? Chunk* "|" Rhs

| Weight? Chunkx* ";"

>

Weight -> "[" Expression "]";
Chunk -> ChunkP EbnfType?;
Ebnnype _> "4 | Ny n I II'?II;
ChunkP -> Symbol

I Il(ll Chunk * ll)ll

Symbol -> NonTerminal

| Terminal

| Assignment

| // This is an empty rule, aka ¢ aka epsilon.
NonTerminal -> Identifier NTArgs?;
NTArgs -> "<" AttrIdentifierList ">";
AttrIdentifierList -> AttrIdentifier "," AttrIdentifierList

| AttrIdentifier

3

16

Terminal

Assignment

-> v/ /[~ /1%/ /" // Regex
| String

>

-> "{" (AttrIdentifier "=" Expression ";")x "}";

// Attribute Evaluation

Expression

SubProc
If
Disjunct
Conjunct
Inverse
Comparison
CompOp
Sum

SumP
SumOp
Term
TermP
TermOp
Factor
Atom

Identifier
AttrIdentifier
AttrSpec

Dictionary
Bool

Num

Float
String

-> SubProc

| If

| Disjunct

S ISAVA SN EVARDER

-> "if" Disjunct "then" Disjunct ("else"
-> Conjunct ("&&" Disjunct)?;

-> Inverse ("||" Conjunct)?;

-> "1"? Comparison;

-> Sum (CompOp Sum)7?;

_> ngn | ng=n | nsn | L] | [[p——T) nyp=n

-> Term SumP?7;

-> SumOp Term SumP?;
R L B
-> Factor TermP?7;

-> TermOp Factor TermP?;
e BVVL N VAR A
-> Atom ("**x" Factor)?;

-> AttrIdentifier
Dictionary

Bool

Num

Float

String

"(" Expression ")"

-> /[a-zA-Z]1[a-2A-Z0-9_1%*/;
-> AttrSpec? Identifier;
> n$|| | Ny n I ||&n;

-> AttrIdentifier "[" Expression "]";
-> "true" | "false";

-> /[0-91+/;

-> /[0-91+.[0-91+/;
> yn>» /[Au]*/ rn
I nomn /[»7]*/ non

LisTING 4.2: Complete WAGon DSL

17

Expression)?;

] "in";

Chapter 5

The WAGon Ecosystem

“rogaq.brflijplgxymtwsh.xbouldrzchxawsl.”

Library of Babel, page 23 of Volume 8
on Shelf 4 of Wall 2 of Hexagon 0

Let us open this section by stating that the WAGon source-code is open-source and
publicly available at https://github.com/Rafaeltheraven/wagon. In this chapter, we
will be discussing the various modules as well as explaining how it can be utilized to create
WAG based tools. A comprehensive overview of all the modules can be found in the online
documentation at https://dulfer.be/wagon/.

5.1 The Libraries

The goal of WAGon is to prevent re-inventing of the wheel. Therefore, the source-code has
taken the form of an ecosystem of libraries. Language designers can step in at whatever
level is best for them as well as access various helper modules which should be useful for
most WAG based tools. If the language as described in Chapter 4 is the spec, then the
ecosystem is the ‘reference implementation”. This reference implementation was written
in the Rust programming language and some Rust specific terminology will be used.

5.1.1 User Facing

The ecosystem consists out of two types of crates, “user-facing” and “backend”. While all
the crates are available for anyone to use, a few crates form the “top” of the dependency
graph (depicted in Figure 5.1) and are the first place for developers to look when wanting
to work with WAGon.

5.1.1.1 WAGon Parser

The parser for the WAGon DSL can be found in the wagon-parser crate. It provides a
struct that, given a String with the DSL as input, either returns a full AST representing
the input file, or a proper error. The error can be handled as needed, the AST can function
as the basis for any code generation or analysis that one wants to do.

18

https://github.com/Rafaeltheraven/wagon
https://dulfer.be/wagon/
https://dulfer.be/wagon/wagon_parser/

W

wagon-codegen

N

wagon-parser

wagon-value

wagon-lexer

wagon-utils

wagon-ident Wagon-macros

FIGURE 5.1: WAGon dependency graph. Green indicating build-time dependen-
cies.

Additionally, this crate includes a very simple checker which does the following things:

1. Check whether any rule has duplicate attributes in their declaration (i.e. S<*a, xa>
>).

2. Check whether alternate definitions of the same nonterminal have different attributes
in their declarations (i.e. S<*a> -> ...; S<xb, *c> -> ...;).

3. Merge multiple rules for the same nonterminal into a single rule with alternatives.

4. Factor our EBNF operators as described in Section 4.6

This crate will be the main entrypoint for any language designer who wants to use
WAGs. Listing 5.1 shows how to start using the crate.

use wagon_parser: :parse_and_check;

let input_grammar = ...;
let wag = parse_and_check(input_grammar) ;
assert! (wag.is_ok());

LISTING 5.1: wagon-parser example

This crate also defines the AST for a fully parsed WAGon WAG. It’s structure mirrors
that of the formal DSL described in Listing 4.2.

5.1.1.2 WAGon Codegen

An obvious use of WAGs is to generate code based on what it defines. While some of this
codegen is highly specific, some aspects will be the same regardless. wagon-codegen is a
crate which includes generic functionality for code generation. It provides the following
features:

19

https://dulfer.be/wagon/wagon_codegen/

w

© 00 3 O Ut

10

12
13
14

1. Convert a full WAGon attribute expression into valid Rust code (either for weights
or for attribute assignment).

2. A struct to represent a file structure + data in memory and write it to disk.

3. A trait for any codegen which is based on, and needs to keep track of, some state
object.

Any language designer who wants to do their own code generation can use this crate to
deal with expressions and assume that all value conversions and operations are dealt with.
An example for how to use this crate can be found in Listing 5.2.

use wagon_codegen: :FileStructure;
use wagon_codegen: :ToTokensState;
use wagon_parser::parser::expression: :Expression;

1ls fs = FileStructure: :new();

let expression: Expression = ... // Get expression node representing, i.e. ‘2 + 3°.
let state: State = ... // State object keeping track of attributes present in expression.

let label = proc_macro2::Ident::new("current_rule");
let code = expression.to_tokens(state, label, State::callback);
assert_eq! (code, quote!(

wagon_value: :Value(2) + wagon_value::Value(3);

));

fs.insert_tokenstream("file.rs", code, true); //‘true‘ pretty prints the code.
fs.write_to_disk(); // You will now have a file called "file.rs" with the code.

LISTING 5.2: wagon-codegen example

5.1.2 Backend

If wagon-parser and wagon-codegen do not provide enough functionality for the user,
they can start using the “backend” crates. These crates drive the “frontend” and may give
more power and extensibility as required.

5.1.2.1 WAGon Value

As described in Section 4.3.1, the WAGon DSL is pseudo-dynamically typed. wagon-value
is a crate which handles all the dynamic typing aspects. It also allows for extension such
that, if a language designer wants to introduce more types than the basic ones, they can.
The code generated by wagon-codegen (described above), will always resolve to the basic
Value enum defined in this crate. If the language designer wants to use their own type,
all they have to do is define conversions and ensure the conversion happens at the end (an
example of this is provided in Section 5.2).

In order for a type to be able to function as a Value, it must implement the Valueable
trait, which is defined as in Listing 5.3.

Additionally, one must implement the traits for all basic arithmetic and comparative
operations'. This way, we can ensure that anything that implements Valueable functions
as we expect a dynamically typed value to function.

lAdd, Sub, Mul, Div, Rem, Pow, PartialEq and PartialOrd

20

https://dulfer.be/wagon/wagon_value/

© 00 ~J O T i W N =

—_
= O

W N

~ O Ut i~

10
11
12
13
14
15
16
17
18
19
20
21

use wagon_value::ValueResult;
trait Valueable {

/// Is this value seen as ‘true‘ or ‘false‘?

fn is_truthy(&self) -> ValueResult<bool, Self>;

/// Convert the value to a regular [€i32¢].

fn to_int(&self) -> ValueResult<i32, Self>;

/// Convert the value to a regular [‘f32¢].

fn to_float(&self) -> ValueResult<f32, Self>;

/// Get a string representation of the value, as if it were a number.
fn display_numerical (&self) -> ValueResult<String, Self>;

LISTING 5.3: Code for the Valueable trait

5.1.2.2 WAGon Lexer

If one ever wants to introduce new tokens to the WAGon DSL, they should be defined
in the wagon-lexer crate. This crate provides an automatically context-switching lexer
(meaning that it only lexes tokens in the expression language when actually inside an
expression block) which can also be used directly if one were to want to roll their own
parser. An example of how to use this crate can be found in Listing 5.4.

let s = r#"
meta: "data";
S -> A,

|l#;

use

use

let
let

D

wagon_lexer: :{Tokens, LexerBridge, LexResult};

wagon_ident: :Ident;

lexer = LexerBridge: :new(s);
tokens: Vec<LexResult> = lexer.collect();
assert_eq! (tokens, vec![
MetadataToken(Metadata: :Identifier("meta".into()))),

Ok (Tokens: :
Ok (Tokens:
Ok (Tokens:
Ok (Tokens:
Ok (Tokens:
Ok (Tokens:
Ok (Tokens:
Ok (Tokens:
Ok (Tokens:

:ProductionToken(Productions:
:ProductionToken(Productions:
:ProductionToken(Productions:
:ProductionToken(Productions:

:MetadataToken(Metadata: :Colon)),
:MathToken(Math: :LitString("data".to_string()))),
:MathToken(Math: :Semi)),
:MetadataToken(Metadata: :Delim)),

:Identifier(Ident: :Unknown("S".to_string())))),
:Produce)),

:Identifier(Ident: :Unknown("A".to_string())))),
:Semi))

LISTING 5.4: wagon-lexer example

5.1.2.3 WAGon Utils

wagon-utils is a crate which provides methods which are generically useful when pro-
gramming in Rust using the ecosystem. Of special note are its ErrorReport trait and
handle_error function. ErrorReport provides a consistent interface for defining Error

21

https://dulfer.be/wagon/wagon_lexer/
https://dulfer.be/wagon/wagon_utils/

types with a message, header and associated span information. These can then be handed
to handle_error which will print an error message to the console indicating exactly where
in the file the error occurred. The output of this can be found in Figure 5.2.

Unexpected Token

[test.wag:1:1]
1 r

S -> {!left = 0; $right = 0} A<$left> A<$right>;

Encountered token MathToken(!) at position 6..7. Expected "identifier"
—J

FIGURE 5.2: Example error message created by wagon-utils

5.1.2.4 WAGon Macros

wagon-macros provides build-time macros to make it slightly easier to write valid Rust
code. Most importantly, it provides the Base enum which provides the general tokens used
by wagon-lexer in all “languages”, as well as easy derive macros to add support for various
operators to custom defined Values.

5.1.2.5 WAGon Ident

Attribute identifiers (e.g. *a) need to be recognized and used in various places throughout
the ecosystem. wagon-ident very simply functions as a central location to retrieve the
Ident struct that represents these identifiers.

5.2 Creating a Parser

In order to demonstrate the capabilities of WAGon, we have created a GLL-based parser
using the ecosystem. We will discuss the specifics of how the parser works and what it
was used for in Chapter 6. In order to create the parser, we have introduced 3 new crates
(which can also be seen in the new dependency graph in Figure 5.3).

5.2.1 WAGon GLL

Generalized LL (GLL) is a rather complicated parsing scheme with many moving parts.
The exact nature of GLL (and our extensions to it) are discussed later in Chapter 6. For
the purposes of this chapter, we simply note that a dedicated library is required which
handles all the common GLL tasks. This library can be found in the wagon-gll crate.
The interesting bit of the library when it comes to the ecosystem is that that wagon-gll
provides an extension of Value.

It was originally intended for the generated parser to support higher-order nonterminals,
meaning that a nonterminal could be stored in an attribute and then referred to elsewhere
in the grammar. While this functionality was removed, we decided to keep the extension
of Value made to support this, as it provides a nice example for how to work with the
library. A (shortened) version of the “extension” code can be found in Listing 5.5.

In this example, we create an enum with one variant that wraps InnerValue and an-
other variant in case it’s a GLLBlockLabel. We annotate the wrapped InnerValue with
#[value_variant] such that the wagon_macros::ValueOps derive macro can automati-
cally create implementations for us that perform all basic operations. Finally, we implement
the Valueable trait by either forwarding the function to the InnerValue or by calculating

22

https://dulfer.be/wagon/wagon_macros/
https://dulfer.be/wagon/wagon_ident/
https://dulfer.be/wagon/wagon_gll/

S T W N =

© 0o

10
11
12
13

15
16
17
18
19

what makes sense for GLLBlockLabel. We now have an enum which can do everything

wagon-ident

wagon-togll

wagon-codegen

wagon-parser

wagon-lexer wagon-value

Y
Wagon-macros wagon-utils

FI1GURE 5.3: WAGon case study dependency graph

Value can, as well as hold some additional types.?

use
use
use
use
use
use

crate: :GLLBlockLabel;

wagon_value: :Value as InnerValue;
wagon_value: :ValueError as InnerValueError;
wagon_value: :ValueResult as InnerValueResult;
wagon_value: :Valueable;

wagon_macros: :ValueOps;

#[derive (Debug, PartialEq, Eq, Hash, Clone, ValueOps)]

pub

enum Value<’a> {
#[value_variant]

Value (InnerValue<Value<’a>>),
Label (GLLBlockLabel<’a>),

#[derive (Debug)]

pub

enum ValueError<’a> {
ValueError (InnerValueError<Value<’a>>),
ConvertToLabel (Value<’a>)

2Not pictured here, a number of trivial type conversions that can be implemented to make generating

code a bit easier.

23

21
22
23
24
25

27
28
29
30
31

33
34
35
36
37
38
39

41
42
43
44
45
46

48
49
50
ol
52
93

95
56
o7
o8
99
60
61

impl<’a> From<InnerValueError<Value<’a>>> for ValueError<’a> {

fn from(value: InnerValueError<Value<’a>>) -> Self {
Self::ValueError(value)
}
}
impl<’a> From<InnerValueError<InnerValue<Value<’a>>>> for ValueError<’a> {

fn from(value: InnerValueError<InnerValue<Value<’a>>>) -> Self {
Self::ValueError(value.into())
}
}
impl<’a> Valueable for Value<’a> {

fn is_truthy(&self) -> InnerValueResult<bool, Self> {
match self {
Value::Value(v) => Ok(v.is_truthy()7),
Value::Label(1l) => 0k(1l.is_eps()),
}
}
fn to_int(&self) -> InnerValueResult<i32, Self> {
match self {
Value: :Value(v) => 0k(v.to_int()7?),
0 @ Value::Label(_) => 0k(i32::from(o.is_truthy()?))
}
}
fn to_float(&self) -> ImnerValueResult<f32, Self> {
match self {
Value::Value(v) => 0k(v.to_float()?),
o @ Value::Label(_) => 0k(if o.is_truthy()? { 1.0 } else { 0.0 })
}
}
fn display_numerical (&self) -> InnerValueResult<String, Self> {
match self {
Value::Value(v) => Ok(v.display_numerical()7?),
other @ Value::Label(_) => Ok(other.to_int()?7.to_string())
}
}
}

LISTING 5.5: wagon-gll Value extension

wagon-gll is technically not part of the WAGon ecosystem (as it instead exists to
support the implementation of a tool using the ecosystem). As such, it can be found in its
own repository at https://github.com/rafaeltheraven/wagon-gll.

24

https://github.com/rafaeltheraven/wagon-gll

5.2.2 WAGon TOGLL

The second half of the fully functional GLL parser is to generate the code which actually
implements a specified grammar. This is done by the wagon-togll crate. Again, the
exact specifics of what code needs to be generated will be discussed in Chapter 6. For the
purposes of this chapter, let us look at how it works with the ecosystem.

The first thing the crate does is to take a fully formed WAG AST as defined by the
wagon-parser crate and to walk it. It starts by looking at the metadata section and
checking for the following key: value pairs:

1. no_prune (default false) - If set to true, the generated parser will not consider the
weights when deciding which alternative to parse.

2. min_weight (default false) - If set to true, the generated parser will only take
alternatives with the lowest weight, as opposed to the highest weight.

3. first_set (default true) - If set to false, the generated parser will ignore the
first /follow set when choosing what alternative to parse.

4. allow_zero (default false) - If set to true, the generated parser will allow alterna-
tives with a weight of 0 to be parsed.

Afterwards, it goes through all the rules + their alternatives and generates the code
as needed. When it reaches an expression (either inside of a weight or attribute assign-
ment block), wagon_codegen: : ToTokensState is invoked on it to automatically generate
working Rust code that evaluates to a wagon_value: :Value type. This final value is then
converted to wagon_gll::value: :Value.

Once all the generated code has been collected, wagon_codegen: :FileStructure is
used to define the following file tree:

1. main.rs - Main executable code. Parsing input arguments to executable and setting
up the wagon_gl1::GLLState object.

2. regexes/ - Directory holding regex recognizing DFAs.

3. nonterminals/ - Directory holding structs representing each nonterminal.

This crate also provides an executable, which take the output FileStructure described
above and either writes it to disk if successful (meanwhile also setting up the various
dependencies using cargo), or prints an error message using wagon_utils: :handle_error
if an error occurred anywhere in the process.

Both the executable provided by wagon-togll and the executable generated by it are
provided with an explanatory help flag. The output of this flag (explaining how to use
the executables) can be found in Figure 5.4.

Like wagon-gll, wagon-togll is not part of the WAGon ecosystem itself. Instead being
an executable that uses the ecosystem. As such, it too can be found in its own repository:
https://github.com/rafaeltheraven/wagon-togll.

25

https://dulfer.be/wagon/wagon_togll/
https://github.com/rafaeltheraven/wagon-togll

Example tool that uses the WAGon ecosystem to create GLL based parsers

[OPTIONS] <filename> <project_name>

<filename> The input WAGon grammar file
<project_name> The name of the project to output

Delete any existing project with the same name
Print help
Print version

(A) wagon-togll --help output.
[OPTIONS] <filename>

<filename> Input file to parse

Don't crop resulting sppf

Print SPPF dot labels in Latex math-mode representation
Also print the final GSS (works with math-mode)

Print help

Print version

(B) --help output for generated parser.

FIGURE 5.4: How to use the various executables.

26

Chapter 6

Of Parser Generators and Pokémon

“To protect the world from
devastation!”

Jessie

While it is fun to discuss WAGon in the abstract world of “possible usecases”, a concrete
example can make things much clearer. For this purpose, we provide a fully functioning
parser generator, written using WAGon and, through the use of unique WAG abilities,
utilizing it to verify basic aspects of legality for various creatures from the Pokémon series
of video games.

6.1 GLL Parsing

Parser generators are tools which, given a defined grammar, generate a functioning parser
for this language defined by the grammar. Many parser generators, however, have two
specific limitations:

1. The grammar must be deterministic.

2. The grammar may not contain left-recursive rules!.

Generalized LL (GLL) parsing is a technique which works for all context-free grammars,
regardless of whether they are left-recursive or deterministic [36]. The fact that it allows
non-determinism is interesting for WAGs, because the attributes can be used to curb the
amount of possible branches taken [26].

To fully understand how GLL works, we refer you to the vast amount of literature
on the subject by Johnstone et al. [36] [17] [18]. For our purposes, we will provide the
following simple explanation:

e We create a “virtual machine” (or state object) which keeps track of all parsing
information.

e The virtual machine receives parse jobs, based on a position in the input and what
(part of a) rule it is currently in.

e In case a rule has multiple valid alternatives, we simply add a job for each valid
alternative to the queue.

LOr hidden left-recursion in the case of LR-style parser generators

27

e Completed parse jobs are stored in an Shared Packed Parse Forest (SPPF), a special
graph which consists out of multiple tree-like structures.

e The state of the parser is stored on a Graph Structured Stack (GSS), which is used
similarly to how a conventional stack is used in compiler design.

e The exact same parse job may be added to the queue multiple times, in which case
the full parse is retrieved from the SPPF in a classic case of dynamic programming.

6.1.1 Trait-Oriented GLL Parsing

The original GLL algorithm makes liberal use of GOTOs, a feature not supported by
most modern programming languages. In order to implement GLL in modern languages,
an Object-Oriented approach (OOGLL) was developed by Bram Cappers [6]. However,
WAGon was written in Rust, which specifically does not support object-oriented program-
ming. As such, we had to slightly modify the OOGLL algorithm in order to introduce a
new approach, Trait-Oriented GLL (TOGLL) parsing.

First, we define a new trait, which we will call Label. In order to implement the trait
properly, the following methods must be defined:

1. is_eps() - Check whether this label is for an e block.
2. first_set() - Returns the first-follow set for this rule/GLL-block.

3. code() - The code that should be run once it is this label’s turn.

In addition, based on the previous methods, the following methods can be automatically

defined:

1. first() - Check whether, given the current state of the parser, this label can be
parsed. Based on the first-follow set.

2. is_nullable() - Check whether this label can ever resolve to e.

For a given grammar G, we will generate a struct for every production rule in G as
well as every GLL block in G. Each struct implements the Label trait. The struct naming
scheme is the same as the function naming scheme in OOGLL. Every rule S simply gets a
struct named S. Then, for every GLL block 7 in alternative j of rule S we define a struct
S_j_i.

Secondly, we define a state object we will call GLLState. This state object takes the
place of the generic parser in OOGLL and implements the functions goto(), init(),
create(), add(), get_node_t(), get_node_p() and test(). As opposed to function
pointers, the GLLState queue will consist out of the previously generated Label imple-
menting structs. goto() then, takes one of these structs and simply runs the associated
code () method.

6.1.1.1 Code Generation

In order to show how exactly Label can be implemented, let us look at the following
grammar:

S ->A B ‘b | ‘b’;
A -> ‘a’;
B -> ‘b’;

28

© 00 O Ui W

— = =
N = O

e e e e
O J O Ut = W

The rule S has 2 alternatives. The first one consisting of 3 GLL blocks and the second
of only 1. Thus, we will create the following structs; S, S_0_0, S_0_1, S_0_2 and S_1_0.
The pseudo-code for struct S can be found in Listing 6.1.

// For every rule S -> zi|...|z; € G:
impl Label for S {
fn is_eps() {
return false
3
fn first_set() {
return [z, ..., z;]
b
fn code() {
if state.test(zp) {
state.add(x;, state.gss_pointer, state.input_pointer, $)
b
if state.test(wx;) {
state.add(z;, state.gss_pointer, state.input_pointer, §)
¥
}
3

LISTING 6.1: Pseudo-code for rule structs

Now, we just need to generate structs for each GLL block. Every GLL block is respon-
sible for 2 things: ensuring that the correct bit is parsed, and ensuring that the next block
is queued. If this block is the last block, it instead needs to ensure that parser state is
restored. There are a lot of little bits to keep track of when it comes to generating these
structs. In Listing 6.2 you will find pseudo-code for the generation of a GLL-block struct.
Code colored pink represents the meta-logic for what lines of code to generate, whereas
code colored black represents the final struct definition.

Finally, Label should be implemented for whatever type represents a Terminal (be it
an array of bytes, or a string of characters or what have you). The implementation for this
type can be found in Listing 6.3. This is needed mostly for type coercing reasons.

An example implementation of the GLLState object and the Label trait can be found
in the wagon-gll crate, whereas an example implementation of the code generation can
be found in the wagon-togll crate.?

6.1.2 Weights & Attributes

GLL (and consequently, OOGLL/TOGLL) was not designed with attribute grammars in
mind. However, the use of the GSS and SPPF give us very useful data structures to store
the attribute information in. Inspired by the work of Josh Mengerink [26], we extend the
GSS to handle inherited attributes and the SPPF to handle synthesized attributes.

2Note that both implementations have differences from the minimal explanation above. This was done
to support various features which are not strictly necessary for TOGGL to function.

29

https://dulfer.be/wagon/wagon_gll/
https://dulfer.be/wagon/wagon_togll/

© 00 O Ui W

—_
o

12
13
14

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

// For every rule S-—>$1LHMU € G, for every alternate x; in that rule,
// for every GLL-block gy = Qj...ap € Tj:
impl Label for S_i_k {

fn is_eps(O) {

if |gx| =0 {
return true
} else {

return false

fn first_set() {
return [oq]

fn code(state: GLLState) {
for am, € gr {
if m#0 {
if state.has_next(a,,) {
}
if oy, €T { // For the purposes of this algorithm, e €T
if m=0A|gg] #1 { // And |¢] =1
state.sppf_pointer = state.get_note_t(w,,, state.input_pointer)
state.next («,,)
}
if m#AFOV(m=0A|gr] =1) {
node = state.get_node_t(«,,, state.input_pointer)
state.next (a,,)
slot = new GrammarSlot<S, S_i, k>
state.sppf_pointer = state.get_node_p(slot, state.sppf_pointer,
node)
}
} else {
slot = new GrammarSlot<S, S_i, k+1>
state.gss_pointer = state.create(slot)
Q. code ()
}
if m#0 {
}
}
}
if m=nAk=j { // If this is the last symbol in the last block
state.pop()
}

LISTING 6.2: Pseudo-code for generating GLL-block structs

30

© 00 O U W N~

— =
_ O

impl Label for Terminal {
fn is_eps() {
return self.is_empty()
}
fn first_set() {
return []
}
fn code() {
return Error (¢ ‘UNREACHABLE’’)

LISTING 6.3: Label implementation for Terminals.

6.1.2.1 Extending the GSS

S<*a, *b> -> {*a = 0; *b = 0;} A<*a> A<x*xa>;
A<&a> -> {&a = &a + 1}

LisTING 6.4: Example WAGon grammar using attributes.

The GSS, in the context of attributes, is responsible for 2 things: passing attributes
“down” and storing attributes for later. Let us use the grammar in Listing 6.4 as an
example.

In TOGLL, the rule S will be decomposed into 2 GLL blocks; S_0_0 and S_0_1. First,
we encounter S_0_0 and queue it as a parse job. This is analogous to calling a function in
a conventional programming language and in a similar way, we need somewhere to store
the context of our variables, so that we can recover it when we continue with the rule S.
In a conventional programming language, this info is stored on the stack. In our extension
of TOGGL, it is stored on the GSS. Similarly, when we want to pass “arguments” (L.E. *a
for A<xa>), we also store those on the GSS. In our example, we store *a on the GSS to
pass it along to A and we store *b on the stack to recover it later. Once we start parsing
A we retrieve &a from the GSS node. Once we are done parsing A, we can recover *b by
retrieving it from the GSS. Section 6.1.2.2 describes how we retrieve *a.

This can be implemented either through adding 2 separate vectors to the GSS (one
to store context, one to pass them down) or, since we know exactly what attributes exist
and which ones are passed down, into a singular vector which we virtually split into 2 at
the codegen level. The vector(s) is added to the GSS node in the state object’s create
method.

The GLL algorithm sometimes compares GSS nodes to define whether a particular
parser state has already occurred. In order to make sure this functions properly, the
attribute vectors of 2 GSS nodes must also be compared (so two nodes are only equal if
they have the same grammar slot, input pointer and attribute vectors) [26].

6.1.2.2 Extending the SPPF

Reading the SPPF Before we discuss how the SPPF is extended, it may be useful to
explain how to read our extended SPPF such that the figures we will provide make more
sense.

The SPPF consists out of 3 types of nodes:

31

1. Symbol
2. Packed

3. Intermediate

In this paper, packed and symbol nodes will be drawn in ellipses whereas intermediate
nodes will be drawn in boxes.

Packed and symbol nodes are represented in their respective conventional denotations,
intermediate nodes are extended with a list of all the attributes and their values at that
point of the parse. These attributes are enclosed by <>. An intermediate node which
represents a completed rule will be denoted with just the NT of that rule. All attributes in
that node represent the state of the attributes after the rule has been completely parsed.

Additionally, any time we have a non-zero weight, we print the value of the weight on
the edge from the intermediate node representing the completed rule to the packed node
representing the chosen alternative.

Intermediate nodes If the GSS stores information “downward”, then the SPPF provides
information “upward”. It, too, performs 2 tasks: passing changes to synthesized attributes
“up” and telling the parser at what GSS node the attribute context is stored.

In our example in Listing 6.4, &a in A is treated as a synthesized attribute. Inside of the
rule, we take whatever value it has and increment it by one. It is mostly treated like any
other attribute, stored on the GSS and updated from the SPPF as needed, until the end of
the rule. In GLL, every time a rule has been completely parsed, we call pop. This makes
it the perfect place to send synthesized values upward. Once we call the state object’s pop
method, we pass along all the synthesized attributes and store them on the newly created
intermediate SPPF node. When we then continue in the previous rule (S), we retrieve the
new value of *a from the vector stored on the SPPF, instead of from the one stored on the
GSS. When we’ve parsed the first A<*a>, the value of *a should thus be 1. After we've
parsed the second A<*a>, it should be 2.

Because of the way GLL works, state.sppf_pointer will always point to the correct

node for retrieving synthesized attributes, but this is not necessarily the case for attributes
stored in the GSS, which is why we also extend the SPPF (and the state object) with a
context_pointer. Note that this issue only exists if GSS nodes are immutable.
As described in Section 6.1.2.1, we write attributes to the GSS during the create method.
If we have mutable GSS nodes, we can write these attributes simply to wherever the
state.gss_pointer is currently pointing. If we have immutable GSS nodes however, we
must write the attributes to the newly created GSS node. To keep track of where the
attributes are stored (since it might be in some other node than wherever state.gss_-
pointer is pointing), we store a pointer to the correct node in the Intermediate nodes
of the SPPF. We also extend descriptors to include this same pointer, such that we can
quickly tell the state object where the current context is stored.

Additionally, when we are comparing two Intermediate SPPF nodes for equality, we
want to take the context of the attributes into account. Obviously, a parse of A in which
&a = 1 is different from one in which &a = 2, regardless of whether they represent the same
grammar slot and chunk of input. For this, we can again use the added context pointer.
Since we only care about attribute equivalence, we do not have to compare 2 GSS nodes,
and can simply compare the associated attribute vectors directly. For this reason, we still

want to store the context pointer with the intermediate nodes, even if we have mutable
GSS nodes.

32

Note that it is possible for attribute evaluation to happen after parsing of a rule has
been completed. As such, we need to store the complete state of all the attributes at the
end of every parsed rule. In GLL, the end of a rule is always accompanied by a call to
pop, making it the perfect opportunity to do this specific store operation. Inside the pop
method, we can create a new GSS node without any edges to store the attributes on. At
the moment pop is called, the SPPF node representing the fully parsed rule is stored at the
self.sppf_pointer. The context pointer for this node should be set to the newly created
GSS node.?
With all the extensions, two intermediate SPPF nodes are equal if and only if:

1. Both represent the same grammar slot.
2. They consume the same stretch of the input stream.
3. They both “return” the same synthesized attributes + values.

4. They both have the exact same attribute contexts.

Packed nodes Similarly to how equality of intermediate nodes is changed by the intro-
duction of attributes, so too are packed nodes. In the original GLL algorithm, we check
whether a given packed node exists for a given parent and do nothing if it already exists.
We do not inspect the potential children of the packed node because we know that, given
the same parent, slot and split point, they must always be the same. This is not the case
once we introduce attributes. Let us take the example in Figure 6.1. As the parse occurs,
at some point the packed node for (S — A(xx).,0) is created. There are two ways to reach
this packed node, either because we took the alternative A<*x> -> "a" A, in which case
*x = (0, or we took A<*x> -> *x = *x + 1 "a" A, in which case *x = 1. Clearly, these
are different parses, but if we use the original GLL algorithm, the second instance of the
packed node will be deemed the same as the first. After all, they consume the same slot,
have the same parent, the same split and even the same attribute context (*x = 0).

The only way to differentiate between the two packed nodes is by looking which interme-
diate nodes will become it’s children. In the first case, it will be (4,0,1, (xz : 0)) and in
the second case it will be (A,0,1, (xz : 1)). If we do not check the children for equality,
the second packed node will be mistaken as identical to the first and not be added to the
SPPF, causing (A,0, 1, (xz : 1)) to never be connected to the root node, causing that parse
to become unreachable.

A packed node always has at most 2 children, so comparing child nodes is O(2) and
has little impact on performance. Furthermore, directly comparing pointers to the children
(such as node indices in the graph) will suffice, as GLL will never allow two intermediate
nodes with the exact same data to exist at different memory addresses. There is no need
to do any in-depth comparisons.

6.1.2.3 Left-Recursion

Of note is that the introduction of attribute vectors can cause the left-recursion handling
mechanisms of GLL to fail. Let us take the grammar in Listing 6.5 for example. In this
case, we first schedule a job for S with *x = 0. Then, we schedule a new job for S with
*x = 1. In conventional GLL, the parser would stop here, as the second job for S is the
same as the first, so it does not continue. With attributes however, every job S; is distinctly

3 Alternative approaches were considered and are possible, as long as the final complete attribute context
is stored somewhere retrievable.

33

(S,0,1,<*x: 0>)

(A1,1,<*x: 0>)

S -> {*xx = 0} A<*x>;
A<xx> -> {*x = *x + 1} "a" A
I n au A
' et
(A) Grammar for language L = a” (B) AST for input “a”

FIGURE 6.1: Grammar + SPPF with subtly distinct packed nodes.

different from S;_; and as such, it will keep queuing forever. Because attributes have an
infinite context space, it is impossible to completely solve this issue.

S<kx> -> [*x < 3] {*x = *x + 1} S<*x>
S<xx> -> {*x = *x + 1} S<*x>

>

LISTING 6.6: Left recursive grammar

LISTING 6.5: Left ' : : o
eib recuIsive grafmat with guard to stop infinity.

This issue can be partly resolved by simply adding weights as guards for left-recursive
rules or by not having attributes in left-recursive rules, such as in Listing 6.6. However,
the introduction of attributes breaks the left-recursion mechanism in these cases as well,
in slightly more subtle ways.

In classic GLL, a left-recursive grammar will cause the GSS and SPPF for the recursive
parse to create a cycle, such as in Figure 6.2. Note how the intermediate node (A, 0,1, <>)
creates a cycle with the packed node (A — A-) indicating that one can "take" the rule A
-> A an infinite number of times.

Let us now consider Figure 6.3 in which we add attributes (and a guard as discussed
earlier). The GSS correctly removes the self-loop from [A — A-, 0] because we define GSS
nodes to be distinct if their attribute vectors are distinct. However, the GLL algorithm
still queues up a packed node (A — A-.) which (now) incorrectly loops to (A4,0,1,<>).
We know that a direct loop in the SPPF can occur if and only if it matches directly with
a self-loop in the GSS. As such, we can easily remedy this issue by adding a check to
get_node_p which only allows loops between an intermediate node and a packed node if
we just created a GSS loop as well, resulting in the correct SPPF in Figure 6.4.

34

(A—=A-0

(A—=A-.0)
Y
(A= A-.0)
S -> A; Y
A -> A | "av, [S7—>.S7O]
(A) Basic left recur- (c) SPPF for input
sive grammar. (B) GSS for input “a”. “a’.

FIGURE 6.2: Left recursive grammar + resulting GSS and SPPF

6.1.3 Pseudo-Code

With all the modifications described in the previous sections, it is useful to have a single
conclusive description of what the GLL algorithm looks like now. Inspired by the pseudo-
code of Cappers 6], all new additions will be written in whereas any meta logic on
the code generation level will be written in pink (like in section 6.1.1.1) and text which is
both will be in 4,

6.1.3.1 The State Object
The state object will need to provide the methods described in Listing 6.7.

6.1.3.2 The Labels

Additionally, as discussed in Section 6.1.1.1, each GLL Block needs an associated struct
that implements the Label trait as described in Listing 6.8. Note that we add a new method
weight which provides the weight value for the GLL block given the current parser state.
Additionally, each rule also needs an associated struct as described in Listing 6.9

4These colors should be differentiable to our colorblind friends

35

[A = A<*x> 0]

|

(A = A<*x> -, 0)

Y
CThoaed

(A = A<*%> 4, 0)
SRYS

(A = A<*x> -, 0)

[S = A<$x> 0]

S -> {$x = 0} A<$x>; (A = A<*x> +, 0)
A<xx> -> [*x < 3] {*x = *x + 1} A<xx>
I ||an; '
(A) left recursive grammar with at-
tributes (B) GSS for input “a”.

(5,0,1,<$x: 0>)

(A,0,1,<*x: 2>)

1 (A —=a -, 0)

(A,0,1,<*x: 3>)

B> oD

(¢) SPPF for input “a”.

FIGURE 6.3: Left recursive grammar with attributes + resulting GSS and SPPF
36

(S,0,1,<$x: 0>)

(S = A<$x>-, 0)

(S = A<$x>-, 0)

(A,0,1,<*x: 1>) (A,0,1,<*x: 0>)

(A = A<*x>-, 0)

(A,0,1,<*x: 2>)

(A0,1,<*x: 3>)

FI1GURE 6.4: Fixed SPPF for input “a” from Figure 6.3

37

0 ~J O U i W N =

10
11
12
13
14
15
16

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

49

fn init(input_stream) -> GLLState {
initialize data structures
let gss_root = (L,0.[])
let sppf_root = §$
let state = ...
state.add(S’ — .+ S , gss_root, 0, $)
return state

fn add(slot: GrammarSlot, g: GSSNode, i: Integer, s: SPPFNode
let d: Descriptor = (slot, g, i, s)
if —U.contains(d) {
U.insert(d)
R.insert(d)

fn get_node_p(slot: GrammarSlot, left: SPPFNode, right: SPPFNode
) -> SPPFNode {
let slot be of the form A — a8
if |a] = 1 A (head(a) is a terminal or a non—nullable nonterminal) A 8 # [] {
return right

} else {

if B#[A
t=A

} else {
t = slot

}

if left == {
let i, j = the left and right extends of the SPPF node right
let node = find or create Intermediate SPPF node (t, i, j
if

node does not have a packed node (A — a-3, i
create one with child right

}

} else {

let j = the right extend of SPPFNode right
let i, k = the left and right extends of the SPPF node left
let node = find or create Intermediate SPPF node (t, i, j
if
node does not have a packed node (A — a-«3, k
create one with children left, right

}

return node

fn get_node_t(t: Terminal, left: Int, right: Int) -> SPPFNode {

38

) o

) o

) {

50
o1
52
93
54

o6
o7
o8
99
60
61
62
63
64
65
66
67
68

70
71
72
73
74
75
76
7
78
79
80
81
82
83
84

86
87
88

90
91
92

94
95
96

98

fn create(slot: GrammarSlot, args: Array[Attribute]) -> GSSNode {
if there is no GSS node v == (slot,

fn pop(synth_attrs: Array[Attribute], attrs: Array[Attribute]) {

fn

fn

fn

fn

if —-S.contains((t, left, right))

create symbol node (t, left, right)

}
return (t, left, right)

create one

¥

if there is no edge from v to self.gss_pointer {
create one with self.sppf_pointer as the weight
.input_pointer)] {
let y = self.get_node_p(slot, self.sppf_pointer, z, v, v == self.gss_pointer)
self.add(slot, self.gss_pointer, z.right_extend(), y. v)

for [(s,z) € P|s = (slot, state

}

return v

let slot = self.gss_pointer.slot

let ctx = find or create GSS node <slot, self.input_pointer, attrs>

self .sppf_pointer.context = ctx

if self.gss_pointer != self.gss_root {
P.add((self.gss_pointer, self.input_pointer))
inter to v {

for each edge from self.gss_po
let z = edge.weight()

let y = self.get_node_p(slot, z, self.sppf_pointer,
self.gss_pointer, v == self.gss_pointer)

{

self.input_pointer, args) {

y.synth_attrs = synth_attrs

self.add(slot, v, self.input_pointer, y, self.gss_pointer)

get_attribute(i: Ident) -> Attribute {

self.gss_pointer.get_attribute(i)

restore_attribute(i: Ident) -> Attribute {
self.context_pointer.get_attribute(i)

get_synth_attribute(i: Ident) -> Attribute {

self.sppf_pointer.get_synth(i)

goto(label: Label) {

39

99
100

102
103
104
105
106
107
108
109
110
111

© 00 O Ui WK

—_
)

12
13
14

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

label.code(self)

fn main() {
while (—=R.empty()) {

(slot, gss, input, sppf, context) = R.pop()
self.sppf_pointer = sppf
self.gss_pointer = gss
self.input_pointer = pointer
self.context_pointer = context_pointer
self.goto(slot.label)

LISTING 6.7: Pseudo-code for general GLL methods

// For every rule S — z1|...|]x; € G, for every alternate x; in that rule,
// for every GLL-block g = aj...qp € T;:
impl Label for S_i_k {

fn is_eps(O) {

if Jgl =0 {
return true
} else {

return false

fn first_set() {
return [oq]

fn code(state: GLLState) {
for am € gr {
if m#0 {
if state.has_next(o,,) {
}
if oy, €T { // For the purposes of this algorithm, e €T
if m=0A|gg] #1 { // And le| =1
state.sppf_pointer = state.get_note_t(a,,, state.input_pointer)
state.next (a,,)
+
if m#AOV (m=0A|ge| =1) {
node = state.get_node_t(«,,, state.input_pointer)
state.next (a,,)
slot = new GrammarSlot<S, S_i, k>
state.sppf_pointer = state.get_node_p(slot, state.sppf_pointer,
node, state.gss_pointer, false)

} else {

40

35
36
37
38
39
40
41
42
43
44
45
46
47

49
50
o1
92
93
o4
95
o6
o7

© 00 O U i W N =

—_ = =
N = O

el e e
N S O = W

19
20
21
22

// This can happen in multiple places
slot = new GrammarSlot<S, S_i, k+1>
state.gss_pointer = state.create(slot)
,, .code(state)

}
if m#0 {
}
}
}
if m=nAk=j { // If this is the last symbol in the last block
state.pop()
}

fn weight(state: GLLState) -> Value {
k=0 { // If this is the first gll block

weight =
return weight

return Error ("UNREACHABLE")

LISTING 6.8: Pseudo-code for generating GLL-block structs with attributes

// For every rule S -> zi|..|z; € G:
impl Label for S {
fn is_eps() {
return false

}
fn first_set() {

return [z, ..., z;]
}

fn code(state: GLLState) {

if state.test(xy) {
state.add(r;, state.gss_pointer, state.input_pointer, $, state.gss pointer)
3
if state.test(z;) {
state.add(z;, state.gss_pointer, state.input_pointer, $, state.gss pointer)
X
3
fn weight(state: GLLState) -> Value {
return Error ("UNREACHABLE")
}
b

LISTING 6.9: Pseudo-code for rule structs

41

6.2 Validating Pokémon

Pokémon is a multimedia franchise created by Game Freak Inc. in 1996 [40]. In the flagship
video game series, players are tasked with capturing and fighting alongside creatures called
Pokémon. In game, these Pokémon each have distinct stats and movesets, based on how
their owner has trained them. These stats and movesets have restrictions on them which
are difficult (if not impossible) to define in a conventional grammar, but are simple to
express in a WAG. Popa already used WAGs to generate Pokémon-esque creatures [31].
Now, to show the power of the WAGon ecosystem, we will validate them.

6.2.1 Dataset

Pokémon has an active competitive scene whose members meet up either in real-life or
on websites like https://play.pokemonshowdown.com/ to battle it out in tournaments
or friendly matches. When players want to share their teams, they use a format called
Poké-paste which is described informally at https://pokepast.es/syntax.html. We will
be using publicly posted Pokémon in this format to test our program.

6.2.2 Restrictions

There are a lot of restrictions put on what Pokémon are valid (for example, it must be
an existing Pokémon to begin with). For our purposes, we have encoded the following
restrictions in our grammar:

1. Each Pokémon has at least 1 move and at most 4.
2. Each Pokémon has between 0 and 6 IVs. Each IV has a value between 0 and 31.

3. Each Pokémon has between 0 and 6 EVs. Each EV has a value between 0 and 255.
The sum of all EVs must be smaller than or equal to 510.

In addition, while parsing, we can also check the following attributes:
1. Is the Pokémon Shiny?

2. Does the Pokémon have a nickname?

3. What gender is the Pokémon?

4. Does the Pokémon have an item?

While more checks could be implemented (for example, making sure Pokémon only
know actually valid moves), those quickly becomes more of an exercise in simply having a
large enough database and are less interesting in our quest to show what WAGon can do.

6.2.3 Validation

Given the dataset and the wanted restrictions described above, we come to the WAGon
grammar described in Listing 6.10. WAGs (and thus, WAGon) allow us to employ multiple
tricks to easily validate the grammar and our additional imposed restrictions.

42

https://play.pokemonshowdown.com/
https://pokepast.es/syntax.html

6.2.3.1 Relaxed Order

Poké-paste is a very relaxed format. At the start, we have an informational section which
is largely optional (outside of the Pokémon’s legal name). After that is a statistics section
which can be written out in any order and after that we have a list of up to 4 moves.
While the optional parts are easy to define in most conventional grammars (as long as
they support EBNF operators), allowing a section to be written in any order would be
extremely cumbersome to define in a conventional grammar (as you would need to write
out every possible permutation). In WAGs, however, we can add some very simple boolean
logic to check whether we have already parsed a certain statistic and to disallow parsing
it again from that point onward.

6.2.3.2 Calculating Guards

When we want to calculate the value of a number using a conventional parser generator,
we would have to fall back to the host language in order to do so. In AGs, we can derive
the value of a number at parse time, which we do in the Decimal rule. We can then use the
value calculated by the Decimal rule and whether it falls inside a certain range by adding
a special rule afterwards which functions as a guard (such as is done in EVs employing the
PerEVGuard rule).

Other types of values can also be calculated in this way (E.G. YesNo calculating
booleans). If we combined this with the modular grammar features described in Sec-
tion 4.7 one could start using a “library” style approach to grammar writing. Allowing us
to simply import utility rules like Decimal which parse and calculate our values for us.

6.2.3.3 Summarizing

Some of the attributes employed are “utility” attributes. We utilize them to make sure the
input is valid, but after that they become unimportant. Some of the attributes however, are
important until the end because they give us information about the input we are interested
in. At the top, we create a special rule S which defines these attributes we care about. At
the end, the SPPF will then have a root node which shows the final values of the attributes,
leaving the others lower in the tree.

Having to define these attributes up front and constantly passing them downwards is
pretty cumbersome and leads to a slightly bloated grammar. We discuss approaches to
solving this issue in Section 7.1.

43

S -> {$shiny = false; $nickname = false; $gender = "U"; $item = false}
Pokemon<$shiny, $nickname, $gender, $item>;

Pokemon<&shiny, &nickname, &gender, &item> ->
Info<&nickname, &gender, &item>
{$d_ability = false; $d_shiny = false; $d_level = false; $d_happy =
false; $d_nat = false; $d_ev = false; $d_iv = false}
Optionals<$d_ability, $d_shiny, $d_level, $d_happy, $d_nat, $d_ev,
$d_iv, &shiny>x*
{$move_count = 0} Moves<$move_count >+

>

Info<&nickname, &gender, &item> ->
Name
("(" Name {&nickname = true} ")")?
("(" Gender<&gender> ")")7
("@" Item {&item = truel})?

Name -> AnyString;
Gender <&gender> -> "M" {&gender = "M"} | "F" {&gender = "F"};
Item -> AnyString;

Optionals<&d_ability, &d_shiny, &d_level,
&d_happy, &d_nat, &d_ev, &d_iv, &shiny> ->

[1&d_ability] Ability {&d_ability = true}
| ['&d_shiny] Shiny <&shiny > {&d_shiny = true}
| ['&d_levell] Level {&d_level = true}
| ['&d_happy] Happiness {&d_happy = truel
| ['&d_nat] NatureDef {&d_nat = true}
| ['&d_iv] {$iv_count = 0}

IVStart<$iv_count > {&d_iv = true}
| ['&d_ev] {$ev_count = 0; $ev_total = 0}
EVStart<$ev_count, $ev_total>
EVGuard<$ev_total > {&d_ev = true}
Ability -> "Ability" ":" AnyString;
Shiny<&shiny> -> "Shiny" ":" YesNo<&shiny>;
YesNo<&yes> -> "Yes" {&yes = truel} | "No" {&yes = falsel};
Level ->
{$total = 0}
"Level" ":"

Decimal<$total>
LevelGuard<$total >

LevelGuard<*total> -> [*total <= 100];

Happiness ->
{$total = 0%}
"Happiness" ":"
Decimal<$total>
HappyGuard<$total >

HappyGuard<*#total> -> [*total <= 255];
NatureDef -> Nature "Nature';

EVStart<&ev_count, &total> -> "EVs" ":" EVList<&ev_count, &total>;

44

EVList<&ev_count, &total> ->

EVs<&ev_count, &total>

,/’

EVList <&ev_count, &total>

| EVs<&ev_count, &total>

EVs<&ev_count, &total> -> [&ev_count < 6]

{$total = 0}

Decimal <$total>

PerEVGuard<$total >

{&total = &total + $totall}

Stat

{&ev_count = &ev_count + 1%}
PerEVGuard <*check> -> [*check <= 252];
EVGuard <*check> -> [check <= 510];
IVStart<&iv_count> -> "IVs" ":" IVList<&iv_count>;

IVList<&iv_count > ->
IVs<&iv_count >
7/7
IVList<&iv_count >

| IVs<&iv_count >

IVs<&iv_count > -> [&iv_count < 6]
{$total = 0}
Decimal<$total>
IVGuard<$total >

Stat

{&iv_count = &iv_count + 1}
IVGuard<*total> -> [*total <= 31];
Stat -> IIHPII | "Atk" I "Def" | "SPA" | "SpD" | llspell;

Moves <&move_count> -> [&move_count < 4]
n_mn
Movelist
{&move_count = &move_count + 1}
5

MovelList -> AnyString "/" Movelist | AnyString;
AnyString -> /[a-zA-Z]1+([-1x[a-zA-Z]+)*/;

Decimal<&total> -> NumberList<&total>;
NumberList <&total> ->
{$value = 0}
Number <$value>
{&total = &total * 10 + $valuel}
NumberList <&total>

{$value = 0}
Number <$value >
{&total = &total * 10 + $valuel}

Number <&value> ->
’0° {&value = 0}
| 21> {&value = 1}
| °2? {&value = 2}
| °3°> {&value = 3}

45

’4° {&value
’5° {&value
’67 {&value
’>7° {&value
’8° {&value
’97 {&value

Nature ->
IIHardy n
"Lonely"
"Adamant"
"Naughty"
"Brave"
IIBoldll
"Docile"
"Impish"
IILaX n
"Relaxed"
"Modest"
lIMildll
"Bashful"
llRash"

n Quiet n

n Calmll
"Gentle"
"Careful"
n Quirkyll
n Sassyll
"Timid"
llHastyll

n Jollyll
"Naive"

"Serious"

43}
5}
6}
7}
8}
9}

LISTING 6.10: Poke-paste Grammar

6.2.4 Example Inputs

For demonstration purposes, we shall show 2 example inputs. One that is valid, and one
that is invalid. They can be found in Figure 6.5. A snippet showing only the top of the
SPPF for the valid input can be found in Figure 6.6 whereas the complete SPPF can be
found in Appendix A. The second input will result in a parse error, returning an error
message as shown in Figure 6.7. The error message is slightly confusing, which is due to
the difficulty of clean error messaging in GLL parsers, but it should point the language
designer in the right direction (namely that the line Shiny: No can not be parsed because
it is unable to find a valid parse for the rule Optional).

46

Inteleon (F) @ Choice Specs
Ability: Torrent

Shiny: Yes

EVs: 252 SpA / 4 SpD / 252 Spe
Timid Nature

- Hydro Pump

- Ice Beam

- Air Slash

- U-turn

(A) Valid Input.

Inteleon (F) @ Choice Specs
Ability: Torrent

Shiny: Yes

Shiny: No

EVs: 252 SpA / 4 SpD / 252 Spe
Timid Nature

- Hydro Pump

- Ice Beam

- Air Slash

- U-turn

(B) Invalid Input.

FIGURE 6.5: Example Inputs.

l (S,0,161,<$gender: F, $nickname:

false, $item: true, $shiny: true>) ‘

Y

(S -> Pokemon<$shiny, $nickname, $gender, $item> -, 0)

Y

l(Pokemon‘O,lGl,<$diability: true, $d_iv: false, &shiny: true, &nickname: false, &gender: F, $d_shiny: true, &item: true, $d_happy: false, $d_nat: true, $move_count: 4, $d_level: false, $d_ev: true>) ‘

Y

(Pokemon -> Info<&nickname, &gender, &item> Pokemon-0-2<$d_ability, $d_ shiny, $d__

/

\

FIGURE 6.6: Top of valid (truncated) Poké-paste SPPF

Parse Error
[input_bad:1:3]

Shiny: No

No parse candidates were found for rule "Optionals’

FIGURE 6.7: Example (truncated) error message for invalid input

47

level, $d_happy, $d_nat, $d_ev, $d_iv, &shiny> Pokemon-0-4<$move_ count> «, 107)

in context " Pd

Chapter 7

Conclusions & Future Work

“I’'m wearing dark glasses because I am
seeing the future and it’s looking very
bright”

David Lynch

7.1 Future Work

Creating a workbench means that the amount of possible projects coming from it are nearly
uncountable. It is of course impossible to predict the future, but keeping an optimistic
mind, we can hope that WAGon will become the basis for significant WAG related research
in the future.! In this section we will outline some possible improvements to WAGon to
make it easier to use, as well as some possible future research that WAGon could be used
as a baseline for.

7.1.1 WAGon Expansions
7.1.1.1 Missing Features

Not all the features discussed in Chapter 4 made it into the final product. Specifically;
modular grammars, generative arrows, bash scripts and unknown attributes, while sup-
ported by the grammar and parser, have no implemented functionality. Furthermore, type
casting has no support in either the grammar or the workbench. A first step to expanding
WAGon will be implementing these features. Implementing unknown attributes would be
especially useful, as it can significantly lower the amount of boilerplate required to define
the grammars. Additionally, in order to implement unknown attributes a call graph would
be needed. This would also allow us to perform type-checking as well as implicit initializing
of attributes (meaning we no longer have to define *x = 0 all the time).

Additionally, in Section 4.4.1 we already discussed how there are two separate ways
of interpreting synthesized/inherited attributes work. Properly standardizing the classical
way into the DSL by adding support for it into the ecosystem is required for the language
to align with our goal of having a high closeness of mapping.

'In fact, 2 other theses are already planning to use it as their base.

48

7.1.1.2 Ecosystem Improvements

Furthermore, it is of course always possible to make the ecosystem better and to have more
features.

First of all, a more modular AST rewriting system is needed. Currently, all the rewrites
and sanity checks of a parsed WAGon DSL AST happen at the same time and are very
opinionated (for example, EBNF rewrites always use right-recursion and use the non-
classical interpretation of attributes). A modular system is needed such that language
designers can pick and choose the rewrites and checks that are useful for their project and
can even create their own rewrites if needed. Ideally, this system would make use of the
strategy pattern [14].

Secondly, it would be good for the generated GLL parser to output a more usable
SPPF. The current SPPF is very large as every single node is displayed. Additionally, the
only current output format is .dot which, while useful for research and display purposes,
is less usable in the real world. Having a proper mechanism to “use” the resulting SPPF is
required for more interesting practical applications of the parser.

Thirdly, allowing weights anywhere in a rule (as opposed to only at the start) would
remove the need for helper “guard” non-terminals which do nothing but check a certain
weight.

Finally, the ecosystem could be more generic. For example, a serialization scheme
could be created to serialize the AST such that it could be used in other languages. Ad-
ditionally, wagon-parser is tightly coupled with the tokens defined in wagon-lexer and
wagon-codegen is tightly coupled with the AST defined in wagon-parser. Defining generic
traits that handle the coupled elements (for example, having an Expression trait that all
nodes that represent a complete WAGon Expression should implement) could allow lan-
guage designers to truly take whatever bit of the ecosystem they want and easily inject
their own data structures.

7.1.2 Possible WAG-based research

WAGsS, being a way to define context sensitive grammars, are very powerful. We can
envision the following possible use cases to be interesting research avenues?:

7.1.2.1 WAGs as Logic Programs

Combining WAGs with a GLL parser as described in Chapter 6 leads to interesting be-
havior. Consider the grammar in Listing 7.1 and resulting SPPF in Figure 7.1. It is an
ambiguous grammar in which one can take either A rule anywhere from 0 to 2 times. By
using attributes as a counter to check which point was taken, we are left with 3 roots: One
in which it always takes the left A, one in which it always take the right A and one in which
it takes both once.

GLL as an algorithm finds every possible interpretation of a string. We can see an
intermediate node as meaning “This part of the input string can be parsed given these
rules”. With our extensions, this becomes “This part of the input string can be parsed,
given these rules and that the attribute values at the end are as follows”. If we take “this
part of the input string can be parsed” to be a preposition in formal logic, the SPPF tells us
“this preposition holds, given these values are as follows”. In our example, the preposition
holds given ($left = 0A$right = 2)V($left = 2A$right = 0)V($left = IA$right = 1).

2There are of course many more.

49

S -> {$left = 0; $right = 0}
A<$left> A<$right>;
A<&count> -> "a" A<&count> {&count = &count + 1}

I
LisTING 7.1: Highly ambiguous grammar

50

[(8,0.2,<Sleft: 1, $right: 1>)

’(S,O,Q,<$right: 0, $left: 2>)‘

(S — A<S$left> A<$right> -, 1) (S — A<Sleft> A<S$right> -, 2)

’(S,O,2,»<i$right: 2, $left: 0>)

’(S — A<Sleft> « A<$right>,0,1,<8left: 1, $right: 0>)

’(S — A<Sleft> « A<Sright>,0,2,<$right: 0, $left: 2>)

/

(S — A<Sleft> « A<Sright>, 0)

’ (A,2,2,<&count: 0>) ‘

(S — A<Sleft> A<S$right> -, 0) (S — A<Sleft> « A<$right>, 0)

/
(A,0,2,<&count: 2>)

’(S — A<Sleft> - A<S$right>,0,0,<$right: 0, $left: 0>) (A,0,1,<&count: 1>)

/

(S — A<Sleft> « A<$right>, 0)

(A = ’a> A<&count> +, 1) (A — 2’ A<&count>

. 1)

(A,0,0,<&count: 0>) (A,1,1,<&count: 0>) (A,1,2,<&count: 1>)

(A — 2> A<&count> -, 2)

@ (A,2,2,<&count: 0>)

Ficure 7.1: SPPF for Listing 7.1 with input “aa”

o1

7.1.2.2 WAGSs as Neural Networks

A WAG can be read as a concise description of a large series of if-trees. In this view, each
alternative of a rule that has a weight is an alternative condition in the if-tree. While it
is a reductive approach, neural networks can also be said to simply be a set of very large
and complicated if-trees. If one were to define each alternative to be a neuron, and each
weight of that alternative to be the weight of the neuron (we can use rules simply to group
related neurons together), it seems to us potentially possible to denote neural networks
(something famously difficult to write down in a human readable format) as a WAG.

7.1.2.3 WAGs for Programming Languages

Many popular programming languages, such as C+-+ and Rust, are context-sensitive. The
solution for this “issue” by most compiler developers is to simply hand-roll a parser to
deal with the resulting ambiguities. Using WAGs, one could potentially automatically
generated parsers for these widely used languages.

7.2 Conclusion

In this paper, we have proposed the first standardized DSL for Weighted Attribute Gram-
mars as well as provided a workbench such that future researches can utilize this DSL.

We have also investigated the potential power of WAGs through some theoretical spec-
ulation, as well as the creation of a functioning WAG-based GLL parser. Showing that it
is possible to parse and analyze languages using WAGs in a way that would be impossible
or highly cumbersome for conventional grammars to do. In the process of creating this
parser, we have also established the alternative TOGLL parsing algorithm as well as the
necessary extensions in order to implement weights and attributes.

92

Appendices

93

Appendix A

Valid Poké-paste SPPF

Note that this complete SPPF is very large. If you are reading this on a digital PDF
reader, you should be able to zoom in and read it at a high resolution. If you are reading
this on a physical copy, we are afraid we were unable to render this SPPF in a readable
format.

o4

95

Bibliography

1]

2]

3]

[4]

[5]

(6]

7]

8]

19]

A. V. Aho, R. Sethi, and J. D. Ullman. Compilers, Principles, Techniques, and Tools.
Addison-Wesley Series in Computer Science. Addison-Wesley Pub. Co., Reading,
Mass., 1986. 796 pages. ISBN: 978-0-201-10088-4.

C. Allauzen, M. Mohri, and B. Roark. A General Weighted Grammar Library. In M.
Domaratzki, A. Okhotin, K. Salomaa, and S. Yu, editors. Redacted by D. Hutchison,
T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O.
Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y.
Vardi, and G. Weikum, Implementation and Application of Automata. Volume 3317,
pages 23-34. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005. 1SBN: 978-3-540-
24318-2 978-3-540-30500-2. DOI: 10.1007/978-3-540-30500-2_3.

J. D. Beekman. Procedural Location Generation with Weighted Attribute Grammars.
Bachelor’s thesis, Universiteit Twente, Enschede, The Netherlands, July 2021. URL:
http://purl.utwente.nl/essays/87002.

A. Blackwell and T. Green. CHAPTER 5 - notational systems—the cognitive dimen-
sions of notations framework. In J. M. Carroll, editor, HCI Models, Theories, and
Frameworks, Interactive Technologies, pages 103-133. Morgan Kaufmann, San Fran-
cisco, 2003. 1SBN: 978-1-55860-808-5. DOI: 10.1016/B978-155860808-5/50005-8.

J. Brence, S. Dzeroski, and L. Todorovski. Dimensionally-consistent equation discov-
ery through probabilistic attribute grammars. Information Sciences, 632:742-756,
June 1, 2023. 18SN: 0020-0255. DOI: 10.1016/j.1ins.2023.03.073.

B. Cappers. Ezploring and Visualizing GLL Parsing. Master’s thesis, Eindhoven
University of Technology, Aug. 31, 2014. URL: https://research.tue.nl/en/
studentTheses/exploring-and-visualizing-gll-parsing.

T. Carlson and E. Van Wyk. Type qualifiers as composable language extensions.
In Proceedings of the 16th ACM SIGPLAN International Conference on Genera-
tive Programming: Concepts and Ezperiences. SPLASH ’'17: Conference on Systems,
Programming, Languages, and Applications: Software for Humanity, pages 91-103,
Vancouver BC Canada. ACM, Oct. 23, 2017. 1SBN: 978-1-4503-5524-7. DOI: 10.1145/
3136040.3136055.

N. Chomsky. Three models for the description of language. IRE Transactions on
Information Theory, 2(3):113-124, Sept. 1956. 1SSN: 2168-2712. poI: 10.1109/TIT.
1956.1056813.

N. Chomsky and M. P. Schiitzenberger. The Algebraic Theory of Context-Free Lan-
guages™. In P. Braffort and D. Hirschberg, editors, Studies in Logic and the Foun-
dations of Mathematics. Volume 35, Computer Programming and Formal Systems,
pages 118-161. Elsevier, Jan. 1, 1963. DOI: 10.1016/50049-237X(08)72023-8.

o6

https://doi.org/10.1007/978-3-540-30500-2_3
http://purl.utwente.nl/essays/87002
https://doi.org/10.1016/B978-155860808-5/50005-8
https://doi.org/10.1016/j.ins.2023.03.073
https://research.tue.nl/en/studentTheses/exploring-and-visualizing-gll-parsing
https://research.tue.nl/en/studentTheses/exploring-and-visualizing-gll-parsing
https://doi.org/10.1145/3136040.3136055
https://doi.org/10.1145/3136040.3136055
https://doi.org/10.1109/TIT.1956.1056813
https://doi.org/10.1109/TIT.1956.1056813
https://doi.org/10.1016/S0049-237X(08)72023-8

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

M. Coblenz, G. Kambhatla, P. Koronkevich, J. L. Wise, C. Barnaby, J. Sunshine, J.
Aldrich, and B. A. Myers. PLIERS: A Process that Integrates User-Centered Meth-
ods into Programming Language Design. ACM Transactions on Computer-Human
Interaction, 28(4):28:1-28:53, July 23, 2021. 1sSN: 1073-0516. DOI: 10.1145/3452379.

Y. Dehbi, C. Staat, L. Mandtler, and L. PI"umer. Incremental Refinement of Facade
Models with Attribute Grammar from 3D Point Clouds. ISPRS Annals of Photogram-
metry, Remote Sensing and Spatial Information Sciences, I11-3:311-316, June 6, 2016.
ISSN: 2194-9050. DOI: 10.5194/isprsannals-III-3-311-2016.

C. Donnelly and R. Stallman. Bison Manual: The YACC-compatible Parser Genera-
tor, 8 November 1999, Bison Version 1.29. Free Software Foundation, Boston, Mass,
1999. 94 pages. ISBN: 978-1-882114-44-3.

R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids. In Cambridge University Press,
Apr. 23, 1998. 1SBN: 978-0-521-62041-3 978-0-521-62971-3 978-0-511-79049-2. DOLI:
10.1017/CB09780511790492.

E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional, 1st edition, 1994.
ISBN: 0-201-63361-2.

E. Habibi and S.-H. Mirian-Hosseinabadi. Generating test as a web service (TaaWS)
through a method-based attribute grammar. International Journal on Software Tools
for Technology Transfer, 24(4):511-527, Aug. 1, 2022. 1SsN: 1433-2787. DOIL: 10.1007/
s10009-022-00649-z.

G. Hedin. An Introductory Tutorial on JastAdd Attribute Grammars. In J. M. Fer-
nandes, R. Ladmmel, J. Visser, and J. Saraiva, editors, Generative and Transforma-
tional Techniques in Software Engineering I11: International Summer School, GTTSE
2009, Braga, Portugal, July 6-11, 2009. Revised Papers, Lecture Notes in Computer
Science, pages 166-200. Springer, Berlin, Heidelberg, 2011. 1SBN: 978-3-642-18023-1.
DOI: 10.1007/978-3-642-18023-1_4.

A. Johnstone. A Reference GLL Implementation. In Proceedings of the 16th ACM
SIGPLAN International Conference on Software Language FEngineering. SLE ’23:
16th ACM SIGPLAN International Conference on Software Language Engineering,
pages 43-55, Cascais Portugal. ACM, Oct. 23, 2023. 1SBN: 9798400703966. DOI: 10.
1145/3623476.3623521.

A. Johnstone and E. Scott. Modelling GLL Parser Implementations. In B. Malloy,
S. Staab, and M. van den Brand, editors, Software Language Engineering, Lecture
Notes in Computer Science, pages 42—61, Berlin, Heidelberg. Springer, 2011. ISBN:
978-3-642-19440-5. DOI: 10.1007/978-3-642-19440-5_4.

A. Johnstone, E. Scott, and M. van den Brand. Modular grammar specification.
Science of Computer Programming, 87:23-43, July 2014. 1ssN: 01676423. DOI: 10.
1016/j.scico0.2013.09.012.

A. Kanev, S. Cunningham, and T. Valery. Application of formal grammar in text
mining and construction of an ontology. In 2017 Internet Technologies and Applica-
tions (ITA). 2017 Internet Technologies and Applications (ITA), pages 53-57, Sept.
2017. por: 10.1109/ITECHA.2017.8101910.

D. E. Knuth. Semantics of context-free languages. Mathematical systems theory,
2(2):127-145, June 1, 1968. 1SSN: 1433-0490. DOI: 10.1007/BF01692511.

o7

https://doi.org/10.1145/3452379
https://doi.org/10.5194/isprsannals-III-3-311-2016
https://doi.org/10.1017/CBO9780511790492
https://doi.org/10.1007/s10009-022-00649-z
https://doi.org/10.1007/s10009-022-00649-z
https://doi.org/10.1007/978-3-642-18023-1_4
https://doi.org/10.1145/3623476.3623521
https://doi.org/10.1145/3623476.3623521
https://doi.org/10.1007/978-3-642-19440-5_4
https://doi.org/10.1016/j.scico.2013.09.012
https://doi.org/10.1016/j.scico.2013.09.012
https://doi.org/10.1109/ITECHA.2017.8101910
https://doi.org/10.1007/BF01692511

[22] R. Lioutikov, G. Maeda, F. Veiga, K. Kersting, and J. Peters. Learning attribute
grammars for movement primitive sequencing. The International Journal of Robotics
Research, 39(1):21-38, Jan. 1, 2020. 1sSN: 0278-3649. DOI: 10.1177/0278364919868279.

[23] B.J. MacLennan. “Who cares about elegance?” The role of aesthetics in programming
language design. ACM SIGPLAN Notices, 32(3):33-37, Mar. 1, 1997. 1sSN: 0362-1340.
DOI: 10.1145/251634.251637.

[24] S. Marlow. Attribute Grammars — Happy documentation. Happy Documentation.
2022. URL: https://haskell - happy . readthedocs .io/en/latest/attribute-
grammars.html (visited on 05/11/2023).

[25] J. McCormack. Grammar-based music composition. Complezity International, 3,
1996. 1SSN: 1320-0682.

[26] J. Mengerink. On-Parse Disambiguation in Generalized LL Parsing Using Attributes.
Master’s thesis, Eindhoven University of Technology, Aug. 31, 2014. URL: https://
research.tue.nl/nl/studentTheses/on-parse-disambiguation-in-generalized-
11-parsing-using-attribute.

[27] M. Mohri, F. Pereira, and M. Riley. Weighted finite-state transducers in speech
recognition. Computer Speech € Language, 16(1):69-88, Jan. 2002. 1sSN: 08852308.
DOI: 10.1006/¢cs1a.2001.0184.

[28] R. Morbitz and H. Vogler. Weighted parsing for grammar-based language models.
In Proceedings of the 14th International Conference on Finite-State Methods and
Natural Language Processing. FSMNLP 2019, pages 46-55, Dresden, Germany. As-
sociation for Computational Linguistics, Sept. 2019. DOI: 10.18653/v1/W19-3108.

[29] S. Mukherjee and S. Mitra. Hidden Markov Models, Grammars and Biology: A Tu-
torial. Journal of Bioinformatics and Computational Biology, 03(02):491-526, Apr.
2005. 18SN: 0219-7200, 1757-6334. DOI: 10.1142/50219720005001077.

[30] T. Parr. The Definitive ANTLR j Reference. Pragmatic Bookshelf, 2nd edition, 2013.
328 pages. ISBN: 978-1-934356-99-9.

[31] A. Popa. Gotta adjust them all! : dynamic difficulty adjustment of role-playing games
through procedural generation of non-player characters, Master’s thesis, Enschede,
The Netherlands, May 2023. URL: http://essay.utwente.nl/94941/.

[32] L. Quesada, F. Berzal, and F. J. Cortijo. A Model-Driven Probabilistic Parser Gen-
erator. May 14, 2012. DOI: 10.48550/arXiv.1205.3183. arXiv: 1205.3183 [cs].
Preprint.

[33] B. Roark. Probabilistic Top-Down Parsing and Language Modeling. Computational
Linguistics, 27(2):249-276, June 1, 2001. 1SsN: 0891-2017. DOI: 10.1162/089120101750300526.

[34] R. H. Robins. A Short History of Linguistics, number 6 in Longman Linguistics
Library. Longman, London, 3. impr edition, 1976. 248 pages. ISBN: 978-0-582-52397-
5.

[35] A. Salomaa. Probabilistic and weighted grammars. Information and Control, 15(6):529—
544, Dec. 1969. 18SN: 00199958. DOI: 10.1016/S0019-9958(69) 90554 -3.

[36] E. Scott and A. Johnstone. GLL Parsing. FElectronic Notes in Theoretical Computer
Science. Proceedings of the Ninth Workshop on Language Descriptions Tools and
Applications (LDTA 2009), 253(7):177-189, Sept. 17, 2010. 1SSN: 1571-0661. DOI:
10.1016/j.entcs.2010.08.041.

o8

https://doi.org/10.1177/0278364919868279
https://doi.org/10.1145/251634.251637
https://haskell-happy.readthedocs.io/en/latest/attribute-grammars.html
https://haskell-happy.readthedocs.io/en/latest/attribute-grammars.html
https://research.tue.nl/nl/studentTheses/on-parse-disambiguation-in-generalized-ll-parsing-using-attribute
https://research.tue.nl/nl/studentTheses/on-parse-disambiguation-in-generalized-ll-parsing-using-attribute
https://research.tue.nl/nl/studentTheses/on-parse-disambiguation-in-generalized-ll-parsing-using-attribute
https://doi.org/10.1006/csla.2001.0184
https://doi.org/10.18653/v1/W19-3108
https://doi.org/10.1142/S0219720005001077
http://essay.utwente.nl/94941/
https://doi.org/10.48550/arXiv.1205.3183
https://arxiv.org/abs/1205.3183
https://doi.org/10.1162/089120101750300526
https://doi.org/10.1016/S0019-9958(69)90554-3
https://doi.org/10.1016/j.entcs.2010.08.041

[37]

[38]

[39]

[40]

[41]

[42]

[43]

S. M. Shieber. Evidence against the context-freeness of natural language. Linguis-
tics and Philosophy, 8(3):333-343, Aug. 1, 1985. 1SSN: 1573-0549. por: 10. 1007/
BF00630917.

A. Stefik and R. Ladner. The Quorum Programming Language (Abstract Only). In
Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education, SIGCSE 17, page 641, New York, NY, USA. Association for Computing
Machinery, Mar. 8, 2017. 1SBN: 978-1-4503-4698-6. DOI: 10.1145/3017680.3022377.

A. Stefik and S. Siebert. An Empirical Investigation into Programming Language
Syntax. ACM Transactions on Computing Education, 13(4):1-40, Nov. 2013. 1SSN:
1946-6226. DOI: 10.1145/2534973.

J. Tobin, redactor. Pikachu’s Global Adventure: The Rise and Fall of Pokémon. Duke
University Press, 2004. 1SBN: 978-0-8223-3250-3. DOI: 10.2307/j.ctv1131ctc. JS-
TOR: j.ctvli3icte.

E. Van Wyk, D. Bodin, J. Gao, and L. Krishnan. Silver: an Extensible Attribute
Grammar System. Electronic Notes in Theoretical Computer Science. Proceedings of
the Seventh Workshop on Language Descriptions, Tools, and Applications (LDTA
2007), 203(2):103-116, Apr. 1, 2008. 1SSN: 1571-0661. DOI: 10.1016/j.entcs.2008.
03.047.

S. Yang, Y. Zhao, and K. Tu. PCFGs Can Do Better: Inducing Probabilistic Context-
Free Grammars with Many Symbols. In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies. NAACL-HLT 2021, pages 1487-1498, Online. Association for
Computational Linguistics, June 2021. DOI: 10.18653/v1/2021 .naacl-main.117.

V. Zaytsev. Building Conversational Al Systems with Weighted Attribute Grammars.
Preprint.

99

https://doi.org/10.1007/BF00630917
https://doi.org/10.1007/BF00630917
https://doi.org/10.1145/3017680.3022377
https://doi.org/10.1145/2534973
https://doi.org/10.2307/j.ctv1131ctc
http://www.jstor.org/stable/j.ctv1131ctc
https://doi.org/10.1016/j.entcs.2008.03.047
https://doi.org/10.1016/j.entcs.2008.03.047
https://doi.org/10.18653/v1/2021.naacl-main.117

	Contents
	Introduction
	Weighted Attribute Grammars
	Grammars
	Expressive Power

	Attribute Grammars
	Weighted/Probabilistic Grammars
	Weighted Attribute Grammars: What and Why?
	Formal Definition
	Informal Description
	Abilities
	Purpose

	Design
	The Language
	PLIERS
	Principles

	The Ecosystem

	The WAGon DSL
	Metadata
	Rules
	Weights
	Attribute Assignment

	Expression Language
	Typing

	Attributes
	Scope

	Terminals
	EBNF Operators
	Modular Grammars
	Complete DSL

	The WAGon Ecosystem
	The Libraries
	User Facing
	WAGon Parser
	WAGon Codegen

	Backend
	WAGon Value
	WAGon Lexer
	WAGon Utils
	WAGon Macros
	WAGon Ident

	Creating a Parser
	WAGon GLL
	WAGon TOGLL

	Of Parser Generators and Pokémon
	GLL Parsing
	Trait-Oriented GLL Parsing
	Code Generation

	Weights & Attributes
	Extending the GSS
	Extending the SPPF
	Left-Recursion

	Pseudo-Code
	The State Object
	The Labels

	Validating Pokémon
	Dataset
	Restrictions
	Validation
	Relaxed Order
	Calculating Guards
	Summarizing

	Example Inputs

	Conclusions & Future Work
	Future Work
	WAGon Expansions
	Missing Features
	Ecosystem Improvements

	Possible WAG-based research
	WAGs as Logic Programs
	WAGs as Neural Networks
	WAGs for Programming Languages

	Conclusion

	Appendices
	Valid Poké-paste SPPF
	Bibliography

