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Abstract

Robots, especially social robots, are becoming increasingly popular in today’s world.

With that, the need to understand the perception of robotic speech and its appro-

priate design arises. This project aims to understand and model what makes a

voice perceived as ‘robotic’ as well as what makes it suitable for social robots. This

research has been split into two studies. In the first one, people’s impressions of

roboticess and the suitability of voices to social robots, along with associations with

robots, have been gathered in a form of an online survey. In the second one, an

attempt was made to quantify and measure those impressions using speaker em-

beddings, fixed-dimensional vectors that capture the speaker’s identity, and vocal

parameters. The results support the earlier findings that the less robotic a voice is,

the more applicable it becomes to a social robot. Moreover, Study I also revealed

that people still often associate robots with those from the media. This suggests

that media is a useful source of knowledge for understanding what makes a voice

sound robotic. The findings of Study II further support this conclusion, as it was

found that vocal parameters related to fundamental frequency and loudness are the

ones primarily related to the roboticness of a given voice. On the other hand, the-

matic analysis of perceived factors contributing to roboticness, gathered in Study

I, revealed less measurable descriptors of voices with such quality. Henceforth,

in Study II, speaker embeddings were employed to explore whether they encode

roboticness. The results of this study indicated that speaker embeddings contained

information related to the perception of robotic voices to some extent. However, this

finding needs validation through further research, which should address significant

limitations not covered in this study.
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1 Introduction

There is no doubt that robots become more present in today’s world. They are no longer

just figures in science fiction movies, but are functional entities that are present in the

real world.

“A robot is an autonomous machine capable of sensing its environment, carrying out

computations to make decisions, and performing actions in the real world.” – Guizzo

(2018)

“(especially in science fiction) a machine resembling a human being and able to replicate

certain human movements and functions automatically.” – (Oxford University Press,

2005, p. 302)

“A machine controlled by a computer that is used to perform jobs automatically” – (Cam-

bridge University Press, n.d.)

From the definitions above, it is evident that the main feature that characterizes a robot

is that it performs tasks automatically. Additionally, some sources expand on this def-

inition by emphasizing that robots are designed to support or replicate specific human

capabilities. Furthermore, robots can be categorized into different types. Guizzo (2018)

lists eighteen categories of robots. Some of them are ones that the general public might

have had experience with, such as consumer robots, with a popular example of a Roomba,

the vacuuming robot, and some with more niche applications, such as an aquatic robot.

One can imagine that each of these robot types also differs in sound design – robots that

work in factories do not need as extensive sound design as robots that are designed to

interact with humans in social settings and environments. Those latter ones, also called

‘social robots’ are becoming more advanced as the technology develops (Duffy et al., 1999;

Naneva et al., 2020). Since such robots are designed to interact with people who are not

necessarily experts in the field of robotics, identifying ways in which their acceptance

could be improved is crucial for the proper development of such technology (Naneva et

al., 2020; Sheridan, 2020). Research has shown that focusing on visual appearance as well

as speech characteristics can significantly improve the overall acceptance of such robots

(McGinn & Torre, 2019). Furthermore, there is an ongoing debate regarding the level

of anthropomorphism social robots should achieve (Li & Suh, 2021). Even though a few

studies suggest a preference for highly human-like voices in social robots, the topic appears

to be underexplored (Li & Suh, 2021; Sheridan, 2020; Wilson & Moore, 2017).

Therefore, identifying measurable vocal features that make voices sound robotic or make

them more applicable to social robots could be useful to understand the human perception

of robotic speech better and hence improve the design of robots. Nevertheless, some

properties of speech, such as the timbre that allows people to distinguish the sound of two

speakers or instruments from each other are not precisely measurable with the use of vocal
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parameters. Recent advancements in speech technology offer promising avenues for further

enhancing the analysis of speech. One example is the technology of speaker embeddings,

which represent the speaker’s identity and voice’s unique characteristics in the form of

fixed-size vectors (Jakubec et al., 2024). By better understanding what information about

robotic speech is captured in speaker embeddings, they could potentially be used for

modelling and designing robotic voices in the future.

This project has been divided into two studies whose aim was to understand the human

perception of robotic speech and different voices’ applicability to social robots. Study I

focused on gathering people’s impressions of robots and different sounds in the form of

a listening test and analysing them. The goal of Study II was to quantify and further

understand those impressions by applying complex feature extraction methods.

Study I was based on answering the following research question: RQ 1: How do people per-

ceive robotic voices? Primarily, this study examined the level of anthropomorphism that

the voices of social robots should attain by addressing the first formulated subquestion–

RQ 1.1: To what degree is the suitability of a voice for a social robot dependent on the

roboticness of the voice?

Henceforth, this research has focused on the properties of robotic speech. Firstly, it was

argued that there exists a certain roboticness characteristic of a voice that people can

identify. Guided by the second subquestion, RQ 1.2: What perceived factors influence

individuals’ assessments of roboticness of voices?, it was investigated what perceived as-

pects of a given voice make it sound more robotic than others.

Furthermore, in order to define whether media can be a source of knowledge about robotic

speech, the third subquestion was posed – RQ 1.3: What are people’s associations with

robots? This question explored what kind of mental models people have of robots, helping

to interpret the results coming from answering the other subquestions.

Subsequently, in Study II, it was hypothesized that the roboticness is a property of voice

that can be quantified and measured. Similarly, it was hypothesized that the suitability of

a voice to a social robot stems from its certain vocal properties and can also be quantified

and measured. Firstly, it was investigated whether speaker embeddings, multidimensional

vectors that represent a speaker’s identity, encode information about roboticness and

suitability of a voice to a social robot. This was guided by the following research question

– RQ 2: To what extent is information about roboticness and the applicability of voices to

social robots captured in speaker embeddings? and two subquestions – RQ 2.1: To what

extent is information about roboticness captured in speaker embeddings? and RQ 2.2: To

what extent is information about perceived suitability to a social robot captured in speaker

embeddings?

Furthermore, vocal features of the sounds that contribute to a certain voice sounding

more robotic and more suitable to a social robot were investigated. This was based on
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the final research question – RQ 3: What vocal parameters influence the perception of

roboticness and the applicability of voices to social robots? and its two subquestions: RQ

3.1: What vocal parameters influence the perception of roboticness? and RQ 3.2: What

vocal parameters influence the perceived suitability of a voice for a social robot?

2 Background

2.1 ‘Roboticness’

While it is apparent that speech can vary from sounding entirely natural and human-like to

distinctly robotic, identifying the precise characteristics that contribute to its roboticness

remains somewhat challenging. Literature on human-robot interaction often refers to

certain voices as natural, synthesized, artificial, or robotic (Ehret et al., 2021; Gessinger et

al., 2022; Schreibelmayr & Mara, 2022). Some papers mention the speech characteristics

of artificial voices as monotonous or lacking emotion but little investigation of what

exact attributes and prosodic features make certain speech sound robotic can be found

in the literature. Kühne et al. (2020) presented participants with two synthetic voices

and one human one. Among other questions, they asked participants to rate the sounds

on human-likeness and provide explanations for their ratings. Conducting qualitative

analysis on the responses, researchers have found that intonation, sound, emotion, and

imageability/embodiment were the groups of factors that allow to differentiate human

speech from a synthetic one. An interesting finding that can also shed some light on

what causes the roboticness of speech comes from a study by Ehret et al. (2021) where

participants rated male synthetic voices as more natural sounding as compared to female

synthetic ones. Moreover, the main finding of their study was that inadequate prosody,

specifically related to the accent placement, decreased the naturalness of speech indicating

that not only the overall pitch frequencies but also the accent or intonation of pitch affect

how human-like certain voice is perceived. The intonation of pitch was also found to play a

role in the study by Bakardzhiev (2022), where the naturalness of a voice assistant’s speech

in relation to prosodic differences, specifically to prosodic fluctuations, was explored. It

was found that a voice with a flat pitch was significantly less naturalistic.

2.2 Robotic Speech in Media

As robots originate from science fiction, many robots can be found in the media, especially

in movies. Some of the most famous examples include R2-D2 and C-3PO (robots from the

film series Star Wars) and WALL-E (Kriz et al., 2010). Such robots are a part of today’s

culture, and some studies indicate that science fiction representations and interfaces of

robots shape individuals’ expectations and understanding of real-life interactions and

the design of robots (Kriz et al., 2010; Savela et al., 2021). Nevertheless, it must be

acknowledged that, as with any quickly developing technology, associations with robots
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might change depending on the level of experience that people have with them. As

explored by Oliveira and Yadollahi (2024), robots are growing in popularity, but the vast

majority of the more advanced models with interaction capabilities are still primarily used

for human-robot interaction research.

Therefore, under the assumption that people’s associations with robots are strictly con-

nected to media, understanding the aforementioned roboticness of speech, it can be ben-

eficial to explore how robotic speech is created in movies. Based on work by Rose (2012),

Wilson and Moore (2017) list three main ways in which fictional voices can be produced:

a) employing a skilled actor who is able to talk in a desired voice, b) artificially synthe-

sizing a voice with distinct attributes, c) adjusting a voice in post-production. The last

method can comprise many different techniques.

Wilson and Moore (2017) list sixteen of those techniques that differ in their exact method-

ology and can be applied together to create remarkably different voices. Wilson and Moore

(2017) further analyse voices of 93 fictional characters from different movies. Among those,

they distinguish between robots, aliens, and cartoon characters and analyse differences

between their voices and some control (human) voices. Their findings suggest that both

alien and robotic voices have distinctly different voice qualities, measured as higher pitch

shimmer and larger ranges of mean pitch as compared to human voices. Moreover, charac-

ter voices overall significantly differed in voice breaks per second from the control voices.

Furthermore, Wilson and Moore (2017), found that voices were better indicators of char-

acters’ personalities than their appearance. Comparatively, Latupeirissa et al. (2019) who

analysed robotic voices from five movies, found a strong relationship between the physical

appearance of robots and their sonic presence. Moreover, they used the Long Time Av-

erage Spectrum (LTAS) to differentiate between the characteristics of robotic and human

voices. The results revealed that robotic voices had a broader frequency spectrum than

humans and that their fundamental frequency (f0) was either higher or lower than that

of humans. This finding is also strictly related to the one of Wilson and Moore (2017)

since the pitch is defined as human’s perception of f0 (Bäckström et al., 2022).

When investigating what exact vocal features are adapted in post-production to make a

human voice sound like a robot, Wilson and Moore (2017) point at the existing filters

available online. Platforms that are popular and available for use include VoiceWave

(n.d.), Voicemod (2019), Voxal (NCH Software, n.d.), and many others (Lee, 2024). Nev-

ertheless, most of the platforms do not share the details of how the voices are being

adapted. One exception is the Voxal platform, on which the pitch is shifted 0.9, a 20-ms

echo (delay) is added and the sound is amplified by 64% (see Figure 1).
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Figure 1: Voxal NCH: a screenshot of a ‘Robot’ filter

The list below summarizes all the characteristics of voice that were found to make it sound

robotic from the sources described above:

• voice breaks per second

• pitch shimmer

• mean pitch range

• f0 higher or lower than humans

• broader frequency spectrum

• delay

2.3 Social Robots and Their Voice Design

Social robots are becoming more popular in today’s world due to the development of

technology. Duffy et al. (1999) define social robots as physical entities that can behave

and interact within complex social environments, benefiting both themselves and the

community. Naneva et al. (2020) take on a similar definition, emphasizing the fact that

social robots need to have features that allow humans to perceive them as social entities
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and are able to interact with humans via a social interface using verbal or non-verbal

cues.

Social robots display a broad spectrum of features and can be categorized based on various

criteria, for example, on their application. The literature primarily analyses social robots’

applications in healthcare, household, tourism services, and education (Fosso et al., 2023).

Furthermore, social robots also differ in the level of human resemblance ranging from

humanoid robots such as AMECA (Arts, 2023) to robots that resemble animals such as

AIBO (Moon, 2001).

With robots varying across so many dimensions, differences in the requirements for their

voice and sound design can naturally be anticipated. Research has proven that the exact

characteristics of voice for a social robot largely depend on appearance or the setting in

which the robot is designed to interact. For example, Dou et al. (2020) found that adult

female and male voices were more likely to be accepted for an educational robot whereas

adult male and child voices were preferred for shopping reception and domestic robots.

Moreover, research by McGinn and Torre (2019) demonstrated that both the gender and

naturalness of a voice influenced participants’ choices when matching voices to pictures

of robots with different appearances. Furthermore, Niculescu et al. (2013) found that

a robot with a higher pitch was generally rated better in terms of voice attractiveness,

general appearance and personality. However, those results might have been influenced

by the fact that participants engaged with a physical female robot.

On the other hand, social robots share a common ability to interact with humans, and

since verbal cues are fundamental to human interaction, it is logical to anticipate shared

principles in speech design among such robots. Nevertheless, little research has focused

on generalizing the characteristics that would make a voice applicable to social robots

across various contexts.

Voices of social robots can also be analysed in terms of the idea of roboticness which was

described in the Section 2.1. As humanoid social robots, i.e., those resembling humans in

visual terms, become more prevalent, the question arises as to to what extent their voices

should resemble those of humans. Studies that focus on exploring human perception of

robots often refer to the uncanny valley effect that has been proposed by Mori (1970). It

reflects that people’s preference towards artificial objects does not necessarily increase as

they become more human-resembling but rather there is a point at which very realistic,

yet containing some evident artificial factors, objects start causing a feeling of eeriness or

creepiness (Mara et al., 2022; Mori, 1970). Multiple studies can be found that validate

the uncanny valley effect for the visual characteristics of social robots (Mende et al., 2019;

Tung, 2016). Nevertheless, most literature on the voice characteristics of robots seems to

conclude that humans generally favour human speech in the context of artificial agents.

Gurung et al. (2023) have presented participants with videos of an artist – one human and

two artificial ones with varying levels of naturalness – and found that overall human speech
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was viewed more positively than machine-like voice and that inclusion of the artificial

voices negatively impacted the perception of the virtual agents. Furthermore, human

voices were also clearly preferred by the participants of the aforementioned study by Kühne

et al. (2020). Additionally, the more human-like a voice was, the less eerie it was perceived,

showing that the uncanny valley hypothesis did not hold for speech. Similar results

were also obtained by Schreibelmayr and Mara (2022) who found a positive relationship

between voices resembling human ones and user acceptance of that voice being used by

robots in all considered applications, e.g., for companionship or entertainment.

2.4 Voice Analysis

The aim of voice analysis is to identify certain characteristics of speech that are beyond

the linguistic content (Farnsworth, 2023). This entails dividing the sound into segments

and extracting different features, such as prosody and intonation, which are then utilized

to explain higher-level speech characteristics such as the emotional state of a speaker or,

as in the case of this research, roboticness and suitability to social robots.

2.4.1 Vocal Parameters

Voice analysis can be done by extracting certain vocal features (Farnsworth, 2023). How-

ever, they are often extracted in different combinations and using different techniques

(Eyben et al., 2016). Eyben et al. (2016) attempt to mitigate that issue by construct-

ing the Geneva Minimalistic Acoustic Parameter Set (GeMAPS) that forms a toolkit to

extract vocal features in a standardized way. The toolkit consists of 18 ‘Low-Level De-

scriptors’ (LLD) of voice from three different groups of parameters (i) frequency-related,

(ii) energy/amplitude related, and (iii) spectral (balance) ones.

2.4.2 Timbre

Vocal analysis can also be looked at from the perspective of linguistic, paralinguistic and

extralinguistic ‘behaviours’ defined by Laver (1994). According to Lu et al. (2023), lin-

guistic behaviour is related to the content of the spoken text, and paralinguistic behaviour

explains the speaker’s current state, e.g. emotional state, and can be measured in terms

of prosody. Extralinguistic behaviour, however, defines the speaker’s vocal identity or fin-

gerprint and is expressed by vocal timbre. According to the American National Standards

Institute (1973), timbre reflects the quality of auditory sensation that makes people per-

ceive two sounds as different even when presented with equal loudness and pitch. Timbre

is of particular interest to this project, as it can provide crucial insights into why certain

voices are distinguishable as more robotic from others.

Research into timbre extraction is multidisciplinary and complex (Siedenburg et al., 2019).

Nevertheless, it is a common practice to define timbre just by mel-frequency cepstral
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coefficients (MFCC) which are also part of the GeMAPS parameters(Eyben et al., 2016;

Hansen & Hasan, 2015; Siedenburg et al., 2019). In contrast, speaker embeddings, a

more advanced deep learning approach, offer a powerful way to capture speaker identity.

Therefore, adhering to the definition by the American National Standards Institute (1973),

speaker embeddings, in a way, also encode the timbre of a given voice.

2.4.3 Speaker Embeddings

Speaker embeddings, fixed-size vectors that represent the speaker’s identity, have the

aim of capturing the speaker’s speech characteristics and therefore are often utilized for

speaker verification and speaker recognition tasks (Jakubec et al., 2024; Lüscher et al.,

2023; Stan, 2022).

Newer research papers explore applications of speaker embeddings to voice conversion, i.e.

technology that, given a target speaker’s sound sample, can convert a source speaker’s

speech to sound like the target speaker while preserving the semantic content of the source

speaker’s speech sample (Lin et al., 2023). Jia et al. (2019) concatenate the output of

the speaker embeddings (d-vectors) with a TTS synthesizer, allowing for a transfer of

the speaker style. Similarily, Lin et al. (2023) make use of the pre-trained Wav2vec

2.0 model to decouple the semantic characteristics of the source speech and the WavLM

model to extract the target speaker representation. They later combine these semantic

and speaker features, utilizing the FastSpeech2 model to synthesize speech with the

semantic content of the source speaker but the timbre of the target speaker. Shaheen

et al. (2023), however, take advantage of speaker embeddings’ ability to encode emotions.

They identify the components of the vectors associated with emotions and prosody and

use that information to synthesize emotional speech.

Because of this utilization of speaker embeddings in text-to-Speech (TTS) applications,

they are an interesting topic to explore in the realm of robotic TTS, since it is a tech-

nology widely employed for generating robotic speech (Su et al., 2023). One example of

employing speaker embeddings for robotic TTS is the attempt to generate a genderless

voice for a robot by Yu et al. (2022). By understanding better what information of robotic

speech is captured in speaker embeddings, they could potentially be used for modelling

and designing robotic voices in the future.

The literature presented above highlights some research gaps to be addressed in this

project. Firstly, there seems to be a lack of consensus regarding what makes a certain

voice sound robotic. Research suggests that media and robotic filters could potentially

provide insights into human understanding of robotic speech but it has to be first estab-

lished whether such voices remain a source of knowledge for human-robot interaction in

this context. Furthermore, there appears to be a lack of objective, measurable methods
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to assess this roboticness. Secondly, the literature highlights the need for research on

the voices of social robots – the level of their anthropomorphism and similarly as with

roboticness quantifiable measures to assess and understand the suitability of voices to

social robots.

3 Present Study

As mentioned in the Introduction, this project was divided into two studies. The first

study gathered people’s impressions of robotic voices, while the second study analyzed

these voices by extracting features and relating them to the impressions gathered in the

first study. In the first study, Study I, the following research question was addressed:

Research Question 1: How do people perceive robotic voices?

This research question was investigated by addressing a series of sub-questions. Firstly,

the expected level of anthropomorphism of the voice of a social robot was investigated

with the RQ 1.1:

RQ 1.1: To what degree is the suitability of a voice for a social robot dependent on the

roboticness of the voice?

It was hypothesized that while human-like voices would generally be preferred for social

robots, following the conclusions from the literature outlined in the Section 2.3 (Gurung

et al., 2023; Kühne et al., 2020; Schreibelmayr & Mara, 2022). Nevertheless, it was kept

in mind that voices sounding entirely human-like could not always lead to the highest

suitability ratings, as people would not necessarily want robots to mimic humans (Mende

et al., 2019; Tung, 2016).

Subsequently, the second subquestion aimed to delve into human perception of the concept

of roboticness in voices. Specifically, it explored how people perceive this concept in

different voices:

RQ 1.2: What perceived factors influence individuals’ assessments of roboticness of

voices?

The hypothesized descriptors individuals might have referred to when assessing voice

pleasantness were related to intonation, sound, emotion, and imageability/embodiment

themes identified in a study by Kühne et al. (2020). It was especially expected to see

descriptors associated with pitch fluctuations and monotonicity of a sound following other

sources of literature outlined in the Section 2.1. The emotion factor was assumed not to

be evident in the analysis as the participants were specifically asked not to pay attention

to the emotions expressed.

As mentioned before, one of the goals of this project was to measure and quantify the
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roboticness of voices. Moreover, the literature suggests that sources of robotic voices from

media or robotic filters could potentially offer insights into understanding what exact

features make a robotic voice be perceived as such (Latupeirissa et al., 2019; Wilson &

Moore, 2017). Nevertheless, with more robots being embedded in society and artificial

agents becoming part of reality, the associations with robots and their voices might be

changing. In order to evaluate whether the concept of roboticness can be understood

through the lens of robots from media, the third subquestion was posed:

RQ 1.3: What are people’s associations with robots?

It was hypothesized that the associations might come from either media, in particular

movies, or from personal interactions and experiences with robots, depending on the level

of familiarity with robots (Kriz et al., 2010; Oliveira & Yadollahi, 2024; Savela et al.,

2021).

Study II, utilizing the impressions of voices gathered in Study I, focused on quantifying

and analysing both roboticness and suitability to social robots, utilizing two methods of

feature extraction. The second research question of this project focused on assessing the

applicability of the aforementioned speaker embeddings for understanding the roboticness

and the applicability of voices to social robots:

Research Question 2: To what extent is information roboticness and the ap-

plicability of voices to social robots captured in speaker embeddings?

This research question was further split into the following subquestions focusing on robotic-

ness and the suitability of voices to social robots, respectively:

RQ 2.1: To what extent is information about roboticness captured in speaker embed-

dings?

RQ 2.2: To what extent is information about perceived suitability to a social robot

captured in speaker embeddings?

Since, to the researcher’s knowledge, there are no existing studies that have previously

investigated the robotic properties of voices through speaker embeddings, an explicit

hypothesis has not been formed. Nevertheless, as speaker embeddings capture speaker-

specific, timbral characteristics, it was thought that they could be used to identify voices

that are commonly recognized as robotic. Moreover, speaker embeddings were found to

often encode information about features that could be relevant for the levels of roboticness

or applicability to social robots, such as recording conditions or speaking style of the ut-

terances (Stan, 2022). Hence, it was reasonable to assume that speaker embeddings could

capture the levels of roboticness and applicability to social robots to some extent.
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The final, third, research question was aimed at identifying concrete, measurable vocal

characteristics of speech that would make it sound more robotic or more suitable for social

robots:

Research Question 3: What vocal parameters influence the perception of

roboticness and the applicability of voices to social robots?

Similarly to RQ 2, this research question was divided into two separate subquestions, one

concerning the roboticness of the voice and the other regarding its suitability for a social

robot:

RQ 3.1: What vocal parameters influence the perception of roboticness?

RQ 3.2: What vocal parameters influence the perceived suitability of a voice for a social

robot?

First of all, it was expected that the parameters contributing to a voice sounding more

robotic would negatively impact the perceived applicability of it to a social robot, which

stemmed from the hypothesized negative relationship between roboticness and suitability

(Gurung et al., 2023; Schreibelmayr & Mara, 2022; Wilson & Moore, 2017). Furthermore,

based on the characteristics identified in the Section 2.2, it was expected for frequency-

related features, especially the fundamental frequency (f0) to contribute to the roboticness

of the sound (Kühne et al., 2020; Latupeirissa et al., 2019). Moreover, it was also antici-

pated that mel-frequency cepstral coefficients (MFCC) would differ between robotic and

human-sounding voices since they encode the timbre of the voice (Eyben et al., 2016).

And, as mentioned before, it was believed that it is the timbre of a voice that allowed

people to distinguish between human and robotic speech.

4 Study I: Perception of Robotic Voices

4.1 Methodology

Firstly, a corpus of sound samples was constructed by selecting sounds from existing

databases of either robotic or human speech. Subsequently, an online listening test was

constructed and distributed to participants. Its aim was to collect people’s impressions

of the voices by gathering ratings of the roboticness and suitability to a social robot of

each of the preselected sound samples.

Prior to conducting the online survey, the research had been approved by the Ethics Com-

mittee on Computer & Information Science (EC-CIS) at the University of Twente.
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4.1.1 Participants

65 valid and complete responses to the survey have been recorded. Among them ∼ 56%

(36) reported identifying as female, ∼ 42% (27) as male, 1 person reported not identifying

with any particular gender, and 1 person wished not to disclose their gender identity.

∼ 54% of the participants were in the age group between 16 and 24, followed by ∼ 18% in

the age group 45 to 54. Participants identified with cultural values, norms, and practices

from 17 different countries with the most common being Poland (∼ 26%), The Netherlands

(∼ 23%), and Latvia (∼ 17%).

As visible in the figure below, above half of the respondents reported having at least some

level of familiarity with robots and only 3.1% (2 respondents) reported being extremely

unfamiliar with them. When asked about the source of their familiarity with robots, most

respondents mentioned educational-related activities such as university or high school.

Additionally, 4 respondents reported working with robots, and another 4 mentioned being

involved in robotics-related projects. Moreover, 7 respondents mentioned social media or

a specific type of social media, while 3 referred to media in general and 2 to books,

movies, and TV games. 2 respondents pointed to the internet in general as their source of

knowledge about robots, and 5 people mentioned their familiarity coming from the news.

Furthermore, 7 respondents reported interacting with artificial agents in their daily lives

– 4 with chatbots or voice assistants, 2 with cleaning robots, and 1 with a robot in a

supermarket.

Figure 2: Reported level of familiarity with robots
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4.1.2 Materials

To conduct the listening test, an appropriate set of voices had to be constructed. When

selecting voices for the created corpus, several principles were followed. Foremost, the

voices selected ranged from human-like, i.e., from corpora with human speech, to very

robotic-like, i.e., from corpora with synthetic sounds, to ensure a diverse range of voice

characteristics and potentially be able to identify factors that make certain voices sound

robotic. Second, it was ensured to include robotic voices from different platforms and

produced in various ways to represent a wide landscape of robotic speech. Moreover,

the decision to focus on semantic-free utterances was made. It was believed that diverse

semantic content would affect people’s perceptions and beliefs about a certain persona.

Given the limited number of corpora with robotic speech available, it was unfeasible to

produce the same linguistic content while ensuring the properties outlined before within

the scope of this project. This naturally causes considerable limitations, especially re-

garding the speaker embedding extraction method, which is discussed in the Discussions

and Limitations section. Finally, it was decided to include no more than 500 sounds in

the final set of sounds included in this research due to the scope and time sensitivity of

this project.

The next paragraphs will explain in detail the procedure of choosing sounds from each

corpus included in this research. The final summary of the sound samples included is

presented in Table 1.

Montreal Affective Voices

Human voices employed mostly came from the Montreal Affective Voices set (hereinafter

referred to as MONTREAL), which includes 90 emotional, nonverbal sounds produced

by 10 actors (Belin et al., 2008). From the 90 sounds, 8 sounds were excluded since the

speaker embeddings extraction method failed to extract the representation from them

(with the possible reason being that the recordings were too short, i.e., < 0.3ms), which

resulted in 82 sound samples from this corpus being included in the listening test.

Subsequently, to introduce speech that was presumed to sound more robotic, samples from

the Montreal Affective Voices were modified using code adapted from the PythonAudio-

Effects GitHub repository (Nxbyte, 2024). The modification included a pitch shift of

0.9, a delay of 0.02 milliseconds and increasing volume 4 times based on the robotic ef-

fect from NCH Software (n.d.). This resulted in the creation of another set of sounds,

hereinafter referred to as Montreal Affective Voices Robotic or MONTREAL ROB. The

selected sound samples were included to assess whether the robotic filters make human

speech sound robotic and whether people can identify the human speech behind the filter

and rate the sounds as more human-like compared to entirely synthetic voices.
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Willow Garage HRI Sound Library

Next, the Willow Garage HRI Sound Library (hereinafter referred to as WILLOW) made

publicly available on GitHub was included due to diverse robotic sound samples (Lam,

2023). For reference, Willow Garage was a robotics research lab known for developing

open-source projects and, at the time, standard robotics software (Vance, 2014). The

repository contains sound samples from 13 categories, ranging from human, vocoded lin-

guistic speech to synthetic, non-linguistic audio such as beeps and whistles (Lam, 2023).

A total of 309 sounds were available, out of which 38 were filtered out due to linguistic

content. Later, from each of the 13 categories, a maximum of 8 sounds were chosen at

random (if less than 8 sounds remained in a certain category, all of the samples from

that category were chosen). That resulted in 84 sound samples from this library being

included in this project.

Bremen Emotional Sound Toolkit

The Bremen Emotional Sound Toolkit (BEST) is a set of nonverbal auditory emblems

designed for robots as part of the EMOTE Project (Kappas et al., 2014). The corpus

consists of sounds recorded by 9 experts. Each expert was asked to synthesize 60 sounds

using a tablet equipped with a synthesizer. Out of the 60 sounds, 20 were based on acted

speech, and 40 were based on ‘emotion’ sounds. The emotions included anger, disgust,

enjoyment, fear, interest, sadness, shame, and surprise, and each of them was recorded

in both ‘low’ and ‘high’ intensities. The recordings were later evaluated in a set of online

tests (Kappas et al., 2014).

From the 408 files available in the BEST corpus, 238 were labelled (labels included the

emotion and its intensity). For this project, 10 sounds per emotion were selected, with an

equal distribution between high and low intensity levels, resulting in a total of 80 sound

samples from the BEST corpus included in the listening test.

Gibberish Speech

Finally, it was decided to also include samples from gibberish speech i.e., speech sounds

that do not carry any meaning or sense (Yilmazyildiz et al., 2011). Yilmazyildiz et

al. (2011), created the Emotional Gibberish Speech Database (EMOGIB) that contains

recordings of a single actress portraying both, a neutral state, and six emotions (anger,

disgust, fear, happiness, sadness, and surprise). From each emotion, 11 sounds were

chosen at random.

Additionally, to incorporate sound samples of Gibberish speech that were assumed to

sound more robotic, recordings from the ROBOGIB corpus were included. The corpus

was created by Ermers (2023) who adapted sounds from EMOGIB by Yilmazyildiz et al.,

2011.
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The pitch of the samples was shifted by two semitones and a delay of 50ms was added,

based on the work of Wilson and Moore (2017). Similarly to EMOGIB, 11 sounds per

emotion were chosen at random.

Semantic-free utterances used in human-robot interaction have been classified by Yilmazy-

ildiz et al. (2015). According to this classification, two main types: gibberish speech (GS)

and non-linguistic-utterances (NLUs) can be distinguished. Moreover, Yilmazyildiz et al.

(2015) also distinguish paralinguistic utterances (PU) and musical utterances (MU). GS

and PU are both vocalizations that resemble human speech. Nevertheless, GS is charac-

terized by meaningless speech sounds, whereas PUs are non-speech vocalizations such as

laughs or sighs. On the other hand, NLUs and MUs both do not resemble natural speech.

NLUs comprise of synthesized beeps, squeaks, and whirrs (Yilmazyildiz et al., 2015, p.65).

MUs are primarily driven by musical theory, distinguishing them from NLUs.

Based on those characteristics, the sounds included in this research can be classified.

Sound samples coming from the Montreal Affective Voices corpus are PUs. Therefore,

the sound samples from the Montreal Affective Voices corpus that have been adapted to

sound more robotic (MONTREAL ROB.) can also be classified as such. Likewise, certain

sounds of vocoded actors from the Willow Garage HRI Sound Library are also PUs. On

the other hand, EMOGIB and ROBOGIB both contain only samples of GS. Furthermore,

the synthesized emotional sounds in the BEST corpus can be classified as NLUs together

with certain synthesized sounds included in the Willow Garage HRI Sound Library. The

summary of all the corpora used together and the types of utterances they contain is

presented in Table 1.
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Table 1: Final number of sound samples included in the listening test per corpus

Corpus #S #DS
Type of

Utterance
Source

MONTREAL 82 10 PU
(Belin et al.,

2008)

MONTREAL

ROB.
76 10 PU

(Belin et al.,

2008)

WILLOW 84 13(1) PU & NLU (Lam, 2023)

BEST 80 9(2) NLU
(Kappas et al.,

2014)

EMOGIB 77 1 GS
(Yilmazyildiz et

al., 2011)

ROBOGIB 77 1 GS (Ermers, 2023)

total 476

#S – number of sounds included #DS – number of distinct speakers in the corpus

(1) - 13 folders of sounds each one being labeled as from a different source (2) - 9 different experts who

each have used the same synthesizer to create sounds

Other Considered Sources

Other considered sources included the VENEC corpus of vocal emotion expressions and

the variably intense vocalizations of affect and emotion corpus (VIVAE) (Holz et al., 2022;

Laukka et al., 2010). The prior one was excluded due to identified background noise in

the recordings, especially when the robotic filters were applied to them. The latter one,

however, was not clearly labelled, and hence it was decided to also exclude it.

Moreover, it was considered to employ robotic voice samples from media. Nevertheless,

after thorough research, it was discovered that there is a very limited set of such samples

publicly available. All research papers that were identified to use voices from movies

did not have the corpora published or available (Kriz et al., 2010). From websites with

publicly available robotic samples from movies, VoicyNetwork and 101Soundboards were

considered but ultimately not included due to the sound samples’ limited number, varia-

tion, and qualities (101soundboards, n.d.; Network, n.d.).
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4.1.3 Measures

Both, the roboticness and suitability to social robots of each sound sample were measured

on a 7-point scale. For the scores of roboticness, the scale ranged from Extremely human-

like to Extremely robot-like. Similarly, for suitability to social robots, the scale ranged

from Extremely unsuitable to Extremely suitable. Subsequently, perceptions of the causes

of roboticness and the associations that participants had with robots were measured in the

form of open-ended response questions. The questions were formulated in the following

way: (i) What influenced your ratings about the roboticness of the sounds? for gathering

perceptions of the causes of roboticness, and (ii) What robot(s) did you have in mind when

responding to this survey? for assessing participants’ associations with robots.

4.1.4 Setup and Procedure

Data was collected in the form of an online listening test. For this purpose, Qualtrics

(2005), an online survey software, was employed. Following an opening statement, partic-

ipants were shown a disclaimer advising them to complete the survey in a quiet environ-

ment or use headphones to prevent inaccuracies caused by intervening noises. Henceforth,

participants were asked for their consent to participate in the study and demographic-

related questions were posed. This series of questions asked about gender, age, highest

level of education achieved or currently pursued and cultural identity. Additionally, re-

spondents were asked to self-report their level of familiarity with robots and provide an

explanation for the source of that familiarity through an open-ended question.

The following section of the survey included the listening test. Each participant was

presented with 50 sounds that were chosen at random (employing the evenly randomized

sample feature of Qualtrics) from the sample of 476 sounds in the corpus. Short instruc-

tions and a note asking participants to pay attention to the voice quality of the sound

sample and not to the expressed emotion were also included (see Figure 3a). This dis-

claimer was incorporated as some of the corpora used were specifically designed to contain

emotional speech.

Per each of the sound samples, two questions were posed: one regarding the roboticness

(see Figure 3b) of the voice of the recording and the other concerning the perceived

suitability of that voice to a social robot (see Figure 3c). Additionally, a definition of a

social robot was provided in a slightly smaller font. This definition was present for every

question of this type (see Figure 3a). Each sound sample was presented on a separate

page of the survey and the participants could not have omitted any of the listening test

questions.
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Figure 3: Qualtrics survey: listening test page

After answering questions about 50 sounds, participants were presented with two open-

ended questions, the first one concerning factors that influenced their ratings about the

roboticness of the sounds and the second one about robots that they had in mind when

answering the questions (see Figure 4).

Figure 4: Qualtrics survey: open-ended questions
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Finally, a closing statement was presented and the response was recorded. All incomplete

responses were set to be discarded after an hour using the Incomplete survey responses

feature in Qualtrics (Qualtrics, 2005).

4.1.5 Data Analysis

First, in order to answer RQ 1.1, the scores of roboticness and suitability for social robots

for each sound sample were averaged. Then, a simple linear regression analysis was

performed to see if there was a linear relationship between those two types of scores. To

do that, scikit-learn and statsmodels libraries were employed (Pedregosa et al., 2011;

Seabold & Perktold, 2010).

As mentioned above, participants were also asked to respond to two open-ended questions

– one regarding the factors that influenced their ratings of roboticness, and the second

asking for robots that participants had in mind when responding to previous questions.

The former question explored participants’ perceived factors influencing their ratings of

roboticness, thus addressing RQ 1.2. The responses to that question were analyzed using

thematic analysis, following the method proposed by Braun and Clarke (2012). After

familiarization with the responses, the initial codes were generated and textual data coded.

This was followed by grouping similar codes together to identify themes in the participants’

answers. ATLAS.ti version 24.1.0 for Mac (2023), a qualitative data analysis software,

was employed to ease and structure the coding process. The responses to the latter one

were analysed quantitatively to extract the most common robot that people associate the

word ‘robot’ with and hence answer RQ 1.3.

4.2 Results

4.2.1 Summary of the Ratings of Roboticness and Suitability

As can be inferred from the two histograms that represent the frequency of each rating of

roboticness (Figure 5) and suitability (Figure 6) shown below, the dataset of scores was

not entirely balanced. For roboticness (Figure 5), where 1 is the Extremely human-like

rating and 7 is the Extremely robot-like rating, it is clearly visible that participants often

rated sounds as with the highest roboticness ratings. For the ratings of the suitability of

voices to social robots (Figure 6), 1 is the Extremely unsuitable and 7 is the Extremely

suitable rating. The distribution of those ratings appears to be more balanced compared

to the roboticness ratings. Nevertheless, scores of extreme applicability to social robots

were clearly rarely given.
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Figure 5: Histogram of ratings of roboticness scores Figure 6: Histogram of ratings of suitability scores

Furthermore, to analyze response variability, standard deviations of responses per sound

per each of the ratings were computed. The average standard deviation for roboticness

ratings was around 1.0, while for suitability ratings it was around 1.6. This suggests that

the responses were more variable for suitability compared to roboticness.

As explained in the Section 4.1.2, 6 different types of corpora were included in the survey.

Some of them consisted of purely human sounds (namely, EMOGIB and the Montreal

Affective Voices) and others from either synthetic voices (EMOTE and partly Willow

HRI Sound Library) or adapted human sounds (ROBOGIB, Montreal Affective Voices

Robotic and partly Willow HRI Sound Library). Therefore, evaluating whether certain

corpora were evaluated significantly differently than others is crucial to gaining valuable

insights.

Mean Avg. Std. Avg. Mean Avg. Std. Avg.

Corpus Score Score Score Score

Roboticness Roboticness Suitability Suitability

MONTREAL 2.336053 0.542191 4.622367 0.794005

EMOGIB 2.431329 0.628509 4.811673 0.711301

ROBOGIB 4.974959 0.569196 3.235240 0.575234

MONTREAL ROB. 5.587981 0.656206 2.655882 0.692555

WILLOW 6.108579 0.919970 2.982285 0.882778

BEST 6.459524 0.414882 2.941240 0.777189

Table 2: Comparison of mean and standard deviation scores of avg. suitability and
roboticness ratings per corpus

Table 2 demonstrates that the BEST and Willow HRI Sound Library Corpus were rated as

the most robotic. Those two corpora largely contain synthetic sounds. On the other hand,

the two purely human sets of sound (EMOGIB and the Montreal Affective Voices) are

rated as the most human, which indicates that people generally can distinguish between

synthetic and human voices. Having ROBOGIB and Montreal Affective Voices Robotic

rated slightly lower than the two corpora containing only synthetic sounds might indicate
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that human voices that have been changed with some voice effects are perceived as quite

robotic, yet less robotic than purely synthetic utterances.

Table 2 further shows that the sounds from the two corpora rated the least robotic were

also rated as the most suitable for a social robot, with the mean average scores in the

range of 4.6 to 4.8 (out of 7.0). On the other hand, the sounds that were rated less

suitable all had similar mean average scores in the range of 2.6 to 3.0 (out of 7.0). More-

over, ROBOGIB was rated higher than all of the other robotic voices and EMOGIB was

rated the highest overall, which might indicate that participants perceived speech with

some semantic content as more applicable to social robots than simply non-linguistic

utterances.

4.2.2 Relationship between ‘Roboticness’ and ‘Suitability’

The figure below presents a scatterplot illustrating the relationship between the average

rating of roboticness and suitability, along with the fitted line of regression. Just by

looking at the graph, the clear linear relationship between the scores of roboticness and

suitability is visible.

The linear regression analysis revealed a statistically significant (p < 0.05) relationship

between the roboticness of a voice and its suitability to a social robot with β = −0.495,

indicating a negative relationship, i.e. the more robotic given voice is the less applicable

it becomes. The R-score (R2), which explains the proportion of variance in the suitability

that can be explained by the roboticness is R2 = 0.601 suggesting that the linear regres-

sion model has a satisfactory fit and can explain a significant portion of the relationship

between variables.

Figure 7: Linear relationship between the roboticness of a voice and its suitability for a social
robot
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4.2.3 Factors that Influence Perceived Roboticness

Qualitative, thematic analysis was conducted to analyse the factors that participants of

the study self-reported as influencing their ratings of roboticness. Eight main themes were

identified in the analysis. 1. Vocal Variation, 2. Layered Voices, 3. Pleasantness of Vocal

Delivery, 4. Lignugistic Properties of the Voices, 5. Specific Vocal Features, 6.Machine-like

Vocality 7. Sound Quality 8. Imageability

Vocal Variation theme encompasses parts of responses that referred to the intona-

tion of the sounds. Participants often mentioned tone of the voice as well as modulation,

intonation and monotonicity. Participants mentioned rating sounds that had more dy-

namic changes in the sound’s tone and in which frequency was modulated naturally as

less robotic and voices that were monotonous as robotic.

Layered Voices theme was identified from responses that mentioned multiple speakers,

sounds in the background or echo. It is likely that echos or sounds that were modified

by adding an overlaying layer of delayed sound affected the perceived roboticness of the

voice.

Pleasantness of Vocal Delivery theme refers to responses that mentioned rating

sounds that were unsettling, offputting, irritating, annoying as robotic and pleasant or

comfortable as human-like. Such qualities of the voices were mentioned in total ten times

indicating that it was an important factor that people took into account when rating

the sounds. Nevertheless, it is important to note that as some of the sounds contained

emotional speech, the unpleasantness of the sounds might have come from the negative

emotion rather than the timbre of the voice itself, which was also indicated by a few of

the participants.

Lignugistic Properties of the Voices theme refers solely to responses that men-

tioned rating speech-like sounds as less robotic. Three respondents mentioned taking into

account the similarity of the sound to a word rather than just a beep. This theme might

hence refer to the inclusion of gibberish speech samples and shows that including linguistic

properties of speech lowers the perception of the roboticness of a sound.

Specific Vocal Features theme refers to concrete prosodic features mentioned by

participants, i.e. frequency, pitch, volume and amplitude. The last one referred to voices

with very high-amplitude being rated as robotic.

Machine-like Vocality theme was identified purely of responses describing robotic

speech as metallic or mechanical.
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Sound Quality theme refers primarily to the sounds being clear or clean, properties

mentioned in total six times by the participants. Moreover, one participant mentioned

cracking of the voice as a factor.

Imageability theme was identified from the descriptions of the sounds related to how

familiar or natural given voice sounded to participants.

4.2.4 Associations with Robots

When asked about robots that participants had in mind when rating voices on the robotic-

ness and suitability to social robots scales, two main categories of answers can be found.

People either referred to existing, concrete examples of artificial agents or to specific

applications or functionalities of robots.

When referring to concrete examples of robots, participants often mentioned robots from

media. The most common examples were robots from Star Wars with R2-D2 being

referred to 6 times, C-3PO 2 times, BB-8 1 time and Star Wars alone 4 times. The

second robot from media, mentioned 4 times in the responses, was WALL-E from the

movie with the same name. Moreover, participants often referred to voice assistants, in

particular to Siri and Alexa who each was mentioned 3 times. Respondents also brought

up some singular examples of real-life robots such as Photon, Nao, Furhat or Kerfuś. Table

3 displays a list of concrete examples of artificial agents mentioned by participants.

Artificial Agent No.: mentioned

R2-D2 (Star Wars) 6

WALL-E (WALL-E, 2008) 4

C-3PO (Star Wars) 2

Eve (WALL-E, 2008) 1

BB-8 (Star Wars) 1

M
ov
ie
s

TARS (Interstellar) 1

Robby the Robot (Forbidden Planet) 1

Marvin (The Hitchhiker’s Guide To The Galaxy) 1

Funnybot (South Park) 1

Alexa 3

Siri 3

Furhat 1

Kerfuś 1

R
ea
l-
li
fe

Nao 1

Photon 1

Table 3: Artificial agents examples mentioned by participants
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On the other hand, many respondents mentioned certain applications of the robots they

considered. Among the most popular applications were waiter robots, highlighted 4 times,

care robots, particularly in nursing homes and hospitals, mentioned 3 times, along with

chatbots and toys, each mentioned 3 times.

5 Study II: Speaker Embeddings and Vocal Parame-

ters Analysis

5.1 Methodology

As mentioned before, this study employed two methods of feature extraction – speaker

embeddings and eGeMAPS features. Each of those extracted features was then analyzed

in relation to both roboticess and suitability to social robots ratings. The primary al-

gorithm employed to analyse whether relationship between either of those features was

linear regression analysis with k-fold cross validation. Moreover, dimensionality reduction

and feature selection algorithms were employed to improve the analysis.

5.1.1 Speaker Embeddings

Speaker embedding representations were extracted using the WavLM Large Model trained

model that has been pre-trained on 70,000 hours of English linguistic speech and 24,000

hours of multilingual speech (Chen et al., 2022; “microsoft/wavlm-large · Hugging Face”,

n.d.). The model weights were loaded using the from pretrained method with default

parameters. The model consists of a convolutional neural network (CNN) as a feature

encoder that extracts features from the raw audio and a transformer encoder network

that captures contextual information and dependencies among these features, creating a

representation of the audio file (Chen et al., 2022). The WavLM contains 24 transformer

encoder layers and, in total, 316.62M parameters. Moreover, the sampling rate at which

the audio files should be digitized was 16,000 Hz. This required the sound samples to be

resampled to match this rate before being put into the model. In order to extract speaker

embeddings in the form of 512-dimensional vectors WavLMForXVector feature extractor

head was employed (Chen et al., 2022; “microsoft/wavlm-large · Hugging Face”, n.d.)

Subsequently, to gain initial insights into the data and explore potential patterns related

to RQ 2.1 and RQ 2.2, the extracted feature vectors were visualized before proceed-

ing with further analysis. Visualizing speaker embeddings can be useful to understand

the patterns and anomalies happening in the data. However, since speaker embeddings

are high-dimensional vectors, visualizing them without any modifications is not possible.

That is why research papers investigating speaker embeddings often utilize dimension-

ality reduction techniques with t-SNE being a commonly utilized method (de Seyssel
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et al., 2022; Stan, 2022; Ulgen et al., 2024). T-SNE is a non-linear dimensionality re-

duction technique that maps high-dimensional data to a lower-dimensional, in this case

2-dimensional, space, aiming to preserve the local structure of the data points (van der

Maaten & Hinton, 2008). This makes it suitable for visualizing the extracted speaker em-

beddings, as mentioned before, are 512-dimensional vectors. In order to perform t-SNE,

TSNE class in the Manifold Learning module available through the scikit-learn library

was employed (Grisel et al., 2024; Pedregosa et al., 2011). The perplexity was set to 7 due

to a relatively small dataset and otherwise run with the default parameters, i.e. number

of iterations for the optimization set to 1000 and Principle Component Analysis (PCA)

initialization.

5.1.2 Acoustic Parameters

As mentioned before, to extract vocal features from the sound samples in a systematic

manner, the extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS) was em-

ployed (Eyben et al., 2016). The set is available through the OpenSMILE toolkit and

consists of 25 ‘Low-Level Descriptors’ (LLD). Out of them 18 are present in the minimal-

istic set and 7 were added to the extended set (Eyben et al., 2016; Eyben & Schuller,

2010). The extended, precisely, the eGeMAPSv02, version of the set was chosen as 4 of

those added parameters belong to the mel-frequency cepstral coefficients (MFCC), which

are often used to analyse the timbre of a voice (Eyben et al., 2016). Similarly to the

speaker embeddings extraction, eGeMAPS features were extracted separately for each

sound sample and then compared to the average of either roboticness or suitability to

social robot rating of that sound sample.

5.2 Analysis

5.2.1 Speaker Embeddings

In order to inspect whether speaker embeddings encode the roboticness and suitability

of a voice to a social robot, a machine learning model was applied similarly, as has been

done by Stan (2022). Since the scores of both factors are continuous rather than discrete,

regression models were the most applicable to use.

As the dataset is relatively small, containing only 476 data points, and the speaker em-

beddings are high-dimensional (512-dimensional) vectors, a dimensionality reduction tech-

nique was applied to prevent the model from overfitting. Namely, the Principal Compo-

nent Analysis (PCA) was employed to reduce the size of the embedding vectors to 50

dimensions.

25



To further mitigate the limitation coming from a relatively small dataset (corpus), 5-fold

cross-validation with a random state set to 42 was employed. For each fold, a linear

regression model was fit, and performance metrics – R2, mean squared error and mean

absolute error, calculated. To conduct this analysis, functions from the scikit-learn

library were employed (Pedregosa et al., 2011).

5.2.2 Acoustic Parameters

In order to analyse which acoustic feature contributes to the voice sounding the most

robotic and most suitable for a social robot, a simple linear regression analysis was con-

ducted separately for each of the ratings. Furthermore, similarly to Bosland (2022), the

Recursive Feature Elimination (RFE) was used to assess which features are most im-

portant in making a voice sound more robotic or suitable for social robots. The RFE

algorithm removes less important features in an iterative process to create a subset that

maximizes the predictive accuracy of a given prediction model (Avcontentteam, 2023). In

a way, it is similar to the PCA that was used for speaker embeddings dimensionality reduc-

tion. Nevertheless, RFE was chosen due to its ability to preserve the interpretable results,

i.e., to know the exact names of the parameters that contribute to a given rating.

RFE with a linear regression model as an estimator was conducted iteratively for the num-

ber of features between 1 and 88 (88 being the total number of features from eGeMAPS).

As in the analysis of the speaker embeddings, to mitigate the limitation coming from a

relatively small dataset (corpus), 5-fold cross-validation with a random state set to 42 was

employed. Within each iteration of RFE, the model was trained on 4 folds of the data

and evaluated on the remaining fold using R2 and negated mean squared error. Both

of the scores were averaged after each iteration, resulting in a more robust estimate of

the model’s performance. For all, the linear regression model, the RFE and the k-fold

evaluation scikit-learn library was employed (Pedregosa et al., 2011).

5.3 Results

5.3.1 t-SNE Vizualization

Figure 8 displays the t-SNE visualization plot of speaker embeddings coloured by the

scores of roboticness. As t-SNE clusters similar data points together, the ratings for

each sound sample were averaged to the nearest integer number and hence clustered into

groups of possible ratings, where 1 represents the Extremely human-like and 7 Extremely

robot-like (van der Maaten & Hinton, 2008). Note that there were no sound samples with

a rounded average rating of 1, which is why they are not visible in the figure.
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It is clearly visible that, in most cases, embeddings of sounds with similar ratings are

clustered together, i.e. ‘darker’ dots tend to be placed in clusters with other ‘darker’ dots

and likewise for the ‘lighter’ ones. This makes it probable that the speaker embeddings

can, to a certain extent, be predictors of the roboticness of the sound sample.

Figure 8: t-SNE Visualization Plot of Speaker Embeddings Colored by Rounded Avg. Robotic-
ness Score

Figure 9 depicts the same t-SNE plot of speaker embeddings as in Figure 8 but coloured

by the ratings of the rounded average ratings of the suitability of a given sound for a

social robot. Similarly to Figure 8, the clusters visible on the plot typically showcase a

prevalence of either darker or lighter-coloured data points. However, this characteristic

seems to be less evident for the ‘suitability’ plot as compared to the roboticness one.

Furthermore, the reversed relationship between the ratings of roboticness and suitability

to social robots is explained in the previous section is also noticeable. For example, data

points on the upper right side of the graphs are primarily coloured in dark purple on

Figure 8 and in light purple on Figure 9.
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Figure 9: t-SNE Visualization Plot of Speaker Embeddings Colored by Rounded Avg. ‘Suitabil-
ity’ Score

Please note that t-SNE focuses on preserving local structures and not global ones. This

means that larger distances between clusters do not necessarily mean larger distances

between the data points in those clusters (van der Maaten & Hinton, 2008).

5.3.2 Predictions Based on Speaker Embeddings

The table below displays the performance metrics of linear regression with k-fold cross-

validation for predicting the scores of roboticness and suitability of voices to social robots.

Firstly, the model performed significantly better at predicting roboticness scores compared

to the suitability scores. This is evident from the much higher R2 value for roboticness

predictions. However, it is surprising to see that the average error metrics, i.e. mean

squared error and mean absolute error, are lower for the suitability scores.

Roboticness Suitability

R2 0.552250 0.291118

MSE 1.423387 0.897338

MAE 0.968920 0.742872

Table 4: Evaluation of Linear Regression with k-fold Cross Validation on Speaker Em-
beddings

28



5.3.3 eGeMAPS Features: Simple Linear Regression

Simple linear regression did not yield definite results. The most relevant feature was

slopeUV0-500 sma3nz amean suggesting weak positive associations for both ratings. For

the ratings of roboticness the linear regression resulted in R2 ≈ 0.30, mean squared error

of ∼ 2.25 and a statistically significant slope of β ≈ 17.14. For suitability to social robots

ratings, however, the R2 score was slightly lower with R2 ≈ 0.24, mean squared error

∼ 0.97 and a negative slope β ≈ −9.58. Tables with all eGeMAPS features sorted by R2

for both ratings are included in Appendix A.

5.3.4 eGeMAPS Features: Recursive Feature Elimination

The results of the RFE in combination with the k-fold evaluation revealed that the com-

bination of a smaller number of features generally causes the model to underfit. For the

prediction of the scores of roboticness the value of R2 continues to rise until 9 features

are selected. Later, the R2 score settles in the range of 0.4 to 0.5. That remains to be the

case until the number of features is 52 and R2 scores become negative indicating over-

fitting. Somewhat similar results are present for predicting the suitability of voices for

social robots with the difference being that the best R2 scores are significantly lower for

the predictions of the suitability. Table displaying the R2 and mean squared error values

for both roboticness and suitability per each number of features selected is present in the

Appendix B.

The features that are primarily selected to predict roboticness are related mainly to the

fundamental frequency (f0), indicating pitch as an important factor, loudness, spectral

flux, MFCC, jitter (deviations in individual consecutive f0 period lengths) and shimmer

difference of the peak amplitudes of consecutive f0 periods). The list of the top 35 features

predicting roboticness is present in the Appendix B. Similar features tend to also predict

the suitability of a voice to a social robot further which is likely associated with the fact

that roboticness is strictly correlated with the suitability of a voice to a social robot as

explained in the previous section. This number of features was included as it resulted

in the highest R2 of approximately 0.49. The list of the top 39 features predicting the

suitability of a voice to a social robot is also present in the Appendix B. The top 39 were

chosen with the same motivation as the roboticness score as it resulted in the highest R2

of approximately 0.29.

5.4 Discussions and Limitations

Despite certain limitations that cannot go unmentioned, the results of both studies pro-

vide insights into how people perceive robotic voices and how those perceptions could be

modelled. Moreover, the outcomes of Study I support certain assumptions made in Study

II and complement its results.

29



5.4.1 Relationship BetweenRoboticness and Suitability to Social Robots

Possibly the most definite result of this study is related to the RQ 1.1. As hypothesized,

the relationship between the roboticness and suitability to social robots has proven to

be negative when conducting the simple regression analysis. β = −0.495 indicates that,

on average, as the scores of the suitability to social robots increase by one point, per-

ceived roboticness tends to decrease by 0.5 points. Moreover, the R2 = 0.601 implies that

roboticness can explain 60% of the variance in the suitability to social robot scores. More-

over, this relationship could have also been observed in the t-SNE visualization graphs in

Study II. Data points represented as dark dots on the t-SNE visualization plot of speaker

embeddings, coloured by rounded average roboticness scores (Figure 8), are depicted as

light dots on the plot where data points were coloured by suitability to social robots scores

(Figure 9). This highlights the opposition between these two sets of scores.

Those findings indicate that people generally think that social robots should sound more

human-like, supporting the results of the studies by Kühne et al. (2020), Gurung et al.

(2023) and Schreibelmayr and Mara (2022). Nevertheless, the fact that participants were

not provided with any visual or physical representation of a robot must be acknowledged

and can cause certain limitations. For example, research by McGinn and Torre (2019)

has shown that people form a certain mental image of a robot when they hear a voice.

Participants in that study were asked to match visuals depicting robots with voices that

differed, among others, in naturalness. This variable was then shown to significantly affect

the participants’ choices of the most suitable robot for that voice. Therefore, given the

diverse range of robots pictured by participants in this survey, as explained in the Section

4.2.4, it is plausible that perceptions of the appropriateness of voices for social robots may

have varied and would have been different if participants were provided with images or

concrete examples of social robots.

5.4.2 People’s Perception of Roboticness

Guided by RQ 1.2 – What perceived factors influence individuals’ assessments of robotic-

ness of voices? – the investigation into what this roboticness means to people was done

by asking participants of the survey about the factors that influenced their ratings of

the sounds. Results of the thematic analysis of those responses are, to a certain extent,

similar to the ones of a study by Kühne et al. (2020). The Imageability theme is present

in both studies, suggesting that people perceive voices as robotic when they are not able

to imagine them as those of a speaking human. Some overlap can also be found between

the Sound theme identified by Kühne et al. (2020) and the Machine-like Vocality theme

identified in this study. In the latter one, participants often described voices as metallic or

mechanical, while in the prior one descriptors such as choppy and technical and metallic

were present. Notably, the term metallic appeared in both studies.
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Furthermore, the Vocal Variation theme from the present study also intersects with the

Intonation theme from the study by Kühne et al. (2020) indicating that a rhythm or

modulation of a given sound is an important factor contributing to roboticness. This

theme can also be interpreted in relation to the vocal features identified in the Section

2.2. More specifically, the theme could be pointing at the higher frequency spectrum of

robotic voices as compared to the human ones.

Even more deliberate connotation with the methods of creating robotic voices from Section

2.2 can be found in the Layered Voices theme. That theme centres around the concept

of an echo. This effect is often achieved through delays applied when modifying a human

voice to sound more robotic using filters such as Voxal (NCH Software, n.d.). The effects

of robotic filters might also be explaining the Vocal Features theme identified, which

consisted of concrete vocal parameters that participants were able to identify. The features

most commonly referred to by participants were frequency and volume-related ones, which

are in line with the amplification and pitch shift modifications applied to some of the

sounds in the corpus (see Section 4.1.1). Furthermore, the Sound Quality theme hints

at additional properties of pitch that can cause a certain voice to sound more robotic,

for example, pitch shimmer that could contribute to impressions of unclear or cracking

voices.

Additionally, the thematic analysis revealed that the Linguistic Properties of the Voices

of voices play a crucial role in them being perceived as less robotic. It might be inferred

that robots who speak human language should be perceived as less robotic. This finding is

further substantiated by the average ratings of sounds per corpus presented in the Section

4.2.1. Notably, the ROBOGIB corpus received the lowest average ratings for roboticness

compared to all other corpora containing synthetic or sound samples adapted to sound

more robotic.

Finally, the thematic analysis revealed a theme related to the pleasantness of a given

voice. As much as it is a quite subjective impression, the results suggest that there might

exist a relationship between voices sounding pleasant and them sounding more natural.

This finding then also further supports the hypothesized relationship between roboticness

of a voice and its suitability for a social robot as it is logical to assume that social robots

should have voices that are pleasant to humans.

5.4.3 Associations with Robots

To evaluate whether robots from media can offer insights into understanding the percep-

tion of roboticness of voices, RQ 1.3 – What are people’s associations with robots? – was

posed. To address it, a question about the robots that respondents had in mind when

answering the survey was added. Based on the responses, it is evident that people of-

ten still associate robots with fictional characters from the media. This is in accordance

with the results of a study by Kriz et al. (2010) indicating that the effect of media on
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the perception of robots is still significant despite the advancements in technology over

the last decade. On the other hand, a significant number of respondents mentioned ex-

isting, real-life examples of artificial agents, with the most common ones being virtual

voice assistants. This indicates that such technologies are becoming embedded and rec-

ognized in today’s society. Interestingly enough, a few examples of research robots were

mentioned.

It is crucial to consider that the results may have been influenced by the following two

factors: (i) the sounds presented to participants were non-linguistic linguistic, which

might have affected the resemblance of the sounds with certain to robots from media, for

example, R2-D2 from Star Wars ; (ii) above 50% of the respondents reported having at

least some level of familiarity with robots. Many respondents mentioned such familiarity

coming from work or university, which is expected as the survey has been distributed

among people associated with the researcher and hence often related to technical studies

or university. It is therefore recommended to, in the future, ensure a wider population

sample to better assess such associations for society in general.

5.4.4 Encoding of the Perception of Robots in Speaker Embeddings

As the thematic analysis revealed, some descriptors of voices related to roboticness, such

as Pleasantness or Imageability, may not be easily measurable. It can be deduced that,

as hypothesized, it is the timbre or speaker’s identity that encompasses this roboticness.

As such, the analysis of speaker embeddings, assumed to encode the speaker’s identity

seems to indeed encode information related to roboticness and suitability of voices to

social robots.

The results of the regression analysis for predicting the roboticness and suitability scores

from the speaker embeddings indicate that the model explains approximately 50% of the

variance in the roboticness scores and 30% of the variance in the suitability scores. More-

over, mean average errors of, respectively, 0.97 and 0.74 suggest that there is a generally

acceptable average difference between the predicted scores and actual scores gathered in a

survey. Surprisingly, even though for suitability to social robots, the mean squared error

score is also relatively low (0.9), for roboticness is score is 1.4 suggesting that there might

be some outliers in the predictions. This analysis shows that the speaker embeddings do

encode information relevant to both ratings to a certain extent providing an answer to

RQ 2.1 and RQ 2.2. The reason for the model performing generally worse (lower R2) for

the suitability of voices to social robots might come from the larger variance (as seen in

section 4.2.1) for the ratings in the responses, making it a more subjective measure in

general. However, it is evident that the model is not performing optimally. Further re-

finements and the addressing of current limitations are necessary before it can be deemed

suitable for practical application.
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Perhaps the biggest limitation of this project is that the speaker embedding extraction

algorithm has been trained on corpora with linguistic content, primarily in English (Chen

et al., 2022). This might make it a less optimal method for the extraction of speaker

embeddings from non-linguistic utterances of synthetic voices. On Figure 10 three t-

SNE visualization plots of speaker embeddings can be found - first investigating clusters

related to corpora used, second investigating whether speaker embeddings are able to

distinguish between individual speakers from the Montreal Affective Voices corpus and

third investigating whether speaker embeddings are able to distinguish between individual

sound libraries of the Willow HRI Sound Library. Such visualizations are not possible for

other corpora as they contain either synthetic speech without labelled speakers or, in the

case of the Gibberish Speech databases, sounds produced only by one actor.

(a) t-SNE Visualization Plot of Speaker

Embeddings Coloured by Corpus

(b) t-SNE Visualization Plot of Speaker Em-

beddings Coloured by Individual Speakers from

Montreal Affective Voices Library

(c) t-SNE Visualization Plot of Speaker Embed-

dings Coloured by Sound’s Library from Willow

HRI Sound Library

Figure 10: t-SNE Visualization Plot of Speaker Embeddings Coloured by Corpora and Individual
Speakers

The plots clearly demonstrate that the speaker embeddings were not able to clearly dis-

tinguish between the speakers of the corpora. Nevertheless, they often clustered sounds

belonging to the same corpus together indicating that speaker embeddings encoded some
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commonalities in the speaking style of each corpus. Further investigation of the clusters

visualized on the t-SNE plots has revealed that it was often the exact utterance type that

was clustered together. For example, sound samples of laughing actors’ sounds from the

Montreal Affective Voices were grouped together (Belin et al., 2008). Similarly, the sounds

of bells from the HRI Willow Garage Libary (D and C folders in the repository) were also

clustered (Vance, 2014). Retraining the model or creating an entirely new speaker em-

bedding extraction system would therefore be necessary to draw conclusions about the

application of speaker embeddings for a similar use case.

An additional constraint associated with this approach is the relatively limited dataset,

comprising only 476 sounds. That might have caused some inaccuracies in the prediction

models and led to overfitting. It is therefore recommended that such studies be conducted

on a larger scale and with a wide selection of sounds and voices.

5.4.5 Analysis of Perceptions about Robotic Voices Through eGeMAPS Fea-

tures

As the thematic analysis of people’s impressions revealed some immeasurable descriptors

of roboticness, certain themes suggested that participants were able to recognize and point

out specific vocal parameters that resulted in robotic-sounding voices such as distorted

pitch. Moreover, the associations people hold with robots suggest that robots in me-

dia, and consequently robotic voice filters, might help in understanding the perception

of robotic voices. Those findings are supported by the vocal features extracted using the

eGeMAPS dataset. The features primarily selected by RFE were related to the funda-

mental frequency (f0) indicating pitch as the most important vocal feature predicting the

roboticness and suitability of voices to social robots. Additionally, different variations in

pitch, i.e. shimmer and jitter, were also important predictors of the roboticness which

supports the results of the study by Wilson and Moore (2017) and provides answers to

RQ 3.1 and RQ 3.2.

Furthermore, timbre-related features, i.e. MFCC and spectral flux features appear to be

relevant predictors of the roboticness scores. The importance of such features should be

explored in future research, ensuring the same conditions for other parameters, e.g., the

same pitch and loudness. An important finding, however, is that rather than just one

vocal feature, a combination of multiple ones contributes to a voice sounding robot-like.

Surprisingly, when analysing the relationship between single features and the roboticness

score, the mean spectral slope in the low frequency range proved to be predicting the

roboticness and suitability scores best. It has to be yet noted that, according to, Utsugi

et al. (2019), fundamental frequency tends to influence mean spectral slope significantly,

making it difficult to draw definitive conclusions about the relationship between it and

the roboticness of a voice.
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The main implications coming from this project are that the more robotic-sounding a

voice, the less suitable for social robots. In order to strengthen or decrease this robotic-

ness of a voice, one could tweak the f0 and loudness parameters of the voice. Moreover,

they could also experiment with robotic filters available online, as they can provide useful

knowledge about what will make a voice robotic. For example, adding a delay (echo)

to the voice could also increase the roboticness of the sound. Finally, to further ex-

plore the extent to which a voice sounds robotic, speaker embeddings could be employed.

This technology could also be potentially employed to further investigate and model this

roboticness. However, this implication warrants additional research and refinement of

current state-of-the-art technology.

6 Conclusion

Several conclusions can be drawn from both of the studies that were conducted. Perhaps

the most definite conclusion of this research is that the more robotic a certain voice

is perceived, the less applicable it becomes to social robots. Moreover, the first study

has shown that media and robotic filters are valuable sources of knowledge in terms

of understanding what makes a voice perceived as robotic and therefore less suitable

for social robots. Parameters such as pitch, loudness and delay are often adapted in

post-production or in robotic filters. While Study I has shown that those parameters

are directly recognizable by humans, Study II proved that they also emerge as most

relevant to robotic speech when extracting vocal parameters and comparing them to

human judgments of roboticness. This suggests that such parameters could be therefore

used to quantify and measure the roboticness and suitability of a given voice to a social

robot. On the other hand, some less measurable descriptors of roboticness of a given

voice, such as machine-like vocality or imageability were identified, highlighting that it is

actually the timbre or speaker’s identity that allows people to distinguish between human

and robotic voice. An attempt to extract the characteristics of robotic voice utilizing

speaker embeddings has been made. While not entirely conclusive, the results of this

research suggest that speaker embeddings can, to a certain extent, quantify roboticness

and the suitability of voices for social robots. This implies that such technology could

potentially be employed to understand the perception of robotic voices in the future.

Nevertheless, the current state-of-the-art speaker embedding extraction model does not

fully allow for utilising this technology for such purpose as it is meant to extract features

from linguistic content rather than short semantic-free utterances that were included in

this project.
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7 Future Research

To the researcher’s knowledge, this work was the first to investigate the perception of

robotic speech by employing speaker embeddings. As mentioned before, the method used

in this study contains many limitations. Nevertheless, with speaker embeddings being

utilized for enhancing text-to-speech technologies, further exploring their usefulness for

encoding robotic speech style is recommended (Shaheen et al., 2023; Su et al., 2023;

Yu et al., 2022). Future work should focus on (i) extracting speaker embeddings from

robotic voices with linguistic content and (ii) retraining or adapting the machine learning

model to fulfil the task of extracting the speaker’s identity from semantic-free utterances

of robotic speech.

Moreover, it is recommended to assess the outcomes of this study in varied real-world

settings where individuals engage in physical interactions with robots. As proposed by

Dou et al. (2020), the appropriateness of voice design varies based on the specific appli-

cation of a robot. Hence, exploring the validity of the present findings in more targeted

scenarios is encouraged.

8 Contextual Exploration

This section is a requirement by University College Twente to be a part of the Cap-

stone report and its narrative will be guided by the following question: How could other

academic disciplines or fields feed into or profit from this work and how could this work

(potentially) be of use to society on a smaller or larger scale?

8.1 Interdisciplinarity

It is firstly necessary to establish that this project contributes to the fields of human-robot

interaction (HRI) and speech processing, both of which are inherently multidisciplinary

(Burke et al., 2004; Delić et al., 2019). Moreover, multidisciplinarity is further expressed

in this project since it has examined the perception of robotic voices from several perspec-

tives and using various methodologies. A significant portion of this work falls under the

umbrella of computational sciences. Various machine learning and data science methods,

for example, linear regression models and dimensionality reduction algorithms, have been

applied to analyze the gathered data and extract features from the utilized sound samples.

Furthermore, the focus on speaker embeddings extraction and analysis in this research

highlights its contribution to the field of computational sciences.

However, this project’s interdisciplinary nature extends beyond that field. By investigat-

ing human perception of sound in the context of robots, the research intersects with the

field of behavioural sciences. This is also demonstrated in the qualitative data that has

been collected and analysed in Study I. Furthermore, this research utilized knowledge and
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concepts from the domain of the natural sciences. Specifically, the science of acoustics,

especially in terms of the eGeMAPS features that reflect the physical phenomena of the

sound (Eyben et al., 2016).

8.2 Small Scale Implications

Among the few fields that could potentially benefit from this research, the field of robotics

is particularly prominent. On a smaller scale, the results of this research provide insights

into design principles for robots. Designers could use the knowledge gained from this

project to identify and fine-tune the vocal parameters of robots’ voices to make them

sound more suitable and adjust the level of their robot-like properties. Furthermore,

they could potentially employ speaker embeddings as one of the means of indicating the

perception of their robot and adapting the roboticness of the robot’s voice.

Furthermore, this project yields several theoretical implications. As mentioned before,

to the researcher’s knowledge, speaker embeddings have not been previously used to

analyse the properties of robotic speech. The results and conclusions of this research

imply that speaker embeddings might potentially be a valuable source of knowledge for

understanding such speech after a more thorough evaluation and retraining of the model.

Moreover, the technology of speaker embeddings is still being developed (Jakubec et al.,

2024). Therefore, this work, to some extent, could benefit further research into speaker

embeddings and their applications.

8.3 Large Scale Implications

Taking a broader perspective, this project could make a contribution to the development

of robotics overall, in particular social robots. As with every new technology, there are

many benefits and threats regarding its development.

As social robots are used in many different applications and fields, this work could, indi-

rectly, contribute to each of them. Mahdi et al. (2022) identify six main applications of

social robots present in literature: service, entertainment, healthcare, education, research

and telepresence (Mahdi et al., 2022, p.6). In the context of robots for entertainment,

this project could help improve the sound design and user experience of people using such

robots for leisure. When it comes to research robots, the theoretical implications of this

project mentioned earlier, could inspire further research and provide certain background

knowledge. Moreover, robots for telepresence, defined as robots that can facilitate remote

interaction in particular by connecting via audio and/or video are often applied for various

purposes. Those include care and education, intersecting with the three main applications

of robots left to consider – healthcare, education, and service (Mahdi et al., 2022). Robots

in those areas are also often mentioned by Guenat et al. (2022) who consider opportuni-

ties and threats to achieving the United Nations Sustainable Development Goals (SDGs)
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associated with the development of robotics and autonomous systems (RAS).

Cifuentes et al. (2020) in the review of applications of social robots for healthcare identify

several roles of social robots in such a setting. For example, robots can help in therapy,

especially in assisting individuals with physical or cognitive limitations, such as those

with physical impairments, autism, or other vulnerabilities (Cifuentes et al., 2020; Saleh

et al., 2020). Moreover, robots can also serve as companion to individuals who experience

loneliness or mental health problems, in particular in eldrely care where there is a shortage

of labour (Guenat et al., 2022; Lee et al., 2018; Saleh et al., 2020). Therefore, development

of social robots and their improved design that could be supported by this project, may

contribute to achieving the SDG 3 – Good health and well-being (Nations, 2023).

Similarly, as in healthcare, social robots for education can also perform a range of different

tasks (Mahdi et al., 2022). Youssef et al. (2023) identify three distinct tasks in education to

which social robots have recently been employed – storytelling, assisting human teachers,

and language learning. There is no doubt that in each of those activities, sound design

plays an important role. For example, in language learning, appropriate vocalizations

and suitability of the robot’s voice could improve the learners’ experience and therefore

catalyze the learning process. Belpaeme et al. (2018) also highlight the importance of

appropriate sound design, listing it as one of the aspects hindering the wider expansion

of robots in education. Therefore, there the development of social robots could help in

achieving SDG 4 Quality education (Guenat et al., 2022; Nations, 2023). Furthermore,

Guenat et al. (2022) underline the benefit of robots advancing gender equality by reducing

the burden of low-paid tasks traditionally performed by women in agriculture, thereby

freeing up time for education and contributing not only to SDG 4 but also SDG 5 –

Gender equality (Guenat et al., 2022; Nations, 2023).

This replacement of repetitive tasks by social robots is also primarily the task of service

robots (Mahdi et al., 2022). According to them such robots are also the most popular

ones, right after research robots, and are employed in tasks such as cleaning or reception-

ist duties. Guenat et al. (2022) also emphasize the significance of RAS in substituting

human tasks, particularly in areas experiencing labor shortages, which could contribute

to meeting many different SDGs depending on the type of work and context in which the

robot is placed.

While there are numerous benefits to the advancement of social robots, its crucial to

acknowledge the potential threats that may arise from their development. Guenat et

al. (2022) identify the most important threat as reinforcement of existing inequalities

coming from the accessibility of technology to the wealthy. Moreover, they also highlight

the transformation of the job market coming from the replacement of certain jobs by

robots. Risks concerning negative environmental impacts, immense financial resources

required for development and issues with governance, in particular with regards to data

collection, also arise (Guenat et al., 2022). Furthermore, many risks coming from specific
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implementations of robots can be defined. For example, as this project could contribute

to anthropomorphizing robotic voices, the risk of confusing human-robot relationships in

robots for elderly care can emerge (Nwosu et al., 2019). A broader example might be

that students and teachers could struggle to accept and adapt to robots in educational

settings, or that the robots in such settings might be inappropriately designed for the

users’ age groups. (Youssef et al., 2023).

Nonetheless, there is no doubt that the field of robotics will be developing. Therefore,

gaining an understanding of the communication patterns between robots and humans,

which also entails understanding the perception of robotic voices, can also help to under-

stand the risks coming from certain robot designs and mitigate them.
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Appendix

A eGeMAPS Features Analysis

Table 5: Results of linear regression analysis per each eGeMAPS feature and roboticess

R2 MSE Slope Intercept

slopeUV0-500 sma3nz amean 0.299335 2.249665 17.137698 4.250508

loudness sma3 amean 0.181151 2.629124 -0.853551 5.965060

loudness sma3 percentile80.0 0.168286 2.670431 -0.568994 6.174027

loudness sma3 percentile20.0 0.124348 2.811506 -0.859985 4.977653

VoicedSegmentsPerSec 0.110824 2.854928 -0.510426 5.592328

slopeUV500-1500 sma3nz amean 0.109528 2.859088 52.252516 4.354864

equivalentSoundLevel dBp 0.104371 2.875646 -0.101406 2.558274

loudness sma3 percentile50.0 0.088680 2.926027 -0.478663 5.293782

MeanUnvoicedSegmentLength 0.086170 2.934084 2.279525 4.248957

loudness sma3 stddevRisingSlope 0.082099 2.947156 -0.076197 5.318106

spectralFlux sma3 amean 0.060683 3.015918 -0.500864 5.281241

loudness sma3 pctlrange0-2 0.058471 3.023019 -0.386798 5.543520

F1amplitudeLogRelF0 sma3nz amean 0.054361 3.036217 -0.008035 3.988153

MeanVoicedSegmentLengthSec 0.052961 3.040711 0.521741 4.339675
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Feature R2 MSE Slope Intercept

loudness sma3 meanRisingSlope 0.052714 3.041504 -0.032146 5.189713

loudness sma3 stddevFallingSlope 0.048689 3.054428 -0.071424 5.065387

hammarbergIndexV sma3nz amean 0.045739 3.063899 0.036470 3.949524

F3bandwidth sma3nz stddevNorm 0.043712 3.070408 -1.967366 5.508401

F1frequency sma3nz stddevNorm 0.041993 3.075927 -2.969483 5.507104

loudness sma3 stddevNorm 0.040336 3.081247 1.061465 3.697821

F3amplitudeLogRelF0 sma3nz amean 0.038446 3.087315 -0.008654 3.999021

F2amplitudeLogRelF0 sma3nz amean 0.037212 3.091276 -0.008047 4.081111

F3bandwidth sma3nz amean 0.034333 3.100521 0.001456 3.477674

spectralFlux sma3 stddevNorm 0.032214 3.107323 0.868751 3.679612

F0semitoneFrom27.5Hz sma3nz stddevRisingSlope 0.028176 3.120288 -0.001615 4.800533

F0semitoneFrom27.5Hz sma3nz meanRisingSlope 0.027727 3.121731 -0.001674 4.849142

spectralFluxV sma3nz amean 0.025749 3.128081 -0.235998 5.091296

loudness sma3 meanFallingSlope 0.023772 3.134429 -0.023766 4.946173

logRelF0-H1-H2 sma3nz amean 0.019550 3.147985 0.019602 4.536781

loudnessPeaksPerSec 0.019226 3.149025 -0.175969 5.096621

alphaRatioUV sma3nz amean 0.018738 3.150591 0.031876 4.787154

F2frequency sma3nz stddevNorm 0.016419 3.158039 -4.383039 5.239989

logRelF0-H1-A3 sma3nz amean 0.015280 3.161695 0.017143 4.419625

mfcc2 sma3 amean 0.014775 3.163315 0.015466 4.840077

mfcc4V sma3nz amean 0.013960 3.165932 0.013264 4.879019

F0semitoneFrom27.5Hz sma3nz percentile80.0 0.013546 3.167263 0.021165 3.688478

F2frequency sma3nz amean 0.012460 3.170751 0.000832 3.181113

F3frequency sma3nz amean 0.011664 3.173306 0.000672 2.747029

F0semitoneFrom27.5Hz sma3nz pctlrange0-2 0.010989 3.175471 0.029002 4.433288

F2bandwidth sma3nz stddevNorm 0.010707 3.176378 -0.917400 4.981316

F1bandwidth sma3nz stddevNorm 0.009658 3.179745 1.306727 4.341989

logRelF0-H1-H2 sma3nz stddevNorm 0.009064 3.181654 0.010429 4.648675

F1frequency sma3nz amean 0.008319 3.184044 0.000797 4.013329

mfcc2V sma3nz amean 0.008125 3.184669 0.009853 4.836711

spectralFluxUV sma3nz amean 0.007910 3.185360 -0.379154 4.738594

F0semitoneFrom27.5Hz sma3nz amean 0.007474 3.186758 0.015620 4.003048

F1bandwidth sma3nz amean 0.007249 3.187481 -0.000642 5.379172

mfcc1V sma3nz stddevNorm 0.005967 3.191598 -0.028562 4.663001

F1amplitudeLogRelF0 sma3nz stddevNorm 0.005637 3.192657 -0.059679 4.588946

StddevUnvoicedSegmentLength 0.005626 3.192692 0.956249 4.584253

slopeV0-500 sma3nz amean 0.005249 3.193901 -3.183134 4.850738
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Feature R2 MSE Slope Intercept

shimmerLocaldB sma3nz stddevNorm 0.005156 3.194201 -0.305494 4.889193

mfcc2 sma3 stddevNorm 0.004717 3.195610 0.001612 4.662435

alphaRatioV sma3nz stddevNorm 0.004546 3.196160 -0.000271 4.661524

HNRdBACF sma3nz amean 0.004373 3.196714 0.021909 4.497885

mfcc1 sma3 amean 0.004348 3.196796 -0.009746 4.772759

F0semitoneFrom27.5Hz sma3nz percentile50.0 0.004238 3.197148 0.011484 4.171962

logRelF0-H1-A3 sma3nz stddevNorm 0.004135 3.197479 -0.005929 4.654748

mfcc3V sma3nz stddevNorm 0.003170 3.200578 0.001048 4.657065

spectralFluxV sma3nz stddevNorm 0.003130 3.200706 -0.447513 4.969482

F2bandwidth sma3nz amean 0.002664 3.202203 0.000399 4.281080

mfcc1V sma3nz amean 0.002661 3.202211 0.005930 4.562930

mfcc3 sma3 amean 0.002044 3.204191 0.006301 4.694919

mfcc4V sma3nz stddevNorm 0.001977 3.204409 -0.000705 4.659397

mfcc4 sma3 amean 0.001759 3.205107 0.006508 4.716428

F0semitoneFrom27.5Hz sma3nz percentile20.0 0.001734 3.205187 0.006642 4.403681

mfcc2V sma3nz stddevNorm 0.001582 3.205675 -0.003054 4.658547

F0semitoneFrom27.5Hz sma3nz stddevFallingSlope 0.001510 3.205908 -0.000924 4.700604

F2amplitudeLogRelF0 sma3nz stddevNorm 0.001116 3.207171 0.003016 4.661537

mfcc3V sma3nz amean 0.001095 3.207239 0.003904 4.693980

hammarbergIndexUV sma3nz amean 0.000944 3.207723 0.005898 4.579172

F3amplitudeLogRelF0 sma3nz stddevNorm 0.000912 3.207828 -0.020421 4.630589

HNRdBACF sma3nz stddevNorm 0.000880 3.207931 -0.009293 4.659522

hammarbergIndexV sma3nz stddevNorm 0.000811 3.208151 -0.068494 4.681246

shimmerLocaldB sma3nz amean 0.000682 3.208565 -0.082355 4.749724

mfcc1 sma3 stddevNorm 0.000582 3.208887 0.004257 4.653289

slopeV0-500 sma3nz stddevNorm 0.000462 3.209272 -0.003271 4.661344

mfcc4 sma3 stddevNorm 0.000454 3.209298 -0.001660 4.658018

alphaRatioV sma3nz amean 0.000420 3.209408 -0.002995 4.641502

jitterLocal sma3nz stddevNorm 0.000407 3.209447 -0.060309 4.733504

F0semitoneFrom27.5Hz sma3nz meanFallingSlope 0.000379 3.209538 -0.000370 4.680156

jitterLocal sma3nz amean 0.000315 3.209744 1.141732 4.617456

slopeV500-1500 sma3nz amean 0.000285 3.209840 -1.797536 4.644242

mfcc3 sma3 stddevNorm 0.000164 3.210228 -0.000075 4.657431

F3frequency sma3nz stddevNorm 0.000078 3.210504 0.470301 4.613630

slopeV500-1500 sma3nz stddevNorm 0.000055 3.210579 0.003939 4.658935

F0semitoneFrom27.5Hz sma3nz stddevNorm 0.000014 3.210710 0.069237 4.647839

StddevVoicedSegmentLengthSec 0.000006 3.210737 -0.019879 4.658546
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Table 6: Results of linear regression analysis per each eGeMAPS feature and suitability
for social robots

R2 MSE Slope Intercept

slopeUV0-500 sma3nz amean 0.236351 0.970583 -9.581183 3.769536

slopeUV500-1500 sma3nz amean 0.089377 1.157384 -29.697822 3.713991

VoicedSegmentsPerSec 0.066660 1.186257 0.249066 3.085925

loudness sma3 stddevRisingSlope 0.065339 1.187936 0.042769 3.171206

loudness sma3 percentile20.0 0.047125 1.211087 0.333090 3.418199

loudness sma3 meanRisingSlope 0.042968 1.216370 0.018260 3.239672

MeanVoicedSegmentLengthSec 0.040381 1.219657 -0.286638 3.716619

loudness sma3 amean 0.038123 1.222527 0.246360 3.164917

equivalentSoundLevel dBp 0.036336 1.224798 0.037645 4.321523

loudness sma3 stddevFallingSlope 0.035203 1.226239 0.038211 3.323814

MeanUnvoicedSegmentLength 0.031725 1.230660 -0.870221 3.698171

loudness sma3 percentile80.0 0.029665 1.233277 0.150305 3.141740

mfcc4V sma3nz amean 0.028690 1.234516 -0.011964 3.341794

alphaRatioUV sma3nz amean 0.027331 1.236244 -0.024221 3.443243

alphaRatioV sma3nz amean 0.025689 1.238331 -0.014745 3.469701

mfcc1 sma3 amean 0.024965 1.239251 0.014694 3.367108

F0semitoneFrom27.5Hz sma3nz percentile80.0 0.022384 1.242532 -0.017118 4.325433

shimmerLocaldB sma3nz stddevNorm 0.021621 1.243501 0.393602 3.242623

F1bandwidth sma3nz amean 0.019723 1.245914 0.000666 2.792488

loudness sma3 meanFallingSlope 0.019699 1.245944 0.013612 3.376647

loudnessPeaksPerSec 0.018638 1.247292 0.109008 3.269904

slopeV500-1500 sma3nz amean 0.017586 1.248630 -8.884087 3.482951

F0semitoneFrom27.5Hz sma3nz percentile50.0 0.015259 1.251587 -0.013710 4.120902

mfcc1V sma3nz amean 0.014901 1.252042 0.008829 3.403614

F0semitoneFrom27.5Hz sma3nz amean 0.013950 1.253252 -0.013426 4.104172

spectralFluxV sma3nz stddevNorm 0.013078 1.254359 0.575539 3.139907

F0semitoneFrom27.5Hz sma3nz pctlrange0-2 0.012648 1.254906 -0.019576 3.693202

F1frequency sma3nz amean 0.012448 1.255160 -0.000614 4.037514

F2frequency sma3nz amean 0.011586 1.256255 -0.000505 4.437698

mfcc1V sma3nz stddevNorm 0.010806 1.257247 0.024184 3.537002

F3bandwidth sma3nz stddevNorm 0.010407 1.257755 0.603956 3.281079

loudness sma3 percentile50.0 0.010065 1.258188 0.101460 3.407537

logRelF0-H1-H2 sma3nz amean 0.008877 1.259699 -0.008310 3.593337

spectralFlux sma3 amean 0.008500 1.260178 0.117940 3.395505

slopeV0-500 sma3nz amean 0.008410 1.260292 2.534989 3.387828
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Feature R2 MSE Slope Intercept

F0semitoneFrom27.5Hz sma3nz meanRisingSlope 0.008236 1.260513 0.000574 3.476537

mfcc2 sma3 stddevNorm 0.008048 1.260752 -0.001325 3.537634

F1bandwidth sma3nz stddevNorm 0.007695 1.261201 -0.733843 3.719183

shimmerLocaldB sma3nz amean 0.007642 1.261268 -0.173431 3.739350

jitterLocal sma3nz stddevNorm 0.007231 1.261791 0.159846 3.338091

F3amplitudeLogRelF0 sma3nz stddevNorm 0.007151 1.261892 0.035987 3.588004

logRelF0-H1-A3 sma3nz stddevNorm 0.006964 1.262130 0.004841 3.543942

F1amplitudeLogRelF0 sma3nz amean 0.006756 1.262394 0.001782 3.690862

F0semitoneFrom27.5Hz sma3nz stddevRisingSlope 0.006633 1.262551 0.000493 3.498635

mfcc4 sma3 amean 0.006132 1.263187 -0.007644 3.472055

F1frequency sma3nz stddevNorm 0.005998 1.263357 0.706108 3.340351

F3bandwidth sma3nz amean 0.005483 1.264012 -0.000366 3.839020

mfcc2V sma3nz amean 0.005125 1.264468 0.004923 3.632794

F2bandwidth sma3nz stddevNorm 0.004759 1.264932 0.384821 3.406332

mfcc2 sma3 amean 0.004438 1.265341 0.005333 3.606018

F0semitoneFrom27.5Hz sma3nz percentile20.0 0.004407 1.265380 -0.006661 3.796046

F3frequency sma3nz amean 0.003707 1.266269 -0.000238 4.219886

jitterLocal sma3nz amean 0.003583 1.266427 -2.422370 3.625119

spectralFluxV sma3nz amean 0.003577 1.266434 0.055345 3.440649

loudness sma3 pctlrange0-2 0.003164 1.266960 0.056610 3.412810

F0semitoneFrom27.5Hz sma3nz meanFallingSlope 0.002765 1.267466 -0.000628 3.583149

F2frequency sma3nz stddevNorm 0.002505 1.267798 1.077084 3.399227

logRelF0-H1-H2 sma3nz stddevNorm 0.002463 1.267850 -0.003421 3.545165

mfcc3V sma3nz amean 0.002409 1.267919 0.003644 3.577798

hammarbergIndexV sma3nz stddevNorm 0.002294 1.268065 0.072472 3.516286

F1amplitudeLogRelF0 sma3nz stddevNorm 0.002287 1.268074 0.023919 3.569661

mfcc3 sma3 amean 0.002252 1.268119 0.004161 3.568143

mfcc1 sma3 stddevNorm 0.002028 1.268403 -0.005001 3.546220

slopeV500-1500 sma3nz stddevNorm 0.001924 1.268536 -0.014690 3.532914

F2bandwidth sma3nz amean 0.001859 1.268618 -0.000210 3.739886

spectralFluxUV sma3nz amean 0.001823 1.268664 0.114528 3.517805

HNRdBACF sma3nz amean 0.001752 1.268755 0.008724 3.479568

F0semitoneFrom27.5Hz sma3nz stddevFallingSlope 0.001487 1.269091 -0.000577 3.570308

loudness sma3 stddevNorm 0.001252 1.269389 -0.117680 3.648921

hammarbergIndexV sma3nz amean 0.000937 1.269790 -0.003285 3.606318

mfcc2V sma3nz stddevNorm 0.000822 1.269937 0.001385 3.541648

F0semitoneFrom27.5Hz sma3nz stddevNorm 0.000784 1.269984 -0.325614 3.582556
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F3frequency sma3nz stddevNorm 0.000751 1.270026 -0.917772 3.625970

HNRdBACF sma3nz stddevNorm 0.000706 1.270084 -0.005236 3.544459

StddevUnvoicedSegmentLength 0.000589 1.270232 -0.194709 3.557331

alphaRatioV sma3nz stddevNorm 0.000504 1.270341 -0.000057 3.543746

mfcc4 sma3 stddevNorm 0.000459 1.270397 0.001051 3.541584

mfcc4V sma3nz stddevNorm 0.000338 1.270551 0.000183 3.541856

F2amplitudeLogRelF0 sma3nz amean 0.000315 1.270580 0.000466 3.575965

mfcc3V sma3nz stddevNorm 0.000273 1.270635 -0.000193 3.542520

F2amplitudeLogRelF0 sma3nz stddevNorm 0.000171 1.270763 -0.000744 3.541371

F3amplitudeLogRelF0 sma3nz amean 0.000148 1.270793 0.000338 3.568343

StddevVoicedSegmentLengthSec 0.000113 1.270837 -0.055981 3.548919

spectralFlux sma3 stddevNorm 0.000083 1.270876 -0.027745 3.573850

slopeV0-500 sma3nz stddevNorm 0.000082 1.270876 0.000869 3.541322

mfcc3 sma3 stddevNorm 0.000074 1.270887 0.000032 3.542188

hammarbergIndexUV sma3nz amean 0.000065 1.270898 -0.000977 3.555433

logRelF0-H1-A3 sma3nz amean 0.000034 1.270938 0.000511 3.535603

A.1 RFE Statistics

Table 7: RFE results per number of features selected

No. Features R2 roboticness MSE roboticness R2 suitability MSE suitability

1 0.046969 -3.042429 0.021466 -1.235642

2 0.057478 -3.005977 0.030999 -1.223322

3 0.044520 -3.046881 0.021343 -1.235905

4 0.165504 -2.668554 0.036577 -1.216098

5 0.182476 -2.615267 0.037519 -1.214568

6 0.193393 -2.580785 0.034119 -1.219065

7 0.359629 -2.066562 0.252137 -0.944585

8 0.369741 -2.033151 0.269575 -0.922549

9 0.419138 -1.856005 0.254530 -0.940786

10 0.414677 -1.870867 0.248449 -0.948704

11 0.436134 -1.799528 0.208034 -1.002963

12 0.418972 -1.850317 0.185329 -1.034886

13 0.429644 -1.817046 0.184384 -1.036226

14 0.436476 -1.796063 0.181549 -1.039884

Continued on next page
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No. Features R2 roboticness MSE roboticness R2 suitability MSE suitability

15 0.439263 -1.788577 0.189762 -1.029675

16 0.434623 -1.801698 0.177305 -1.046629

17 0.418259 -1.849137 0.183604 -1.037809

18 0.420740 -1.842373 0.195419 -1.023419

19 0.416599 -1.854630 0.198965 -1.018813

20 0.427362 -1.821031 0.205085 -1.011047

21 0.428097 -1.818697 0.210979 -1.004156

22 0.440053 -1.781343 0.206652 -1.009903

23 0.454094 -1.737825 0.219292 -0.990882

24 0.457719 -1.727778 0.208291 -1.005979

25 0.455541 -1.731971 0.208079 -1.005648

26 0.463745 -1.703878 0.229402 -0.978943

27 0.464427 -1.702007 0.232171 -0.975736

28 0.456245 -1.729500 0.269235 -0.926175

29 0.464819 -1.705926 0.272581 -0.922224

30 0.467958 -1.696158 0.273993 -0.919712

31 0.472239 -1.683913 0.285554 -0.906078

32 0.474782 -1.677013 0.274045 -0.920110

33 0.489409 -1.629520 0.261267 -0.937157

34 0.489085 -1.630427 0.267092 -0.929233

35 0.493684 -1.614991 0.264396 -0.932416

36 0.478833 -1.663468 0.258240 -0.939439

37 0.468939 -1.693005 0.264315 -0.931104

38 0.466829 -1.699215 0.273192 -0.921243

39 0.461096 -1.717074 0.287985 -0.902900

40 0.457242 -1.730105 0.279780 -0.913919

41 0.463519 -1.711153 0.276654 -0.917855

42 0.458710 -1.726163 0.277871 -0.914681

43 0.461329 -1.719042 0.279548 -0.912067

44 0.458907 -1.726188 0.280822 -0.910432

45 0.452878 -1.744382 0.282332 -0.908518

46 0.451320 -1.751616 0.284679 -0.905260

47 0.453511 -1.743841 0.282355 -0.908185

48 0.451831 -1.749345 -14.046248 -20.496742

49 0.456764 -1.732737 -14.267669 -20.795730

50 0.461340 -1.719952 -14.440849 -21.031691

51 0.467414 -1.700972 -14.437436 -21.027163

Continued on next page
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No. Features R2 roboticness MSE roboticness R2 suitability MSE suitability

52 -11.253520 -37.330176 -19.936653 -28.594001

53 -11.307473 -37.493906 -16.832512 -24.349937

54 -12.081153 -39.843911 -19.277236 -27.712309

55 -12.507967 -41.148793 -18.686716 -26.899708

56 -14.561244 -47.389926 -18.711095 -26.933508

57 -14.007287 -45.710849 -18.272061 -26.328255

58 -14.587240 -47.484416 -17.933867 -25.861177

59 -13.834825 -45.196350 -18.843149 -27.048207

60 -14.359875 -46.792314 -19.118078 -27.427195

61 -14.358192 -46.788584 -18.944210 -27.190277

62 -13.803475 -45.101438 -18.914147 -27.142949

63 -13.996535 -45.688135 -19.061912 -27.347582

64 -8.328596 -28.503968 -19.077708 -27.368293

65 -8.252981 -28.273875 -19.269490 -27.631430

66 -7.592015 -26.262668 -19.472100 -27.880941

67 -7.563259 -26.178223 -21.518052 -30.694302

68 -7.553037 -26.145897 -19.986302 -28.573766

69 -7.536183 -26.099369 -20.051272 -28.650874

70 -8.794826 -29.925311 -22.542798 -32.083598

71 -9.018874 -30.597611 -21.297341 -30.359362

72 -8.378287 -28.646285 -21.334826 -30.424409

73 -8.435224 -28.824893 -21.098287 -30.080621

74 -8.235761 -28.219201 -20.691348 -29.528345

75 -8.230942 -28.202046 -20.521746 -29.292806

76 -8.481881 -28.953968 -20.906972 -29.812511

77 -8.295332 -28.383997 -20.777516 -29.646318

78 -8.123827 -27.862668 -20.278287 -28.959662

79 -8.618290 -29.368742 -20.483328 -29.229956

80 -8.267255 -28.307429 -20.466549 -29.207813

81 -7.607393 -26.301152 -20.453002 -29.189123

82 -7.447407 -25.812099 -20.005357 -28.571820

83 -7.445815 -25.806911 -20.345507 -29.036626

84 -7.447312 -25.807340 -20.298506 -28.973745

85 -7.406409 -25.683508 -20.353364 -29.049037

86 -7.083903 -24.702805 -20.375410 -29.080135

87 -6.945976 -24.284114 -20.463426 -29.201296

88 -6.949811 -24.296028 -20.487312 -29.234345
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A.2 35 Best Features Selected by RFE

Table 8: 35 best features predicting roboticness

Feature Name

F0semitoneFrom27.5Hz sma3nz stddevNorm

F0semitoneFrom27.5Hz sma3nz percentile20.0

F0semitoneFrom27.5Hz sma3nz percentile80.0

F0semitoneFrom27.5Hz sma3nz pctlrange0-2

loudness sma3 amean

loudness sma3 percentile20.0

loudness sma3 percentile50.0

loudness sma3 percentile80.0

loudness sma3 pctlrange0-2

spectralFlux sma3 amean

spectralFlux sma3 stddevNorm

mfcc4 sma3 amean

jitterLocal sma3nz amean

shimmerLocaldB sma3nz amean

shimmerLocaldB sma3nz stddevNorm

F1frequency sma3nz stddevNorm

F1bandwidth sma3nz stddevNorm

F2frequency sma3nz stddevNorm

F2bandwidth sma3nz stddevNorm

F3frequency sma3nz stddevNorm

F3bandwidth sma3nz stddevNorm

hammarbergIndexV sma3nz stddevNorm

slopeV0-500 sma3nz amean

slopeV500-1500 sma3nz amean

spectralFluxV sma3nz amean

spectralFluxV sma3nz stddevNorm

slopeUV0-500 sma3nz amean

slopeUV500-1500 sma3nz amean

spectralFluxUV sma3nz amean

loudnessPeaksPerSec

VoicedSegmentsPerSec

MeanVoicedSegmentLengthSec

StddevVoicedSegmentLengthSec

Continued on next page
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Feature Name

MeanUnvoicedSegmentLength

StddevUnvoicedSegmentLength

Table 9: 39 best features predicting suitability for social robots

Feature Name

F0semitoneFrom27.5Hz sma3nz stddevNorm

F0semitoneFrom27.5Hz sma3nz percentile20.0

F0semitoneFrom27.5Hz sma3nz percentile50.0

F0semitoneFrom27.5Hz sma3nz percentile80.0

F0semitoneFrom27.5Hz sma3nz pctlrange0-2

loudness sma3 amean

loudness sma3 stddevNorm

loudness sma3 percentile20.0

loudness sma3 percentile50.0

loudness sma3 percentile80.0

loudness sma3 pctlrange0-2

spectralFlux sma3 amean

spectralFlux sma3 stddevNorm

mfcc4 sma3 amean

jitterLocal sma3nz amean

shimmerLocaldB sma3nz amean

shimmerLocaldB sma3nz stddevNorm

F1frequency sma3nz stddevNorm

F1bandwidth sma3nz stddevNorm

F2frequency sma3nz stddevNorm

F2bandwidth sma3nz stddevNorm

F3frequency sma3nz stddevNorm

F3bandwidth sma3nz stddevNorm

hammarbergIndexV sma3nz stddevNorm

slopeV0-500 sma3nz amean

slopeV500-1500 sma3nz amean

spectralFluxV sma3nz amean

spectralFluxV sma3nz stddevNorm

mfcc4V sma3nz amean
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Feature Name

slopeUV0-500 sma3nz amean

slopeUV500-1500 sma3nz amean

spectralFluxUV sma3nz amean

loudnessPeaksPerSec

VoicedSegmentsPerSec

MeanVoicedSegmentLengthSec

StddevVoicedSegmentLengthSec

MeanUnvoicedSegmentLength

StddevUnvoicedSegmentLength

equivalentSoundLevel dBp
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