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Management Summary

Introduction
YesHugo, a 2019 startup under Curious Inc., is an expert in fleet management software and trip
registration. They provide information on the performance of the electric vehicle and the driver’s
behavior.

The lack of recommendations for drivers in selecting optimal charging stations results in them
often suffering from range anxiety, then inefficient decisions are made when selecting charging sta-
tions. This research tests certain charging strategies aiming to minimize the cost of implementing
charging stations into a route. The model in which the experiments are conducted takes into ac-
count various factors such as vehicle battery status, distance to charging stations, charging rates,
and energy prices. Thus the main research question of this research is formulated as follows:

What are the most cost-effective strategies for optimizing electric vehicle charging decisions,
considering battery status, detour distances, charging rates, and energy prices?

Approach
The experimental setup for addressing the optimization problem for optimally selecting charging
stations for electric vehicle routes involves conducting numerical experiments. These are done
in a controlled environment that simulates certain real-world conditions. The experiments focus
on selecting the most efficient charging station along a predefined route while adhering to their
constraints.

The controlled environment mimics real-world EV operations with specific parameters. The EV
must follow the predetermined route visiting 10 locations after leaving the depot. The locations
between these locations are fixed. At each location, ten potential charging stations are available,
each with varying distances, charging rates, and energy prices. The vehicle’s battery consumption
is set at 0.4 kWh per km, and the battery capacity is fixed at 70 kWh. To account for additional
use after the route, the EV must return to the depot with at least 20% battery capacity (only
in experiments 1 and 2). The model includes costs for travel distance, energy prices at charging
stations, and the time spent charging, considering the hourly rate of the driver. The objective is
to minimize the total cost of implementing charging stations into the route, balancing the costs
associated with charging, travel distance, and charging time. Three experiments are conducted to
compare the strategies against the optimal solution:

• Experiment 1: Exact solution with variable charging.

• Experiment 2: Exact solution with a charging policy forcing 100% charge.

• Experiment 3: Near-optimal solution using battery level thresholds (every 5% from 25% to
80%) and a greedy heuristic.

2



Results
The thesis aimed to determine the most cost-effective strategies for optimizing electric vehicle (EV)
routes considering battery status, detour distances, charging rates, and energy prices. .

The results of three experiments: exact solution, a full charge policy, and a threshold percent-
age policy with a greedy heuristic. The first experiment established a baseline with an optimal
route cost of €93.99 by visiting two charging stations and charging to 100% initially, then to 20%
at the end. The second experiment required full charges at each stop, resulting in a slightly higher
cost of €103.55 due to the increased kWh charged. The third experiment tested battery thresholds
from 25% to 80%, with the best results between 25% and 35%, and costs rising significantly at
higher thresholds, the worst being €212.45 at 80%.

The analysis underscored the need to balance charging stops, kWh charged, travel distance, and
route cost. The first experiment was the most cost-effective, minimizing unnecessary charging and
detours. The full charge policy, while simpler, was less efficient. The threshold policy offered a bal-
ance between cost and computational efficiency, possibly better suitable for real-time applications
with more locations and data.

The study revealed that optimal thresholds vary with route length and distances. While the exact
solution from the first experiment is ideal for short computation times, real-world scenarios with
dynamic data and multiple variables necessitate efficient (heuristic) algorithms to manage longer
runtimes and complexity, ensuring timely optimization in dynamic environments.

Recommendations
Despite identifying the gap between the norm and current practice in offering a tested near-optimal
charging strategy, this gap remains unfilled. YesHugo should implement a dynamic optimization
model using real-time data to select charging stations, which can reduce computation time while
finding near-optimal solutions. Incorporating data such as traffic, energy prices, charging rates,
and station availability can enhance the accuracy and efficiency of YesHugo’s charging policies.

Additionally, the thesis recommends evaluating different threshold percentages for charging, as
this strategy might be time-efficient but requires further testing to determine the most effective
threshold for various routes. Simulations with different thresholds and route types can help iden-
tify the best strategy to use for all possible scenarios.

However, the current model does not account for factors such as hourly charging rates, station
availability, and the runtime needed to process real-time data. Including these variables will im-
prove the model’s robustness and real-world resemblance.
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1 Introduction
This section introduces YesHugo, a company that focuses on fleet management software. The action
& research problems of the study are identified through problem identification and the gap between
norm and reality.

1.1 Introduction to YesHugo
1.1.1 Background Information

Globally, the use of electric vehicles (EVs) has increased drastically. There are numerous causes, in-
cluding government subsidies supporting clean energy transportation, environmental concerns, and
advancements in battery technology, contribute to this rise. According to recent data, the sales of
EVs have been steadily increasing worldwide, with millions of EVs sold annually [Rietmann et al., 2020].
Despite this growth, the distribution and accessibility of charging stations remain significant ob-
stacles. A major issue for EV drivers is range anxiety, due to the relatively sparse infrastructure
for charging stations compared to gas stations. Range anxiety is the fear of not being able to reach
the next location or charging station with the remaining battery level. Consequently, drivers might
choose longer and more expensive ways to reach charging stations, leading to increased energy
consumption and higher charging costs. Moreover, the limited charging infrastructure discourages
potential buyers from switching to electric vehicles.

In response to these challenges, industry-led initiatives by energy suppliers, car manufacturers,
and tech companies aim to accelerate the deployment and accessibility of charging stations. In-
vestments in fast charging technology and partnerships to install charging stations in cities, along
highways, and in public locations are ongoing efforts to enhance the EV charging infrastructure
[Patil, 2019]. Companies like YesHugo can play a crucial role by developing strategies to improve
the selection of charging stations within EV routes, thereby enhancing the overall experience of
owning an EV.

1.1.2 Company Description

YesHugo, based in Enschede and founded in 2019, is part of Curious Inc., an ICT services and
consultancy company. YesHugo offers fleet management software that includes features such as
track and trace, trip registration, consumption analysis, and driving behavior analysis. These
services are enabled by their “eco-box,” a hardware device installed in electric vehicles to read
live data from the car. YesHugo’s system specializes in registering vehicle movements, including
sharp curves, acceleration, location, and routes, providing clients with valuable insights into their
fleet operations. For certain car brands, the system can also monitor the battery status of electric
vehicles through integration with the car brand’s application.

YesHugo aims to provide companies with tools to monitor live vehicle movements and register
routes efficiently. By making data visible, companies can optimize their operations, becoming
more mindful of electric vehicle usage and energy consumption, which are both economic and
environmental concerns.

The eco-box collects real-time data from the vehicle, including live GPS locations, the number
of sharp curves, acceleration, routes, and stops. Additionally, some car applications can connect
to YesHugo’s system to track battery percentages, demonstrating vehicle performance and ranking
them. This information helps companies monitor and potentially improve their drivers’ behavior.
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1 Introduction

1.2 Problem Identification
1.2.1 Problem Context

YesHugo’s eco-box registers most vehicle movements and shares this data with YesHugo’s system,
accessible only to planners and managers, not the drivers. An EV driver cannot always predict if
they can reach their destination with the current battery level, leading to range anxiety. Unlike
fuel stations, charging stations are not always conveniently located. Consequently, drivers might
choose longer routes to ensure they can charge their vehicles, resulting in increased time, energy
consumption, and costs, which are detrimental to both the environment and efficiency.

YesHugo aims to enhance its service by offering companies advice on the most efficient charging
strategy for their routes, ensuring drivers can reach their destinations while optimizing time and
costs.

1.2.2 Action Problem

Currently, YesHugo focuses on providing insights into vehicle usage. This research aims to develop
a policy for optimally selecting charging stations to integrate into predefined routes for one vehicle.
Range anxiety, where drivers are unsure if they have enough battery to reach their destination,
often leads to an inefficient selection of charging stations. YesHugo wants to leverage the data
collected by their product to provide real-time charging advice to chauffeurs. The action problem
is stated as follows:

“Range anxiety results in inefficient charging station selection, increasing energy consumption,
time spent at charging station, and higher charging prices.”

10



1 Introduction

1.2.3 Problem Cluster

Figure 1: Problem Cluster

Currently, YesHugo does not offer a charging strategy to its customers, leaving drivers to choose
charging stations on their own. This often leads to range anxiety and an inefficient selection of
charging stations. The core problem can be summarized as follows:

Core Problem: “YesHugo has no optimal charging strategy for the driver to adhere to.”

1.2.4 Gap Between Norm and Reality

As outlined in the book ”Solving Managerial Problems Systematically” by [Heerkens and Winden, 2021],
a core problem should contain a gap between norm and reality. This gap can be measured using
variables. The current reality is that YesHugo’s eco-box collects data, which the system then
displays to managers. However, the system only provides descriptive analytics, not predictive or
prescriptive analytics. The norm is that YesHugo aims to include a service that offers a proven,
near-optimal charging strategy. The gap is that YesHugo currently lacks such a strategy.

1.3 Research Design
The main focus of this chapter is to develop a research question based on the identified problem.
The research question is divided into sub-questions, allowing a systematic approach to addressing
the main research question and shaping the overall research.

11



1 Introduction

1.3.1 Research Question

YesHugo faces the challenge of their collected data being merely displayed in their system rather
than being implemented to create and recommend routes, including charging stations, to drivers.
This results in EV drivers not selecting the efficient routes due to range anxiety. By using a model
with a specific strategy to calculate optimal routes, energy consumption, charging costs, and driver
time can be optimized. Therefore, the main research question is:

“What are the most cost-effective strategies for optimizing electric vehicle charging decisions,
considering battery status, detour distances, charging rates, and energy prices?”

This research question aims to address YesHugo’s challenge by focusing on the analysis of techniques
that aim to find near-optimal routes, thereby reducing range anxiety and improving the overall
efficiency of charging decisions.

1.3.2 Sub-Questions

To structure this research logically, the main research question is divided into several sub-questions.
These sub-questions help maintain clarity and structure throughout the research process. The sub-
questions are based on the following steps:

1. Understanding the current situation of YesHugo;

2. Conducting a literature review to identify the best problem-solving methods;

3. Developing a model to test charging policies;

4. Analyzing the charging policies;

5. Making recommendations based on experimental results.

The sub-questions are as follows:
Sub-Question 1: What is YesHugo currently doing to assist EV drivers?

• What data does YesHugo collect to help EV drivers?

• What are the important features of YesHugo’s dashboard?

Sub-Question 2: What are ways of solving the optimization problem?

• What are similar optimization problems?

• What approaches are already used to tackle optimization problems?

• What methods can be used to gain a near-optimal charging strategy?

Sub-Question 3: What is the mathematical formulation for the optimization problem?

• How can this problem be formulated mathematically?

• What variables and constraints are necessary for selecting the optimal charging station in the
model?

• What assumptions must be made to make the model represent the real world?
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1 Introduction

Sub-Question 4: How should the experiments be analyzed?

• What is the framework for conducting the experiments?

• What are the policies that will be tested in each experiment?

• How do the experiments perform compared to each other?

Sub-Question 5: What recommendations can be made based on the results of the experiments?

• How accurate are the results of the experiments?

• What conclusions can be drawn from the results?

• What are the limitations of the model?

• Are the results applicable in every situation?

Answers to these sub-questions will lead to a final answer to the research question. Based on
that answer, conclusions and recommendations can be drawn.

1.3.3 Scope of the Research

The scope of the research sets boundaries for the study. It focuses on policies to improve the
efficiency of EV route scheduling. The primary topic is experimenting with selecting the optimal
charging station in a predefined route for one electric vehicle. Furthermore, some elements, such
as battery, charging, and route constraints, are tailored to meet the needs of YesHugo and their
clients.

1.3.4 Deliverables

The study will test certain policies for selecting charging stations in a predefined route. The results
of these experiments will be analyzed, and recommendations will be made. The deliverables include:

• A framework for testing strategies for selecting charging stations;

• Insights into specific policies and their performance, including a comparative analysis;

• A thesis that includes recommendations for YesHugo to address their problem.

13



2 Context Analysis
This chapter analyzes the context of the problem, aiming to provide insights into YesHugo’s dash-
board and the current operational situation.

2.1 YesHugo’s Dashboard
YesHugo’s dashboard provides valuable information to customers, requiring login credentials for
access. Key components of the dashboard include:

1. Fleet management and live location;

2. Trip registration;

3. Driving behavior analysis.

Fleet Management and Live Location
The primary feature of YesHugo’s dashboard is fleet management, which displays live vehicle loca-
tions. Planners and managers can view the current status of each vehicle—whether it is parked,
charging, or in motion—using a user-friendly interface similar to Google Maps. The status indi-
cators, such as the direction of the YesHugo logo (the bird), provide quick insights into vehicle
movement. Hovering over a vehicle reveals additional details, including the license plate number,
the last seen date and time, and for electric vehicles, the current battery percentage and remaining
range. Figures 2a and 2b illustrate the live location map and vehicle details, respectively.

(a) Map with Live Location of Vehicles (b) Live Details Vehicle

Figure 2: YesHugo’s Fleet Management Software
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2 Context Analysis

Trip Registration
The eco-box collects comprehensive data, enabling the registration and analysis of vehicle routes.
Collected data includes the starting and ending points, times, total driving duration, and kilometers
driven, filtered by license plate. Users can edit trips and label routes, facilitating easy declaration of
work-related trips to tax authorities. Figure 3 shows how registered trips are displayed on YesHugo’s
dashboard.

Figure 3: YesHugo’s Trip Registration

Driving Behavior Analysis
YesHugo’s dashboard provides detailed driving behavior analysis, tracking metrics such as speed,
instances of rapid acceleration or deceleration, and hard braking events. Locations of these events
are mapped along the route, allowing for thorough review and improvement of driving practices.
Figure 4 illustrates the driving behavior analysis tool.

Figure 4: YesHugo’s Driving Behavior Analysis Tool
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2 Context Analysis

2.2 Charging Stations
The Netherlands has one of the densest networks of public chargers in the world, with over 100,000
public charging stations and 5,000 public fast charging stations. Chargers are classified based on
their charging speed. The two main types are AC and DC chargers. AC chargers are usually less
than 22kW, while DC chargers charge over 50kW. DC chargers are mostly known as fast chargers
[Carlier, 2023].

Charging stations differ in terms of charging speed but also in costs. The differences in costs come
from several factors, including the installation and maintenance expenses, the cost of electricity, the
speed and efficiency of the charging technology, and the operational costs associated with running
the stations. For example, DC fast chargers require more sophisticated infrastructure and higher
power capacity, which contribute to their higher prices compared to AC chargers.

Charging stations vary in terms of charging speed but also in costs. The main types include:

1. Level 1 Chargers: These use a standard household outlet and provide a slow charging
option, typically adding about 6-8 kilometers of range per hour with a power output of
around 1.4 kW. They are usually not practical for commercial use due to the long charging
time. The cost is typically around €0.20 per kWh.

2. Level 2 Chargers: Mostly found in commercial and public settings, these chargers use a
240-volt outlet and can add 24-40 kilometers of range per hour with a power output ranging
from 3.3 kW to 19.2 kW. They are suitable for mid-route charging due to their faster charging
times compared to Level 1. The cost ranges from €0.25 to €0.30 per kWh.

3. DC Fast Chargers: These provide the quickest charging, capable of charging an EV up
to 80% in about 20-30 minutes, with a power output from 50 kW to 350 kW. This can
add approximately 80–120 kilometers of range in just 20 minutes. However, they are more
expensive to use and may not be as widely available as Level 2 chargers. The cost is typically
between €0.40 to €0.80 per kWh based on how fast it charges.

2.3 Current Situation
Currently, YesHugo lacks policies or methods for drivers to minimize costs when selecting charging
stations. Discussions with YesHugo’s customers reveal that drivers receive predefined routes with
specified pick-up and drop-off locations. Charging can only occur when the vehicle is not trans-
porting customers, typically after visiting a drop-off location. Planners manually select charging
stations, often leading to inefficient decisions that increase route distance and charging costs.

2.4 Summary
This chapter provides insights into YesHugo’s operations, focusing on dashboard features, the in-
frastructure of charging stations, and the current challenges faced by the company. The dashboard
offers live vehicle tracking, trip registration, and driving behavior analysis. The Netherlands has a
dense network of AC and DC chargers, each varying in speed and cost. YesHugo currently relies
on manual decision-making for charging station selection, leading to inefficiencies. Implementing
an optimized, automated approach could significantly improve efficiency and reduce costs.
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3 Theoretical Framework
This section explores diverse methodologies utilized in solving optimization problems, specifically
addressing the crucial sub-question: ”What are ways of solving the optimization problem?” This
chapter is organized into three main sections for clarity. First, we provide an overview of optimiza-
tion problems to build a foundational understanding (sections 3.1 & 3.2). Next, we contextualize
these problems within current scientific discussions (section 3.3). Finally, we delve into various
methods to solve these problems, including both exact approaches and heuristic techniques (sec-
tions 3.4 & 3.5). This structured approach ensures that readers are equipped with the necessary
information to comprehend the remainder of the study.

3.1 Classes of Optimization Programs
According to [Schrijver, 1998], linear programming involves an objective function and constraints
that are linear. This class is one of the most well-established and simplest forms of optimization,
making it highly popular for problems like resource allocation, logistics, and scheduling. Despite
its relative simplicity, the size and scale of LP problems can sometimes make them computationally
demanding.

3.1.1 Linear Programming (LP):

Following from [Schrijver, 1998] linear programming involves an objective function and constraints
that are linear. This class is one of the most well-established and simplest forms of optimization,
making it highly popular for problems like resource allocation, logistics, and scheduling. Despite
its relative simplicity, the size and scale of LP problems can sometimes make them computationally
demanding.

3.1.2 Integer Linear Programming (ILP):

Also following from [Schrijver, 1998] integer linear programming restricts all decision variables to
integer values within a linear objective function and constraints framework. ILP is particularly
challenging as it often leads to NP-hard problems, making them computationally intensive as the
problem size increases. It is widely used in sectors like logistics, where scheduling and allocation
tasks require discrete decisions.

3.1.3 Mixed-Integer Linear Programming (MILP):

Following from [Vielma, 2015] MILP is extensively used for optimizing logistics, production plan-
ning, and many other industrial and financial applications due to its powerful formulation. However,
the addition of integer constraints significantly increases the computational difficulty.

By exploring these classes, researchers and practitioners can better formulate their optimization
problems, choose suitable solving methods, and understand the complexities involved in solving
them. Each class offers unique tools and approaches that, when matched correctly with the prob-
lem at hand, can lead to optimal solutions that are both effective and efficient. The mathematical
formulation presented in chapter 4, fits into the class of the MILP.
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3.2 Fundamental Components of Optimization Problems
An optimization problem aims to determine the optimal solution given certain constraints. The goal
is to optimize an objective function, which represents the quantity to be minimized or maximized.
An optimization problem can be broken down into several components:

1. Sets: These represent collections of distinct elements that are relevant to the problem. These
could represent many different types of objects, locations, jobs, resources, or any other entities
related to the problem. Sets provide a structured manner to define and manipulate the
components of the problem, making it easier to formulate and solve the optimization problem.
For example, the types of ice cream flavors in inventory.

2. Parameters: These are values that are known or fixed in the optimization problem, but
they are not decision variables. The values represent the constants, coefficients, or inputs
that influence the behavior of the problem and the objective function. Parameters provide
essential information about the problem’s characteristics and constraints, helping to define
the problem’s boundaries and conditions. For example, the price of each flavor ice cream.

3. Decision Variables: These are variables that can control or adjust influence to the outcome.
The values of these variables have a direct impact on the objective function and the solution.
Decision variables can represent quantities such as battery level, scheduling choices, or other
factors that can affect the problem’s outcome. For example, the amount of inventory of a
certain flavor ice cream.

4. Objective Function: This is the function that must be optimized. It could represent any
quantifiable goal. The objective function is typically expressed as a mathematical formula
involving decision variables. The objective function always has a goal, to minimize or to
maximize the result. For example, maximize the profit of selling ice cream.

5. Constraints: These are the conditions or limitations that must be respected throughout the
calculation of the best answer. Real-world limitations such as resource availability, capacity
restrictions, or physical limitations. The optimal solution must adhere to all constraints
imposed by the problem. For example, with each ice cream, a cone must be sold.

In general, optimization problems can be found in numerous fields and applications, including
engineering, finance, transportation, logistics, healthcare, and many others. They are crucial for
increasing efficiency and making informed decisions. In Chapter 4, the research dives deeper into
formulating a mathematical formulation for solving the optimization problem.

3.3 Optimization Problems for Electric Vehicles
In this chapter, we’ll delve into the problem that will be further explored in the thesis. The objective
is to gain an understanding of the vehicle routing problem (VRP) and its electric vehicle counter-
part (E-VRP). These essential concepts lay the groundwork for comprehending the complexities of
implementing optimal charging stations into a route. This is the problem that will be tackled later
in the research.
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3.3.1 Vehicle Routing Problem

The vehicle routing problem is one of the most studied problems in optimization and operations
research. Following from [Toth and Vigo, 2002] it is aimed at designing the most efficient routes
for a fleet of vehicles delivering goods or services to a series of customers. The primary goal is to
minimize total operational costs, such as distance or number of vehicles, while maximizing service
quality, like adhering to customer time windows. Key components include:

• Depot: The location from where vehicles are dispatched and to which they return.

• Customers/locations: Points requiring service, each with specific demands.

• Vehicle(s): Each vehicle has a maximum capacity it cannot exceed.

• Routes: Each route starts and ends at the depot, serving a subset of customers without
exceeding vehicle capacities.

3.3.2 Electric Vehicle Routing Problem

One of the many variants of the VRP is the electric vehicle routing problem. The E-VRP creates
optimal routes based on the battery capacity of the vehicles. Within the basic E-VRP, charging is
not always taken into account. It focuses on finding a route that fits within the battery capacity.
In some cases, charging may be taken into account [Kucukoglu et al., 2021]. A couple of extra
assumptions of an E-VRP are:

• Electric vehicles may only visit a charging station in between jobs;

• Charging stations may be visited by more than one vehicle;

3.3.3 Electric Vehicle Scheduling and Charging Problem

The electric vehicle scheduling and charging problem (EVSCP) for one vehicle represents a spe-
cialized variant of the electric vehicle routing problem. The primary challenge in the EVSCP is
to minimize the charging costs along a predefined route, making it distinct from typical E-VRP
scenarios where the route itself is to be determined. In the context of YesHugo, the route is al-
ready established; hence, the focus shifts to strategically integrating the optimal charging station
stops to ensure cost-efficiency and operational feasibility [Sassi and Oulamara, 2017]. Key consid-
erations in the EVSCP are battery level, energy prices, charging rates, charging time, and distance
to charging stations. Various mathematical models, primarily mixed-integer linear programming
formulations, are employed to solve this problem efficiently. These models are complemented by
heuristic approaches that accelerate finding near-optimal solutions under real-world operational
conditions [Sassi and Oulamara, 2017].

3.4 Exact Approaches for Solving EVSCP
In tackling optimization problems, exact methods play a crucial role, especially when precision is
critical. These methods are designed to find the optimal solution by exploring all possible configura-
tions of the decision variables within the given constraints. Exact methods ensure the computation
of the globally optimal solution to an optimization problem, adhering strictly to mathematical
precision. These methods typically involve systematic exploration of the entire solution space.
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Although exact methods guarantee an optimal solution, they face significant limitations in terms
of computational feasibility when applied to large-scale or highly complex problems. As the size
and complexity of the problem increase, the computation time and resource requirements grow
exponentially. Despite these challenges, exact methods are invaluable as benchmarks in the field of
optimization. They provide a standard against which heuristic and approximate methods can be
measured, enabling researchers to assess the effectiveness and efficiency of these faster, albeit less
precise, techniques.

3.4.1 Cutting Plane Method:

This method refines the feasible region of a linear programming relaxation by systematically adding
linear constraints, known as cuts, which are designed to eliminate fractional components of solutions
without excluding any feasible integer solutions. This method enhances the efficiency of branch-
and-bound frameworks by improving the bounding process and effectively reducing the solution
space. It converges to the optimal solution through successive iterations, each tightening the LP
relaxation. While cutting planes can dramatically improve solution times and accuracy, they can
be computationally demanding. Each iteration involves solving a large LP problem and generating
effective cuts to significantly reduce the solution space. However, this approach may not scale well
with very large or highly complex problems.

Process and Mechanism

1. LP Relaxation: Begins by solving the linear programming relaxation of the MILP, disre-
garding the integer constraints.

2. Violation Check: If the solution does not satisfy the integer constraints, identify the frac-
tional violations.

3. Generate Cuts: Construct and add cutting planes that remove the fractional parts of the
solution but keep the integer-constrained feasible region intact.

4. Iterate: Resolve the modified LP relaxation with new cuts and repeat the process until a
feasible integer solution is obtained.

The Cutting Plane Method is ideally suited for optimization problems that combine continuous
and discrete decisions, such as in logistics and scheduling, where it is crucial to adhere to strict
operational constraints while seeking an optimal solution.

3.4.2 Mixed-Integer Linear Programming Method

MILP (Mixed-Integer Linear Programming) is an exact optimization approach that combines linear
programming with integer constraints. It is particularly useful for problems where decision variables
must be integers, and it is widely used in fields such as logistics, scheduling, and other areas requiring
precise solutions under complex conditions [Vielma, 2015].

In the context of the Electric Vehicle Scheduling and Optimal Charging Problem (EVSCP),
MILP can optimize both the routing and charging decisions by considering multiple constraints,
such as battery capacity, required energy, and the availability of charging stations. Formulating
the problem within a MILP framework ensures that the solution is not only feasible but also
optimally reduces charging and detour costs, thus ensuring operational efficiency. The primary
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benefit of MILP is that it provides exact, globally optimal solutions, ensuring the highest levels of
efficiency and cost-effectiveness. However, the inclusion of integer constraints significantly increases
the computational difficulty, which can be particularly challenging as the problem’s scale grows
[Vielma, 2015].

This method’s capability to handle complex decision-making processes with precision makes it
an essential tool in demanding optimization strategies.

3.5 Heuristic Approach to Solve EVCSP
Heuristic methods are essential tools in the field of optimization, particularly valuable when exact
solutions are impractical due to the size and complexity of the problem. Heuristics simplify the
decision-making process by taking practical shortcuts, often leading to near-optimal solutions with
significantly reduced computational effort [Lenat, 1982]. In complex scenarios like the Electric Ve-
hicle Scheduling and Optimal Charging Problem, where decisions about selecting optimal charging
stations need to balance multiple constraints, heuristics can efficiently navigate through options.
They are great at managing variations in operational conditions such as battery levels and driving
distances. The main advantage of heuristic methods lies in their operational efficiency, they can
deliver sufficiently good solutions much faster than exact methods, which is vital in time-critical
applications. However, the trade-off is that these solutions are not guaranteed to be optimal. The
performance of heuristics can also differ significantly based on the specific characteristics of the
problem and the heuristic design. A prominent example is the greedy heuristic, which selects the
best option available at each decision point without considering the larger impact [Hojati, 2018].
This approach is especially useful in problems where choices must be made sequentially and quickly,
such as in routing or scheduling tasks.

While considering various heuristic approaches for electric vehicle scheduling and optimal charg-
ing problems, the Greedy Heuristic emerged as the most suitable due to its prompt decision-making
capability. Alternative heuristics like Simulated Annealing or Genetic Algorithms, though power-
ful for extensive search, require longer computation times and more complex implementation. The
Greedy Heuristic’s straightforward approach of selecting the most immediately beneficial option
ensures rapid, efficient solutions, making it ideally suited for solving the EVCSP. Underneath, a
more detailed explanation of the greedy heuristic is given.
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3.5.1 Greedy Heuristic Approach

The greedy heuristic is a decision-making algorithm that selects the most favorable option avail-
able at each step, optimizing for immediate benefits without considering long-term consequences
[Hojati, 2018]. This heuristic evaluates all available options at a given decision point, prioritiz-
ing actions that minimize costs or reduce travel time, thus providing rapid solutions in EV route
scheduling.

The advantages of the greedy heuristic approach include its simplicity and speed. Its straightfor-
ward design allows for quick implementation, which is valuable in scenarios where decision-making
speed is crucial. It is particularly effective in environments where decisions are incremental, opti-
mizing for immediate benefits at each step.

The main disadvantage of the greedy heuristic approach is the risk of settling for local optima.
While it may find a locally optimal solution, it might miss the globally optimal one. This is
illustrated in Figure 5, where the route locally chooses the lowest number at each stage. The route
ends in place G with a cost of 8+6 = 14, while place H would have resulted in a cost of 10+3 = 13.
This example demonstrates that the greedy heuristic does not consider global optima and only aims
to find the local optimum.

Despite the potential for suboptimal long-term outcomes, the greedy heuristic’s ability to pro-
vide quick and effective solutions under tight operational constraints makes it invaluable. This is
especially true in logistics and scheduling, where decisions must be both swift and economically
rational. Therefore, this heuristic is particularly well-suited for managing the complex decision-
making involved in integrating optimal charging station stops into predefined EV routes, balancing
speed, simplicity, and operational effectiveness.

Figure 5: Greedy Heuristic Approach
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3.6 Summary
This chapter explored diverse methodologies utilized in solving optimization problems, specifically
addressing the sub-question: ”What are ways of solving the optimization problem?”

We began by examining the essential classes of optimization problems: linear programming
(LP), integer linear programming (ILP), and mixed-integer linear programming (MILP). MILP, in
particular, is crucial for integrating continuous and integer variables, making it incredibly relevant
for the operational challenges in EV logistics.

Next, we discussed the fundamental components of optimization problems, including sets, pa-
rameters, decision variables, objective functions, and constraints. Understanding these components
is essential for formulating and solving optimization problems effectively.

We then provided an overview of the vehicle routing problem (VRP) and its electric vehicle
counterpart (E-VRP), highlighting the additional complexities introduced by the need to manage
battery levels. The electric vehicle scheduling and charging problem (EVSCP), central to this
thesis, specifically addresses the optimal integration of charging stations into predetermined routes
to enhance efficiency and reduce operational costs.

Both exact and heuristic methods were explored in detail. Exact methods, such as the Cutting
Plane Method and MILP formulations, offer the precision necessary for finding globally optimal
solutions but often come with increased computational resource requirements. On the other hand,
heuristic methods like the Greedy Heuristic provide practical and time-efficient solutions, though
they may not always yield globally optimal results.

In chapters 4 and 5, the study will dive deeper into the EVSCP. The exact method using MILP
will be employed to find the optimal solution and serve as a benchmark. Additionally, the exact
solution from the full charge policy will be evaluated. Finally, the Greedy Heuristic will be used in
the numerical study.
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4 Solution Design for EVCSP
The goal of this section is to determine the mathematical formulation of the electric vehicle with
charging stations problem (EVCSP). The thesis will detail a comprehensive problem definition,
outline the requirements for the solution model, demonstrate the mathematical model, and describe
the model’s assumptions.

4.1 Problem Description
YesHugo’s clients frequently face challenges in selecting suitable charging stations for their EV
routes. Since most of YesHugo’s clients are taxi companies with pre-scheduled appointments, their
routes are fixed, and ensuring adequate charging is essential for route completion. Currently,
planners or taxi drivers manually choose charging stations, which is time-consuming due to the
need to evaluate all possible options. This becomes difficult when factors such as charging speed,
charging price, and distances to charging stations are all taken into account. The solution presented
in this thesis will be a model that efficiently calculates the best charging station(s) through certain
policies to incorporate into the route, aiming to minimize the costs associated with charging.

4.1.1 Locations

The locations in this optimization problem are the points that the EV must visit. As mentioned
before, the route is fixed, so the order of these locations is predefined. The charging stations are
optional locations. At each point in the route, a decision must be made between selecting one of
the charging stations or driving to the next point on the route. The distance between locations is
known in advance.

In a real-world scenario, EV drivers must pick up and drop off customers at specified locations,
emptying the vehicle of its customers. Since the chauffeur cannot charge the EV with customers
in the vehicle, there are only a few locations where charging can be considered. To simplify the
model, the distances between these potential charging locations are grouped. The vehicle may only
decide on charging after reaching a location where customers are dropped off. Figure 6 illustrates
a possible route, showing locations where charging can and cannot be considered and how the
distance is bundled in the model. The green border indicates that charging may be considered after
visiting that location, while the red border indicates that charging cannot be considered because
one or more customers are still in the vehicle.

Figure 6: Example Route Between Locations
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4.1.2 Objective Function & Decision Variables

An objective function is the main calculation that takes place in the model. It serves as a measure
of the ”goodness” or ”badness” of a solution to a problem. Within this problem, the goal is to
minimize the cost of implementing a charging station in the route. The objective function consists
of three components:

• Cost of Charging: This part of the model represents the expense of the energy used to
charge the vehicle. It takes into account the price per kilowatt-hour (kWh) at each charging
station and the amount of energy charged.

• Cost of Driving to the Charging Station(s): This component accounts for the additional
cost incurred due to detours taken to reach the charging stations. It includes the detour
distance in kilometers and the cost per kilometer for the vehicle.

• Charging Time Cost: This part considers the cost related to the time spent charging the
vehicle. It factors in the amount of energy charged, the charging rate at each station, and a
constant that converts the charging time into a monetary cost.

The decision variables in this model play a crucial role in determining the optimal solution by
directly influencing the objective function and adhering to the problem constraints. Specifically,
this model employs both binary and continuous decision variables. The binary decision variables
determine the vehicle’s route choices, enforcing decisions on whether to follow the predefined route
or detour to a charging station. The variable Xij indicates whether the vehicle travels from location
i to location j, while Zik indicates whether the vehicle travels from location i to charging station k.

In addition to binary variables, continuous decision variables are used to track essential metrics
related to the vehicle’s battery management. The variable Ei represents the battery level of the
electric vehicle at location i throughout the route, and Aik represents the amount of energy (in
kWh) charged at charging station k from location i. By effectively manipulating these decision
variables, the model calculates the optimal solution that minimizes the overall cost while satisfying
all constraints related to route adherence, battery levels, and charging requirements.

25



4 Solution Design for EVCSP

4.2 Mathematical Model
This chapter dives into the mathematical model. The goal is to create an optimization model
that accurately represents the real-world dynamics of route planning and electric vehicle charging
decisions. The chapter provides a mathematical framework that is used in the experiments in
Chapter 5.

Sets
• I: Set of locations. I = {0, 1, 2, . . . , N}

• J : Set of charging stations, available from each location. Ji = {1, 2, . . . ,Mi} for each i ∈ I

Parameters
• dij : Distance between customer locations i and j, for all i, j ∈ I.

• Cik: Distance to charging station k from location i, for all i ∈ I, k ∈ J .

• Q: Maximum battery capacity in kWh.

• α: Amount of kWh consumed per kilometer, set to 0,40.

• pk: Cost of charging one kWh at station k, for all k ∈ J .

• T : Cost per kilometer, set to €1.

• rk: Charging rate (kWh per minute) at station k.

• H: Hourly rate of chauffeur, set to €20.

• B: Minimum end battery level, set to 0.20 (20% of Q).

Decision Variables
• Xij ∈ {0, 1}: Binary variable indicating if edge from i to j is taken, for all i, j ∈ I.

• Zik ∈ {0, 1}: Binary variable indicating if charging station k is visited from location i, for all
i ∈ I, k ∈ J .

• Aik: Amount of kWh charged at charging station k from location i, for all i ∈ I, k ∈ J .

• Ei: Energy level in kWh at location i, for all i ∈ I.

Objective Function
The objective is to minimize the total cost, which consists of three components; the cost of charging,
the cost of driving to the charging station(s), and the charging time cost. The objective function
is:

min
∑
i∈I

∑
k∈J

pkAik +
∑
i∈I

∑
k∈J

CikH

50
Zik +

∑
i∈I

∑
k∈J

(
Aik

rk · 60

)
H
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1. Charging Cost:∑
i∈I

∑
k∈J

pkAik

This part represents the total cost of the energy charged at various stations. It is the sum of
the product of the energy charged (Aik) and the cost per kWh (pk) across all locations i and
charging stations k.

2. Driving to Charging Station Cost:∑
i∈I

∑
k∈J

CikH

50
Zik

This component accounts for the cost of the extra driving distance required to reach a charging
station. It is calculated by multiplying the distance (Cik) by the driver’s hourly rate (H),
divided by a constant (50km/h) that represents the average driving speed, and then summing
over all possible location-station pairs where a visit occurs (Zik = 1).

3. Charging Time Cost:∑
i∈I

∑
k∈J

(
Aik

rk · 60

)
H

This term captures the cost associated with the time spent charging the vehicle. It is derived
by dividing the amount of energy charged (Aik) by the charging rate (rk), converting the time
from minutes to hours, and then multiplying by the driver’s hourly rate (H).

Constraint (1) - Fixed Route∑
j∈I

Xij = 1, ∀i ∈ I\{N} (1)

This constraint ensures that the vehicle proceeds directly from each location i to the next location
i+ 1.

Constraint (2) - Optional Charging Station Selection∑
k∈Ji

Zik ≤ 1, ∀i ∈ I\{N} (2)

This constraint gives the vehicle the freedom to optionally visit a charging station from any location
i except for the final location, providing the possibility of implementing charging stations into the
route.

Constraint (3) - Continue Route also after Charging

Xi,i+1 +
∑
k∈Ji

Zik = 1, ∀i ∈ I\{N} (3)

This ensures that after any optional visit to a charging station, the vehicle must continue to the
next location i+ 1 in the route, maintaining the route’s completeness.
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Constraint (4) - Energy Balance

Ej = Ei − α · dij ·Xij +
∑
k∈Ji

(Aik − α · Cik · Zik), ∀i ∈ I\{N}, j ∈ I\{0} (4)

This constraint guarantees that the energy level Ej at destination j takes into consideration the
energy used in the journey from i to j as well as, if relevant, the energy obtained from charging at
station k.

Constraint (5) - Avoiding Overcharging∑
k∈Ji

Aik ≤ Q− Ei, ∀i ∈ I (5)

This limitation makes sure that the total charge obtained at any location does not exceed the
available capacity, taking into account the current energy level Ei, in order to avoid the vehicle’s
battery from surpassing its maximum capacity.

Constraint (6) - Initial Energy Level

Ei=0 = Q (6)

The maximum battery capacity Q is the starting energy level of the vehicle at the depot. It sets
the vehicle’s initial state, guaranteeing that it has a fully charged battery at the beginning of the
route.

Constraint (7) - Minimum End Energy Requirement

Ei=N ≥ Q ·B (7)

This constraint places a lower bound on the energy level Ei=N at the end of the journey by ensuring
the vehicle completes its route with at least a minimum percentage B of its battery capacity. This
is necessary to guarantee that the car can reach its destination without running out of electricity
and to preserve operating safety margins.

4.3 Assumptions
A couple of assumptions are made to help create the model and make sure the problem is manage-
able. By making the following assumptions, the model will be able to make more feasible routes
for charging the electric vehicle.

1. Fixed Route: The locations that must be visited are known beforehand and the route is
predefined. This is because the clients of YesHugo plan the routes for their chauffeurs in
advance.

2. Uniform Charging and Consumption Rates: The model assumes that the charging rates
across different charging stations and the consumption rate for the vehicle per distance unit
are consistent and known beforehand. This assumption is made to reduce complexity.
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3. Instantaneous Charging: Waiting times at the charging stations are not considered when
choosing which station to visit. When the vehicle arrives at the selected charging station it
can immediately charge.

4. Deterministic Parameters: Parameters such as distances between locations, charging sta-
tion locations, charging speeds at charging stations, energy consumption rates, and charging
costs are considered deterministic and known with certainty when the route is planned at the
beginning of the day.

5. Single Vehicle: The model considers that only one vehicle is visiting the locations in the
route and makes decisions accordingly. YesHugo’s customers plan their routes one vehicle at
a time.

4.4 Summary
This chapter outlines the mathematical formulation of the electric vehicle charging station prob-
lem (EVCSP). It begins with a detailed problem description, highlighting the challenges faced by
YesHugo’s clients, primarily taxi companies with fixed routes and scheduled appointments, in select-
ing suitable charging stations. The proposed solution is a model designed to efficiently determine
the optimal charging stations to minimize associated costs.

The chapter describes the locations involved in the problem, emphasizing that while the route is
fixed, decisions about whether to charge or proceed to the next location must be made at each point.
Real-world constraints, such as not charging while customers are in the vehicle, are considered.

The objective function and decision variables are introduced, aiming to minimize the total
cost of incorporating charging stations into the route. The objective function consists of three
main components: the cost of charging, the cost of driving to charging stations, and the charging
time cost. Decision variables include binary variables for route and charging station selection and
continuous variables for battery level and energy charged.

The mathematical model is then presented, detailing the sets, parameters, decision variables,
and the objective function. Seven key constraints are defined to ensure the model accurately rep-
resents the problem, including fixed route progression, optional charging station selection, route
continuation after charging, energy balance, avoiding overcharging, initial energy level, and mini-
mum end energy requirement.

Finally, the chapter discusses several assumptions made to simplify the model, such as fixed
routes, uniform charging and consumption rates, instantaneous charging, deterministic parameters,
single vehicle consideration, and battery capacity constraints.

This comprehensive framework sets the stage for the optimization model used in subsequent
experiments, aiming to provide a practical solution for integrating charging stations into electric
vehicle routes.
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5 Numerical Experiments
This section details the study’s experiments, where three different solving approaches are conducted
to find solutions to the problem. Initially, the testing environment and experimental setup are
explained. The chapter then illustrates the model’s components, crucial metrics, and heuristic
approaches. After conducting the experiments, a thorough analysis of the results is performed,
followed by a comparative analysis of the experiments.

5.1 Testing Environment
The experiments are conducted in a controlled environment to ensure consistency. The vehicle must
visit specific locations in a predefined order, reflecting real-world scenarios. After each location,
decisions are made whether to charge the vehicle or proceed to the next location. For each node
except for the final, ten possible charging stations can be visited, each with varying distances and
charging prices. The vehicle starts at ‘Depot’ and must visit all locations before concluding the
route at ‘DepotEnd’. Table 1 demonstrates the distances between the locations that must be visited
in a given order.

From To Distance in km
Depot Location 1 40
Location 1 Location 2 50
Location 2 Location 3 40
Location 3 Location 4 30
Location 4 Location 5 45
Location 5 Location 6 50
Location 6 Location 7 40
Location 7 Location 8 45
Location 8 Location 9 30
Location 9 DepotEnd 30

Total 400

Table 1: Distances between Locations

Distance and Energy Consumption
The vehicle’s battery level is tracked throughout the route to make charging decisions. Typically, 1
km would consume about 0.20-0.40 kWh, for these experiments, it is set to 0.4 kWh per km. Using a
constant makes the problem slightly less complex. The battery capacity is set to 70 kWh, similar to
real-world EVs used by YesHugo’s customers. An overview of these parameters is shown in Table 3.
The route is long enough to require a decision where a charging station must be selected, enabling
the testing of the different policies. The distances from each location to each charging station can
be found in Table 2.
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Distances in km Station 1 Station 2 Station 3 Station 4 Station 5 Station 6 Station 7 Station 8 Station 9 Station 10
Depot 4 5 5 5 10 6 7 8 9 10

Location 1 7 8 9 10 11 7 8 9 10 11
Location 2 8 9 10 11 12 8 9 10 11 12
Location 3 9 10 11 12 13 9 10 11 12 13
Location 4 6 7 8 9 10 6 7 8 9 10
Location 5 7 8 9 10 11 7 8 9 10 11
Location 6 9 10 11 12 13 9 10 11 12 13
Location 7 6 7 8 9 10 6 7 8 9 10
Location 8 7 8 9 10 11 7 8 9 10 11
Location 9 5 6 7 8 9 5 6 7 8 9

Table 2: Distances from Locations to Charging Stations with Prices

Minimum End Battery Level
On many occasions, when the vehicle returns to the depot it is still used by employees for personal
use or other purposes. A minimum end-of-route battery level is used to ensure that the EV is not
empty when returning to the depot. This is a percentage of the total capacity and is set to 20%, see
Table 3. This number is chosen by YesHugo and is based on their client’s experience. In the real
world, a lot of variables affect the vehicle’s consumption of energy such as, driving behavior can
differ a lot, especially when frequently accelerating rapidly, terrain such as rough unpaved roads or
steep environments, locations where the vehicle must stop a lot, and battery performance in hot
weather decreases.

Parameter Value
Battery capacity 70 kWh
Minimum End Battery Level 20%
Cost per km €1.00
Consumption Rate per km 0.4 kWh
Chauffeur Hourly Rate €20

Table 3: Overview of Parameters

Charging Rates and Cost per Charging Station
The charging rates for each station vary, reflecting real-world conditions. Different stations offer
different rates of charging speeds, which impacts the time a vehicle spends charging and thus affects
the overall route efficiency and cost. The charging rate, measured in kWh per minute, indicates
how quickly a station can charge the vehicle’s battery. For example, a higher charging rate means
that the vehicle can replenish its battery more quickly, allowing it to resume its route sooner but
potentially at a higher cost. Conversely, a lower charging rate means longer charging times but
could be less expensive. The decision of which charging station to use at each point in the route is
therefore crucial for optimizing both time and cost.

Table 4 shows the charging rates for each station in kWh per minute. This information is
essential for calculating the total time spent at each charging station and the total operational cost,
considering both the energy cost and the driver’s time cost. In the real world, the charging cost can
be different per charging station. The charging stations all have different prices to replicate this.
The prices can be found in Table 4. The charging rates and costs are realistic, with some stations
being Level 2 chargers and others being DC Fast (Level 3) chargers, as discussed in Chapter 2.
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Charging Station Charging Rate (kWh/min) Price per kWh (€)
Station 1 0.10 0.25
Station 2 0.20 0.26
Station 3 0.25 0.27
Station 4 0.15 0.26
Station 5 0.30 0.30
Station 6 0.40 0.40
Station 7 1.00 0.50
Station 8 2.00 0.55
Station 9 4.00 0.60
Station 10 5.50 0.72

Table 4: Charging Rates and Prices of Each Station

Program Selection
The selected program in which the model is built is Python1. The motivation for using this program
is that it can be easily integrated with many things, its syntax is clear and concise, and it has
numerous libraries that can be used for handling large data sets. Gurobi2 is one of the best solvers
that can be integrated into Python. Gurobi is often used for comparable optimization problems
and is known for its robustness, efficiency, and wide support for linear and integer programming
problems. It is substantially well-suited for solving complex routing and scheduling problems,
making the solutions of the experiments more reliable and easier to make, and to compare with
each other.

5.2 Experimental Setup
The numerical experiments are conducted using sets of data, which simulate real-world conditions.
The model has a predefined route and multiple charging station options for each location, as dis-
cussed in the Testing Environment section.

Optimally selecting a charging station for a route can present a significant challenge. The
complexity of the decision-making process increases substantially with the number of locations,
variables considered, and charging station options. For smaller-size problems, an optimal solution
can be found relatively easily using exact methods. As more elements are included, using exact
methods to solve the problem becomes progressively impractical. Finding a solution could take a
significant amount of time. Therefore, the threshold percentage policy with the greedy heuristic
will be tested for its cost-effectiveness.

In this setup, there are ten possible locations where a charging station may be included, and for
all these locations, there are ten charging station options. Additionally, the option to drive to the
next location without charging is available, making it eleven choices per location. Since only one
charging station or none can be chosen at each location, there are 1110 = 25.937.424.601 possible
routes. This includes the possibility that in the optimal route, the vehicle could visit from zero to
ten charging stations in one route.

1Python is a programming language that lets you work more quickly and integrate your systems more effectively
(https://www.python.org/).

2Gurobi Solver is a high-performance mathematical optimization solver used to find solutions to complex opti-
mization problems (https://www.gurobi.com/).
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The goal of this thesis is to compare strategies to the exact solution where variable charging
is considered. To understand the balance between computational complexity and solution quality
and to measure how close the heuristic strategy performs compared to the optimal solution. The
following experiments will be conducted:

• Experiment 1: exact solution with variable charging;

• Experiment 2: exact solution with charging policy forcing 100% charge;

• Experiment 3: solution using battery level thresholds and a greedy heuristic.

Experiment 1 - Variable Charging
The situation used for the experiment is small enough to be able to quickly find optimal solutions
with an exact calculation. The solution is the global optimum of the model, meaning there is no
better solution.

In this experiment, the model calculates the minimum amount of energy needed to complete
the route and still adhere to the constraints and the minimum battery level at the end of the route.
Compared to the other experiments, this experiment can variably choose the amount of kWh to
charge at each charging station. Its objective is to minimize the total route cost, which is the cost
of the route and the cost of charging. The model calculates if driving further would be preferable
based on the prices and charging speed of charging at each station and the extra distance to reach
this station.

Experiment 2 - Full Charge
When more locations are to be visited and more charging stations can be visited it takes more
time for an exact model to find an optimal solution. Via a full charge policy, a comparison can be
made between a full charge policy and a variable charging policy. It is interesting to compare the
difference between this experiment and the exact solution of experiment 1. The solution will be
the global optimum, considering the full charge policy. The solution should not be as efficient as
the first experiment. This is due to the fact that the vehicle must charge to full capacity instead of
choosing a variable charging strategy. The focus shifts from determining precise charging amounts
at selected charging stations to selecting an optimal charging station.

Experiment 3 - Battery Level Threshold
The third experiment focuses on finding the optimal route using a battery-level threshold and the
greedy heuristic. This simplifies decision-making by adopting a short-term, local optimal strategy
for selecting a charging station. In the context of this problem, the heuristic sets a predefined lower
bound for the vehicle’s battery level. If the battery level drops to or below the threshold, the vehicle
is directed to a charging station. The battery is charged to full capacity when visiting a charging
station. In this experiment, the final battery level is not taken into account. This to examine
the final battery percentages if the EV only adheres to the threshold policy. The greedy heuristic
decides on immediate objectives, meaning reaching the next destination with the shortest possible
path. In this case, the cost of the extra distance, the cost of time spent charging, and the cost
of charging at the selected charging station are considered. The minimal cost of the combination
will be the charging station that is chosen, this calculation is explained in the section “Heuristic
Benchmark”. This policy might not result in the optimal solution but could provide a solution that
would work well enough to be usable in big and more complex situations. The thresholds that will
be tested are from 25% up to 80% hopefully finding a solution as close as possible to the first and
second experiment.
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5.2.1 Heuristic Benchmark

The greedy heuristic is used to simplify finding a result for the problem. The greedy heuristic is
an algorithmic approach that makes choices with the intention of achieving the best result possible
at that particular time. It does not take any future alternatives into account, hence the name
“greedy”. It is a practical problem-solving strategy designed to find quick approximate solutions
compared to exact solutions.

The greedy heuristic will be used in the third experiment combined with a threshold. The
threshold is used as a signal for when the vehicle must consider charging. This means that if the
battery level reaches a certain percentage of the total capacity, the model searches for the local
optimal charging station. In this instance, optimal means the minimum cost for distance and
charging combined. This calculation for choosing the optimal charging station takes the length
and the cost of the detour into account and the price of that station. If the detour is longer, the
vehicle is also able to charge more to fill the battery. Table 5 demonstrates an example of what the
calculation takes into account.

Variable Value
Distance to Charging Station (km) 6
Detour Cost (€1/km) 6.00
Battery Level at Arrival (kWh) 4
Charge Needed (kWh) 66
Charging Rate (kWh/min) 2.20
Charging Time (minutes) 30
Charging Time Cost (€20/hour) 10.00
Charge Cost (€0,45/kWh) 29.70
Total Cost at Charging Station X (€) 45.70

Table 5: Calculation for Selecting Charging Station X

In short, the total cost of choosing this charging station is the sum of the detour cost, the
charging time cost, and the charge cost. When the threshold is reached, the cheapest charging
station will be selected and implemented in the route.

5.3 Experiment Results
5.3.1 Variable Charging Analysis

This experiment focuses on finding an exact solution through variable charging, aiming to minimize
the total cost while adhering to predefined constraints. The results indicate a carefully optimized
route and charging strategy, ensuring cost-efficiency and effective battery management. Figure 7
illustrates the final route, where charging station 9 is visited twice: once after Location 4 and again
after Location 7. In the first instance, the EV charges to full capacity (70 kWh), and in the second,
it charges to 56 kWh to minimize the overall route cost. The optimal solution shows that delaying
charging until absolutely necessary is most beneficial and then charging as much as needed in one
session. This strategy is evident in Figure 7, where the EV visits a charging station only when it is
nearly out of energy.
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Figure 7: Route of Experiment 1, with Battery Level

Route Costs
The total cost for adding charging stations in the route is €93.99, which is divided into several
components as shown in Table 6. The breakdown includes extra distance costs for reaching the
charging stations, the direct cost for charging a certain amount of kWh for a certain price at the
chosen station, and the chauffeur’s time cost associated with the charging duration. The breakdown
of the costs is as follows:

Category Cost (€)
Extra Distance Cost 18.00
Charging Cost 66.72
Charging Time Cost 9.27
Total Cost 93.99

Table 6: Cost Breakdown for the Variable Charging Experiment

• Extra Distance Cost (€18.00): This cost accounts for the additional travel distance re-
quired to reach the selected charging stations. The detours to Station 9 from Location 4 and
Location 7 happen to both be 9km, therefore the extra distance cost is 2 ∗ 9 = 18.

• Charging Cost (€66.72): This is the cost incurred for the actual charging of EV. The
vehicle charges a total of 111.2 kWh at an average price of €0.60 per kWh. The calculation
is as follows: 111.2 ∗ 0.60 = 66.72

• Charging Time Cost (€9.27): This cost represents the time spent charging the vehicle
at the stations, the charging rate of charging station 9 is 4.0 kWh per minute. One hour of
charging costs €20. The calculation is as follows: (111.2/4) ∗ (20/60) = 9.27.
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Charging Details
The route charges two times at charging station 9, with a cost of €0.60 per kWh and a charge rate of
4.00 kWh per minute. The final battery percentage is the same as the predefined minimum required
battery level. This is logical since that would minimize the amount of kWh charged, resulting in
minimal costs. The charging details can be seen in Table 7.

Category Detail
Times Charged 2
Total Amount kWh Charged 111.2
Average Price per kWh Charged (€) 0.60
Final Battery Percentage (%) 20.00
Average Charged Percentage (%) 79.43
Charging Stations Visited Station 9
Location Charging Decision Location 4, Location 7

Table 7: Charging Details for the Variable Charging Experiment

5.3.2 Charge to full Capacity Policy

This experiment examines the route when a charge to full capacity policy is used. The second
experiment should reduce the gap between the first and third experiments. The results highlight
the different cost components and the charging behavior under this policy, ensuring an optimal
route considering the charging constraint. The EV stops two times throughout the route, both
times at charging station 9. The visits are after visiting Locations 4 and 7.

Figure 8: Route Experiment 2, with Battery Level
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Route Costs
The total cost for adhering to the 100% charging policy is €103.55, as described in Table 8. The
formula for calculating the cost components is the same as mentioned earlier, a breakdown of these
costs is as follows:

Policy 100% Charge
Extra Distance Cost (€) 18.00
Total Charging Cost (€) 75.12
Charging Time Cost (€) 10.43
Total Cost (€) 103.55

Table 8: Experiment 2: Route Cost for 100% Charge

Charging Details
The 100% charging policy necessitated charging the EV two times during the route, with specific
details provided in Table 9. The results show that under the 100% charge policy, the EV visits
Station 9 both times, after Location 4 and Location 7. The same charging stations as in experiment
1. The costs are different only because of the full charge policy because more kWh is charged the
second time and more time is needed to charge those kWh.

Policy 100% Charge
Times Charged 2
Total Charge Amount (kWh) 125.2
Final Battery Level (%) 40.00
Average Price per kWh Charged (€) 0.60
Average Charged Percentage (%) 89.43
Charging Stations Visited Station 9
Charging Decision Location Location 4, Location 7

Table 9: Experiment 2: Route Charging Details for 100% Charge
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5.3.3 Greedy Heuristic with Threshold

The third experiment focuses on a battery percentage threshold for selecting a charging station. The
tested battery percentages differ from 25% to 80% with steps of 5%, testing 12 different percentages.
The situation is the same as in the other experiments, but the solutions will be found using the
greedy heuristic and may not be optimal. The greedy heuristic focuses on finding a local optimum
when the threshold is reached. The goal is to find a route with a total cost that lies as close as
possible to the first experiment where an exact solution is found.

Kwh/Location 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80%
1 70 70 70 70 70 70 70 70 70 70 70 70
2 54 54 54 54 54 54 54 54 54 54 54 54
3 34 34 34 34 34 34 34 34 34 34 34 70
4 18 18 18 18 18 70 70 70 70 70 70 50
5 6 70 70 70 70 54 54 54 54 54 54 70
6 70 58 58 58 58 42 42 42 42 42 42 54
7 52 40 40 40 40 24 24 24 70 70 70 70
8 32 20 20 20 20 70 70 70 52 52 52 58
9 16 70 70 70 70 50 50 50 32 32 70 40

10 70 54 54 54 54 34 34 34 70 70 50 70
11 52 36 36 36 36 70 70 70 54 54 70 50
12 40 24 24 24 24 52 52 52 36 36 54 70
13 28 12 70 70 70 40 40 40 70 70 36 54
14 X X 58 58 58 28 28 70 58 58 70 70
15 X X X X X X X 58 46 46 58 52
16 X X X X X X X X X X 46 70
17 X X X X X X X X X X X 58
18 X X X X X X X X X X X 46

Table 10: Amount of Kwh at each location visited in the route

Table 10 shows the routes of each of the tests of the third experiment. The percentages at the
top indicate which policy is used when calculating the route. The light-blue colored cells are charg-
ing station locations that are implemented into the route. The “X” means that the route is finished
and the vehicle has returned to the end location. The tiniest number of locations in the route is
13, which are the 11 predefined locations and 2 implemented charging stations. Thresholds lower
than 25% are not included because the route would not be feasible. Logically when the threshold
for charging increases, more charming stations are implemented into the route.

Selected Charging Stations
Experiment 3 uses the Greedy heuristic to select charging stations to implement into the route. The
locally best option is selected. In the case of this experiment, this happens to be charging station
10 every time, as can be seen in Table 11. Charging station 10 offers the highest charging rate with
5.50 kWh/min a cost of €0.72 per kWh (see Table 4). The high charging speed enables the driver
to minimize the time spent charging their EV. It appears that the charging time is prioritized over
the cost per kWh because this results in minimal route costs.
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Similar Routes
Some of the threshold percentages result in the same route, which is the case for 35% to 45%, 50%
and 55%, and 65% and 70%. When the EV drives to the next location it can happen that multi-
ple thresholds are reached. The battery percentage from location 2 to location 3, without earlier
charging, goes from 48.6% to 25.7%. So thresholds 30% to 45% are reached, forcing the selection of
a charging station and resulting in the same charging decision for those thresholds at that location.
This example happens often throughout the experiment, as can be seen in Tables 10 and 11.

Threshold Visit 1 Visit 2 Visit 3 Visit 4 Visit 5 Visit 6 Visit 7
25% L4 -> CS10 L7 -> CS10
30% L3 -> CS10 L6 -> CS10
35% L3 -> CS10 L6 -> CS10 L9 -> CS10
40% L3 -> CS10 L6 -> CS10 L9 -> CS10
45% L3 -> CS10 L6 -> CS10 L9 -> CS10
50% L2 -> CS10 L5 -> CS10 L7 -> CS10
55% L2 -> CS10 L5 -> CS10 L7 -> CS10
60% L2 -> CS10 L5 -> CS10 L7 -> CS10 L9 -> CS10
65% L2 -> CS10 L4 -> CS10 L6 -> CS10 L8 -> CS10
70% L2 -> CS10 L4 -> CS10 L6 -> CS10 L8 -> CS10
75% L2 -> CS10 L4 -> CS10 L5 -> CS10 L6 -> CS10 L8 -> CS10
80% L1 -> CS10 L2 -> CS10 L3 -> CS10 L5 -> CS10 L6 -> CS10 L7 -> CS10 L8 -> CS10

Table 11: Experiment 3: From Location (L) Visit Charging Stations (CS)

Routes Costs
The cost components of each threshold tested are outlined in the bar chart in Figure 9. The biggest
component of the total costs is the charging cost. Thereafter, the extra distance cost for reaching
the charging station. As can be seen in Table 10, when the threshold percentage increases more
charging stations must be visited. This has an effect on how large the extra distance cost becomes.
The charging time cost has the least impact on the total costs. This is because selecting a faster
charger is cheaper. This raises the cost of charging but reduces the time required to charge. Con-
sequently, the charging time cost slightly increases as more charging stations are visited increasing
the total kWh needed for the route. The results for the cost components of all the threshold’s
percentages are:

Low Thresholds (25% & 30%)

• 25% Threshold: The total cost is €118.36, with a charging cost of €90.72, extra distance
cost of €20.00, and a charging time cost of €7.64.

• 30% Threshold: The total cost decreases slightly to €113.74, with a lower charging cost of
€80.93, a higher extra distance cost of €26.00, and a reduced charging time cost of €6.81.

• These lower thresholds result in the least total cost, highlighting efficient routes with minimal
deviations and time spent charging.
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Figure 9: Costs per Threshold Percentage Policy

Mid-Range Thresholds (35% - 55%)

• 35% to 45% Thresholds: The total cost remains constant at €161.46. This consistency
suggests that the route and the charging stations chosen are identical for these thresholds,
with a higher charging cost of €116.64 and extra distance cost of €35.00.

• 50% and 55% Thresholds: The total cost drops to €135.42, indicating more efficient
charging at these levels. The charging cost decreases to €94.46 with a slightly lower extra
distance cost of €33.00.

• The similar costs for 35% to 45%, 50%, and 55% indicate that the vehicle’s route overlaps for
these thresholds, resulting in similar charging and distance costs.

High Thresholds (60% - 80%)

• 60% Threshold: The total cost increases to €170.64, driven by higher charging (€118.66)
and extra distance (€42.00) costs.

• 65% and 70% Thresholds: The total cost slightly decreases to €166.53. These thresholds
also share similar routes, as reflected in the identical costs.

• 75% Threshold: The total cost increases to €180.96, reflecting a rise in both charging
(€114.34) and extra distance (€57.00) costs.

• 80% Threshold: The highest total cost at €212.45 is observed, with the highest extra
distance (€81.00) and charging time (€10.21) costs.

40



5 Numerical Experiments

The results indicate that lower thresholds lead to the lowest total costs, mainly because of the
minimal extra distance and charging time costs. The mid-range thresholds (35% to 55%) result
in higher costs. Especially the thresholds from 35% to 45% where the charging costs increase a
lot compared to the thresholds at 50% and 55%. The higher thresholds result in the highest total
costs. The reason for this is mostly the extra distance costs and a slight increase in charging costs.

Charging Details
The graph shown in Figure 10 shows for each threshold percentage the route’s amount of charging
station visits, total kWh charged, and the average charged percentage. As mentioned earlier, the
largest cost component of the total cost for each route is the charging cost. So it is essential to
understand what happens in the routes regarding the charging.

Figure 10: Charging Details per Threshold Percentage Policy

Total Amount of kWh Charged
The total amount of kWh charged is the most important component in minimizing total route costs.
Figure 10 shows that the lower thresholds result in the least amount of kWh charged. From the
threshold at 35% the EV must charge from 3 to 7 times in the route. The extra visits cost additional
kWh in order to reach the charging station. Making the overall route longer and less efficient. The
thresholds from 35% to 45% happen to charge right before finishing the route, resulting in “unnec-
essary” charging making the route more expensive. If the EV would not visit this third charging
station it would have the same result as the threshold at 30%, which holds the minimal amount of
total kWh charged.
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Average Charged Percentage
The orange line in Figure 10 shows the average charged percentage for each tested threshold per-
centage. It has a negative correlation with the threshold percentage. When the threshold value
increases, the average charged percentage decreases. This decline indicates that when the threshold
is set higher, the vehicle charges more often but with lesser amounts. A possible strategy behind
this could be to optimize charging times and reduce waiting periods at when charging sessions are
smaller. It could be beneficial in some situations to have smaller “downtimes” in between charging
sessions. Although this approach increases the number of stops, the total route distance, and the
overall route costs. This is an important trade-off that is crucial for balancing time, distance, and
costs.

Amount of times charged vs Extra distance
The number of charging station visits directly increases the extra distance that the route takes. As
can be seen in the graph in Figure 11. The orange line represents the number of charging stops,
and the blue bars represent the total extra distance needed for reaching those charging stations.
There is a clear correlation between the threshold percentages, the number of charges and the extra
distance costs. As the percentages for the thresholds increase, so does the number of charges and
the total extra distance. Lower thresholds result in fewer charges and lower extra distance costs,
suggesting more efficient route planning.

Figure 11: Number of Charging Stations Visited vs Total Extra Distance
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Final Battery Level
The final battery level is the remaining energy in the EV at the end of the whole route. Finishing
the route with a lot of energy still in the vehicle is not optimal. The EVs can be charged overnight
at the depot for a lower price compared to public charging stations. So in an optimal situation,
the vehicle returns to the depot with the least amount of kWh left in the battery. In Figure 12
the orange line represents the number of times the vehicle charges during the route and the bars
represent the battery percentage at the end of the route. The final battery percentage is the same
for some of the thresholds. This occurs due to the policy where the EV must charge to 100% battery
capacity before driving the remaining distance to the end location. Therefore, if the last visited
charging station is the same across multiple thresholds, the final battery percentage will also be the
same. There is not a specific correlation to be seen, the final battery percentage is dependent on
the moment of the last charging session in the route.

Figure 12: Final Battery Percentage vs Number of Charges
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5.4 Comparative Analysis of the Experiments
Now that all experiments have been analyzed separately, a comparative analysis can be done. The
results of the three experiments will be compared to each other to analyze their performance. The
total route costs, charging strategy, final battery level, and computation time are important.

Costs Comparison Total Route
Figure 13 demonstrates the total route costs for each policy. The percentages are the threshold
percentage policy tests of experiment 3. As expected, the first and second experiment performed
the best, resulting in the lowest total route cost: €93.99 and € 103.55 respectively. The best result
from the third experiment was with the threshold set at 30% and had a total route cost of €113.74.
A notable mention is the performance of the threshold set at 25% which came quite close with a
total route cost of €118.36. After that, the total route costs increased a lot. Starting at €135.42
until the worst-performing route resulted in a cost of €212.45.

Figure 13: Graph of Total Route Costs

Costs per Component
As mentioned previously, four policies have shown promising results. In this section, we will examine
the cost components of these policies in greater detail. Figure 14 presents a bar chart illustrating
the cost breakdown for each policy. From this chart, it can be concluded that charging costs have
the greatest impact on the total route costs. Following charging costs, extra distance costs also
contribute, but less significantly. Finally, charging time costs have the smallest effect on the overall
route cost.
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Figure 14: Cost Components of Best Performing Policies

Total kWh Charged
As explained earlier, the amount of kWh charged during the route has the greatest impact on the
total route costs. The bar chart in Figure 15 shows the total kWh charged for each route. Similar to
the total route costs, the first four policies perform the best. This is not a coincidence, considering
the impact of the kWh charge on the overall route costs.

The total kWh charged depends on the distance the EV must travel; as more charging stations
are visited, the total distance increases. Thus, increasing the threshold results in a larger total
kWh charged because the extra consumption must be recharged as part of the full charge policy.
While there is not a perfectly steady correlation visible in the chart, it can generally be observed
that when more charging stations are visited, the total kWh charged increases. This, in turn,
significantly impacts the total route costs.

Final battery level
As mentioned earlier, the final battery level is as low as possible in an optimal situation. The first
experiment ends the route with the minimum required battery level at 20% of the capacity. The
other experiments were forced to charge the vehicle to 100% of its battery capacity each time they
had to visit a charging station. This resulted in different final battery percentages, those can be
found in Figure 16.
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Figure 15: Total kWh Charged for each Policy

Figure 16: Final Battery Percentage
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Computation Time
The computation time of the model is the time that it takes to find a solution. For real-world im-
plementation, it is important that the computation time is relatively fast. A taxi company does not
need a perfect route that takes a day to calculate. They are satisfied with a near-optimal route that
is calculated quickly. In table 12 the runtime for each separate route is shown. The runtime of the
experiments in this thesis is very fast. The reason for this is that the data is known in advance and
predefined. For example, the distances from/to each location are predefined, the charging prices are
predefined, and the charging rates are predefined. When using real-time traffic data, more charging
station locations, charging rates, and charging prices the runtime can significantly increase. It is
difficult to predict how these elements will affect the runtime.

Policy Computation Time (s)
Exp 1 0.048159122
Exp 2 0.188021183
Exp 3 - 25% 0.001276255
Exp 3 - 30% 0.001002073
Exp 3 - 35% 0.002312422
Exp 3 - 40% 0.002001524
Exp 3 - 45% 0.002244949
Exp 3 - 50% 0.002374649
Exp 3 - 55% 0.002408743
Exp 3 - 60% 0.002007246
Exp 3 - 65% 0.002062082
Exp 3 - 70% 0.000997782
Exp 3 - 75% 0.002625942
Exp 3 - 80% 0.003371239

Table 12: Computation Time for the Different Policies

The table shows a significant difference in computation times between the experiments. The first
experiment has a runtime of 0.048159122 seconds, while the second experiment takes 0.188021183
seconds to compute. Compared to experiment three, which follows the threshold policy, has run-
times ranging from 0.000997782 to 0.003371239 seconds. The fastest computed route (Exp 3 - 70%)
is 0.048159122/0.000997782 = 48.28 times faster than the first experiment. Even the slowest policy
of experiment 3 (80%) is 0.048159122/0.003371239 = 14.28 times faster. Compared to the second
experiment the fastest computation time of the third experiment is 188.47 times faster and the
slowest is still 55.77 times faster.
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5.5 Summary
This section summarizes the findings of the numerical experiments, focusing on evaluating different
strategies to optimize the charging and route planning of an electric vehicle (EV). The goal was
to improve cost-efficiency while ensuring that the vehicle completes its route within predefined
constraints.

First, the context for the experiments was established, detailing the testing environment and
the parameters used for the EV’s battery, charging stations, and route distances. Then, various
experiments were described, starting with a baseline variable charging strategy, followed by a full
charge policy, and finally, a series of tests using a battery level threshold and a greedy heuristic.

The first experiment evaluated the variable charging strategy, which sought to minimize total
route costs by charging only when necessary and to the exact amount needed. This experiment
served as the benchmark, achieving the lowest total cost of €93.99. The variable strategy demon-
strated the efficiency of delaying charging until critical and minimizing the amount of charging to
just meet the route requirements.

The second experiment applied a full charge policy, where the EV charged to full capacity
whenever it stopped at a charging station. While this strategy was less cost-effective than variable
charging, it still performed relatively well with a total cost of €103.55. This experiment high-
lighted the impact of charging strategies on overall costs, with the full charge policy being more
straightforward but less optimized.

The third experiment explored the use of a greedy heuristic with various battery level thresholds
ranging from 25% to 80%. The results showed that lower thresholds (25% and 30%) led to the most
cost-effective routes within this strategy, with total costs of €118.36 and €113.74, respectively. As
the thresholds increased, the costs rose significantly, reaching up to €212.45 for the 80% threshold.
This indicated that higher thresholds resulted in more frequent and less efficient charging, thus
increasing the total route cost.

Comparative analysis revealed that the variable charging strategy (Experiment 1) and the full
charge policy (Experiment 2) were the most cost-efficient. The greedy heuristic with lower thresh-
olds provided a feasible alternative but was still more costly. Additionally, the analysis showed
that the total kWh charged and the extra distance traveled were critical factors affecting the total
route cost.

The computation times for each strategy varied significantly, with the variable and full charge
policies taking longer to compute compared to the greedy heuristic. However, the differences in
computation time were minimal in practical terms, considering the controlled testing environment
and predefined data.

Overall, the experiments demonstrated that while variable charging offers the best cost efficiency,
simpler strategies like the full charge policy and the greedy heuristic with lower thresholds can still
provide reasonable solutions, especially in more complex or real-time scenarios where computation
speed is crucial.
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6 Conclusions, Limitations, Recommendations, and Further
Research

In this final chapter the thesis’ results are concluded. The section is divided into multiple com-
ponents. Section 6.1 addresses the main research question formulated in Section 1.7. Section 6.2
outlines the limitations of the research in greater depth. Section 6.3 will discuss recommenda-
tions for YesHugo based on the findings, and finally, Section 6.4 will suggest directions for further
research.

6.1 Conclusion
The main research question of this thesis:

“What are the most cost-effective strategies for optimizing electric vehicle routes,
considering battery status, detour distances, charging rates, and energy prices?”

To answer this research question, the question was split up into several sub-questions. Which were
covered in chapters 2 to 5.

Chapter 2 goes in-depth on YesHugo as a company and its operations, as well as where it wants to
improve its service. It provides context on how optimizing the routes can reduce operational costs,
improve service reliability, and enhance customer satisfaction.

Chapter 3 focuses on the literature related to mathematical optimization problems. Fundamen-
tal components of optimization problems are explained. It tackles how vehicle routing problems
work and goes further into detail about implementing charging stations. The chapter introduces
various approaches, from exact methods to heuristic techniques that are suited for tackling complex
optimization problems.

Chapter 4 introduces the mathematical formulation of the optimization problem that YesHugo
is facing. It details the necessary components: sets, parameters, decision variables, objective func-
tion, and constraints. The chapter also dives deeper into the limitations and assumptions of the
model. These are made to simplify the model.

In chapter 5 the results of the three experiments are conducted. The testing environment for
the experiments is explained in detail. The three experiments conducted were variable charging,
full charge policy, and threshold policy with a greedy heuristic. The experiments were designed to
evaluate the efficiency and cost-effectiveness.

This first experiment is conducted to form a baseline for the study. This experiment finds the
exact optimal solution. This strategy resulted in a total route cost of €93.99. It visits two charging
stations where it charges to 100% battery capacity the first time. The second time it charges the
remaining needed kWh to end the route at 20% battery capacity.
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The second experiment enforced a policy where, when the vehicle visited a charging station, it
must charge to full capacity removing the possibility to consider different charging amounts. The
resulting route cost was €103.55, but the route ended up being the same. Both experiments 1
and 2 visited charging station 9 from locations 4 and 7. So the difference was the amount of kWh
charged and the time it took to charge those extra kWh. This experiment illustrates the impact of
implementing a policy, making the route slightly more expensive while using a more straightforward
charging strategy.

The third experiment tested various thresholds for battery levels, ranging from 25% to 80%. A
greedy heuristic is used to find local optimal charging stations whenever the battery level drops to
or below the assigned threshold. The best results were obtained when the thresholds were between
25% and 35%, with total cost of €113.74 to 118.36. As the thresholds increased, the cost rose
significantly. The worst performing threshold was at 80% resulting in 7 charging station visits and
a total cost of €212.45. This indicates that higher thresholds lead to more frequent and less efficient
charging decisions.

The comparative analysis of these strategies highlights the importance of balancing different factors,
such as the number of charging stops, total kWh charged, extra distance traveled, and overall route
cost. The variable charging method performed the best in minimizing unnecessary charging and
detours, thereby achieving the lowest cost. In contrast, the full charge policy, while straightforward,
resulted in slightly higher costs due to its more conservative approach to charging. The threshold
percentage policy with greedy heuristic offered a practical compromise, balancing cost and com-
putational efficiency, making it more suitable for real-time applications when more locations and
real-world data are implemented.

The thesis revealed that for the specific route used in this study, certain thresholds proved to
be more effective than others. However, the optimal threshold can vary significantly with differ-
ent route lengths and distances in between locations. This is evident from the results of the final
battery percentage, the number of charging stops, and the similarity of routes throughout different
thresholds. When the EV must drive other route lengths, different threshold percentages might
yield better results.

Lastly, the runtime for the experiments conducted was extremely short making the runtime practi-
cally irrelevant. This means the route created in the first experiment with the exact solution should
always be used, making the other experiments irrelevant. However, in real-world scenarios, using
real-time data and considering more locations, routing options, and charging station possibilities
would significantly increase computation time. Factors such as real-time traffic, fluctuating energy
prices, and varying charging station availability add complexity, potentially leading to longer run-
times. Efficient optimization algorithms and computational techniques are crucial to ensure timely
solutions in these more complex and dynamic environments.
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6.2 Limitations
Although the model offers a framework to solve the optimization problem it has limitations in its
direct application to the real world. The assumptions make the problem easier to solve, but with
the cost, it becomes less realistic. Understanding the limitations of the model is crucial in under-
standing how realistic the results are.

Firstly, YesHugo does not have its own optimization model at this moment. So the experiments
in this thesis could not be compared to something they were already using. So without a realistic
reference point, it is not easy to make a relatively accurate comparison. A comparison is made
against two exact solutions that are based on static predefined data. No real-life uncertainties
are taken into account. It would have been interesting to compare results to an already existing
optimization model.

Secondly, the model does not take real-world changes regarding traffic or the availability of charging
stations into account. Routes are dynamic in the real world and real-time data provides a more
accurate representation of the real world. The experiments are conducted in a controlled, hypo-
thetical environment, which does not fully capture the real-time complexities of calculating a route
for example, in the real world there usually are more possible routes to go from A to B.

Thirdly, the model assumes consistent energy consumption and charging rates. However real-world
factors such as traffic, weather, road conditions, and driving behavior have a significant effect on
the energy consumption of an electric vehicle. In the model the energy consumption is linear, but
these factors make the consumption non-linear. Also, recharging a battery is faster when it is al-
most empty compared to when it’s almost full. This can have an impact on what strategy would be
preferable. It could be more time-efficient to not fully charge and visit charging stations more often.

Lastly, in the model, there are ten charging station options at each location from where charg-
ing may be considered. In real-world situations, this number is way larger if all charging stations
are considered. Even if all the charging stations in the range of the battery level are considered,
this number could be more or less than ten. The charging stations in the model all have a different
charging rate and are, most of the time, all reachable for the EV. The model chooses the two fastest
chargers in the experiments, but these might not be close or possibly occupied.
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6.3 Recommendations
This section discusses recommendations drawn from conducting the research. The goal is to identify
possible actions YesHugo can undertake to improve its services.

The gap between norm and reality explained in the first chapter has not been filled entirely. The
norm is that YesHugo wants to include a service that offers a tested near-optimal charging strategy.
Currently, they are not doing this.

To bridge this gap, YesHugo should implement the charging station selection strategy into a dy-
namic optimization model that uses real-time data. This thesis highlights that such a strategy can
significantly reduce computation time, while still finding a near-optimal solution. By integrating
real-time data such as traffic circumstances, energy prices, charging rates, and the availability of
charging stations, YesHugo can enhance the accuracy and efficiency of its charging policies.

Furthermore, it is recommended that YesHugo evaluate different threshold percentages for charg-
ing. While the study suggests that a threshold percentage strategy can be more time-efficient, it is
not yet clear which specific threshold works best for most routes. Different routes may have varying
locations and distances between them. Conducting simulations with various thresholds and route
types can help identify the most efficient charging strategy for specific scenarios.

However, it is important to understand that not all real-world variables have been included in
this thesis. The current model does not account for factors such as hourly charging rates, the avail-
ability of charging stations, and the runtime required to process real-time data. Including these
variables will make the model more robust and applicable to practical situations, thereby improving
its reliability and effectiveness.

By following these recommendations, YesHugo can significantly enhance its services, providing
reliable and efficient charging strategies that fit the requests of its clients.
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6.4 Further Research
This thesis takes a look at how certain threshold percentages would perform against the exact so-
lution and an exact solution considering a full charge policy. However, the thesis did not tackle all
possible components that may affect the charging station selection within an EV route.

Firstly, the distance between location visits has a significant effect on the moment of charging
in the third experiment. When distances in between locations are longer, the battery level can
pass multiple threshold percentages by the time the EV arrives at the next location. This means
the EV must find a charging station to charge. Results show that similar routes were created.
Further research could consider adjusting the distances between locations to see how well the same
thresholds perform.

Secondly, the current model could be extended to more accurately simulate real-world decisions
by incorporating additional variables such as exponential charging rates, hourly pricing of energy,
and the availability of separate charging stations. These factors can have a big influence on the
charging decisions that are made throughout the route. To implement this, the model should use
real-time data and shift from a static model to a dynamic model. This data can be extracted from
Google’s “Places” application programming interface (API).

Thirdly, conducting a sensitivity analysis on specific components can be useful because it helps
to understand how important parameters affect the overall performance of the optimization model.
Further analysis could consider exploring the effect of fluctuations in energy prices and charging
rates on the selection of charging stations in the model. For example, it may be more cost-efficient
to drive a longer distance to a different charging station if the energy prices are higher at a nearby
station.

Similarly, examining how modifications in the hourly rate of the chauffeur affect the charging
decisions made throughout the route would be interesting. This would only work in the first exper-
iment, where the amount that the EV must charge is not forced to 100%. However, if availability of
charging stations is taken into account and therefore possible waiting times. This would also work
for experiments 2 and 3 where the vehicle must charge to 100% each time. It would be interesting
to analyze how the hourly rate of the chauffeur affects the selection of charging stations.

Finally, future research could specifically focus on the remaining battery percentage at the end
of a route, imposing penalties for finishing with excess energy. This strategy contrasts with the
100% charge policy and could offer new insights into optimizing charging strategies. Developing
an optimization model that penalizes higher remaining battery levels would encourage minimal
charging, which is found to be the largest cost component in this thesis. This approach may pro-
vide a different interpretation of EV charging optimization, possibly leading to more cost-effective
strategies.
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