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EXECUTIVE SUMMARY 
 

Meilink has been a Dutch family business in industrial packaging since 1874 with 470 

employees and nine branches throughout the Netherlands. The term ‘industrial packaging’ 

entails tailored engineering of custom packaging for a variety of customers and industries. 

Meilink’s products usually consist of a wooden crate with an engineered ‘insert’. The insert is 

tailor-made based on the product transported inside. The introduction of a product configurator 

allowed customers to design a large number of configured-to-order (CTO) products. This 

configurator accurately calculates the quantities of materials used. However, labour cost 

remains difficult to estimate for a unique product. This problem prevents the firm from providing 

customers with accurate quotations, and scheduling activities precisely. 

Therefore we initiated this investigation with the objective: To develop an algorithm that 

predicts labour costs of CTOs with the actual labour cost falling within the 95% confidence 

interval of the predictions. Based on the objective, we formulated the research question: How 

can the firm accurately and systematically predict labour costs for configurated products? Our 

methodological approach involved a literature review to create a framework of relevant 

approaches, data requirements, and validation methods. Based on our literature review, we 

found that machine learning techniques are suitable to solve our problem, due to the ability to 

process large numbers of data and handle complex underlying relationships. We concluded to 

test the following nine supervised machine learning techniques: Linear Regression (LR), Multi-

Layer Perceptron (MLP), Gaussian Process Regression (GPR), Random Forest Regression 

(RGR), Support Vector Machines (SVM), Decision Tree Regression (DTR), Gradient Boosting 

Regression (GBR), K-Nearest Neighbours (KNN), and Extreme Gradient Boosting (XGB). 

We evaluated performance using two performance metrics and an accuracy 

percentage. We selected Mean Squared Error (MSE) and Akaike Information Criterion (AIC) 

as performance metrics, and we define accuracy as the percentage of predictions which 

contain the actual value within its 95% confidence interval. The dataset we used contains 811 

product samples manufactured from July 18, 2023, until March 14, 2024, separated into a 

subset for each product. Each sample in the product subsets describes a product with twenty-

seven original features and two engineered features, linked to a unique labour time in minutes. 

Subsequently, we split the datasets in 80% training data and 20% test data. Training the model 

with the first 80% enables it to map the relationships with labour cost. We then use the 

remaining 20% test data to investigate the degree to which a model predicts accurately 

compared to other models, expressed in a composite score of the MSE and AIC. We assign 

products to their most appropriate technique based on the composite score; a higher 

composite score suggests the more appropriate fit of that product-model combination. After 

we assign every product to a method, we investigate further validation with K-fold cross 

validation. During the validation phase, we extract the most important features from the model, 

which provide valuable insights into what components of the manufacturing process contribute 

the most labour costs. Targeting these cost-intensive areas for optimisation or employee 

training has the most potential cost reductions. 

We can assess the improvement of our algorithm by comparison to the firm’s current 

approach. Table A lists the machine learning techniques assigned to each product, along with 

the accuracy before and after implementation of our labour cost prediction algorithm. We 
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assess the significance of the improvements with a paired t-test, where we observed a 

significant overall accuracy improvement of 21.74% with a 5% level of significance.  

 

Table A: Improvements in labour cost prediction accuracy per product. 

Product Method 
Accuracy 
(before)  

Accuracy 
(after) 

𝒅𝒇  t-statistic p-value Improvement 

PCF102 GBR 17.73% 50.68% 218 5.2220 <0.0001 32.95% 

PCF103 XGB 29.45% 39.38% 159 3.1767 0.00190 9.93% 

PCF201 SVM 29.41% 50.00% 67 3.8245 0.00033 20.59% 

PCF206 DTR 25.26% 44.21% 94 3.6775 0.00041 18.95% 

PCF401 KNN 38.95% 55.06% 186 3.1607 0.00200 16.11% 

PCF407 LR 14.43% 46.34% 81 2.5301 0.01312 31.91% 

Overall  25.87% 47.74%    21.74% 

 

We analysed error distribution, which suggests that the model is generally accurate. 

The error distributions show a peak around zero, which indicates that the majority of the 

predictions are relatively close to the true value and there are fewer instances where the model 

makes large errors. Additionally, we investigated the skewness of the error distributions, which 

suggested that three of the techniques are inclined to underestimate labour costs, while other 

techniques showed approximately symmetrical error distributions. The sales department can 

benefit from underestimation because it allows them to quote more competitive prices, on the 

other hand, underestimating labour time disadvantages operations by causing a tight schedule, 

as well as lower profit margins.  

Our results indicate that we achieved a significant improvement in labour cost 

estimation, by using historical data to train our model, selecting appropriate machine learning 

techniques, and validating its performance. An increased labour cost prediction accuracy 

enables Meilink to quote more competitively and make informed decisions. Furthermore, the 

algorithm contributes to improved communication between sales and operations by minimizing 

disagreement over scheduled time. Feature importances extracted from our algorithm show 

what features add the most value to a product. Identifying cost intensive components within 

the production process allows for efficient resource allocation and to identify areas where cost 

improvement or employee training impacts the most. Overall, our solution not only improves 

Meilink’s labour cost prediction accuracy by 21.74%, but also aligns with Meilink’s long term 

commitment of improving customer satisfaction, maintaining a competitive advantage, and 

ensuring continuity of the firm.  

 

 

 

  



 VI  

GLOSSARY 
 

Term Definition 

Black Box Model Process description focussed on inputs and outputs, 

disregarding the internal process. 

Epoch Artificial Neural Network iteration through all code. 

Example  A set of input-output combinations used a training data 

for machine learning, referred to as a labelled record.  

Invoice Document that maintains a record of transaction 

between buyer and seller. 

Label  The result or outcome of a record.  

Merkato  Product configurator software. 

Post-calculation Calculated labour cost of a product based on e.g., 

production times, used materials, and other costs. 

Pre-calculation Estimated labour cost of a product prior to 

manufacturing. 

Quotation costing Strategy in negotiations where supplier presents a clear 

cost structure and breakdown of costs. 

Quotation or Quote Formal statement setting out the estimated cost for a 

particular product or set of products. 

Record  Collectively forms a dataset for machine learning and 

holds the features.  

Reinforcement learning  Optimising a decision-making process through 

interactions and adjusting the process according to the 

response. 

Residuals Deviation of prediction from actual value. 

Shopfloorcontrol Extension of the ERP system that allows users to track 

labour times. 

Training data A dataset provided to a machine learning algorithm to 

find relationships and make predictions based on the 

obtained knowledge. 
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NOMENCLATURE 
 

Acronym Definition 

ABC Activity-based costing 

AIC Akaike Information Criterion 

ANN Artificial Neural Network 

CER Cost Estimation Relationship 

CI Confidence Interval 

CPC Cost Price Calculation 

CTO  Configure to Order 

DTR Decision Tree Regression  

ERP Enterprise Resource Planning 

ETO Engineering to Order 

FE Feature Engineering 

FS Feature Selection 

GBR Gradient Boosting Regression 

GPR Gaussian Process Regression 

IQR Interquartile Range 

KNN K-Nearest Neighbour 

LR Linear Regression 

ML Machine Learning 

MLE Maximum Likelihood Estimation 

MLP Multi-Layer Perceptron 

MSE Mean Squared Error 

MST Mean Total Sum of Squares 

MTO Made to Order 

OFAT One Factor at a Time 

PCF Product Configuration 

PDF Probability Density Function 

PP Prediction Propagation 

RFR Random Forest Regressor 

RMSE Root Mean Squared Error 

RMSLE Root Mean Squared Logarithmic Error 

RV Random Variable 

SFC Shopfloorcontrol 

SHAP Shapley Additive Explanations 

SLR Systematic Literature Review 

SMAPE Symmetric Mean Absolute Percentage Error 

SVM Support Vector Machines 

XGB Extreme Gradient Boosting 
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Variable Definition 

𝑊𝑖 Relative weight 

�̂� Sample proportion 

𝑞0 Non-systematic quote 

𝑞1 Systematic quote 

𝑥𝑖 Instance 

𝑥𝑖  Predicted value 

�̅�  Mean 

𝑦𝑖  Actual value 

𝜃 Maximum likelihood estimator 

𝜎𝜖
2 Maximum likelihood of the residual’s variance 

ℒ Maximised value of the likelihood function model 

𝐶 Cost 

𝐶 Confidence level 

𝐾  Number of folds 

𝑄 Quantity 

𝑑 Dimensionality 

𝑘 Number of estimated parameters 

𝑚 Number of instances 

𝑛 Number 

𝑡 Time 

𝑧 Z-score corresponding to the confidence level 
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1 INTRODUCTION 
 

Meilink Beheer B.V. (referred to as “Meilink”) started in 1874 as a timber yard and 

sawmill in Borculo. The firm later specialised in manufacturing wooden packaging, high-tech 

cleaning, and transporting capital goods all around the world. Meilink has expanded this 

specialty as a family business over 150 years. Acquisitions and strategic choices, such as in-

house forwarding activities, added them to the market leaders in the Benelux in 2024. 

Moreover, the firm is amongst the top internationally (Nieuwenhuis, 2014) in industrial 

packaging with approximately 470 employees and 9 branches. 

Satellites and advanced chip machines from renowned companies are not unusual 

contents of the tailor-made packaging. The wide range of daily activities involves processing 

product components ranging from wood, cardboard, steel, plastics, and foam into packaging. 

Under the slogan ‘Securing Value’, the firm strives to meet all customer requirements with 

minimal use of materials and fast delivery times, reinforced by the engineering departments 

that incorporate technical requirements in the design. We present Figure 1.1 as an example of 

one of the products and services.  

We distinguish product ranges into products which are made-to-order (MTO), products 

which can be configured-to-order (CTO), and tailored packaging. The latter product type is 

engineered-to-order (ETO), due to the engineering process involved to incorporate specific 

and unique requirements. All production processes feature a range of manual and automated 

operations, making human expertise essential. Labour costs are responsible for a significant 

share of the product (cost) price amongst the other costs (i.e., material, machines, capital, 

energy, etc.). 

 

 
Figure 1.1: Example of Meilink’s industrial packaging (Meilink B.V., 2024). 

The cost price and the corresponding margin are basic measures to ensure a profit on 

a product. CTOs are responsible for approximately 30% of the turnover. The specifications of 

a CTO are configured in the software Merkato, which allows the customer to adjust many 

factors, such as length, width, and height. More specific factors can also be customised in this 

software, for instance, positioning forklift and carriage beams under the crates, adding lifting 
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eyes, and adjusting the position of hinges. Although material quantities can be derived from 

the design, labour time remains difficult to estimate for unique products. Labour significantly 

affects the cost price of a product, therefore offering customers a quotation based on an 

estimation alone, comes paired with a risk.  

Employees of the sales department aim to provide customers with a quotation, listing 

a price that approximates the actual price that appears on the invoice. The price listed on the 

invoice is based on the expected costs and profit margin of that product. Frequent 

discrepancies between quotation and invoice can induce frustration for customers as prices 

can exceed their expectations. Besides, an incorrect cost price calculation resulting in a lower 

price than the actual cost price, can cause loss or missed profit. Hence, pricing accurately is a 

key requirement to ensure Meilink’s profit. The finance department desires a practical method 

that accurately calculates labour costs for a unique product. The main difficulty lies in the 

isolation of the effect of changing a single input parameter in the configurator. If such 

relationships exist, the model must also find relationships between input parameters that affect 

the labour cost. Ultimately, to provide a systematic method to determine the labour cost based 

on an expanding dataset. 

Therefore, we intend to develop a model that improves the accuracy of quoting labour 

costs. We define improving accuracy as bringing our prediction closer to the measured value. 

The primary focus is on improving the accuracy of the labour cost calculations. We aim to 

investigate how the combination of labour times and configurator data can improve the labour 

cost calculations. An advantage of mapping the labour cost is that components of the product 

cost price can be traced back to find unnecessary costs. A solution enables Meilink to find 

which process components can improve to affect (or reduce) the labour cost. 

To conclude, we aim to improve the product pricing process by analysing labour cost 

prediction for varying parameters in the configurator. Due to the large number of unique 

products, the labour costs are complex to estimate, while the configurator only calculates 

resources accurately. Hence, we focus on systematically determining labour costs prior to 

production, to allow the sales department to quote a reliable price by reducing the distance 

between quote and invoice. 

A practical solution to systematically estimate labour costs benefits the entire firm. 

Scheduling efficiency can be improved by gaining insights on more exact labour times. We 

expect to contribute to customer satisfaction by improving quotation accuracy, because 

quoting with a higher precision reduces the risk of cost overruns for the customer.  
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2 CONTEXT ANALYSIS 
 

In this chapter, we go into more detail of the context of the research problem. Placing 

the problem in the context of the firm helps to understand the stakeholders involved, influences 

from departments, and decision making. We described the outline of the general problem in 

the earlier chapter. We build on that problem and analyse its causes and effects in more detail. 

Furthermore, we describe the current situation, and illustrate its processes. We identify the 

core problem with the problem cluster we developed. Finally, we derive research questions to 

design a step-by-step research plan and solve the core problem.  

 

2.1 Product Configurator 
Customers showed demand for variations on existing products, which brought the 

configurator to life, where customers can tailor their own CTOs. Imagine that Meilink produces 

a standard wooden crate, and a customer can configure numerous variables such as length, 

width, and height. Logically, an infinite number of products are possible. Scheduling 

manufacturing for a standard product is not complex, it only requires some time to show what 

the approximate labour time is for that product. This is not necessarily the case for CTOs, 

where an infinite number of possibilities make it difficult to estimate the labour time needed to 

manufacture accurately. Merkato contains a list of continuous and discrete parameters, adding 

up to a total of eighty-five variables. 

Table 2.1 describes the turnover and the characteristics of each product type. An 

improvement can have high impact as CTOs make up about 30% of the turnover. In contrast 

to the standard products, which the firm produces in high volume with low variety, CTOs are 

produced in medium volumes and high variety. High variety is the result of the large number 

of possibilities in the configurator. Therefore, it is difficult to estimate manufacturing time and 

schedule operations.  

 

Table 2.1: Variety, volume and turnover share per product category.  

Category  Acronym Turnover [%] Variety  Volume 

Made to Order  MTO 50% Low High 

Configure to Order CTO 30% High Medium 

Engineering to Order  ETO 20% High Low  

 

Estimated labour time is currently based on the pre-calculation, determined with a tool 

in the ERP system that uses configurator parameters. The number of scheduled actions is 

multiplied with the average time per action, for each operation. For example, the configurator 

indicates that long wooden beams should be divided in smaller sections. A number of saw cuts 

are required: If 14 saw cuts are listed, and the standard time for a single saw cut is 6 seconds, 

this means that the pre-calculation reserves 84 seconds for saw cuts. The same applies for all 

other operations, such as, the number of holes drilled, screws screwed, or nails hammered. 

The firm introduced Shopfloorcontrol (SFC) as the designated software to document 

processing times. SFC is a software, allowing employees to track processing times by 
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scanning the barcode on the production instructions at the start and finish. The collected data 

are the resource for post-calculation and could assist in improving pre-calculations. However, 

in current operations, no valid method exists to estimate the labour time for a new unique 

product, based on the collected data. 

 

2.2 Quotation Costing Process 
Now we established the current method of quotation based on pre-calculation, the 

process of sales, quotation, and invoice can be described and analysed. Furthermore, the 

integration of SFC can also be integrated into the design for the application in this context. By 

Figure 2.1, we illustrate the interaction between customer, sales department, and production, 

including the data update recycle.  

 
Figure 2.1: Labour costing process for pre- and post-calculation. 

‘Data updated’ functions as an update from SFC back to pre- calculation. MTOs are 

assigned to the proper pre-calculation. However, estimating labour costs for CTOs and ETOs 

that have not been produced before, remains an obstacle.  

 

2.3 Product Costing in Manufacturing 
The price that a customer must pay for a product depends on a number of factors. 

Costs incurred in the manufacturing process are typically divided in direct and indirect costs. 

Indirect costs (or overhead costs) are not directly related to the manufacturing process 

(Eksteen & Rosenberg, 2002). Instead, these costs are more related to the general operation 

of the firm (Narong, 2009). Examples of indirect costs are energy supply, facility, and 

(essential) staff activities like accounting. Direct costs are typically the materials, resources, 

transportation, and machines used in the manufacturing process.  

In the current cost estimation process, the resources used in manufacturing are 

summarised to a total, taking the hourly cost of machines into account. Subsequently, the firm 

bills labour hours based on a calculated estimate, which partially relies on a comparison with 
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similar products and experiences. Transportation costs are calculated as a function of a fixed 

rate per kilometre, storage as a function of time and surface, and machine costs according to 

the running hours. The margin and overhead costs are calculated as a percentage. 

 

2.4 Problem Analysis 
The context we previously provided combines a cluster of problems, interconnected 

with cause-and-effect relationships. The core problem in its centre, visible in Figure 2.2, 

represents the root of the negative effects experienced. Summarised, the customers 

demanded variations of existing products to tailor their needs. Meilink developed a product 

configurator to allow for a smooth and simple configuration process for sales as well as 

customers. However, the configurator contains up to eighty-five discrete and continuous 

variables. Therefore, the number of combinations is infinite. This result brought along some 

problems. Every CTO is unique, and therefore, manufacturing processes must adapt. Although 

the resources are immediately specified, the labour time remains complex to estimate. Which 

resulted in the core problem that the circumstances are too complex. Consequently, required 

labour time and cost cannot be systematically determined without development of a 

mathematical model. Employees of the sales department experience customer complaints 

when invoices exceed quotations due to inaccurate cost estimations. In this case, the 

consideration between taking a loss or risking disappointing a customer is difficult. However, 

considering a situation where a quote turns out to be higher than the actual costs is a trade-off 

as well. The opportunity of some additional profit arises due to the customer's agreement to 

the (high) quote, but it can affect buyer-supplier relationships. Furthermore, scheduling issues 

and operation delays occur due to projects requiring more labour time than estimated. 

Following the chain of problems back to the problems that do not have a direct cause, 

leads to the core problem. Symptoms noticed by staff or customers would initially be perceived 

as the problem itself. However, the problem cluster in Figure 2.2 reveals a deeper layer of 

cause-and-effect relationships. Investigation of the core problem of the initial cluster revealed 

a problem with no direct cause. In this case, the core problem lies in the complexity of 

modelling the behaviour of labour cost. The enlarged area in Figure 2.2 is not part of the 

problem cluster but is an expansion of the core problem marked in grey. 

The problem cluster only describes problems related to the core problem addressed in 

our research. Hence, we intentionally excluded a number of items to increase the clarity of 

Figure 2.2. For instance, we only record a problem in the cluster if we are sufficiently confident 

that the problem actually occurs. Therefore, reducing the risk of solving problems that are not 

a problem after all. Additionally, when we cannot influence an occurrence, it cannot be a core 

problem. Furthermore, for the initial node of the cluster (‘Demand for variations in existing 

products’) we do not stipulate why this occurs. There is no relevance to speculate the decision 

of expanding the product range, thus, we exclude research surrounding this subject from the 

scope of research. 
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Figure 2.2: Problem cluster. 

We further decompose the core problem into action problems and knowledge 

problems, as the next step of analysing the core problem we identified. With our problem 

cluster, we established that the core problem relates to the complexity of modelling behaviour 

of labour cost. Furthermore, the discrepancy between norm and reality lies in the reliability of 

quotations. Reality is that quotations are not systematically priced and therefore sensitive to 

error. The norm, however, is that quotes represent the actual costs. Assigning variables to the 

norm and reality allows for a measurement of the discrepancy. Current estimations (𝑞0) 

represent the variable for reality and the actual labour cost represents the variable for the norm. 

The actual labour cost (𝑞1) is available since employees empirically measure labour hours 

during manufacturing. However, these data are not available at the time of quotation. 

Therefore, an objective is to predict an accurate labour cost, in such a way that the actual 

labour cost is within its 95% confidence-interval (CI).  

We express the variable for the discrepancy between 𝑞0 and 𝑞1 with the Mean Squared 

Error (MSE). The MSE is generally used to compare the fit of models or to quantitatively 

express a deviation between to variables, where larger errors are penalised more (Flach, 2019; 

Gupta et al., 2009). The variables and each of their properties are summarised in Table 2.2. 
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Table 2.2: Definition of variables in problem context. 

Variable Indicator Symbol Unit  

Reality Current estimation 𝑞0 [ min ] 

Norm Actual labour cost 𝑞1 [ min ] 

Discrepancy Measured with the Mean Squared Error 𝑀𝑆𝐸 [ min ] 

 

We evaluate the current performance of the quotation estimation to set a benchmark, 

and eventually, gain an insightful comparison with our improvement. We express performance 

with MSE and list accuracy in Table 2.3, for six types of products. For each estimation, we 

assess whether it is sufficient by finding its 95% confidence interval. If the true value lies within 

its confidence interval, we conclude the estimation to be sufficient. We defined the unit of 

accuracy as the percentage of sufficient estimations out of all estimations. We obtained these 

values by comparing estimated labour to actual labour (measured in minutes). 

 

Table 2.3: Current performance of quote estimation. 

Product n MSE Accuracy  

PCF102 219 71339.79 17.73% 

PCF103 160 18927.00 29.45% 

PCF201 68 11069.96 29.41% 

PCF206 95 4814.56 25.26% 

PCF401 187 10920.45 38.95% 

PCF407 82 2822.42 14.43% 

 

We mapped the cause-effect relationships between the problems, and we identified the 

core problem. We expressed norm, reality, and the discrepancy as variables. A distinction can 

be made between action and knowledge problems, in search of the solution. An action problem 

is the actual discrepancy, in this case, the gap between systematic and non-systematic 

quotations. The problem owners are the departments of sales, finance, and operations, since 

sales experiences negative effects in customer relationships, finance is unable to trace costs 

systematically, and operations experiences delays in manufacturing. 

Knowledge problems, on the other hand, deal with situations in which information is 

missing. While missing knowledge is a part of the cause, these knowledge problems occur in 

the initial approach of solving the core problem. For instance, a knowledge gap exists for 

methods directly applicable to model labour cost behaviour. The research population 

concerned in this knowledge problem are the stakeholders that decide the constraints and 

criteria that should be involved in the model. Furthermore, research problems can be further 

divided into two subcategories: descriptive or explanatory (Heerkens & Winden, 2017). 

Descriptive aims to know what, while the latter describes the why. Considering the context of 

this research, finding out what behaviour occurs is more relevant, as opposed to why it occurs. 

However, we do not exclude the why from our research.  

To summarise, the general action problem results from the discrepancy between norm 

and reality. The norm is providing customers with reliable quotations, representing the actual 
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costs. Reality is that components of the quotation rely on estimation and are not systematic. 

We must develop a practical and systematic model or method to solve this problem. However, 

we require more knowledge. The knowledge problems originate from the action problem. We 

need to understand relationships between variables that affect the quotations to improve 

quotation estimation. We will investigate relevant applications of similar methods, 

subsequently, we aim to combine these methods into a tailored solution. In the context of our 

research, we investigate methods that find and use the relationships between features and 

labour cost. 

 

The Managerial Problem Solving Method (MPSM) by Heerkens and Winden (2017) 

mainly focusses on action problems, though, it recognises that knowledge problems are 

unavoidable. The research takes a sidestep into the research cycle whenever knowledge is 

needed while problem solving. Once our research cycle is completed and we acquired new 

information, we re-enter into the MPSM at the phase that was interrupted by the knowledge 

problem. Although we do not fully apply the MPSM, this principle of diverging into the research 

cycle for knowledge problems does apply. Therefore, we illustrate our approach and the 

diversions from action problems to knowledge problems, in Figure 2.3. 

 
Figure 2.3: Problem analysis. 

Although we exclude implementation in the scope of our research, we included it in 

Figure 2.3 to provide context for the next steps. Moreover, gathering the exact specification 

required for the model represented by the second knowledge problem; “Determine 

assumptions, constraints, and criteria from stakeholders”. The node “Verification and 

validation” refers to testing the model and comparing result to the norm.  

Now we identified the core problem and formally stated the action problems and 

knowledge problems, the subsequent step is to turn the problems statements into practical 

research questions. 
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2.5 Research Questions 
In this section, we translate the action problems and knowledge problems established 

in the problem analysis into research questions. Research questions are, by nature, more 

relevant to the knowledge problems. However, answering research questions provides the 

information required to solve the action problem. The action problem aims to develop a labour 

cost behaviour model that can systematically provide accurate quotations. Building on that, 

Figure 2.3 in the previous section illustrated the conceptual steps of action problems, 

occasionally sidestepping into a knowledge problem. We formulated the central objective 

based on the context and the problem analysis as follows. 
 

To develop an algorithm that predicts labour costs of CTOs with the 

actual labour cost falling within the 95% confidence interval of the predictions. 
 

Keeping the objective in mind and consulting the steps in Figure 2.3, the main research 

question and sub-questions can be formulated. The main knowledge gap in this stadium lies 

in the identification of relevant methods and the criteria that the model must meet. Therefore, 

we divide the research questions into multiple subsections. Based on the context, we formulate 

following research question and sub-questions. 
 

RQ: How can the firm accurately and systematically predict labour costs for 
configurated products? 

 

Literature and related works: 

RQ 1.1: Which methods do researchers in literature apply to solve similar problems  

and what are the conditions of each method? 

 

Data collection and processing: 

RQ 2.1: What is a suitable amount of data for our approach? 

RQ 2.2: What is a suitable data expansion method in case the amount of data is 

insufficient? 

RQ 2.3: How is performance of predictions evaluated? 

RQ 2.4: What feature engineering approach is appropriate? 

 

Model design: 

RQ 3.1: What is an appropriate programming language for this application? 

RQ 3.2: How do we select underlying models in our algorithm? 

RQ 3.3: How does the model detect and manage outliers? 

RQ 3.4: How does the model track labour cost predictions? 

RQ 3.5: How does the model reduce the risk of overfitting? 

 

Model performance: 

RQ 4.1: What is the relative feature importance? 

RQ 4.2: What accuracy improvement can we achieve with our algorithm? 
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2.6 Scope and Limitations 
We explain the extent to which we explore the research area in the scope and 

limitations of this study. In other words, we describe what fields we include and exclude from 

our study. We define subjects we research within this study as within scope, while we classify 

specifically excluded subjects as limitations. 

Our objective relates to improving accuracy of the quotations by calculating labour cost 

systematically. We conducted our research from February 5, 2024, until June 14, 2024. We 

assume that the samples measured over time are representative for the products. We neglect 

the effect of increased employee experience impact on the labour costs over the relatively 

short time interval of our dataset. Additionally, we assume that every employee performs 

equally. 

We define ‘Improving accuracy’ as predicting a value closer to the real value than the 

current estimation approach. Ultimately, calculating a labour cost where the true value lies 

within the 95% confidence interval of the prediction. As we specified earlier, the model 

developed in this research focusses on calculating labour cost, specifically, labour costs from 

the manufacturing process of CTOs. MTO and ETO are explicitly excluded from the scope 

because the production processes of these products are not eligible for the model we aim to 

develop, refer to Section 2.1 for an elaboration on the differences in quotation costing 

processes between product ranges. 

The complexity lies in the estimation of labour hours in manufacturing processes; 

therefore, labour hours are the focus of the study. The firm approaches other labour and 

operations costs differently and therefore we disregard those costs from our research. The firm 

approaches staff hours as overhead, and the engineering department track their own specific 

costs itself. Furthermore, this also counts for internal transportation (i.e., forklifts), as the firms 

makes no distinction between the internal transportation of products. We also exclude 

integration into the ERP, training employees, and overall implementation in practice are from 

the scope. Our main focus is the development of the model, although, properties necessary 

for implementation are taken into account. Due to practical reasons in the context of this study, 

it is more relevant to describe what behaviour occurs in the labour cost than the explanation 

why it occurs, however, the why is not excluded. 

Data collection is beyond our control in this study. The availability of data is limited to 

the xml file ‘stuklijstregels’ (Bill of Materials) and the Excel file ‘bewerkingstijden’ (processing 

times) from July 18, 2023, until March 14, 2024. Furthermore, the data collection for the dataset 

was established prior to this research by an unknown method. Therefore, we must assume 

reliability and reproducibility of the data collection methods. 



  3 
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3 LITERATURE REVIEW 
 

The literature review chapter contains a framework of relevant literature surrounding 

labour cost calculation for production processes. This framework serves as foundation for the 

research design and methodology. Furthermore, with research conducted in the literature 

review, we showed the discrepancy between the existing literature and the objective. We used 

the systematic literature review method in the development of this framework, of which we 

attached a detailed description in Appendix A. 

 

3.1 Related Works 
The literature we consulted, covered various problems encountered in pricing and 

scheduling make-to-order products. Different methods are known to determine the cost 

statement (material cost method, kilo-cost method, division costing, equivalence costing, 

similarity costing, surcharge costing, and target pricing). These costing methods mainly 

depend on estimation, and therefore lack precision (Berwing et al., 2022). Overhead costing 

is, amongst the previously stated, by far the most frequently applied method (Schuh & Schmidt, 

2014). However, due to the lack of precision and focus on low variety products, the methods 

stated are not suitable for CTO and ETO products. Literature covers a number of related 

examples in which a model is developed to predict a quotation cost accurately, for products 

that have not been produced before. 

Asaolu and Nassar (2007) defined cost behaviour as the study of the ways in which 

costs vary with the amount of labour practiced. Drury (2013) describes costs as expenses 

consumed in the process of generating revenue. Profit is defined as the excess of revenue as 

the cost is deducted (Oluwagbemiga et al., 2014). The distinction between fixed and variable 

costs (also known as direct and indirect expenses) is justified in describing the reaction of profit 

to activity levels in an organization. Fixed costs remain constant for a given period of time, 

despite changes in related level of activity (Horngren et al., 2010). However, over a sufficient 

amount of time, virtually all fixed costs turn variable (Hansen & Mowen, 2007). Attempting to 

solve problems in traditional cost management systems, Kaplan & Anderson (2007) published 

the activity-based costing (ABC) method. The authors designed this method to allocate costs 

to each product, if and only if, manufacturing this product required that activity. In case of 

overhead costs, this means that a fixed percentage is no longer the case. Activity based 

costing accumulates all costs associated with the production process required to produce the 

output (Cokins, 2002).  

Denkena et al. (2009), developed a rule-based quotation costing system for pressure 

die casting moulds. The researchers developed a calculation system that integrated the 

experiences of manufacturers in rules and subsequently made an optimised calculation 

possible. An automated generation of a bill of materials and the corresponding process plans 

were realised with the help of this model. The costs could then be determined according to the 

specified amount of work of each operation. Therefore, the authors developed a model for 

determining an accurate quotation cost by analysing past data.  

Chienwichai et al. (2016), developed a process-based costing model which estimated 

the production costs of a gas-induced semisolid process. The described model is based on 
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three factors: cycle time, rate of waste, and die life. These factors were found to affect the 

cycle time, hence, affecting the unit production costs.  

Lan & Ding (2007) developed an algorithm that predicts build-time of stereolithography 

parts to implement accurate quotations. The model incorporates geometrical features and 

support structures through a statistical method. The authors compared two quotation 

approaches, which include rough quotation based on weight and precise quotation based on 

build-time. The authors developed an algorithm to predict build-time, which incorporates the 

geometrical features drawn from the product design. The result turned to a web-based 

automated quotation system that provides an accurate price quotation instantly.  

Shehab & Abdalla (2002) propose an intelligent knowledge-based product cost 

modelling method. This system does not require detailed design input; therefore, it enabled 

application in an early design stage, hence, reducing cost and lead times. Furthermore, this 

model has the capability of selecting materials, machining processes, and parameters based 

on a set of design and production parameters. Additionally, through the capabilities of this 

model, the product cost could be estimated throughout the entire product development cycle, 

including assembly costs. 

Furthermore, Cavalieri et al. (2004) conducted research comparing the results of two 

cost estimation approaches: statistical methods and artificial neural network (ANN) techniques, 

respectively. Cavalieri et al. (2004) specifically investigated the cost estimation of the unitary 

manufacturing costs for brake discs in the automotive industry. The authors confirmed the 

validity of the ANN model, although it did not display clear superiority with respect to the 

statistical approach. The ANN model was characterised by a better trade-off between precision 

and accuracy. However, this advantage comes with a reduced transparency of interpreting 

output data. 

 

3.2 Cost Estimation Methods 
Estimating cost increases in complexity as more factors get involved. Especially when 

more products are manufactured, and the marginal costs decrease. For example, the division 

of overhead costs and the decrease of engineering costs. Ruffo et al. (2006) and Lan and Ding 

(2007) developed compact frameworks of approaches to estimate costs. The principal 

quantitative methods to estimate costs in manufacturing are: 

 

1) Analogy-based techniques: This approach is based on a derivation of an estimation 

from actual data about similar products. 

2) Statistical models: This approach expresses costs as an analytical function of a set 

of variables, typically referred to as cost-estimation relationships (CERs). 

3) Engineering approaches: The estimated cost is analytically calculated as an 

aggregate of its elementary components, represented by the cost of the resources 

used in each step of the process. An accurately defined process is required for this 

approach. 

4) Machine learning: Model that identifies relationships, dependencies, and cause-

effect relationships between different design solutions, based on classic 

cost/benefit ratio and applies regression techniques. A limitation of this method is 

that some of the relationships found cannot be logically argued, in other words, 

transparency is limited (Cavalieri et al., 2004).  
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The first category, i.e., analogy-based techniques, relates most to Meilink’s current 

approach of cost estimation and are shown to be non-systematic (Lan & Ding, 2007). Hence, 

analogy-based techniques are sensitive to error and lack reproducibility. The third method, i.e., 

the engineering approach, relies on the decomposition of work and resources required to 

complete the product. This method lacks the ability to estimate labour cost due to the 

unpredictable nature of labour cost in the context of our research. The statistical method aims 

to evaluate the product cost from characterising the product without describing it completely. 

In other words, it develops statistical relationships between the features and the price of 

previous products. Machine learning effectively operates similar to the statistical approach in 

an automated fashion at the cost of a reduced transparency. However, a single method might 

not be sufficient in practice. A model that combines several of the methods synthetically, might 

outperform application of a single method (Layer et al., 2002). We aim to investigate statistical 

methods, multi-parameter approaches, and machine learning methods in the following 

sections.  

 

3.3 Multi-Parametric Modelling 
Experiments in manufacturing organisations are often organised as a series of trials or 

tests which yield quantitative results. For instance, to test the impact of adjustments on the 

efficiency of the process. These experiments aim to explore, estimate, or confirm. For 

manufacturing processes, it is often important to find relationships between input factors. Not 

all input parameters influence the results equally, some parameters have a strong relationship, 

and some weak or not at all. One of the most common approaches is the One-Factor-At-a-

Time (OFAT), where the effect of changing a single input variable is measured. This approach 

is time consuming, requires a lot of resources and high costs are often associated with 

experimenting on a manufacturing line. Hence, OFAT reveals a limited amount of information 

and requires a relatively large investment (Antony, 2023). 

An effective method that handles multiple input variables is Design of Experiments 

(DOE). This method plans, designs, and analyses so that valid and objective conclusions can 

be drawn. It integrates statistical methods into the experimental design. What distinguishes 

DOE from OFAT is the possibility to test the response of multiple variables in fewer runs. 

Additionally, DOE considers test runs in which multiple factors are changed simultaneously, 

therefore, it can analyse combined effects and identify interactions and dependent variables. 

OFAT is unable to identify interactions between parameters. DOE runs multiple tests in a 

randomised order, preferably with replication of runs. The number of replications is generally 

determined ‘with degrees of freedom’, in other words, the number of independent and fair 

comparisons that can be made in a dataset. Statistics in the context of DOE claim that the 

degree of freedom related to a process variable is one less than the number of levels a factor 

can have. Consider an experiment where output is observed for three different temperature 

levels. The number of degrees of freedom for this example is two. If an experiment is 

conducted in eight trials and each trial condition is replicated, the number of observations is 

16. Therefore, the total degrees of freedom is 15 (i.e., 16 − 1 = 15) (Franceschini & 

Macchietto, 2008). To conclude, DOE is a dynamic, statistical, and mathematical method. 

Applying DOE to a manufacturing process leads to a mathematical representation of measured 

output behaviour at different input factor levels. Furthermore, it allows to process more input 

variation in less time than the traditional OFAT. Therefore, the principle of DOE is useful for 

the problem addressed in this research. 
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3.4 Machine Learning  
Machine learning (ML) is generally useful to handle data more efficiently than traditional 

approaches (Mahesh, 2020). In some cases, machines are more efficient in extracting 

information from data. The purpose is to learn from the data and subsequently make decisions 

based on that knowledge. In other words, instead of prompting a computer to do a repetitive 

task, it learns from experience (Harrington, 2012). Once the algorithm knows what it has to do 

and how, it can execute tasks autonomously. Machine learning algorithms can be developed 

in many common programming languages. The popularity of Python in data analytics 

increases, partly due to its increasing availability of libraries (Hao & Ho, 2019; Lee, 2019; 

Srinath, 2017). Other commonly used programming languages for machine learning are: R, 

Javascript, and C++. 

Mahesh (2020) developed a framework of commonly used machine learning 

algorithms, reviewing the fundamentals of each type and its applications. We illustrate the 

subsections of machine learning in Figure 3.1, most of which contain multiple variants. Each 

of the discussed subcategories of require different conditions and perform better in specific 

applications. The following sections provide a brief review of the different methods, 

 
Figure 3.1: Commonly used types of machine learning. 

An understanding of terminology in machine learning is useful to explain the process 

of each of the types, and ultimately, to select a suitable method. The terminology is as follows: 
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regression problems aim to find a number and classification problems aim to classify or 

categorise (Loh, 2011). Records (also referred to as instances or samples) collectively form a 

dataset where each record holds a description of an event (e.g., length, width, height) called 

attributes or features. We refer to their specific values as feature values. The space or range 

a value can take is the feature space, sample space, or input space. The outcome of a record 

is referred to as a label, and a sample with a label is called an example. The ability to work on 

new samples is called the generalization ability. Since in the optimal situation, the model works 

with the whole sample space. Although the training dataset is usually a small proportion of the 

sample space, it is desired that it reflects the characteristics of the entire sample space, to 

some extent (Carleo et al., 2019; Zhou, 2021). Furthermore, we divide the learning process 

into two categories: supervised and unsupervised learning. Supervised refers to presence 

clustering or labelling in the training data. A machine can distinguish between factors more 

easily if the data are labelled in different categories. Unsupervised refers to the absence of 

underlying labels and therefore the machine is required to use automated methods or 

algorithms on the data that have not been classified or categorised. In other words, the 

algorithm learns underlying relationships from available data (Alloghani et al., 2020). 

 

In the following section, we provide a brief review of the main categories of machine 

learning (Dangeti, 2017; Kotsiantis et al., 2007; Mahesh, 2020; Zhou, 2021). Since there are 

multiple types of machine learning, we make a preliminary selection to focus on the relevant 

methods based on the conditions of this research. 

The three main machine learning categories are: 1) Supervised learning connects an 

input to an output based on examples it learns from. This type of machine learning applies a 

function obtained through the labelled training data. Furthermore, this type of machine learning 

requires external assistance. 2) Unsupervised machine learning requires no external 

assistance. The algorithm is left to its own devices to discover the structure and relationships 

in the data. It only learns some relationships from the data, when new data are introduced, it 

uses the previously learned knowledge to classify the new data. 3) Semi-supervised learning 

is a combination of supervised and unsupervised learning methods. It is efficient in applications 

where unlabelled data are present and labelling the data is too complex. This method trains 

the algorithm with labelled data, where each record contains the outcome information. 

Machine learning techniques can usually operate under any of the categories. 

Reinforcement learning continuously learns through interactions with its environment and 

adjusts according to the response. Multitask learning is a type of machine learning that aims 

to solve multiple, different tasks simultaneously. By accounting for the similarities between 

different tasks, it can improve learning efficiency and act as a regulator. Ensemble learning 

applies a process where a combination of multiple models is applied to solve a computational 

problem, generally to improve performance of a model. Neural networks contain a series of 

algorithms that aim to identify relationships in a dataset, this mimics the fashion a human brain 

works. Neural networks adapt when an input changes; it generates the optimal result without 

requiring redesigning the output criteria. This method can be applied in supervised, 

unsupervised, and reinforced. Instance based learning refers to a group of methods for 

classification and regression that generate a prediction based on similarity of its nearest 

neighbour(s) in the training dataset.  
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Regarding the context and the data available, the most relevant category of machine 

learning is supervised learning. We elaborate and describe different techniques in this category 

in the following sections. 

 

3.5 Supervised Machine Learning 
Supervised machine learning refers to the presence of labels in the training data. In 

other words, the outcome of the records is included in the data. This method maps input-output 

relationships and applies this knowledge to calculate outputs for new (unlabelled) inputs. The 

process of learning a set of rules from instances (examples) is referred to as inductive learning. 

A classifier is created that can be used to generalise new instances (Kotsiantis et al., 2007). 

Figure 3.2 illustrates the schematic process of supervised machine learning, where a dataset 

is divided in training data and test data. The model is trained with the training data and 

subsequently tested with the test data.  

 
Figure 3.2: Schematic representation of supervised machine learning. 

Consider a three-feature record as three axes, spanning a three-dimensional space 

that describes the product. For example, a product with varying length, width, and height, 

where the time to build this product is the label. Since every combination of the three feature 

levels can be positioned in this space, every point in the space corresponds to a position 

vector, called a feature vector. Let 𝐷 = {𝑥1, 𝑥2, … , 𝑥𝑚} be a dataset containing 𝑚 instances, 

where each instance is described by 𝑑 features. In this case, three features are used to 

describe the product. Each instance 𝑥𝑖 = (𝑥𝑖1; 𝑥𝑖2; … ; 𝑥𝑖𝑑) ∈ 𝜒 is a vector in the 𝑑-dimensional 

sample space 𝜒, where 𝑑 is called the dimensionality of the instance 𝑥𝑖. 

The outcome information should also be available, in our case, labour cost of the 

product. This outcome is referred to as a label, and a sample with a label is called an example. 

Generally, the 𝑖th sample can be written as (𝑥𝑖 , 𝑦𝑖), where 𝑦𝑖 ∈  𝛶 is the label of the sample 𝑥𝑖, 

and 𝛶 is the set of all labels, also referred to as label space or output space. If the prediction 

output is discrete (e.g., true or false) it is called a classification problem. In this example, the 

prediction output is continuous, the labour time, it is called a regression problem (Gonzalez-

Carrasco et al., 2012; Zhou, 2021). 

Referring to Figure 3.1, the supervised machine learning principle hosts multiple sub-

methods. We explain the underlying principles of the main methods that can be used for 

supervised machine learning: Support Vector Machines (SVM), Linear Regression (LR), 

Random Forest Regressor (RGR), and Artificial Neural Networks (ANN) 
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3.5.1 Support Vector Machines 
Classification problems and regression problems are both candidates for SVM. 

Mountrakis et al. (2011) describe these models as non-parametric statistical learning models, 

which make no assumption on the underlying data distribution. The method uses a labelled 

dataset to find a hyperplane in the training phase (Anguita et al., 2012). The hyperplane is 

chosen by the algorithm in such a way that the distance between the hyperplane and the 

nearest data points (called support vectors), is maximised (Meyer & Wien, 2001; Noble, 2006).  

 

3.5.2 Linear Regression 
Linear regression is especially suitable for predicting continuous variables based on a 

labelled dataset (James et al., 2023). LR models the relationship between input variables 

(referred to as independent variables) and the target variable (referred to as dependent 

variable) by using a linear equation. The goal of the training phase is to learn the values of the 

parameters that minimise the error between the predicted and the actual values. Typically, the 

algorithm achieves an optimum by minimising a loss function like Mean Squared Error (MSE) 

or Mean Absolute Error (MAE). Once the model is trained and the optimal parameters are 

known, it can be applied to make predictions on new, unseen data (Fox, 2019; Uyanık & Güler, 

2013). 

 

3.5.3 Random Forest Regressor 
This technique is suitable for regression problems and belongs to the family of decision 

tree-based models. However, it extends on traditional decision trees by building multiple trees 

and combining their predictions. Each tree in the combination is trained on a random subset 

of the training data. RFR aggregates the individual predictions but reduces overfitting by taking 

the mean of median of each of the predictions (Segal, 2004; Sekhar & Madhu, 2016). 

 

3.5.4 Artificial Neural Networks 
Over the last years, ANNs have grown in popularity (Gurney, 2018; Tkáč & Verner, 

2016). This principle is inspired by how a human brain functions, which is generally 

represented as a network of interconnected neurons (Yegnanarayana, 2009). The connections 

between neurons are the synapses. This network of connections stores the knowledge in a 

distributed fashion. Figure 3.3 illustrates the network of interconnected elements. Another 

similarity between ANNs and the human brain is the learning approach. Both the human brain 

and ANNs need to train to obtain knowledge. Generally, an ANN is trained by means of 

“training data”, to identify a set of patterns. This set of patterns represents the experience 

gained by the ANN to recognise in future application (Basheer & Hajmeer, 2000). Hence, an 

ANN has the ability to infer from the knowledge to answer new inputs that have not been 

presented to the ANN before (Abiodun et al., 2018; Agatonovic-Kustrin & Beresford, 2000; 

Graupe, 2013). 
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Figure 3.3: Schematic representation of an ANN with 𝒏 inputs and one output. 

Multi-Layer Perceptron is a type of supervised ANN that is suitable for regression 

problems. The algorithm is provided with data and feedforward propagation predicts the 

outputs by passing activation through the layers of neurons (Park & Lek, 2016; Popescu et al., 

2009). Backpropagation then adjusts the weights and connections based on the calculated 

error between the prediction and the true value. The aim of the training phase is to minimise a 

specific loss function (Costa et al., 2023). The model can make predictions after completing 

the training phase and the network of neurons is configurated. 

 

3.6 Data Requirements 
The amount of data available impacts the accuracy and reliability of a machine learning 

algorithm (L’heureux et al., 2017). Training the model is a process of tuning its internal 

parameters that aims for a balance between training accuracy and regularity. Proper training 

inhibits the effect of overfitting as well as underfitting (Ying, 2019). Therefore, the model 

requires sufficient training samples to reach this balance and the sample size is proportional 

to the number of variables. Huang et al. (2002) found that the number of available samples 

has a larger impact on the accuracy than the type of machine learning algorithm that is applied. 

The general rule of thumb for a number of training samples in machine learning is at least 10 

times the number of features (Maxwell et al., 2018). Additionally, regardless of the variable 

range, the dataset is split into training data, validation data, and test data in a 50-25-25 ratio, 

respectively, when hyperparameter tuning is involved (Dangeti, 2017). Common practice is an 

80-20 ratio of training data and test data (Joseph & Vakayil, 2022; Muraina, 2022; Nguyen et 

al., 2021). The amount of data required for a statistical approach can be derived from Equation 

1 at the preferred confidence level, assuming a normal distribution. 

 

[95%]𝐶𝐼 = x̄  ∓  z ∙  (
σ

√n
) (1) 

Where: 

x̄: sample mean 

𝑧: z-score corresponding to the confidence level 
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𝑛: sample size 

𝜎: sample standard deviation 

 

The 𝑧-score for a 95% interval is 1.96 and the margin of error for a confidence interval 

for a population mean can be calculated with Equation 2: 

 

𝐸 =
𝑧 ∙ 𝜎

√𝑛
(2) 

 

Subsequently obtain sample size 𝑛 by rearranging Equation 2: 

 

𝑛 = (
𝑧 ∙ 𝜎

𝐸
)

2
 

 

The following methods can be applied in case the amount of available data to train a 

model is limited (Karystinos & Pados, 2000; Sun et al., 2014; Yip & Gerstein, 2009): 

 

1) Acquisition of additional data. 

2) Addition of random noise to the existing dataset. 

3) Re-acquire information from existing dataset. 

4) Generate new data based on distributions observed in the existing dataset. 

 

Karystinos and Pados (2000) conducted research regarding overfitting, generalization, 

and expanding datasets. Overfitting occurs when the dataset is too small, and the objects do 

not have enough information to form local models. An infinite sequence of artificial input-output 

vectors was created to combat overfitting. The initial approach was to add (white Gaussian) 

noise to the training set. The addition of noise refers to generating a set of standard-normal 

distributed (𝜇 = 0, 𝜎 = 1) values and adding it to the input of the model. Noise is only added 

during training, it is excluded from the evaluation and when the model is actually making 

predictions. Additionally, the authors applied a statistical method that expands the training data 

by observing the distribution and generating data that fits that specific distribution. 

Yip and Gerstein (2009) propose a concept of training set expansion named Prediction 

Propagation (PP). The method effectively re-acquires data from the existing dataset by 

generating auxiliary training examples. In other words, it allows the model to re-learn from 

information-rich regions. 

It has become clear what criteria our data must meet. The rule of thumb for machine 

learning approaches is that the sample size should be at least ten times the number of features. 

The amount of data for a statistical approach can be derived from the confidence interval 

equation. In case the data amount is insufficient, it can be reused from information rich regions. 

 

3.7 Feature Engineering 
Feature Engineering (FE) directly affects the performance of the model by modifying 

shape, distribution, or size the dataset it works with. This technique assists in creating new 

features of transforming old ones to improve the model’s ability to learn and generalise the 

data (Khalid et al., 2014; Miotto et al., 2018). For example, a certain model might struggle with 

a heavy tailed dataset. Reducing the probability mass in the high end and converting it to a 
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longer tail can improve the readability for the model. The top figure in Figure 3.4 resembles the 

original distribution with a heavy probability mass near zero. The bottom figure resembles the 

same dataset after FE transformation. 

Many methods belong to FE. Feature Selection (FS) is a data preprocessing strategy 

to select relevant features from the dataset (Li et al., 2017). This way, most relevant information 

is preserved in the dataset. Other scaling methods are min-max scaling, standardization, log 

scaling and z-score normalisation (Ambarwari et al., 2020). Imputation of missing values 

implies filling the missing values in the dataset with either the mean, median, mode or other 

advanced methods like KNN Imputation (Donders et al., 2006). Alternative methods like One-

Hot Encoding and Label Encoding represent categorical variables as binary vector or as 

integers, respectively (Rodríguez et al., 2018; Yang et al., 2021). 

 

 
Figure 3.4: Distribution before (top) and after transformation (bottom). 

Feature engineering assists in improving the algorithm’s interpretation of our dataset, 

for instance, by eliminating a heavy-tailed distribution by normalisation, and engineering new 

features the algorithm can extract information from. 

 

3.8 Performance Metrics  
Evaluating the performance and fit of a model or method requires performance metrics. 

Evaluating a classification problem is straightforward, it can be expressed in a percentage of 

accuracy. A regression problem, however, requires greater consideration (Flach, 2019; 

Rodriguez-Galiano et al., 2015). Chicco et al. (2021) state that no consensus has been 

reached on a unified performance metric for regression problems. We elaborate a number of 

performance metrics that are used in literature to evaluate the performance of models. 
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3.8.1 Akaike Information Criterion 
The metric AIC is generally used to compare the fit or performance of different 

regression models (Bonakdari & Zeynoddin, 2022; Cavanaugh & Neath, 2019; Li et al., 2020; 

Oshan et al., 2019). The AIC rewards a level of fit where the lowest value represents the best 

fit. We calculate AIC with Equation 3: 

 

𝐴𝐼𝐶𝑖 = 2𝑘𝑖 − 2 ln(ℒ𝑖) (3) 

 

Where: 

ℒ𝑖: maximised value of the likelihood function of model 𝑖 

𝑘𝑖: number of estimated parameters of model 𝑖 

 

𝐴𝐼𝐶𝑖 = 2 ln (
𝑒𝑘𝑖

ℒ�̂�

) 

 

The maximum likelihood estimation (MLE) is obtained through the log-likelihood 

function. Let the set 𝑌1, … , 𝑌𝑛 be 𝑛 independent random variables (RVs) with probability density 

function (PDF) 𝑓𝑖(𝑦𝑖; 𝜽) that depends on the vector parameter 𝜽. We denote the likelihood 

function ℒ�̂� as ℒ(𝜽; 𝒚), for the unknown parameter 𝜽 given the data 𝒚 = (𝑦1 … 𝑦𝑛)′ for 𝑛 

independent observations is: 

 

𝑓(𝒚; 𝜽) = ∏ 𝑓𝑖(𝑦𝑖; 𝜽) = ℒ(𝜽; 𝒚)

𝑛

𝑖=1

=  

 

The log-likelihood function is formulated as follows: 

 

log ℒ (𝜽; 𝒚) = ∑ log 𝑓𝑖(𝑦𝑖; 𝜽)

𝑛

𝑖=1

 

 

Maximization of the likelihood function (or equivalently the log-likelihood function) to 

estimate the parameter 𝜽 given the data 𝒚, works by choosing the parameter value that makes 

the observed data as likely as possible. The maximum likelihood estimator is denoted as �̂�. 

 

3.8.2 R-squared 
The Coefficient of Determination or R-squared expresses the proportion of variation in 

the dependent variable that is predictable from the independent variable(s) (Nakagawa et al., 

2017). Chicco et al. (2021) claim that the R-squared is more informative than any of the other 

treated metrics to assess regression analysis performance. The R-squared can take values in 

the range (−∞,1], a value closer to 1 indicates a stronger relationship and a value closer to 0 

indicates no relationship between the variables (Asuero et al., 2006; Chicco et al., 2021). We 

calculate R-squared with Equation 4: 

 

𝑅2 = 1 −  
∑ (𝑥𝑖 − 𝑦𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

(4) 
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Where: 

𝑛:  sample size 

𝑥𝑖: 𝑖th observed value 

𝑦𝑖: 𝑖th predicted value  

�̅�:  mean of the predicted values 

  

 
Figure 3.5: Example of 𝑹𝟐 in a scatterplot. 

 

The scatterplot in Figure 3.5 plots fifty data pairs along with a regression line. The R2 

describes a proportion of the independent variable’s ability to predict the dependent variable.  

 

3.8.3 Mean Squared Error  
Mean Squared error (MSE) or Brier score is a performance metric which decomposes 

into calibration loss and refinement loss (Flach, 2019). The obtained value of MSE depends 

on the unit of the predicted variable and lies in the interval [0, ∞) (Gupta et al., 2009) and is 

calculated with Equation 5:  

 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

(5) 

Where: 

𝑛: the sample size  

𝑥𝑖: the 𝑖th observed value  

𝑦𝑖: the 𝑖th predicted value 

 

Root Mean Squared Error (RMSE) and MSE are closely related through the square 

root. Evaluation results of models based on MSE are generally equal to an evaluation based 

on RMSE, calculated with Equation 6: 
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𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

(6) 

Where: 

𝑛: the sample size  

𝑥𝑖: the 𝑖th observed value  

𝑦𝑖: the 𝑖th predicted value 

 

Chicco et al. (2021) state that the MSE is more suitable when outliers need to be 

detected because it can attribute greater weights to outliers. Since 𝑅2 = 1 −
𝑀𝑆𝐸

𝑀𝑆𝑇
 and the Mean 

Total Sum of Squares (MST) is fixed for the dataset, R-squared is (negatively) linearly related 

to MSE. We calculate MST with Equation 7: 

 

𝑀𝑆𝑇 =
1

𝑛
∑(𝑦𝑖 − �̅�)2

𝑛

𝑖=1

(7) 

with 

�̅� =
1

𝑛
∑ 𝑦𝑖

𝑛

𝑖=1

  

Where: 

𝑛: sample size  

𝑦𝑖: 𝑖th predicted value  

�̅�:  mean of the predicted values 

 

3.8.4 Pearson Correlation Coefficient 
The Pearson correlation coefficient (Equation 8) for linear correlation 𝑟 is another way 

to express the strength and direction of a linear relationship (Asuero et al., 2006; Zou et al., 

2003). The range of 𝜌 is between -1 and 1, where a negative value shows a negative 

correlation, and a positive value indicates a positive correlation. Closer to either -1 or 1 shows 

a stronger relationship, and 0 indicates no correlation (Cohen et al., 2009).  

 

𝜌 =  
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)𝑛

𝑖=1

√∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1 ∑ (𝑦𝑖 − �̅�)2 𝑛

𝑖=1  
 (8) 

Where: 

𝑛: sample size  

𝑥𝑖: the 𝑖th observed value  

𝑦𝑖: the 𝑖th predicted value 

�̅�: sample mean of 𝑥 

�̅�: sample mean of 𝑦  
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3.9 Intermediate Conclusions 
RQ 1.1: Which methods do researchers in literature apply to solve similar problems 

and what are the conditions of each method? The reviewed literature covered several 

approaches to calculating costs in a multi-parametric context. Four prominent cost estimation 

methods in literature are: analogy, statistical, engineering, and machine learning. Analogy-

based techniques are similar to the current approach of an estimation based on a comparison 

to similar products. The engineering approach calculates the cost from its elementary 

components and does not work for labour costs. Statistical cost calculation evaluates the cost 

from a statistical relationship between the features and the price of historical products. Machine 

learning applies the same principle but automated and the ability to learn. We discussed the 

subcategories of machine learning, from which, we select the following techniques for 

evaluation: Linear Regression (LR), Multi-Layer Perceptron (MLP), Gaussian Process 

Regression (GPR), Random Forest Regression (RGR), Support Vector Machines (SVM), 

Decision Tree Regression (DTR), Gradient Boosting Regression (GBR), K-Nearest 

Neighbours (KNN), and Extreme Gradient Boosting (XGB). 

RQ 2.1: What is a suitable amount of data for our approach? The general rule of thumb 

in machine learning for data amounts is that the dataset should be at least ten times the 

number of variables, split into training data and test data in an 80-20 ratio, respectively. 

Statistical methods derive minimal sample size from the normal distributed confidence interval 

equation. 

RQ 2.3: How is performance of predictions evaluated? We can evaluate the 

performance and fit of models with MSE, RMSE, R-squared, AIC and PCC. A positive value 

closer zero indicates a better fit for MSE, RMSE, and AIC. R-squared can take values up to 

one, where one is a perfect fit. 

RQ 2.4: What feature engineering approach is appropriate? Based in the literature we 

consulted, we propose normalising the data with min-max normalisation. Eliminating a heavy 

tailed distribution improves the readability of the dataset for the model. We use the most 

important features of each product to engineer new features, we discuss the method in 

Appendix B. 

RQ 3.1: What is an appropriate programming language for this application? Machine 

learning algorithms and statistic methods can be developed in many common programming 

languages, we select python due to its availability of libraries.  
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4 METHODOLOGY 
 

In this chapter, we describe the methods applied during our research and justify why 

we selected the methods. We included the process of collecting, preparing, and analysing data 

in Appendix B. The methodology is limited to less common methods and principles, more 

common methods are attached in Appendices A and C. 

 

4.1 Introduction 
The firm first noticed the problem since the product range expanded to a configuration 

option. Customers were now able to configure an infinite number of products. The core problem 

brought along by the innovation was that it became too complex for staff to estimate labour 

cost systematically. Labour times are empirically tracked during manufacturing; therefore, a 

quantitative dataset of product parameters and labour times is available. By literature review 

we found an advantage of computational decision-making over that of a human, as well as 

advantages in accuracy and learning speed. This directed the objective toward the 

development of an algorithm: 

 

“To develop an algorithm that predicts labour costs of CTOs with the 

actual labour cost falling within the 95% confidence interval of the predictions.” 

 

We formulate a concrete solution approach and elaborate the decision-making process 

in the following sections. We describe the source and composition of the dataset in more detail, 

discuss model validation and outlier treatment methods. 

 

4.2 Solution Approach 
The desired model and its properties can be illustrated in a black box model, i.e., 

disregarding the internal process. We designed it as follows: the available input, training data, 

and desired output are known, along with a dataset of specific configuration parameters and 

the labour times of products manufactured in the past. The model should find the relationship 

between levels of parameters to identify exactly what effect each parameter has on the labour 

cost and with what intensity. The dataset provides the model with all available information and 

the model calculates an educated estimate of the labour cost of a product. In other words, the 

model finds relations in the training-data and applies this knowledge to the newly presented 

input to estimate the output based on known relationships between parameters. Figure 4.1 

represents the described black box model. 

This dataset is based on products that have been manufactured in the past and is 

referred to as training data. After the model is ‘trained’, we present to with a new set of 

configuration parameters from a product that has not been manufactured (unknown labour 

time). The model then uses the relationships learned to calculate the estimated labour time. 

Labour times are tracked during manufacturing of that specific products. This information can 

be redirected back to the model so it can compare the estimation to the measured value and 

adjusted accordingly. Therefore, the model improves as more data are presented. The model 

determines the sensitivity of each parameter on the final labour time, and therefore the cost. 
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Figure 4.1: Black box model. 

Connecting the Blackbox model in Figure 4.1 to the labour costing process in Figure 

2.1, yields Figure 4.2, a process description of the labour price algorithm to be developed. This 

combination includes important components to the development of the model. For instance, 

the data recycle from the manufacturing phase, back into the model. 

 
Figure 4.2: Detailed labour costing with CPC model. 

The literature we reviewed, presented several approaches to calculating costs in a 

multi-parametric context. We investigate what type of data are available in the context analysis. 

We identified four main cost estimation methods: analogy, statistical, engineering, and 

machine learning, two of which are unsuitable for this research, since analogy-based 

techniques are similar to the current approach of an estimation based on a comparison to 

similar products. Engineering approaches calculate the cost from elementary components and 

do not prove effective for labour costs. The remaining two methods remain appropriate: 

statistical approach and machine learning. Statistical approaches to cost calculation evaluate 

the cost from a statistical relationship between the features and the price of previous products. 

Machine learning applies the same principle but automated with the ability to learn. However, 

machine learning comes with reduced transparency. 

We discussed and compared eight subcategories of machine learning in the literature 

review. Two of which, suit the conditions of application: supervised machine learning and 

statistical modelling. Supervised machine learning requires a labelled dataset, which is 

available in our situation. Statistical modelling finds underlying relationships between variables 

and makes decisions based on that. Table 4.1 summarises and compares the main 

characteristics of the approaches (Baker et al., 2016; Dangeti, 2017; Henderson et al., 2018; 

Szepesvári, 2022). 
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Table 4.1: Differences in statistical and machine learning methods. 

Statistical modelling Machine learning 

Formalises relationships between variables 

by expressing them as mathematical 

equations. 

It is an algorithm that learns relationships 

from the dataset without needing specific on 

rule-based programming. 

Assuming the shape of the model curve is 

required before fitting the model on the 

dataset (e.g., linear, polynomial, exponential 

etc.) 

No assumption of the underlying shape is 

required. It learns complex relationships 

automatically based on the dataset. 

Multiple diagnostics of parameters are 

performed (e.g., p-value etc.) 

Does not perform any statistical diagnostic 

significance tests. 

Data are split into 70%-30% to create 

training and testing data. The model is 

developed on the training dataset and tested 

on the remaining data. 

Data are split in 80%-20% to create training, 

and testing data. The model is developed on 

training data, hyperparameters tuning with 

validation dataset, and is evaluation with 

remaining test data. 

Can be developed on a single (training) 

dataset, performance is evaluated by overall 

accuracy and at individual variable level. 

Needs to be trained on two datasets, due to 

lack of diagnostics on variables (training and 

validation data). 

Mostly used for research purposes. Mostly used for practical applications. 

 

We can draw the conclusion which approach best the conditions suits from the 

gathered knowledge in relation to the conditions, context, scope, objective, and the dataset. In 

Chapter 2, we described the context of the research in detail. The key factors to include in the 

considerations of the methods are: the number of parameters to describe a configurated 

product and the desired accuracy level. The main takeaways from Section 2.6, are that the 

focus lies on the prediction of labour times and that a description of what occurs is more 

prevalent than why it occurs. We described methods and principles of related research in 

Chapter 3, including (data) conditions in Section 3.6 and the trade-offs between advantages 

and disadvantages. We present a more detailed comparison between the properties of the 

three closest contesters in Table 4.1. We explain the composition and properties of the dataset 

in Section 4.3.  

The dataset consists of labelled records which is a condition for supervised learning, 

which is also able to handle complex underlying model shapes. The number of different 

parameters in the dataset makes it complex to perform numerically with a statistical approach, 

which also has the disadvantage of not being fully automated. Supervised learning comes with 

the disadvantage of a reduced transparency. However, in the scope we state that modelling 

what happens to the labour cost is more prominent than explaining why it happens. Hence, 

this disadvantage is insignificant. 

To conclude, supervised learning outperforms statistical modelling in terms of accuracy 

when processing large numbers of parameters. Therefore, statistical modelling is disregarded 

because it becomes too complex for the number of variables considered in the dataset. 

Therefore, supervised learning appears to suit the conditions the most out of the reviewed 
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methods. The advantage of continuous learning, full automation, and complex underlying 

patterns, make it suitable for our context. Most importantly, the number of parameters is no 

obstacle for the size of the dataset. 

Several methods are known in the supervised learning territory. For instance, Support 

Vector Machines, Linear Regression, Artificial Neural Networks, Multi-Layer Perceptron, and 

Random Forest Regression. One method might have a better fit on the dataset than the other. 

Appropriate methods can be identified by consulting the performance metrics MSE and AIC. 

We consider using just MSE and AIC to assess the fit of each model. These two parameters 

are considered sufficient because MSE is related to the other performance metrics discussed 

and demonstrated the relationships between R-squared, RMSE, and MSE. We select AIC 

because it penalizes larger numbers of parameters. We investigate further validation with K-

fold cross Validation method after we assign every product to a method. During the validation 

phase, the most important features can be extracted from the model. Based on that 

information, we can use feature engineering to create new features and increase accuracy. 

In addition to the performance metrics, the results also include visualisations to allow 

for efficient interpretations and error identification. A scatterplot of the predictions versus the 

actual values allows us to get an impression the accuracy. Ideally, the points in the scatterplot 

gather around in the shape of a 45° between the y-axis and the x-axis. 

 

4.3 Dataset Description 
The result of the data preparation process, attached in Appendix B, is the definitive 

dataset. This definitive dataset holds the samples for six products, referred to as Product 

Configurations (PCFs) followed by the reference number. Separating the dataset into subsets 

for each PCF results in six datasets, which describe the products manufactured from July 18th, 

2023, until March 14th, 2024, where each sample holds twenty-seven original features and two 

engineered features, linked to a unique labour time. Table 4.2 contains the names of the 

dependent and independent variables in the dataset. 

 

Table 4.2: Dependent and independent variables in the datasets. 

Independent variables Dependent variable  

‘10BAK’ 

‘10BEKLEDING’ 

‘10BODEM’ 

‘10DEKSEL’ 

‘10DEKSELFRAME’ 

‘10HOEZEN’ 

‘10INTERIEUR’ 

‘10JUK2’ 

‘10JUK3’  

’10JUKKEN’ 

10KOPSCHOTTEN’ 

10LOSMATERIAAL’ 

10MERKEN’ 

10SJABLOON’ 

10STAALWERK’ 

10STOPHOUT’ 

10ZIJSCHOTTEN’ 

20MONTAGE’ 

‘2049’ 

‘2085’ 

‘3241’ 

‘12401’ 

‘_hijstrek’ 

‘_VERBINDING2’ 

‘_VERBINDING3’ 

‘_wvbBalken’ 

‘_wvbPLanken’ 

‘FE01’ 

‘FE02’ 

‘GemTijd’ 

 

 

We refer to one complete set of all the variables in Table 4.2 as a sample. The sample 

size can affect the reliability or outcome of an experiment. The sample size in each of the 

subsets are illustrated in Figure 4.3. 
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Figure 4.3: Product types with largest sample sizes (𝒏>50). 

Visualisations of the Product types from Figure 4.3 are displayed in Figure 4.4. The 

selected products consist of three sets of a pair of similar CTOs. PCF102 and PCF103 are 

general crates with standing or lying wood (referring to the orientation of the planks on the side 

walls of the crate). PCF201 and PCF206 are plate crates, distinguished by the internal and  

external braces. We refer to PCF401 and PCF407 as skids, which essentially are large pallets.  

 

PCF102 PCF201 PCF401 

  
 

PCF103 PCF206 PCF407 

 

 

 

 

 

Figure 4.4: Illustrations of the CTOs with PCF classification. 

 

4.4 Outlier Detection and Management 
Outliers in regression analysis are unavoidable and can deflect the results. Outliers can 

negatively impact the performance of an algorithm, leading to biased or inaccurate predictions. 

Overfitting occurs when a model learns all the details, noise, and outliers of a model, properly 

removing outliers assists in preventing overfitting and therefore improves the generalisability. 

Therefore, outliers should be detected and managed properly. In other words, we must 

establish what classifies as an outlier, and subsequently, how is the outlier dealt with. The 

approach is as follows: the model divides the dataset in 80% training data and 20% test data. 
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The model makes predictions (𝑌𝑝𝑟𝑒𝑑) over the features in the latter 20%, which can then be 

compared to the label (𝑌𝑡𝑒𝑠𝑡). The difference between each of these test and prediction pairs 

is calculated and referred to as residuals. Residuals represent the deviation from the actual 

(test) values. 

We determine the first quartile (𝑄1), the third quartile (𝑄3), and the Interquartile Range 

(IQR = 𝑄1 − 𝑄3) to identify the outliers (Schwertman et al., 2004; Walfish, 2006). Subsequently, 

we determine the upper and lower bounds using the following formulas, as demonstrated in 

Figure 4.5. The values below the lower or above the upper bound are considered outliers and 

excluded from the results. 

 

Lower bound: 𝑄1 − 1.5 × 𝐼𝑄𝑅 

Upper bound: 𝑄3 + 1.5 × 𝐼𝑄𝑅 

 

 
Figure 4.5: Visualisation of Quartiles. 

4.5 Model Validation 
We address two principles to estimate the model performance after training the model 

with 80% of the data. Firstly, the model undergoes testing with nine different underlying 

algorithms using the remaining 20% of the dataset. The level of fit is calculated with the 

composite score based on the AIC and MSE, where the highest composite score (CS) 

represents the best fit. We evaluate the performance of the models with multiple metrics 

instead of one, to make a balanced evaluation, instead of optimizing for one specific criterion. 

The CS is obtained by normalising the performance metrics to bring them to a common scale. 

Dividing each value by the maximum value in its range results in a normalised range between 
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0 and 1. Subsequently, we assign weights to the normalised values to reflect the relative 

importance. The CS to compare different aspects of model performance in a single balanced 

score. Besides an indication of the model’s errors, MSE penalises large errors more, and AIC 

discourages overfitting by penalising the number of parameters. The CS for MSE (𝑥1) and AIC 

(𝑥2) is calculated with Equation 9: 

 

𝐶𝑆 = ∑ 𝑤𝑖 × (1 − 𝑥𝑖)

𝑛

𝑖=2

(9) 

 

Where: 

𝑥𝑖: the normalised value of the 𝑖th 𝑥 

𝑊𝑖: the weight assigned to 𝑥𝑖 

 

The algorithm with the best fit is selected for 10-fold cross-validation to further analyse 

the model performance. The overall performance of the model is expressed as percentage of 

predictions where the actual cost value lies within the 95% confidence interval of the calculated 

value. In the subsequent sections, we substantiate why these criteria fit the research design 

and elaborate the working principles each. We illustrate the sequence of validation steps in 

Figure 4.6.  

 

 
Figure 4.6: Model validation sequence. 

4.5.1 K-fold Cross Validation 
Validation is useful to judge a model’s accuracy (Anguita et al., 2012; Berrar, 2019). 

For machine learning algorithm, it is usual to train a model on the majority of the dataset and 

test the validity with the residual. However, the exact part of the dataset for validation is not 

fixed (Wong & Yeh, 2019). The ‘𝑘’ in 𝑘-fold model validation indicates the number of parts, and 

therefore the number repetition (or folds). In 10-fold cross-validation (𝑘 = 10), data are divided 

into ten parts, subsequently trained on nine parts of the data, and tested on the one part. In 

the next fold, a different part is used for the validation. This principle is illustrated in Figure 4.7.  

 
Figure 4.7: Ten-fold cross validation. 



 

 

 
Chapter 4: Methodology 32  

The performance metrics (𝐸𝑖) are evaluated during each iteration (𝑉𝑖). After the last 

fold, we can express accuracy as a degree of the model performance with Equation 10 

(Sontakke et al., 2019).  

 

𝐸 =
1

𝑘
∑ 𝐸𝑖

𝑘

𝑖=1

(10) 

Where: 

𝐸𝑖 = the 𝑖th performance metric 

𝐸 = the overall performance 

𝑘 = the number of folds 

 

4.6 Statistical Test of Improvement 
The hypothesised improvement can be determined with a statistical test. In our case, 

we aim to verify whether an observed difference is statistically significant. We denote mean 

accuracy of current approach as 𝐴0 and test it against our algorithm’s mean accuracy 𝐴1. 

Therefore, we formulate the following null hypothesis and alternative hypothesis: 

 

𝐻0: 𝐴1 = 𝐴0 There is no improvement  

𝐻1: 𝐴1 > 𝐴0 There is a significant improvement 

 

We test whether the mean change in accuracy is significantly different from zero. Under 

the assumption that the two independent samples are normally distributed, the t-statistic is 

calculated with Equation 11: 

 

𝑡 =
�̅�1 − �̅�2

√𝑠1
2 + 𝑠2

2 − 2𝜌𝑠1𝑠2

𝑛

(11)
 

Where: 

𝑠2: sample variance 

�̅�: sample mean 

𝑛 : sample size (𝑛 = 𝑛1 = 𝑛2) 

𝜌: correlation coefficient  

 

The significance level is 𝛼 = 0.05, and the condition of 𝑛 > 20 must be satisfied. We 

calculate the probability of observing our test statistic under the null hypothesis with a t-

distribution and 𝑛 − 1 degrees of freedom. We reject our null hypotheses if we observe a p-

value lower than the significance level (𝑝 < 𝛼), and we fail to reject our null hypothesis if we 

observe a p-value larger than our significance level (𝑝 > 𝛼). 
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4.7 Intermediate Conclusions 
RQ 2.2: What is a suitable data expansion method in case the amount of data is 

insufficient? Literature presented several data expansion methods, with each method 

dependent on the conditions of the research and properties of the dataset. We found that 

information can be re-acquired from the existing dataset by re-using the information dense 

areas or be reproduced based on the distribution of the existing dataset. We decided to apply 

K-fold cross validation feature engineering from this perspective. 

RQ 3.2: How do we select underlying models in our algorithm? We calculate a 

composite score based on the AIC and MSE of a product-model combination. The highest 

composite score of a model indicates the best fit to a product. 

RQ 3.3: How does the model detect and manage outliers? We apply the IQR model to 

detect and manage outliers in the results of the model. According to the IQR model, values 

below a lower bound and above an upper bound are considered outliers. We first divide the 

data in quartiles, then, the lower bound is calculated with 𝑄1 − 1.5 × 𝐼𝑄𝑅 and the upper bound 

with 𝑄3 + 1.5 × 𝐼𝑄𝑅, where IQR = 𝑄1 − 𝑄3. 

RQ 3.4: How does the model track labour cost predictions? The model makes 

predictions based on the features presented to it in the test dataset. The prediction is a 

continuous, positive number that resembles the number of minutes labour required for that 

specific product. The range of estimations is visualised in a scatterplot which plots the 

predicted values against the actual values. The degree to which points gather around a 45° 

line between the y-axis and the x-axis gives an impression of the fit and accuracy of the model. 

The model calculates the percentage of predictions where the actual value is within its 95%-

confidence interval. Performance metrics describe the degree of how the data fits the model 

and relative feature importances can be extracted from the model. 

RQ 3.5: How does the model reduce the risk of overfitting? Overfitting can result in a 

reduced generalisability and occurs when a model learns the details of a dataset to an extent 

that it negatively impacts the performance of the model on a new dataset. We apply outlier 

management as part of combatting this risk. Presence of outliers in the data can distort the 

learning process of the model as it tries to fit the outliers instead of the true underlying patterns. 

Insufficient training data or and excessive number of parameters can also lead to overfitting. 

The evaluation metric AIC penalizes larger numbers of underlying parameters more, therefore 

awarding a preference for fewer parameters, reducing the risk of overfitting. Lastly, by using 

K-fold cross validation, we ensure that every data point is once used to train and test the 

models. This gives us an indication of how the models perform across different subsets of the 

data and the generalisation ability. 
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5 RESULTS 
 

We subjected our model to the dataset to predict labour times of CTOs. In this chapter, 

we describe the results of the application of the dataset to our Machine Learning model, as 

well as further analyses, and statistical interpretation of significance. We attached a detailed 

description of the model design and its computational steps in Appendix D. We present the 

results as processed output collected from the models. 

 

5.1 Method Selection 
The first step is to find the best fitting model for each product. We assess relative 

performance using the composite score we described in Section 4.5, with equal weights 

assigned to AIC and MSE. We calculate the weighted average of the normalised values of 

MSE and AIC to account for the difference in order of magnitude. The composite scores in 

Table 5.1 indicates the relative goodness of fit of each model for that product and range from 

a minimum score of zero to a maximum score of two. Complete results of model selection and 

the performance metrics table are attached in Appendix E and the normalised values in 

Appendix F. 

 
Table 5.1: Composite scores of performance metrics per product per method. 

PCF LR GPR RFR MLP SVM DTR GBR KNN XGB 

PCF102 0.672 0.745 0.630 0.612 0.642 0.000 0.751 0.744 0.494 

PCF103 0.159 0.000 0.310 0.155 0.274 0.124 0.328 0.335 0.393 

PCF201 0.712 0.087 0.700 0.633 0.856 0.327 0.000 0.804 0.312 

PCF206 0.302 0.694 0.968 0.486 0.659 0.972 0.565 0.449 0.959 

PCF401 0.953 1.106 1.100 0.000 0.942 1.097 1.083 1.149 1.080 

PCF407 0.415 0.296 0.220 0.064 0.086 0.240 0.408 0.000 0.109 

 

The highest composite score indicates the best fit to that product and are highlighted 

in Table 5.1. The highest scoring method for a product means that that method’s predictions 

most correspond the to the true values out of all tested methods. 

 

Table 5.2: Most appropriate techniques per product. 

PCF Method Composite score 

102 GBR 0.751 

103 XGB 0.393 

201 SVM 0.856 

206 DTR 0.972 

401 KNN 1.149 

407 LR 0.415 
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Remarkably, there is no single method that fits all products, each product scores best 

with a different method. This variation confirms the importance of proper model selection for 

(other) future products. We condensed the best fitting models per PCF into Table 5.2. These 

product-model combinations are subjected to further validation in the following section to 

assess their performance. 

 

5.2 Model Performance 
Now we assigned each product to its best-performing method, the next step is to 

validate the models using K-fold cross validation, as described in 4.5.1. We perform K-fold 

cross validation to provide a more accurate estimate of the model performance. We divide the 

data into ten subsets, use each subset as test data once, and calculate performance metrics 

for each fold, the average of the metrics gives a better approximation of how the model will 

perform on new (unseen) data. The following metrics calculated for each of the ten folds: 

Average MSE, Average AIC, and Accuracy. The values in Table 5.3 represent the average 

over all 10 folds, we attached detailed results of each fold in Appendix G. 

 

Table 5.3: Average of the performance metrics from 10-Fold Validation. 

PCF Method n Average MSE Average AIC Accuracy  

102 GBR 219 15156.51 261.49 50.68% 

103 XGB 160 2960.47 171.85 39.38% 

201 SVM 68 1394.80 89.44 50.00% 

206 DTR 95 1471.81 121.60 44.21% 

401 KNN 187 1685.49 191.28 55.06% 

407 LR 82 766.08 103.47 46.34% 

 

Table 5.3 displays the results of each the product-model combinations. The results 

consist of an average MSE, average AIC and accuracy. The average MSE gives an indication 

of the errors in the predictions. We observe a relatively high MSE for PCF102, we know MSE 

penalizes larger errors more, therefore, we analyse the error distributions later this chapter. 

Average AICs are similarly distributed as the average MSEs, we also observe a higher value 

for PCF102. Higher values for this product compared to the other products does not 

necessarily mean that this product-model combination performs inaccurate. We can judge by 

Figure 4.4 that PCF102 and PCF103 are relatively larger and require more labour (time), which 

explains the relatively larger errors. Therefore, we must assess the error distributions relative 

to their order of magnitude to account for this issue. The accuracy percentages represent the 

percentage of predictions where the true value lies within the 95%-CI of the prediction. We 

compare the found values to the benchmark values later in this chapter 

 

We extracted the relative feature importance for each product and display the top three 

in Table 5.4. We attached the complete list in Appendix H. For each product, we present a list 

of three features with the most impact on labour cost. The first number is the identification code 

of the feature, followed by the name of the feature and the relative score. A higher score 

represents a larger impact on the prediction. From another perspective, higher importance 

suggests that it is more closely related to the labour cost. The order of magnitude of the relative 
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scores depends on the nature of the models and cannot be compared between different 

models. 

 
Table 5.4: Top three most features impacting the labour cost per product. 

PCF102 (GBR) Feature Importances:  PCF103 (XGB) Feature Importances: 

                           Feature    Importance 

6           _VERBINDING3     2.294067e-01 

1                         _D2085     2.029338e-01 

5           _VERBINDING2     1.304876e-01 

                            Feature    Importance 

19    10KOPSCHOTTEN    0.350150 

18                 10JUKKEN    0.241663 

11             10BODEM    0.106932 
   

PCF206 (DTR) Feature Importances:  PCF201 (SVM) Feature Importances: 

                           Feature    Importance 

7                  _wvbBalken    0.241509 

1                         _D2085    0.198818 

26             20MONTAGE     0.142096 

                            Feature    Importance 

0                         _D2049    0.514581 

7                  _wvbBalken    0.367783 

25       10ZIJSCHOTTEN    0.145435 

   

PCF401 (KNN) Feature Importances:  PCF407 (LR) Feature Importances: 

                           Feature    Importance 

5          _VERBINDING2     0.141970081799 

1                        _D2085     0.110134167218 

2                        _D3241     0.095009054677 

                            Feature    Importance 

4                        _hijstrek    1.554981e+03 

7                   _wvbBalken   8.111384e+01 

1                         _D2085    3.038155e+01 

 

This knowledge is valuable to the firm to identify cost intensive areas within their 

manufacturing process. When a feature significantly impacts labour cost, it also holds the most 

potential in cost reductions. The firm can use this decision support to target these components 

of process steps for optimisation or additional employee training to reduce costs effectively. 

The key takeaway from the feature importances is the insight into impacts of different process 

components on labour costs. While an in-depth analysis of feature importance is beyond the 

scope of this research, we provide this method to access this information, enabling the firm to 

use it in future research.  

Consider an example of a practical analysis of an insight gained from Table 5.4: We 

can relate the feature importances to the product types, for example, PCF102 and PCF103 

are (generally large) crates with standing or lying wood (see Figure 4.4), respectively. Crates 

with standing wood are structurally efficient for packaging tall objects, lying wood crates are 

more used for packaging long and slim objects (e.g., long pipes). This explains the prominent 

presence of ‘10JUKKEN’ for PCF103, which implies the presence of supports for (long) 

products in the crate. These extra parts have to be produced and fitted in the crate, which 

requires additional labour time. Logically, the presence of supports directly contributes to 

labour cost, this knowledge enables the firm to target cost intensive parts of manufacturing 

processes. 

  

5.3 Statistical Interpretation 
We test for significant difference between the current accuracy and the accuracy of our 

model, using paired t-test. In this statistical test, we test whether the mean change of the 

residuals is significantly different from zero. We assume observations are independent, and 

the variables are approximately normally distributed. We denote mean accuracy of current 

approach as 𝐴0 and test it against our algorithm’s mean accuracy, 𝐴1. The significance level 
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is set to 𝛼 = 0.05, and we satisfy the paired t-test sample size condition of 𝑛 > 20. We 

formulate the following hypotheses: 

 

𝐻0: 𝐴1 = 𝐴0 There is no improvement  

𝐻1: 𝐴1 > 𝐴0 There is a significant improvement 

 

We reject our null hypotheses if we observe a p-value lower than the significance level 

(𝑝 < 𝛼), which indicates that the difference does not equal zero. We fail to reject our null 

hypothesis if we observe a p-value larger than our significance level (𝑝 > 𝛼). Table 5.5 displays 

our summarized findings of the paired t-test, including the degrees of freedom (𝑑𝑓), t-statistic, 

p-value, and a significance conclusion. 

 

Table 5.5: Paired t-test results for the comparison of prediction means. 

Product 𝒅𝒇  t-statistic p-value Improvement Significant 

PCF102 218 5.2220 <0.0001 32.95% Yes 

PCF103 159 3.1767 0.00190 9.93% Yes 

PCF201 67 3.8245 0.00033 20.59% Yes 

PCF206 94 3.6775 0.00041 18.95% Yes 

PCF401 186 3.1607 0.00200 16.11% Yes 

PCF407 81 2.5301 0.01312 31.91% Yes 

 

Our sample data supports our alternative hypothesis that difference in mean accuracy 

does not equal zero. The p-value of the paired t-tests of every product is lower than our level 

of significance (𝑝 < 𝛼). Therefore, our algorithm significantly improves labour cost prediction 

for each product. This implies that our algorithm’s predictions are systematically closer to the 

actual labour cost than the firm’s current approach. Not only does this affect the precision of 

quotations, but it also enables the firm to schedule operations with greater precision. 

 

5.4 Error Analysis 
Understanding the nature and patterns of errors made by the models are important to 

interpret its performance. We intend to gain understanding of the error by visualising the 

residuals, including outliers. We divided Table 5.6 into six histograms, where each plot shows 

the frequency and the intensity of the errors, including outliers. We attached outlier 

management details in Appendix I and absolute error distribution in Appendix J.  
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Table 5.6: Prediction error distribution per product. 

PCF102 (GBR) 

 
 
Mean:  -1.9968 
Median:  6.2940 
The distribution is skewed to the left with a  
skewness (k3) of -3.85. 

PCF103 (XGB)  

 
 
Mean:  -1.0967 
Median:  -2.5675 
The distribution is skewed to the left with a  
skewness (k3) of -0.75. 
 

PCF201 (SVM) 

 

 
Mean:  -7.8698 
Median:  -0.0940 
The distribution is skewed to the left with a  
skewness (k3) of -5.24.  

PCF206 (DTR) 

 
 
Mean:  4.1692 
Median: 7.5500 
The distribution is skewed to the right with a  
skewness (k3) of 0.18.  

PCF401 (KNN) 

 
 
Mean:  -2.2932 
Median:  2.3500 
The distribution is skewed to the left with a  
skewness of (k3) -0.26. 

PCF407 (LR) 

 
 
Mean:  0.8116 
Median:  1.8524 
The distribution is skewed to the left with a  
skewness (k3) of -1.72. 
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The general distribution in the error analysis suggests several key points: The peaks 

around zero indicates that the majority of the predictions are relatively close to the true value, 

which suggests that the model is generally accurate. Furthermore, an exponential decrease in 

the frequency of errors suggests that there are fewer instances where the model makes large 

errors. Lastly, the distributions for PCF206 and PCF407 display non-zero peaks, suggesting 

that the prediction are affected by a systematic error. This systematic error can be the result 

of overfitting, possibly by a lack of data. In Table 5.6, we included the mean, median, and 

skewness (𝑘3) to measure the level of asymmetry of the error distributions. Skewness of the 

error distributions is calculated with Equation 12: 

 

𝑘3 =
1

𝑛
∑ (

𝑋𝑖 − 𝜇

𝜎
)

3𝑛

𝑖=1

(12) 

Where: 

𝑋𝑖: individual errors 

𝜇: mean error 

𝜎: error standard deviation 

𝑛: sample size 

 

The mean indicates whether, on average, the predictions tend to underestimate 

(negative value) or overestimate (positive value). The median is the middle value when all 

errors are sorted in ascending order. A positive median indicates that more than half of the 

predictions are positive, a negative median indicates that more than half of the predictions are 

negative. Skewness is interpreted as follows (Doane & Seward, 2011): 

 

|𝑘3|  ≈  0 : The distribution is symmetrical. 

|𝑘3|  <  0 : The distribution is left-skewed. 

|𝑘3|  >  0 : The distribution is right-skewed. 

 

We select 𝑘3 to determine the skewness of the error distributions, Table 5.7 lists the 

skewness of each product.  

 

Table 5.7: Skewness of error distributions per product. 

Product Skewness (𝒌𝟑) Skewed: 

PCF102 -3.85 Left 

PCF103 -0.75 Left 

PCF201 -5.24 Left 

PCF206 0.18 right 

PCF401 -0.26 Left 

PCF407 -1.72 Left 

 

Negative skewness or left-skewed error distributions imply an asymmetry in the 

predictions, i.e., systematic underestimations, and a right-skewed error distribution indicates 

systematic overestimation in the predictions. We observe values near zero for PCF103, 
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PCF206, and PCF401, which indicates that the distributions are slightly skewed but 

approximately symmetrical. The other products, however, show higher levels of left-skewed 

error distributions, this indicates that there are a number of large underestimations that pull the 

distribution to the left. Such a phenomenon suggests that the model does not handle large 

values optimally and is inclined to underestimate in some cases (Flach, 2003). We discuss 

further implications of systematic prediction deviations in Chapter 6. 

 

We presented the results of the models on the corresponding products in this chapter. 

Additionally, we showed statistical significance, relative feature importances, and an error 

analysis. The results allow us to answer the last sub-research questions: 

RQ 4.1: What is the relative feature importance? With the results in Table 5.4 and 

Appendix H, we can analyse the relative impact of each parameter on the labour cost. We 

analysed one example for the presence of supports in PCF103. The availability of feature 

importances provides decision support for the firm to targeted optimization of cost intensive 

components in manufacturing processes.  

RQ 4.2: What accuracy improvement can we achieve with our algorithm? We observed 

improvements of labour cost prediction accuracy for each of the products and achieved an 

overall labour cost prediction accuracy improvement of 21.74%. Furthermore, our algorithm 

showed generalisability in K-fold cross validation, which suggests that it is likely to be 

applicable on other products.  
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6 DISCUSSION 
 

In this chapter, we discuss the results and their implications. This includes the 

interpretation of the results, the validity, and the limitations. Components resulting from this 

discussion form the foundation for the conclusion and recommendations for future research. 

We start with a brief review of the research questions and how we addressed those. 

Subsequently, we assess the validity of our findings, and explore the implications. 

 

6.1 Review of Objective and Research Questions 
We recall our primary objective: To develop an algorithm that predicts labour costs of 

CTOs with the actual labour cost falling within the 95% confidence interval of the predictions, 

from which we formulated the main research question: How can the firm accurately and 

systematically predict labour costs for configurated products? We formulated multiple sub-

questions to answer the main research question, and ultimately, to reach our objective. We 

briefly go through the process of our research in the following paragraphs. 

Authors of reviewed literature discussed several approaches to calculate costs in a 

multi-parametric context. We investigated multiple machine learning categories and selected 

nine supervised techniques, with Python selected as the programming language due to the 

availability of libraries. A common rule of thumb in machine learning is that the dataset should 

be at least ten times the number of features, our dataset failed to satisfy this condition. To 

address this, we reviewed literature regarding data expansion methods and re-acquired from 

our dataset by re-using the information dense areas through K-fold cross validation and feature 

engineering. K-fold cross validation also reduces the risk of overfitting and gives an indication 

of a model’s generalisation ability. 

We evaluated relative performance and fit of models with the metrics MSE and AIC. A 

positive value closer zero indicated a better fit. We applied the IQR method to detect and 

manage outliers in the predictions of the model. Predictions were made based on the features 

in the test dataset. Prediction values are continuous, positive numbers that resemble the 

number of minutes labour required to manufacture that specific product. The model 

determined, for each prediction, whether the actual value was within the prediction’s 95%-

confidence interval. 

In accordance with our expectations, the models predicted labour cost with accuracies 

greater than that of the benchmark, therefore indicating a significant improvement. 

Furthermore, our error analysis of the residuals between predictions and true values revealed 

a number of insights. The distributions of the errors are centred near zero, indicating that the 

majority of the predictions is closer to the actual value and larger errors occur with a lower 

frequency. However, the error distributions for PCF102, PCF201, and PCF407 display non-

zero peaks or left-skewed error distributions, suggesting that a systematic error affects the 

prediction. This phenomenon suggests that the selected machine learning techniques for those 

products do not perform optimally for large numbers and are therefore sensitive to 

underestimation. Training with additional data that involves larger numbers could improve the 

systematic underestimations and overall accuracy. 
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The implications of a systematic error in labour cost predictions vary per department. it 

might favour the sales department if the predictions are systematically below par because it 

allows them to quote more competitive prices. However, a systematic higher prediction favours 

both sales and operations, as it allows for a less tight schedule and a higher profit margin. 

Logically argued, operations prefer too much time over too little time. To conclude, skewness 

needs to be accounted for in the interpretation of the prediction, and accuracy must improve 

with additional data, to predict labour costs objectively, that favour neither sales nor operations. 

 

6.2 Validity 
We used 811 samples of six products to train our algorithm that predicts labours costs, 

we observed patterns in the results that match our expectations. We observed that 

performance for each product varies with different models and the best fit was identified with 

the composite score of the performance metrics. K-fold cross validation revealed an underlying 

variation that was not initially detected in the model selection phase, we used this method for 

exactly that purpose. We observed labour cost prediction accuracies that are significantly 

greater than the benchmark. 

Our research relates to our literature review by the combination of the methods 

investigated. We gained information regarding properties and conditions of methods in the 

literature review and applied this in our model selection method. From this perspective, we 

consider our model an addition to the literature. We expected a reduced transparency of 

underlying relations in machine learning, however, we were able to extract valuable 

information, we found the relative feature importances and created several visualisations of 

results versus predictions, residuals, and comprehensive tables. With our research, we have 

shown that labour costs can be predicted with higher accuracy than the firm’s previous 

approach. 

The research design includes several elements to ensure the validity. We 

systematically excluded outliers using the IQR method. We tested significance with a paired t-

test with a 5% level op significance. We systematically calculated composite scores for multiple 

performance metrics to select methods objectively. We performed data preparation processes 

methodically and we developed a feature engineering method for reproducibility and improving 

accuracy. Based on this, we can state that this research is replicable. 

There are some areas where further improvements can be made. It must be taken into 

account that performance metrics might score differently for each observed model. For 

instance, some metrics might be more suitable to evaluate KNN and another metric might be 

more suitable to evaluate LR. However, we made the decision to use MSE and AIC for all 

models to allow for comparison in model selection, based on the generalisability of the metrics 

demonstrated in literature. We improved quality of the data through methodical data cleaning 

and feature engineering. We found the rule of thumb for the minimal sample size in machine 

learning to be at least ten times the number of features. With twenty-seven features, none of 

the products satisfy this requirement. We expect the performance to improve as more data are 

collected over time, since it exposes our model to a broader range of feature values. Lastly, as 

data are collected as a series over time, new data can become more relevant than older data. 

Efficiency of the staff can improve with experience or due to implemented improvements, we 

chose not to account for this effect in our model due to the relatively short period in which the 

data were collected. 
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7 CONCLUSION 
 

In this chapter, we summarise the key findings and conclusions. We addressed the 

research question: How can the firm accurately and systematically predict labour costs for 

configurated products? Through exploration of literature, model validation, and data analysis, 

we have developed an algorithm to answer this question. Our algorithm finds the underlying 

relations between features of CTOs and its labour cost by learning from historical product data. 

The dataset consists of unique products, each describes by 27 features, and their 

corresponding labour costs. We used 80% of the dataset to train the models and reserved 

20% for testing. During the training phase, the was exposed to both the features and the labour 

costs. In the testing phase, we provided only the features to the model to observe whether the 

model predictions match the actual labour costs.  

In this algorithm, each product was assigned to its most appropriate machine learning 

technique, based on performance metrics MSE and AIC. Outliers were excluded by using the 

IQR method to reduce the risk of overfitting. We investigated generalisability by cross-

validation and extracted important features to engineer new features, increase accuracy, and 

gain insights into the value streams of the manufacturing processes. Comparison of predictions 

to the actual values forms our error analysis, which enabled us to compute an accuracy 

percentage. We observed a significant improvement of the overall accuracy of 21.74% based 

on 811 observations. Table 7.1 shows the results of a paired t-test on the accuracy 

improvement per product, at a 5% level of significance.  

 

Table 7.1: Observed improvements in labour cost prediction accuracy (𝜶 = 𝟎. 𝟎𝟓). 

Product Method Accuracy 
(before)  

Accuracy 
(after) 

𝒅𝒇  t-statistic p-value Improvement 

PCF102 GBR 17.73% 50.68% 218 5.2220 <0.0001 32.95% 

PCF103 XGB 29.45% 39.38% 159 3.1767 0.00190 9.93% 

PCF201 SVM 29.41% 50.00% 67 3.8245 0.00033 20.59% 

PCF206 DTR 25.26% 44.21% 94 3.6775 0.00041 18.95% 

PCF401 KNN 38.95% 55.06% 186 3.1607 0.00200 16.11% 

PCF407 LR 14.43% 46.34% 81 2.5301 0.01312 31.91% 

Overall  25.87% 47.74%    21.74% 

 

We can conclude that we achieved a significant improvement in the labour cost 

prediction for all investigated CTOs, and our approach provides new insights into methods to 

gain more information from the data at hand. Implementing our algorithm allows the firm to 

estimate labour costs 21.74% more accurately, this impacts multiple facets of the company. 

The improved accuracy enables the sales department to make more informed decisions and 

to provide customers with more accurate quotations, reducing the frequency of cost overruns 

and improving client satisfaction. Additionally, a greater insight into labour time prediction 

improves the ability to schedule activities with greater precision. 
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7.1 Contribution 
The labour cost prediction algorithm we developed, provides a practical and systematic 

approach to predict labour costs of CTOs more accurately, contributing to cost estimation in 

manufacturing processes. Our research contributes to literature by exploring application of 

machine learning in cost estimation for configurable products. Our algorithm compares 

performance of different machine learning principles and can be adapted and scaled to 

different processes. Furthermore, the performance evaluation of multiple machine learning 

algorithms with a composite score of MSE and AIC, provided insight in their effectiveness in 

cost estimation. 

We developed a solution that utilises historical data to increase precision in the future. 

Our labour cost prediction algorithm significantly improves the accuracy of cost prediction, 

enabling the firm to quote more accurately and schedule activities with greater precision. The 

implications of our development affect many facets of the firm. The improvement of labour cost 

estimation precision allows the sales department to quote more accurately and make more 

informed decisions, effectively reducing the frequency of cost overruns. This directly improves 

client satisfaction and leads to stronger relationships with customers, and therefore, increasing 

competitive advantage. 

An increase in scheduling precision benefits the Meilink in multiple ways, firstly, it 

relieves the scheduling department by effectively simplifying their task. Secondly, the 

scheduled time is based on historical times and more accurate than the previous approach. 

There will be fewer instances where operations have too little or too much time scheduled, 

therefore, potentially wasting less time waiting, or correcting potential errors incurred by 

hurrying. Lastly, every scheduled action will finally add to the historical database, further 

improving (scheduling) precision. 

Our more practical and precise approach also improves communication between 

operations and the sales department. Disagreement over scheduled labour time is less likely 

if all involved parties are informed of the underlying method with demonstrated accuracy, which 

should favour neither the sales department nor operations. In addition, our algorithm helps to 

identify cost intensive components of the manufacturing process. This information helps to 

allocate resources effectively, identify areas to investigate cost efficiency, and insight into the 

activities that add value the most. Cost and waste reduction can be achieved by investigating 

important features and allocate resources accordingly. This knowledge also enables the firm 

to target operational areas where employees require more training or skill development. 

Ultimately, practical implications of our labour cost prediction algorithm align with the 

commitment to improving customer satisfaction, maintaining a competitive advantage, and 

ensuring the continuity of the firm. 
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8 RECOMMENDATIONS 
 

In chapter, we briefly describe recommendations for future research and why we expect 

this to be of added value. Our recommendations focus on improving accuracy and validity, as 

well as the further analysing underlying relationships and implementation of our algorithm. 

The current dataset is based on an output of Merkato (recall: the configurator software), 

using the input of the configurator directly as input for our machine learning algorithm might 

reveal more accurate results, because the direct and unprocessed input of the configurator 

might reveal more underlying relationships and improve the accuracy. Moreover, if the 

algorithm is optimised on the direct input, the output of the algorithm can be immediately 

displayed during configuration. Integrating our algorithm directly into the configurator could be 

achieved in collaboration with the developer of the configurator. Future research should 

therefore examine the options for direct integration, possibly by only using a function of the 

regression coefficient values. 

In addition to integration, we recommend expanding the scope of testing, for instance, 

testing on a broader range of products, with more samples that contain a wider range of 

features. We concluded that accuracy increases with a larger sample size. Generalisability can 

be further investigated if data of a broader range of products are available and higher relevance 

is assigned to more recent data. Furthermore, evaluation with alternative performance metrics 

can also be beneficial. Metrics such as Symmetric Mean Absolute Percentage Error (SMAPE) 

that incorporate symmetry in the evaluation (Chicco et al., 2021) or Root Mean Squared 

Logarithmic Error (RMSLE) for skewed targets. RMSLE penalises underestimates more than 

overestimates (Aldrees et al., 2022). RMSLE as a performance metric can be useful to reduce 

the risk of selling a product with a negative profit. Specifically, to reduce risks from the 

systematic error we observed in our error analysis. 

To address the robustness of the algorithm, we suggest introducing various levels of 

noise to the dataset before conducting experiments. We expect that this provides insights into 

the resilience of the algorithm’s ability to handle real-world variability. Machine learning 

techniques in our algorithm can be further tuned to the dataset by adjusting hyperparameters, 

to further improve the accuracy of the model. This can be achieved by investigating the effect 

of different hyperparameter levels on the performance of the model, for example, by grid 

search or random search (Li et al., 2018). 

Furthermore, we recommend investigating the advantages and disadvantages of 

assigning a model to one or all products permanently, neglecting the model selection phase. 

At a certain point, there is sufficient empirical evidence that a product performs stably and 

consistently with a certain technique and can be permanently assigned to the specific model. 

Valuable computational time can be saved by omitting the model selection phase. Lastly, we 

recommend performing a feature importance analysis with e.g., permutation importance 

(Altmann et al., 2010) or Shapley Additive Explanations (SHAP) (Nohara et al., 2022), to 

determine the reason some features have more impact on the labour cost than others. Insights 

into this behaviour can be used to identify parts of the manufacturing process that are cost 

intensive or add the most value to the products, thereby guiding decisions to optimize efficiency 

and maximize product value.  
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APPENDICES 
APPENDIX A - Systematic Literature Review 

We used the systematic literature review method for the literature review conducted in 

this study. We identified relevant literature by systematically searching scientific databases 

with a search string. We limited the search string to title, abstract and keywords. Contents of 

the search string consist of keywords, publication year, subject area, and language.  

 

(TITLE-ABS-KEY ( "Manufacturing"  OR  "Production"  OR  "Shop Floor" )   

 AND   

TITLE-ABS-KEY ( "Pricing"  OR  "Cost Calculation"  OR  "Pricing Strategy" ) 

 AND   

TITLE-ABS-KEY ( "Time Analysis"  OR  "Time Discrepancy"  OR  "Scheduling")) 

 AND 

PUBYEAR  >  2009  AND  PUBYEAR  <  2024   

 AND  

 ( LIMIT-TO ( SUBJAREA ,  "ENGI" )  OR LIMIT-TO ( SUBJAREA ,  "COMP" )   

 OR  LIMIT-TO ( SUBJAREA ,  "DECI" ) OR LIMIT-TO ( SUBJAREA ,  "MATH" )   

 OR LIMIT-TO ( SUBJAREA ,  "BUSI" ) OR LIMIT-TO ( SUBJAREA ,  "CENG" )   

 OR LIMIT-TO ( SUBJAREA ,  "ECON" ) OR LIMIT-TO ( SUBJAREA ,  "SOCI" )  

 OR LIMIT-TO ( SUBJAREA ,  "MULT" ) )   

 AND   

( LIMIT-TO ( LANGUAGE ,  "English" ) )  

 

Results from the search string are preferably English. Furthermore, we limited the 

literature review to articles published after 2010 and before 2024 due to the recent 

developments of this field of research. 

 
Figure 8.1: Literature review documents by year. 

We limited subject areas to “Engineering”, “Computer Science”, “Decision Making”, 

“Mathematics”, “Business, Management and Accounting”, “Chemical engineering”, 

“Economics, Econometrics and Finance”, “Social Sciences”, and “Multidisciplinary“ due to two 

arguments. Firstly, to narrow down the number of results and remain specific. Secondly, to 

exclude subject areas such as “Medicine”, “Neuroscience”, “Biochemistry”, and other irrelevant 

fields. We limited search engines to Scopus, Mendeley, and Google Scholar to find literature 

and identify the knowledge gap. The literature selection process is illustrated in Figure 8.2.  
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Figure 8.2: Literature selection process. 
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APPENDIX B – Data Preparation Process 
Labour times were tracked since July 2023. Every single CTO is linked to a set of 

features and a unique labour time. However, these two aspects must be retrieved from 

separate sources. In other words, the dataset first needed to be ‘mined’ as al records have to 

be linked to their labour time from separate databases. The two could be matched by the 

unique product number attached to the data. The data was gathered and combined in a macro-

enabled Excel workbook. Here it could be cleaned and prepared: 

1) Mine the features from the .xml file for each labour time. 

2) Remove columns which hold only zeros or no values. 

3) Check and replace correct delimiter (dots and commas). 

4) Remove products with fewer than fifty samples. 

 

The previously described process is illustrated in Figure 8.3. Each node of the figure 

contains the name of the considered file, the format, and the shape of the dataset. 

 

 
Figure 8.3: Composition of the dataset. 

The result of the data preparation is the definitive dataset. This definitive dataset holds 

the samples for six PCFs manufactured from July 18th, 2023, until March 14th, 2024. 

 
Figure 8.4: Sample size per product type. 

All PCFs with fewer than fifty samples were removed. The presence of the features in 

the dataset is plotted in Figure 8.5. It indicates how common a feature is for configurated 

products. All Features with a presence of 0 (i.e., only contains zeros) are removed.  
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Figure 8.5: Presence of features in the dataset. 

Separating the dataset into subsets for each PCF results in six datasets, where each 

sample holds twenty-seven features linked to a unique labour time. The sample size per 

dataset is plotted in Figure 8.6. 

 
Figure 8.6: Sample size per PCF dataset. 

After the model selection phase, the relative importance of each feature can be 
determined. The systematic feature engineering approach is to add two artificial features to 
the PCF dataset. The values of artificial features are the result of multiplying the most important 
features. The relative importances of each feature are attached in Appendix H. The new 
features are named ‘FE01’ and ‘FE02’, their values are calculated with: 

𝐹𝐸01 = 𝑓1 × 𝑓2 

𝐹𝐸02 = 𝑓1 × 𝑓3 

Where: 

𝑓1 = the number one important feature 

𝑓2 = the two one important feature 

𝑓3 = the three one important feature  
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APPENDIX C - Managerial Problem Solving Method 
The managerial problem solving method (MPSM) by Heerkens and Winden (2017) is 

one of the systematic problem solving methods developed by University of Twente. It is a 

flexible framework and does not require complicated prior knowledge. The authors describe 

the method as a combination of systematic and creative, one that looks for a practicable 

solution in a stepwise manner. Additionally, it considers that every problem is unique, and no 

problem is isolated. A problem is embedded in the context of an organisation. The MPSM is 

based on multiple problem-solving methods and consists of the following seven phases: 

1. Defining the problem 

2. Formulating the approach 

3. Analysing the problem 

4. Formulating (alternative) solutions 

5. Choosing a solution 

6. Implementing the solution 

7. Evaluating the solution. 

Although the phases have a sequential order, it does not exclude occasional 

backtracking. It is likely that the problem established in the first phase does not turn out as 

expected in phase three. In this case, return to the first phase and review the initial diagnosis. 

Furthermore, the MPSM expresses problems in terms variables to structure problems clearly 

and it allows for a more comprehensive visualisation. however, the author claims that the 

MPSM sets itself apart from the other methods by simplicity, one does not have to know the 

seven phases by heart. 

Problems are divided into two broad categories: action problems and knowledge 

problems. The first is a discrepancy between the norm and reality, as perceived by the problem 

owner. In other words, when things are not turning out as planned or expected. The problem 

owner is the entity that experiences the problem, for example, a person, a group, or even an 

organisation. In the context of an action problem, both the norm and the reality are expressed 

as variables. Consequently, an action problem rarely occurs on its own, it is usually connected 

to other problems. Therefore, developing a problem cluster visualises the connections between 

problems in terms of cause and effect. The selected problem becomes the ‘core problem’.  

Knowledge problems, on the other hand, deals with situations where information is 

missing. In this case, the problem owner does not know or understand something. Or more 

detailed; a knowledge problem describes a research population, the variables, and the 

relationships that require investigation. An example of a knowledge problem is identifying 

relationships between variables. Research populations consist of the person(s), group(s), or 

organisation(s) that are subject to investigation. Furthermore, research problems can be 

further divided into two subcategories: descriptive or explanatory. The first subcategory aims 

to know what, while the latter describes the why. Knowledge is gathered through research, the 

procedure recommended by the authors is the research cycle, which consists of eight phases: 

1. Formulating the research goal 

2. Formulating the problem statement 

3. Formulating the research questions 

4. Formulating the research design 

5. Formulating the operationalisation 

6. Performing the measurements 

7. Processing the data 
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8. Drawing conclusions. 

While the MPSM mainly focusses on action problems, it recognises that knowledge 

problems are unavoidable. Whenever knowledge is needed while moving through the seven 

phases of problem solving, move away from the MPSM and enter the research cycle. Once 

the research cycle is completed (and the investigation), re-enter into the MPSM at the phase 

that was interrupted by the knowledge problem. Proceed with the action problem with the 

knowledge obtained. 
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APPENDIX D – Model Design 
We describe the blueprint for the functionality of the model in this chapter. This blueprint 

contains the structure of the mathematics and computational strategies. We present the 

working mechanism of the model in the form of pseudo code, which is a method to describe 

the essential underlying actions of the programming code in regular words. 

 

Pseudo Code of Models 
We divide pseudo code into multiple algorithms, Algorithm 1 represents all models 

except MLP. Furthermore, Algorithm 2 is the blueprint for the MLP model. Algorithm 1 is the 

blueprint for Linear Regression (LR), Gaussian Process Regression (GPR), Random Forest 

Regression (RGR), Support Vector Machines (SVM), Decision Tree Regression (DTR), 

Gradient Boosting Regression (GBR), K-Nearest Neighbours (KNN), and Extreme Gradient 

Boosting (XGB).  

Table 8.1 contains the pseudo code for Algorithm 1. The first four steps and last two 

steps are the formal declarations around the mathematical application. For instance, the 

required libraries, definition of dictionaries and the importation of the datasets (lines 1-4), and 

the output of the computations are structured in a systematic way to allow for easy 

interpretation and comparison of results (lines 16-17).  

 

Table 8.1: Pseudo code for regression models. 

Algorithm 1: Pseudo code for each model = [LR, GPR, RGR, SVM, DTR, GBR, KNN, XGB] 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

Import necessary libraries. 

Define an empty dictionary performance_metrics to store performance metrics. 

Load all datasets and store them in a dictionary pcf_datasets. 

For each PCF dataset pcf_number in pcf_datasets: 

           Split the dataset into features X and target variable Y. 

           Split the dataset into training and testing sets. 

           Initialise an algorithm (model). 

           Train the model using the training sets. 

           Make predictions using the testing set. 

           Calculate residuals. 

           Exclude outliers using the IQR method. 

           Calculate evaluation metrics. 

           Store the performance metrics in the performance_metrics dictionary. 

           Plot a scatter plot of Actual vs Predicted Build Times excluding outliers. 

           Plot a bar chart of Actual vs Predicted Build Times. 

Adjust layout and display the plots. 

Display the performance metrics table. 

 

The key elements from the loop over the six PCF datasets (indented lines 5-15) are the 

split in line 5, where features are distinguished from the label. Subsequently, the dataset is 
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split into training and testing data in line 6. The model is fitted, trained, and makes predictions 

in lines 7-9. Lines 10-15 are dedicated to treatment and visualisation of the results. 

Algorithm 2, in Table 8.2, fundamentally differs from Algorithm 1. The initial four steps 

and last two steps of the Algorithms 1 and 2 are identical, the loop over the datasets 

distinguishes the two. The key differences are: 1) Outlier treatment, negative values are treated 

as outliers. 2) Data preprocessing, features are standardised by removing the mean and 

scaling the values to unit variance. 3) Model compilation, the model is compiled using the Adam 

optimiser to minimise the MSE loss function. 4) Model training, the model is trained with the 

training data for 100 epochs (iterations through all data). 

 

Table 8.2: Pseudo code for the MLP Artificial Neural Network. 

Algorithm 2: Pseudo code for MLP 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

16: 

17: 

18: 

19: 

Import necessary libraries. 

Define an empty dictionary performance_metrics to store performance metrics. 

Load all datasets and store them in a dictionary pcf_datasets. 

For each PCF dataset pcf_number in pcf_datasets: 

            Treat negative values as outliers. 

            Split the dataset into features (X) and the target variable (Y). 

            Split the dataset into training and testing sets. 

            Standardise the features by removing the mean and scaling to unit variance. 

            Build a sequential neural network model with input layer, hidden layers, and output layer. 

            Compile the model using Adam optimiser and mean squared error loss function. 

            Train the model for 100 epochs with a batch size of 32 and 20% validation split. 

            Evaluate the model on both training and testing sets. 

            Calculate evaluation metrics including MSE, RMSE, MAE, R-squared, and AIC. 

            Store the performance metrics in the performance_metrics dictionary. 

            Plot the scatter plot of actual vs predicted values with outlier treatment. 

            Plot the trendline of the scatter plot without outliers. 

Adjust layout and display the plots. 

Display the performance metrics table. 

 

Important to note is that the outlier treatment means that the outliers are excluded from 

both the performance metrics and the visualisations. We attached the specific model 

parameters in Appendix K. The models are validated with K-fold cross validation as we 

described in Section 4.5. Table 8.3 contains the key steps of the code that allows us to critically 

assess the validity and accuracy of the models. Validation takes place after the models are 

selected for each of the products. 

 

Pseudo Code of Model Validation 
We discussed the core principle of K-fold cross validation in Section 4.5.1. To 

summarise, the code iterates a 90-10 training-test split ten times. Each iteration, the dataset is 

divided into 90% training data and 10% test data, in such a way that every part of the dataset 
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is once that 10% test data. The performance is then assessed based on three parameters: 

MSE, AIC and the accuracy. Accuracy refers to the percentage of predictions, where the true 

value lies within its 95%-confidence interval. Lastly, the performance metrics are listed for each 

of the 10 folds along with the overall averages and the relative feature importances. 

 

Table 8.3: Pseudo code for K-fold cross validation. 

Algorithm 3: Pseudo code for K-fold cross validation 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

16: 

17: 

18: 

19: 

Load dataset for PCF. 

Split dataset into features and target variable. 

Initialise corresponding model. 

Initialise K-Fold with 10 folds. 

Initialise lists to store predictions, true values, MSE, AIC, and fold results. 

For each fold in K-Fold: 

           Split dataset into training and testing sets. 

           Train the model using the training sets. 

           Extract the feature importances. 

           Make predictions using the testing set. 

           Calculate residuals. 

           Calculate evaluation metrics (MSE, AIC). 

           Store the performance metrics and fold results. 

           Calculate overall performance metrics (Overall MSE, Overall AIC, Accuracy). 

Plot AIC and MSE for each fold. 

Plot scatter plot of Actual vs Predicted Build Times. 

Display performance metrics table and fold results. 

Display list of feature importances 

 

In this chapter, we explained the computational construction of the models, by which 

we aim to predict labour cost of products. In the following chapter, we apply this model to the 

dataset, present the findings, and discuss the implications.  
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APPENDIX E – Performance Metrics 
Table 8.4 displays the complete results obtained from the experiments with PCF102, 

PCF103, PCF201, PCF206, PCF401, PCF407 on the machine learning models: Linear 

Regression (LR), Multi-Layer Perceptron (MLP), Gaussian Process Regression (GPR), 

Random Forest Regression (RGR), Support Vector Machines (SVM), Decision Tree 

Regression (DTR), Gradient Boosting Regression (GBR), K-Nearest Neighbours (KNN), and 

Extreme Gradient Boosting (XGB). The results from each product-model combination 

experiment consists of the Mean Squared error (MSE), the R-squared (R2), and the Akaike 

Information Criterion (AIC). 

Table 8.4: Complete performance metrics. 

PCF102 LR GPR RFR MLP SVM DTR GBR KNN XGB 

MSE 2824.88 2473.95 3694.53 3673 3245.72 10543 2413.33 2281.79 5102.57 

R2 0.81 0.47 -0.13 0.32 0.78 -0.74 0.34 0.84 -0.21 

AIC 395.69 358.73 374.37 390.56 393.57 452.32 357.76 371.04 395.5 

 

PCF103 LR GPR RFR MLP SVM DTR GBR KNN XGB 

MSE 1343.02 1713.93 1000.58 1383.08 1110.22 1456.28 960.1 973.23 843.56 

R2 0.26 0.06 0.45 0.24 0.39 -0.1 0.47 0.31 0.36 

AIC 277.28 284.84 268.16 270.96 264.37 272.51 266.88 260.42 256.13 

PCF201 LR GPR RFR MLP SVM DTR GBR KNN XGB 

MSE 34.08 104.51 35.4 40.81 18.14 73.32 112.32 24.55 75.13 

R2 -0.31 -6.14 -0.36 -0.68 -0.24 -2.25 -3.98 0.06 -2.33 

AIC 96.34 114.44 96.8 102.21 91.67 114.13 120.1 92.41 114.47 

 

PCF206 LR GPR RFR MLP SVM DTR GBR KNN XGB 

MSE 522.81 607.88 332.81 861.79 660.5 328.26 770.18 891.73 342.53 

R2 -0.74 -0.27 -0.18 -0.84 -0.41 -0.16 -0.81 -0.41 -0.21 

AIC 452.32 175.79 146.7 175.66 170.87 146.7 173.64 183.07 147.38 

 

PCF401 LR GPR RFR MLP SVM DTR GBR KNN XGB 

MSE 589.71 229.57 221.38 4027.7 656.82 268.45 278.43 150.88 285.1 

R2 0.65 0.86 0.86 -0.73 0.13 0.84 0.79 0.91 0.82 

AIC 264.53 227.96 232.2 336.23 261.6 227.37 234.13 214.53 234.89 

 

PCF407 LR GPR RFR MLP SVM DTR GBR KNN XGB 

MSE 252.48 321.02 373.5 484.81 469.22 373.63 257.29 530.91 452.07 

R2 -0.27 -0.2 -0.39 -0.81 -0.75 -0.88 -0.29 -0.98 -0.69 

AIC 136.97 146.34 148.77 152.94 152.42 142.85 137.25 154.39 151.82 
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APPENDIX F – Normalised Performance Metrics 
The performance metrics need to be normalised with min-max normalisation to 

calculate our composite score described in Section 4.5. it is not representative to directly 

calculate the weighted average due to the difference in order of magnitude in the performance 

metrics. The minimum and maximum metrics in Table 8.5 are represented by values of 0.000 

and 1.000, respectively. 

 

Table 8.5: Normalised Performance Metrics. 

PCF102 LR GPR RFR MLP SVM DTR GBR KNN XGBoost 

MSE 0.398 0.371 0.466 0.464 0.431 1.000 0.366 0.356 0.576 

R2 0.981 0.766 0.386 0.671 0.962 0.000 0.684 1.000 0.335 

AIC 0.930 0.884 0.904 0.924 0.927 1.000 0.883 0.900 0.930 

 

PCF103 LR GPR RFR MLP SVM DTR GBR KNN XGBoost 

MSE 0.855 1.000 0.721 0.871 0.764 0.899 0.705 0.710 0.660 

R2 0.632 0.281 0.965 0.596 0.860 0.000 1.000 0.719 0.807 

AIC 0.986 1.000 0.969 0.974 0.962 0.977 0.967 0.955 0.947 

          

PCF201 LR GPR RFR MLP SVM DTR GBR KNN XGBoost 

MSE 0.400 0.940 0.410 0.452 0.278 0.701 1.000 0.327 0.715 

R2 0.940 0.000 0.932 0.881 0.952 0.627 0.348 1.000 0.615 

AIC 0.888 0.973 0.890 0.916 0.866 0.972 1.000 0.869 0.973 

PCF206 LR GPR RFR MLP SVM DTR GBR KNN XGBoost 

MSE 0.698 0.767 0.542 0.975 0.810 0.538 0.900 1.000 0.550 

R2 0.147 0.838 0.971 0.000 0.632 1.000 0.044 0.632 0.926 

AIC 1.000 0.538 0.490 0.538 0.530 0.490 0.535 0.551 0.491 

          

PCF401 LR GPR RFR MLP SVM DTR GBR KNN XGBoost 

MSE 0.177 0.091 0.089 1.000 0.193 0.100 0.103 0.072 0.104 

R2 0.841 0.970 0.970 0.000 0.524 0.957 0.927 1.000 0.945 

AIC 0.870 0.803 0.811 1.000 0.864 0.802 0.815 0.779 0.816 

          

PCF407 LR GPR RFR MLP SVM DTR GBR KNN XGBoost 

MSE 0.645 0.732 0.799 0.941 0.921 0.799 0.651 1.000 0.899 

R2 0.910 1.000 0.756 0.218 0.295 0.128 0.885 0.000 0.372 

AIC 0.940 0.972 0.981 0.995 0.993 0.960 0.941 1.000 0.991 
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APPENDIX G – K-fold Cross Validation Results 
Table 8.6 presents our complete K-fold cross validation results and distribution of the 

MSE over ten folds for each of the selected models. 

Table 8.6: K-fold cross validation results. 
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APPENDIX H – Feature Importances 
Table 8.7 shows the relative feature importances per product-model combination. Each 

list includes the feature ID number, the feature name and its relative score. 

Table 8.7: Relative feature importances per product. 
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We condensed the feature importances from Table 8.7 to a single table in Table 8.8. 

Table 8.8: Relative feature importance per method. 

Feature LR SVM DTR GBR XGB 

_hijstrek 9.146945 0.000000 0.000000 0.013657 0.013657 

_wvbBalken 0.477140 0.343273 0.261850 0.034049 0.034049 

_D2085 0.178715 0.000000 0.207438 0.270895 0.270895 

_VERBINDING3 0.154337 0.000000 0.224093 0.224093 0.224093 

_wvbPLanken 0.044800 0.000000 0.024865 0.102933 0.102933 

10STOPHOUT 0.009995 0.000000 0.020260 0.032048 0.032048 

10BODEM 0.006490 0.002348 0.008438 0.001406 0.001406 

10BAK 0.000000 0.000000 0.013674 0.000000 0.000000 

10KOPSCHOTTEN 0.000000 0.306451 0.001913 0.013895 0.013895 

10LOSMATERIAAL 0.000000 0.306451 0.001167 0.003795 0.003795 

10MERKEN 0.000000 0.002657 0.008782 0.003490 0.003490 

10DEKSELFRAME 0.000000 0.002348 0.000000 0.071924 0.071924 

10SJABLOON 0.000000 0.000000 0.000000 0.002642 0.002642 

10JUK3 0.000000 0.000000 0.000000 0.000000 0.000000 

10STAALWERK 0.000000 0.000000 0.000000 0.000005 0.000005 

10ZIJSCHOTTEN 0.000000 0.000543 0.009686 0.008061 0.008061 

10JUK2 0.000000 0.018685 0.000000 0.000023 0.000023 

10INTERIEUR 0.000000 0.004800 0.083819 0.007973 0.007973 

10HOEZEN 0.000000 0.000000 0.000000 0.000000 0.000000 

10DEKSEL 0.000000 0.002348 0.125743 0.005087 0.005087 

10BEKLEDING 0.000000 0.000000 0.000000 0.000469 0.000469 

_VERBINDING2 -0.044466 0.000000 0.000000 0.096765 0.096765 

_D3241 -0.150396 0.000000 0.000000 0.007474 0.007474 

_D2049 -1.004754 3.000000 0.007364 0.055061 0.055061 

_D12401 -5.644708 0.000000 0.140070 0.022226 0.022226 
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APPENDIX I – Outlier Data 
Table 8.9 presents the number of outliers removed from the predictions for each model 

and product with the IQR method described in Section 4.4.  

Table 8.9: Number of outliers per product and model. 

Product LR GPR RFR MLP SVM DTR GBR KNN XGB 

PCF102 1 5 5 4 2 2 6 3 4 

PCF103 1 1 1 1 2 2 1 2 2 

PCF201 2 1 2 3 1 0 0 2 0 

PCF206 2 0 3 1 1 3 1 0 3 

PCF401 3 4 3 6 4 3 4 4 4 

PCF407 2 1 1 1 1 3 2 1 1 

 
Table 8.10 presents the percentage of outliers removed from the predictions. The 

colour scales indicate the relatively high (yellow) and low (purple) percentages. 

Table 8.10: Percentage of outliers in predictions. 

Product LR GPR RFR MLP SVM DTR GBR KNN XGB 

PCF102 2.33% 12.82% 12.82% 10.00% 4.76% 4.76% 15.79% 7.32% 10.00% 

PCF103 3.23% 3.23% 3.23% 3.23% 6.67% 6.67% 3.23% 6.67% 6.67% 

PCF201 16.67% 7.69% 16.67% 27.27% 7.69% 0.00% 0.00% 16.67% 0.00% 

PCF206 11.76% 0.00% 18.75% 5.56% 5.56% 15.79% 5.56% 0.00% 18.75% 

PCF401 9.09% 12.50% 9.09% 20.00% 12.50% 9.09% 12.50% 12.50% 12.50% 

PCF407 13.33% 6.25% 6.25% 6.25% 6.25% 21.43% 13.33% 6.25% 6.25% 
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APPENDIX J – Residual Analysis 
Table 5.6 in our error analysis plots the prediction’s deviation from the actual value. 

Table 8.11 plots the absolute and the percentual errors. 

Table 8.11: Absolute error distribution in residuals. 
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APPENDIX K – Model Parameters: 
Specific model parameters are set to their default values due to the comparison of the 

model performance. The evaluation metrics are MSE and AIC. Dataset is split into 80-20 ratio 

of training and test data. Outliers are excluded using the IQR method. 

 

Linear Regression: 

Linear relationships between independent and dependent variables are assumed, 

independence of errors, and constant variance of errors. No regularization techniques are 

applied.  

 

Gaussian Process Regression: 

Radial Basis Function (RBF) with length scale of 1.0 indicates that nearby points in the 

model have a similar effect on the prediction. White Kernel with noise level of 1e-5 which 

means that the noise level is relatively low. The random State is set to 42 to ensure the random 

numbers are equal in every run of the code. 

 

Random Forest Regression: 

Uses ensemble of n=100 decision trees to make predictions. Each decision tree is bult 

on a random subset of the dataset. The random State is set to 42 to ensure the random 

numbers are equal in every run of the code.  

 

Multi-Layer Perceptron - Artificial Neural Networks: 

Built and trained using Keras library. Standardisation is performed using 

Standardscaler from scikit-learn before training the model. The neural network design consists 

of an input layer with 64 neurons, a 32-neuron hidden layer, and an output layer. The model is 

trained for 100 epochs with a batch size of 32, using the Adam optimiser and MSE loss 

function. 

 

Support Vector Machines: 

A linear kernel is used as the base model. The default values are used for the 

parameters. Regularisation (C)=1.0, epsilon (𝜀)=0,1, and tolerance (tol)=1e-3.  

 

Decision Tree Regression: 

The Max Depth determines the maximum number of levels in the tree. The tree is 

expanded to all leaves are pure or until all leaves contain less than the minimum samples, if 

the parameters are not specified. The Minimal Sample Split in this case is the default value of 

2. Min Samples leaves is set to the default value of 1 and determines the sample size required 

to be a leaf node.  

 

Gradient Boosting Regression: 

The loss function is optimised by least squares (LS) regression. The number of 

boosting stages to be performed is, by default, set to 100. The learning rate is set to 0.1 by 

default and shrinks the contribution of each tree. The maximum depth of the individual 

regression estimators is set to 3 by default. The minimum sample size required to split an 

internal node is set to 2 by default. The minimum sample size required to be at a leaf node is 
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set to 1 by default. The number of features to consider when looking for the best split considers 

all features by default. 

 

K-Nearest Neighbours: 

The number of neighbours used for prediction is set to the default value of 5. The weight 

function used in prediction is set to 'uniform' by default, therefore, all points in each 

neighbourhood are weighted equally. The algorithm used to compute the nearest neighbours 

is set to 'auto'. It selects the most the best fitting algorithm based on the requirements. 

 

Extreme Gradient Boosting: 

The objective function is the loss function that is minimised, by default is it set to 

'reg:squarederror' for regression problems. The step size shrinkage is a parameter used to 

prevent overfitting. This parameter is set to its default value of 0.3. Number of Trees is set to 

the default value of 100. The maximum depth of each tree is set to 6, which is the default value. 

The minimum sum of weights of all observations required in a ‘child’ is set to the default value 

of 1. Subsample is set to the default of 1. This is the fraction of observations to be randomly 

sampled for each tree. Colsample Bytree is the parameter that indicates the fraction of features 

to be randomly sampled for each tree. It is set to the default value of 1, which means that all 

features are used. 

 

Summary of hyperparameters for remaining models after model selection: 

PCF METHOD Hyperparameters 

102 GBR Boosting stages = 100 

Learning rate = 0.1 

maximum depth of the individual regression estimators = 3 

minimum number of samples split node = 2 

minimum number of samples required for leaf node = 1. 

103 XGB step size shrinkage = 0.3 

Number of Trees = 100 

maximum depth of each tree = 6 

minimum sum of weights = 1 

Subsample = 1 

Colsample Bytree = 1 

201 SVM Regularisation (C) = 1.0 

epsilon (ε) = 0,1 

tolerance (tol) = 1e-3.  

206 DTR The Minimal Sample Split = 2 

Min Samples leaves = 1  

401 KNN number of neighbours = 5 

The weight function = uniform 

407 LR n/a 

 

 


