
TrackScorer: Skyrmion Logic-In-Memory Accelerator
for Document Ranking

Martijn Noorlander
University of Twente

Email: m.s.noorlander@student.utwente.nl

Abstract—Skyrmion racetrack memories have shown to have
lower leakage power and higher density compared to tradi-
tional memories like DRAM/SRAM. The cost of these mem-
ories comes with the penalty of time to shift data to an
access port. Logic-In-Memory can be used to perform op-
erations on data in memory without first transferring the
data to a CPU. In this paper, the popular document ranking
algorithm Quickscorer is mapped onto Skyrmion racetrack
memory to use the advantages of this new memory technology.
This mapping uses a Logic-In-Memory accelerator to improve
performance on Skyrmion racetrack memories. The results
show a decrease in the number of read and write operations
that are performed, and in some cases show a decrease in the
time spent shifting during the document ranking process.

1. Introduction

Racetrack Memory (RM) is an upcoming non-volatile
type of memory that packs bits of data in the domains of
a ferromagnetic wire [1] or in Skyrmions [2]. This type of
memory has several advantages, like a significantly lower
leakage power compared to traditional DRAM or SRAM
memories. Additionally, DWM and Skyrmion memories
offer a higher density than DRAM/SRAM. These advan-
tages do come at a cost, since the ferromagnetic wire, or
Skyrmions, need to be shifted to an access port before data
can be read or written. To minimize the number of shifts,
data placement is integral to the performance of racetrack
memories. In the background section several examples of
data placement on RM will be discussed.

A limitation of all types of conventional memory is the
time and bandwidth required to move large amounts of data
between memory and logic [3]. To solve this problem, the
idea of Logic-In-Memory (LIM) was introduced. By doing
computations inside the memory, time and bandwidth can
be saved. Skyrmion LIM has shown to be capable of binary
NOT, AND, and OR through the physical properties of
Skyrmions [4], allowing computations to happen inside of
the memory without reading or writing data to the memory.

Given the nature of racetrack memory, applications re-
quire careful design in order to work efficiently. Various
applications, such as sorting algorithms [5] and AES en-
cryption [6], have been implemented in earlier research.

Quickscorer [7] is a document ranking algorithm for tree
ensembles that represents nodes as bitvectors, and is because
of that able to use simple binary AND operations to find exit
leaves. Quickscorer and its derivatives like V-Quickscorer
[8] and Rapidscorer [9] have shown significant improve-
ments compared to previous ranking algorithms [9]. The
mapping of such a document ranking algorithm on Skyrmion
racetrack memory (SK-RM) for the purpose of taking advan-
tage of the reduced power consumption, non-volatility, and
increased density has not yet been explored. Furthermore,
given the nature of Quickscorer’s binary operations which
have been shown to be possible in Skyrmion, this research
explores the concept of utilizing Skyrmion LIM to enhance
the performance of Quickscorer on Skyrmion memory.
Our Contributions: In this work we propose methods for
applying Quickscorer on SK-RM by combining the bitwise
nature of Quickscorer with Skyrmion Logic-In-Memory. In
short, the contributions are as follows:

• Several mappings for implementing Quickscorer on
Skyrmion memories. These mappings include the us-
age of LIM and a genetic optimization algorithm for
the ordering of tree result bitvectors in the memory.

• A proof of concept implementation of a Skyrmion
Logic-In-Memory architecture that is capable of
performing a binary AND operation between two
tracks.

• Enhancements for RTSim to allow Skyrmion [10]
and Skyrmion Logic-In-Memory [11] specific design
exploration.

2. Background

This section provides an explanation about emerging
racetrack memories with details on Skyrmion racetrack
memories and Logic-In-Memory with Skyrmion. Addition-
ally, the Quickscorer algorithm is explained.

2.1. Emerging memories

In the search for better types of memory, racetrack
memories were developed. These offer both a higher den-
sity and a lower power consumption than the traditional
DRAM/SRAM that they aim to replace. Two main types

Figure 1. Domain Wall Memory with two access ports

of racetrack memory exist. The first type, Domain Wall
Memory (DWM) consists of a ferromagnetic wire that is
divided into domains. The direction in which these domains
are magnetized represent ’0’ or ’1’. To read or write a
domain, a port uses a Magnetic Tunnel Junction (MTJ) to ei-
ther detect the direction of the magnetization or change that
direction. Domain Wall Memories typically contain multiple
ports on each track. To access a bit, a shifting current is
applied to the wire that moves the domains in the direction
of that current [12]. To be able to read entire words at once,
racetracks are often placed in parallel and shifted together.
With these new techniques, a number of new problems arise,
like under/over-shift errors and alignment issues between
tracks.

Allwood et al. [13] proposed different domain-wall logic
elements, including a binary NOT and a binary AND gate.
The gates are achieved by creating Y shaped nanowires with
specific widths and angles. Wang et al. [14] demonstrated
the creation of domain-wall XOR logic by using two DW
nanowires. This approach provided the same low leakage
power as domain-wall memory. The XOR logic is then used
to create DW based Adders, Multiplication, and Look-up
table (LUT) logic. A block level architecture is proposed
where data arrays, which can consist of multiple cells or
racetracks, are mapped to a block of logic. For this work, the
previously created components are mapped onto the logic
blocks to create a Logic-In-Memory accelerator for image
processing machine learning. The same authors then use this
block-level architecture in a different work [6] to map the
AES algorithm to LIM. This is done by changing the logic
blocks that are mapped to the data array blocks in order to
perform AES computations.

2.2. Skyrmion Memories

The second type of racetrack memory is Skyrmion race-
track memory. Skyrmions are nanoscale particle-like spin
swirling configurations [5]. The existence of a Skyrmion in a
racetrack encodes a ’1’, while absence encodes a ’0’. Figure
2 shows a simple track. Skyrmions are moved by applying
a small current (depinning current) to the material in which
the Skyrmions reside [3]. Skyrmions can be destroyed by
applying a current larger than the annihilation current. When
applying the depinning current, the Skyrmion moves in
multiple directions, caused by the Skyrmion Hall Effect.
This effect can be likened to the behaviour of moving a
rotating rigid ball [15]. Multiple solutions have been pre-
sented to counter this effect. Among these is the creation of
a track that is curbed so the Skyrmions can only move in a
single direction. In comparison to Domain Wall Memories,

Figure 2. Skyrmion delete operation: a Skyrmion is shifted out of the track
at the access port and the other Skyrmions are then shifted back.

Skyrmions can thus move in different directions. Kang
et al. [2] compared DW based memories with Skyrmion
memories and concluded that Skyrmion has the potential
for denser, robuster, and more efficient memories. Similar to
DWM, access ports are required to create or read Skyrmions,
Skyrmions are created with an injector, and the presence of
a Skyrmion is detected using a detector [16].

One of the challenges of Skyrmion memories is the
synchronization of Skyrmion positions in both memory and
logic applications. For the logic gates to function correctly,
Skyrmions or non-Skyrmions need to arrive within a certain
timeframe from one another. For the data, when shifting
multiple tracks at the same time, the bits within a word
should stay aligned. A solution for this is the use of Voltage-
Controlled Magnetic Anisotropy gates [17]. These VCMA
gates are energy barriers capable of preventing Skyrmions
of passing through when a certain voltage is present.

Another advantage of Skyrmion memories is the ability
to insert or delete Skyrmions at certain locations without
changing the rest of the track. As shown in Figure 2, a
Skyrmion can be shifted out of the track, while this is
reversed during Insert operations. Achieving the same data
modification on DWM would require a large part of the
nanowire to be updated. Hsieh et al. [5] proposed a shift-
limited sorting algorithm for Skyrmion Racetrack memory.
This algorithm minimizes the required number of shifts
in order to sort a set of numbers. The ability to insert
and delete Skyrmion is used throughout the shift-limited
sorting algorithm to significantly reduce the number of
shifts compared to running traditional sorting algorithms on
racetrack memory. To minimize the number of Skyrmions
that need to be created or destroyed, Yang et al. [16] used the
insert/delete capabilities of Skyrmion racetrack memories
to reuse Skyrmions during certain write operations. By
temporarily storing Skyrmions in an assemble area, they
can be shifted back into the track to represent different data
values.

Hsieh et al. [18] described a method for detecting and
correcting errors in Skyrmion Racetrack memories. The
methods were tested on an adopted version of RTSim [19].

2.3. Skyrmion logic

In Chauwin [4] the Skyrmion Hall Effect is used to
create reversible logic gates. By creating racetracks in a

(a) (b)

(c)

Figure 3. Skyrmion AND/OR gate. The scenario in 3a shows a Skyrmion
from port A that moves directly to OR. The Skyrmion from B starts moving
upwards because of the Skyrmion Hall Effect, but is then pushed into
the AND output because of repulsion from the first Skyrmion. In 3b, a
Skyrmion moves from B into the OR output because of the Skyrmion Hall
Effect. Finally, in 3c a Skyrmion from A directly moves to OR.

specific shape with junctions, while using the repulsion
effect between Skyrmions, several logic functions can be
created within Skyrmion racetrack memories. This provided
significant advantages in minimizing the required number of
shifts and energy consumption. Two important types of gates
are discussed: an AND/OR gate and NOT/COPY gate. The
first gate takes two Skyrmion inputs and provides an OR and
AND Skyrmion output. A schematic of an AND/OR gate is
shown in Figure 3. The NOT/COPY gate takes two inputs:
an input for the data and a control input. Three outputs are
then provided: two ports that should be identical (copy 1
and copy 2) to the data input, and a NOT that should be the
inverse of the data. The control input is used to provide a
Skyrmion that can either be used as copy or as inverse of
the input, since the number of Skyrmions going in and out
of the gate should stay the same.

Gnoli et al. [3] proposed a Logic-In-Memory archi-
tecture for performing maximum/minimum search within
Skyrmion racetrack memory. An architecture was designed
in which the racetracks can both act as memory but also
contain logic AND and OR gates. A control unit is respon-
sible for executing the logic for the algorithm.

It is possible to convert between Skyrmions and Domain
Wall as shown in Kan et al. [20]. This method is used
in Liu et al. [17] to create a Processing-In-Memory (PIM)
architecture for CNN’s in a combination of both Skyrmion
and DWM. The blocks in the architecture consist of a
Domain-Wall storage unit and a Skyrmion computing unit.
These two are then connected with two converters to convert
between Skyrmions and Domain-Wall. The Skyrmion blocks
contain a set of Skyrmion logic gates from previous work
that are combined into an XOR gate that is used for adder
logic. Furthermore, a Skyrmion nanowire based multiplier
is designed.

In Pan et al. [21], a Logic-In-Memory architecture for bi-
nary neural convolution networks is shown within Skyrmion
memory. The architecture consists of horizontal and verti-
cal racetrack groups that have connected AND and XOR

operators. Inputs are written to the vertical groups, whilst
weights are written to the horizontal groups.

2.4. Quickscorer

Tree ensembles have shown great performance in rank-
ing search engine query results [7]. When performing a
query, large numbers of trees have to be traversed simul-
taneously. Luchesse [7] proposed Quickscorer, a document
ranking algorithm for tree ensembles. Quickscorer relies on
bitvectors to simplify computations by allowing the use of
bitwise operations. The algorithm for Quickscorer is shown
in Algorithm 1. The algorithm takes a tree ensemble T , and
a feature vector x that will be scored. The tree ensemble
is mapped to memory in a set of arrays. Most importantly,
the nodes of all trees are grouped by matching features and
then sorted by threshold value. For each of the nodes in the
tree, a bitvector is created. This bitvector encodes the leaves
that can be reached if a node is a true node.

The algorithm starts by setting the result bitvectors for
each of the trees in the ensemble to 11...11. Next, the
algorithm iterates through each of the features. For any node
where the feature value is above that node’s threshold, a
binary AND operation is performed between the bitvector
and the tree’s bitvector to remove unreachable leaves. Once a
node is found where the feature value is below the threshold,
the algorithm can skip the remaining nodes and continue to
the next feature. Finally, the algorithm takes the value of
the exit leaf (the first leaf in the tree bitvector that is set
to 1) together with the exit leaf values of all other trees to
compute a score for the feature vector x.

Algorithm 1 Quickscorer(features x, ensemble T)
1: // Set all result bitvectors to 1
2: for h = 0 to h = |T | do
3: result bitvectors[h]←− 11...11
4: end for
5:
6: // Iterate through features
7: for k ←− 0 to k ←− |F | do
8: for i←− offsets[k] to i←− offsets[k + 1] do
9: if x[k] > thresholds[i] then

10: h←− tree ids[i]
11: result bitvectors[h]←− result bitvectors[h]∧

bitvectors[i]
12: else
13: break
14: end if
15: end for
16: end for
17:
18: score = 0
19: for h = 0 to h = |T | do
20: i←− first bit index set to 1 in bitvectors[h]
21: score←− score+ leaf values[h ∗ |L|+ i]
22: end for

In V-Quickscorer [8], SIMD instructions are used to
parallelize the scoring of documents. Depending on the

hardware platform, up to 8 documents (assuming 32bit
bitvectors) can be ranked at once. The changes compared to
Quickscorer are shown in Algorithm 2. To further improve
performance, Rapidscorer is presented in Ye et al. [9]. In
this algorithm, a combination of SIMD instructions and a
different memory layout are used. One of the advantages of
this memory layout is a more compact representation of the
bitvector which can represent a larger number of exit leaves.

Algorithm 2 V-Quickscorer(features {x}, ensemble T)
1: // Set all result bitvectors for all documents to 1
2: for i = 0 to i = |T | ∗NDocuments do
3: result bitvectors[i]←− 11...11
4: end for
5:
6: for k ←− 0 to k ←− |F | do
7: vectorized x←− vectorize(x[k+NFeatures], x[k+

NFeatures ∗ 4], x[k +NFeatures ∗ 8], ...)
8: for i←− offsets[k] to i←− offsets[k + 1] do
9: mask ←− compare(vectorized x,thresholds[i])

10: if mask == 00...00 then
11: break;
12: end if
13: vectorized result bitvector ←−

vectorize(&result bitvectors[h∗NDocuments])
14: m←− vectorized andnot(bitvector,mask)
15: vectorized result bitvector ←−

vectorized andnot(vectorized result bitvector,m)
16: store to memory(&result bitvectors[h ∗

NDocuments], resultvectorized result bitvector)
17: end for
18: end for

3. Skyrmion Logic-In-Memory Simulation

A simulator for SK-RM is required in order to test differ-
ent mappings of the algorithm. This section details the LIM
element that the Quickscorer mappings use and subsequently
presents the enhancements that have been made to RTSim
in order to support Skyrmion and Logic-In-Memory.

3.1. Hardware architecture

For Gnoli [3], an HDL framework was defined to simu-
late Skyrmions. This framework tracks the positions of each
Skyrmion in the defined layout and supports the aforemen-
tioned Skyrmion logic elements AND/OR and COPY/NOT.
Using this library, a proof of concept of a LIM architecture
that can be used for mapping Quickscorer to Skyrmion
racetrack memory was created. The requirements for this
architecture were as follows:

• There need to be two racetracks, one for the bitvector
input and one for the result of the AND operation.

• The original bitvectors should be immutable, since
the data is reused between the scoring of different
documents.

Figure 4. LIM Architecture for Quickscorer. Yellow lines are VCMA gates.
An AND/OR and a COPY/NOT element are present. A Skyrmion of the
bitvector track is present at the input for the COPY/NOT so that it is copied
back into the track.

A Skyrmion layout was defined that could perform the
AND operation between two memory tracks and subse-
quently store the result in one of the original locations. This
operation represents the binary AND between a bitvector
and result bitvector in the Quickscorer algorithms. The
layout consists of three major components. First, there are
the two racetracks for storage, built from blocks of track and
VCMA controls for synchronizing Skyrmion locations. One
of the racetracks stores one of the bits for all the bitvectors,
the other track stores said bit for the result bitvectors of each
tree. The third component is the logic. It is important that
the contents of the original bitvector track do not change,
since this bitvector is reused between different runs of the
algorithm. A COPY/NOT gate is therefore connected to the
two T-shaped junctions in the bitvector track using VCMA
gates. When shifting within the bitvector track, control
logic for the different VCMA gates and different current
directions are used to copy a Skyrmion or the absence of
a Skyrmion. The result is then fed to the AND/OR gate,
whereas the other Skyrmion/non-Skyrmion is fed back to
the original racetrack. This guarantees that the result of the
binary AND operation cannot influence the original value
of the bitvector track that is used in future executions of the
algorithm. For the COPY/NOT gate to work, a Skyrmion has
to be generated/inserted into one of the input ports of the
COPY/NOT gate. An overview of the Skyrmions’ locations
during operation is given in Table 1. Given that a Skyrmion
will always be present at either the NOT and/or the OR
output, this Skyrmion can potentially be used as input for
the COPY. However, to simplify the implementation of the
Skyrmion logic, this is currently not implemented. A test-
bench was created to verify that the separate tracks could be
shifted in two directions and that the logic implementation
functioned as expected.

Bit Vec Res Vec Gen NOT OR AND
0 0 1 1 0 0
0 1 1 1 1 0
1 0 1 0 1 0
1 1 1 0 1 1

TABLE 1. TABLE REPRESENTING SKYRMION LOGIC THROUGHOUT THE
OPERATION.

Figure 5. Demonstration of the difference between DBC’s, Domains, and
bits in RTSim. Two DBC’s are shown with a wordsize of 3, so each DBC
therefore consists of 3 tracks. The highlighted domains have a value of
’111’.

In the application, this architecture is multiplied de-
pending on the required configuration. In this research, a
wordsize of 32-bit is used, hence 32 of these tracks are
created in parallel.

3.2. Memory simulation

Khan [19] proposed a simulator for the simulation of
racetrack memories. Both DWM and Skyrmion based mem-
ories can be simulated. This simulator, RTSim, is an exten-
sion to NVMain, a simulator for memory on an architectural
level. The simulator has the ability to simulate memory
traces containing read and write actions. It is possible to use
RTSim/NVMain as memory backend for Gem5 [22]. This
way, complete progress can be simulated with a Racetrack
memory backend. To support racetrack memories, several
changes were made in RTSim compared to NVMain.

First, RTSim introduces the concept of Domain Block
Cluster’s (DBC’s) and Domains. A DBC represents a set
of tracks that is equal to the configured word size. For a
wordsize of 32-bit, a DBC with 32 subtracks is defined. A
domain references a specific bit within said DBC. Figure
5 demonstrate this difference. In this figure, two DBC’s
are shown with 9 domains each. The width of each DBC
is 3 bits. The number of access ports in RTSim can be
configured. For each of the configured number of DBC’s a
separate set of access ports is maintained. All tracks within
a DBC shift together in order for words to stay aligned.

In the trace files, two different types of memory requests
are supported: Read and Write. When either of those is
dispatched, RTSim automatically dispatches a Shift request
that will processed beforehand. This Shift request finds the

Cycle Instr Addr New Data Old Data Thread ID
10 W 0x781 173513500 223313500 0
20 R 0x781 000000000 173513500 0

TABLE 2. TRACE FILE FORMAT

closest access port to the requested memory location and
then updates all port locations within said DBC to reflect
that number of shifts. Two different shift behaviours can be
configured: lazy and eager. When lazy shifting, a DBC is
shifted to a location and kept there. When eager shifting,
the access ports are returned to their initial position when
the request is complete. Trace files have a number of fields,
some of these are the cycle, instruction type, address, and
data fields. Since RTSim/NVMain is an architectural level
simulator, actual data is not stored in the sim. Therefore, the
data fields represent the data before and after the instruction,
so that metrics that require knowledge of bits can still be
created.

As the naming in RTSim suggests, these changes were
created to support Domain Wall Memory, not necessarily
Skyrmion racetrack memories. In order to use RTSim for
this research, several enhancements were made to RTSim.
First, the ability to perform Insert and Delete requests was
added in order to be able to use these abilities of Skyrmion
memories later on. As with Write and Read, automatic
Shift requests are dispatched together with these operations.
The second enhancement added a metric to keep track of
the number of Skyrmions that are created or destroyed
during certain operations. For example, when performing
a Write request, the number of Skyrmions that are created
or destroyed can be determined by comparing each bit in
both the new and old data field. For the sake of simplicity,
a group of tracks is still referred to as a DBC, while a bit in
a track is still referred to as a Domain even though this is
technically not the correct name. These two modifications
have been accepted and merged back into mainstream.

The third modification was the addition of the Logic-
In-Memory request to simulate LIM operations. For this
operation, there are no automatic shift requests, since this
operation shifts two DBC’s at once. The address in the
request refers to the address of the bitvector that should be
used as input for the LIM operation. Because a trace line
only has a single address column, the new data field was
used to encode the address of the result bitvector where the
result of the LIM operation would end up. This prevented
large modifications to RTSim to change the structure of
requests. In this instruction, the assumption is made that
LIM blocks, like the previously presented architecture, are
present at each access port. Execution for the LIM requests
starts by finding the closest port for the request address, then
both the DBC of the request address (which is the DBC with
bitvectors) and the address in the new data field (which is
the DBC with result bitvectors) are shifted to that access
port to represent a Logic-In-Memory simulation. The new
and old data fields are then used to compute the number
of Skyrmions created and destroyed during this instruction.
These numbers are based on the results from Table 1. For

the parallel LIM mapping that is discussed later, a mask
was added to only apply the shifting and Skyrmion counts
to DBC’s that have to be activated.

The final modification was the addition of another met-
ric: total shift duration. For the original metric that keeps
track of the total number of shifts, each Skyrmion/non-
Skyrmion that is shifted a position is counted once. For
example, in a DBC with a wordsize of 32-bit that is shifted
4 positions, the total number of shifts will increase by
32*4. This does not, however, represent the total time spent
waiting for shifts to complete, since the 32 tracks can be
shifted in parallel. Therefore, the total time spent waiting
will only be that of 4 shifts. Ignoring parallel shifts, the
final added metric is the total shift duration. For the LIM
instruction, this number is increased by the longest shift of
the two tracks, since that shift will bottleneck the operation.

4. Quickscorer on Skyrmion

This section discusses the method for generating RTSim
trace files for Quickscorer and the four mappings that were
used to map Quickscorer to SK-RM. The first method is a
basic mapping without Logic-In-Memory, whereas the last
three mappings use the LIM operation that was added to
RTSim.

4.1. Quickscorer Trace Generation

The code used to run Quickscorer in Lucchese et al.
[23] was used to run the different Quickscorer experiments.
The Microsoft Learning to Rank dataset [24] was used as
dataset to create and train tree ensembles to run the code
on. The first fold of the dataset was used, which consists of
five parts: three for training, one for validation, and one for
tests. This fold was then trained using XGBoost [25].

In order to create memory traces from the Quickscorer
runs, a C++ class was written that could create and fill an
RTSim compatible trace file. This class contains methods
for all the different Skyrmion memory instruction (Read,
Write, Insert, Delete, LIM) and calculates the correct mem-
ory address based on the requested DBC/Domain. The
Quickscorer code was then modified to include calls to this
class. This results in the code still running on a normal
architecture to validate the correctness of the changes to the
algorithm, but provides the ability to measure the effect of
all memory instructions on Skyrmion memory. Algorithm
4 shows an example of this. This case assumes that the
result bitvectors array is mapped to an entire (currently
empty) DBC in racetrack memory called res dbc. The
skyrmion trace write function will then create a line in
the trace file with a cycle count, ”W” instruction, calculated
memory address from res dbc, and h, the hexadecimal
representation of 11...11 as new data and 0...0 as old data.

Figure 6. Simple mapping of Quickscorer

Figure 7. LIM mapping of Quickscorer

Algorithm 3 TraceDemonstrator(ensemble T)
1: // Set all result bitvectors to 1
2: for h = 0 to h = |T | do
3: result bitvectors[h]←− 11...11
4: skyrmion trace write(res dbc, h, 00...00, 11...11)
5: end for

4.2. Algorithm Mapings

4.2.1. Base mapping. Quickscorer is mapped to Skyrmion
memories in several different ways. The first mapping is
rather simple, as it maps each of the input arrays to a DBC.
This produced a memory with 8 DBC’s, each consisting of
32 subtracks as this was the chosen word size. Quickscorer
code was modified to produce memory trace information
during runtime. Each time one of the data arrays was
accessed/modified, this action was appended to the trace file
with a correct instruction. The trace also contained the data
before and after completion of the instruction, in order for
RTSim to be able to calculate the number of Skyrmions that
had to be created or destroyed. Figure 6 shows an overview
of a basic mapping of the bitvector array to the memory.
In all cases, traces were only generated for the ranking
algorithms, not the data preparation phase, since this is only
done once, independent from the number of documents that
are ranked.

4.2.2. LIM Mapping. The second mapping is similar to
the first, except for the utilization of Logic-In-Memory for
the AND operation to calculate the result bitvector. Instead
of separate instructions that first read the result bitvectors,
then the bitvector for that leaf, and then write that back
to the correct result bitvector, a single instruction is used.
This LIM instruction has the bitvector DBC and domain
as address while the result bitvector DBC and domain are
encoded in one of the data fields. For both tracks the
original and new data are also present in the trace. The
implementation of the LIM instruction in RTSim will shift
both the tracks for bitvectors and result bitvectors to the
same access port in order for the correct domains to be
used. A single bit mapping is shown in Figure 7. Instead of

all tracks of a data type being mapped together, the bits of
bitvectors and result bitvectors are interleaved to allow for
logic elements to be placed physically between tracks.

With this mapping, the requirement for bits in the bitvec-
tor and result bitvector to be in physical proximity of one
another, in order for the Skyrmions to be fed into the
logic, causes an overhead in shifting in the result bitvector.
Depending on the number of access ports in the racetrack,
this overhead can be significant. For example, with a track
length of 32768 and inter-port distance of 32, a Skyrmion
would normally take at most 32 shifts in order to be at
an access port. With the introduction of LIM, this can be
increased up to the number of trees in the ensemble, since a
bitvector n might belong to the first tree in the ensemble and
bitvector n+1 might belong to the last tree in the ensemble.

To decrease the overhead in shifts caused by the LIM
implementation, a more efficient mapping of the trees in the
result bitvectors is needed. Quickscorer uses a look-up-table
(LUT) called tree ids to determine which result bitvector
belongs to the node. By default, tree 0 is mapped to result
bitvector 0, tree 1 to result bitvector 1, and so on. In a worst
case scenario where each node in the ensemble has to be
visited, this problem can be defined as

shifts =

i=|bitvectors|−2∑
i=o

|tree ids[i]− tree ids[i+ 1]|

Since every tree can be accessed multiple times, this prob-
lem cannot be efficiently solved. Iterating over all permuta-
tions would result in a complexity of |T |! and is thus not
feasible for larger ensembles. In order to compute a better
ordering than the default, a genetic algorithm was used.

Algorithm 4 GeneticOptimization(tree ids[])
1: for h = 0 to h = population size do
2: population[]←− [random()]
3: end for
4: for i = 0 to i = iterations do
5: evaluate(population)
6: sort by score(population)
7: new pop←− population[: 10]
8: new pop←− gen offspring(population[: 50])
9: population←− new population

10: end for
11:
12: evaluate(population)
13: sort by score(population)
14: return population[0]

In this genetic algorithm, a population of randomly
sorted mappings is created. For each iteration of the al-
gorithm, these mappings are evaluated by calculating the
required number of shifts for the worst-case ranking in
which all the nodes in an ensemble need to be visited. The
top 10% are then directly added to the new population. The
top 50% are used to create new offspring. This consists of
taking two random members of the top 50% and defining
a random crossover point. The first member is copied up

to the crossover point, and then the missing tree ids are
added in order of the second member. Finally, to reduce the
chance of a local minimum [26], a random mutation can
occur in 10% of the cases. In this situation, two random
ids in the mapping of the new member are swapped. After
a configured number of iterations have completed, the final
population is ranked by score, and the population member
with the lowest score is selected.

4.2.3. Sequential LIM Mapping. For the third option, a
mapping similar to that of V-Quickscorer was done. In-
stead of processing a single document for each iteration,
multiple documents were processed at once. This was done
by placing them sequentially in the racetrack memory. The
size of the result bitvectors was thus increased by a factor
of NDocuments. Instead of vectorized operations, up to
NDocuments LIM instructions were dispatched for each
bitvector comparison.

4.2.4. Parallel LIM Mapping. The fourth option builds
on the third mapping. Instead of sequentially processing
multiple documents in one iteration of the algorithm, the
documents are processed in parallel. The number of DBC’s
is increased in order for there to be NDocuments DBC’s
for both the bitvectors and result bitvectors. As with the
previous option, it is assumed that only the normal wordsize
(32) can be read and written in an instruction. The LIM
instruction then processes multiple bitvectors at once, based
on a mask that is added to the LIM instruction.

For all options, the mapping only takes into account the
actual execution of the algorithm. Data preparation is not
taken into account, since this research focuses on the actual
ranking performance.

5. Evaluation

This section presents the results of the trace files that
were generated with Quickscorer and then ran under RTSim
with several different configurations. The setup and config-
ured options are discussed together with the metrics that
were chosen to evaluate the performance of the implemen-
tations.

5.1. Evaluation Setup

The four different mappings were tested in RTSim with
a variety of different parameters. For all mappings, three
different port counts were tested: 128, 512, and 1024. In
RTSim, the shifting policy was set to ”Lazy”, so after
shifting a domain to an access port, the track will remain
in that position until the next instruction. All mappings
used a size of 32768 domains per DBC and the number
of DBC’s was set to 8 for all experiments except for the
parallel LIM mapping. For this mapping, the number of
DBC’s was increased to 24 to account for the increased
number of parallel operations (both the bitvector and result
bitvector will now require 8 DBC’s each). The word size
was kept the same at 32.

All experiments were performed on a tree ensemble of
1000 trees with each experiment ranking 512 documents.
For the genetic algorithm, 3600 iterations were executed on
the ensemble of 1000 trees. Both the default and genetic
mapping were tested. The genetic mapping was stored after
running, to allow subsequent experiments to use the same
genetic mapping. Finally, a parameter was added into RTSim
to test the effects of reusing Skyrmions that are otherwise
destroyed in the LIM operation. As this is currently not
modelled on the HDL part of the simulations, this indicates
a possible future improvement.

To evaluate this research, several parameters from RT-
Sim were selected. These were chosen as parameters related
to Skyrmion racetrack memories, in order for the influence
of different mappings to be evaluated.

Number of Shifts This value represents the total number
of shifts that had to be completed during the runtime of the
algorithm. Shifts in tracks are multiplied by the word size of
the track. Shifting 10 positions in a track with word size 32
will thus result in 320 shifts. For energy consumption, this
number is significant, since each shift consumes energy. The
aforementioned situation will result in 320 times the shifting
energy.

Total Shift duration This represents the number of
shifts that caused delay. Since shifting can happen in par-
allel, the number of shifts parameter does not necessarily
present a fair evaluation of the time wasted on shifting.
Using the previous example, shifting 10 positions on a track
with wordsize 32 only causes a delay of 10 shifts, since 32
of these happen in parallel. More importantly, for the LIM
operation, when both tracks are shifted at the same time,
only the track with the longest distance to shift has to be
taken into account. When shifting two tracks, one with a
distance of 10 and the other with a distance of 20, the time
limiting factor is 20 shifts, not the combination of 30.

Reads and Writes These represent the total number
of read and write operations that are performed during the
ranking of the documents.

Detect This parameters represents the total number of
detect operations that are performed. When reading, a detect
has to be performed for every bit in order to determine
whether a Skyrmion is present. When writing, a detect has
to be performed for every bit, in order to determine if a
Skyrmion has to be created or destroyed.

Skyrmions Created This is the total number of
Skyrmions that have been created. A higher value indicates
more Skyrmions that are created and thus a higher energy
consumption. Since the creation of Skyrmions is energy ex-
pensive, this is an important metric for energy consumption.

Skyrmions Destroyed This value represents the total
number of Skyrmions that have been destroyed. Since de-
stroying a Skyrmion requires a higher current than the
shifting current, this parameter is important for energy con-
sumption.

(a) 1024 Ports (b) 512 Ports

(c) 128 Ports

Figure 8. Total shifts during the ranking of a set of documents. For each
track per DBC a shift is counted. For example, shifting a DBC with
wordsize of 32-bits by 3 positions, counts as 3*32=96 shifts.

5.2. Shifts

The total number of shifts in Figure 8 shows that the
Logic-In-Memory implementations all significantly increase
the total number of shifts that occur during the experi-
ments. This can be attributed to the requirement of physical
proximity of the data in order to be able to use the logic
as explained earlier. Even for the lower port counts, this
shows a significant increase in shifting energy for the LIM
implementation. Parallel shifts also show an increase for
some of the experiments. The parallel logic implementation
is the most promising and shows that for a lower number of
access ports, the parallel LIM implementation spends less
time shifting to rank the same number of documents on the
base Quickscorer algorithm. For the LIM implementations,
the number of access ports does not significantly change the
amount of shifting operations. The genetic mapping shows
the most improvement for the Logic-In-Memory implemen-
tations, since the alignment of bitvector and result bitvector
tracks causes larger shift distances. For the base Quickscorer
mapping, an improvement of 3% is found for both the total
number of shifts and the number of parallel shifts. The LIM
mappings all show around a 10% improvement in the total
number of shifts and the number of parallel shifts when the
genetic mapping is used.

5.3. Read and write operations

The results in Figure 10 show a significant decrease in
read and write operations in all of the LIM implementations.
The sequential and parallel LIM implementations show
an improvement over the base Logic-In-Memory mapping,

(a) 1024 Ports (b) 512 Ports

(c) 128 Ports

Figure 9. Parallel shifts. This metric only counts the number of sequential
shifts. Multiple shifts in parallel only count for a single shift, this represents
the total time spent shifting during the ranking process.

since data elements like node thresholds and tree ids are
only read once for every 8 documents. Since the LIM
blocks purely rely on the physical properties of Skyrmion
to perform the logical AND operation, the number of detect
operations is also significantly reduced.

5.4. Skyrmion creation and destruction

As shown in Figure 11, all LIM implementations show
a very significant increase in Skyrmions that are created
during the ranking of documents when the reuse option
is not used. This can be attributed to the required input
Skyrmion during the copy phase of the LIM block. Assum-
ing the ability to reuse Skyrmions is present, the number
of Skyrmions created is the same as that of the standard
Quickscorer implementation. In these cases, Skyrmions are
only created once during the initialization phase of the
algorithm, when all result bitvectors are set to 1. Similar
to the creation of Skyrmions, the absence of reuse shows
in the number of Skyrmions that are destroyed. For every
LIM operation, at least one Skyrmion is destroyed, in some
cases two. When the reuse option is used here, the results
show that no Skyrmions are destroyed.

5.5. Discussion

The experiments show mixed results for some areas
depending on the parameters. The total number of shift
operations that occur are increased compared to that of the
base Quickscorer mapping, indicating an increased energy
consumption in this area. For the higher port counts, the

(a) Write operations (b) Read operations

(c) Skyrmion detect operations

Figure 10. IO Operations with regards to reading and writing to the
Skyrmion memory. Each read or write represents reading or writing a 32-
bit word. The detect operations are the number of single Skyrmion detect
operations that were executed.

(a) Skyrmions created (b) Skyrmions destroyed

Figure 11. Results of the different implementations with regards to the
number of Skyrmions that were created or destroyed. The LIM implemen-
tations show two different sets of results, one where the input Skyrmion
can be reused and one where this is not the case.

difference between the base mapping and best LIM map-
ping (parallel LIM) is 14.2x. For the lower port count this
difference lowers to 3.6x. For the LIM mapping itself, the
shifting difference between different port counts does not
influence the number of shifts, showing that a less com-
plex architecture can achieve similar results. The total time
spent shifting shows the best LIM mapping (parallel LIM)
performing 3.1x worse than the base Quickscorer mapping
for the highest port count, while performing 22% better for
the lowest port count.

The number of IO operations show a clear decrease
across all experiments, with the sequential and parallel LIM
mappings performing the best. These two implementations
only read data like thresholds, offsets, and tree ids once for
each set of 8 documents. The base LIM mapping does these

for each document separately. The base Quickscorer imple-
mentation has to read both the node and result bitvector and
write that back, resulting in a significantly higher operation
count.

For the Skyrmion creation and destruction results, the
experiments show that the reusability of Skyrmions needs to
be implemented for the LIM mappings to be viable. Without
reuse, 12.3x as many Skyrmions need to be created and 20x
as many Skyrmions needs to be destroyed to rank the same
set of documents. Assuming the ability to reuse Skyrmions,
the LIM mappings only require the creation of Skyrmions
when filling the result bitvector array and do not destroy
any Skyrmions during the ranking process (since no write
requests are issued).

6. Conclusion
In this work, a method for mapping Quickscorer to

Skyrmion racetrack memories is proposed that uses Logic-
In-Memory to take advantage of the algorithms’ character-
istics. The experiments show a reduction in the number of
IO instructions and show that when using SK-RM with a
lower number of access ports, the time spent on shifting
decreases. Enhancements to RTSim are introduced that pro-
vide methods to perform design exploration with Skyrmion
racetrack memories and Skyrmion Logic-In-Memory.

Currently, two levels of simulation are used: one archi-
tectural on a memory level in RTSim, and one architectural
on the Skyrmion level using the provided HDL library. The
Skyrmion level simulation currently only serves as a proof
of concept for a single LIM element. To further determine
the feasibility of this LIM implementation, simulations of
larger LIM blocks should be performed. Another possible
improvement of the Skyrmion level simulation would be to
simulate the reusability of Skyrmions, which is tested in
some of the RTSim experiments. In order for this to be
possible, a path and logic have to be created that allow
Skyrmions from the NOT and OR gate to be transported
back to the second input of the COPY/NOT element.

On the other hand, a genetic algorithm is used to improve
the order of the result bitvectors. This genetic algorithm cur-
rently optimizes on the worst case tree traversals. Therefore,
an improvement to this mapping is to use the probabilities
for certain nodes in the ensemble to be visited, as the
evaluation metric. A more optimum solution for the average
traversal can then be found.

In this research, only a single level of parallelism was
explored, ranking 8 documents instead of just one in an
iteration of the algorithm. This number was taken from the
code that was used to create the Quickscorer experiments.
No other numbers were tested to keep the number of exper-
iments manageable. Since the parallelism mapping shows
the most promise, it could be beneficial to further increase
the number of parallel ranked documents.

References
[1] R. Venkatesan, V. J. Kozhikkottu, M. Sharad, C. Augustine,

A. Raychowdhury, K. Roy, and A. Raghunathan, “Cache Design

with Domain Wall Memory,” IEEE Transactions on Computers,
vol. 65, no. 4, pp. 1010–1024, Apr. 2016. [Online]. Available:
http://ieeexplore.ieee.org/document/7349153/

[2] W. Kang, X. Chen, D. Zhu, X. Zhang, Y. Zhou, K. Qiu,
Y. Zhang, and W. Zhao, “A Comparative Study on Racetrack
Memories: Domain Wall vs. Skyrmion,” in 2018 IEEE 7th Non-
Volatile Memory Systems and Applications Symposium (NVMSA).
Hakodate: IEEE, Aug. 2018, pp. 7–12. [Online]. Available:
https://ieeexplore.ieee.org/document/8537687/

[3] L. Gnoli, F. Riente, M. Vacca, M. Ruo Roch, and M. Graziano,
“Skyrmion Logic-In-Memory Architecture for Maximum/Minimum
Search,” Electronics, vol. 10, no. 2, p. 155, Jan. 2021. [Online].
Available: https://www.mdpi.com/2079-9292/10/2/155

[4] M. Chauwin, X. Hu, F. Garcia-Sanchez, N. Betrabet, A. Paler,
C. Moutafis, and J. S. Friedman, “Skyrmion Logic System for
Large-Scale Reversible Computation,” Physical Review Applied,
vol. 12, no. 6, p. 064053, Dec. 2019. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevApplied.12.064053

[5] Y.-S. Hsieh, P.-C. Huang, P.-X. Chen, Y.-H. Chang, W. Kang,
M.-C. Yang, and W.-K. Shih, “Shift-Limited Sort: Optimizing
Sorting Performance on Skyrmion Memory-Based Systems,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 39, no. 11, pp. 4115–4128, Nov. 2020. [Online].
Available: https://ieeexplore.ieee.org/document/9211559/

[6] Y. Wang, L. Ni, C.-H. Chang, and H. Yu, “DW-AES: A
Domain-Wall Nanowire-Based AES for High Throughput and
Energy-Efficient Data Encryption in Non-Volatile Memory,” IEEE
Transactions on Information Forensics and Security, vol. 11,
no. 11, pp. 2426–2440, Nov. 2016. [Online]. Available:
http://ieeexplore.ieee.org/document/7484726/

[7] C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. Tonellotto,
and R. Venturini, “QuickScorer: A Fast Algorithm to Rank
Documents with Additive Ensembles of Regression Trees,” in
Proceedings of the 38th International ACM SIGIR Conference on
Research and Development in Information Retrieval. Santiago
Chile: ACM, Aug. 2015, pp. 73–82. [Online]. Available:
https://dl.acm.org/doi/10.1145/2766462.2767733

[8] ——, “Exploiting CPU SIMD Extensions to Speed-up Document
Scoring with Tree Ensembles,” in Proceedings of the 39th
International ACM SIGIR conference on Research and Development
in Information Retrieval. Pisa Italy: ACM, Jul. 2016, pp. 833–836.
[Online]. Available: https://dl.acm.org/doi/10.1145/2911451.2914758

[9] T. Ye, H. Zhou, W. Y. Zou, B. Gao, and R. Zhang, “RapidScorer:
Fast Tree Ensemble Evaluation by Maximizing Compactness in Data
Level Parallelization,” in Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining.
London United Kingdom: ACM, Jul. 2018, pp. 941–950. [Online].
Available: https://dl.acm.org/doi/10.1145/3219819.3219857

[10] [Online]. Available: https://github.com/tud-ccc/RTSim

[11] [Online]. Available: https://github.com/mnoorl/RTSim

[12] Z. Chen, Q. Deng, N. Xiao, K. Pruhs, and Y. Zhang,
“DWMAcc: Accelerating Shift-based CNNs with Domain Wall
Memories,” ACM Transactions on Embedded Computing Systems,
vol. 18, no. 5s, pp. 1–19, Oct. 2019. [Online]. Available:
https://dl.acm.org/doi/10.1145/3358199

[13] D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson, D. Petit, and
R. P. Cowburn, “Magnetic Domain-Wall Logic,” vol. 309, 2005.

[14] Y. Wang, H. Yu, L. Ni, G.-B. Huang, M. Yan, C. Weng,
W. Yang, and J. Zhao, “An Energy-Efficient Nonvolatile In-Memory
Computing Architecture for Extreme Learning Machine by Domain-
Wall Nanowire Devices,” IEEE Transactions on Nanotechnology,
vol. 14, no. 6, pp. 998–1012, Nov. 2015. [Online]. Available:
http://ieeexplore.ieee.org/document/7128727/

[15] W. Kang, B. Wu, X. Chen, D. Zhu, Z. Wang, X. Zhang,
Y. Zhou, Y. Zhang, and W. Zhao, “A Comparative Cross-layer
Study on Racetrack Memories: Domain Wall vs Skyrmion,”
ACM Journal on Emerging Technologies in Computing Systems,
vol. 16, no. 1, pp. 1–17, Jan. 2020. [Online]. Available:
https://dl.acm.org/doi/10.1145/3333336

[16] T.-Y. Yang, M.-C. Yang, J. Li, and W. Kang, “Permutation-Write:
Optimizing Write Performance and Energy for Skyrmion Racetrack
Memory,” in 2020 57th ACM/IEEE Design Automation Conference
(DAC). San Francisco, CA, USA: IEEE, Jul. 2020, pp. 1–6.
[Online]. Available: https://ieeexplore.ieee.org/document/9218642/

[17] B. Liu, S. Gu, M. Chen, W. Kang, J. Hu, Q. Zhuge, and E. H.-M.
Sha, “An Efficient Racetrack Memory-Based Processing-in-Memory
Architecture for Convolutional Neural Networks,” in 2017 IEEE
International Symposium on Parallel and Distributed Processing
with Applications and 2017 IEEE International Conference
on Ubiquitous Computing and Communications (ISPA/IUCC).
Guangzhou, China: IEEE, Dec. 2017, pp. 383–390. [Online].
Available: https://ieeexplore.ieee.org/document/8367291/

[18] Y.-S. Hsieh, P.-C. Huang, Y.-H. Chang, B.-J. Chen, W. Kang,
and W.-K. Shih, “Granularity-Driven Management for Reliable and
Efficient Skyrmion Racetrack Memories,” IEEE Transactions on
Emerging Topics in Computing, vol. 11, no. 1, pp. 95–111, Jan. 2023.
[Online]. Available: https://ieeexplore.ieee.org/document/9771090/

[19] A. A. Khan, F. Hameed, R. Blasing, S. Parkin, and
J. Castrillon, “RTSim: A Cycle-Accurate Simulator for
Racetrack Memories,” IEEE Computer Architecture Letters,
vol. 18, no. 1, pp. 43–46, Jan. 2019. [Online]. Available:
https://ieeexplore.ieee.org/document/8642352/

[20] W. Kang, Y. Huang, X. Zhang, Y. Zhou, W. Lv, and W. Zhao,
“Skyrmions as Compact, Robust and Energy-Efficient Interconnects
for Domain Wall (DW)-based Systems.”

[21] Y. Pan, P. Ouyang, Y. Zhao, S. Yin, Y. Zhang, S. Wei, and
W. Zhao, “A Skyrmion Racetrack Memory based Computing
In-memory Architecture for Binary Neural Convolutional Network,”
in Proceedings of the 2019 on Great Lakes Symposium on VLSI.
Tysons Corner VA USA: ACM, May 2019, pp. 271–274. [Online].
Available: https://dl.acm.org/doi/10.1145/3299874.3318015

[22] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen,
K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood,
“The gem5 simulator,” ACM SIGARCH Computer Architecture
News, vol. 39, no. 2, pp. 1–7, May 2011. [Online]. Available:
https://dl.acm.org/doi/10.1145/2024716.2024718

[23] S. Koschel, S. Buschjäger, C. Lucchese, and K. Morik,
“Fast Inference of Tree Ensembles on ARM Devices,”
May 2023, arXiv:2305.08579 [cs]. [Online]. Available:
http://arxiv.org/abs/2305.08579

[24] T. Qin and T. Liu, “Introducing LETOR 4.0 datasets,”
CoRR, vol. abs/1306.2597, 2013. [Online]. Available:
http://arxiv.org/abs/1306.2597

[25] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting
System,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Aug.
2016, pp. 785–794, arXiv:1603.02754 [cs]. [Online]. Available:
http://arxiv.org/abs/1603.02754

[26] A. Lambora, K. Gupta, and K. Chopra, “Genetic Algorithm- A
Literature Review,” in 2019 International Conference on Machine
Learning, Big Data, Cloud and Parallel Computing (COMITCon).
Faridabad, India: IEEE, Feb. 2019, pp. 380–384. [Online]. Available:
https://ieeexplore.ieee.org/document/8862255/

