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Preface 

 

Enschede, June 2024 

 

Dear reader, 

In front of you lies the master thesis, ‘Energy Supply Reliability-Based Optimisation for the 

Development of Energy Hubs’. This research project was conducted at Firan as the final step in 

completing the Master of Industrial Engineering and Management, specialising in Production and 

Logistics Management. 

It has been incredibly insightful to execute a project within the energy sector and contribute to facing 

the challenges of the energy transition we all hear and read about. Therefore, I want to express my 

gratitude towards Firan for taking me in and allowing me to design my own research project. With no 

prior experience in the sector, I learned a lot about various topics by joining team meetings with the 

department and hearing about all the work done to create a better future. Although generally working 

on my own project, everyone has been very welcoming and ready to help whenever possible. My special 

thanks go out to Hans Veldhuis, who guided me from the beginning until the end. Our discussions 

helped steer the research in the right direction while allowing me to express my thoughts. 

Furthermore, I want to thank my university supervisor, Alessio Trivella. First, for helping me find a 

direction for potential projects in the energy sector and finding suitable companies to execute such a 

project, even before anything was official. Your close guidance in writing my project plan and every 

chapter afterwards made all the difference. You were always quick to answer any questions I had, and 

your feedback helped me in each step.  

As I write this, I think about how this graduation project marks the end of my time studying in Enschede. 

It has been almost eight years since I started pursuing my bachelor's degree. With time spent living in 

Antwerp, a full- and part-time board year, a pre-master, and finally, doing a master's in IEM, I had the 

opportunity to experience many things. I made friends, discovered new hobbies, and grew into the 

person I am now. All those years, I lived in the same house and saw housemates come and go. To 

everyone I’ve lived with, thank you for making this place not only a house but also a home. 

My final thanks go out to the dearest people in my life. Without the support of my parents, I could not 

have achieved the things I have. You believed in me while I sometimes doubted, and you always gave 

me the confidence to continue my studies. I cannot thank you both enough. Lastly, I want to thank my 

girlfriend for her support during these last months, and especially for the time we spent together after 

busy working days. 

 

Enjoy reading! 

Rens 
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Management Summary 

This research was conducted at Firan under the umbrella of the Decentral Networks department. Firan 

is a daughter company of Alliander: One of the largest firms in the energy sector in The Netherlands. 

The decentralisation of our energy networks and the increased use of renewable energy sources are 

major developments driving the energy transition. However, capacity shortages and congestion on the 

electric power grid pose a great challenge. To address these issues, Firan specialises in developing, 

realising, and exploiting infrastructures for decentralised energy hubs, which aim to efficiently generate 

and distribute energy to consumers. To aid the development process for energy hubs, Firan developed 

the Energy Hub Configurator (EHC). The EHC is a powerful tool to analyse data and provide insights 

regarding the design of energy hubs, such that well-founded decisions are made. However, insights into 

the energy supply reliability and the effects of uncertainties posing a risk to supply reliability are 

currently limited, even though the highly uncertain nature of renewable energy sources and limited grid 

withdrawal capacity pose a significant challenge to overcome. For the development of the energy hubs, 

each consumer's trust in having a reliable energy supply is essential for broad participation. If the 

decision-making for the design of energy hubs takes the uncertainties affecting the energy supply at the 

consumer level into account, and if the trade-offs between making investments and improving supply 

reliability can be analysed, informed decisions can be made. For the objectives of this study, the 

following research question is formulated: 

How can Firan improve the robustness in optimal decision-making for the design of Energy Hubs, 

considering its energy supply reliability? 

 

A context analysis is performed to study the current design process and to identify to which aspect the 

research contributes. The research focuses on energy hubs for industrial consumers, with electricity as 

the implemented energy carrier and related technological assets such as wind and solar energy 

generation, as well as batteries for energy storage. The limitations in current energy hub modelling and 

optimisation processes, considering the energy supply reliability, are identified. A literature review is 

conducted to understand recent developments in energy hub modelling, practices, relevant parameters, 

and technological assets. Varying modelling approaches for energy hub optimisation are researched, 

and strategies discussed in the literature for modelling uncertainties are elaborated on. Furthermore, an 

analysis is made on methodologies for analysing energy supply reliability, and different performance 

indicators to quantify energy hub reliability are discussed. 

Using the insights from the context analysis and the literature review, a two-stage stochastic 

optimisation model is developed for the design and operation of energy hubs, which incorporates the 

uncertainties posing a risk to the energy supply reliability and implements performance indicators to 

quantify the energy supply performance. In the first stage of the model, the strategic technological 

capacity investment decisions are taken. The second stage optimises the operation of the energy hub 

under uncertainty, using a scenario-based approach. The model's objective function minimises the costs 

associated with the design and operation of the energy hub and incorporates the fundamental 

cost/reliability trade-offs between making investments and energy supply reliability by setting a 

financial penalty for the occurrence of energy shortages within operational optimisation. 

The optimisation model is used to conduct several experiments. First, the solvability and scalability of 

the model are assessed. Second, the merits of stochastic optimisation under uncertainty are analysed by 

evaluating deterministic model solutions under uncertainty compared the stochastic model solutions. 

The cost/reliability trade-offs in energy hub optimisation are studied in the third experiment. The 

optimal solution space in balancing costs and reliability is explored and visualised in a Pareto-front, and 

the consumer-level energy supply performance is analysed through the implemented reliability KPIs. 

Lastly, the impact of technological degradation on the energy supply performance in a multi-year 

operational planning horizon is studied. 
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The results of the experiments show that the importance of stochastic optimisation and incorporating 

uncertainty in decision-making for energy hub designs cannot be understated. While high energy supply 

performance is achieved under deterministic optimisation, the resulting capacity decisions from this 

model instance are insufficient to cover energy demands under uncertainty, for a range of analysed 

energy hub configuration variants. In the analysis of the cost/reliability trade-offs, it is observed that 

while improvements in energy supply reliability are made for each increase in capacity investments, not 

all solutions pose an efficient trade-off.  

Using the minimum observed capacity investments totalling €67,896, 0.12% of all energy is expected 

to be unsupplied under uncertainty, with a probability of over 4% that an energy shortage occurs 

somewhere in the hub during each operational period of 15 minutes. By making additional investments, 

the performance can be improved iteratively, until the point at which no more shortages occur. For this, 

capacity investments totalling €195,326 are required. Lastly, it was found that the effects of 

technological degradation significantly affect the energy supply in the hub for each consumer. However, 

the extent to which the effects are visible is highly dependent on the configuration of the hub, as well 

as the specific demand profile of each consumer. The greatest decreases in energy supply performance 

are observed for the consumers with the largest demand. 

Based on the findings of this research, several recommendations are made for the implementation of 

the studied concepts within the development of energy hubs at Firan: 

• A stochastic approach in which the energy hubs are optimised under uncertainty and accounting 

for different scenarios is fundamental in decision-making for reliable energy hub designs. A 

range of uncertainty sources must be included, among which are the energy demands, the 

availability of renewable energy, and various technological uncertainties. Improvements of at 

least 1% to an observed maximum of 75% in the total minimised costs are achieved when 

comparing the deterministic model to the stochastic model solutions under uncertainty.  

• The trade-offs between making investments and achieving energy supply reliability can be used 

to develop energy hub design variants. In consultation with stakeholders and given their 

requirements, reliability can be maximised within budget constraints, or the required budget for 

achieving a minimum reliability threshold can be found. Firan can communicate these insights 

with project stakeholders, and by identifying investment strategies that align with stakeholders' 

priorities in reliability and their financial constraints, well-founded decisions are made. 

• Consumer-level reliability KPIs can be leveraged to provide stakeholders with elaborate 

insights into the performance of the energy hub. By analysing KPIs at the consumer level, Firan 

can offer stakeholders a detailed understanding of how collective or individual investments 

impact energy supply reliability. Having specific knowledge about the effects of making 

investments and operational uncertainties on the operation of the energy hub, tailored solutions 

can be developed to ensure reliability for all stakeholders at the consumer level, ultimately 

improving overall performance as well. 

• By analysing the effects of technological degradation in multi-year operational planning 

horizons, energy supply issues and their severity are identified, such that mitigation strategies 

for the effects of technological degradation can be developed within the design process. 
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Reader’s Guide 

 

Chapter 1 

The research and its goals are introduced in the first chapter. The company at which the project is 

executed and relevant topics about the research are introduced first, and the motivation for conducting 

this study is explained. Second, the problem identification and research objectives are explained, and 

the research questions are formulated. 

Chapter 2 

The second chapter elaborates on a descriptive context analysis explaining the current processes at the 

company, to identify how and where the research can contribute. The key elements in energy hub 

modelling and the uncertainties posing a risk to the energy supply in the hub are identified. 

Chapter 3 

A literature review is conducted to gain insight into recent developments in the field of energy hub 

modelling and optimisation. Various modelling approaches are studied, and methods to analyse energy 

supply reliability are introduced. 

Chapter 4 

The fourth chapter presents a two-stage stochastic optimisation model which incorporates the 

uncertainties posing a risk to energy supply reliability using a scenario-based approach. Consumer-level 

energy supply reliability indicators are implemented in this model, such that the operational 

performance of an optimised energy hub asset configuration can be quantified.  

Chapter 5 

A numerical study is performed by conducting several experiments. For this, a data sampling method 

is developed and implemented in the model, such that a time series is created which improves 

computational times while still ensuring the seasonality in consumer demands and renewable energy 

availability. In the experiments, model solvability and scalability are tested, the merits of stochastic 

optimisation under uncertainty compared to deterministic optimisation are examined, the cost/reliability 

trade-offs in strategic decision-making are explored, and the impacts of technological degradation on 

energy supply reliability in a multi-year planning horizon is analysed. 

Chapter 6 

In the last chapter, the main conclusions from the research are drawn. Several recommendations are 

provided based on the findings of this thesis. The contributions to the theoretical and practical fields are 

stated, and the chapter is finalised by acknowledging the limitations of this study and identifying 

opportunities for future research. 
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1 Introduction 

This introductory chapter discusses the background of the research and its objectives. First, the company 

at which the project is executed and relevant topics to clarify for this thesis are introduced. Second, the 

motivation to conduct the research is explained. Next, the identification of the research problem and 

research objectives are elaborated on. The research questions are formulated, and the approach to 

solving the problem is provided. The chapter concludes with a concise definition of the research scope. 

 

1.1 Introducing the Company and Relevant Topics 

1.1.1 The Company 

This research project is executed at Firan. This company is part of Alliander N.V., one of the largest 

firms in the energy sector in The Netherlands. The Alliander group consists of multiple firms operating 

in different areas, among which is the management and maintenance of the power grid in large parts of 

the country, as well as grid development activities through the New Business section of companies. 

Companies within New Business aim to address the current questions from the energy sector and 

contribute to tackling the challenges of the energy transition. Along with several sister companies, Firan 

is one of the firms within New Business. 

This thesis project takes place under the supervision of the Decentral Networks department of Firan. 

This department focuses on developing novel and future-proof solutions for the increasing demand for 

green energy. One such solution is developing, realising, and exploiting infrastructures for energy hubs. 

Energy hubs help organisations and businesses realise smart and efficient solutions for their energy 

requirements, by optimally generating and distributing renewable energy. The technical solutions 

offered by Firan make the company a suitable sparring partner for the different stakeholders in 

development projects, such as the provinces, municipalities, and business owners. 

 

1.1.2 Introducing Energy Hubs 

First, energy hubs must be introduced in more detail. Energy hubs aim to make optimal use of locally 

generated renewable energy and to efficiently control the production, storage, and consumption of this 

energy. Modern energy hubs may provide solutions for the energy demand satisfaction of different 

energy carriers such as electricity, heat, hydrogen, and other natural gases. The energy hub leverages 

the capabilities of various technological assets to optimally operate the system and meet all consumer 

energy demands. 

An energy hub can consist of a mix of different technological assets. These technologies' exact 

configurations and capacities vary between each energy hub, and each configuration is influenced by 

specific energy demands and stakeholder requirements, and the opportunities and limitations within 

each development project. The most well-known examples of these assets are the production capacity 

of wind- and solar energy, and the storage of excess production using battery devices such that the 

energy can be used at a later point in time. Additionally, other technologies and systems can be 

implemented as well. Combined heat and power systems, electric vehicle charging stations, vehicle-to-

grid technologies, and electrolysers for hydrogen production are some examples of the wide variety of 

options for configuring an energy hub. The consumers in the energy hub are, in principle, connected to 

the power grid, and they have access to the additional energy supply from a mix of different sources. 

Figure 1 depicts a schematic overview of the energy hubs developed at Firan. Depending on the energy 

supply challenges faced at the location of a potential energy hub, or the opportunity to make 

improvements in energy efficiency, a selection is made for the technologies to implement. This way, a 

tailored solution is designed which meets all stakeholder requirements and wishes.  
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Generally, the energy hubs developed at Firan relate to business parks with office buildings and/or 

industrial areas with factories. Relevant stakeholders in such an energy hub are first and foremost the 

consumers in the energy hub who have specific energy demands and load profile characteristics, but 

also the project developers, property owners, and governmental authorities such as the municipalities 

and provinces affect the design processes at Firan. 

 

 

Figure 1: Schematic Illustration of Energy Hubs 

 

1.1.3 The Energy Hub Configurator 

In the design process for these energy hubs, Firan utilises the Energy Hub Configurator (EHC). The 

EHC has been developed at Firan and provides engineers with a powerful tool that can be used to 

analyse data and provide practical insights into the performance of potential energy hub configurations, 

ensuring informed decisions are made for all aspects of the design. Using the EHC, energy hubs can be 

modelled and optimised, taking into account the ever-changing requirements of project stakeholders. 

The EHC utilises energy demand profiles from clients as its core inputs and it models different assets 

with which energy hub configurations can be built. Among these assets are wind turbines, photovoltaic 

(PV) systems, and batteries. Engineers can create different variations of a configuration for the energy 

hub using the EHC, to account for specific client requirements and project-specific constraints such as 

the budget, area limitations, and regulations.  

In the EHC, potential designs for energy hubs are tested and compared based on several performance 

objectives, for which the assets included in the configuration are optimised. These objectives relate to 

minimising energy hub costs, maximising its profits, maximising the use of renewable energy, and 

maximising the energy hubs’ autonomy from the power grid in its energy supply. Logically, in all cases, 

the energy demands of the consumers in the hub must be met fully. A computational core is the backbone 

of the EHC, which utilises mathematical optimisation to find the best solution for the selected 

performance objective. An optimised dimensioning of assets and their operation is calculated 

accordingly, ensuring a well-founded design proposal for the energy hub is made. 
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1.2 Research Motivation 

The topics discussed in the previous sections all have a place in and apply to the energy sector in The 

Netherlands. The energy sector is a fast-moving industry with many stakeholders and uncertain, 

continuously changing elements to account for. Larger populations, increasing energy demands, and the 

intermittency of renewable energy sources are, among others, important factors at play. In recent times, 

the energy transition has been driving major changes within the industry. A greater proportion of our 

energy must come from renewable sources, moving away from the use of non-sustainable energy, the 

efficiency of our energy use must be improved, and the electrification of our industries has increased 

the overall demand. Along with these changes, the load on the power grid has increased drastically. 

In The Netherlands, capacity shortages for new connections and congestion on the power grid pose a 

great challenge in ensuring power supply now, and in the future. Businesses that aim to settle or existing 

businesses that want to expand their activities cannot be accommodated in their energy requirements. 

The current available capacity on the power grid for energy withdrawal is unable to match the recent 

increase in demand (Koster, 2023), and development projects suffer delays due to the necessity of 

waiting lists for the allocation of grid capacity (Voorhoeve, 2022). Household consumers may also 

experience the negative effects of these issues. Longer waiting times to make homes more sustainable, 

an inability to feed solar energy into the grid, and possibly even electric outages could occur. Currently, 

energy suppliers have started to incur costs for returned electricity to compensate for increased 

processing expenses and to balance the surplus on the grid (Blotenburg, 2023; Gestel, 2023).  

The decentralisation of our energy networks and increased use of renewable sources are major 

developments driving the energy transition. When new businesses emerge and business parks are 

developed, a crucial decision must be made for the allocation of new grid connections, the division of 

available capacity, and the use of energy-related assets to ensure a future-proof solution is delivered. 

These developments have sparked an increase in recent academic research as well, with evident 

relevance for implementation in real-world projects, where energy hubs are one of the main solutions 

to address these challenges and aid in making the difficult decisions at hand. 

Optimisation of the design and operation of energy hubs is an essential part of their development before 

real-world implementation and exploitation can be achieved. Energy hub performance objectives and 

stakeholder requirements vary between projects, and many strategic decisions are made along the way. 

By realising an energy hub with renewable energy production and storage capacity, the grid congestion 

and capacity issues can be addressed, and greater independence on energy supply from the power grid 

can be achieved. Conducting research regarding the development and optimisation of energy hubs is a 

significant opportunity to make a contribution to the design process at Firan and to develop new ideas 

for the academic field.  

 

1.3 Problem Identification & Research Objectives 

1.3.1 Problem Identification 

Currently, the EHC can incorporate some uncertainty within the mathematical optimisation of energy 

hubs within the energy demand profiles of consumers. This is achieved by including a set of possible 

demand profiles for a consumer if, for example, no historical data is available, or the exact profile of a 

new consumer is not yet known. The energy hub is optimised taking the different possible demand 

profiles into account, such that the strategic decisions for the energy hub design consider all 

possibilities. 

This method increases the robustness of decision-making by ensuring the energy supply is ensured for 

all the included demand profiles. However, even though the main objective of the energy hub is to meet 

all consumers effectively and efficiently in their energy demands, insights into other uncertainties 
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posing a risk to the energy supply in the hub are limited. Energy supply reliability can be compromised 

if the power-grid withdrawal capacity is limited and insights into risks affecting the energy supply are 

not available. Especially if the capacity of the power grid is insufficient to meet consumer demands at 

their load peaks and hence, a dependence on renewable energy generation exists, unavailability of 

additional energy production is detrimental to the supply reliability. Then, any reduction in energy 

supply capacity will cause shortages in meeting demand. 

Considering the energy supply challenges faced in energy hubs, the trust stakeholders must have in the 

system's ability to meet their energy demands during operation cannot be understated. For broad 

participation among stakeholders in potential energy hubs, the reliability of ensured energy supply is 

essential. However, the mathematical optimisation of energy hubs using the EHC currently does not 

account for the uncertainties posing a risk to the energy supply reliability, nor does it provide specific 

insights into or quantify the supply performance of a configuration under these uncertainties. 

The research problem concerning the current design process for energy hubs lies in the limited 

implementation of optimisation under uncertainties which affect the energy supply reliability during 

operation, and the lack of insight into the specific energy supply performance for the consumers in the 

energy hub. The effects of these uncertainties on the energy hub and its operation may necessitate the 

evaluation of design decisions to overcome supply risks and improve reliability. Hence, the optimisation 

of energy hubs ideally incorporates a variety of uncertain elements to ensure robust decision-making in 

the design process for the development of reliable energy hubs.  

The research problem is defined as follows: The Energy Hub Configurator does not adequately 

incorporate the key uncertainties affecting energy supply reliability in its optimisation, limiting the 

robustness of decision-making. Furthermore, the current methods do not provide the essential measures 

to quantify the energy supply performance for consumers in the hub. 

 

1.3.2 Research Objectives 

By addressing the research problem, a contribution to the energy hub design process is made and the 

robustness of decision-making for the design of energy hubs can be improved. The uncertainties 

inherent to energy hubs and how these affect the energy supply reliability must be identified, such that 

strategies for improving reliability can be developed. Here, the trade-offs between making investments 

and achieving reliable supply performance are crucial. The extent to which supply reliability can be 

ensured for each consumer in the energy hub must be known, and the benefits of making additional 

investments must be made clear. 

Hence, the main objective of this research is to develop a method for energy hub strategic design and 

operational optimisation under the uncertainties posing a risk to energy supply reliability, which 

considers this reliability as a key performance objective. For this, the uncertainties affecting the energy 

supply must be identified and modelled such that the energy hub configuration and its operation can be 

optimised.  

In addition to the main objective, this research aims to generate insight into the investment costs and 

energy supply reliability trade-offs. This trade-off is essential in strategic decision-making, as the 

potential improvements in energy supply reliability must be considered about the potential 

technological investments in the energy hub. Lastly, the research aims to develop a strategy to quantify 

the operational energy supply performance in the optimisation process. In conducting this research, new 

strategies and insights for the energy hub design and optimisation processes at Firan are developed. 
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1.4 Research Questions 

Based on the problem identification and research objectives discussed in Section 1.3, the main research 

question is formulated: 

 

How can the robustness in optimal decision-making for the design of energy hubs be improved, 

considering its operational energy supply reliability? 

 

A set of sub-questions is formulated for each step in executing this thesis project. The first two sets 

focus on analysing the research problem context and elaborating on relevant studies in the literature. 

These questions are answered in the preliminary research phase, and the results provide the insights 

needed to solve the research problem. For the project execution phase, the development of the model 

and experimentation are considered, and these sub-questions are included in sets 3 and 4 respectively. 

 

1. What is the problem context, and what does the energy hub design process look like? 

 

• How are energy hub development projects executed at Firan? 

• How are the EHC and design optimisation implemented in this process? 

• Which assets, parameters, and (decision) variables are relevant in the optimisation? 

• Which uncertainties and risks exist within energy hub operation? 

 

2. What are, according to the literature, suitable modelling approaches for energy hub 

optimisation and reliability assessment? 

 

• How are energy hubs modelled and optimised? 

• Which approaches are used to model and represent uncertainty? 

• Which performance indicators for hub reliability are proposed? 

 

3. How is the reliability-based stochastic optimisation model for energy hub design 

formulated? 

 

• What is the outline of the optimisation model? 

• How are the stochastic model decision stages and scenarios structured? 

• Which assumptions are made in the modelling approach? 

• Which sets, parameters and constraints are included in the model? 

• How is the objective function formulated? 

• Which reliability performance indicators are implemented? 

 

4. Which experiments are conducted to test the model and analyse energy supply reliability-

based optimisation? 

 

• Which input data is required, and how is it used in the model? 

• How are the input parameters and values defined? 

• How are the uncertainties affecting energy supply reliability modelled? 

• Which experiments are conducted? 

• What are the results of the conducted experiments? 

• Which conclusions can be drawn from the experiment results? 
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1.5 Research Design 

1.5.1 Research Approach 

Several steps are taken to solve the research problem and to address the research objectives:  

The first part of the preliminary research discusses the problem context and activities of the design 

process for energy hubs. This enables the identification of the steps in this process to which the research 

can contribute. Using available documentation and knowledge gathered from interviews, a descriptive 

study presents a detailed analysis of the current situation at the company. The results of this study are 

elaborated on in Chapter 2. 

A literature review is conducted in the second part of the preliminary research. Both energy hub 

modelling and optimisation, as well as associated topics in the field, are discussed. Different approaches 

and their potential suitability for the research project are assessed, and strategies for energy hub 

reliability analysis are elaborated on. The results of the literature review and identified research gaps in 

the available literature are discussed in Chapter 3. 

Chapters 4 and 5 discuss the project execution phase. The knowledge gathered in the context analysis 

and literature review is used to develop a model for energy hub design and operational optimisation 

under uncertainty. In Chapter 4, the model is introduced, and its outline is explained. Next, the complete 

model formulation is presented. The fifth chapter elaborates on a numerical study conducted using the 

model. All input parameters of the model are defined, and several experiments are performed to gather 

results. 

The research is concluded in Chapter 6, in which recommendations for the company and the theoretical 

and practical contributions are also explained. Lastly, the limitations of this research are acknowledged, 

and opportunities for future research are explained. 

 

1.5.2 Scope Definition 

As energy hubs and their development are highly complex, the achievability of several aspects within 

the project execution is discussed, considering the existing time limits. Because of this, a project scope 

is defined and agreed upon by the supervisors at the University of Twente and Firan.  

The results of the project and the gathered insights should apply to the existing development process of 

energy hubs at Firan. However, the objective of this research is not to develop a directly applicable 

solution for implementation in the Energy Hub Configurator used at Firan. Rather, the research is 

conducted to develop concepts for the energy supply reliability-based optimisation of energy hubs, such 

that recommendations can be made about the possibilities and benefits of implementing these concepts 

in the design process. 

Furthermore, a selection is made for the energy hub components and technological assets to incorporate 

into the scope of this research. Modern energy hubs usually consist of multiple energy carriers, such as 

electricity, heat, hydrogen, and other (natural) gases. Considering this, an extensive set of energy hub 

assets for different energy carriers may be modelled, with many different parameters, variables, and 

characteristics.  

However, it is infeasible to develop such a complete model with a high degree of detail for each asset 

and all energy carriers within the scope of a thesis project. Hence, the focus of this study is on 

implementing electricity as the modelled energy carrier, with related assets to incorporate being wind- 

and solar power generation technologies and energy storage capabilities using batteries.  
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2 Context Analysis 

Through a descriptive study, an analysis of energy hub development and the use of the EHC at Firan is 

discussed. The components, assets, decision variables, modelling constraints, and uncertainties 

considered within energy hub modelling and optimisation are explained. The gathered insights aiding 

further execution of the research are summarised at the end of the chapter. The following research 

questions are answered:  

What is the problem context, and what does the current development process at Firan look like? 

• How are energy hub development projects executed at Firan? 

• How are the EHC and design optimisation implemented in this process? 

• Which assets, parameters, and (decision) variables are relevant in the optimisation? 

• Which uncertainties and risks exist within energy hub operation? 

 

2.1 The Development of Energy Hubs 

2.1.1 Steps in the Development Process 

The development of energy hubs for business- and industrial areas is one of the main product 

propositions at Firan. The complete process, from identifying market opportunities to final exploitation, 

is conducted at the company. In this process, several crucial steps are taken.  

The first step is to identify lead opportunities in the market. Areas with a high degree of grid congestion 

and limited capacity for new grid connections offer the opportunity to implement an energy hub to 

improve energy-use efficiencies and reduce grid congestion. Additionally, areas in which entirely new 

business- and industrial parks are developed may provide the possibility to implement energy hubs as 

well, as a key part of local area development projects. 

Within the development process, several iterations of the energy hub configuration design are created. 

The draft design comprises a first general idea of what the hub may look like. The preliminary and final 

designs are logical continuations of this and propose further developed iterations as more details become 

known. In these phases, communication with clients is crucial, such that each new design iteration is 

evaluated considering project requirements and stakeholder demands. Here, also the addition of or 

withdrawals from stakeholders and changing requirements for the design highlight the importance of 

flexibility in project execution.  

If the final design is agreed upon by all parties involved in the project, local implementation of the 

energy hub and its exploitation are the last steps in the development process (Figure 2). 

 

 

Figure 2: Steps in energy hub development projects 
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2.1.2 The Energy Hub Design Process 

Within the energy hub development process, the design stages comprise several distinct steps as well. 

In these steps, the EHC is primarily used in making draft and preliminary design proposals. Its use in 

both stages is comparable, but the inputs for the model are updated as more details of the energy hub 

become known as the project progresses. The most labour-intensive efforts are made in developing a 

draft design where, from a business opportunity, an initial proposal is made for the configuration of the 

energy hub. In this process, the Energy Hub Configurator is used for initial problem analysis, energy 

hub configuration building, and mathematical optimisation of this configuration.  

First, an ‘energy scan’ is performed. This procedure covers data collection for the project, followed by 

preparation and validation of this data such that it is usable in the EHC in the next steps of the design 

process. Initial calculations are conducted to identify existing bottlenecks in energy supply, and a 

baseline is defined from which the energy hub configuration can be designed. 

After identifying the main bottlenecks in operational performance, their causes are analysed, and 

potential solutions are discussed. Engineers use available assets and consider the requirements of project 

stakeholders to adapt the energy hub configuration accordingly. The EHC is deployed to analyse the 

performance of configuration variants, make changes in the configuration, and optimise the asset 

capacities and operational planning of assets.  

The mathematical optimisation in this part of the process can be conducted for four objectives. First, 

the total costs of the energy hub can be minimised. Second, the profits of the energy hub can be 

maximised. Third, the use of renewable energy to meet consumer demands can be maximised. Fourth, 

the autonomy of the energy hub can be maximised. For the latter, the autonomy of the energy hub relates 

to its independence from the power grid in energy supply during operation. Based on the potential 

configuration variants developed in this process, the optimal solution for each specific project is 

determined, to define what is called the energy hub model. The energy hub model formulates a detailed 

proposal for the entire energy hub configuration, including all project stakeholders, with a complete 

implementation of asset investments. 

After the energy hub model is defined, an impact analysis is conducted, which examines the 

organisational structure of the energy hub, including financial responsibilities and legal implications. 

While this analysis is not implemented in the mathematical model of the EHC, it is a crucial step, as its 

findings significantly influence the feasibility of the project's realisation.  

The steps of the design process are visualised in Figure 3. Only if each step is completed and agreed 

upon by all stakeholders, further progress towards energy hub realisation and exploitation can be made. 

 

 

 

Figure 3: Steps in the energy hub design process 
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2.2 Details of Energy Hub Design and Optimisation  

2.2.1 Configuring Energy Hubs 

In this section, the specific activities for creating an optimised energy hub model using the EHC are 

explained. 

The first step in configuring energy hubs is to add project-specific stakeholders and assets to the EHC. 

This means that all energy consumers and accompanying demand profiles, the technological assets, and 

the components allowing energy flows are set as inputs. A base configuration which represents the real-

world situation is hence defined, which can then be mathematically optimised. In this process, the EHC 

is utilised as a building tool to iteratively set configuration variants, to test and optimise for different 

performance objectives.  

The optimisation process results in the optimal dimensioning of the incorporated asset capacities and 

operational profiles of these assets. The results of the optimisation are evaluated, and a sensitivity 

analysis is performed (Figure 4). 

 

 

Figure 4: Steps in creating the energy hub model 

 

2.2.2 Energy Hub Assets 

Several assets are available for building configurations. Generators are renewable energy sources and 

consist of wind turbines and photovoltaic (PV) systems. Batteries store energy in case of an energy 

surplus and deploy energy in case of a deficit. The generator and storage technologies are attached to 

the buses in the configuration. Companies are the energy consumers in the hub, who all have specific 

electricity requirements which vary over time. They may or may not own assets, are connected to the 

power grid, and have a contract with the distribution system operator (DSO) concerning their energy 

withdrawal and injection limits.  

Table 1 describes all the components included in a basic energy hub configuration with electricity as 

the main energy carrier. 

 

Asset Description 

Battery Battery that can charge and discharge energy 

Bus Location to which assets are attached 

Company Location where energy is consumed 

DSO Modelling contractual bounds between companies and grid 

Line Distribution line allowing energy flows 

PV System Photovoltaic power generator 

Substation Gateway to the power grid with bounds on energy flows 

Wind Turbine Wind turbine power generator 

 

Table 1: Description of energy hub components 
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2.2.3 Decision Variables 

Within energy hub optimisation, decisions are made to find the optimal dimensioning of assets and their 

operation. Table 2 lists the key decisions regarding capacities and operations for each of the configurable 

assets included in Table 1. 

 

Asset Variables Purpose Description 

Battery Capacity Design Storage capacity of a battery 

 Charge Operation Charging of the battery 

 Discharge Operation Discharging of the battery 

 SOC Operation State of charge of the battery 

Bus Slack Operation Shortage or excess of power 

Generator  Capacity Design Optimal capacity of a wind or solar generator 

 Generate Operation Power supplied by a generator 

Line Flow Operation Energy flows through distribution lines 

Substation Withdrawal Operation Energy obtained from the power grid 

 Injection Operation Energy supplied to the power grid 

 

Table 2: Optimisation decision variables 

 

2.2.4 A Basic Energy Hub Configuration 

Figure 5 gives an example of a basic configuration showing how the assets in an energy hub can be 

connected. The blue arrows indicate the possible energy flows in the hub. Energy flows are bi-

directional to allow energy withdrawal from and injection into the power grid, as well as to allow the 

charging and discharging of a battery. Logically, there is no need to transmit electricity in the direction 

of renewable energy generators, so here, only distribution away from the technologies is possible. In all 

cases, the energy balance must be kept in the energy hub, meaning that the total incoming and outgoing 

energy flows at the bus are equal.  

 

 

Figure 5: A Basic Energy Hub Configuration 
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2.2.5 Key Constraints of Energy Hub Optimisation 

Constraints for the optimisation of energy hubs relate to the operational capabilities of technological 

assets in a configuration, their parameters, possible energy flows, the limitations of the power grid, and 

the contractual bounds of consumers. The following constraints are considered: 

• Injection or withdrawal of energy to or from the power grid via the substation is limited to a 

specified maximum bound. 

• For the DSO connection, the collective energy injection and withdrawal from all consumers in 

the energy hub is compared with the collective sum of the contractual bounds to check capacity 

limits. 

• Renewable energy production quantities equal the availability × capacity. The capacity of the 

generator technology is either optimally determined by the model or pre-established within the 

model input. 

• Battery charging and discharging rates are limited by specified bounds. 

• Charging and discharging activities of batteries are modelled as energy flows, and charging and 

discharging efficiencies limit these energy flows. 

• Storage capacities of batteries optimally determined by the model lie between a user-specified 

minimum and maximum value. 

• A specified capacity limits the flow of energy through distribution lines installed between 

components of the energy hub. 

• Incoming and outgoing energy flows are kept in balance. A slack variable is introduced to 

ensure energy balance and a feasible model in case the balance cannot be kept within normal 

operational optimisation. 

 

2.3 Uncertainties and Risks Affecting Energy Supply Reliability 

2.3.1 Current Methods 

Currently, uncertainty is addressed in energy hub design optimisation by generating scenarios for the 

demand profiles of consumers. If the exact load profile of a consumer is not yet known or potentially 

differs from available historical data, a set of scenarios can be generated to represent variants of the 

load profile of that consumer. In such cases, for example, a combination of low-, mid-, and high-load 

scenarios of consumer demand can be included within the optimisation process. To reduce the 

computational load of this scenario-based strategy for uncertain consumer demands, a time aggregation 

method is used to determine typical weeks within available data, and the scenarios are generated for 

these typical weeks. Optimal decisions are based on these scenarios, increasing the robustness of the 

technology capacity decisions in the solution. 

This strategy does not explicitly incorporate uncertainties directly affecting the energy supply reliability 

in the hub, nor does it provide measures to analyse the supply performance. It has been discussed how 

ensuring energy supply for each consumer in the energy hub is essential for broad participation in 

development projects (Section 1.3.1). The current methods and incorporated uncertainties, however, do 

not address the supply reliability in the energy hub, the effects of making investments on the improved 

energy supply and accompanying costs/reliability trade-offs, and measures to quantify the energy 

supply performance. 

For the energy supply reliability of the energy hub, uncertain demand profiles are not the only factors 

affecting potential energy supply issues. Evidently, consumer demand profiles do affect the ability of 

the energy hub to meet demands if the consumption differs from the expected profiles used in 

optimisation model inputs, but various other uncertainty sources and characteristics of the energy hub 

influence its ability to ensure energy supply for all consumers. 
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2.3.2 Sources of Uncertainty in Energy Hubs 

Trivella (2018) categorises six different sources of uncertainty present within energy hubs. These are 

classified in market, weather, energy supply/demand, regulatory, behavioural, and technological 

uncertainty. The uncertainties affect decision-making in energy hub design and optimisation, and 

identifying relevant uncertainties is an important step in developing an optimisation model. 

1. Market uncertainty consists of, e.g., short-term uncertainty in energy prices, but also uncertainty 

in the long-term evolution of the prices and contracts.  

2. Weather uncertainty is especially important for the (availability of) renewable energy 

generation from wind turbines and PV systems. Uncertainty in the forecasts for the expected 

availability of wind- and solar energy is an important aspect in case these technologies are 

incorporated into the energy supply mix of an energy hub, especially when consumers are 

dependent on renewable energy production to meet their energy demands. This source of 

uncertainty also relates to the supply-side uncertainty of the energy hub. 

3. Uncertainty in energy supply and demand is crucial for each consumer in the energy hub. The 

relationship between energy supply and demand is the defining element for energy supply 

reliability, as a shortage in supply creates the inability to meet demands. Uncertainty in demand 

profiles and unexpected peak loads, as well as the energy supply from assets, is highly important 

to consider.  

4. Regulatory uncertainty considers, for example, the unknown elements in governmental policies 

and regulations, support schemes, and subsidies.  

5. Behavioural uncertainty is associated with the uncertain nature of human behaviour, 

concerning, for example, energy end-use and competitor strategy. Here, energy end-use relates 

to demand uncertainty. While uncertainty in the expected demand profiles can be explicitly 

included in the inputs for energy hub optimisation, uncertainty in end-use behaviour is more 

challenging to incorporate, as this is only truly revealed once the energy hub is realised in the 

real world. While the expectation is that consumers keep their energy consumption within the 

limits stated in their contracts, real-world situations might prove otherwise. 

6. Technological uncertainty relates to, for example, the unexpected unavailability of assets and 

technological degradation. This uncertainty source also directly relates to the energy supply of 

the energy hub. Random unit failures and the extent to which assets in the energy hub degrade 

affect the available capacity of renewable energy generator outputs. 

 

2.3.3 Uncertainties Posing a Risk to Energy Supply 

Using Section 2.3.2, the uncertainties affecting energy supply reliability can be identified. For a high 

level of performance in energy supply reliability, the relation between supply and demand is crucial. If 

the supply from a mix of different energy sources is insufficient to cover the demand of each consumer 

and shortages occur, the energy supply reliability is compromised. Considering the relation between 

energy supply and demand, several uncertainty sources affect this characteristic of the energy hub’s 

operation.  

It was discussed how the uncertainty sources relate to and affect each other. Weather, technological, and 

behavioural uncertainties are key sources of uncertainty affecting the reliability of the energy hub. Here, 

weather, and technological uncertainties affect the energy supply in the hub. Behavioural uncertainty 

may affect the demand-side uncertainty in the energy hub (Figure 6). It is noted how these three core 

sources of uncertainty affect the energy supply and demand relation in different ways, and ultimately 

affect the operational performance of the hub to varying extents of severity. While asset failures lead to 

a complete loss of supply, technological degradation causes a partial decline in available capacity. 

Moreover, the degree to which actual consumer demands and renewable energy availability differentiate 

from the expected profiles affects the ability of the energy hub to meet demands. 



13 

 

Market and regulatory uncertainties do not directly affect the operational performance of the hub in its 

energy supply reliability. Although uncertain electricity prices and technological investment costs may 

affect optimal decision-making for the energy hub, these factors do not directly affect the energy supply 

reliability of the hub. The same holds for regulatory uncertainties. While support schemes, subsidies 

and uncertain development project approvals may affect the development of energy hubs, it has no 

relation to the energy supply reliability of an energy hub during its operation. These uncertainty sources 

are therefore not considered in this research. 

Considering the discussed uncertainty sources, the following is concluded: The energy demands in a 

business park-oriented energy hub are satisfied using three main sources, these being the power grid, 

and wind- and solar energy production. Hence, this research must take into account the intermittency in 

the availability of renewable energy using these generator assets.  

Furthermore, energy demands have an uncertain nature and must be incorporated as well. Demand 

uncertainty affects the energy hub at multiple levels. First, the energy hub may be considered in its 

entirety. The total demand of all consumers influences the required capacity of renewable production 

within the hub, as well as the required power withdrawal from the grid. Second, the uncertainty in 

demands at the consumer level must be considered. Here, unexpected peak loads in energy end-use pose 

a risk to ensuring supply and a high level of system performance. 

The availability of assets within the energy hub is not guaranteed. In case of a failure or any event which 

causes the unavailability of an asset, supply capacity is lost. If no energy can be retrieved from 

renewable sources, the consumer must rely on the power grid, which has a limited capacity. 

Additionally, due to technological degradation, the performance of assets will decrease over time. This 

means that as the system is in the exploitation phase, it may rely less on the assets than initially 

accounted for. 

 

 

 

 

Figure 6: Uncertainties affecting energy supply reliability 
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2.4 Conclusions 

Chapter 2 presented a descriptive context analysis to elaborate on several aspects related to the research 

problem. The first objective of the context analysis was to discuss the relevant details of energy hub 

development projects at Firan, such that it is assessed where in these projects the results from this 

research can contribute. The second objective was to collect essential knowledge about energy hub 

modelling and optimisation, such that it is known which elements to incorporate in this research. The 

analysis was performed while considering the research problem and the formulated research objectives.  

The entire energy hub development process, from identifying lead opportunities in the market to final 

exploitation was elaborated on. In this process, several design stages are conducted iteratively after 

which a final design that covers all parts of the energy hub can be proposed. During these design stages, 

the energy hub configurator is deployed in both configuring energy hubs, as well as their mathematical 

optimisation. Next, the energy hub configuration building and optimisation processes were analysed. 

For the energy hubs considered within the scope of this research, the assets, decision variables for 

optimisation, and essential modelling constraints were defined. 

Section 2.3 discussed the current methods of incorporating uncertainty within the energy hub 

optimisation. It was found that the energy supply reliability of configured energy hubs is not explicitly 

considered in the design process, and specific uncertainties affecting the energy supply during operation 

are not taken into account in (operational) optimisation. Incorporating these elements into the design of 

energy hubs is, however, essential. Using a characterisation of different sources of uncertainty within 

energy hubs, the specific uncertainties posing a risk to energy supply reliability were identified, and the 

way the relevant uncertainty sources affect each other was elaborated on. 

In the next chapter, a literature review is conducted to provide an in-depth discussion on techniques for 

energy hub modelling and optimisation.  
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3 Literature Review 

A literature review is conducted to elaborate on recent developments and practices in the field of energy 

hub modelling. The chapter specifically focuses on discussing research concerning the optimisation of 

strategic and operational decision-making for energy hubs, the uncertainties relating to the stochastic 

nature of energy hubs, and strategies for assessing energy supply reliability. 

General practices of energy hub modelling are introduced in Section 3.1, and the parameters defining 

the relevant inputs of energy hub models are elaborated on. In Section 3.2, the state of the art in the 

development of optimisation models for energy hubs is analysed. A specific focus on energy hub 

optimisation under uncertainty is considered. Additionally, the explicit modelling of uncertainties 

within energy hubs is discussed in Section 3.3. Section 3.4 elaborates on the analysis of energy supply 

reliability. Different performance indicators for energy hubs used in the literature are introduced, and 

the relevant indicators for this thesis are identified. The chapter is concluded in Section 3.5, where the 

key insights from the literature review are collected, and the research gap in the literature is discussed. 

The following research questions are answered: 

What are, according to the literature, suitable modelling approaches for energy hub optimisation and 

reliability analysis? 

 

• How are energy hubs modelled and optimised? 

• Which approaches are used to model and represent uncertainty? 

• Which performance indicators for hub reliability are proposed? 

 

3.1 Energy (Hub) Models 

3.1.1 Model Types 

An extensive number of research papers presenting (mathematical) models for purposes concerning the 

energy market and the development of energy hubs and related technological solutions are available. 

Energy models exist for varying purposes. Some are used to generate energy demand forecasts (Hayes 

& Prodanovic, 2016), while others are aimed at simulating technological, strategic, operational, and 

policy choices for, e.g., the design of energy hubs. A distinction for energy models is made between 

top-down and bottom-up models (Herbst et al., 2012). Top-down models depict the whole energy 

market on a regional or national level, to assess the effect of policies in monetary units. Contrary to 

bottom-up models, top-down models consider an aggregated view of the energy sector when simulating 

for example energy supply and demand processes, omitting technical details. Bottom-up energy models 

use a business economics approach for the evaluation of the technologies simulated within the model.  

Generally, engineers construct and use bottom-up models to assess energy supply and demand 

leveraging their high degree of technological detail. Bottom-up modelling approaches do, however, 

have drawbacks. For example, bottom-up models do not consider the macroeconomic impacts of 

policies, making them unsuitable for very long-term analysis. Optimisation, simulation, and multi-agent 

energy hub models are examples of bottom-up modelling techniques. Nevertheless, even though their 

drawbacks are noted, bottom-up models generally pose the most suitable approach for the development 

and optimisation of energy hubs. 

Energy hub models may be developed to find solutions for the energy supply of a single consumer, but 

energy hubs aimed at satisfying the demands for buildings, neighbourhoods, districts, or entire countries 

are discussed as well (Hiremath et al., 2007). The terminology used in research on energy hubs is 

inconsistent. Among others, energy systems, energy hubs, energy-hub systems, and multi-energy 

systems are discussed. For consistency, the term energy hub(s) is used in the remainder of this literature 

review. 
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Related to the modelling of energy hubs is the modelling of microgrids. Varying definitions to describe 

microgrids are found in the literature. Nevertheless, in a similar fashion to energy hubs, microgrids 

propose a technological solution for decentralised energy supply and demand, using assets for 

renewable energy production and storage, as well (Hirsch et al., 2018). A microgrid can operate both in 

a grid-connected setting as well as independently. Despite the similarities between energy hubs and 

microgrids, several key differences must be noted as well. Usually, energy hubs manage flows and 

conversion of multiple types of energy carriers, whereas microgrids primarily focus on electrical power. 

Additionally, energy hubs aim to optimise these different energy flows for improved efficiency and 

sustainability, while microgrids generally aim to provide a reliable energy supply to a specific area. 

Furthermore, energy hubs can operate at different (larger) scales, while microgrids are typically focused 

on localised energy generation and distribution.  

Considering the characteristics of energy hubs and microgrids within the context of this research, a key 

observation is made. While the energy hubs considered within the scope of this thesis are not required 

to be independent of the power grid as is common with microgrids, the similarities between energy hubs 

and microgrids regarding their capacities for energy production and storage for reliable energy supply 

must be noted. Nevertheless, despite these similarities, the difference between the core purpose of the 

two energy solutions is significant. While a multi-energy system is outside the scope of this thesis, the 

optimisation of energy flows and the operation of assets for efficient energy use in the energy hub is, 

contrary to the main objectives of microgrids, still an important aspect of this research. 

 

3.1.2 Energy Hub Parameters 

Mavromatidis and Petkov (2021) categorise the different (input) parameters commonly included in 

energy hub models. These are energy demand profiles, availability profiles of renewable energy sources, 

and economic, technological, and miscellaneous parameters.  

Generally, an extensive set of parameters is included in energy hub models for the most detailed and 

realistic results, and several parametric uncertainties should be considered for this research. The 

following list highlights the most important characteristics of each parameter category: 

• Demand profiles of consumers in the energy hub should reflect short-term variability and long-

term developments. It is essential to consider the different energy loads of each consumer in 

the hub, peaks, and the times at which they occur for optimal operation of the energy hub.  

• The availability profiles of renewable sources should reflect short-term variability and long-

term patterns to create a realistic representation of the availability of these sources.  

• Economic parameters include energy prices and the technology costs of components and assets 

in the energy hub. Essential are the investment, maintenance, and operational costs of each asset 

included in the energy hub. These cost factors are commonly analysed within the optimisation 

objectives, dependent on the model goals and formulation.  

• Technical parameters of the energy hub define the performance and operation of technologies, 

such as their efficiencies, self-discharge losses, and the technology lifetimes.  

• Due to case-specific characteristics and limitations within energy hub development projects, 

other parameters may be necessary to implement in the energy hub optimisation model as well. 
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3.2 Energy Hub Optimisation 

3.2.1 Optimisation Models 

The development of optimisation models for energy hubs is a prevalent topic within the literature. 

Energy hub optimisation models are characterised as technology-rich models covering the entire energy 

supply and demand system for one or more consumers (Yue et al., 2018). The distinction made by 

Pfenninger et al. (2014) between planning and operational optimisation for energy hubs is relevant to 

address. Some studies focus on strategic design optimisation, while others specifically analyse the 

operational aspect of the energy hub (Ren et al., 2010). Methodologies combining both strategic design 

and operational optimisation of energy hubs are studied within the literature as well (Evins, 2015). 

Storage system design, sizing objectives of renewable energy generation assets (Geng et al., 2020), 

operational management and energy flow optimisation (Geidl & Andersson, 2007), and expansion 

planning (Cho et al., 2022) are some examples for which an optimisation model may be used. 

Varying mathematical approaches to formulate energy hub optimisation models are studied. Common 

approaches include deterministic strategies such as linear programming, mixed-integer linear 

programming, and dynamic programming. In linear programming, the operational aspect of the energy 

hub can be described and optimised using linear mathematical functions. Integer linear programming 

approaches are useful when, for example, the optimal installation quantity of technological assets must 

be determined if the capacities of these technologies are fixed. Mixed-integer linear programming 

approaches are studied in the literature as well, using the technique, for example, to combine both 

strategic and operational decision-making aspects for energy hubs in a single model. Non-linear 

relations may be treated using a dynamic programming approach, splitting the problem into sub-

problems, and storing intermediate results.  

Besides the development of novel solutions for the optimisation of energy hubs, publicly available 

software tools exist, and the use of algorithms for energy hub optimisation is discussed as well (Fathima 

& Palanisamy, 2015). Stochastic programming models are also commonly used. In contrast to 

deterministic models, which assume all parameters are known and fixed, stochastic models incorporate 

uncertainties and variability in input data. Additionally, artificial intelligence-based approaches for 

energy hub optimisation are studied (Klemm & Vennemann, 2021). 

 

3.2.2 Related Works 

In this section, a review of relevant related works in the field of energy hub optimisation is conducted. 

Recent developments in research, modelling techniques, and strategies to optimise the design and 

operation of energy hubs are elaborated on. Deterministic modelling approaches, as well as optimisation 

models incorporating uncertainty, are considered in this section. 

First, several examples of deterministic modelling approaches are analysed. Cano et al. (2014) propose 

a mixed-integer linear optimisation model combining both the strategic and operational decision-

making for energy hubs. The model deals with strategic decisions relating to which specific assets to 

install and/or decommission, and short-term decisions are embedded within the constraints of the model 

to take into account operational decisions for the installed assets.  

In case both strategic and operational decisions are considered, potential interference in the model 

objective leading to unrealistic outcomes must be taken into account because of the different time scales 

in which decisions are made. To illustrate, the strategic design decisions for the installation of assets are 

usually made for a multi-year planning horizon. On the other hand, the operational decisions concerning 

energy flows and the operational schemes of these assets are made for a short-term time scale relating 

to operational periods, for example, in each hour. If the costs for both the strategic and operational 

decisions are included in the optimisation model objective, they must be normalised to an equal 
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timescale to prevent the generation of unrealistic outcomes. This can be achieved by, for example, 

annualising both the strategic and operational cost components. 

Mixed-integer linear programming models to optimise both the strategic design and operational 

decision-making for energy hubs are often hindered by their complexity (Gabrielli et al., 2018). The 

complexity is mainly caused by the inclusion of binary variables, which for example describe the 

operational status of technologies, or the asset installation and decommissioning decisions as proposed 

by Cano et al. (2014). To address this limitation, two methods are developed to reduce the model 

complexity while retaining model accuracy. 

The first method proposes the coupling of operational days. A sequence of typical design days from a 

year-long planning horizon are coupled into a sequential series, and technological states at the end of 

one day are connected to the start of the next. The second method takes into consideration that the 

complexity of the model is mainly caused by the binary variables. In this method, the operational 

decision variables are divided into those related to binary variables and those unrelated to binary 

variables. The computational complexity is reduced by modelling the group of operational binary 

variables for typical days, and the non-binary operational variables for each hour in a year. The specific 

optimisation decisions in the model proposed by Gabrielli et al. (2018) concern the dimensioning of 

installed technologies, the (binary) on/off status of energy conversion technologies, input and output 

energy, stored energy, and power-grid energy withdrawal. The model is deployed for optimising a multi-

energy supply/demand system for the collective of consumer households in a neighbourhood-scale area.  

A multi-stage MILP optimisation model for long-term system planning is proposed by Mavromatidis 

and Petkov (2021). The dynamic and evolving nature of energy hub parameters and flexible, multi-

stage investment strategies are implemented. The model is used to develop a six-stage design plan 

within a thirty-year planning horizon. Perfect knowledge is assumed for all parameters, i.e., there are 

no uncertainties included in the model. Due to the optimisation of a multi-year, multi-location energy 

hub structure, the computational effort of this MILP is considerably higher compared to other 

deterministic approaches. 

Besides these deterministic modelling approaches, stochastic models are also frequently studied, and 

recent literature is generally moving towards the development of stochastic optimisation approaches 

(Zakaria et al., 2020). Stochastic optimisation approaches are not limited to the use of fixed parameters, 

which allows for the optimisation of energy hubs under uncertainty. Deterministic models can be 

extended to their stochastic version by approximation of the probabilistic distributions and stochastic 

parameters through a finite set of scenarios, requiring constraints to be fulfilled for all scenarios and 

optimising the mathematical expectation of the objective (Cano et al., 2016). Optimising over a set of 

future outcomes allows the engineer to take recourse action as uncertainty is resolved (DeCarolis et al., 

2017; Loulou & Kanudia, 1999). Uncertainties concerning, e.g., energy demands, renewable energy 

generation profiles, energy prices, and operational costs are commonly addressed. 

Both the strategic and operational decisions for energy hub optimisation are commonly embedded 

within stochastic models. The difference between two-stage and multi-stage stochastic optimisation 

models must be noted. In a two-stage model, all strategic variables are first-stage decisions made before 

uncertainty is resolved. Hence, this stage commonly optimises the investment decisions for the 

installation of technologies in the energy hub. The operational decisions for the energy hub are made in 

the second stage, incorporating the available technologies defined in the first stage in the operational 

planning of the hub. In a multi-stage formulation, both strategic and operational decisions to be made 

before the first-tree branch are first-stage decisions. In contrast to two-stage models for energy hub 

optimisation, both strategic and operational decisions are already included in the first stage at the 

beginning of the time horizon. Second- and higher-stage decisions are the decisions made when new 

information concerning uncertainties is revealed. In principle, multi-stage optimisation models are more 

complex compared to two-stage models, both in terms of mathematical complexity and the 
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interpretation of results. Both two-stage and multi-stage models for energy hub optimisation purposes 

are studied in the literature, but two-stage models are more common. In a stochastic program, the 

evolution of scenarios is approximated by a discrete-state scenario process using different techniques, 

such as a scenario tree, or a scenario fan. A scenario tree in a stochastic optimization model represents 

a branching structure of possible future events with discrete outcomes at each node. A node represents 

a specific point in time where a decision is made or an event occurs, leading to different possible future 

outcomes or branches. A scenario fan displays continuous paths of possible future values spreading out 

from a single point, often used for visualizing uncertainty over time.  

Mansouri et al. (2020) propose a two-stage stochastic model for energy hub planning and operation. 

The first stage of the model optimises the sizing problem of technologies in the energy hub, and the 

second stage optimises the operation of the energy hub. It is noted that their approach considers a 

framework in which the first stage utilises an algorithm-based approach for the optimisation of 

technological capacities in the energy hub. The second stage of the model considers the operational 

optimisation problem of the energy hub. The outputs of the first stage defining the optimal capacities 

of installed assets are used as inputs for optimising the operation of the energy hub using these assets.  

Contrary to common methods found in the literature considering integer values for the number of units 

of an asset to install, capacity decisions for assets in this model are continuous to allow for precise 

decision-making for the energy hub design. In the model, operational uncertainty in energy demands 

and the intermittency of renewable power generation from photovoltaic systems are considered. 

Scenarios of these uncertain parameters in the model are generated using Monte Carlo simulation.  

Another two-stage stochastic modelling approach is proposed by Cano et al. (2013), which finds a 

combination of installed technologies in the energy hub that minimises investment, equipment 

maintenance, and stochastic operational costs. The first stage includes investment decisions made 

before uncertainty is resolved. The second stage consists of decisions taken once the uncertainty is 

revealed. A multi-stage stochastic modelling extension on the deterministic model proposed by Cano et 

al. (2014) is presented as well (Cano et al., 2016). This approach includes a risk factor within the model 

formulation. Optimisation models in which risks are not explicitly modelled are risk-neutral. Ignoring 

risk management results in an optimal average value for the objective function but might lead to very 

bad outcomes in the case of extreme scenarios. Strategies can be implemented in an optimisation model 

to mitigate the risks of such extreme scenarios. The uncertain parameters considered in this risk-

management model are energy demands, energy purchasing costs, and technology installation costs. 

Yang et al. (2017) present a two-stage stochastic model for the design of energy hubs under uncertainty 

in energy demands, energy prices, and renewable energy intensity. The renewable energy intensity in 

this study defines solar radiation and wind density. In this model, strategic decisions in the first stage 

consider the number of units to install a certain technology, and the second stage determines the optimal 

operation. To stochastic model is transformed into its deterministic equivalent mixed-integer linear 

programming problem to solve it. Random sampling is used to generate a finite number of scenarios for 

the uncertainties incorporated in the model, and the model is solved to satisfy the operational constraints 

in the second stage for all scenarios. 

Table 3 provides an overview of different deterministic and stochastic optimisation models discussed 

in this section, as well as relevant additional research papers found in the literature which were not 

explicitly elaborated on. If applicable, the uncertainties included in the models are stated, and the 

modelling approach of each study is included.
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Table 3: Energy hub optimisation modelling approaches 

 

Author(s) Problem/context Uncertainties Uncertainty model Optimisation model 

Ren et al. (2010) 
Operational optimisation 

of multi-energy hubs 
n/a Deterministic model Multi-objective linear programming 

Cano et al. (2013) 
Building-level energy hub 

design problem 

Demand, prices, 

operational costs, 

technology lifetimes 

Probabilistic scenarios of 

parameters 
Two-stage stochastic optimisation  

Cano et al. (2014) 
Building-level energy hub 

design problem 
n/a Deterministic model Mixed-integer linear programming 

Evins (2015) 
Design and operation of 

multi-energy hubs 
n/a Deterministic model 

Genetic algorithm (design) & MILP 

(operation) 

Cano et al. (2016) 
Building-level energy hub 

design optimisation 

Prices, demands, asset 

installation costs 

Yearly probabilistic increase in 

uncertain parameters 
Multi-stage stochastic optimisation  

Yang et al. (2017) 

Asset selection and 

operation in a multi-

energy hub 

Energy demands, energy 

prices, renewable energy 

intensity 

Use of a finite set of scenarios with 

probabilistic modelling of the 

uncertainties 

Two-stage stochastic optimisation 

Gabrielli et al. 

(2018) 

Optimal design and 

operation of energy hubs 
n/a Deterministic model Mixed-integer linear programming 

Sanajaoba Singh 

and Fernandez 

(2018) 

Remote hybrid energy 

hub size optimisation 

Random failures of wind- 

and PV systems 

Probabilistic modelling of asset 

capacities 

Meta-heuristic optimisation 

algorithm 

Mavromatidis et al. 

(2018) 

Optimal design and 

operation of energy hubs 

under uncertainty 

Energy prices, emission 

factors, demands, solar 

radiation 

Probability distribution functions 

for the uncertain parameters 

Two-stage stochastic mixed-integer 

linear program 

Su et al. (2020) 
Energy hub with electric 

power and natural gas 

Energy demands, random 

unit failures, renewable 

energy production 

Stochastic process models and 

probability distributions 

Two-stage optimisation framework 

using multiple (algorithmic) 

methods 
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Author(s) Problem/context Uncertainties Uncertainty model Optimisation model 

Mansouri et al. 

(2020) 

Multi-energy hub design 

optimisation 

Energy demands, PV-

system energy production 

Scenario generation using Monte 

Carlo simulation 
Two-stage stochastic optimisation  

Geng et al. (2020) 
Isolated hub capacity 

design and operation 

Energy production, 

electrical load 

Probabilistic formulation of model 

constraints 
Chance-constrained optimisation  

Mavromatidis and 

Petkov (2021) 

Multi-stage investment 

and hub design 

optimisation 

n/a Deterministic model Mixed-integer linear programming 

Wu et al. (2021) 
Reliability-based 

operational optimisation 

Random technological 

failures 

Probabilistic modelling of random 

failure events 
Linear programming 

Faraji et al. (2021) 

Operational optimisation 

of energy hubs under 

uncertainty 

Uncertainty in renewable 

energy sources 

Probability distribution for 

uncertainty in wind speed and solar 

radiation 

Scenario-based stochastic 

programming 

Abdulnasser et al. 

(2022) 

Multi-objective 

optimisation of energy 

hub operation 

Energy demands, 

renewable energy 

production 

Probability distribution functions 

for the uncertain parameters 

Multi-objective scenario-based 

stochastic programming 

Ebrahimi and 

Sheikhi (2023) 

Operational optimisation 

of multiple energy hubs in 

a local energy market 

Renewable energy 

production 

Probability distribution for 

uncertainty in wind speed and solar 

radiation 

Mixed-inter linear program 

Seyednouri et al. 

(2023) 

Optimal day-ahead 

scheduling of multi-

energy hubs 

Renewable energy 

production, electricity 

demands, heat demands 

Probability distribution for the 

uncertain parameters 

Multi-objective scenario-based 

stochastic programming 

Vera et al. (2023) 

Optimal design and 

operation of a multi-

microgrid system 

Electricity demand, 

renewable energy sources 

Probability distribution functions 

for the uncertain parameters 
Two-stage stochastic optimisation 
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3.3 Modelling Uncertainty 

The uncertainties inherent to energy hubs have a significant effect on the optimal strategic and 

operational decisions in the design process. Without adequately addressing these uncertainties, 

modelling insights may be limited and lack robustness. Representing the uncertainties in such a way 

that it is suitable for an optimisation approach usually involves model selection, parameter calibration, 

and scenario generation (Trivella, 2018).  

In Section 3.2.2, varying models incorporating some form of energy hub optimisation under uncertainty 

have been discussed. However, the distinction between these stochastic optimisation models and the 

implementation of models to represent specific uncertainties is relevant to explain. Models of 

uncertainty focus on characterizing and representing uncertain elements within processes or systems. 

On the other hand, stochastic optimisation models are models designed to make optimal decisions under 

uncertainty. These models integrate the representation of uncertainty directly into the optimization 

process. So, while models of uncertainty aim to specifically represent the uncertainty, stochastic 

optimisation models aim to make the best decisions while accounting for these uncertainties.  

For this research, varying models of uncertainty are required to represent the uncertainties posing a risk 

to the supply reliability of the energy hub. By developing a stochastic optimisation model, the strategic 

and operational decisions can be optimised for the energy hub while accounting for these uncertainties.  

A suitable uncertainty model must be selected to represent each uncertainty considered within this 

research. To recall, these are the weather and technological uncertainties affecting the energy supply, 

and behavioural uncertainties affecting the consumer demands.  

For the parametric energy supply- and demand-related uncertainties in energy hubs, probability 

distributions are most often used in the literature. The stochasticity of environmental circumstances 

significantly influences power generation from renewable sources, which affects the stability of the 

energy supply in the hub (Su et al., 2020). Probability distributions commonly describe the randomness 

of wind speed and the uncertainty in solar radiation. (Sedighizadeh et al., 2018; Shoaib et al., 2019). 

Such modelling approaches are especially relevant for the detailed modelling of these specific energy 

generation assets, but highly detailed modelling of assets is outside the scope of this thesis project. 

Hence, a more suitable approach for this research is to represent generator output uncertainty within 

expected output profiles from established data sets. However, very limited research into such an 

approach is available.  

Wind turbines and PV systems can fail and will degrade over time, decreasing available power 

generation capacity. Failures of assets are often assumed to follow a binomial distribution (Sanajaoba 

Singh & Fernandez, 2018). In the study by Wu et al. (2021), several assumptions are made regarding 

unit failures of generator assets. A component is assumed to be either in a fully operational or failed 

state. Times to failure and times to repair are exponentially distributed with a constant failure rate and 

constant repair rate. The power output of a wind turbine generator is modelled considering two possible 

operating states, either fully available or unavailable, to represent the effect of forced outages. 

 

3.4 Energy Hub Reliability & Analysis 

The basic function of an energy hub is to supply its consumers with energy as economically as possible, 

with a reasonable degree of reliability (Billinton & Allan, 1990). To measure and quantify the reliability 

of energy hubs, performance indicators are used. These indicators are used to evaluate the impact of 

failures and interruptions in an energy hub (Son et al., 2021). The literature considers the 

implementation of reliability indicators for overall system performance, as well as energy carrier- and 

component-specific reliability indicators.  
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Among others, Wu et al. (2021) describe two distinct reliability indicators. The Expected Energy Not 

Supplied (EENS) calculates the amount of energy not delivered to meet the demand requirements of 

consumers each year due to the failure of a component or any other event interrupting the supply of 

energy. The Uninterrupted Supply Time (UST) measure enables analysis of the reaction to failures 

within the energy hub.  

The Loss of Load Probability (LOLP) is a measure to determine the probability that the load in the 

system exceeds the energy generation level (Bao et al., 2019; Yang et al., 2003; Zeng et al., 2020). The 

loss of Load Expectation (LOLE) determines the expected energy deficit in hours per year for the 

operation of the energy hub (Dolatabadi et al., 2017).  

Two consumer-level reliability indicators are proposed by Su et al. (2020). Their analysis is performed 

at the system- and consumer levels. The system-level analysis provides an overall measure of the ability 

of the energy hub to supply all consumers with the required energy under different uncertain conditions. 

Consumer-level analysis is used to assess the reliability of energy supply to individual stakeholders. 

The Probability of Shortage (POS) measures the system's ability to satisfy each energy consumer's 

demand. The Adequacy of Supply (AS) measures the severity of energy shortages for each consumer. 

It is quantified by the average value of the shortage for all events for each consumer. The Influence of 

Energy Shortage (INFL) is quantified by the total number of shortages and consumers affected by each. 

 

Author(s) KPI Description 

Wu et al. (2021), Zeng et al. 

(2020) 

EENS Expected Energy Not Supplied in % of Demand 

Wu et al. (2021) UST Uninterrupted Supply Time in hours for an asset 

Bao et al. (2019), Zeng et al. 

(2020), Yang et al. (2003) 

LOLP Loss of Load Probability in % 

Dolatabadi et al. (2017) LOLE Loss of Load Expectation in hours per year 

Su et al. (2020) POS Probability of Shortage of each consumer in % 

Su et al. (2020) AS Measure for the severity of the energy shortage  

Su et al. (2020) INFL Measure for the influence of each shortage 

 

Table 4: Reliability indicators discussed in the literature 

 

Using these concepts for the implementation of supply reliability indicators, those relevant to the 

objectives of this thesis can be determined. The expected energy not supplied (EENS) and the loss of 

load probability (LOLP) measures are important indicators to analyse the losses in energy supply and 

the probability an energy shortage occurs during an operational period of the energy hub. Additionally, 

the average quantity of energy deficit in a shortage occurrence is important to consider, as it provides 

potential insight into which investment strategies may be beneficial to overcome or mitigate the effects 

of the shortage by increasing energy supply capacities based on this measure. Furthermore, 

implementing performance indicators at the consumer level provides the necessary knowledge on 

specifically how and where the effects of uncertainties affecting energy supply are most severe. 
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3.5 Conclusions 

In the literature review, research into the field of energy hub modelling and optimisation was conducted. 

First, the types of energy hub models, key parameters, and characteristics of the assets included within 

the scope of this research have been discussed. Second, an in-depth analysis of energy hub optimisation 

and related works was presented. Third, the distinction between uncertainty modelling within energy 

hub optimisation, and models of uncertainty models to represent specific uncertainties inherent to 

energy hubs is made. Fourth, relevant energy hub reliability performance indicators to integrate in this 

research were identified. 

Using the gathered knowledge from the conducted literature review, the research gap to which this study 

contributes can be identified. For this, the research papers discussed in the literature review in which 

explicitly a strategy for energy hub optimisation is proposed are categorised (Table 5). 

 

  Decisions 

  Strategic Operational Both 

A
p

p
ro

a
ch

es
 

Deterministic 
Mavromatidis and 

Petkov (2021) 
Ren et al. (2010) 

Cano et al. (2014),  

Evins (2015),  

Gabrielli et al. (2018) 

Stochastic n/a 

Faraji et al. (2021), 

Abdulnasser et al. (2022), 

Ebrahimi and Sheikhi (2023), 

Seyednouri et al. (2023) 

Cano et al. (2013),  

Cano et al. (2016),  

Yang et al. (2017),  

Mavromatidis et al. (2018), 

Mansouri et al. (2020) 

Stochastic & 

Reliability 

Analysis 

n/a 
Zeng et al. (2020), 

Wu et al. (2021)  

Dolatabadi et al. (2017), 

Su et al. (2020), 

This thesis 
 

Table 5: Identified research gap in the literature 

Most of the analysed literature considers research into the development of models in which both 

strategic and operational decision-making processes are combined. Both deterministic and stochastic 

approaches are common. This thesis project aims to develop a stochastic optimisation model in which 

uncertainties posing a risk to energy supply reliability are incorporated within the operational decision-

making process, with the additional implementation of relevant indicators to assess the energy supply 

performance of the energy hub defined by the strategic decisions.  

In the literature, the studies by Dolatabadi et al. (2017) and Su et al. (2020) propose a similar objective. 

However, the first paper does not consider photovoltaic renewable energy generation within the studied 

model, which this thesis aims to include. The latter includes a more complete approach including both 

wind and photovoltaic power generation, but no energy storage capacities are modelled. Furthermore, 

although proposing a systematic framework with methods for the strategic and operational optimisation 

of energy hubs under uncertainty and evaluating the energy supply, the strategic and operational 

decision-making processes and evaluation methods are not included in a single mathematical model. 

Additionally, neither of these studies incorporates energy supply reliability performance as the main 

objective of the model. Rather, in the first study, costs are minimised, and reliability indicators are 

included as constraints, and in the second study, energy supply performance is only assessed after 

simulating energy hub operation. It is concluded that research into the development of stochastic models 

combining both strategic and operational optimisation which integrate energy supply reliability into the 

model objective is limited, and a relevant contribution can be made in this regard. 
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4 A Stochastic Model for Reliability-Based Energy Hub Optimisation 

This chapter presents the stochastic optimisation model developed for this research. The uncertainties 

posing a risk to energy supply reliability are incorporated in this model using a scenario-based approach. 

First, the problem which is solved with this model and its outline are explained, and the assumptions 

made within the modelling approach are elaborated on. Next, the complete model formulation is 

presented, detailing the sets, parameters, decision variables, the objective function, and its constraints. 

The equations for the implemented performance indicators are defined, and the chapter is concluded in 

the last section. The following research questions are answered:  

How is the reliability-based stochastic optimisation model for energy hub design formulated? 

• What is the outline of the optimisation model? 

• How are the stochastic model decision stages and scenarios structured? 

• Which assumptions are made in the modelling approach? 

• Which sets, parameters and constraints are included in the model? 

• How is the objective function formulated? 

• Which reliability performance indicators are implemented? 

 

4.1 Mathematical Problem and Model Introduction 

4.1.1 Problem definition 

This section describes the specific problem that is modelled and solved in this research. To define the 

problem, the insights from the context analysis and literature review are used. The foremost objective 

of the model is to optimise the design and operation of an energy hub, taking into account its energy 

supply reliability. The trade-offs between making or not making strategic investments for the installation 

of technological assets and the effects on the energy supply reliability are explicitly considered within 

the optimisation. 

In principle, the energy hubs that can be configured using the optimisation model contain a set of 

consumers with electric energy demands who are all connected to the main power grid, and there is the 

possibility to invest in wind- and solar energy production, as well as energy storage capacity. Power 

grid withdrawal in the energy hub is limited, hence a mix of energy supply sources is required to meet 

all consumer demands. For the assets, the investment strategy is defined by optimising the specific 

capacity of the technologies to be installed at each location if it is required. The operation of these assets 

and the energy flows in the hub are optimised under uncertainty.  

To incorporate these elements in the optimisation model, an extensive collection of sets and parameters 

is required. Sets are formulated for the consumers, the technologies, the modelling of strategic and 

operational time scales for the accompanying strategic and operational decision variables, and the 

scenarios in which the stochastic outcomes of the uncertainties are generated and represented. The 

parameters relate to the energy demand profiles of each consumer, the output profiles of wind- and solar 

generator assets, economic (financial) parameters for the investment and operation of assets and the 

cost of energy withdrawal, the constraints of the power grid and contractual bounds for consumers, and 

technological parameters for the operation of batteries. 

The model aims to find the optimal investment strategy for assets at each location in the energy hub, as 

well as their optimal operation to supply energy and meet consumers' demands. In the model, reliability 

indicators are implemented, through which the operational performance of the energy supply in the hub 

is quantified at the consumer level, providing detailed insights. 
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4.1.2 Two-Stage Stochastic Programming 

To optimise both the strategic design decisions relating to the energy hub, as well as the operational 

decisions under uncertainty, a two-stage stochastic programming approach is used. In this section, the 

idea behind the setup of the stochastic model formulation is explained.  

In a two-stage stochastic program, the uncertainties are represented using a scenario-based approach. 

In each scenario, a different outcome of the uncertainties is revealed, and the operation of the energy 

hub is optimised under these revealed uncertainties. Logically, the optimisation model is bound by the 

same constraints in each scenario. I.e., the model optimises the expected operational performance of the 

energy hub under the uncertainties posing a risk to system reliability. 

A scenario fan of the stage one strategic and stage two operational decisions represents the structure of 

the model (Figure 7). In the figure, each t represents a time step in the optimisation. Time 0 concerns 

the first stage, in which the strategic capacity investment decisions for the energy hub are taken before 

uncertainty is revealed. So, in the first stage, the complete set of investment decisions for all available 

assets at each location is defined. After the first stage, the uncertainty is revealed, and the operational 

decisions are considered for each generated scenario and each sequential time step. The nodes in the 

figure in the second stage represent an operational time step in a scenario for which the operational 

decisions for the assets and energy flows are defined. The objective is to determine the initial strategic 

investment decisions such that the maximum achievable reliability of the energy hub is ensured for all 

scenarios in the operational stage. 

 

 

Figure 7: Uncertain scenarios in a two-stage scenario fan 

 

4.1.3 Model Outline 

The model is formulated as a two-stage mixed-integer stochastic linear program. The model optimises 

energy hub design and operation by minimising the total investment and expected operational costs 

under uncertainty for a specified planning horizon. The objective function includes a financial penalty 

for the occurrence of energy shortages, which poses a trade-off between making investments and energy 

supply reliability. By varying the value of the penalty, the solution space for this trade-off can be 

explored.  

In principle, any energy supply reliability performance indicator can be included in the objective of the 

model, but for simplicity, the cumulative energy shortage for all consumers in the energy hub is 

considered as this value is already embedded in the model formulation. Intuitively, as reliability 
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indicators are not conflicting, improving one consequently also improves the others. It is therefore 

expected that by including the cumulative shortage in the model objective and making improvements 

here, other performance indicators improve as well. 

Generally, any number of consumers may be included in the energy hub. Energy flows can exist between 

all network components, but no specific energy market allowing consumers to trade energy amongst 

each other is incorporated. In addition to the consumers in the model, a consumer called ‘hub’ is used. 

Although it is included as a consumer, the hub has no energy demand to be met and serves as a generic 

system component at which assets can be installed and from which energy can be transferred to the 

other consumers. Time is modelled according to long-term periods and short-term periods. Long-term 

periods are used for strategic decisions, while short-term periods are used for operational decisions. 

Figure 8 provides an example of a configuration for the consumers and the hub. It is noted that this 

figure does not illustrate a specific optimised configuration or existing case that is considered in this 

research, rather, its purpose is to show the capabilities of the model in configuring energy hubs.  

The consumers are connected to the electric power grid and the energy available from assets installed 

at the hub can used to cover the demands of all consumers. Assets installed at a consumer can only 

supply energy to that specific consumer. Assets are not modelled separately. In principle, the investment 

decision describes a certain unit capacity of one or more assets at each specific location in the hub. For 

renewable energy generators, this means that the output profile at a specific location is a single profile 

based on the installed capacity and available data, as was discussed in the constraints in Section 2.2.5. 

Strategic decisions are made at the start of the planning horizon, after which the operational decisions 

are optimised for the entire planning horizon. The model offers flexibility in how it is used. First, a 

situation may be considered in which there are no assets at the current time. In that case, decisions are 

made about which assets to invest in at which location, based on an empty hub with only consumers 

connected to the power grid. Second, assets may already be present. In that case, a configuration of 

asset capacities may be set as model input, pre-defining these decisions, and only optimising the 

operational planning of the hub. 

  

 

 

 

Figure 8: Schematic overview of energy hub modelling 
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4.1.4 Modelling Assumptions 

Several assumptions are made, relating to the modelling complexity of certain aspects of technological 

assets, energy hub design, and its operation. 

The model utilises a pre-defined profile for the outputs of renewable energy generators, and in the 

modelling of the assets, no technical limitations such as inefficiencies are considered. For all generator 

assets installed in an energy hub, the output profile is based on equal data for wind or solar energy 

production. No output efficiencies and losses are defined based on specific technological parameters.  

Within energy hub operation, surpluses might occur in renewable energy production as they exceed 

demands. In such cases, curtailment of one or more generator assets is required. In principle, curtailment 

is only required in case energy production exceeds both the demand of consumers in the energy hub 

and the power grid injection capacity for selling energy. The curtailment decision is modelled to allow 

a perfect reduction in output to remove the surplus. Curtailment is embedded within the constraints by 

specifying energy generator outputs in each short-term operational period.  

On the contrary, in case of energy deficits, the option to supply emergency energy generation is used. 

This essentially concerns a slack variable in the model which provides energy if the supply capacity 

from the power grid, renewable generators, and batteries, is insufficient to meet consumer demands. In 

that case, the deficit is supplied through emergency generation, which in turn indicates a shortage and 

the size of each specific shortage. It is also required to ensure model feasibility, as otherwise, energy 

balances cannot hold in case of a shortage. 

The location of energy hubs is assumed to be generic and unrestricted in the model. No area-specific 

boundaries or limitations exist, and no distances between companies and assets in the network are 

considered. Hence, no distribution line losses are included, and energy transfer from one place to 

another is instantaneous. Using a generic location also omits the inclusion of available space to install 

assets and the use of weather data for the power outputs of generators. 

Lastly, several assumptions are made regarding the possible strategic capacity investments for assets in 

the configured energy hub. While in principle, the model can be entirely free in the decision-making for 

the capacities of assets to be installed at each location, the logicality of these decisions must be taken 

into account as well. First, it is assumed that any wind energy generator capacity can only be installed 

at the hub location, not at any of the consumers. A consumer is considered a stakeholder who cannot 

own and have exclusive access to the energy supply of a wind turbine, rather, wind turbine supply is 

aimed at providing any of the consumers in the hub with energy. Second, for PV and battery capacity, 

it is assumed that there are no such restrictions. For PV systems, this represents how, e.g., a solar park 

can be installed near the industrial area where the energy hub is realised, while individual consumers 

may also have rooftop installed PV capacity.  For the batteries, the same logic holds. 

 

4.2 Model Formulation 

4.2.1 Sets 

Several sets are defined for the optimisation model. The consumer set consists of all consumers with 

energy demand, as well as the hub, at which assets may be installed, but no energy is required. To avoid 

ambiguity, the technology set is divided into two subsets, representing wind- and solar generators, and 

batteries. Time is modelled according to long- and short-term periods, representing the strategic and 

operational decision-making levels, respectively. Lastly, a set representing each scenario included in 

the optimisation is defined. 
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Sets  Description    Indices 

C  Set of energy consumers  c ∈ C, hub ∈ C 

T  Set of technologies    t ∈ T 

Tg ⊆ T  Subset of generators   tg ∈ Tg  

Tb ⊆ T  Subset of batteries   tb ∈ Tb  

Y  Set of strategic-level periods  y ∈ Y 

H  Set of operational-level periods  h ∈ H 

S  Set of scenarios    s ∈ S 

 

4.2.2 Parameters 

The parameters define energy demand and energy generator output profiles, technological inputs, 

economic inputs relating to energy prices and the fixed costs of assets, the power grid capacity bounds, 

and battery specifications. Additionally, the penalty for energy shortages in meeting demand, and the 

discount rate and annualization factor used in the objective function are included. 

Parameters  Description 

Dc
y,h,s

   Energy demand for consumer c, at time y, h in scenario s [kWh] 

Ptg

y,h,s
   Output profile of a generator at time y, h in scenario s [kWh] 

DFtg

y,s
   Technology degradation factor in each year in scenario s [%] 

FPtg

y,h
   Renewable energy generator failure probability [%] 

DTtg

s    Downtime of failed generator assets in scenario s (in hours) 

PRs   Probability of scenario s [%] 

WC   Power-grid energy withdrawal cost [€/kWh] 

IP   Power-grid energy injection profit [€/kWh]  

ICt   Technology investment cost [€]  

MCt   Technology maintenance cost [€/Year] 

OCt   Technology operation cost [€/Year] 

WCap   Collective power grid withdrawal capacity [kW] 

ICap   Collective power grid injection capacity [kW] 

MaxWc   Maximum withdrawal limit for consumer c [kW] 

MaxIc   Maximum injection limit for consumer c [kW] 

MaxTcfrom,cto
  Maximum energy that can be transferred between locations [kW] 



30 

 

SLtb
   Fraction of storage lower limit [kWh] 

SUtb
   Fraction of storage upper limit [kWh] 

SCtb
   Battery charging efficiency [%] 

SDtb
   Battery discharging efficiency [%] 

SXtb
   Maximum battery charge rate [-] 

SYtb
   Maximum battery discharge rate [-] 

P   Penalty cost for shortages in meeting energy demands [€/kWh] 

DR   Discount rate 

AF   Annualization factor 

 

4.2.3 Decision Variables 

Strategic decisions concern the installed capacities of renewable energy generators and batteries at each 

location in the energy hub. These decisions are made in the investment year at the start of the planning 

horizon. No further investments can be made after. Operational decisions include all energy flows in 

the hub and the operation of batteries. 

Variables  Description 

GCtg,c   Capacity of an energy generator installed at c [kW] 

BCtb,c   Capacity of a battery installed at c [kWh] 

Otg,c
y,h,s

   Generator output at c, at time y, h in scenario s [kWh] 

CTtg,c
y,h,s

   Generator curtailment at c, at time y, h in scenario s [kWh] 

Tcfrom,cto

y,h,s
  Transfer of energy at time y, h in scenario s [kWh] 

Wc
y,h,s

   Energy withdrawal by c, at time y, h in scenario s [kWh] 

Ic
y,h,s

   Energy injection by c, at time y, h in scenario s [kWh] 

Ec
y,h,s

   Emergency generation at c, at time y, h in scenario s [kWh] 

Ctb,c
y,h,s

   Charging of a battery at c, at time y, h in scenario s [kWh] 

Dtb,c
y,h,s

   Discharging of a battery at c, at time y, h in scenario s [kWh] 

SOCtb,c
y,h,s

  State of charge of a battery at c, at time y, h in scenario s [kWh] 

CStb,c
y,h,s

∈ {0, 1}  Charge state indicator at c, at time y, h in scenario s  

DStb,c
y,h,s

∈ {0, 1}  Discharge state indicator at c, at time y, h in scenario s 
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4.2.4 Objective Function 

The objective function minimises the strategic investment and fixed technological costs and the 

expected value of the annual operational costs under uncertainty. For this, the scenario probability PRs 

is included. The operational costs are annualised to the strategic (yearly) level using factor AF. 

 

Minimize ∑(1 + DR)−y ∗

y

(∑ ∑ ICtg,c ∗ GCtg,c

c

+ ∑ ∑ ICtb,c ∗ BCtb,c

ctbtg

+ ∑ ∑ MCtg
∗ GCtg,c + OCtg

∗ GCtg,c

ctg

+ ∑ ∑ OCtb,c ∗ BCtb,c

c

 

tb

+ E[Ann. Op. ]) 

Where: 

E[Ann. Op. ] = ∑ PRs ∗ (AF ∗ ∑ ∑ Wc
y,h,s

∗ WC − Ic
y,h,s

∗ IP

chs

+  Ec
y,h,s

∗ P) 

 

4.2.5 Constraints 

The main equations modelling energy flows are the energy balance constraints formulated explicitly for 

consumers (4.1) and the hub location (4.2). This balance is ensured for each location and each 

operational period. The left-hand side of the balance constraint defines the available energy in each 

period h, and the right-hand side sets the energy demand to be met. For the hub, at which no demand is 

to be satisfied, the energy balance constraint is formulated such that all available energy is transferred 

to the consumers. At the hub, no energy can be withdrawn from the grid, and it cannot receive energy 

transferred from consumers. 

 

∑ Otg,c
y,h,s

tg

+ Dtb,c
y,h,s

− Ctb,c
y,h,s

+ Wc
y,h,s

− Ic
y,h,s

+ Thub,c
y,h,s

+ Ec
y,h,s

= Dc
y,h,s

 y ∈ Y,  h ∈ H,  s ∈ S,  c ∈ C 

(4.1) 

 

∑ Otg,hub
y,h,s

tg

+ Dtb,hub
y,h,s

− Ctb,hub
y,h,s

− Ihub
y,h,s

= ∑ Thub,cto

y,h,s

cto≠hub 

 ∀ y ∈ Y,  h ∈ H,  s ∈ S 

(4.2) 

 

The usable outputs of renewable generators are equal to the output of the installed technology from the 

input data multiplied by the installed capacity (4.3). A year-specific degradation factor is included, and 

curtailment on the output is subtracted. In case of failures, the output is set to 0 for the duration DTtg
. 

 

Otg,c
y,h,s

= {
Ptg,c

y,h,s
∗ GCtg,c ∗ DFtg

y,s
− CTtg,c

y,h,s
  if operational

0 if failed, for duration DTtg

s  
 ∀ y ∈ Y,  h ∈ H,  s ∈ S,  tg ∈ Tg,  c ∈ C 

(4.3) 
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The initial state of the battery is assumed to be at minimum charge capacity (4.4). For the transition 

between operational periods, the state of charge SOCtb,c
y,h+1

 is set based on the previous state and the 

energy-charged or discharged during that time, limited by battery efficiencies (4.5). Additionally, the 

operational transition between the sequential strategic-level periods is ensured. Constraint (4.6) sets the 

state of charge in operational period 0 of the next year y+1 based on the state of charge in the last 

operational period max(H) of the previous year. The SOC is constrained by the fraction of storage lower 

and upper bounds (4.7) and the energy charged to and discharged from the battery cannot exceed the 

charge and discharge rates (4.8), and (4.9). Additionally, binary state indicators are included, ensuring 

that either a charging or discharging decision is taken (4.10). 

 

SOCtb,c
0,0,s = SLtb,c ∗ BCtb,c  ∀ s ∈ S,  tb ∈ Tb, c ∈ C (4.4) 

SOCtb,c
y,h+1,s

= SOCtb,c
y,h,s

+ SCtb
∗ Ctb,c

y,h,s
− SDtb

∗ Dtb,c
y,h,s

  ∀ y ∈ Y,  h ∈ H,  s ∈ S,  tb ∈ Tb, c ∈ C (4.5) 

SOCtb,c
y+1,0,s

= SOCtb,c
y,max(H),s

+ SCtb
∗ Ctb,c

y,max(H),s
− SDtb

∗ Dtb,c
y,max(H),s

 ∀ y ∈ Y,  s ∈ S,  tb ∈ Tb, c ∈ C 

(4.6) 

SLtb,c ∗ BCtb,c ≤ SOCtb,c
y,h,s

≤ BCtb,c ∗ SUtb,c  ∀ y ∈ Y,  h ∈ H,  s ∈ S,  tb ∈ Tb, c ∈ C (4.7) 

Ctb,c
y,h,s

≤ SXtb
∗ CStb,c

y,h,s
  ∀ y ∈ Y,  h ∈ H,  s ∈ S,  tb ∈ Tb, c ∈ C (4.8) 

Dtb,c
y,h,s

≤ SYtb
∗ DStb,c

y,h,s
  ∀ y ∈ Y,  h ∈ H,  s ∈ S,  tb ∈ Tb, c ∈ C (4.9) 

CStb,c
y,h,s

+ DStb,c
y,h,s

= 1  ∀ y ∈ Y,  h ∈ H,  s ∈ S,  tb ∈ Tb, c ∈ C (4.10) 

 

Energy transfers from the hub to consumers are bound through (4.11) and no energy can be transferred 

to the hub (4.12). The collective of consumers cannot withdraw or inject energy beyond the capacity of 

the power grid (4.13), (4.14) and contractual bounds limit the energy consumers can withdraw and inject 

during each operational period (4.15), (4.16). 

 

∑ Thub,cto

y,h,s

cto≠hub

≤ MaxThub,cto

y,h,s
 ∀ y ∈ Y,  h ∈ H,  s ∈ S (4.11) 

∑ Tcfrom,hub
y,h,s

cfrom≠hub

= 0 ∀ y ∈ Y,  h ∈ H,  s ∈ S (4.12) 

∑ Wc
y,h,s

c≠hub

≤ WCap ∀ y ∈ Y,  h ∈ H,  s ∈ S (4.13) 

∑ Ic
y,h,s

c

≤ ICap ∀ y ∈ Y,  h ∈ H,  s ∈ S (4.14) 

Wc
y,h,s

≤ MaxWc ∀ y ∈ Y, h ∈ H,  s ∈ S, c ∈ C,  c ≠ hub (4.15)  

Ic
y,h,s

≤ MaxIc ∀ y ∈ Y,  h ∈ H,  s ∈ S,  c ∈ C (4.16) 
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A positive, continuous value decision is taken for the capacities of assets installed at each location 

(4.17), (4.18). Constraints (4.19) relate to the binary variables. All other variables are continuous and 

nonnegative (4.20). 

GCtg,c ≥ 0 ∀ tg ∈ Tg, c ∈ C (4.17) 

SCtb,c ≥ 0 ∀ tb ∈ Tb, c ∈ C (4.18) 

CStb,c
y,h,s

,  DStb,c
y,h,s

∈ {0,1}  ∀  tb ∈ Tb,  y ∈ Y,  h ∈ H,  s ∈ S,  c ∈ C (4.19) 

All other variables ≥ 0 (4.20) 

 

4.3 Energy Supply Reliability Indicators 

Performance indicators are implemented in the optimisation model to analyse the operational reliability 

of the energy supply. The concepts and insights gathered in the literature review (Section 3.4) are used 

to define the implemented indicators. The indicators are scenario-independent and provide insight into 

the expected energy supply performance in meeting demands under uncertainty, by measuring the 

reliability of the energy supply and the severity of the observed shortages. It is noted that these 

performance indicators are only relevant to the actual consumers: The hub component in the 

configuration, at which assets are installed to transfer energy to consumers, does not require any energy; 

thus, it cannot have shortages and, in terms of reliability, does not affect operational performance.  

The variable Ec
y,h,s

 in the optimisation model represents emergency energy generation in case of a 

shortage. Its main purpose is to ensure energy balance in case of a shortage, but it is also used to compute 

the cumulative energy shortage that occurred during operational optimisation (5.21). Additionally, the 

number of shortage occurrences can logically be computed from this variable by counting the number 

of times the value Ec
y,h,s

 > 0. The cumulative shortage value and the number of shortage occurrences 

are used to compute the performance indicators included in the model. 

 

Cumulative Shortc = ∑ ∑ ∑ Ec
y,h,s

shy (5.21) 

 

The Expected Energy Not Supplied (EENSc) computes the percentage of unsupplied demand at the 

consumer level (5.23). The Adequacy of Supply (ASc) measures the severity of shortages at each 

consumer (5.24). It is quantified by the average value of the shortages during the operational planning 

horizon. The Loss of Load Probability (LOLPc) computes the probability an energy deficit will occur 

in an operational period for each consumer (5.25). The total number of operational periods is quantified 

by the size of the sets of long- and short-term periods and all scenarios. 

 

EENSc =
Cumulative Shortc

∑ ∑ ∑ Dc
y,h,s

shy

∗ 100% (5.23) 

ASc =
Cumulative Shortc

No. of Shortagesc
(5.24) 

LOLPc =
No. of Shortagesc

|Y| ∗ |H| ∗ |S|
∗ 100% (5.25) 
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4.4 Conclusions 

In Chapter 4, the developed modelling approach for the optimisation of energy hub design and operation 

was presented. The purpose of this model is to ensure the energy supply for the consumers in the energy 

hub, in a context where limited power grid capacity is available for the withdrawal of energy, and 

additional energy supply using renewable energy production and energy storage is incorporated. 

The specific problem solved using the model, the model outline and the assumptions made within the 

modelling approach were discussed first. Additionally, the set-up of the scenario-based stochastic 

programming approach was described, such that the uncertainties posing a risk to the energy supply 

reliability can be incorporated within the operational optimisation. For this, a two-stage modelling 

approach was chosen, in which the strategic design decisions concerning the capacities of technologies 

installed at each location are made in the first stage, and in which the operational decisions for the use 

of these assets and energy flows are optimised in the second stage. 

The objective function of the model minimises the strategic and expected operational costs under 

uncertainty for the configured energy hub. By setting a financial penalty for the occurrence of energy 

shortages in meeting consumer demands and minimising operational costs, the operational energy 

supply reliability can be addressed: As the objective function aims to minimise the overall costs related 

to the energy hub, the model consequently aims to minimise the incurrence of the penalty, reducing the 

occurrence of energy shortages during operation. This inherently improves the energy supply reliability 

as energy shortages are minimised. Additionally, by varying the specific value of the financial penalty 

incurred for energy shortages, the solutions space for the costs/reliability trade-offs can be explored. As 

a higher penalty is set, more strategic investments for energy generation or storage are expected to be 

made. The opposite is expected to be true as well. 

In Section 4.3, the implemented performance indicators were described. For this, the concepts discussed 

in the literature review were used, and the equations to compute these indicators were developed based 

on the sets and variables included in the model formulation. In principle, these performance indicators 

could also be incorporated into the model objective, but as it is expected that the implemented indicators 

are not conflicting, it is assumed that the values of the indicators are improved as the minimisation of 

energy shortages included in the objective is improved as well. 

In the next chapter, a numerical study is conducted in which several experiments are performed using 

the presented model. These experiments are aimed at testing the model and generating relevant insights 

into energy supply reliability-based optimisation for the design and operation of energy hubs.   
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5 Numerical Study 

This chapter focuses on performing a numerical study using the stochastic optimisation model that was 

presented in Chapter 4. First, the required input data and parameter settings are explained, including the 

development of a time sampling strategy. Next, the experimental design is elaborated on. In the 

experiments, model solvability, the merits of stochastic optimisation, cost/reliability trade-offs, and the 

effects of technological degradation on energy supply reliability are assessed. The chapter concludes 

with a summary of the results and the gathered insights. The following research questions are answered: 

Which experiments are conducted to test the model and analyse energy supply reliability-based 

optimisation? 

• Which input data is required, and how is it used in the model? 

• How are the input parameters and values defined? 

• How are the uncertainties affecting energy supply reliability modelled? 

• Which experiments are conducted? 

• What are the results of the conducted experiments? 

• Which conclusions can be drawn from the experiment results? 

 

5.1 Input Data, Preparation & Numerical Inputs 

5.1.1 Data Availability & Manipulation 

A dataset provided by the company is used for the demand profiles and the available outputs from wind 

turbines and PV systems. It includes anonymous demand profiles of five companies with varying loads. 

Additionally, it defines the output profiles of wind turbines and PV systems. The dataset consists of the 

calendar year 2021 and has a data point for each 15-minute period from January 1st to December 31st. 

It accurately represents the energy load between working days and weekends, holidays, and the 

seasonality in wind- and solar energy production. 

For effective use in the model, the dataset is manipulated such that it starts at the beginning of a Monday. 

Additionally, the last day included in the data, this specific day being a weekend, is omitted. As energy 

demands in the data are observed to be significantly reduced at weekends compared to normal working 

days, they are less relevant for optimal strategic and operational decision-making and, consequently, 

their influence on energy supply reliability. Therefore, it is assumed this specific Sunday may be omitted 

without affecting optimisation results. Applying this procedure, the remaining data can be segmented 

into 52 week-long periods of equal length, each starting at the beginning of a Monday and ending at the 

last operational period on Sunday. This enables the specific sampling of different weeks from the dataset 

to extract week-long operational profiles which are added sequentially to create a computationally 

easier time series to optimise. 

 

5.1.2 Data Sampling and Time Series 

To reduce computational complexity, a time series is created for each scenario in the optimisation 

model, consisting of randomly sampled years and weeks in a pre-established time horizon. A specific 

number of weeks is selected for each sampled year. The probability of sampling a specific year or week 

is equal for all instances. In each scenario of the stochastic model, an equally long time series containing 

a different set of years and weeks is included. It is noted that the sampling, in principle, always includes 

the investment year 0, after which any of the others can be added. The time series is ordered from the 

investment year to the latest, and the weeks sampled in each year are also ordered. 
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Figure 9 depicts how a time series is sampled from the full data. Year x represents the latest possible 

year that can be considered. As there is one year of data available, the data from that year is copied for 

the other years in case a multi-year planning horizon is considered. In that case, any year-dependent 

parameter or factor included in the model is applied to the available single-year data and sequentially 

added to the time series. Then, for each sampled year, a random set of weeks is selected, for which the 

accompanying set of operational periods is added. A 15-minute granularity is available, so there are 672 

decision-making periods added to the time series for each sampled week. 

By enabling the sampling of a varying number of years and weeks from the planning horizon, the 

model's flexibility and scalability are improved. Furthermore, by limiting the amount of data used in 

the optimisation procedure, the mathematical complexity of the model is reduced, and the 

computational time to generate optimal solutions is improved. On the contrary, if completely random 

sampling is applied, it is uncertain whether the included data is representative of all seasons.  

In an ideal case, at least one week is sampled from each season, such that the seasonality in demand 

and production is represented. Therefore, it is decided that the sampling of weeks always includes at 

least a specific number of weeks from each of the seasons. To illustrate, if one week is sampled from 

each season, four weeks are added to the time series for each year. If two weeks are sampled for each 

season, eight weeks are added to the time series for each year, and so on. Although this limits the 

flexibility of the model in the number of weeks that can be selected to sample, this strategy removes 

some randomness in the results and ensures seasonality is represented in an optimised solution. 

To illustrate, the sampling strategy works as follows: There are three choices the model user can make, 

namely the last possible year to include in the planning horizon, the number of years to sample from 

that planning horizon, and the number of weeks to sample from each season in the sampled years. 

Suppose the model is set to sample four years from a planning horizon of 10 years, and one week from 

each season. In that case, the investment year 0, and three randomly selected other years are added, 

where each year is based on the same available single-year data. However, the accompanying year-

dependent factors are applied affecting the operational optimisation for those years. Next, for each of 

the four years, one week is randomly sampled from each season, and these selected weeks may vary 

between each year. Ultimately, using this example, the sampling process generates an ordered time 

series of 16 weeks indexed by the year numbers and operational decision-making periods in each week. 

 

 

Figure 9: Data sampling strategy implemented in the optimisation model 
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5.1.3 Numerical Inputs 

The model inputs for consumer demands are based on the profiles in the dataset but scaled to be 

representative of an industrial energy hub with middle- to large-sized firms in The Netherlands (Dekker 

et al., 2022). The total demand of all consumers for the entire year is expected to be approximately 

925,000 kWh, with peak loads of 224 kW for the collective in a single operational period during regular 

working days. The actual demand profiles, however, vary between the scenarios due to the uncertainty 

incorporated into the input data. Based on this knowledge, grid withdrawal and injection capacities and 

the contractual bounds for individual consumers are specified. It is assumed that 80-90% of the expected 

energy demand of each consumer can be supplied through grid withdrawal. Energy transfers are 

included to share energy produced at the hub with the consumers. The maximum energy that can be 

transferred during each operation period from the hub to the collective of consumers is set to the same 

value as the grid withdrawal capacity. Table 6 provides an overview of all the network-related parameter 

capacities set in the model. 

 

Parameter Description Value 

WCap Collective withdrawal capacity 224.0 kW 

ICap Collective injection capacity 60.0 kW 

MaxW1 Max. withdrawal consumer 1 116.0 kW 

MaxW2 Max. withdrawal consumer 2 28.0 kW 

MaxW3 Max. withdrawal consumer 3 16.0 kW 

MaxW4 Max. withdrawal consumer 4 24.0 kW 

MaxW5 Max. withdrawal consumer 5 40.0 kW 

MaxInc Max. injection per consumer 8.0 kW 

MaxInℎ𝑢𝑏 Max. injection from the hub 20.0 kW 

MaxTrhub,cto
 Energy transfers from hub to c 224.0 kW 

 

Table 6: Grid capacity limitations and consumer contracts 

 

Costs included in the optimisation model define the capital expenditures (CAPEX) and operational 

expenditures (OPEX) related to the energy hub. This includes the investment, maintenance, and 

operational costs of assets, as well as energy withdrawal costs.  

For the technology investment and yearly incurred fixed costs, the values are given per installed unit 

capacity as resulting from the optimisation model. Based on the approximate real-world investment 

costs per MW of production capacity, the expected yearly kWh output of these technologies, and the 

yearly expected power output of the generators included in the data, the investment costs are scaled and 

defined accordingly. 

Injection profits generated by selling energy are subtracted from the overall OPEX. Real-world costs 

vary significantly depending on technology types, location, and subsidies. These factors are not 

accounted for in the model. Maintenance and operational costs for wind turbines and PV systems are 

incurred annually and are equal across all assets. Energy withdrawal and injection costs are assumed to 

be constant and equal for all consumers. The discount rate for the investments and operational costs is 

assumed to be 2.5%, and the annualization factor for operational costs is dependent on the number of 

operational periods included in the sampled time-planning horizon. 
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Where possible, these costs are based on recent, real-world values, but no historical data from projects 

is available, hence some assumptions are made in defining these parameters. Including real-world data 

for precise parameter tuning is, in principle, straightforward in case this data is available. An overview 

of the cost parameters is detailed in Table 7. 

 

Parameter Description Value 

WCc Energy withdrawal cost 0.30 €/kWh 

IPc Energy injection profit 0.05 €/kWh 

ICwind,c Wind turbine investment cost 37,500 €/Unit Capacity 

ICpv,c PV system investment cost 25,000 €/Unit Capacity 

ICbattery,c Battery investment cost 5,000 €/Unit Capacity 

MCwind,c Maintenance cost of wind turbines 1,000 €/Unit Capacity/Year 

MCpv,c Maintenance cost of PV systems 250 €/Unit Capacity/Year 

OCwind,c Operation cost wind turbines 500 €/Unit Capacity/Year 

OCpv,c Operation cost PV systems 250 €/Unit Capacity/Year 

OCbattery,c Operational cost batteries 50 €/Unit Capacity/Year 

DR Discount rate 0.025 

AF Annualization factor Dependent on |H| 
 

Table 7: Cost parameter settings 

 

For storage technologies, uniform performance specifications are used for all batteries if included in an 

optimised energy hub configuration (Table 8). As there is no data on a specific type of battery with 

accompanying performance specifications, the following values are assumed: 

 

Battery parameter Description Value 

SLtb
 Storage fraction lower limit 10% of Capacity 

SUtb
 Storage fraction upper limit 95% of Capacity 

SCtb
 Charging efficiency 90% 

SDtb
  Discharging efficiency 90% 

SXtb
 Maximum charge rate 6 kW/Quarter 

SYtb
 Maximum discharge rate 10 kW/Quarter 

 

Table 8: Battery performance specifications 



39 

 

5.1.4 Uncertainty Modelling 

Uncertainty in demand profiles is included by applying a uniformly distributed random change for each 

operational period, generating variation in the input profile for each scenario. A similar approach is used 

to represent uncertainty in the energy production profiles. The greatest risk for energy supply reliability 

is greater energy use and less energy production than the expected value in the data. Using this logic, a 

worst case of energy consumption more than 2.5% over the expected value during an operational period 

and a 5% decrease in expected production output is assumed. On the contrary, as the risks for supply 

reliability are lower in the case of less demand and more production, 1% less demand and 2.5% more 

production than the given values in the data profiles are assumed. 

The occurrence of technological failures follows a binomial distribution with probability FP. In the 

model, each short-term period represents an individual trial n during which a failure can occur. The 

failure probability of wind turbines is set using insights from the study by Anderson et al. (2023). An 

expected failure rate of 7.47 failures per year is determined when failures are restricted to those related 

to the failure of a particular component in the wind turbine. The PV system failure rate depends on 

several factors, the foremost being system size (Lillo et al., 2018). Additionally, it is noted that in a PV 

system, not all failures directly cause a direct loss in energy production, such as monitoring system 

irregularities. Based on this knowledge and observed failure rates, an expectation of 3.20 failures/per 

year is assumed for the numerical study. The actual failure probability during each operational period 

within the model is scaled according to the length of the sampled times series using (5.1). Periods/Year 

indicates the number of operational periods in a full year, and |H| is the number of operational periods 

in the sampled time series. In case of a failure, the output is assumed to be 0. 

 

FPtgen

y,h
=

Failures/Year

Periods/Year
∗

|H|

Periods/Year
(5.1) 

 

Real-world observed downtimes depend on specific technological causes, the time at which the failure 

occurs, the location of the energy hub, or any unforeseen circumstance affecting the repair time. 

Different studies on the operational metrics for wind farms are available, providing estimates for the 

mean time to repair (MTTR) for minor incidents and major repairs from the time a wind turbine fails 

until it functions again (Anderson et al., 2021; Li et al., 2022). The observed values vary significantly 

depending on required repairs or services, ranging from several hours to multiple days. Additionally, 

the time for scheduled maintenance activities leads to downtime of assets within the hub. Based on this 

information, for this numerical study, an expected MTTR of 72 hours is assumed. The MTTR for PV 

systems is dependent on the specific system and type of failure as well (Spertino et al., 2021). For PV 

systems, an expected MTTR of 96 hours is assumed in the numerical study. For wind- and solar 

production capacities, the MTTR is assumed to follow an exponential distribution (Wu et al., 2021). 

Furthermore, the downtime duration is adapted to correctly cover the number of operational periods in 

the model for which the output of generators must be 0 in case of failures. 

In the study by Staffell and Green (2014), wind turbines are found to lose 1.6±0.2% of their output each 

year. The degradation rate of PVs is lower, with a mean of 0.8% per year (Jordan & Kurtz, 2013). As 

the exact degradation rate is unknown, a uniform distribution generates the actual degradation rate for 

each year.  

The outcomes of these uncertainties are incorporated into the optimisation through different scenarios. 

Each scenario is assumed to occur with equal probability. 
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Uncertainty Modelling Approach 

Demand  X~U(−0.01, 0.025) 

Production  Y~U(−0.05, 0.025) 

Asset failures Ftg

s ~B (n,  FPtg

y,h
)  where FPtgen

y,h
 = (5.1) 

Wind downtime DTwind
s ~Exp(MTTRwind), MTTRwind = 72 hours 

PV downtime DTpv
s ~Exp(MTTRpv), MTTRpv = 96 hours 

Wind degradation DFwind
y,s

~U(0.014,  0.018) 

PV degradation DFpv
y,s

~U(0.007,  0.009) 

 

Table 9: Uncertainty models incorporated in the optimisation model 

 

 

5.2 Experimental Design 

In this section, the experiments conducted to test model performance and to generate results are 

introduced. The optimisation model presented in Chapter 4, the time sampling strategy discussed in 

Section 5.1.2, and all the input parameters defined in Sections 5.1.3 and 5.1.4 are implemented in Python 

code. In principle, for all experiments, the same input parameters and data are used. The Gurobi 

Optimiser (Version 11.0.2) is used to solve the model.  

In Gurobi, two main algorithms are available to solve the continuous relaxations of mixed-integer 

models, which is required for solving the developed model and conducting the experiments. These are 

the simplex (primal and dual) and barrier algorithms. The barrier algorithm is often the fastest for large, 

difficult models, but it is also numerically sensitive, meaning that results from the optimisation using 

this algorithm can be highly affected by numerical issues such as rounding errors or precision 

limitations. The simplex algorithm is generally less numerically sensitive, hence posing a good 

alternative. However, choosing simplex exclusively may prevent taking advantage of the performance 

advantages of the barrier algorithm in numerically good instances. Using Gurobi, the algorithm that is 

used to solve the model can be set to be a specific method. Alternatively, Gurobi can utilise the three 

algorithms concurrently and dynamically choose the most suitable algorithm based on the problem 

characteristics and algorithm performance. 

The first experiment analyses the solvability and scalability of the model (Section 5.3). This relates to 

the size of the optimised time series that is sampled from the data, as well as the scenarios that are 

generated. The quantity of data significantly influences the solvability of the model, but it also affects 

the results and solution quality. In principle, for this experiment, the investment year is considered, and 

by iteratively increasing the number of weeks sampled for this year and the included scenarios, the 

effects on the solving time and the strategic capacity decisions for each sampling variation are analysed. 

The model's limits are explored to conclude the possibilities of further experimentation. 

In the second experiment, the differences between the deterministic and stochastic optimisation 

approaches are examined, and the merits of stochastic optimisation are quantified (Section 5.4). This is 
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achieved by computing the value of the stochastic solution (VSS). First, the deterministic instance of 

the model is optimised by replacing the uncertainties with their expectation. The resulting first-stage 

strategic capacity decisions are then used as input for the stochastic model for evaluation, which 

incorporates the original scenarios. The results are compared to the original model to analyse the 

differences between deterministic and stochastic solutions. 

The third experiment analyses the cost/reliability trade-offs included in the model objective by varying 

the incurred penalty for energy shortages such that the effects on the strategic investment decisions and 

reliability KPIs are visible (Section 5.5). The resulting optimised solutions are visualised in a Pareto-

front. The benefits of making additional investments to improve system reliability are discussed.   

In the fourth experiment, the effects of technological degradation on the energy supply performance are 

analysed (Section 5.6). Configuration variants are set as inputs in the model, and the operational 

planning of the energy hub is optimised for a multi-year horizon with and without degradation on 

generator outputs, such that the effects on supply reliability can be analysed according to the 

implemented KPIs. 

 

5.3 Model Scalability and Solvability 

The model is formulated such that there is flexibility in the sampled number of years and weeks, as well 

as the number of generated scenarios. Using the highest possible granularity provides a higher quality 

solution that more accurately represents the characteristics of the data but at the cost of longer 

computational times. The model's limits in terms of scalability and accompanying solvability are 

explored through experimentation with the sampling and scenario generation inputs. The solving times 

and resulting strategic capacity decisions are compared, to define which settings are suitable for further 

experimentation.  

The concurrent solver setting is used, so the Gurobi optimiser dynamically chooses the most suitable 

algorithm to solve the model. The solver is observed to always find an optimal solution for the model 

the fastest using the barrier algorithm, for each tested sampling and scenario generation setting. Hence, 

the found solving times are those of the optimal solution found using the barrier algorithm. 

Ideally, the highest possible granularity of the data is used such that strategic decisions are taken based 

on the most precise operational profiles. Especially peak loads during operational periods are of 

importance, which may get lost in aggregated profiles. As the highest possible granularity is preferred, 

model solvability and scalability are examined using the 15-minute granularity available in the data.   

Only the investment year is considered, to be able to compare the solutions between different runs of 

the model in the experiment. In doing so, strategic capacity decisions are not influenced by the 

randomness of sampled years near or far away in a long-term planning horizon between each test, such 

that the effects of technological degradation do not affect the results and the capacity decisions can be 

compared accurately. The model is tested by iteratively changing the number of weeks and scenarios 

included in the optimisation, starting with the smallest possible instance, and increasing these values 

until the limits of computational time are reached and converging model solutions are observed. 

Figure 10 visualises the observed solving times for various model settings. In each setting, an equal 

number of weeks is sampled from each season. It is observed that with each increase in the number of 

scenarios, the solving time increases substantially.  
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Figure 10: Observed solving times for varying model settings (years, total weeks, scenarios) 

 

The investment decisions observed for the various model settings show approximately equal 

characteristics regarding which technologies are invested at which location. Generally, the capacities 

increase as more weeks and scenarios are included in the optimisation. The model results converge for 

larger instances, but the model becomes increasingly more difficult to solve if eight weeks and ten or 

more scenarios are included, without significantly improving the objective value compared to the test 

where four weeks are sampled for the same number of scenarios, which has a much faster solving time. 

Therefore, it is decided to sample one week per season and generate twelve scenarios in the next 

experiments.  

Two things are noted from the experiment results. First, it is observed that while the results do converge 

towards similar values, differences remain. This highlights the importance of performing multiple runs 

of the model in further experimentation and considering the averages of all runs for higher-quality 

results. Furthermore, it must be noted that the penalty for shortages in this experiment is set arbitrarily 

to a value of 500 €/kWh, which logically influences the capacity decisions. The effects of the penalty 

value on the capacity decisions and accompanying costs/reliability trade-offs are explored in a different 

experiment. The complete set of results for each tested model setting is included in Appendix B: 

Observed Model Solving Times. 

 

5.4 Deterministic vs. Stochastic Optimisation 

5.4.1 Experiment Setup 

In this experiment, the value of accounting for stochasticity when making decisions is analysed. For 

this, a deterministic instance of the model is evaluated and compared against the stochastic model to 

determine the value of the stochastic solution (VSS).  

In the context of this research, this means that by determining the value of the stochastic solution, it is 

assessed which improvement can be achieved in the minimisation of costs, if the optimisation accounts 

for the uncertainties affecting the energy supply in the hub. To recall, the objective value function of 

the model minimises the total investment and operational costs, where the operational costs include the 

incurred penalty for the occurrence of energy shortages in meeting demand. 
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First, the deterministic problem is solved, in which the uncertain parameters are replaced by their 

expectation. The (first stage) strategic capacity decisions for technology investments are then used as 

input for the stochastic optimisation model, such that the results of the deterministic solution can be 

evaluated under the ‘real’ scenarios. The original stochastic problem is solved next, and the results of 

both solutions, i.e., the deterministic evaluation under the real scenarios and the original stochastic 

problem, are analysed. In this comparison, the VSS is computed through (5.2). 

 

VSS =  Minimal cost without uncertainty zD,∗ − Minimal cost under uncertainty z∗ (5.2) 

 

In the deterministic problem instance, the uncertain parameters are substituted by their expectation 

using the following method: For consumer demands and the outputs of wind and solar generation 

technologies, a single average profile is created from those generated in each scenario. The single 

profiles are then used as input for the deterministic model. Additionally, the expectation in technology 

availability is that no failures occur; hence, no downtime is included. An example of the input profiles 

for consumer demands and renewable generator outputs generated in different scenarios and their 

aggregated average profiles are included in Appendix C: Scenarios and Average Input Profiles. 

In the experiment, one week is sampled from each season and 12 scenarios are generated. For the 

deterministic model, this means that single average input profiles are based on 12 scenarios as well. For 

the stochastic model, the model is solved as normal, sampling one random week for each season 

between the different scenarios. Only the investment year is considered; hence, technological 

degradation is not included, and the potential risk of overinvesting in technological capacities in the 

stochastic model is mitigated. As the observed value of the stochastic solution is highly dependent on 

the specific penalty value set in the model, a set of penalty variations is set in the model, and the effects 

of the penalty value on the observed VSS are examined. The following set of penalties is used: 

P (€/kWh) ∈ {25, 50, 75, 150, 250, 500, 750, 1000, 1250, 1500, 1750, 2000} 

 

In the previous experiment, it was observed how for large problem instances, the concurrent solver 

setting with dynamic algorithm selection led to the barrier algorithm finding the optimised result in all 

instances. For the deterministic problem solved in this experiment, however, it is noted that the dual 

simplex method solves the model most efficiently. Therefore, the optimisation is set to utilise the latter 

algorithm to solve the stochastic problem as well, such that the same solving method is used for all 

instances. Furthermore, the model is solved 10 times for each instance, and the results are averaged 

over all runs to find the average VSS for each penalty variation over all runs. 

 

5.4.2 Experiment Results 

Several observations are made about the results from the deterministic and stochastic model solutions. 

First, it is noted that in the deterministic model, no more shortages occur during the operation of the 

energy hub in case a penalty of 500€/kWh or higher is set. At this penalty value, as well as any of the 

higher tested variations, the objective value of the model also does not change anymore, and the 

capacities of the installed assets remain the same.  

In the evaluation of the strategic capacity decisions resulting from the deterministic model, however, 

shortages do occur for each of the configuration variants when the operation is optimised under 

uncertainty. Because the capacities do not change anymore after a certain point, and the penalty is set 

to even higher values, the resulting objective values also increase significantly. I.e., while in principle, 
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the operational performance in terms of energy supply reliability is the same as equal capacities are 

used, the objective function increases because the penalty incurred for each shortage is higher. 

In the original stochastic model, no more shortages are observed in case a shortage penalty of 

1750€/kWh is set in the model. Again, at this penalty value and any penalty value larger than this, the 

strategic capacity decisions do not change anymore, and the resulting objective value is the same. 

The results from each tested penalty variation are visualised in Figure 11. It is evident that the higher 

the penalty for shortages is set, the larger the VSS becomes. At the lowest penalty, the difference 

between the objective values of the deterministic solution under uncertainty compared to the optimal 

stochastic solution is minimal, hence a small VSS and an approximate 1% improvement is observed. 

As the penalty is increased, the VSS and the improvement percentages increase as well. A breakdown 

of the observed costs and computation of the VSS values for each penalty setting is included in 

Appendix D: VSS Results. 

 

 

Figure 11: VSS and % improvement between deterministic and stochastic solutions 

 

The results show that the VSS is highly dependent on the specific value of the shortage penalty. As 

evident from the results, the total penalty incurred in the evaluation of the deterministic results is a 

substantial part of the total costs. Generally, it is expected that the higher the penalty is set, the more 

strategic investments are made to increase the energy supply capacity in the hub to reduce energy 

shortages.  

It is concluded that the difference between deterministic and stochastic optimisation is significant and 

that using a scenario-based approach leads to a more robust solution for energy hub design. Without 

accounting for uncertainties, the installed technology capacities are insufficient to ensure energy supply 

reliability once uncertainty is adequately incorporated within optimisation. However, the influence of 

the shortage penalty on the observed improvements in the model objective should not be ignored. This 

specific trade-off between investment costs and energy supply reliability is analysed in a different 

experiment, from which the results are presented in Section 5.5. 
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5.5 Energy Hub Cost/Reliability Trade-Offs 

5.5.1 Experiment Setup 

In this experiment, the investment cost/reliability trade-offs in energy hub design are analysed. By 

varying the penalty for energy shortages that is included in the objective function of the model, the 

effects of strategic investment decisions on improvements in energy supply reliability are analysed, and 

the solution space for the trade-offs is explored. The solution space is visualised by creating a Pareto-

front between investment costs and the expected total penalty cost that is incurred during the energy 

hub’s operation. Generally, the KPIs are expected to improve as fewer shortages occur, leading to lower 

total expected penalty costs. In addition to the exploration of the solution space for possible investments, 

the evolution of the consumer-level KPIs is analysed in the experiment. 

The penalty is increased iteratively in each run of the model. For each penalty variation, the 

accompanying strategic investment costs are determined, and the improvements in the KPIs are 

analysed. The investment year is considered in the experiment. One week is sampled from each season, 

and 12 scenarios are included in the optimisation. The solver is set to utilise the barrier algorithm and 

to use the same instance of the model for all tested penalties, such that the results can be compared. The 

following set of penalties P is used in the experiment, which is incurred in €/kWh shortage: 

P(€/kWh) ∈ {0,25,50,75,100,150,200,250,500,750,1000,1250,1500,1750,2000,2500} 

 

5.5.2 Experiment Results 

Figure 12 presents the set solutions found using the stated penalty variations. The dominated solutions 

and Pareto-front of the best results are indicated. It is noted that the instance in which no penalty is 

incurred for shortages is omitted from this plot. Logically, if there is no penalty for energy shortages, 

the model chooses to supply all demand through emergency generation. The Pareto-front provides 

insight into the specific trade-offs between making investments and the expected penalty for the 

analysed energy hub. In the decision-making process for the design of energy hubs, engineers can select 

a solution from the Pareto front based on their preference for the risks in energy supply and available 

budget for investments. 

It is observed that the total investments increase quickly as a higher penalty is set, without improving 

the expected total incurred penalty significantly. As the total investment cost reaches approximately 

€150,000, the reduction in expected penalty becomes more significant, while the increase in total 

investment cost diminishes. In case the penalty is set at 1,750 €/kWh or higher, no more shortages are 

observed, and hence, no penalty is incurred.  

For these high penalty values, although slight variations are observed between the specific capacities 

included in the hub, the total investment costs do not increase anymore and the overall minimised 

objective values in these instances are equal as well. Here, the investments should suffice to ensure 

energy supply under the modelled operational uncertainties. The investment strategies for the solutions 

in the Pareto front indicated in Figure 12 are included in Appendix E: Cost/Reliability Trade-Offs. 

If the development of energy hubs prioritises minimising the expected penalty and a larger budget is 

available, a solution towards the higher investment end of the Pareto-front may be chosen. On the 

contrary, if the budget is limited, a solution with lower investment but higher acceptable risk might be 

selected. In principle, such decisions regarding the possible investment strategies for the energy hub 

vary between each project, and the Pareto-front of optimal solutions might have different characteristics 

as different consumers or assets are included. 
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Figure 12: Energy hub cost/reliability trade-offs 

 

In addition to the most efficient trade-offs between investment cost and energy supply reliability, the 

consumer-level performance indicators are analysed for each variation of the penalty. To recall, the 

expected unsupplied energy, the loss of load expectation, and the adequacy of supply are included in 

the optimisation model. It is noted that in these results, all results from the tested penalty variations are 

included, and not only those of the most efficient solutions indicated in the Pareto-front. Additionally, 

the first observations in which no penalty is incurred are omitted from the plot for clearer visualisation. 

Logically, if there is no penalty and all energy is supplied through emergency generation, all energy is 

expected to be unsupplied, the loss of load probability is 100% as each operational period has a shortage, 

and the adequacy of supply indicates the average energy shortage quantity is the average of the demand 

of each consumer. 

Figure 13 presents the observed EENS values for each of the resulting investment strategies. Each 

consumer is included individually, as well as the KPI values for the collective of consumers in the hub. 

The EENS values for the collective are, as expected, observed to improve for each increase in the 

investments. This is not always the case for individual consumers. Here, it is noted that although the 

total expected unsupplied is reduced in the hub, this does not necessarily imply that the unsupplied 

energy at each consumer is reduced as well. The same holds for the observed values of the loss of load 

probability. For the additional investments, the LOLP decreased to some degree for the collective of 

consumers in the energy hub (Figure 14). Again, a collective decrease does not necessarily imply a 

reduction in the probability of a shortage for each individual consumer. Furthermore, the adequacy of 

supply shows similar characteristics. While this indicator is not explicitly considered for the collective 

of consumers, again the performance generally improves as more investments are made (Figure 15).  

In all cases, the most significant supply issues are observed for consumer 1, this being the consumer 

with the highest demand. While the improvements in energy supply reliability are the largest as more 

investments are made, it requires significant increases in the total investment before a complete energy 

supply is ensured for this consumer. Especially a substantial battery capacity that is included in the hub 

at those higher investment strategies is observed to effectively address the remaining shortages at 

consumer 1. 
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Figure 13: Observed EENS values for all cost/reliability trade-offs 

 

Figure 14: Observed LOLP values for all cost/reliability trade-offs 

 

Figure 15: Observed AS values for all cost/reliability trade-offs 
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5.6 The Impact of Technological Degradation 

5.6.1 Experiment Setup 

In the previous experiments, only the investment year was considered for the optimisation of the energy 

hub. While these experiments did incorporate asset failures causing uncertain downtime of renewable 

energy generation within the optimisation of capacities and their operation, the effects of technological 

degradation have not yet been addressed. Generally, one would expect that the energy supply reliability 

decreases as the technological degradation increases. However, the extent to which the technological 

degradation affects the energy supply in the hub is unknown. Furthermore, as with larger penalties more 

investments are made in the investment year, it can be the case that the effects are not significantly 

severe, as a surplus in capacity is available from the start of the planning horizon. 

Several configurations have been found in the Pareto-front that pose the most efficient solutions 

regarding investment costs and reliability (Table 10). This experiment examines how these 

configurations perform if technological degradation affects the available capacity to supply energy in a 

multi-year planning horizon. These configurations are set as fixed input in the model, such that only 

operation is optimised. A long-term planning horizon of 25 years is considered: Equal to the expected 

lifetimes of wind turbines and PV systems. The solver is set to utilise the dual simplex algorithm to 

optimise all model instances. The operational planning includes the sampling of five years, for which 

one week is sampled from each season, and 12 scenarios are generated. I.e., twenty weeks are optimised 

over 12 scenarios.  

First, the operation is optimised for this five-year planning without incorporating degradation. The 

baseline performance of the configurations without degradation is hence known. Next, years 5, 10, 15, 

20, and 25 are included and for each of these years, the accompanying degradation factors are applied 

to the generator outputs. The degradation factor restricts outputs from renewable energy generators to 

a certain percentage of the original output. In the investment year, 100% of the capacity is available, 

and this percentage decreases in each following year. Figure 16 visualises this process, showing wind 

turbines' higher degradation compared to that of PV systems. The plots for the expected outputs of 

wind- and solar energy generators are included in Appendix H: Generator Output Degradation. The 

operation is optimised for each configuration variant, and the supply performance is tracked under 

technological degradation. The KPI values from the non-degraded and degraded operational 

optimisation results are compared, and the decrease in energy supply reliability can be analysed for each 

tested configuration accordingly. 

 

 Config. 1 Config. 2 Config. 3 Config. 4 Config. 5 

Penalty [€/kWh] 25 250 500 750 1750 

CAPEX [€] 67,896 154,060 165,460 184,233 195,326 

Capacities  

Wind at Hub [kW] 1.46 2.05 1.73 1.73 1.30 

PV at Hub [kW] 0.00 1.05 0.76 0.57 0.51 

Battery at 1 [kWh] 0.09 7.39 11.53 16.64 6.78 

Battery at 5 [kWh] 0.00 0.05 0.06 0.14 0.32 

Battery at Hub [kWh] 0.17 0.36 2.33 1.80 17.27 
 

Table 10: Optimal configurations set as inputs in the model 
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Figure 16: Technological degradation for renewable energy generators 

 

5.6.2 Experiment Results 

As expected, the energy supply reliability worsens as more technological degradation is applied to the 

generator outputs. While not every consumer in each configuration variant experiences a decrease in 

their energy supply reliability, the collective performance for all consumers worsens in each instance. 

Especially at consumer 1, the effects are visible (Figure 17). Although shortages already occurred during 

operation without applying degradation, a substantial worsening in the KPIs is observed when 

degradation is included. 

Looking at the tested configuration variants, the larger battery capacity included in the hub appears to 

mitigate the effects of technological degradation in those specific configurations the best. This is logical, 

as no degradation of the battery capacity is included in the model. So also in later years, the battery can 

still supply the same amount of energy, covering the decrease in production. On the contrary, the supply 

reliability worsens substantially in configuration variant 2, as most investments are made for wind- and 

solar energy capacity for the additional energy supply. Nevertheless, although the effects of 

technological degradation are visible in the results, the KPI values are quite small, especially for 

consumers with less energy demand. The foremost supply issues occur at consumer 1, where most 

energy is consumed. The full set of results with KPI values for all consumers is included in Appendix 

I: KPI Values Under Technological Degradation. 

 

  

Figure 17: EENS and LOLP at Consumer 1 for each configuration variant 
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5.7 Conclusions 

In Chapter 5, a time sampling strategy was developed and implemented in the stochastic optimisation 

model, the numerical inputs for the model were defined, and the modelling approaches for the 

uncertainties were explained. Several experiments were performed to test the model, examine the 

significance of stochastic optimisation compared to deterministic optimisation, analyse the investment 

cost/reliability trade-offs, and assess the effects of technological degradation on the energy supply 

reliability in a multi-year planning horizon. 

A random sampling strategy was applied to create ordered and sequential operational planning horizons 

which were used as inputs in the optimisation model. The main goal of this approach was to limit the 

quantity of data to decrease computational time. Secondly, it allowed for flexibility by varying the 

number of operational periods that were sampled. A disadvantage of random sampling is that it is 

uncertain whether the sampled time series is representative of the full dataset, which affects the results 

of the model. It was therefore decided that in all cases, a specified number of weeks is sampled from 

each season to ensure seasonality is represented within model inputs. As there was limited data available 

for parameter tuning, several assumptions were made concerning the fixed parameters used in the 

model. The input data was sourced from various studies to define realistic inputs as much as possible. 

In this process, a hypothetical test case for the energy hub project in terms of consumers and their 

demands, the technical capabilities of assets, with the limitations of the power grid was defined. This 

test case was used for all the conducted experiments. 

In the first experiment, variations of the time sampling and scenario generation inputs were used to test 

the limits of the optimisation model and to identify a suitable approach for further experimentation. It 

was observed that the solving time significantly increases as more scenarios are included. Hence, it was 

not feasible to incorporate very large instances of the model in the experimentation. In all cases, 

however, the solver managed to find an optimal solution. 

In the second experiment, the value of the stochastic solution was determined. For this, the deterministic 

problem was solved by replacing all uncertainties with their expectation. All scenario-generated input 

parameters were aggregated to create a single average profile, and all other non-parametric uncertainties 

were excluded from the model. The resulting energy hub configurations from this instance were 

evaluated under uncertainty and compared to the original stochastic model solutions. The first-stage 

strategic capacity decisions from the deterministic model were observed to be insufficient to ensure 

high supply reliability under uncertainty. This led to a high penalty cost, consequently resulting in a 

high objective value. Because of this, the computed VSS becomes increasingly higher as the penalty 

cost is increased. 

The third experiment explored the trade-offs between making investments and improving energy supply 

reliability by iteratively adjusting the penalty value. A Pareto-front was created, showing the most 

efficient cost/reliability trade-offs from all observations. The results indicate that initial investments still 

led to a significant number of energy shortages. However, as the penalty was increased, the reliability 

improved, and ultimately, a complete energy supply was observed. These insights help identify optimal 

configurations for energy hubs based on their specific reliability requirements and budget constraints. 

Furthermore, the performance indicators were analysed for each found solution. Most supply issues 

were observed for the consumer with the highest demand, and the largest capacity investments were 

required for this consumer to ensure energy supply. 

In the last experiment, the effects of technological degradation in multi-year planning horizons were 

analysed. It was found that, as expected, the energy supply worsens under technological degradation. 

However, while the effects are most severe for consumers with large demands and the overall supply 

performance worsens, the effects of degradation for consumers with less demand are not as certain. 
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6 Conclusions, Recommendations & Future Research 

6.1 Conclusions 

The research presented in this thesis aims to answer the following research question: How can Firan 

improve the robustness in optimal decision-making for the design of Energy Hubs, considering its 

energy supply reliability? To answer this question, several steps are taken in conducting this research, 

through which a stochastic optimisation model is developed and tested by performing several 

experiments. Using the knowledge from model development and the experiment results, the main 

research question can be answered, and the research problem can be solved.  

To recall, the research problem stated the limitations of the current optimisation process concerning 

lacking insight into uncertainties inherent to energy hub optimisation, and the potential benefits of 

taking into account the uncertainties posing a risk to energy supply reliability for the development of 

reliable energy hub designs. The implementation of a consumer-level analysis of the energy supply 

performance can provide project stakeholders with detailed knowledge and provide engineers with the 

opportunity to provide recommendations for potential investment strategies optimising reliability. 

The findings of the research show that optimisation under uncertainty is crucial. While the capacity 

investments are sufficient for a completely ensured energy supply for all consumers in a deterministic 

model instance, it is evident that these investments are insufficient for reliable energy supply in 

operational optimisation under uncertainty. To improve the robustness of decision-making for the design 

of energy hubs, incorporating the uncertainties affecting the energy supply processes in the energy hub 

is crucial.  

Additionally, it was observed that the energy supply reliability for the studied case does not significantly 

improve until a certain investment threshold is reached. After that point, larger improvements in 

reliability and the KPI values are observed. I.e., it was observed that a minimum budget is required 

before significant improvements in the energy supply reliability are observed. More importantly, 

however, is that by optimising the objective of the model for varying financial penalties for the 

occurrences of energy shortages, the costs/reliability trade-off can be explored, to identify which 

solutions are most optimal for a certain budget or reliability constraint. Alternatively, the minimum 

budget can be determined for which a complete energy supply for all consumers is guaranteed.  

 

6.2 Recommendations 

Based on the conclusions drawn from the findings of this research, several recommendations are made 

to improve the robustness of decision making in the design process for energy hubs. By implementing 

these recommendations, Firan can optimize the reliability of energy hubs accounting for operational 

uncertainties while effectively balancing cost considerations and stakeholder requirements. 

▪ A stochastic approach in which the energy hubs are optimised under uncertainty accounting for 

different scenarios is fundamental in decision-making. This includes implementing multiple 

uncertainty sources, such as consumer demand profile variations and peak loads, renewable 

energy generator outputs, and technological uncertainties. By doing so, Firan can develop 

reliable energy hub designs in which the uncertainties are accounted for and mitigation 

strategies for the uncertainties posing a risk to the energy supply can be identified. 

▪ The implemented model objective minimising costs and maximising energy supply reliability 

can be used in development projects to generate varying investment strategies along the optimal 

Pareto-front. In consultation with stakeholders and given their requirements, reliability can be 

maximised within budget constraints, or the required budget for achieving a minimum 

reliability threshold can be found. Firan can assess the trade-offs between investment costs and 
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supply improvements and communicate these insights with relevant stakeholders. This 

approach ensures informed decision-making by identifying optimal investment strategies that 

align with stakeholders' priorities and financial constraints. 

▪ Consumer-level reliability KPIs can be leveraged to provide stakeholders with elaborate 

insights into the performance of the energy hub. By analysing KPIs at the consumer level, Firan 

can offer a detailed understanding of how collective or individual investments impact energy 

supply reliability. Having specific knowledge about the effects of any investment change or 

uncertain event on the energy hub at the consumer level enables the design of tailored solutions 

to ensure reliability for all stakeholders, ultimately improving overall performance. 

▪ By analysing the effects of uncertainties such as asset unavailability and technological 

degradation in the operational and long-term planning horizons, supply issues and the severity 

of these issues are identified at the consumer level. Mitigation strategies to overcome the effects 

of these uncertainty can be developed accordingly. 

 

6.3 Contributions 

6.3.1 Theoretical Contributions 

The theoretical contribution of this study lies in the novelty of incorporating multiple elements relevant 

to energy hub design, operation, and reliability analysis into a single model. The literature review 

discussed in Chapter 3 provided extensive insights into current developments in research on energy 

hubs and their optimisation. Many studies consider building-specific, or contrarily, substantially larger 

neighbourhood- or city-wide energy hub scales. Research into industrial-level cases with multiple large 

energy consumers under strict power grid withdrawal capacity bounds is limited. This research aims to 

address this increasingly more important aspect in the field of energy (hub) modelling. 

The developed model combines several elements regarding the design and operation of energy hubs, as 

well as their energy supply reliability. Although each aspect is inherent to energy hubs and their 

optimisation, they are commonly specific focus areas of the research available in the literature. This 

study implements both strategic- and operational decision-making under uncertainty, utilising an 

objective function through which cost/reliability trade-offs can be examined as a core feature of the 

optimisation, with the implementation of relevant consumer-level KPIs in a single modelling approach.  

Furthermore, most studies combining strategic and operational optimisation for energy hubs within a 

single model, an hourly granularity is included for the operational decision-making process. In this 

research, it was aimed to achieve the most accurate results for the strategic technological capacity 

decisions by optimising these based on a 15-minute granularity. 

 

6.3.2 Practical Contributions 

The project's practical contributions to the company lie within the concepts developed within the 

modelling approach and the recommendations that can be made based on the findings of the research.  

Implementing exploration of the cost/reliability trade-offs in the design process at Firan provides 

essential insight into the impact of strategic investments on energy supply reliability, by defining 

varying investment strategies along the optimal solution space. Stakeholder budget limitations or 

reliability requirements can be considered, and the optimal configuration according to these constraints 

can be determined. Furthermore, consumer-level performance indicators can be incorporated into 

business-client communication to provide detailed insights into the effects of investments on supply 

performance at each location and to develop tailored strategies to optimise energy supply performance. 
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6.4 Limitations & Future Research 

In this section, the limitations of the research are acknowledged, and opportunities for future research 

are identified. 

First, the limitations in the research scope are considered. Real-word energy hubs and those studied in 

the literature commonly consider multi-energy systems, including heat, gas, and hydrogen, with related 

assets such as combined heat and power systems and electrolysers. This was not included in the 

research. The concepts studied in this project can be further developed and tested for multi-energy 

systems to incorporate the uncertainties related to these additional elements and to analyse the energy 

supply reliability for each consumer and each energy carrier.  

A second limitation of this research is the scarcity of historical data and values for parameter tuning, 

for which considerable assumptions were made. Although the used input profiles are equal to those used 

in the validation of the EHC, other parameters are based on approximations found in varying sources 

to create a realistic case, but one not precisely true to a real-world instance for testing. An opportunity 

for improvement is to test and validate the model based on real data. 

Furthermore, the current model formulation considers a two-stage approach to reduce its complexity 

and improve the tractability of decision-making. In real-world cases, however, energy hub development 

projects are often considered a multi-stage strategic decision problem, with the opportunity to invest at 

later stages to include additional assets or capacity expansions. In most experiments, only the 

investment year is included in operational optimisation to mitigate the effects of capacity 

overinvestments. A suitable extension of the model is to include multi-stage strategic decisions to 

optimise long-term investment schemes for the entire planning horizon including specific technology 

lifetimes. 

While the project has developed relevant concepts for reliability-based energy hub optimisation and 

analysis, the limitations are acknowledged, although several of these limitations stem from 

opportunities considered outside the scope of this research. Opportunities for future research are 

extensive, including expanding the model to encompass multi-energy systems, refining parameter 

values based on real-world data, and including multi-stage strategic investment decisions. 
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A: Optimisation Model Formulation 

Sets   Description    Indices 

C   Set of energy consumers  c ∈ C, hub ∈ C 

T   Set of technologies    t ∈ T 

Tg ⊆ T   Subset of generators   tg ∈ Tg  

Tb ⊆ T   Subset of batteries   tb ∈ Tb  

Y   Set of strategic-level periods  y ∈ Y 

H   Set of operational-level periods  h ∈ H 

S   Set of scenarios    s ∈ S 

Parameters   

Dc
y,h,s

   Energy demand for consumer c, at time y, h in scenario s [kWh] 

Ptg

y,h,s
   Output profile of a generator at time y, h in scenario s [kWh] 

DFtg

y,s
   Technology degradation factor in each year in scenario s [%] 

FPtg

y,h
   Renewable energy generator failure probability [%] 

DTtg

s    Downtime of failed generator assets in scenario s (in short-term periods) 

PRs   Probability of scenario s [%] 

WC   Power-grid energy withdrawal cost [€/kWh] 

IP   Power-grid energy injection profit [€/kWh]  

ICt   Technology investment cost [€]  

MCt   Technology maintenance cost [€/Year] 

OCt   Technology operation cost [€/Year] 

WCap   Collective power grid withdrawal capacity [kW] 

ICap   Collective power grid injection capacity [kW] 

MaxWc   Maximum withdrawal limit for consumer c [kW] 

MaxIc   Maximum injection limit for consumer c [kW] 

MaxTcfrom,cto
  Maximum energy that can be transferred between locations [kW] 

SLtb
   Fraction of storage lower limit [kWh] 

SUtb
   Fraction of storage upper limit [kWh] 

SCtb
   Battery charging efficiency [%] 
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SDtb
   Battery discharging efficiency [%] 

SXtb
   Maximum battery charge rate [-] 

SYtb
   Maximum battery discharge rate [-] 

P   Penalty cost for shortages in meeting energy demands [€/kWh] 

DR   Discount rate 

AF   Annualization factor 

Variables   

GCtg,c   Capacity of an energy generator installed at c [kW] 

BCtb,c   Capacity of a battery installed at c [kWh] 

Otg,c
y,h,s

   Generator output at c, at time y, h in scenario s [kWh] 

CTtg,c
y,h,s

   Generator curtailment at c, at time y, h in scenario s [kWh] 

Tcfrom,cto

y,h,s
  Transfer of energy at time y, h in scenario s [kWh] 

Wc
y,h,s

   Energy withdrawal by c, at time y, h in scenario s [kWh] 

Ic
y,h,s

   Energy injection by c, at time y, h in scenario s [kWh] 

Ec
y,h,s

   Emergency generation at c, at time y, h in scenario s [kWh] 

Ctb,c
y,h,s

   Charging of a battery at c, at time y, h in scenario s [kWh] 

Dtb,c
y,h,s

   Discharging of a battery at c, at time y, h in scenario s [kWh] 

SOCtb,c
y,h,s

  State of charge of a battery at c, at time y, h in scenario s [kWh] 

CStb,c
y,h,s

∈ {0, 1}  Charge state indicator at c, at time y, h in scenario s  

DStb,c
y,h,s

∈ {0, 1}  Discharge state indicator at c, at time y, h in scenario s 

 

Objective function 

Minimize ∑(1 + DR)−y ∗

y

(∑ ∑ ICtg,c ∗ GCtg,c

c

+ ∑ ∑ ICtb,c ∗ BCtb,c

ctbtg

+ ∑ ∑ MCtg
∗ GCtg,c + OCtg

∗ GCtg,c

ctg

+ ∑ ∑ OCtb,c ∗ BCtb,c

c

 

tb

+ E[Ann. Op. ]) 

E[Ann. Op. ] = ∑ PRs ∗ (AF ∗ ∑ ∑ Wc
y,h,s

∗ WC − Ic
y,h,s

∗ IP

chs

+  Ec
y,h,s

∗ P) 



59 

 

Constraints 

 

∑ Otg,c
y,h,s

tg

+ Dtb,c
y,h,s

− Ctb,c
y,h,s

+ Wc
y,h,s

− Ic
y,h,s

+ Thub,c
y,h,s

+ Ec
y,h,s

= Dc
y,h,s

 ∀ y ∈ Y,  h ∈ H,  s ∈ S,  c ∈ C 

∑ Otg,hub
y,h,s

tg

+ Dtb,hub
y,h,s

− Ctb,hub
y,h,s

− Ihub
y,h,s

= ∑ Thub,cto

y,h,s

cto≠hub 

∀ y ∈ Y,  h ∈ H,  s ∈ S 

Otg,c
y,h,s

= {
Ptg,c

y,h,s
∗ GCtg,c ∗ DFtg

y,s
− CTtg,c

y,h,s
  when operational

0 if failed, for duration DTtg

s  
∀ y ∈ Y,  h ∈ H,  s ∈ S,  tg ∈ Tg,  c ∈ C 

SOCtb,c
0,0,s = SLtb,c ∗ BCtb,c  ∀ s ∈ S,  tb ∈ Tb, c ∈ C 

SOCtb,c
y,h+1,s

= SOCtb,c
y,h,s

+ SCtb
∗ Ctb,c

y,h,s
− SDtb

∗ Dtb,c
y,h,s

  ∀ y ∈ Y,  h ∈ H,  s ∈ S,  tb ∈ Tb, c ∈ C 

SOCtb,c
y+1,0,s

= SOCtb,c
y,max(H),s

+ SCtb
∗ Ctb,c

y,max(H),s
− SDtb

∗ Dtb,c
y,max(H),s

 ∀ y ∈ Y,  s ∈ S,  tb ∈ Tb, c ∈ C 

SLtb,c ∗ BCtb,c ≤ SOCtb,c
y,h,s

≤ BCtb,c ∗ SUtb,c  ∀ y ∈ Y,  h ∈ H,  s ∈ S,  tb ∈ Tb, c ∈ C 

Ctb,c
y,h,s

≤ SXtb
∗ CStb,c

y,h,s
  ∀ y ∈ Y,  h ∈ H,  s ∈ S,  tb ∈ Tb, c ∈ C 

Dtb,c
y,h,s

≤ SYtb
∗ DStb,c

y,h,s
  ∀ y ∈ Y,  h ∈ H,  s ∈ S,  tb ∈ Tb, c ∈ C 

CStb,c
y,h,s

+ DStb,c
y,h,s

= 1  ∀ y ∈ Y,  h ∈ H,  s ∈ S,  tb ∈ Tb, c ∈ C 

∑ Thub,cto

y,h,s

cto≠hub

≤ MaxThub,cto

y,h,s
 ∀ y ∈ Y,  h ∈ H,  s ∈ S 

∑ Tcfrom,hub
y,h,s

cfrom≠hub

= 0 ∀ y ∈ Y,  h ∈ H,  s ∈ S 

∑ Wc
y,h,s

c≠hub

≤ WCap ∀ y ∈ Y,  h ∈ H,  s ∈ S 

∑ Ic
y,h,s

c

≤ ICap ∀ y ∈ Y,  h ∈ H,  s ∈ S 

Wc
y,h,s

≤ MaxWc ∀ y ∈ Y, h ∈ H,  s ∈ S, c ∈ C,  c ≠ hub 

Ic
y,h,s

≤ MaxIc ∀ y ∈ Y,  h ∈ H,  s ∈ S,  c ∈ C 

GCtg,c ≥ 0 ∀ tg ∈ Tg, c ∈ C 

SCtb,c ≥ 0 ∀ tb ∈ Tb, c ∈ C 

CStb,c
y,h,s

,  DStb,c
y,h,s

∈ {0,1}  ∀  tb ∈ Tb,  y ∈ Y,  h ∈ H,  s ∈ S,  c ∈ C 

All other variables ≥ 0
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B: Observed Model Solving Times 

  Years, Total Weeks, No. of Scenarios 

 1,4,1 1,4,5 1,4,8 1,4,10 1,4,12 1,4,15 1,4,20 1,8,1 1,8,5 1,8,10 1,8,15 1,8,20 

Objective Values €513,552 €495,205 €475,896 €506,876 €475,841 €485,295 €477,338 €430,776 €505,592 €483,759 €516,142 €487,997 

Solving Times:             

Seconds 5.46 78.43 166.39 197.58 322.85 510.60 1138.88 17.85 291.02 1161.95 2699.39 4709.24 

Minutes 0.091 1.31 2.77 3.29 5.38 8.51 18.98 0.29 4.85 19.37 44.99 78.49 

CAPEX €230,572 €201,307 €194,431 €198,785 €182,280 €177,587 €172,807 €177,041 €216,434 €183,396 €204,500 €181,348 

OPEX €282,980 €293,898 €281,465 €308,091 €293,561 €307,708 €304,531 €253,735 €289,158 €300,363 €311,642 €306,649 

Investments             

Wind at Hub [kW] 0.47 0.61 0.94 1.07 1.67 1.51 1.50 1.35 0.58 1.17 0.91 1.41 

PV at 1 [kW] 0 0 0 0 0.27 0 0 0.0077 1.21 0.20 0 0.98 

PV at 2 [kW] 0 0 0 0 0 0 0 0 0 0 0 0 

PV at 3 [kW] 0 0 0 0 0 0 0 0 0 0 0 0 

PV at 4 [kW] 0 0 0 0 0 0 0 0 0 0 0 0 

PV at 5 [kW] 0 0 0 0 0 0 0 0 0 0 0 0 

PV at Hub [kW] 0 0.015 0.41 0.49 0.42 0.61 0.63 1.00 0 0.41 0.72 0 

Battery at 1 [kWh] 24.88 13.76 20.43 26.76 5.92 17.36 16.72 6.77 24.00 9.20 21.74 16.65 

Battery at 2 [kWh] 0 0 0 0 0 0 0 0 0 0 0 0 

Battery at 3 [kWh] 0 0 0 0 0 0 0 0 0 0 0 0 

Battery at 4 [kWh] 0 0 0 0 0 0 0 0 0 0 0 0 

Battery at 5 [kWh] 0 0 0.053 0.17 0 0.011 0.016 0.010 0 0.085 0.051 0.0035 

Battery at Hub [kWh] 15.33 19.41 6.82 0 12.17 1.42 1.70 11.03 6.48 13.20 6.29 1.75 
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C: Scenarios and Average Input Profiles 
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D: VSS Results 

The tables below show a breakdown of the cost components and computed VSS values found in each of the tested penalty 

settings in the experiment explained in Section 5.4. 

 

Penalty [€/kWh] 25 50 75 150 250 500 

Deterministic evaluation under uncertainty 

Objective Value  353,239 385,509 413,348 490,674 561,262 747,866 

Grid Costs [€] 266,390 262,817 260,634 257,758 255,596 255,626 

Total Penalty [€] 42,352 69,631 94,457 167,838 232,778 415,492 

OPEX [€] 308,742 332,448 355,092 425,596 488,374 671,118 

CAPEX [€] 44,497 53,061 58,256 65,078 72,888 76,748 

Stochastic model solution 

Objective Value 350,309 371,530 385,101 410,171 423,841 446,459 

Grid Costs [€] 260,825 255,976 253,029 246,920 245,169 246,011 

Total Penalty [€] 28,515 33,212 34,920 36,305 27,697 38,975 

OPEX [€] 289,340 289,188 287,948 283,225 272,866 284,986 

CAPEX [€] 60,969 82,342 97,153 126,946 150,975 161,473 

VSS [€] 2,930 13,979 28,247 80,503 137,421 301,407 

% Improvement -0.83% -3.63% -6.83% -16.41% -24.48% -40.30% 

 

Penalty [€/kWh] 750 1000 1250 1500 1750 2000 

Deterministic evaluation under uncertainty 

Objective Value  957,656 1,162,820 1,370,430 1,578,040 1,785,650 1,993,260 

Grid Costs [€] 255,625 255,626 255,626 255,626 255,626 255,626 

Total Penalty [€] 625,283 830,442 1,038,059 1,245,663 1,453,274 1,660,885 

OPEX [€] 880,908 1,086,068 1,293,685 1,501,290 1,708,900 1,916,511 

CAPEX [€] 76,748 76,752 76,745 76,750 76,750 76,749 

Stochastic model solution 

Objective Value 461,757 472,024 479,290 486,177 488,514 488,514 

Grid Costs [€] 253,599 242,758 237,760 236,609 217,351 217,350 

Total Penalty [€] 34,145 29,453 34,656 41,047 0 0 

OPEX [€] 287,744 272,211 272,416 277,656 217,351 217,350 

CAPEX [€] 174,013 199,813 206,874 208,521 271,163 271,164 

VSS [€] 495,899 690,796 891,140 1,091,863 1,297,136 1,504,746 

% Improvement -51.78% -59.41% -65.03% -69.19% -72.64% -75.49% 
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E: Cost/Reliability Trade-Offs 

 

 

 

Pareto Front Solutions 

Penalty [€/kWh] 25 250 500 750 1750 2000 2500 

Obj. Val. [€] 353,452 425,422 442,069 447,710 456,499 456,499 456,499 

CAPEX [€] 67,896 154,060 165,460 184,233 195,326 195,326 195,326 

OPEX [€] 285,556 271,362 276,609 263,477 261,173 261,173 261,173 

Total Penalty [€] 25,555 24,165 23,257 9,525 0 0 0 

Investments:        

Wind at Hub [kW] 1.46 2.05 1.73 1.73 1.30 1.30 1.30 

PV at 1 [kW] 0.00 0.00 0.00 0.00 0.00 0.00 0.19 

PV at Hub [kW] 0.00 1.05 0.76 0.57 0.51 0.51 0.31 

Battery at 1 [kWh] 0.09 7.39 11.53 16.64 6.78 8.08 8.18 

Battery at 2 [kWh] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Battery at 3 [kWh] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Battery at 4 [kWh] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Battery at 5 [kWh] 0.00 0.05 0.06 0.14 0.32 0.32 0.32 

Battery at Hub 
[kWh] 

0.17 0.36 2.33 1.80 17.27 15.98 15.87 
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F: Cost/Reliability Trade-Offs; Investment Decisions 

Penalty setting 0 25 50 75 100 150 200 250 500 

Investments          

Wind at Hub 0.00 1.46 1.73 1.95 1.99 2.05 2.05 2.05 1.73 

PV at 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

PV at 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

PV at 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

PV at 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

PV at 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

PV at Hub 0.00 0.00 0.10 0.26 0.36 0.59 0.61 1.05 0.76 

Battery at 1 0.00 0.09 0.97 2.59 2.91 5.25 6.73 7.39 11.53 

Battery at 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Battery at 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Battery at 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Battery at 5 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.05 0.06 

Battery at Hub 0.00 0.17 0.15 0.15 0.21 1.07 0.90 0.36 2.33 

CAPEX [€] 0.00 67,896 85,080 105,356 111,084 135,345 142,318 154,060 165,460 

OPEX [€] n/a 285,556 288,507 281,510 285,175 275,620 276,708 271,362 276,609 

          

Penalty setting 750 1000 1250 1500 1750 2000 2500   

Investments          

Wind at Hub 1.73 1.73 1.73 1.54 1.30 1.30 1.30   

PV at 1 0.00 0.00 0.00 0.00 0.00 0.00 0.19   

PV at 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00   

PV at 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00   

PV at 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00   

PV at 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00   

PV at Hub 0.57 0.56 0.56 0.55 0.51 0.51 0.31   

Battery at 1 16.64 15.65 15.99 16.29 6.78 8.08 8.18   

Battery at 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00   

Battery at 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00   

Battery at 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00   

Battery at 5 0.14 0.32 0.32 0.32 0.32 0.32 0.32   

Battery at Hub 1.80 3.18 2.84 4.34 17.27 15.98 15.87   

CAPEX [€] 184,233 186,601 186,602 188,132 195,326 195,326 195,326   

OPEX [€] 263,477 264,076 266,593 267,402 261,173 261,173 261,173   
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G: Cost/Reliability Trade-Offs; KPI Values 

Penalty 0 25 50 75 100 150 200 250 500 

KPI          

EENS1 114.02% 0.18% 0.12% 0.08% 0.06% 0.03% 0.03% 0.02% 0.01% 

EENS2 184.06% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

EENS3 225.40% 0.01% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

EENS4 167.41% 0.01% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

EENS5 134.45% 0.05% 0.02% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 

LOLP1 100.00% 2.90% 1.83% 1.06% 0.92% 0.48% 0.43% 0.31% 0.13% 

LOLP2 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

LOLP3 100.00% 0.11% 0.10% 0.03% 0.04% 0.02% 0.04% 0.07% 0.03% 

LOLP4 100.00% 0.25% 0.13% 0.07% 0.04% 0.01% 0.00% 0.00% 0.00% 

LOLP5 100.00% 0.94% 0.52% 0.13% 0.23% 0.13% 0.09% 0.06% 0.04% 

AS1 [kW] 65.0844 0.1037 0.0692 0.0443 0.0368 0.0192 0.0152 0.0102 0.0049 

AS2 [kW] 17.5216 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AS3 [kW] 14.3838 0.0010 0.0006 0.0001 0.0002 0.0000 0.0001 0.0003 0.0001 

AS4 [kW] 19.8727 0.0015 0.0008 0.0006 0.0003 0.0001 0.0000 0.0000 0.0000 

AS5 [kW] 31.2328 0.0105 0.0053 0.0011 0.0025 0.0013 0.0007 0.0006 0.0003 

          

Penalty 750 1000 1250 1500 1750 2000 2500   

KPI          

EENS1 < 0.00% < 0.00% < 0.00% < 0.00% 0.00% 0.00% 0.00%   

EENS2 < 0.00% < 0.00% < 0.00% < 0.00% 0.00% 0.00% 0.00%   

EENS3 < 0.00% < 0.00% < 0.00% < 0.00% 0.00% 0.00% 0.00%   

EENS4 < 0.00% < 0.00% < 0.00% < 0.00% 0.00% 0.00% 0.00%   

EENS5 < 0.00% < 0.00% < 0.00% < 0.00% 0.00% 0.00% 0.00%   

LOLP1 0.04% 0.03% 0.03% 0.02% 0.00% 0.00% 0.00%   

LOLP2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%   

LOLP3 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%   

LOLP4 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%   

LOLP5 0.01% 0.01% 0.01% 0.01% 0.00% 0.00% 0.00%   

AS1 [kW] 0.0013 0.0010 0.0010 0.0007 0.0000 0.0000 0.0000   

AS2 [kW] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000   

AS3 [kW] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000   

AS4 [kW] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000   

AS5 [kW] 0.0001 0.0002 0.0001 0.0001 0.0000 0.0000 0.0000   
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H: Generator Output Degradation 

The plots below show the expected renewable energy generation outputs per installed unit capacity for 

years 0, 5, 10, 15, 20, and 15 when technological degradation under uncertainty is applied. 
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I: KPI Values Under Technological Degradation 

 

 


