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ABSTRACT In radio astronomy, large radio telescopes use multiple fields of antennas around the Earth to
capture waveforms in the sky for astronomical measurement and imaging. The significance of the correlator
in the telescopes is to extract useful information from multiple pairs of antennas in one field and between
fields for a higher resolution of the imaging. Therefore, it usually tends to be computationally expensive due
to its quadratic growth relative to the number of pairs of antennas in a two-dimensional grid, the number
of bands, and frequency channels. The SKA correlator with more than one hundred thousand antennas
is predicted to consume in the Mega-Watts range. Assuming power demand grows in proportion to the
computational intensity, the power demand of the correlator will grow quadratically as well. Different
techniques were presented for optimizing the correlator performance in speed and area. Approximate
computing has been one of the techniques to reduce the power budget of high computational expenses. In
recent studies, a set of approximate multipliers was employed in the core of the correlators to investigate the
quality performance and the reduction of the power demand. A 19% power reduction was achieved by doing
so with Application Specific Integrated Circuit (ASIC). However, these types of approximate multipliers
are only optimal on ASIC technology and will lack performance on a Field Programmable Gate Array
(FPGA) device, due to their architectural differences. This paper presents a methodology for building a
correlator architecture from an algebraic description. A set of power Pareto-Optimal 8-bit input approximate
multipliers designed for ASIC and FPGA implementation are investigated for their performances concerning
the correlator’s output-quality for image processing, the number of LUTs savings, and power savings
improvement on an FPGA device. For SNR levels at the input (SNRin) of the correlators up to 30 dB, the
highest core dynamic power savings achieved by using the approximate multipliers in this paper is 26.56%
(see Table 8). However, as the number of antennas increases quadratically for correlation, this power savings
decay to 2.9%. For this approximate multiplier, an average of 4.2% number of LUT savings is achieved on
the FPGA.

INDEX TERMS Correlator, Approximate Computing, Approximate Multiplier, FPGA

I. INTRODUCTION

In Radio Telescopes, the correlator is a component used to
extract useful information from multiple pairs of antennas.
This extracted data is further processed by the subsequent
component to construct a visual image with a similar angular
resolution as an optical telescope [6]. As the pairs of antennas
increase, the correlator computational requirement increases
quadratically. Large radio telescopes cover large fields of
antennas and baselines to increase sensitivity and spatial
resolution. Such large radio telescopes are the Square Kilo-
metre Array (SKA) and Low-Frequency Array (LOFAR) [15]
[16] [20]. Taking into account the number of bands and the
frequency channels, the processing requirements of the cor-
relator will become approximately two orders of magnitude

greater than the rest of the processing stages in these types
of radio telescopes [21]. Assuming the power consumption
grows in proportion to the processing demands, the correlator
would always be the highest power-demanding component
for large radio telescopes. To quantify the amount, it is
predicted that the SKA correlator would have consumed
7.9MW if the same technology as the ALMA correlator had
been applied [13].

The core of cross-correlating an antenna pair is based
upon a complex multiply-accumulate (CMAC) operation
[13]. When the LOFAR was introduced, this operation was
performed on many-core processors such as the General Pur-
pose Processors (GPPs) and the Graphics Processing Units
(GPUs) [17]–[20]. However, the size and power profiles of
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these types of processors are dependent on the prediction of
Moore’s Law and Dennard Scaling [14]. Hence, no energy-
efficiency improvement would have been gained on the cor-
relator for large radio telescopes when newer GPPs or GPUs
are employed. Therefore, the CMAC operation has been
brought to the circuit-level, where Field Programmable Gate
Arrays (FPGAs) or Application Specific Integrated Circuits
(ASICs) are the prominent devices for the realization. At
this level, several techniques were proposed to improve the
speed of the correlator on an FPGA for large radio telescopes.
For instance, the Single-Instruction-Multiple-Data (SIMD)
technique [22]–[24] and the optimized algorithm of rearrang-
ing the CMAC operators from the triangular form matrix
structure [25]. The SIMD technique takes advantage of the
internal pre- and post-adders in the FPGA’s hardware multi-
plier, namely the Digital Signal Processing (DSP), to perform
the multiply-add-operation within one execution cycle. Thus,
compromising the speed of the CMAC to the latency of the
DSP block. The optimized algorithm achieves a speed-up of
4% for the expense of using 14% more of the DSP blocks
within a single execution cycle.

Recently, approximate computing has become a prospec-
tive technique for reducing the power demands of the corre-
lators on ASIC technology [1] [2]. Approximate computing
is a technique in digital circuit designs that exchanges the
exactness of computations for an improvement in power dis-
sipation, circuit area, and latency reduction [26]. In general,
they are useful in error-tolerant applications such as machine
learning, pattern recognition, and image processing. For the
radio astronomy correlators, the approximate computing ben-
efits of reducing power dissipation are constrained to the
input Signal-to-Noise ratio (SNRin) on the antenna array. The
simplified interferometry with a set of SNRin levels on a
single point source at the antenna array, different approxi-
mate multipliers display different levels of noise correlation
on three output-quality metrics of the correlator [1]. These
metrics are the Signal-to-Noise-Ratio (SNRdB), the Spurious-
Free-Dynamic-Range (SFDRdB) and the Root-Mean-Square
(RMSdB). The approximate multiplier with a normalized
absolute mean error of 1.57e-8 from [2] has shown a 19%
power dissipation reduction for all output-quality metrics up
to SNRin of 10dB, and with a higher normalized absolute
mean error, a 12% power reduction for SNRin of 30dB.
Several past works have illustrated that the approximate
computing principles and techniques developed for ASIC im-
plementation tend to offer dissimilar benefits when realized
on FPGA-based [29]–[32]. No information is presented in
the literature on applying approximate computing techniques
for FPGA devices on radio astronomy correlators to reduce
power dissipation.

Therefore, the research question of this paper is formu-
lated: "What is the most optimal (complex) multiplier for
energy-efficiency improvement on FPGA?" In this paper, the
prior work in investigating the feasibility of approximate
computing on the radio astronomy correlator model in [1]
is extended by realizing the model on an FPGA device.

The output-quality mapping and the hardware gains of the
implementation with different sets of approximate multipli-
ers for ASIC and FPGA implementation are investigated.
An overview of radio astronomy and interferometry, large
radio telescopes followed by a survey of on approximate
multipliers is presented in Section II. Section III presents
the preliminaries on defining area, latency, and power con-
sumption from an FPGA device. The methodology and the
circuit-level implementation of realizing the radio astronomy
correlator model are presented in Section IV and Section
V, respectively. The hardware, power, and output-quality
evaluation are presented in Section VI.

II. BACKGROUND
In this section, an overview of radio astronomy telescope
processing and correlator architecture is presented with a
literature review on techniques to optimize the correlator
architecture for energy-efficiency, latency, and hardware re-
source utilization.

A. RADIO ASTRONOMY AND INTERFEROMETRY
In radio astronomy, the electromagnetic radiations of the
celestial object are essential for a telescope instrument to
explore the universe. The radio waves with a long wavelength
(λ), that can penetrate the earth’s atmosphere with little
distortion, are of interest to radio astronomers. These radio
wavelengths (frequencies) range from 10 meters (30 MHz)
to 1 millimeter (300 GHz) [6]. In any optical instrument,
the angular resolution is used as the measuring factor to
distinguish two separate points with an angular distance for
producing the details of the image. The smaller the angular
resolution, the finer the detail of the image can be con-
structed. The angular resolution is derived by the wavelength
of observations divided by the size of the instrument. Since
radio telescopes operate with longer wavelengths compared
to optical telescopes, the physical size of the radio telescope
must be much larger to gain an equivalent angular reso-
lution. The interferometry technique was introduced in the
radio telescope to alleviate the antenna’s physical size for
higher angular resolution. Essentially, the technique uses a
2-dimensional grid of antennas, namely an antenna array, at
the receiver-end to synthesize an effective aperture of the
captured wavelength. The captured signal from one antenna
will be in- or out of phase with the separate antenna in the
interferometry plane, due to the differing path lengths from
the source. The antennas in the interferometry plane produce
interference fringes of the source in a similar way conducted
on an optical interferometer.

These interference fringes in radio telescopes are produced
by multiplying and time-averaging the captured wavelength
voltages from a pair of antennas. The circuity that performs
the latter is essentially the correlator [7]. Mathematically, the
response of the cross-correlation from one pair is described
as [9],

C(τ) =
1

T

∫ T

0

Vi(t)V
∗
j (t− τ) dt (1)
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where Vi and Vj are the waveforms at the correlator input
from antennas i and j, τ is the time by which the waveform
Vj is delayed with respect to the waveform Vi, the superscript
asterisk indicates the complex conjugate and T the integra-
tion length. For signal analysis, the captured waveforms on
the antennas are assumed to be independent and identically
distributed (i.i.d.) random variables, due to their long distance
from the celestial source. This causes the cross-correlation to
act as an auto-correlation operation. Maintaining τ to zero
or close to zero produces the maximum interference fringes
from the captured signal between a pair of antenna.

For an array of antennas, the two methods to control τ
are the phased array and the correlator array [10]. A phased
array is realized using analog instruments such as a voltage
combiner followed by a square-law detector to output the
total power of all the antennas. It also uses an adjustable
phased shifter on every antenna to control τ . By doing so the
beam-pattern of the antenna array is controllable to scan an
area of the sky. A more complex signal-combining network is
required to form many more beams. The scanned areas in the
sky are then further processed to form an image. On the other
hand, the correlator array responds to the whole field of the
individual antennas. Here, the measured cross-correlations
are combined e.g. a supercomputer or a many-core processor,
with appropriate phase variations to form different beam
patterns for scanning the sky. Therefore, the beam-forming
of the correlator array collects more data efficiently for image
processing compared to the phased array.

In image processing, the output of the correlator from the
set of antennas is considered to be in the visibility domain,
which has a uv-plane with a u-axis pointing to the east of
the earth and a v-axis to the north [8]. Measuring the cross-
correlation of a pair of antennas is assumed to be a two-
dimensional visibility component denoted as V(u, v) where
the distance between them is represented as a baseline [9].
Taking the two-dimensional Inverse Fourier Transformation
on the visibility components within the uv-plane produces the
two-dimensional intensity distribution, denoted as I(l,m),
which is the synthesis image of a field of the sky. The
higher the number of V(u, v) components is given in the uv-
plane, the higher the resolution of the synthesis image can be
constructed. On the contrary, the higher the power dissipation
becomes assuming that power grows in proportion to the
number of cross-correlation operations.

B. LARGE RADIO TELESCOPES
To quantify the magnitude of the power dissipation, the cor-
relator for large radio telescopes is constructed in triangular
form matrix structure for an arbitrary set of antenna arrays
across different continents around the Earth. For instance, the
SKA is split between two large radio telescopes, namely the
Australian Square Kilometre Array Pathfinder (ASKAP) and
the Karo Array telescope (MeerKAT), which are also known
as SKA1-Low and SKA1-Mid, respectively. The SKA1-
Low consists of 131072 dipole antennas, distributed in 512
stations, where each station is grouped into 256 antennas

with a baseline of 65 km and set to target signals at a
frequency range between 50 MHz to 350 MHz. The SKA1-
Mid is set to target a frequency range between 350 MHz to
15.3 GHz and contains 190 of 15m dishes, and 64 of 13.5m
dishes with baselines up to 150 km [16]. The processing
stage, which conducts the cross-correlation operation, within
the processing pipeline of the SKA1-Low has the highest
processing requirement with 1.51 peta operations per sec-
ond [15] [21]. Assuming power grows in proportion to the
number of operations, the SKA1-Low correlator stage will
always have a greater power consumption than the rest of the
processing stages. Applying approximate computing on the
SKA correlator with the same processing requirement may
gain a lower power dissipation for less accurate computation.
To investigate this, the modeling of the SKA is ignored and
the simplified interferometry in [1] is used since it is difficult
to model the SKA processing requirement and conduct power
measurement properly without a large number of antennas.
The simplified interferometry consists of a square plane of
antennas (A×A) with one reference antenna at the center
and A set to be an even number. All the antennas in the
antenna array are spaced 1

2 λ from each other. The reference
antenna is set as the origin relative to the rest of the antennas.
The cross-correlation of a single-pair antenna is a modular
operation on the signal received from the reference antenna
with every antenna in the antenna array A×A.

C. SURVEY ON APPROXIMATE MULTIPLIER
In this section, a survey of the existence of approximate
multipliers methodology for the simplified interferometry in
[1] is conducted.

The approximate multipliers are designed in such a way as
to construct approximate MAC (xMAC) accelerators, where
the multiplier’s output errors are constrained to a near-to-
zero mean profile so that the accumulator can cancel out
the produced errors. Gillani et. al [2] proposed the internal-
self-healing (ISH) methodology on the xMAC accelerators,
where a recursive multiplier (RM) structure is optimized
to an approximate RM (xRM) that can produce a near-to-
zero mean error profile for a given input distribution. The
internal streams of errors in xMAC are an additive inverse
of each other so that the overall mean error approaches zero.
Appendix A elaborates on the construction of the xRM using
the RM structure as a base.

Even though an improvement is achievable regarding
power reduction and reduction in area, these xRMs may not
gain the same performance improvement when deployed on
FPGA, due to the architectural differences between FPGA
and ASIC. Any approximate circuit design for an FPGA
device must consider the FPGA internal core structure to gain
the approximate computing technique benefits, e.i. the reduc-
tion of power demand, latency or on number of hardware
resource usage [27]–[32]. For this reason, studies have been
conducted on designing approximate multipliers for FPGA-
based. Appendix B gives a summary of the core structure of
Xilinx’s FPGA and Intel’s FPGA.
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In SMApproxLib [27] and [28], the proposed approximate
multipliers are essentially a reduced version of hardware
usage from their distinct 4-bit multipliers base architecture.
Both base architectures exploit the core structure of Xilinx
FPGA by using the LUT6_2 and carry chain primitives.
The higher-order bit-width of both FPGA-based approximate
multipliers requires the RM structure approach, where the
sub-multipliers are a set of 4-bit multipliers. In [27], three
8-bit xRM are proposed as a bit-width extension of the
proposed 4-bit approximate multipliers. In [28], a set of 8-
bit xRM is proposed which is a combination of its proposed
4-bit approximate multipliers. The proposed 8-bit xRM from
both papers are not eligible to be deployed on the xMAC
accelerator, since their sequence of errors is not additive
inverse of each other, and no knowledge of the type of the
input distribution is presented.

The Pareto-optimal sets of xRM in [29] and [30] consider
the ISH-methodology constrained, where one set is optimal
for lowering the hardware utilization and the other for lower-
ing the power demand on an FPGA device.

Rick van Loo [29] proposed the Approxy framework to
produce the Pareto-optimal sets of 4-bit xRM for FPGA
devices. The framework uses the same set of elementary 2-bit
approximate multipliers from [2] for the architectural-space
exploration. Using the Xilinx Kintex-7 FPGA and a Normal
Distributed (N(µ,σ2)) input with a mean (µ) of 8 and standard
deviation (σ) of 1.5, the optimal 4-bit xRM achieve 25%
improvement on power compare to the 4-bit accurate RM.

Rienk van der Wijk [30] proposed a Pareto-optimal set
of 8-bit xRM with four 4-bit multipliers. The design-space
for deploying the sub-multipliers on the recursive multiplier
structure consists of the Pareto-optimal sets from the Ap-
proxy framework [29], two 4-bit approximate multipliers
and one 4-bit accurate multiplier from the SMApproxLib
[27]. Using Xilinx Kintex-7 FPGA and a Normal Distributed
input of N(128, 22.52), the optimal 8-bit xRM design is
estimated to produce 516µW with a Normalized Absolute
Mean Error of 7.19e-4. However, the estimated power result
is not verified by the synthesis tool. Regarding hardware
utilization, the optimal 8-bit xRM consists of 37 LUTs with
a Normalized Absolute Mean Error of 3.78e-2. Comparing
this result with the optimal 8-bit approximate multiplier from
SMApproxLib [27], 9 LUTs were saved.

Another way to construct the xMAC accelerators as a
whole is by using the Xel-FPGA framework [31] where
a Pareto-Optimal hardware utilization set of approximate
accelerators is extracted from a design-space of 1000 random
ASIC-based approximate circuit variants. The framework
exploration method is pipeline within three stages: the sta-
tistical regression model training, the architectural explo-
ration, and the final evaluation. During the model training,
two statistical regression models are being trained. One for
estimating the output-quality and one for estimating power,
hardware utilization, and latency, of every approximate ac-
celerator on Xilinx Virtex-7 FPGA. After the statistical mod-
els are trained, the architectural exploration stage uses the

NSGA-II genetic [42] algorithm to select and iterative ex-
plore the architectural-space of the accelerators. The selected
accelerators are further synthesized and simulated in the
final evaluation stage to determine their accurate hardware
requirement and output-quality. Using the NSGA-II genetic
algorithm and the logic synthesis ABC-tool [41], which is
used to extract the hardware accelerators features in the
model training stage, allows the framework to achieve an ex-
ploration time of roughly 5 hours with a Pearson Correlation
Coefficient of 0.9 for a design-space of 1 million approximate
accelerator variants.

Xiang et al. [32] proposes an approximate logic synthesis
(ALS) method for transforming the local LUT sub-networks
into approximate ones with the minimum numbers of LUTs
on an FPGA with a given LUT input size. The method uses
the Fanout-Free Cone (FFC) structure in the LUT network,
which implements a single-output function through the LUT
sub-network. The approximate design thus consists of mini-
mizing the number of LUTs needed to satisfy the FFC struc-
ture on the LUT subnetworks. The reduction uses disjoint
decomposition on a given Boolean function with a single-
output. For functions that are not decomposable, the approx-
imate disjoint decomposition is used to find a decomposable
function close to it. The latter thus transforms the accurate
Boolean function to a Boolean function with some errors.
An iterative process of the algorithm is required for design
with multiple-output, since the technique is restricted only
to single-output function. The proposed approximate logic
synthesis methodology has been experimented on benchmark
circuits suite from EPFL1 [43] and MCNC2 using the logic
synthesis ABC-tool [41]. The proposed approximate logic
synthesis method only focuses on constructing an approxi-
mate circuit design with error rate as the error metric and
misses the average error magnitude. Since the average error
magnitude of the 2-bit input multipliers is required in a xRM
to build a near-to-zero mean error profile, the ALS technique
requires further investigation to construct approximate mul-
tipliers to be deployed on xMAC accelerators.

D. MOTIVATIONAL ANALYSIS
Currently, the output-quality of the correlator array structure
in [1] is collected for the 8-bit xRM ASIC implementation
in [2]. No studies have addressed the output-quality metrics
of the correlator array embedded with 8-bit xRM FPGA
implementation. Furthermore, most of the research on con-
structing the Pareto-optimal xRM FPGA implementation is
synthesized on modern Xilinx FPGA core structure, which
primarily uses adaptive LUTs (LUT6_2) with carry-chain
primitives. No studies have addressed Pareto-optimal xRM
designs on Intel’s FPGA Core Structure. It is expected,
that the xRM FPGA-based designs, will yield a different
hardware performance, regarding latency and the number of
LUTs used, for a different LUT-based architecture.

1https://github.com/lsils/benchmarks
2https://github.com/lsils/SCE-benchmarks/tree/main/MCNC
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TABLE 1: Synthesis-based comparison of a few Pareto-optimal configurations for 8-bit input recursive multipliers, that employ
the conventional and the Internal-Self-Healing (ISH) methodologies using the elementary 2-bit multipliers in Appendix A as
building blocks. The conventional approximate computing methodology was restricted to a design space of {M, M1, M2} and
the ISH to {M, M1, M2, M3, M4}. This table is adapted from [2].

Design Pareto-optimal multiplier configurations optimized for normally distributed input
Alternatives LSM∗ → MSM∗ Error∗
Accurate M M M M M M M M M M M M M M M M 0
Conven1 [2] M1 M1 M1 M M M1 M M1 M M M1 M1 M M M M1 2.95e-5
Conven2 [2] M M M M M M1 M M M M M M M M M M1 1.87e-6
ISH1 [2] M4 M1 M1 M1 M1 M1 M4 M1 M1 M1 M1 M1 M3 M4 M1 M4 1.57e-8
ISH2 [2] M4 M1 M1 M M4 M4 M3 M1 M1 M M4 M1 M M1 M3 M1 9.26e-9
FPGA_ISH1 [30] M1 M1 M3 M1 M1 M1 M3 M1 M1 M1 M3 M1 M1 M1 M3 M1 7.19e-4
FPGA_ISH2 [30] M1 M1 M3 M1 M1 M1 M3 M1 M1 M1 M3 M1 M M1 M3 M1 1.18e-4
FPGA_ISH3 [30] M1 M1 M3 M1 M1 M1 M3 M1 M M1 M3 M1 M M3 M3 M4 3.47e-5
FPGA_ISH4 [30] M1 M1 M3 M1 M M1 M3 M1 M M1 M3 M1 M M3 M3 M4 2.47e-6
FPGA_ISH5 [30] M M1 M3 M1 M M1 M3 M1 M M1 M3 M1 M M3 M3 M4 5.74e-7
∗ The resulting Error is based on normally distributed input of N(128,22.52). The normalized absolute mean error is considered as an
Error. LSM and MSM are the least significant and the most significant 2-bit input multipliers respectively.

In this thesis, for investigating the most energy-efficiency
correlator architecture design on FPGA, the correlator model
of the simplified interferometry in [1] is realized on an FPGA
with the Pareto-optimal power optimized sets of 8-bit input
xRM. The Pareto-optimal power optimized sets from [2]
and [30] use the same set of 2-bit elementary multipliers
from Appendix A while having a different configuration for
constructing xMAC. Since this difference configuration is
due to the architectural difference between ASIC and FPGA,
both sets of xRMs will be synthesized on Intel’s FPGA for
hardware performance comparison, regarding the number
of LUTs usage, latency, and power consumption. Table 1
illustrates the Pareto-optimal power-optimized sets for in-
vestigation. Since the conventional approximate computing
methodology was restricted to a design-space of {M, M1
M2}, their performance on hardware, latency, and power on
the CMACs may have higher gains compared to the ISH
methodology. To quantify the hardware performance gains
in proportion to the number of CMACs used, the correlator
array with sizes of 1×1, 2×2, and 4×4 is presented. Ap-
pendix F investigates more in-depth the latency performance
of the xRMs, when embedded in the correlator architecture
and realized on an FPGA.

III. PRELIMINARIES
A. POWER MEASUREMENT
Intel Quartus Prime Standard provides the possibility to run
a gate-level timing simulation of a post-synthesis circuit
design, where the switching activity and glitches for all cells
are tracked during the run. However, this timing simulation
is only supported for Arria II GX/GZ, Cyclone IV, MAX
II, MAX V, and Stratix IV Intel device families [40]. After
running the gate-level timing simulation, a Value-Change
Dump (VCD) file is generated, which contains the switching
activity on all nodes during the run. Providing this VCD file
to Intel Quartus Power Analyzer, the total power, core dy-
namic power dissipation (Pdynamic), and the core static power
dissipation (Pstatic) is estimated. Appendix C elaborates the

details on Pdynamic and Pstatic on FPGA.

IV. METHODOLOGY
To realize the correlator array of the simplified interferometry
in [1], the derivation of the Signal Flow Graph (SFG) from its
algebraic description is used. Appendix D elaborates more in
detail on deriving the SFG from an algebraic description.

A. ANALYSIS OF THE ALGORITHM

Assuming the antenna signals are digitized and complex (Re
and Im), the core of the cross-correlation can be defined as a
complex multiply-accumulate (CMAC) operator [13],

ci,j =

T−1∑

t=0

vi,tv
∗
j,t (2)

where vi and vj are the discrete waveforms from antenna
i and j, respectively. In the visibility domain, the algebraic
equivalence of ci,j is described as V(vi, vj). For the simpli-
fied interferometry, the input vi is substituted to ai,j and vj
to r, hence

ci,j =

T−1∑

t=0

ai,j,t · r∗t (3)

where ai,j is the discrete waveform from antenna coordinated
at (i, j) in the antenna array A×A and r from the reference
antenna. The distribution of the inputs to each CMAC opera-
tor follows Algo. 1. The correlator array outcome for such a
case produces a two-dimensional visibility component shown
in Eq. 4 and A2 baselines.

Algorithm 1 Pseudo-code of the simplified interferometry.
1: for i = 1 : A do
2: for j = 1 : A do
3: V(ai,j , r)
4: end for
5: end for
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V =




c1,1 c2,1 c3,1 . . . cA,1

c1,2 c2,2 c3,2 . . . cA,2

c1,3 c2,3 c3,3 . . . cA,3

...
...

...
. . .

...
c1,A c2,A c3,A . . . cA,A




(4)

B. ALGORITHM TO SIGNAL FLOW GRAPH
The dependency graph (DG) from Eq. 3 is a 3-dimensional
structure due to the existence of 3-indexes. To minimize the
DG to a 2-dimensional structure, we map the subscript i, j
to one index. This mapping follows the escalation of the
subscript i, j as shown in the Algo. 1. For the correlator array
of N×N, we will substitute A in the Algo. 1 to N . Taking the
escalation of subscript i, j and the substitution of A to N , the
subscript i, j is mapped as,

(1, 1) 7→ x1

(1, 2) 7→ x2

...
(1, N − 1) 7→ xN−1

(1, N) 7→ xN

(2, 1) 7→ xN+1

(2, 2) 7→ xN+2

...
(N,N − 1) 7→ xN×N−1

(N,N) 7→ xN×N

where xn denotes the nth element of the sequence x. To build
the local DG from Eq. 3, r∗t is substitute to dxn−1,t, where
dxn−1,t is equal to dxn,t and dx0,t to r∗t . We will raise the
bounds in the summation by one for cosmetics on drawings,
hence Eq. 3 is rewritten to,

cxn
=

T∑

t=1

axn,t · dxn−1,t (5)

From this reformed equation, the recurrent relation is derived
as,

sxn,t = sxn,t−1 + axn,t · dxn−1,t (6)

The maximum bound of the recurrent relation is sxn,T , which
is equal to cxn , and the minimum bound is sx0,0, which
is set to zero. Fig. 1 illustrates the derivation of the two-
dimensional DG based on the recurrent relation in Eq. 6
with the maximum and minimum bounds. From the internal
structure of the DG vertex, there are two paths between the
inputs and outputs. The path with the longest computational
delay, e.i. the critical path, in the DG vertex consists of
one multiplication and one addition. From the DG and the
internal structure of the DG vertex, we can observe the
critical path consists of one multiplication and T number of
additions.

To fold DG to the SFG, we select the direction of the
projection vector d equal to the direction of increasing t

+

(a) The internal structure of the
DG vertex.

(b) The DG vertex representa-
tion.

1 2

(c) The DG representation with the minimum bound sxn,0 set equal to
zero and the maximum bound sxn,T set equal to cxn .

FIGURE 1: The dependency graph (DG) from the recurrent
relation in Eq. 6 for a given antenna array of N×N and
integration length of T . The internal structure of the DG
vertex follows Eq. 6 with dxn,t set equal to dxn-1,t.

subscript, e.i. d = (0,1). The other direction of d folds the DG
to an SFG, where the integration length becomes a factor in
forming SFG vertices. Hence, the design architecture, which
is implemented on the FPGA, has to be redesigned for every
change of the integration length. Moreover, we consider the
synchronous machine behavior of the SFG vertices to be
mealy machines. Thus, the outputs of the SFG vertex are
defined as,

yt, st = Fmealy(xt, st-1) (7)

where st records the output state of the SFG vertex at time
instance t, and the entry st-1 takes the output state at t-1.
From the recurrent relation in Eq. 6, the Fmealy is a multiply-
add operation. Thus, the integration length becomes a factor
in placing multipliers and adders to compensate the number
of SFG vertices, that are mapped from the DG. With the
projection vector d set equal to (0,1) and the processor
assignment P being a null-space vector to d, P is set to (1,0).
The two-dimensional DG in Fig. 1 is folded to the SFG by
applying w = P · v, where w is the set of vectors, e.i. vertices,
intermediate edges, input edges, and output edges, for the
SFG and v for the DG.
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d = (0,1)

P = (1,0)

1 2

FIGURE 2: The mapping of the dependency graph (a) to signal flow graph (b) by using the processor assignment P set to (1,0).

For instance, a set of vertices in v described as {xn, t} is
mapped to the SFG described as,

wvertex = P · vvertex (8)
= (1, 0) · {xn, t} (9)
= {xn} (10)

The set of intermediate edges in v from a vertex {xn, t} with
a displacement vector ed of {(xn-xn-1,0)Tr}, e.i. the vertical
edges of the DG, are mapped to the set of intermediate edges
in w as,

{wvertex, ed} = P · {vvertex, ed} (11)

= (1, 0) · {(xn, t)
Tr , (xn − xn-1, 0)

Tr} (12)

= {(xn, xn − xn-1)
Tr} (13)

Note Tr indicates the transpose transformation of a matrix.
The set of intermediate edges in v from a vertex {xn, t}
with ed of {(0,1)Tr}, e.i. the horizontal edges of the DG,
are mapped to the set of looping edges in w from the vertex
{xn}. The set of input edges in v from a vertex {x0, t} with
ed of {(x1-x0,0)Tr}, e.i. the vertical input edges of the DG,
are mapped to the input edge in w from vertex {x0} with ed of
{(x1-x0)Tr}, e.i. the vertical input edge of the SFG. The set
of input edges in v from a vertex {xn, 0} with ed of {(0,1)Tr},
e.i. the horizontal input edges of the DG, are mapped to input
edges in w from vertex {xn} with ed of {(0)Tr}, e.i. the
horizontal input edges of the SFG. The set of input edges
in v from a vertex {xn-1, t-1} with ed of {(xn-xn-1,1)Tr},
e.i. the diagonal input edges of the DG, are mapped to input
edges in w from vertex {xn-1} with ed of {(xn-xn-1)Tr}, e.i.
the diagonal input edges of the SFG. Fig. 2 illustrates the
mapping of the vectors in the DG to the SFG by using the
processor assignment P set equal to (1,0). Additionally, the

mathematical descriptions of the edges in the DG and the
SFG are shown.

The scheduling of the data produced by the DG vertices in
time instance t to the SFG vertices follows the product of the
scheduling vector s with the source vertex vsource (Appendix
D). However, the scheduling vector sTr is restricted from
the ed in the DG edges and the selected projection vector d.
The scheduling vector is restricted clockwise from (0,1), e.i.
an increase on the subscript t, to (1,1), e.i. an increase on
subscript sequence xn and t. Since the number of unit delays
(Dn) on the SFG edges is dependent on the displacement
vector in the DG with the scheduling vector as, n = s · ed
(Appendix D), the scheduling vector s set to (0,1) allocates
D at all the SFG edges with a ed equal to zero, except for
the input edges. For instance, the intermediate and output
edges of the DG with the displacement vector ed of {(0,1)Tr}
computes Dn on their corresponding mapped SFG edges as,

n = s · (vdest. − vsource) (14)
= s · ed (15)

= (0, 1)(0, 1)Tr = 1 (16)

The scheduling vector s set to (0,1) allocates the least number
of unit delays in the SFG edges, which conserves power
dissipation. With the selected scheduling vector s of (0,1),
the data produced and consumed by the DG vertices can be
scheduled to the SFG. For example, the data dx0,1, sx1,0 and
ax1,1 in Fig. 1c is scheduled to be consumed by the SFG
vertex {x1} at time instance,

t = s · vsource = (0, 1) · (x0, 1) = 1 (17)

Similarly, dx1,1, sx2,0 and ax2,1 is scheduled to be consumed
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D

D

FIGURE 3: The fully annotated signal flow graph (SFG)
from Fig. 2 with the time-coordinate information of the
data and delay unit (D). The annotation (y)(t) on the edges
indicates the time instance (t) at the data y takes place. These
annotations follow the data dependency in Fig. 1c for the
scheduling vector s set to (0,1).

by the SFG vertex {x2} at time instance,

t = s · vsource = (0, 1) · (x1, 1) = 1 (18)

These two examples show that the SFG vertices consume
and produce data in parallel. Fig. 3 illustrates the annotated
scheduling of all the data that the SFG vertices consume
with the number of delay units on the output edge and
the looping edge. The output edge at vertex {xN×N} is
eliminated since the SFG vertex {xN×N} is the last vertex
that requires the data of the reference antenna represented as
dx0,t. This fully annotated SFG demonstrates the graphical
representation of distributing the stream of the reference
antenna, which is represented as {(d∗x0

)1, . . . , (d∗x0
)T }, to

the SFG vertices {xn} for processing with the stream of the
antennas {(axn)

1, . . . , (axn)
T } in parallel.

Recall that the SFG vertices have a mealy machine behav-
ior with Fmealy being a multiply-add operation. The delay
unit on both outputs of the SFG vertices consumes the
output result of Fmealy. The delay unit on the looping edges
stores the result st at a time instance t and returns it to
their corresponding SFG vertices entry St-1. With the add
operation in the vertices, these delay units accumulate the
result of the SFG vertices as long as the integration length

(T ). Therefore, combining an SFG vertex and the delay unit
(D) on the looping edge has a multiply-accumulator (MAC)
behavior. Since the antenna signals are complex, the actual
behavior is a CMAC behavior.

The multiplication of two complex inputs can be realized
using the Cartesian method, which expresses a polynomial
expansion [23] as,

(a+ ib)(c+ id) = (ac− bd) + i(ad+ bc) (19)

To illustrate the requirement of realizing the CMAC behavior
of the SFG vertex in combination with the delay unit on
their corresponding looping edge, the two multiplicands in
Eq. 5 is instantiated as complex, and the Cartesian method
is employed for the complex multiplication. Hence, Eq. 5 is
expanded to,

cxn
= O1,xn

−O2,xn
+ i(O3,xn

+O4,xn
) (20)

where

O1,xn
=

T∑

t=1

Re{axn,t} ⊗ Re{dxn-1} (21)

O2,xn =

T∑

t=1

Im{axn,t} ⊗ Im{dxn-1} (22)

O3,xn
=

T∑

t=1

Re{axn,t} ⊗ Im{dxn-1} (23)

O4,xn
=

T∑

t=1

Im{axn,t} ⊗ Re{dxn-1} (24)

The ⊗ notation refers to the approximate multipliers em-
ployed.

C. THE CORRELATOR ARRAY STRUCTURE
Digitization of the signal waveform requires sampling of
the voltages at periodic intervals and quantizing the sampled
values so that each can be represented by a finite number of
bits [11]. This process is conducted by the Automatic-Gain-
Control (AGC) and the Analog-to-Digital converter (ADC)
components. The function of the AGC is to adapt the signal’s
voltage amplitude at the RMS level so that the maximum
amplitude of the ADC is defined. This optimally exploits
the dynamic range of the ADC, where the RMS level is
used for de-normalization purposes [1]. In contrast, the ADC
does the sampling of the signal at periodic intervals. The
de-normalization of the two correlated inputs in Eq. 20 is
computed as,

zxn = cxn · σaxn
· σr (25)

where σaxn
and σr are the complex standard deviations of

the discrete waveform of axn
and r, respectively, which are

measured from the AGCs. The produced two-dimensional
visibility component of the correlator array (Eq. 4) entries
are substituted to zxn .

Fig. 4 illustrates the simplified interferometry of 2×2
antenna array connected to the realization of the SFG from

8 VOLUME 17, 2016



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Complex
Sampling

FFT

De-
normalize

De-
normalize

De-
normalize

De-
normalize

Correlator
array

Complex
Sampling

Complex
Sampling

Complex
Sampling

Complex
Sampling

Reference
Antenna

FIGURE 4: The simplified interferometry of 2×2 with one reference antenna connected to a correlator array of 2×2. The
structural information of the correlator array is similar to the SFG structure from Fig. 3. The complex sampling blocks digitize
the signals from the antennas with their corresponding complex standard deviations. The de-normalize block takes the complex
standard deviation of their corresponding correlated signals.
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X
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= approximate multiplier

AGC ADC

AGC ADC

AGC ADC
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De-normalize
Complex
Sampling

Complex
Sampling

FIGURE 5: The internal structure of the complex sampling, complex correlation xn, and the de-normalization block.

Eq. 5, e.i. expanded as complex correlation, the complex
sampling of the antennas signals, and the de-normalization
of cxn

. The internal structure realization of each component
is illustrated in Fig. 5. The outputs of the de-normalized
correlation zxn

are further processed by the two-dimensional
Fast Fourier Transform to produce the intensity distribution
I(l,m). In this paper, the correlator array is implemented
on the FPGA, whereas the complex sampling and the de-
normalized blocks are conducted on higher-level program-
ming software. The digitized sample, that is produced by the
ADC, is a 9-bit sign-magnitude data representation. This way

each multiplier calculates the sign of a product based on the
sign bits of its inputs in parallel the magnitudes of the in-
puts are multiplied by an 8-bit unsigned multiplier structure,
which can be instantiated to an approximate multiplier. The
circuit-level realization of the CMAC behavior xn block in
combination with the latter is further elaborated in Section
V.

D. SIPO AND PISO
An FPGA device is limited to realizing correlator array struc-
ture with a large number of antennas due to their physical
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FIGURE 6: Added the SIPO and PISO shift registers on the inputs and outputs of the correlator array for the same antenna
array in Fig. 4.
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t = ...

CMACSIPO

t = T

PISO Reset

FIGURE 7: The timing diagram of SIPO and PISO shift registers with the correlator array from Fig. 6.

limitation on the available pins. The proposed optimization
for this is to employ shift registers at the expense of an
increase in latency and power consumption. The Serial-in
Parallel-out (SIPO) shift register is employed on the inputs
of the correlator array minimizing the number of input pins
from an arbitrary set of antennas axn

to the number of input
pins of only one axn

. To mitigate the number of output pins
from an arbitrary set of xn into the number of output pins
of one xn, the parallel-in Serial-Out (PISO) shift register is
employed. Fig. 6 illustrate the SIPO and PISO shift registers
placement between the correlator array in Fig. 4.

The Serial-in Parallel-out (SIPO) shift register shifts the
set of streams {(ax1

)t, . . . , axN×N
)t} to its corresponding

input edges so that the SFG vertices consumes and pro-

duces in parallel at an arbitrary time instance t. It is estab-
lished from the SFG in Fig. 3, that the SFG vertices, e.i.
{x1, . . . , xN×N}, indeed consumes data in parallel on the
input edges at a time instance t. Since the set of streams of
the antennas input {(ax1

)t, . . . , axN×N
)t} is scheduled to a

particular time instance t, the number of vertices added in
the correlator array, increases the latency of the SIPO. This
also holds for the PISO shift registers. From the SFG in Fig.
3, the set of streams (sx1)

T , . . . , axN×N
)T } is essentially

the multiply accumulate operation at the integration length
T . The PISO operation is to shift out these set of streams
to the next processing stage. Fig. 7 illustrates the timing
diagram of processing the correlator array with an integration
length T and SIPO and PISO shift registers for the simplified
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interferometry setup in Fig. 4.
To evaluate the correlator array power performance on

a large antenna array of A×A, the SIPO and PISO shift
registers may be used as presented in Fig. 6. For such a
case, the correlator array of N×N is limited to processing
a subset of antennas in A×A, thus requiring a repetitive
operation for different subsets in A×A. This limit follows the
ratio between A×A and N×N. For each subset of antennas
in A×A feed in the SIPO shift registers in combination
with the correlator array and the PISO shift registers, must
follow the time-coordinate of the SFG in 3 to compute the
complex multiply-accumulation correctly. In other words, the
first samples of all the antennas in the subset are fed at
time instance one, the second sample at time instance two,
the third sample at time instance three, and so on until the
integration length T (see Fig. 7). After the sample of the
antennas at T is consumed by the CMAC operators, the
reset of the accumulations occurs, so that the next subset of
antennas in A×A is fed in the correlator array of N×N. This
procedure continues until all the antennas in A×A are fed.
This way the latency of producing the two-dimensional A×A
visibility component is computed as

LA×A =
A2

N2
· T · (tSIPO + tCMAC) (26)

where tSIPO and tPISO are the time duration of SIPO and PISO
shift registers, respectively.

V. IMPLEMENTATION
For the circuit-level realization, all edges are represented as
sign-magnitude data, since this data representation is pro-
duced by the ADC. The sign-magnitude data representation
uses the Most-Significant-Bit (MSB) as the sign-bit to indi-
cate whether the data is a positive value (sign-bit is set to 0)
or a negative value (sign-bit is set to 1). The remainder of the
bits represent the data magnitude.

From the multiplication behavior, it is known that two
equal sign numbers result in a positive number and two
impartial sign numbers a negative. Thus, the resultant sign-bit
of the multipliers is in the function of their inputs’ sign-bit.
Table 2 illustrates this functionality in a truth-table, where
F1(z1, z2) represent the resultant sign-bit of the multiplier,
and z1 and z2 the multiplier input’s sign-bit. Note the be-
havior is similar to an XOR gate. The magnitude bits of

TABLE 2: The sign-bit behavior of multiplying two sign-
magnitude data representations.

z1 z2 F1(z1, z2)
0 0 0
0 1 1
1 0 1
1 1 0

the inputs are consumed by an unsigned multiplier structure.
The resultant output of this structure becomes the output
magnitude bits. Since the data width of the ADC is 9-bit,
the inputs’ data widths of the multipliers are equal. The

sign-bits of the inputs are connected to a two-bit LUT (2-
LUT), which has the same content shown in Table 2. The
8-bit magnitude bits of the inputs are consumed by an 8-bit
input unsigned multiplier structure. Hence, the output data
width of the multipliers are 17-bit sign-magnitude. The 8-
bit unsigned multiplier structure is instantiated by the xRM
structures in Table 1 for investigation. Fig. 8 illustrates the
hardware circuit realization for the multipliers.

xRM

9-bit Sign-Magnitude
Sign Magnitude

9-bit Sign-Magnitude
Sign Magnitude

17-bit Sign-Magnitude
Sign Magnitude

A B

1-bit 1-bit8-bit 8-bit

16-bit

1-bit

C

F1(z1, z2)

2-LUT

z1 z2

FIGURE 8: The circuit-level realization of the multiplication
operation denoted as ⊗ from the CMAC behavior of xn in
Fig. 5.

For the circuit-level realization of the adder and accumula-
tor, the magnitude data width of the multiplication operation
is extended with zeros to match the output data width (W-bit)
of the accumulator. This way both input operands of the ad-
dition operation are equivalent. The accumulator data width
must correlate with the integration length (T). Combining the
input data width from the ADC with the integration length (T)
of the accumulation, the W-bit of the accumulator is defined
as,

W = (INPUT_BIT_WIDTH × 2− 1) + ⌈log2(T )⌉ (27)

Fig. 9 illustrates the circuit-level realization of the accumula-
tion process, where a register is used as the accumulator and
the addition/subtraction operator is assigned as Addi.

From the addition/subtraction behavior, originally two
positive numbers will result in a larger positive number and
two negative numbers a larger negative number. Given the
signs of both numbers are different, the resultant sign will
be equal to the sign that has the highest value. Addition-
ally, the highest value is also subtracted from the lowest
between both numbers. Table 3 illustrates the addition/sub-
traction functionality in a truth-table for two arbitrary sign-
magnitude data representations (A and B). The ripple-carry-
adder (RCA) circuit with a subtraction capability is realized
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FIGURE 9: The circuit-level realization of the accumulation
process denoted as Σ from the CMAC behavior of xn in Fig.
5.

TABLE 3: The addition/subtraction behavior for two sign-
magnitude data representation.

A’s B’s A’s magnitude addition/ output’s
sign-bit sign-bit ≥ subtraction sign-bit

B’s magnitude behavior
(z1) (z2) (z3) F2(z1, z2, z3)

0 0 0 A+B 0
0 0 1 A+B 0
0 1 0 B−A 1
0 1 1 A−B 0
1 0 0 B−A 0
1 0 1 A−B 1
1 1 0 A+B 1
1 1 1 A+B 1

for the addition/subtraction operation since it uses the least
hardware resources compared to other adder designs. From
Table 3, the output’s sign-bit can be derived in a 3-LUT as
F2(z1, z2, z3), where z1 denotes to A’s sign-bit, z2 to B’s
sign-bit and z3 to A’s magnitude greater than or equal to
B’s magnitude. Moreover, using only one ripple-carry-adder
(RCA) with a subtraction capability, two extra LUTs can be
derived. One for selecting the input’s magnitude bits of A,
or B, to the RCA’s inputs (x and y), and one for selecting
the type of operations (addition or subtraction). Note that
for the latter, the selection is dominant only by A’s and B’s
sign-bits and has the same behavior as F1 from Table 2,
where an addition operation occurs for equal sign-bits and
a subtraction for impartial. Table 4 illustrates the two truth-

table derivations, where one input of RCA is dependent on
the outcome of F3(z1, z2, z3) and the other to its inverse. Fig.

TABLE 4: The truth-table for selecting the input’s magnitude
bits of A and B to the inputs of the ripple-carry-adder (RCA).
z1 and z2 represents the sign-bits of input A and B, respec-
tively. z3 is the outcome of the A’s magnitude bits greater than
B’s magnitude bits.

RCA’s RCA’s RCA’s
input x input y add/sub

(z1) (z2) (z3) F3(z1, z2, z3) F3(z1, z2, z3) F1(z1, z2)
0 0 0 A B 0
0 0 1 A B 0
0 1 0 B A 1
0 1 1 A B 1
1 0 0 B A 1
1 0 1 A B 1
1 1 0 A B 0
1 1 1 A B 0

10 illustrates the circuit-level realization of Addi for two sign-
magnitude data representations.

W-bit Sign-Magnitude
Sign Magnitude

W-bit Sign-Magnitude
Sign Magnitude

W-bit Sign-Magnitude
Sign Magnitude

>=

1-bit 1-bit(W-1)-bit

A B

C

1 0

(W-1)-bit

(W-1)-bit1-bit

RCA

1 0

add/sub

add/sub

1-bit

3-LUT

F3(z1, z2, z3)

3-LUT 3-LUT

1-bit

F1(z1, z2)

z1 z2

z3

z1 z2

2-LUT

z1 z2 z3 z3z2z1

F3(z1, z2, z3)

z3z2z1

F2(z1, z2, z3)

1-bit 1-bit

(W-1)-bit (W-1)-bit

x y

FIGURE 10: The circuit-level realization of Addi in Fig. 9.
The behavior of F1, F2, and F3 are shown in Table 2, 3 and
4. The addition/subtraction operation is conducted by the
ripple-carry-adder (RCA).
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FIGURE 11: The overall test setup for collecting hardware resource and power result adapted from [2].

VI. RESULTS
A. EXPERIMENTAL SETUP
The circuit realization of Fig. 8, Fig. 9, and Fig. 10 are
described in VHDL. The connection of these components
follows the internal structure of xn in Fig. 5. The synthesis
tool for the experiment is the Intel Quartus Prime Standard
and the FPGA is the Intel Cyclone IV E EP4CE155F29I7 as
illustrated in Fig. 11. This FPGA device consists of 114480
Logic Elements (LEs), where each of these LEs contains
four-input and three-input LUT types. The correlator array
in Fig. 4 is synthesized and configured, e.i. Place and Route,
on the FPGA with a register placed on the inputs. These
registers in combination with the accumulators are used to
evaluate the critical path delay and latency of the design
on the FPGA (see Appendix F). The signals relevant to the
registers, namely the clock, reset, and enable signals, are
assigned to the FPGA’s physical pins. The clock signal is
constrained to 25 nanoseconds (40 MHz). This operating
frequency has allowed the FPGA to maintain positive slack
and avoid setup time violation for the correlator array of
1×1, 2×2, and 4×4 with an integration length of 64. Fig.
11 illustrates the overall experimental setup for reporting
hardware resource utilization, power, and output quality.

B. HARDWARE EVALUATION
The number of LUTs usage, power, and latency results from
a xRM are compared against the results of the corresponding
accurate RM incorporated in the CMAC operators (xn) for an
integration length of 64. This comparison is also conducted
on the correlator array with a size of 1×1, 2×2, 4×4 to
quantify the savings. The inputs and output ports of the de-
sign are assigned to virtual pins to avoid the constrain of the
FPGA’s pins during synthesis and configuration. Taking bit-
width into account, the total virtual input pins are expected
to be the product of the number of SFG vertices, the number
of inputs (ni) of the SFG vertices, and the ADC’s output bit-
width (9-bit). The total virtual output pins are expected to be
the product of the number of SFG vertices, the number of
outputs (no) of the SFG vertices, and the W-bit (see Eq. 27).

Table 5 presents the number of registers and pins used
by the correlator array in Fig. 4 after synthesis. It can be
observed that the registers follow the number of the I/O
virtual pins, which follows the assignment of the registers to
all I/O ports.

TABLE 5: The hardware resource report, regarding registers
and pins used on the FPGA for the correlator array archi-
tecture 1×1, 2×2, 4×4, 6×6, 8×8 and 10×10 in Fig. 4 and
integration length of 64.

N×N Registers Pins Virtual Pins
1x1 128 3 128
2x2 458 3 458
4x4 1778 3 1778
6x6 3978 3 3978
8x8 7058 3 7058

10x10 11018 3 11018

Table 6 presents the number of LUTs used for realizing
the correlator array of 1×1, 2×2, 4×4, 6×6, 8×8 and 10×10
with the 8-bit input xRMs in Table 1 and Fig. 12 the number
of LUTs savings of using the xRMs relative to the accurate
RM. It is expected that as N increases linearly, the size
of the correlator array increases quadratically (N×N), and
thus the number of LUTs usage also increases quadratically.
From Table 6, it can observed that this is the case. With the
accurate RM, the correlator array of 1×1 uses roughly 0.89%
of the maximum available LUTs in the FPGA device. For the
correlator array of 2×2, 4×4, 6×6, 8×8 and 10 ×10 with the
accurate RM, roughly 3.57%, 14.26%, 32.13%, 57.14%, and
89.03% is used, respectively, from the maximum available
LUTs in the FPGA device. From Fig. 12, it can be observed
that the number of LUT savings (%) is not a constant number
across different sizes of the correlator array. Therefore, it can-
not be claimed that the number of LUTs savings on an FPGA
for a giving xRM design is a definite number. However, it
can be claimed that it is approximate to a mean value. From
the literature, the Conv1, Conv2, ISH1, and ISH2 are the
Pareto-optimal 8-bit input xRM designed on ASIC. Taking
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TABLE 6: The number of LUTs used after synthesis for the
correlator array of 1×1, 2×2, 4×4, 6×6, 8×8 and 10 ×10
with the 8-bit input recursive multiplier structures in Table 1
incorporated.

Array Size 1×1 2×2 4×4 6×6 8×8 10×10
Accurate 1023 4093 16333 36791 65420 101925
Conv1 987 3944 15770 35551 63316 98584
Conv2 1013 4047 16149 36364 64759 100928
ISH1 964 3846 15389 34684 61682 96186
ISH2 978 3896 15584 35074 62561 97456
FPGA_ISH1 959 3832 15294 34421 61416 95757
FPGA_ISH2 960 3841 15394 34631 61687 96174
FPGA_ISH3 969 3877 15538 34956 62153 96947
FPGA_ISH4 975 3899 15588 35085 62429 97361
FPGA_ISH5 979 3912 15635 35222 62708 97785
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FIGURE 12: The number of LUTs savings of using the xRM
relative to the accurate RM for correlator array sizes in Table
6.

the mean value of the LUTs savings across the correlator
array size of 1×1, 2×2, 4×4, 6×6, 8×8, 10×10 (see Table
7), the two conventional approximate multipliers have the
lowest percentage of LUTs savings with a mean of 1.06% for
Conv2 and 3.42% for Conv1. The two internal self-healing
approximate multipliers designed for ASIC have the number
of LUTs savings relative to the accurate multiplier with a
mean of 5.78% for ISH1 and 4.54% for ISH2. The lowest
number of LUTs savings of the approximate multiplier with
the ISH methodology employed is the FPGA_ISH5 with a
mean of 4.24%, where the highest is the FPGA_ISH1 with a
mean of 6.27%.

TABLE 7: The mean value across the correlator array size of
1×1, 2×2, 4×4, 6×6, 8×8, 10×10 for the 8-bit input xRM
structures in Fig. 12

xRM structure µ (%)
Conv1 3.42
Conv2 1.06
ISH1 5.78
ISH2 4.54
FPGA_ISH1 6.27
FPGA_ISH2 5.88
FPGA_ISH3 5.05
FPGA_ISH4 4.61
FPGA_ISH5 4.24

Appendix F evaluates the latency of the correlator array

architecture with the set of the xRMs in Table 1 and the
critical path on the FPGA.

C. POWER EVALUATION
The power estimation is computed by Intel Quartus Power
Analyzer where the toggle rates are set to derived from
a VCD file. The tcl script, e.i. dump all vcd nodes, the
standard delay file, and the gate-level netlist are generated
from Quartus Prime Standard after synthesis and configuring
the design on the FPGA (see Fig. 11). Similar to the Synopsys
Design Compiler output for ASIC, the gate-level netlist is
the synthesized design on FPGA written in VHDL, and the
standard delay file is associated with this netlist. The tcl
script is required for recording all signals during gate-level
timing simulation. A testbench with a test-vector-controllor
(TVC) is additionally written on VHDL to be utilized on
Questasim for the functional behavior verification and gate-
level timing simulation. After synthesis of the design on the
FPGA, the gate-level netlist functional behavior is verified
by the resemblance of its produced accumulation vectors
with the behavioral model on MATLAB. The antenna input
vectors for the functional behavior verification are generated
from the data of all antennas with SNRin set equal to 10
dB, the quantization type of the ADC set to mid-treat, and
the AGC set to 5σ-clipping. The captured waveform from an
antenna array is generally spread to all antennas, where each
antenna produces a noise component and a shifted version of
the source component. The antenna array of the simplified
interferometry is set equal to the correlator array size. The
noise component ni,j,t and the source component st are set
to a complex Gaussian distribution with zero mean and a
variance of one (CN(0, 1)) since this assumption is mostly
used in practice for modeling the distribution of the captured
signals [11] [12]. The length of the antenna input vectors is
equivalent to the integration length (T ). The simulation is
set to terminate by the TVC component after the gate-level
netlist of the design processes the last content of the antenna
input vectors. Appendix E elaborates more on the testbench
setup and the test flowchart. Power dissipation was collected
for correlator array of 1×1, 2×2 and 4×4. For all three cases,
the antenna array A×A is set equal to the correlator array
N×N. The xRM structure for power evaluation on hardware
are presented in Table 1,

The static power dissipation of the FPGA is reported at
roughly 100 milliwatts (mW), regardless of the circuit-design
size. This is expected since the core static power dissipation
is dominated by the current leakage present in the internal
structure of the FPGA device [33]–[35]. The I/O power
dissipation is reported at 30 mW for all correlator array sizes
and 8-bit input RM structures. This is due to the similar
occurrences of the switching activity on the three physical
pins assigned, namely the clock, reset, and enable signals, for
all circuit design. These three control signals are provided by
the TVC component, which shows the behavior of the test is
the same for all correlator array sizes and the 8-bit input RM
structures. The switching activity of the signals assigned on
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the virtual pins is omitted on the I/O power dissipation report
since the synthesis tool maps virtual pins to LUTs.

Table 8 illustrates the core dynamic power dissipation
(Pdynamic) report of the correlator array and its savings by
using xRM structure relative to the accurate RM and Fig. 13
illustrate the plot of the core dynamic power savings. The
correlator array sizes are 1×1, 2×2, and 4×4. From Table 8,

TABLE 8: The dynamic power dissipation (Pdynamic) report
from the power analyzer for the correlator array of 1×1, 2×2,
and 4×4 with the RM structure in Table 1 incorporated. The
power savings are given in percentage (%) and computed by
using the xRM relative to the accurate RM.

Multiplier 1×1 1×1 2×2 2×2 4×4 4×4
Type (mW) (%) (mW) (%) (mW) (%)
Accurate 4.6 0 12.41 0 46.68 0
Conv1 4.17 9.35 13.79 -11.12 46.8 -0.26
Conv2 4.95 -7.61 13.04 -5.08 47.55 -1.86
ISH1 3.76 18.26 13.08 -5.4 47.69 -2.16
ISH2 4.19 8.91 13.42 -8.14 46.97 -0.62
FPGA_ISH1 3.83 16.74 12.67 -2.1 45.93 1.61
FPGA_ISH2 4.55 1.09 13.66 -10.07 47.51 -1.78
FPGA_ISH3 5.14 -11.74 13.34 -7.49 46.81 -0.28
FPGA_ISH4 3.97 13.69 12.67 -2.09 47.67 -2.12
FPGA_ISH5 3.38 26.52 12.05 2.9 47.96 -2.74

it can be observed that the core dynamic power dissipation
increases quadratically as the correlator array size increases
quadratically. The reason for this rise is due to the dynamic
power dissipation of the FPGA dependency on the number of
LUTs utilization [34], which quadruples in proportion to the
correlator array size (see Table 6). It can be observed from
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FIGURE 13: The core dynamic power savings in percentage
(%) of the correlator array of 1×1, 2×2 and 4×4 embedded
with the set of the 8-bit input RM in Table 1.

Fig. 13, that the power savings result of the correlator array
of 1×1, 2×2 and 4×4 varies for the set of xRMs structure
embedded. From Table 8, the correlator array with the size
of 1×1 achieves a negative power reduction for Conv2 and
FPGA_ISH3 xRM structure, while the rest gain a positive
savings result. The highest power reduction achievable on
the correlator array of 1×1 is the FPGA_ISH5 with 26.52%.
With the size of 2×2, the correlator array achieves a positive
power savings for FPGA_ISH5 xRM structure and a negative
for the rest. The highest power reduction achievable for the

correlator array of 2×2 is the FPGA_ISH5 with 2.9%. With
the size of 4×4, the correlator array achieves a positive power
reduction for using the FPGA_ISH1 xRM structure and a
negative for the rest. The highest power reduction achievable
for the correlator array of 4×4 is the FPGA_ISH1 with
1.61%. It can be observed that the correlator array of 1×1
with one of the xRM embedded, namely ISH1, FPGA_ISH1,
FPGA_ISH4, and FPGA_ISH5, gain a power reduction that
is higher than 10%. As soon as the size of the correlator
array increases, the highest power savings become 2.9%. In
Appendix F, we measured the time duration increase on the
internal critical path of the FPGA as the correlator array size
increased. This is due to the congestion on the routing track
in the FPGA between LUTs, which the synthesis tool maps a
longer physical path between the LUTs on the FPGA to fit the
circuit design. The capacitive load on this path may dissipate
more energy than the shorter paths and thus more dynamic
power is consumed [35]. Therefore, the power savings per-
formance of using the power Pareto-optimal 8-bit input xRM
ISH1, FPGA_ISH1, FPGA_ISH4, and FPGA_ISH5, on the
correlator array of 1×1 is exploited and decays greatly as the
correlator size increases in the FPGA.

The total power dissipation report from Quartus is essen-
tially the sum of the core static, dynamic, and I/O power
dissipation. Fig. 14 illustrates the total power savings result
of using the 8-bit input xRM relative to the accurate RM. It
can be observed, that for all correlator array sizes with all the
xRM, the total power savings have a similar form as the core
dynamic power savings in Fig. 13. However, the magnitude
of the savings is between -1% to 1%. The reason for this is
due to static power dissipation is roughly at 100 mW for all
cases, which is higher than the dynamic power, and thus the
static power of the FPGA lowers the power savings of using
xRM to less than 1%.
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FIGURE 14: The total power dissipation savings in per-
centage (%) of the correlator array of 1×1, 2×2 and 4×4
embedded with the set of 8-bit input RM in Table 1.

D. OUTPUT-QUALITY
For the output-quality metrics, the correlator behavior in pro-
ducing the synthesis image is evaluated. This synthesis image
is derived by taking the two-dimensional Inverse Fourier
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FIGURE 15: The proposed realization of the correlator on an
FPGA for an antenna array of 16×16.

Transformation on the two-dimensional visibility component
in Eq. 4, which is produced by the correlator MATLAB
model. The behavioral MATLAB model of the RMs in Table
1 are incorporated. The output-quality performance of the
conventional xRM behavior embedded on the correlator is
presented in [1] and ignored here. Aside from these mul-
tipliers, an ideal multiplier with floating point accuracy is
also included in the measurement to evaluate the accuracy
of the xRM structure. The output-quality metrics are the
SNR, the SFDR, and the RMS level as presented in [1]. An
antenna array of 16×16 and an integration length of 64 is
used for a manageable simulation time. The hardware and
power evaluation on the FPGA was limited to a correlator
array size of 4×4. Therefore, the output-quality evaluation of
the architecture was completely conducted on the MATLAB
behavioral model. The propose realization of the correlator
on a FPGA for an antenna array size of 16×16is illustrated
in Fig. 15. A single source is assumed to be located by the
antenna array at I( 18 , 5

8 ). The antennas are assumed to be
spaced by 1

2λ. For these metrics, Monte Carlo simulations
have been done using the same setup of the latter with SNR
input range from -20 dB to +44 dB where the results are
averaged over 25 runs.

Fig. 16 illustrates the behavior of the correlator with an
input SNR up to 10 dB. All the RM structures give similar
performance, where an increase of SNRin leads to an increase
of SNRdB. Between 10 dB and 30 dB, the curves of all
the xRM structures deviate from the ideal curve by approx-
imately 5 dB. [1] had already demonstrated the behavior
of the correlator when using the xRM structure with the

ISH1 configuration, where for a SNRin larger than 10dB, the
correlator output deviates from the ideal curve, as shown in
Fig. 16. It can be observed that the xRM with the FPGAISH1
combination have a similar deviation curve as the ISH1 com-
bination when SNRin is beyond 10 dB. When SNRin reaches
30 dB or higher, then the quantization noise present on the
inputs of the correlator will also be fed in with the pairs of
antennas. This occurs when the RMS level of the noise added
with the input signal is larger than the quantization step size
[1]. With the 5σ-clipping set on the AGC, the quantization
noise is uncorrelated up to approximately 30 dB. Fig. 16
illustrates the curve of the accurate multiplier deviates from
the ideal case for SNRin beyond 30 dB. This holds for most of
the FPGA_ISH types but with a faster pace compared to the
accurate multiplier. the quantization noise between different
antennas will be correlated for SNRin larger than 30 dB with
5σ-clipping settings on the AGC, which eliminates the linear
rise of the SNRdB with SNRin. The latter holds for the rest of
the RM combination structure, as their curve deviates from
the ideal curve when SNRin is larger than 30 dB.
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FIGURE 16: SNR within correlator architecture’s output
map, that is based on a 16×16 antenna array with a single
point source as a function of the SNR at the input of each
antenna.

Fig. 17 presents the result of the SFDRdB as a function of
SNRin. For SNRin less than 10 dB, the SFDRdB of all the
multipliers have a similar performance. The xRM structure
with the FPGAISH1 combination has a similar deviation from
the ideal curve as the ISH1 combination, which is at SNRin
larger than 10 dB. Beyond 20 dB of SNRdB, the rest of the
xRM structure deviates from the ideal curve.

Fig. 18 presents the RMS level of the noise within the
resulted map of the correlator architecture as a function of
SNRin. Similar [1], the RdB for all RM structures are not
affected by the noise of the antenna signals up to -10 dB,
while a reduction does occur when SNRin exceed -10 dB.
Increasing SNRin beyond 10 dB does not lower the RdB for
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FIGURE 17: SFDR within the correlator architecture output
map, that is based on a 16×16 antenna array with a single
point source as a function of the SNR at the input of each
antenna.

ISH1 and FPGAISH1 xRMs. For both cases, the quantization
noise is correlated at a higher RdB compared to the rest of the
RM structure. The rest of the xRM curves have a deviation
from the ideal curve beyond 25 dB. The FPGA-based xRM
have a higher exponential deviation compared to the ASIC-
based xRM. The accurate RM have the lowest deviation from
the ideal curve at SNRdB beyond 30 dB.
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FIGURE 18: RMS of the noise within the correlator architec-
ture output map, that is based on a 16×16 antenna array with
a single point source as a function of the SNR at the input of
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VII. CONCLUSION
This paper has presented the hardware resources utilization,
latency, and power of using approximate recursive multipliers

in a correlator array architecture and deployed on an FPGA
device with a four-input LUT base. These performances were
evaluated for the correlator array of 1×1, 2×2, and 4×4.
To answer the research question "What is the most optimal
(complex) multiplier for energy-efficiency improvement on
FPGA?", the approximate computing technique was used.
The most optimal complex multiplier for energy-efficiency
improvement on FPGA comes down to the performance of
the approximate multipliers. A set of power Pareto-optimal
8-bit xRMs structures for constructing xMAC accelerators
was incorporated in the correlator array architecture with the
sizes of 1×1, 2×2, and 4×4, and deployed on Intel’s Cyclone
Clone IV E FPGA device to evaluate the number of LUTs
savings, speedup, and power savings. From these results, the
following can be concluded:

1) Regarding the number of LUTs savings, FPGA_ISH1
has the highest with an average of 6.27%.

2) Regarding speedup, the number of LUTs on the inter-
nal critical path of the FPGA by using any of the xRM
structures does not alter and thus is not a dominant
component for speeding up the circuit design.

3) Regarding power savings on core dynamic, FPGA_ISH5
has the highest with a 26.52% at the correlator array
size of 1×1, and 2.9% at 2×2. FPGA_ISH1 has the
highest with 1.61% at the correlator array size of 4×4.
As the correlator array size increases from 1×1 to 2×2,
the highest power reduction decreases by a factor of 9.

4) Regarding total power savings, the form of the power
savings is almost similar to the core dynamic power
savings. However, the magnitude of the power savings
for all xRM structures is less than 1%. The reason is
that the core static power of the FPGA consumes way
more than the dynamic power.

An antenna array of 16×16 was used to evaluate the
output-quality image produced from the correlator behavioral
model embedded with the behavior models of the 8-bit input
RM structures, that employ the ISH methodologies. From the
results, the following can be concluded:

1) FPGA_ISH1 xRM structure embedded on the corre-
lator behavior would have similar output-quality per-
formance as the ISH1 xRM i.e., no effect would be
introduced on synthesizing an image when the SNR at
the input of the antennas are below 10 dB.

2) The rest of the FPGA-based xRMs structure used in
this paper have a noise correlation at the same SNRin
level as the ISH2 with a more aggressive deviation
from the ideal curve.

Unfortunately, the power savings result of the correlator array
N×N the SIPO and PISO shift registers for an antenna array
of 16×16 was not concluded. Another solution for this is
to implement the correlator array of N×N to a set of the
FPGA. Each FPGA would process a subset of antennas in
the antenna array of 16×16. The number of devices, that are
required is defined by the ratio of the antenna array size to
the correlator array size.

VOLUME 17, 2016 17



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

The results indicate, that the most optimized correlator
architecture for energy-efficiency improvement on an FPGA
with a 4-input LUTs base (Cyclone Clone IV E) is at the size
of 1×1 size and integration length of 64. With FPGA_ISH5
xRM structure incorporated, a power savings of 26.52% is
achieved on the core dynamic power dissipation. However,
from the total power savings results, all the approximate
multipliers structures in this paper are less than 1%. The
average number of LUTs savings for this realization is 4.2%.
Additionally, most FPGA_ISH5 xRM structures do not have
the worst deviation from the ideal curve on the correlator’s
output-quality metrics as the ISH1 and FPGA_ISH1.

VIII. FUTURE WORK
The correlator array implementation misses the extension to
work with an antenna array larger than its size. To further
investigate the approximate multiplier on a large telescope,
multiple boards are required to measure the power reduction
on a large scale.

To take advantage of using approximate computing on
Intel’s FPGA, regarding power savings and latency, the
synthesis-tool method of mapping a circuit design from the
VHDL to an FPGA must be considered. Otherwise, another
solution will be to find the power Pareto-optimal approximate
multipliers set for a given number of CMACs operators,
which will raise the design-space for exploration.

To further investigate the energy-efficiency of the corre-
lators on an FPGA, it would be of interest to investigate
whether the approximate multipliers benefits of reducing
power becomes relevant as the integration length rises. Thus,
finding the threshold of the accumulator length before it
becomes the power dominant and obliterates the benefits of
applying approximate multipliers on FPGA. In such cases,
approximate adders designed for FPGA could be of interest
in the replacement of the ripple-carry-adder in the accumula-
tor component, illustrated in Fig. 10, for further investigation.

Regarding the output-quality metrics performance of the
correlator, the approximate 8-bit input recursive multipliers,
that employ the ISH methodology to build xMAC accel-
erators, were analyzed. As indicated in the quality-output
result and [1], as long the SNR at the input of the correlator
is low, a more aggressive approximation could be applied,
and thus higher power savings are achievable. The number
of approximate multipliers for the output-quality evaluation
can be expanded to the FPGA-based approximate multipliers
constructed from the Xel-FPGA framework [31] and the
Approximate Logic Synthesis (ALS) methodology [32].
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APPENDIX A RECURSIVE MULTIPLIERS STRUCTURE
An n-bit recursive multiplier (RM) can be designed using
(n2 )2 elementary 2-bit multipliers, where n represent the
input bit width of the multiplier, n ∈ {4,8,16,32,...}. The
elementary 2-bit multipliers generate the partial products of
the multiplication operation. The summation of these partial
products with bit-shift is the resultant output of an n-bit RM.
As an example, Fig. 19 illustrates a 4-bit RM and 8-bit RM
structure that compose four and sixteen 2-bit elementary mul-
tipliers, respectively. To transform the RM to an approximate
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(a) 4-bit input recursive multiplication (RM) requires four 2-bit
input multipliers.

exploration, and also propose a novel 2 × 2 approximate
multiplier design that helps to alleviate such configurations.

1) Overflow Examples: Consider a 4 × 4 multiplication
operation as shown in Fig. 4a. Let A = (1111)2 and B =
(1111)2. This implies AH = AL = BH = BL = (11)2 = 3,
therefore (2) becomes,

O4×4 = 3 ∗ 3 + 4(3 ∗ 3) + 4(3 ∗ 3) + 16(3 ∗ 3)
assuming M3 (3∗3 7→ 11) is deployed for all 2×2 multipliers,

O4×4 = 11 + 4(11) + 4(11) + 16(11)

= 275 = (1 0001 0011)2

the output exceeds 8 bits (2n). Therefore the above example
is an overflow configuration for a 4× 4 multiplier, and is not
desired. In case of a 4 × 4 multiplier, the overflow occurs
as the value of the output is greater than 255, i.e., 22n −
1. However, while constituting a higher order multiplier, say
8 × 8 multiplier, a 4 × 4 multiplier with an output value of
less than 255 may also overflow the higher order multiplier.
Note that 255 is still considerably larger than the maximum
possible accurate output value of a 4× 4 multiplier, which is
225. Consider an 8 × 8 multiplication (Fig. 4b), and let the
constituting four 4× 4 multiplications be represented by Ma,
Mb, Mc and Md such that the least significant multiplication is
Ma while the most significant is Md. The following expression
represents the 8× 8 computation,

O8×8 =Ma + 16(Mb) + 16(Mc) + 256(Md) (3)
where the constants 16 and 256 are representing the shift
factors. Let A = (1111 1111)2 and B = (1111 1111)2. Let
M3, M3, M1 and M are employed to compute the AL ∗ BL,
AL ∗BH , AH ∗BL and AH ∗BH partial products respectively
for each of the 4× 4 multipliers. Therefore, each of the 4× 4
multipliers will generate,

O4×4 = 11 + 4(11) + 4(7) + 16(9) = 227

and (3) becomes,
O8×8 = 227 + 16(227) + 16(227) + 256(227)

= 65603 = (1 0000 0000 0100 0011)2

the output exceeds 16 bits (2n), therefore this is an overflow
configuration. So, even in cases where none of the 4 × 4
multipliers lead to overflow, the resulting 8× 8 multiplier can
cause overflow.

2) A Novel 2 × 2 Approximate Multiplier: In order to
alleviate the overflow problem, we propose an approximate
2 × 2 multiplier design (M4), as shown in Fig. 5, which
provides a larger negative error (ε = −4) as compared to M1.
Note that M4 can be balanced with two M2 (ε = +2) in order
to achieve the internal-self-healing. Interestingly, M4 is useful
in the design of near-to-zero mean error recursive multipliers
as it reduces the maximum possible output value of an n× n
multiplier. For instance, if M4 is employed to only AH ∗BH

in (2), it averts the possibility of overflow no matter which of
the combination out of the given choices (M/M1/M2/M3/M4)
is used for the other three 2× 2 multipliers.

3) Overflow Handling Scheme: In order to identify the
overflow configurations, we propose to assess each configura-
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(b) 8× 8 recursive multiplication requires sixteen 2× 2 multipliers.

Fig. 4: Recursive n×n multiplication utilizes elementary 2×
2 multipliers. The same colors show equal numerical weight
2 × 2 multipliers that can be approximated with +δ and −δ
errors to enable ISH.
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(a) Truth table of M4.
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(b) M4: 3*37→5.

Fig. 5: A proposed 2× 2 approximate multiplier for overflow
compensation.

tion step-wise for 4×4, ... , n/2×n/2 and n×n cases. Without
loss of generality, here we elaborate on an 16× 16 recursive
multiplication operation. For each 16×16 configuration, firstly,
we need to check an overflow for each of the sixteen 4 × 4
multipliers,

max value 4 < 28 (4)

where max value 4 is the maximum possible value of a
4 × 4 multiplier. If Eq. (4) fails for any of the sixteen 4 × 4
multipliers, the configuration is discarded. Secondly, we need
to check an overflow for each of the four 8× 8 multipliers,

max value 8 =
4∑

j=1

[max value 4(j) ∗ S(j)] < 216 (5)

where max value 8 is the maximum possible value of an
8 × 8 multiplier, which is essentially the summation of the
products of maximum possible values of constituting 4 × 4

{
{
{
{

Md

Mc

Mb

Ma

(b) 8-bit input recursive multiplier (RM) requires sixteen 2-bit input
multipliers.

FIGURE 19: Recursive n-bit multiplication utilizes elemen-
tary 2-bit input multipliers. The same colors show equal
numerical weight 2-bit multipliers that can be approximated
with +δ and −δ errors to enable Internal-Self-Healing (ISH)
[2].

RM (xRM), either the adders, the 2-bit multipliers, or a com-
bination of both must be approximated. The proposed xRM
in [2] utilized a combination of several approximate 2-bit
multipliers ASIC-based designs, where the best combination
for reduction of power or area is selected based on the input
distribution and the output quality constraints. The truth-table
of these 2-bit multiplier types is shown in Fig. 20.

APPENDIX B FPGA CORE STRUCTURE
In principle, the FPGA architecture consists of three pro-
grammable logic blocks, namely the logic element (LE),
the I/O element, and the routing element, that is placed

in an island-style structure [36] [37]. The LE expresses a
logic function, the I/O element provides an external inter-
face, and the routing element interconnects different blocks.
Aside from these logic blocks, FPGAs also contain numerous
hardened blocks for common specialized tasks, such as the
DSP units, the embedded memory to increase the calculation
ability, and the phase-locked loop (PLL) to provide a clock
network within the FPGA. The logic blocks are named dif-
ferently among FPGA vendors. For Xilinx FPGA devices,
it is named Configurable Logic Block (CLB) and for Intel
FPGA, it is named Logic Array Block (LAB). A logic tile
in the FPGA structure is a set of neighboring LE, and two
routing elements (the connection block and the switch block).
The internal structure of the LE consists of a LUT, a flip-flop
(FF), and a selector. The LUT with k-inputs can express a
logic function with a k-input truth table. The FF stores the
output value from the LUT. The selector controls whether
the value of the LUT or the one stored in the FF is outputted
from the LE. The area efficiency in the LE depends on how
efficiently the internal component is used when a circuit is
implemented on the FPGA. When the LUT is limited by z-
input, due to the 2z configuration memory bit for the LE, the
area efficiency of the internal LE increases. However, in cases
where a k-input logic function is greater than the z-input
LUT, the total number of LE also increases in order to map
completely the k-input logic function on the FPGA. When
the number of I/O pins increases, the routing part increases,
and thus increases the area per logic tile. The total area of a
circuit design implemented on an FPGA is determined by the
product of the total number of logic blocks used with the area
per logic tile. Modern FPGAs also employ the adaptive LUTs
to gain a higher area efficiency, since their internal structure
is capable of implementing more logic functions compared
to LE [37]. The naming convention of the adaptive LUTs for
Intel and Xilinx are the adaptive logic module (ALM) and
adaptive CLB, respectively.

APPENDIX C FPGA POWER CONSUMPTION
Whenever the semiconductor technology of the FPGA is
constructed via a Static Random Access Memory (SRAM)
base, then the power profile of the FPGA is similar to
CMOS-technology [34] [36]. In CMOS circuit, the total
power consumption is the sum of the dynamic and the static
power components within the circuit. The dynamic power
component is referred to as the power consumption of the
circuit during a switching activity, whereas the static power
component is the power lost produced from the current flow
leakage through inactive transistors in the circuit [35]. This
leakage is the sub-threshold current leakage and the gate
current leakage which is predominantly caused by the short-
channel effects of the transistor physical size. As the transis-
tor technology continues to shrink, the sub-threshold leakage
current increases exponentially. The static power component
is expressed as,

Pstatic = Vdd · Ileakage (28)

20 VOLUME 17, 2016



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 20: Truth-tables of 2-bit multipliers. A and C are 2-bit inputs having a range of 0 to 3, shown in decimal numbers.
Accurate (M) has all the products correct. M1 has only one output approximated (3×3 7→7 instead of 9) that produces an error
of -2 [3]. M2 has three approximated outputs [4], wherein each approximate produces an error of -1 (1×17→0 instead of 1). M3
is similar to M1, however, it produces an error of +2 to complement M1 [5]. M4 produces an error of -4 while approximating
the product (output) for the same combination of inputs, i.e., A = 3 and C = 3 [2]. The figure is from [1].

where Ileakage denotes the total leakage current in the tran-
sistor. Dynamic power dissipation on the other hand is dom-
inated by the transition of logic state, either from logic 0
to logic 1 or vice versa, at the circuit nodes. Moreover, it
is also influenced by a concurrent transition of both PMOS
and NMOS transistors on a node. This concurrent transition
would cause a temporary short-circuit at a short period, thus
resulting in a power dissipation (Pshort) in the CMOS circu-
ity. However, this short-circuit power dissipation is consid-
erably lower than the power switching dissipation with high
switching activities. In terms of power saving, the interest
is in finding techniques that reduce power by lowering the
switching activity. For completeness on the dynamic power
dissipation in a CMOS circuit, its expression is given by,

Pdynamic = Pswitch + Pshort (29)

Pswitch = α07→1fclkCLV
2
dd (30)

Pshort = TscVddIpeak (31)

where α07→1 is the activity factor, fclk is the clock frequency
the CMOS circuit is operating, CL is the load capacitance
which charges or discharges when a transition occurs, Vdd is
the supply voltage of the CMOS cirtuity, Tsc is the rising
edge or falling edge time of the input signal and Ipeak is
the peak current when a short-circuit occurs [33]–[35]. The
activity factor is defined as the probability a circuit node
changes from logic 0 to logic 1 within one clock cycle. When
a signal is triggered continuously on every clock cycle, e.g.
the clock signal itself, then the activity factor on that node
is equal to 1. Thus, Pswitch = fclkCLV

2
dd on that node.

On the other hand, when a signal is toggled continuously
every two clock cycles, the activity factor is still equal to
1 by definition. Thus, the Pswitch = fclkCLV

2
dd. In cases

where the switching occurs irregularly on the node with a
Uniform Distribution, then the activity factor is determined
by multiplying the probability the node switches from logic
0 (P (Y=1)), with the probability it switches to logic 1
(P (Y=1)) [35],

α0 7→1 = P (Y=0) · P (Y=1) (32)

For example, in the activity factor for the elementary 2-
bit input accurate multiplier module in [2], the MSB node

produces logic 1 only once for all 16 input combinations.
Hence P (Y=1) = 1

16 and P (Y=0) = 15
16 , thus the probability

the node is active is approximately to 0.06.
To define the dynamic power model for SRAM-based

FPGA, the dynamic power model for all hardware resources,
that cause a transition of one logic state to another, must be
included. Since power switching is the dominant component
of the dynamic power model, the short-circuit power dissipa-
tion would be ignored. Thus, the expression of the dynamic
power of the FPGA is given as,

Pdynamic = fclkV
2
dd

K∑

k=1

α07→1kCkUk (33)

where fclk and Vdd are the operating frequency and the
supply voltage of the FPGA, respectively. α07→1k , Ck and Uk

are respectively the activity factor, the effective capacitance,
and the utilization of kth LUT [34].

APPENDIX D SIGNAL FLOW GRAPH DERIVATION
The derivation of an architecture from an algorithm in this
work is based on deriving the Signal Flow Graph (SFG).
The idea of doing so is to demonstrate the hardware struc-
ture that is needed for executing the algorithm. In practice,
the algorithm descriptions refer to either a programming
language or algebraic descriptions. In this section, the SFG
derivation is illustrated from a simple algebraic description
for demonstration purposes. The information in this appendix
is partially collected from a course offered at the University
of Twente, namely Computer Architecture 2, course module
code: 192130250.

A. DESIGN FLOW OF SFG
The design flow of the SFG consists of the following steps:

1) Idea
2) algebraic description or program (imperative)
3) single assignment (function)
4) recurrent relations
5) dependency graph
6) signal flow graph
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The algebraic description for this demonstration will be the
matrix-vector-multiplication expressed as,

ci =

N−1∑

j=0

ai,j · bj (34)

where i and N is an arbitrary natural number (N).

B. ALGORITHM TO DEPENDENCY GRAPH
The first objective is to derive the dependency graph (DG)
from the algebraic description. DG consists of vertices and
edges. The vertices are expressed as operations and the
edges as the data flows in the graph. The graph describes
the dependencies of the data between the vertices. The data
through an edge of the DG is a scalar value. The vertices
are a function of a scalar value. The internal details of the
vertices are determined at the single assignment phase. With
an associative operation in the algorithm, the single assign-
ment is the function occurring repeatably in the algorithm.
For Eq. 34, the vertices are a combination of multiplica-
tion and addition operations. The recurrent relation of the
algorithm establishes the dependencies of the vertices. With
an associative operation in the algorithm description, two
recurrent relations can be derived as illustrated in Fig. 21.
For a complete description, the recurrent relation alternative
1 is expressed as,

si,j = si,j−1 + ai,j · bj (35)

with a minimum bound of si,-1 = 0 and maximum bound of
ci = si,N−1, whereas the recurrent relation alternative 2 is
expressed as,

si,j = si,j+1 + ai,j · bj (36)

with the minimum bound of ci = si,0 and the maximum
bound of si,N = 0. For both recurrent relations alternatives,
i ∈ {0, 1, . . . ,K} and j ∈ {0, 1, . . . , N − 1}.

(a) Recurrent relation alternative 1.

(b) Recurrent relation alternative 2.

FIGURE 21: Recurrent relations derived from Eq. 34.

Each recurrent relation represents a DG. For example, Fig.
23a and Fig. 23b illustrate the internal structure of the ver-
tices, and its entry and output, respectively, from the recurrent
relation alternative 1 (see Eq. 35). The number of indices in

the recurrent relation defines the dimension size of the DG.
With the two indices in the recurrent relation alternative 1,
a two-dimensional DG is generated. Fig. 22c illustrates this
for K set to four and N to three. The DG from the recurrent

X

+

ai,j

bj

si,j-1 si,j

(a) The internal structure of the
vertex for the recurrent relation
in Eq. 35.

PE

bj

si,j-1 si,j

(b) The entry and output of the
vertex for the recurrent relation
in Eq. 35.

(c) Globally recursive graph.

FIGURE 22: The dependency graph from Eq. 35 with K = 4
and N = 3. A vertex is called a processing element (PE).

relation alternative 2 is a vertical mirrored version of the DG
in Fig. 22, where all the horizontal edges are pointing to the
left, the initial points are placed to the right, and the outputs
ci to the left.

Both alternatives generate a DG with global dependencies
on b0, b1, . . . , bN−1. The generated DG from both alterna-
tives is known as a globally recursive graph. This is due to
an existent set of global data dependencies in the graph. A
global data DG is limited to be manipulated and transformed
into an SFG. To overcome this, the global data dependencies
are transformed into local data dependencies by adjusting
the recurrent relations. For this transformation, the recurrent
relation alternative 1, Eq 35, can be modified either as,

si,j = si,j−1 + ai,j · di−1,j (37)

with di,j = di−1,j and d-1,j = bj , or as

si,j = si,j−1 + ai,j · di+1,j (38)
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with di,j = di+1,j and dN,j = bj . From this manipulation
tactic, two extra recurrent relation alternatives are produced
from Eq. 35, hence two local DGs can be generated. The
resultant local DG from Eq. 37 is shown in Fig. 23. The local
DG from Eq. 38 is a horizontally mirrored version of Fig. 23,
where all the vertical edges are pointing upwards. Note that
applying the same tactic on the recurrent relation alternative
2, two extra recurrent relation alternative are also produces,
which in total four local DGs can be produced from Eq. 34.

X

+

ai,j

di-1,j

si,j-1 si,j

di,j

(a) The graphical representation
of the recurrent relation in Eq.
37.

PEsi,j-1 si,j

di-1,j

di,j

(b) The single assignment pro-
cess representation of the recur-
rent relation in Eq. 37.

j

i

(c) Locally recursive graph.

FIGURE 23: The dependency graph from Eq. 37 with K = 4
and N = 3.

C. DEPENDENCY GRAPH TO SIGNAL FLOW GRAPH
The SFG is drawn similarly to the DG with a different context
on vertices and the data flows through the edges. In SFG,
the data through an edge is described as streams (function on
time), and the vertex is described as a function on streams.
The vertices can be modeled as a synchronous machine, such
as the Mealy- or the Moore Machine. These machines consist
of registers and combination logic gate circuits. The registers

are modeled by delay (D) units and the combinations of
logic gate circuits by functions. Because of this, an SFG
may contain loops as long as there is at least one unit
delay in the loop. For this demonstration purpose, the mealy
machine is considered. The algebraic function of the mealy
machine has two inputs and two outputs, which is written as
yt, st = Fmealy(xt, st-1). To create a loop edge in the SFG, a
register is placed between the entry st-1 and the output st (see
Fig. 24a). Since there is a repetitive execution of an operation
(the repetitive vertices) in a DG, each execution can operate
at equi-time zones. Mapping this repetitive execution along
one axis folds the repetitive vertices of the DG to one SFG
vertex (see Fig. 24b). Essentially, the SFG is a fold structure

(a) The graphical representation of the synchronous machine.

F

st-2

F

F

F

st-1

st

st+1

st+2
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Signal Flow GraphDependency Graph

(b) Time-folding a set of re-instantiated nodes from a Dependency
Graph to a node of a Signal Flow Graph.

FIGURE 24: A simple example of mapping the Dependency
Graph to a Signal Flow Graph.

of the DG. Hence, a M-dimensional DG is mapped to a
(M-1)-dimensional SFG. The data consumed and produced
by the vertices in the M-dimensional DG within equi-time
zones are scheduled in the (M-1)-dimensional SFG edges.
The mapping of vertices and edges of a DG to an SFG can be
done in different order, which derives different structures of
the SFG. To clarify the mapping procedure mathematically,
both the DG and the SFG are fully described by:

1) The set of vertices Vn = {vnode}
2) The set of intermediate edges Eint = {(vsource, ed)}
3) The set of input edges Ein = {(vin, ed)}
4) The set of output edges Eout = {(vout, ed)}

where ed is the displacement vector between the source
(vsource) and the destination vertices (vdest), which it is defined
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as ed = vdest - vsource. The mapping from an M-dimensional
DG to a (M-1)-dimensional SFG is described by,

w = P · v (39)

where P is the processor assignment matrix, w is any vector
of the SFG description, and v is the vector in the DG
description. The processor assignment matrix is determined
by,

P = MT · A (40)

=




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


 · A (41)

where the mapping matrix MT is (M-1)×M identity matrix
and A is a non-singular matrix. Because of this, P con-
sists of (M-1) independent row vectors that span an (M-1)-
dimensional hyperplane through an origin. Such a hyperplane
can also be described by a vector d perpendicular to the
hyperplane, in which the vector d is defined by P · d = 0. This
vector d is known as the projection vector. Fig 25 illustrates
three resulting SFG derivations from the local DG in Fig.
23 by three different processor assignment matrices P. These
processor assignment matrices are equal to the null-space of
their corresponding projection vector d.

The order in which data are consumed and produced in
time by the SFG vertices is assigned by the scheduling (S).
The scheduling of producing and consuming data, e.g. y(t),
from the vertices on the SFG is determined by,

t = S · v (42)

where t indicates the time instance, that the data y from the
vertex in v, will take place through the resulting SFG edge.
The scheduling is determined by,

S = ST · A (43)

=
(
1 0 0 · · · 0

)
· A (44)

where the scheduling matrix ST is a 1×M identity matrix and
A is a non-singular matrix. Because of this, the matrix S is
also referred to as sT , which is a transpose of the scheduling
vector s. With a scheduling vector, two vertices in a DG, e.g.
vx and vy , are scheduled at the same time if,

sT · vx = sT · vy (45)

sT · (vx − vy) = 0 (46)

In other words, vertices in the DG, that are in the same
hyperplane perpendicular to sT , are scheduled for the same
time.

The restriction on applying the scheduling vector s and the
projection vector d is that they cannot be perpendicular to
each other for a non-singular matrix of sT attached on top
of P. Note that attaching the scheduling matrix ST on top
of the mapping matrix MT forms the M×M identity matrix.
Because of this, attaching the scheduling S matrix on top of

the processor assignment matrix P becomes equivalent to the
non-singular matrix A, and thus,

det
(

S
P

)
̸= 0 ⇐⇒ det(A) ̸= 0 (47)

From this result, and S ≈ sT , and the processor assignment
matrix P being equivalent to the null-space of the projection
vector d, e.i. P·d = 0, the following statement holds,

sT · d ̸= 0 ⇐⇒ det(R) ̸= 0 (48)

where R is the matrix that consists of the matrix sT attached
on top of the matrix P.

Proof:
Any vector that is a linear combination of the row-vectors
of P is perpendicular to d. The scheduling vector sT is not
perpendicular to d, hence it cannot be written as a linear
combination of row-vectors of P. Therefore, R consist of a
set of independent row-vectors, and thus

sT · d ̸= 0 =⇒ det(R) ̸= 0 (49)

Suppose now that sT ·d = 0. Since P·d = 0 and d ̸= 0 implies
that R·d = 0, and thus det(R) = 0. This means,

sT · d = 0 =⇒ det(R) = 0 (50)

and thus its inverse also holds,

det(R) ̸= 0 =⇒ sT · d ̸= 0 (51)

Combining the statement in Eq. 49 and Eq. 51, the statement
in Eq. 48 is proven.

Furthermore, the scheduling vector sT is also restricted
by the direction of the edges in the DG. Since the edges
in the DG express dependencies between the vertices, the
scheduling of producing and consuming data between the
vertex of the SFG must be consistent with the vertex of the
DG. The scheduling vector sT expresses the order in which
the operations will be executed in the vertex of the SFG.
An operation may not depend on an operation in the future.
Therefore, the angle between the edges in the DG and the
scheduling vector s must be less or equal to 90 degrees.
Therefore, any dependency edge ed in the DG must hold the
following,

sT · ed ≥ 0 (52)

For instance, the local DG in Fig. 23 contains edges that are
displaced either as ed = (0,1) or as ed = (1,0). With these two
types of edges, the scheduling vector s is restricted clockwise
from (0,1) to (1,0). With this restriction of the edges in com-
bination with the projection vector d set to (0,1) to form the
SFG in Fig. 25b), the scheduling vector is further restricted
clockwise from (0,1) to (1,1). This is due the subscript i and
j being natural numbers. With the projection vector d set to
(1,0) to form the SFG in Fig. Fig. 25c, the scheduling vector
restriction from the edges is further restricted clockwise from
(1,1) to (1,0). With the projection vector d set to (1,1) to
form the SFG in Fig. Fig. 25d, the scheduling vector stays
restricted clockwise from (0,1) to (1,1). Fig 26 illustrates the
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j

(a) The mathematical description of all vertices and edges of the
Dependency Graph in Fig. 23.
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(b) The resulting SFG for the projection vector d set to (0,1), e.i. an
increase in subscript j.
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(c) The resulting SFG for the projection vector d set to (1,0), e.i. an
increase in subscript i.
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(d) The resulting SFG for the projection vector d set to (1,1), e.i. an
increase in both subscripts.

FIGURE 25: Mapping the Dependency Graph to Signal Flow Graphs by using three different projection vectors d set in (i,j)
form. The processor assignment matrix P being equivalent to the null-space of the projection vector d and using the mapping
description in Eq. 39, three different Signal Flow Graph structures are derived from the Dependency Graph. Note the superscript
(T) indicates the transpose transformation of a matrix.

VOLUME 17, 2016 25



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

complete region of allowed scheduling vectors for the three
projection vectors in combination with the two types of edges
of the local DG by using Eq. 48 and Eq. 52.

Allowed Scheduling
vectors

Allowed Scheduling
vectors

Allowed Scheduling
vectors

Allowed Scheduling
vectors

Allowed Scheduling
vectors

FIGURE 26: The complete derivation of the scheduling
vectors restriction for the three projection vectors in Fig. 25.
(a) is when d = (1,0), (b) d = (0,1) and (c) d = (1,1).

Once the scheduling vector sT is defined, Eq 42 adds the
scheduling information of the data in the DG to the SFG.
Additionally, the number of the unit delays (Dn) on the SFG
edges must also be considered. The number of unit delays is
defined as,

n = s · (vdest. − vsource) (53)

For example, taking the projection vector d equal to (1,0)
from the local DG in Fig. 23, and the scheduling vector
sT equal to the projection vector d, all the edges pointing
downward (ed = (1,0)) mapped to the SFG will consist of one
delay unit in the SFG, except for the set of input edges. The
time instance to consume and produce data through the edges
of the resulting SFG is computed by Eq. 42. Fig. 27 illustrates
the fully annotated SFG with the scheduling information of
the data and the delay units on the edges for the projection
vector d and scheduling vector s set to (1,0).

APPENDIX E TESTBENCH AND TEST FLOWCHART
A. TESTBENCH
The testbench consists of two components, e.i. the Device-
Under-Verification (DUV) and the Test-Vector-Controller
(TVC). The correlator array with all its internal components
is realized in VHDL and instantiated as DUV. The testbench
and the TVC are also described in VHDL. The functional
behavior verification and the gate-level timing simulation
of the DUV are conducted in Questasim. Firstly, the DUV
functional behavior is verified before being synthesized by
Quartus Prime Standard. During the simulation, the gen-
erated input vectors are imported by the TVC component
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FIGURE 27: The fully annotated Signal Flow Graph.

and fed into the inputs of the DUV. Comparatively, the
TVC exports the output vectors of the DUV into text files.
The vectors of these exported text files are compared to
the output vectors of the behavioral model in MATLAB
for verification as illustrated in Fig. 28. Moreover, the TVC
component also provides the clock, the reset, and the enable
signals for the registers in the DUV during the simulation.
After the last data of an input vector is processed in the
DUV, the TVC component is set to terminate the simulation.
Thus, the product of the clock period with the length of
the output vectors determines the simulation run-time on
Questasim. After the pre-synthesis DUV functional behavior
is verified, the correlator array architecture is synthesized,
and the produced gate-level netlist is instantiated as the DUV.
The standard delay file and the tcl script (dump all vcd nodes)
are loaded on the DUV additionally in QuestaSim for the
gate-level timing simulation. The execution of the gate-level
timing simulation is conducted similarly to the simulation of
the pre-synthesis design. The generated input vectors used
for the pre-synthesis design are fed to the DUV with the gate-
level netlist incorporated. The resultant output vectors in this
case are also verified with the output vectors of the behavioral
model in MATLAB. After the gate-level timing simulation,
the Value Change Dump file is produced by QuestaSim.
This file is fed to the Power analyzer tool of Quartus Prime
Standard and the power report is produced.

The pseudo-code of the correlator behavior MATLAB
model in Fig 28 is generalized in Alg. 2, where the output
vectors real_real, imag_imag, real_imag and imag_real are
exported. The symbol (⊗) is denoted as the behavioral model
of an 8-bit recursive multiplier using 16 elementary 2×2
building blocks written on MATLAB.

B. THE TEST FLOWCHART.
A shell script is provided to run the test setup automat-
ically for collecting the hardware resources, power, and
the maximum operating frequency. The basic flowchart
of the shell script is illustrated in Fig. 29. The shell
script only works in a Linux environment with Intel Quar-
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FIGURE 28: The test setup with the testbench embedded for
collecting the hardware resource and power result.

Algorithm 2 Pseudo-code of the simple Interferometry
(MATLAB model) in Fig. 28.
1: exportInputVector(real(conj(R)), imag(conj(R))
2: for i = 1 : N do
3: for j = 1 : N do
4: exportInputVector(real(A{i,j}), imag(A{i,j}))
5: for t = 1 : T do
6: real_real{t} += real(A{t, i, j}) ⊗ real(conj(R{t}))
7:
8: imag_imag{t} += imag(A{t, i, j}) ⊗ imag(conj(R{t}))
9:

10: real_imag{t} += real(A{t, i, j}) ⊗ imag(conj(R{t}))
11:
12: imag_real{t} += imag(A{t, i, j}) ⊗ real(conj(R{t}))
13: end for
14: exportOutputVectors(real_real, imag_imag, real_imag, imag_real, i, j)
15: end for
16: end for

tus Prime Standard and Questasim installed. For gate-
level timing simulation, Questasim must be configured
with Altera’s and Cycloneive’s netlist libraries. Both li-
braries can be obtained from Intel’s ModelSim software.
The shell script, the VHDL files, and the netlist libraries
are provided at https://gitlab.utwente.nl/s2210703/correlator-
architecture.git.

APPENDIX F OPERATING FREQUENCY IN FPGAS
In any digital circuit, there exist many paths connected with
a number of logic gate components from an input source
to an output destination. The path with the most logic gate
components is known as the critical path. The data travel
time on the critical path indicates how fast the circuit can
operate. Hence, the maximum operating frequency (Fmax)
is the reciprocal of this data travel time. Synthesis tools
generally provide the possibility to measure the data travel
time on all paths of the design for an FPGA device when Flip-
Flops (FFs) are placed between all I/O pins. In any digital
design, the following constraint must hold to avoid timing
violation [38],

TFF-to-FF ≤ Tdeadline (54)

Inputs: c, n, t

Initialization: Clean the current project
directory and reset the setup tcl script

to default settings.

Step 1: Configure the VHDL files and
the setup tcl script related to 

c, n, and t.

Step 2: Start Quartus compilation
process.

Step 3: Generate data from MATLAB
of  all antennas and the resultant

accumulators data

Step 4: Start gate-level timing
simulation on Questasim

Step 5: Verify the output vectors of the
synthesis design with the output vector

of MATLAB

Step 6: Start Quartus Power Analyzer.

Output: Export the hardware resource
utilization, power, and 

operating frequency reports to .csv file.

Legends:
c: multiplier type
n: antenna array
t: integration length

FIGURE 29: The test flowchart

FIGURE 30: Different paths between the same FFs [38]

TFF-to-FF is the time delay between the source FF and the
destination FF. Tdeadline is the deadline that the data must
arrive at the destination FF. For timing analysis, the FPGA
tool-chain refers to only two components on a path between
a source FF and a destination FF. These two components
are called cells and interconnect cells. A cell is a name
representation of an FPGA resource, such as FFs, LUTs,
CLB/LAB, DSP, embedded memory, etc. An interconnect
cell is a name representation of a routing element, such as the
routing wires, the connection boxes, and the switch boxes.
The delay between a source FF and a destination FF is a
summation of all cell delays (TC) and interconnect delays
(TIC), that form a path between them. Note that every FF has
a small delay to output (Q) the stored value after a clock edge
(Tclk-to-Q). Considering FF as a cell, Tclk-to-Q is essentially
the TC of FF. The total time delay on a path between FFs
is derived as

TFF-to-FF = TC + TIC (55)

For example, Fig. 30 shows multiple paths between the same
source FF and destination FF of a design. TC of both paths
equals to 3.2 ns whereas the TIC of the longest path is 2.9 ns.
This will result in TFF-to-FF = 3.2ns+ 2.9ns = 6.1ns and an
operating frequency of 164 MHz.

The deadline is influenced by three factors. The first factor
is the clock period of the clock signal on the FPGA (Tclk).
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This clock period is decided during the system design, but
it can vary to find the maximum operating frequency. The
second factor is the setup time (Tsetup) of the destination
FF. This is the time, that the data must be stable before the
rising/falling edge of the clock signal to avoid producing
a metastable output from the FF. The third factor is the
time skew of the clock signal arriving at the source FF
and destination FF (Tskew). Note that Tsetup minimizes the
deadline by requiring the data to be stable before a clock edge
while the Tskew increases the deadline due to the small delay
between the FFs, hence

Tdeadline = Tclk + Tskew − Tsetup (56)

The difference between Tdeadline and TFF-to-FF is referred as
the setup slack (Ssetup) where the following statements are
derived:

1) Setup violation exist in the design when Ssetup < 0;
2) The Fmax is determined when Ssetup = 0;
3) All paths meet the setup time for all FFs when

Ssetup ≥ 0.
The naming convention of Intel Quartus Timing Analyzer
[39] compared to Eq. 54 is that the Data Arrival Time is
equivalent to the sum of TFF-to-FF and the Source Clock
Delay, the Data Required Time to Tdeadline and the Tskew to
the Destination Clock Delay subtracted by the Source Clock
Delay.

A. THE CRITICAL PATH OF THE CORRELATOR ARRAY
ARCHITECTURE ON THE FPGA
It is assumed the reader knows the correlator array of N×N
architecture from Section IV and V. From the derived depen-
dency graph in Section IV, it can be observed that the critical
path contains one multiplier and T number of adders. The
latency (L) of a m-bit input recursive multiplier structure is
estimated as [27],

Lm×m ≈ max(Lm
2 ×m

2
) + Ladder,m×m (57)

Thus, the internal critical path of the 8-bit input recursive
multipliers consists of one elementary 2-bit input multi-
plier block (L2×2), the adders in the 4-bit input multiplier
block (Ladder,4×4), and the adders in the 8-bit multiplier
(Ladder,8×8). The critical path in the "addi" component con-
sists of a comparator (≤), a multiplexer (MUX), and a ripple-
carry-adder (RCA) as illustrated in Section V.

To measure the operating frequency of the circuit, it is
required to place registers on the input and output (I/O) on all
paths by Quartus Prime Timing Analyzer. The input registers
must be driven by the same clock as the output registers
to compute the maximum operating frequency (Fmax) by
Quartus Prime Timing Analyzer. Note that the reported Fmax
is measured from the clock input port and ignores the user-
specified clock periods. For the measurement of finding the
critical path and latency, the clock period set on the clock
ports is 25 ns (40 MHz).

Table 9 illustrates the critical path of the correlator array
on the FPGA from Quartus Prime Timing Analyzer with

the number of cells, and interconnect cells (ICs), that each
component on the critical path contributes. The source FF is
the input register and the destination FF is the accumulator.
The 8-bit input recursive multipliers (RM) types are from
Table 1. As can be observed, the internal critical path in
the 8-bit input multipliers has the same amount of cells and
ICs for all 8-bit RM structures in Table 1. The difference
in the number of cells and ICs usage occurs at the "Addi"
component. The ISH1 has one Cell and one IC on the MUX
component, and 20 on the RCA. The ISH12 has one Cell and
one IC on the MUX component, and 21 on the RCA.

In Table 10, the timing information is collected from the
critical paths in Table 9 using the Quartus Prime Timing
Analyzer tool. The speedup (%) is taking the reported Fmax
of the correlator array architecture with an accurate RM
structure against the Fmax of correlator array architecture
embedded with the approximate RM as,

Speedup = (1− Accurate RMFmax

Approximate RMFmax

) · 100% (58)

It can be observed, that the critical path of the correlator array
architecture with the ISH1 embedded consists of the least
amount of cells and ICs, but still has a lower slack compared
to the correlator architecture embedded with the accurate RM
and negative speedup of 1.13 %. Moreover, it also gives
a negative speedup on the correlator array architecture. It
can be observed that the correlator array architecture with
the FPGA_ISH4 embedded does gain a positive speedup
and has the same number of cells and ICs on the critical
path as the accurate RM. Therefore, the latency of using
approximate RM on the correlator array architecture is not
a dominant component in speedup when realized on Intel’s
Cyclone Clone IV E FPGA. When designing an approximate
multiplier for a correlator architecture on Intel’s Cyclone
Clone IV E FPGA, the synthesis-tool method of mapping
the circuit design from the VHDL to the FPGA must be
considered. This way the benefits of applying approximate
computing on Intel’s FPGAs, regarding speedup, can be
exploited.

From the dependency graph derived in Section IV, we
define that the critical path contains one multiplier and T
number of adders. To investigate this on the FPGA, Table
11 and 13 are presented.

Table 11 illustrates the critical path of correlator array
architecture of 1×1 embedded with the accurate RM struc-
ture for the set of integration lengths (T ) = {21,22,23,24,
25,26,28,210,212}. Table 13 illustrates the critical path of
the correlator array architecture of 1×1, 2×2, 4×4, 6×6,
8×8, 10×10 embedded with the accurate RM structure and
integration length set to 64.

From Table 11, we can observe the 8-bit input multi-
plier component contributes to the same amount of cells
and ICs for all the integration lengths in {21,22,23,24,
25,26,28,210,212} As T increases, the number of cells and
ICs increases by the RCA component. When the integration
length is set to T1, the number of cells and ICs follows the
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output bit-width (W-bit) in Section V, which is 17-bit. It is
expected that as the integration length increases in 2z , an
addition of z-bit is added to the W-bit. Hence, a z number
of cells and ICs is expected to be added to the critical path
by the RCA component. However, this is not the case for
the rest integration lengths. Table 12 provides the timing
information on the critical paths in Table 11. From Table 12,
the maximum operating frequency indeed decreases as the
integration length increases.

In Table 13, the critical paths consist of the 8-bit input
accurate RM and the circuits in "Addi", namely the compara-
tor, the multiplexer, and the ripple-carry adder. The number
of cells and ICs on the critical path contributed by the 8-
bit multiplier is the same amount for the correlator array of
1×1, 2×2, 4×4, 6×6, 8×8, 10×10. The number of cells and
ICs contributed by the RCA component on the critical path
varies for the correlator array size of 2×2, 8×8, and 10×10.
The lowest number of cells and ICs contributed by the RCA
component occurs when the correlator array size is equal
to 2×2. Table 14 provides the timing information on the
critical paths in Table 13. It can be observed from Table 14,
that as the correlator array size increases, TFF-to-FF increases,
the setup slack and the Fmax decreases. A negative slack is
reached on the critical path when the correlator array size is
10×10. This is due to TFF-to-FF being longer than the clock
period assigned on the clock signal, where the solution is to
change the clock period to a lower TFF-to-FF. Even though the
critical path consists of similar components for the correlator
array of 1×1, 2×2, 4×4, 6×6, 8×8, 10×10, the decrease of
Fmax comes from the cells and ICs duration (TC and TIC) on
the FPGA. According to Amagaski M. and Shibata Y. [37],
the amount of traffic through the external routing track on the
FPGA is reduced when the number of logic stages is small.
Essentially, TIC on the critical path grows on a larger design
since the amount of traffic through the external routing track
increases. Because of the increase in traffic in the routing
track, the synthesis tool maps a longer physical route on the
FPGA between cells to avoid congestion. In Table 14, TIC
indeed increases as the correlator array size increases, thus a
longer route on the critical path between cells is mapped by
the synthesis tool.
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