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Abstract—To improve the effectiveness of mammography
screening, developing better diagnostic tools is paramount. For
large populations, automated annotation of patient exams can
significantly alleviate the workload of radiologists. Segmentation
of tumorous regions in an image provides more localization con-
text than classification, but the lack of fine-grained segmentation
labels often complicates training segmentation models directly on
the data available at local hospitals. We optimize three state-of-
the-art segmentation models for mammography using the CBIS-
DDSM, and evaluate their performance on a manually annotated
subset of our private dataset. Out of a U-Net, Segmentation
Transformer, and Segment Anything Model, the latter performed
best by a large margin on the CBIS-DDSM, achieving an IoU
of 27.42% as opposed to the U-Net achieving 9.11% and the
Segmentation Transformer with 8.26%. However, performance
on this public mammography dataset was unrepresentative of
the zero-shot transfer performance on our private dataset. Future
research should focus on similarly assessing the usability of other
public mammography datasets for training diagnostic tools that
are effective in clinical settings.

Index Terms—Mammography segmentation, deep neural net-
work, mammography images, pixel-wise label, region of interest,
zero-shot transfer

I. INTRODUCTION

In 2020, breast cancer was the world’s most prevalent form
of cancer with 2.26 million new cases and 685 thousand
deaths[1][2]. Earlier treatment of breast cancer improves out-
comes[3], and so does mammography screening in asymp-
tomatic populations[4]. Manual screening relies on expert
clinicians, resulting in a workload that increases with pop-
ulation size. Thus the aim of developing automated methods
of breast cancer diagnosis is to improve the diagnostic tools
for clinicians and alleviate their workload by acting as an
additional reader.

Placing a focus on aiding the diagnostic process means that
a binary classifier of malignancy is not enough; it will not
provide a radiologist with information about where a tumor
might be, or what the shape of the tumor is. Instead, we
focus on a task where the output provides localization context:
semantic segmentation of mammographic images. Semantic
segmentation entails assigning a class label to each pixel of
an image. In our work, we apply segmentation models to
a private mammography dataset recently collected by local
hospital Ziekenhuis Groep Twente (Hospital Group Twente).
This dataset is annotated with image-level labels, but mostly

lacks pixel-wise class annotations. To allow the evaluation of
segmentation models when applied to this private dataset, 206
images were recently annotated by a radiologist at ZGT.

A. Challenges and Contributions
In this work, we address two challenges.
1) Local hospitals lack pixel-wise annotations for their

datasets. Due to privacy concerns, medical data col-
lections are generally kept private. Consequently, the
responsibility for fine-grained annotation of these private
datasets falls on the hospitals. This prevents hospitals
from using their in-house mammography datasets for
training segmentation models with pixel-wise supervi-
sion.

2) Public mammography datasets are small when compared
to commonly used natural image datasets. Both natural
image datasets with object annotations (CIFAR-10[5],
SA-1B[6], ADE20K[7]) and without object annotations
(ImageNet[8]) surpass the sizes of public mammography
datasets[9, 10]. State-of-the-art computer vision models
thrive especially in high-data regimes[11][6]. This hin-
ders using large segmentation models for mammography
segmentation.

In combination, these challenges make it difficult for local
hospitals to understand the effectiveness of state-of-the-art
segmentation models for use within their organization. We
address these challenges with a threefold of contributions.

1) We establish a framework for training on public mam-
mography datasets and evaluating on unseen, out-of-
distribution data from a different clinical source. This
allows us to assess the zero-shot performance of models
on our private dataset. The highest overlap we achieve
on the private dataset is 31.91% (IoU) with a U-
Net. Importantly, we conclude that model performance
varies greatly between the CBIS-DDSM and the private
dataset.

2) With this framework, we compare three state-of-the-art
segmentation models trained with pixel-wise supervision
on the CBIS-DDSM. We find that the U-Net[12] outper-
forms the Segmentation Transformer[13], and that the
Segment Anything Model[6] greatly improves over both.

3) For the Segmentation Transformer, we compare the
effectiveness of full fine-tuning to Visual Prompt Tun-



ing[14]. Our results show that VPT produces equal
if not better performance than full fine-tuning. This
indicates that parameter-efficient fine-tuning methods
can be suitable for the mammography domain.

B. Research Question

In order to keep our research relevant to local hospitals,
we pose the following research question: ”How effectively
does segmentation performance on public mammography
datasets transfer to the private dataset collected by Zieken-
huis Groep Twente?” This phrasing is general enough to
remain useful for other local hospitals, while still measurable
and specific.

C. Background

To familiarize the reader with the Vision Transformer (ViT)
based models we have used in our research, we shortly
describe the developments that led to their emergence. The
field of Natural Language Processing has seen a lot of recent
progress, largely induced by the debut of the Transformer
and the emergence of large pre-trained models. Works like
BERT[15] and GPT[16] result in pre-trained models often
referred to as ‘foundation models’, as they provide a solid
base for fine-tuning to various downstream tasks. Subsequent
to this progress in NLP, the field of computer vision has
seen innovation in the form of the Vision Transformer. This
Transformer variant specially designed for vision tasks has
since competed with the more traditional CNNs. With the
Vision Transformer as a basis, models like the Segmentation
Transformer[13] and the Segment Anything Model[6] were de-
veloped to extend the Vision Transformer’s capabilities beyond
classification to segmentation. The Segmentation Transformer
and the Segment Anything Model are considered foundation
models for segmentation tasks.

The different ways in which a foundation model can be
fine-tuned to a downstream task are legion. One method of
particular interest to our work is Visual Prompt Tuning[14],
which has been developed specifically for Vision Transformer
architectures. Visual Prompt Tuning works well when few
training annotations are available for the downstream task,
which means it should be well-suited for mammography.
We detail the differences between the Vision Transformer,
Segmentation Transformer, and Segment Anything Model in
Section II-B.

II. RELATED WORKS

We discuss a number of works that are similar to ours, on
which we build, or are otherwise relevant to our research.

A. Mammography

1) Datasets: The New York University Breast Cancer
Screening Dataset v1.0 (NYU BCSD v1.0)[17] was intro-
duced in 2019. It is a mammography screening dataset of
considerable size, counting 229,426 patient exams, totalling
1,001,093 digital images. While the dataset itself has been
kept unpublished, the details of how it was collected and

curated are available in a public report by Wu et al. [17].
Such a report can contain useful lessons for the collection
of similar datasets at local hospitals. They mention that a
total of 5,832 exams led to biopsies within 120 days after
the exam. These exams have been annotated with pixel-level
cancer labels. These annotations were collected by providing a
group of radiologists with the corresponding pathology reports
and asking them to retrospectively annotate lesions that had
been selected for biopsies. Out of the total 5,832 exams
presented for annotation to the radiologists, 3,917 exams were
marked with at least one region. While this may seem like
a large dataset, it has not been made available publicly, and
it should be emphasized that out of 229,426 total exams,
3,917 exams (1.7%) have been annotated with pixel-level
labels. In comparison to other mammography datasets[9][10],
this makes it a large mammography dataset in the context
of unsupervised segmentation, but not when we consider the
pixel-wise supervised learning task.

The Curated Breast Imaging Subset of Digital Database for
Screening Mammography (CBIS-DDSM)[9] is a curated, up-
dated and standardized subset of DDSM. While CBIS-DDSM
was published in 2017, the underlying DDSM, a set of scanned
film mammography studies, was collected in the United States
and released in 1997. This makes the DDSM a rather old
dataset, and since the exams were initially stored on film, the
scanning of film mammograms has likely introduced an extra
layer of noise and other visual artefacts. The publication of
CBIS-DDSM in 2017 has allowed plenty of methods to be
trained and evaluated on this public dataset. This abundance of
research with this dataset makes it a suitable choice for use in
our work to enable comparison to other research. The CBIS-
DDSM is a dataset with 1,624 patient exams with Region
Of Interest (ROI) annotations, for 1,566 patients. The exams
contain 1644 annotated cases of which 753 are calcifications
and 891 are masses. These exams contain 3,032 images, with
3,103 annotated image regions. Each image contains at least
one annotated region, and a few images contain more than one
region.

The VinDr-Mammo dataset collected in Vietnam, released
in 2022, is a mammography dataset that contains 20,000
images from 5,000 studies. Its annotations include rectangular
regions of interest for exams that needed follow-up exami-
nation. The work by Nguyen et al. [10] accompanying its
publication presents a summary of mammography datasets,
including the NYU BCSD v1.0 and the CBIS-DDSM. It
shows that datasets have differing levels of annotations for
regions of interest and that the number of studies per dataset
varies wildly. The summary mentions four datasets that contain
annotations of the type “contour enclosing the finding” (i.e.
pixel-level annotations). These four are DDSM, INBreast,
NYU Dataset, and CSAW-CC. As mentioned previously, the
NYU Breast Cancer Screening dataset is not publicly available
and cannot be used in our work. INBreast is small compared
to the other three: it consists of 115 studies. The two datasets
most suitable for our purposes are (CBIS-)DDSM and CSAW-
CC. CSAW-CC concerns a carefully compiled set of 8723



patients in total, of which 7850 were selected from a healthy
control and 873 were diagnosed with breast cancer. For each
image, CSAW-CC includes the final diagnosis (cancer or no-
cancer.) This is different from the malignant/benign labels for
CBIS-DDSM, but makes it no less qualified for developing
tools that assist in malignancy detection and localization. We
have not used the CSAW-CC dataset in our experiments.

The private dataset we use in our work has been collected
at Ziekenhuis Groep Twente (ZGT), and provides image-level
class labels. It consists of 84,299 images, 15,991 patients,
and 21,013 exams. It concerns exams that were conducted
anywhere from 2013 through 2020, all of them digital. The
total number of images is 4 times as many as VinDr-Mammo,
and about 27 times as many as CBIS-DDSM. To facilitate the
evaluation of segmentation models, 206 images have recently
been annotated by a radiologist at ZGT. Similar to the collec-
tion of annotations for the NYU BCSD[17], the radiologist was
presented with pathology reports corresponding to the patient
exams from which the images were taken. The radiologist was
asked to retrospectively annotate regions of interest.

2) Segmentation: Michael et al. [18] present a survey
of mammography segmentation. They arrange the methods
into three categories: classical, machine learning, and deep
learning. For each work, they mention reported metrics but do
not clearly distinguish per work whether metrics are reported
over full mammograms or cropped regions of interest. This
makes it difficult to objectively compare the performance of
the various works listed in the survey. They conclude that the
deep learning methods seem to be the most promising and
that the U-Net is a popular choice because it requires few
annotated images.

The U-Net is a convolutional model developed specifically
for biomedical image segmentation[12]. It involves an encoder
and decoder with residual connections. The encoder performs
a step-wise compression of the feature space, and the decoder
has a shape inverse to that of the encoder, allowing it to expand
the feature space and produce a segmentation map. Each level
of the encoder connects through a residual connection to the
corresponding level of the decoder, allowing the more narrow
parts of the network to focus on high-level patterns. The U-Net
has been applied numerous times to CBIS-DDSM: Connected-
UNets[19], Connected-SegNets[20], ConnectedUNets++[21],
and Mammo-SAM[22] use the U-Net as a baseline to compare
other methods to. This positions the U-Net as a suitable
baseline candidate in our work, facilitating direct comparison
to these other works.

An example of research that reports metrics over cropped
regions, mass regions in particular, is Connected-UNets by
Baccouche et al. [19]. Connected-UNets combines two U-Nets
sequentially, adding extra residual connections between the
two networks. It also integrates Atrous Spatial Pyramid Pool-
ing in its proposed architecture. In advocacy for its proposed
architecture, a comparison is made to the Dice and IoU score
of various other models. On the CBIS-DDSM, their standard
U-Net achieves a test score of 64.87% IoU and 78.62% Dice
score. They conclude that their proposed Connected-UNet

architecture outperforms the other experiments, including the
standard U-Net.

ConnectedUNets++ by Sarker et al. [21] bases on
Connected-UNets and introduces an improved iteration over
their model. Additionally, ConnectedUNets++ performs mass
segmentation on full mammographic images instead of
cropped regions. This results in drastically lower reported met-
rics: a standard U-Net achieves 27% IoU and 41% Dice score
on the CBIS-DDSM test set. Similarly to Baccouche et al.,
Sarker et al. conclude that their proposed ConnectedUNets++
architecture outperforms the other architectures, including the
standard U-Net.

In contrast to the supervised U-Net and models with similar
task definitions, there also exist unsupervised approaches to
mammography segmentation. Examples are GMIC[23] and
GLAM[24]. The Globally-aware Multiple Instance Classifier
(GMIC) by Shen et al. [23] presents a classification method
designed to tackle two challenges that arise from properties
that differentiate medical images from natural images: higher
resolutions and (usually) smaller regions of interest. GMIC
does this by combining a memory-efficient but coarse global
network to identify regions of interest, and a more high-
capacity network to collect details from the identified regions.
Importantly, it combines the information computed over dif-
ferent patches to make the final class prediction. Its global
module can be used for segmentation purposes.

Global Local Activation Mapping (GLAM) by Shen et al.
[23] goes further than GMIC but uses a similar approach.
Just like GMIC, it makes use of a global, local, and fusion
module, and it is capable of discerning between malignant
and benign lesions. In GLAM, both the global and the local
modules output a segmentation map, while in GMIC only
the local module produces a saliency map. Both GMIC and
GLAM are trained for region selection in a weakly supervised
manner, only relying on image-level labels and the multiple-
instance nature of region selection. GMIC and GLAM were
trained and evaluated on the NYU dataset, resulting in per-
class Dice scores of (32.5%, 24.0%) and (39.0%, 33.5%)
for GMIC and GLAM respectively, for classes (malignant,
benign). Compared to a supervised U-Net trained on the pixel-
level annotated subset of the NYU dataset which evaluated
at Dice scores of (50.4%, 41.2%), the GMIC and GLAM
approaches are less precise in segmenting regions of interest.
Nevertheless, in the absence of pixel-level annotation, weakly
supervised methods like these are worth considering for use
by local hospitals.

B. Foundation models

The term ‘foundation models’ refers to large-scale models
pre-trained on large datasets to support a wide range of
downstream tasks. Since the introduction of Transformers
by Vaswani et al. [25] in 2017, foundation models have
revolutionized the field of Natural Language Processing. Ex-
amples of well-known Transformer-based foundation models
are BERT[15], Generative Pre-trained Transformers[16], and
successors of these works. A common factor in many recent



Large Language Models (LLMs) is their use of large text
corpora for pre-training for a task that induces the model to
learn a general form of language representation/understanding,
and their remarkable performance on subsequent more specific
downstream tasks.

The Transformer’s rise to prominence in NLP has prompted
research into how to effectively utilize similar architectures
for Computer Vision, resulting in the Vision Transformer by
Dosovitskiy et al. [11] and the Swin Transformer by Liu et
al. Both tackle an important difference in information density
between text and vision: while text is made up of information-
dense units (words), it is less straightforward to directly rep-
resent images in units of high information density. The Vision
Transformer (ViT)[11] does this by subdividing an image into
a set of equal-sized patches and applying a linear projection to
each patch to produce a visual token for each patch. Together
with added position embeddings, these tokens are then fed
to the Transformer. The ViT architecture exhibits a quadratic
relationship between input size and computational cost of
the attention mechanism[11]. Shifted Windows Transformers
(Swin Transformers)[26] take a different approach: the Swin
Transformer divides an image into separate local windows
within which self-attention is performed. Keeping the number
of patches within a local window constant means that while
the amount of local windows in an image increases linearly
with image resolution, the computational cost of the attention
mechanism within the local window stays constant, leading
to a linear relationship between input size and computational
cost.

In Figures 1a and 1b we illustrate the architecture of the ViT.
Figure 1a highlights the main contributions of Dosovitskiy et
al.: dividing the image into patches, and linearly projecting
these patches. Following the Vision Transformer, plenty of
research has produced models that incorporate ViTs as a
cornerstone for their architecture. Among these are also the
Segmentation Transformer and the Segment Anything Model
which we list in Section II-B1.

1) Segmentation Models: There exist many models pre-
trained for segmentation tasks. In this section we detail the
two most relevant to our experiments. The Segmentation
Transformer (SETR) by Zheng et al. [13] is a ViT-based
model designed for semantic segmentation. The SETR has
an encoder-decoder structure, where the encoder is a ViT,
and the decoder can have various designs. The three decoders
explored by Zheng et al. [13] are Naive upsampling (Naive),
Progressive upsampling (PUP), and Multi-level feature ag-
gregation (MLA). In Figures 1a and 1c we present diagrams
to visually demonstrate the correspondence between the ViT
(Figure 1a) and SETR. The implementation of SETR by Zheng
et al. was based on the MMSegmentation toolbox[27], which
provides a framework with building blocks for implementing
semantic segmentation experiments. The SETR has since been
incorporated into the MMSegmentation toolbox, paired with
reproduction experiments. While Zheng et al. [13] found the
MLA decoder to be most effective, the subsequent reproduc-
tion by the authors of MMSegmentation championed the PUP

decoder. In our experiments, we will be using the SETR-PUP
architecture.

The Segment Anything Model by Kirillov et al. [6]
combines a number of previously developed models including
CLIP[28] and ViTDet[29]. The contribution of Kirillov et al.
[6] is threefold:

• Dataset: The SA-1B is the largest segmentation dataset
to date, consisting of 1.1 billion masks and 11 million
images.

• Task: a redefinition of the segmentation task as prompt-
able segmentation. The goal of the task is to produce a
valid segmentation mask given any segmentation prompt.

• Model: trained on the SA-1B dataset for the redefined
task, a modular Segment Anything Model that incorpo-
rates a ViT-based image encoder, a prompt encoder, and
a decoder.

The prompts used by the Segment Anything Model capture
quite some use cases: points, bounding boxes, masks, and text.

SETR and SAM are not the only pre-trained segmenta-
tion models available. Since we wish to focus on Vision
Transformers, and both SETR and SAM incorporate a Vision
Transformer into their respective architectures, these models
are well-suited for our research. Other ViT-based segmentation
models definitely exist, like Segmenter[30], HRViT[31], and
many more mentioned in a survey on semantic segmentation
with ViTs by Thisanke et al. [32]. We do not delve into their
details, because we will not be using them in our experiments.
This is not to say that they are not viable candidates for
mammography segmentation, or that we’ve determined SETR
and SAM to be in some way superior to these other models.

C. Fine-tuning methods
When considering how to optimize a pre-trained Vision

Transformer to a different downstream task, there are plenty
of fine-tuning strategies to choose from. The options include
but are certainly not limited to:

• Full fine-tuning: fine-tuning all parameters in the network.
• Partial fine-tuning: fine-tuning parts of the network, while

freezing other parts of the network. For example, freezing
the first n layers, and fine-tuning the later layers like done
by Yosinski et al. [33].

• Adapter-based methods: freezing the model paired with
inserting adapter layers into the model, helping to aug-
ment the latent representation of each layer with new
information that is beneficial to the end task. Examples
of this are Explicit Visual Prompting[34], and Low-
Rank Adaptation[35] (LoRA). In the latter, trainable low-
rank matrices are injected into the model. LoRA reduces
the amount of trainable parameters, is considered more
parameter efficient than full fine-tuning, and according to
Hu et al. [35] it lowers GPU memory requirements.

• Prompt-based methods: introduce learnable inputs to
learn task-specific prompts. An example called Visual
Prompt Tuning (VPT)[14] concatenates sets of learnable
parameters to the input of each layer of the Vision
Transformer.



Fig. 1: Schematic overviews: The Transformer Encoder indicated with green, the Image Embedding indicated with purple. (a)
Vision Transformer architecture introduced by Dosovitskiy et al. [11]. CLS Token indicates the learned special token prepended
to the projected patch embeddings. The MLP classification head takes as input the final encoded embedding at the same index
as this classification token was inserted (i.e., index 0). (b) Transformer Encoder used as part of the Vision Transformer, as
presented by Dosovitskiy et al. [11]. L indicates the number of encoder layers. Similar types of encoders are used in works
like BERT[15] and GPT[16]. (c) Schematic overview of the SETR architecture introduced by Zheng et al. [13]. In contrast to
the ViT, no CLS token is inserted in the image embeddings for the Segmentation Transformer. All final embeddings are used
as input to the decoder head. The resulting segmentation map assigns each pixel one of the possible classes.

D. Foundation models applied to Mammography Segmenta-
tion

At the moment of writing, there are few works that apply
either the Segmentation Transformer or the Segment Anything
Model to the mammography domain. This indicates a gap
in research. We have found only three works that apply
the Segment Anything Model to mammography. These are
discussed below. Looking a bit broader, we observe that other
Transformer variants have been applied to mammography, but
these either use Swin Transformers or propose modifications
that seem rather complex and specific. We do not discuss
their details, because they are difficult to relate directly to
our research into fine-tuning pre-trained models.

Both Ahmadi et al. [36] and Hu et al. [37] have applied
SAM without fine-tuning to breast tumor detection. Hu et
al. [37] focused on ultrasound imaging and exploring the
behaviour of SAM at various ViT backbone sizes. They did
not use mammography datasets. Ahmadi et al. [36] applied
SAM to both ultrasound and mammography, and compared its
performance to a U-Net trained on a breast ultrasound dataset.
They report that the U-Net was trained on mammography
images and that it outperforms the pre-trained SAM. While

they claim that their findings highlight the importance of se-
lecting deep learning architectures tailored for medical image
segmentation, it seems that their comparison is skewed: they
apply the Segment Anything Model in a zero-shot fashion,
without adapting it to the target dataset. Their conclusion that
the Segment Anything Model is ”less adaptable to various
tasks and datasets” than the U-Net architecture seems unsub-
stantiated when they have evaluated the performance of SAM
without optimizing for mammography.

A recent work by Xiong et al. [22], titled Mammo-SAM,
mentions a crucial domain gap between the medical domain
and the SA-1B dataset on which SAM has been trained. To
bridge this gap, they designed an adapter-based fine-tuning
method for SAM. Their adapter-based fine-tuning method is
different from what we explore in this paper, since we have
not used adapters to fine-tune the Segment Anything Model.
Rather, we have applied full fine-tuning to SAM. We also
investigated the possibility of applying a different parameter-
efficient method to the SAM: Visual Prompt Tuning (see
Section VI.) There is another major point in which their work
differs from ours: they remove the prompt encoder. In doing
so, they divert from the promptable segmentation task that



Fig. 2: Schematic overview of the SAM architecture intro-
duced by Kirillov et al. [6]. Encoding elements indicated with
blue, decoder with red. Compared to the SETR, we see that
SAM is markedly different in its inclusion of segmentation
prompts and a prompt encoder, and that it produces three
candidates for a valid mask instead of one. It uses a ViT-based
image encoder pre-trained for masked auto encoding (MAE).
The Mask Encoder is made up of convolutional layers. The
Prompt Encoder represents points and boxes using positional
encodings and learned embeddings. The Prompt Encoder uses
CLIP[28] for encoding text prompts.

was presented by Kirillov et al. [6]. The motivation supplied
for removing the prompt encoder is that their work focuses on
automatic segmentation without manual prompts. In our work,
we keep the prompt encoder because we think segmentation
prompts will be useful for good segmentation performance on
small regions of interest.

III. METHODOLOGY

In this work, we aim for an approach that is deployable
in several hospitals by adapting it to specific characteristics
of the datasets and problems at hand. The research question
posed in Section I-B can be asked by other local hospitals than
just Ziekenhuis Groep Twente. At the same time, ZGT is not
the only hospital with a collection of private mammography
images lacking segmentation labels. Manually collecting seg-
mentation labels for the entire private dataset and using them
to train supervised segmentation models would allow for the
best match between the trained model and the task it is applied
to in a clinical environment. Applying this approach at another
hospital would again involve the arduous process of manually
labelling a large mammography dataset. To achieve similar
results across hospitals, each hospital would need to produce
annotations of similarly high quality. Instead, we present an
approach that can be applied with comparatively little manual
annotation involved. This means using public datasets where
possible and only collecting manual annotations for testing.

Fig. 3: Schematic overview of VPT-Deep, as introduced by Jia
et al. [14]. Blue and orange indicate frozen and tuned param-
eters, respectively. (a) High-level overview of Visual Prompt
Tuning applied to the Vision Transformer. The Transformer
Encoder is shown in green, because it is partly tuned and
partly frozen. (b) A more detailed visualization of the Trans-
former Encoder during Visual Prompt Tuning of the Vision
Transformer, according to [14]. Before each encoder layer,
learnable prompts are prepended to the embedded patches.
Before each encoder layer, learnable prompts are prepended to
the embedded patches. Before feeding to each next layer, the
embedded prompts are discarded and replaced with another
layer of learnable prompts.

A. Approach

In Figure 4 we schematically illustrate our approach to op-
timizing (pre-trained) models for mammography segmentation
and evaluating them on an unseen dataset. In the sections
below, we discuss the models we have selected to compare
through this framework, and the methods for optimizing these
models for the public mammography dataset. We give a
detailed definition of the task that the models are meant to
solve in Section III-A3. In Section III-B we describe the loss
functions used for each model, and the metrics we use to
analyze the performance of each experiment.

1) Selected Models: The models that we have selected for
our experiments are:

• U-Net[12]
• SETR[13]
• SAM[6]

The models that have performed exceptionally well on com-
puter vision benchmarks throughout the last decade, and seem
most promising for our purpose, are often either based on
convolutions or attention mechanisms. Our reason for exper-
imenting mainly with Vision Transformer-based models is
that ViTs have been shown to excel compared to similarly



Fig. 4: Main overview of our framework for optimizing foundation models for mammography. We take pre-trained foundation
models and optimize them for a public mammography dataset, after which we apply them to a private dataset that the models
have not seen before. As an alternative to pre-trained models, we also include untrained models that we directly optimize for
mammography without pre-training.

sized ResNets when (pre-)trained on larger datasets[11]. This
suggests that it is easier for ViTs to absorb more information
from larger datasets than convolutional models do. Given that
the ViT is pre-trained on very large datasets, the right training
or fine-tuning method might result in better performance on
downstream tasks like mammography.

2) Model Training and Adaptation: To optimize models for
the segmentation task on a mammography dataset of choice,
we consider three options:

• Training the model from scratch.
• Zero-shot application of a pre-trained model.
• Fine-tuning a pre-trained model using training samples

from the downstream task.
It is important to note that these three options are not ap-
plicable to every model. Since the Segment Anything Model
has been trained on the largest segmentation dataset to date,
we refrain from training the same architecture from scratch. It
seems likely that a model of this size would overfit on most
mammography datasets due to their limited size.

The modus operandi for the U-Net is to train from
scratch[19–21]. We have not identified suitable pre-trained U-
Net models. Since we are focusing on the use of ViT-based
models as foundation models, we will not be treating the U-
Net as a foundation model; we do not apply any pre-trained
U-Net in zero-shot fashion, and we do not fine-tune any pre-
trained U-Net. We only optimize the U-Net by training from
scratch. Our experiments include the U-Net as a CNN-based
complement to the ViT-based Segmentation Transformer.

In Section IV we detail the exact combinations in which
models, optimization methods, and datasets have been applied.
For the Segmentation Transformer experiments, we use the
SETR-PUP architecture, as this is the architecture found most
effective in the reproduction experiments conducted by the
authors of the MMSegmentation toolbox. For the Segment
Anything Model, we limit our focus to point prompts.

To analyze the effectiveness of parameter-efficient tuning
methods in the mammography domain, we include Visual
Prompt Tuning in our framework as an alternative to full
fine-tuning. This method of fine-tuning is designed for Vision
Transformers and is not directly applicable to the U-Net.

3) Task Definition: Generally, mammography segmentation
centres around identifying regions of interest from an input
image. For the U-Net and the SETR, the only input given is
the full image, and we task the model with identifying and
marking any regions of interest in the image. In some cases,
there are multiple separately annotated regions of different
abnormality classes. We have merged these regions into one
binary ground truth map per mammogram. The U-Net and
SETR can both be configured to output a segmentation map
that maps each pixel to one of N classes, so it is possible
to approach multi-class segmentation for mammography. Still,
for simplicity, we have lumped all abnormality classes together
under the label ”Region of Interest”. This results in a binary
output map (i.e. N = 2) by both the SETR and U-Net.

From the three models we have selected, the SAM is special
in the inputs it accepts, and the outputs it produces. It takes
extra inputs in the form of prompts, and it does not produce
a segmentation map assigning one of variable N classes to
each pixel. The SAM is not constructed to give semantic
information about an object, but only to produce a valid
binary mask from an input image and any accompanying
prompts. More precisely, the SAM produces three separate

Fig. 5: Overview of the inputs and outputs of the three models
we use in our experiments. On the left is a sample from the
CBIS-DDSM dataset, on the right the corresponding ground
truth for a region of interest. The Segment Anything Model
requires segmentation prompts as extra inputs.



masks that could all be valid, and also estimates IoU scores
corresponding to these masks. These estimated scores are then
used to rank the masks, and during inference the mask with
the best estimated score is chosen as the final output. This
results in a binary output map from the Segment Anything
Model. (Accurate IoU estimations are crucial for making a
correct choice between candidate masks.)

We provide the SAM with point prompts during both
inference and training. For the automatic selection of these
points, we follow the approach by Kirillov et al. [6]. During
training, these points are coordinates of randomly selected
pixels in the ground truth mask. For inference, we use the
Euclidian Distance Transform to find the centre of the mask.

B. Loss, Metrics, and Evaluation

In our experiments, we use four loss functions: Binary
Cross-Entropy, Dice loss, Focal loss, and Mean Squared Error.
In this section, we describe their theoretical background, the
specific definitions we used for these losses, and why we used
these losses. We measure the performance of each model with
the following set of metrics: Dice, IoU, trainable parameter
count, and maximum GPU memory usage. We also visually
compare ground truth to predictions from various models by
exporting a small set of random samples (see Figures 6a
and 6b.) The formulas we used for IoU, Dice, BCE, Focal,
and MSE are as follows:

Dice =
2I + β

I + U + β

Where I is the intersection between prediction and ground
truth, U is the union between prediction and ground truth,
and β is a very small constant (1e-7). Including β in the
denominator ensures that the formula is defined for the case
of an empty ground truth mask (all zeros). Including it in the
numerator ensures that when the prediction and ground truth
are both empty, this is counted as perfect overlap, giving a
Dice score of 1.

IoU =
I + β

U + β

BCE = −[y log(x) + (1− y) log(1− x)]

Where y is the target pixel value, taking values of either 0 or
1. x is the predicted logit, taking values anywhere from 0 to
1. We take the mean BCE over all pixels of a mask.

Focal = −[α(1−x)γy log(x)+ (1−α)xγ(1− y) log(1−x)]

Or, the more compact definition from Lin et al. [38]:

Focal = −αt(1− xt)
γ log(xt)

And for the Mean Squared Error we have of course used

MSE = (y − x)2

Zheng et al. [13] make use of a pixel-wise cross-entropy
loss, and Sarker et al. [21] use the binary cross-entropy

loss. We follow their example by using the binary cross-
entropy loss for both the SETR and U-Net. Kirillov et al.
[6] report using a mixture of focal loss and dice loss for the
segmentation masks, and we do the same for our experiments
with the SAM. Specifically, Lmask = 20Focal + Dice. The
SAM produces three possible segmentation masks, and three
corresponding predictions for the overlap score (IoU) of each
of these masks. A loss function is also calculated for each of
the IoU predictions: Liou = MSE. Kirillov et al. [6] mentions
that they calculate the loss (Lmask +Liou) for all three mask
candidates. Then, they backpropagate the loss only for the best
of these masks. We do the same. However, there is ambiguity
to this instruction from Kirillov et al. [6]. We discuss this
further in paragraph V-A2a.

IV. EXPERIMENTS

A. Datasets

We use two datasets: the Curated Breast Imaging Subset
of Digital Database for Screening Mammography (CBIS-
DDSM), and the private dataset provided by Ziekenhuis Groep
Twente. We describe their details in Section II-A1.

B. Shared Implementation Details

We run all of our experiments on a high-performance
cluster, managed using SLURM. We’ve used an NVIDIA A40
GPU with 48GB memory. For all training experiments, we use
a shared set of implementation details: Because the learning
rate is typically task-sensitive, we use the same learning rate of
0.0001 that was also applied for experiments on CBIS-DDSM
by Sarker et al. [21]. Following Sarker et al. [21], we apply
learning rate reduction upon a plateau of the validation loss,
with a patience of 25 epochs and a reduction factor of 10,
and we apply early stopping when the training loss has not
improved for 40 epochs. Following Jia et al. [14] and Kirillov
et al. [6] we use the AdamW optimizer, with β1 = 0.9, β2 =
0.999.

C. U-Net

We have trained a U-Net for CBIS-DDSM segmentation
from scratch. The precise details for its architecture have been
copied from Sarker et al. [21]. The U-Net has been trained
at an input resolution of 224x224, resizing each image to
fit using bilinear interpolation. We apply Contrastive Limited
Adaptive Histogram Equalization (CLAHE), as is also used
by Sarker et al. [21]. We do not perform any other data
preprocessing/augmentation steps. A batch size of 16 was
used.

D. Segmentation Transformer

We have trained and fine-tuned a Segmentation Transformer
for CBIS-DDSM segmentation in three ways: training a ran-
domly initialized SETR From Scratch (FS), Full fine-Tuning
(FT) a pre-trained SETR, and Visual Prompt Tuning (VPT)
a pre-trained SETR. Each time we have used the ViT-L
backbone architecture. For pre-trained backbone weights, we
use those provided by Dosovitskiy et al. [11]. Similar to the



U-Net, an input resolution of 224x224 has been used, with
bilinear interpolation, and finally CLAHE was applied. Again,
a batch size of 16 was used.

The SETR can be trained with auxiliary heads for better per-
formance. To fairly compare baseline performances between
models, we choose not to use auxiliary heads for the SETR
since we do not use auxiliary heads for the U-Net and the
SAM. We are not interested in producing a state-of-the-art
solution, and while the auxiliary heads may improve absolute
performance, they do not seem essential to understanding the
behaviour of the model during fine-tuning in circumstances of
low sample counts.

During full fine-tuning of the SETR, the learning rate
applied to the decoder is 10.0 times that of the overall learning
rate (following Zheng et al. [13]). This is done because the
decoder is randomly initialized and its parameters likely need
more updating than the pre-trained backbone. However, when
applying Visual Prompt Tuning to the SETR, or when training
the SETR from scratch (i.e. without loading a pre-trained
backbone), we set this decoder learning rate multiplier to 1.0
as was also done by Jia et al. [14].

Jia et al. [14] originally implemented VPT for various
ViT-like architectures, and these implementations are avail-
able in their GitHub repository1. The included architectures
are ViT[11], Masked Auto Encoder ViT[39], and a MoCo-
v3 ViT[40]. Jia et al. [14] also conducted experiments that
applied VPT to the SETR, but the combination of SETR
and VPT is not found in their repository. Nevertheless, the
implementation of VPT for the ViT has proven sufficient basis
for re-implementing VPT for the SETR. After publication by
Zheng et al. [13], the SETR has been incorporated into the
MMSegmentation toolbox[27]. In accordance with Jia et al.
[14], we used the MMSegmentation repository as a basis for
our implementation of VPT for the SETR. See Section VII for
code.

Jia et al. [14] have performed ablations of VPT with
different lengths, depths, and prompt locations. They show
that VPT-Deep is close to optimal depth if not optimal
(i.e. inserting prompts into all transformer layers) and find
prepending to be most effective. We follow their example
by prepending prompts at each layer of the SETR. However,
where Jia et al. [14] recommend searching for an appropriate
prompt length, we simply fix the prompt length at 50 tokens.

E. Segment Anything Model
We have used the repository2 published by Kirillov et al.

[6] as the basis for implementing testing and fine-tuning
SAM. Unlike the framework we used for the SETR, the SAM
repository did not include any training code. The focus of
the repository seems to be on demonstrating the behaviour of
SAM, rather than revealing more information about how their
experiments were conducted.

We used the PyTorch models and pre-trained weights that
the Segment Anything repository provides and wrote the code

1https://github.com/KMnP/vpt
2https://github.com/facebookresearch/segment-anything

necessary for our experiments around that. Like the U-Net and
SETR experiments, we’ve applied early stopping, learning rate
reduction, and the AdamW optimizer. We bilinearly interpolate
the images to fit the desired input size, but in contrast to
the other two models, the input dimensions for SAM are
1024x1024. We have not applied CLAHE for SAM. Instead,
we normalize pixel values the same way as Kirillov et al. [6]:
z-score normalization for the RGB channel distributions from
the SA-1B dataset. The batch size is 1 instead of 16, due to
unexpectedly high memory usage at higher batch sizes. This
seems to be an issue with our implementation that we have
been unable to resolve.

Model IoU (%) Dice (%) Trainable (M) GPU mem (GB)
U-Net 9.11 12.39 28.99 6.735
SETR-FS 4.50 6.69 307.43 12.211
SETR-FT 7.95 11.36 307.43 12.334
SETR-VPT 8.26 11.30 5.36 14.301
SAM-ZS 2.05 3.60 0.00 4.439
SAM-FT 27.42 39.84 312.34 8.029

TABLE I: All models trained on the CBIS-DDSM train
set, evaluated on the CBIS-DDSM test set. The postfixes
ZS/FS/FT/VPT indicate ”Zero-Shot”/”From Scratch”/”Full
Tuning”/”Visual Prompt Tuning” respectively. The SAM ex-
periments are separated from the rest to emphasize that SAM
is given segmentation prompts which the others lack.

F. Evaluation on ZGT Dataset

We have had to make a few changes to our implementation
before being able to evaluate on the unseen private dataset.
The first is that we incorporated the small constant β into the
numerators of the IoU and Dice formulas in Section III-B. The
other is that we needed to define the behaviour of point prompt
selection when a ground truth mask is empty. In such cases,
during inference we select the point that is in the middle of
the background (i.e. the middle of the image). During training
we select random pixels in the image.

Model IoU (%) Dice (%)
U-Net 31.91 33.18
SETR-FS 16.57 17.13
SETR-FT 9.64 11.14
SETR-VPT 15.44 16.97
SAM-ZS 0.52 0.96
SAM-FT 13.70 19.20

TABLE II: All models trained on the CBIS-DDSM train set,
evaluated on the manually annotated samples from the private
dataset.

V. RESULTS: ANALYSIS AND DISCUSSION

A. CBIS-DDSM

Clearly, Table I shows that the best-performing model for
the CBIS-DDSM dataset is SAM-FT. Before discussing the
performance of the Segment Anything Model, we reflect on the
relative differences between the U-Net and the Segmentation
Transformer.

https://github.com/KMnP/vpt
https://github.com/facebookresearch/segment-anything


a) CBIS-DDSM. These samples were taken from the validation set. b) Ziekenhuis Groep Twente private dataset. Two of the ground
truths do not contain annotated regions.

Fig. 6: Example segmentation outputs for both datasets. Image and ground truth are shown in the left two columns of each
subfigure. The red dots are the locations indicated by the point prompts added as input during the SAM experiments.

1) U-Net and Segmentation Transformer: Among the mod-
els that do not use segmentation prompts, Table I shows the
U-Net as the best-performing model by achieving the highest
overlap metrics (IoU and Dice) of its group. It has the smallest
GPU memory footprint, using just over half of the GPU
memory needed for the smallest competing SETR. Only in
terms of parameter-efficiency can we argue in favor of the
SETR-VPT over the U-Net. The SETR-VPT shows overlap
metrics that come close to those of the U-Net, using 5 times
fewer trainable parameters to achieve it.

We can see that for the models that were trained from
scratch, i.e. U-Net and SETR-FS, the model with fewer
trainable parameters is more effective. SETR-FS has the lowest
IoU and Dice out of the U-Net and SETR experiments, while
the U-Net has the highest overlap metrics. This is unsurprising,
because Dosovitskiy et al. [11] found that only with “larger
datasets (14M - 300M images)” the Vision Transformer starts
to outperform CNNs on similar tasks. Since the ViT is such
an important component of the SETR, it was to be expected
that training the SETR from scratch on a dataset with 3,103
annotated image regions would not yield the best performance.

As expected, SETR-VPT uses far fewer trainable parameters
than SETR-FS and SETR-FT. Nevertheless, SETR-VPT shows
comparable if not better overlap than SETR-FT. This confirms
the notion from Jia et al. [14] that Visual Prompt Tuning
is a parameter-efficient approach that can achieve similar
performance with fewer trainable parameters. It demonstrates
that Visual Prompt Tuning can achieve similar results to full
fine-tuning the Segmentation Transformer when applied to
mammography. SETR-VPT is the most parameter-efficient of
all models, barring SAM-ZS. It does come at the price of a

larger GPU memory footprint, needing roughly 2 GB more
than the other two SETR experiments.

2) Segment Anything Model: SAM-FT is the best-
performing approach for CBIS-DDSM by a large margin. The
overlap metrics for SAM-FT in Table I are far beyond those
obtained for the U-Net and SETR. SAM-FT improves over
the best competing model with a factor of 3, both for IoU and
Dice. This shows that there are crucial differences between the
Segment Anything Model and the Segmentation Transformer
that allow the Segment Anything Model to model the mam-
mography segmentation task a lot better. Architecturally, the
SETR is closest to the SAM, making the SETR-FT experiment
the one with the fewest methodological differences to SAM-
FT. There are four key areas we can identify in which the
SETR-FT and the SAM-FT differ:

• Pre-train dataset: The ViT backbone of the SETR has
been pre-trained on the ImageNet-21k[8], and the decoder
of the SETR has not been pre-trained. The SAM has been
pre-trained on the SA-1B dataset

• Pre-train task: The ViT backbone of the SETR has
been pre-trained for classification, while SAM has been
pre-trained for generic object segmentation. The SETR
is constructed to output a single segmentation mask,
while the SAM has been constructed with a mechanism
for choosing between three possibly valid segmentation
masks. The objective function that is used to optimize the
SAM is also different from those used for the U-Net and
the SETR, as we describe in Section III-B.

• Model architecture: The SETR consists of a single en-
coder and decoder. There are three encoding elements
in the SAM: the Image Encoder, the Mask Encoder,



and the Prompt Encoder. The Mask Decoder of the
SAM is a variant of a Transformer[25] block, while the
PUP Decoder of the SETR is based on convolutional
operations.

• Input: Our SETR experiments operate at an input resolu-
tion of 224x224. In contrast, the SAM has been designed
for 1024x1024 inputs. This is a large difference in image
quality. The SAM also is given the point prompts, equip-
ping the model with a localization hint that the SETR
does not receive. These two factors theoretically provide
the SAM with an information advantage over the SETR.

Further experiments are necessary to conclude which of these
areas are the determining factors in the performance difference
between SAM-FT and SETR-FT.

a) Predicted IoU Scores: For analyzing the training and
validation outputs of SAM-FT, we calculated metrics not only
for the final masks but also per individual mask prediction
head. We noticed that the average IoU for two of three
prediction heads was higher than the average IoU of the final
selected mask. This means that the mask selection mechanism
is often selecting a suboptimal mask; there is performance to
be gained by selecting a fixed segmentation head, instead of
using the predicted IoU scores to select the mask.

We suspect this is because the predicted IoU for incorrect
masks are overconfident. In Section III-B, we mention that
we only backpropagate Lsam for the mask with the lowest
calculated Lmask+Liou. This means that when an estimation
of an IoU score is very wrong as measured by Liou, this makes
it less likely that the model will learn to predict that score
better. Instead, we think a better approach is to backpropagate
Liou for all mask heads, and to only backpropagate Lmask for
the mask with the lowest calculated Lmask + Liou.

B. ZGT Dataset

At first glance, the results in Table II seem utterly discordant
with those found in Table I. The model that shows best
performance on the unseen ZGT dataset is the U-Net, followed
by SETR-FS, and SETR-VPT. The performance of SETR-
FS relative to other models is especially surprising, since it
showed the weakest evaluation on CBIS-DDSM. On the ZGT
dataset, the U-Net unexpectedly outshines SAM-FT. A likely
culprit for this is that 97 out of the total 206 images lack any
region annotation. More so than the U-Net, SAM-FT falls prey
to false positives: SAM-FT seems to be looking for tumours
that do not exist. The evaluation results on our private dataset
show that the CBIS-DDSM does not accurately match the
distribution of our dataset. Without evaluation on our private
dataset, this would have led to an incomplete impression of
the performance of segmentation models.

There are interesting observations to be made about the
example outputs in Figures 6a and 6b. SAM-ZS behaves
according to what one might expect from a model pre-
trained for segmentation outside of the medical domain. It can
accurately segment the breast from each image, although we
see an inverted map for one sample. We see there are cases
where all models produce outputs in the neighbourhood of

the ground truth (i.e. the bottom row of Figure 6b). SAM-FT
has learnt to produce much smaller masks, but still always
annotates around the point prompt. The most important thing
to note is that in the ZGT dataset, there are samples with empty
ground truths. Two examples of this are shown in Figure 6b,
where we see that most models incorrectly predict a non-
empty mask. This indicates that the models have not learnt
well enough to identify the absence of tumors.

VI. FUTURE WORK

Time and computational power are never in unlimited
supply. We compared three state-of-the-art models and applied
them in various ways to the mammography domain. While
there are additional models and fine-tuning methods we have
not explored, and certain mammography datasets we did not
use, these are typical constraints faced in research. Some
directions for future research are particularly noteworthy, and
we list them below.

We have not conducted an exhaustive search of hyperpa-
rameters for each model, instead relying on parameters used
in other works. For instance, we are uncertain whether the
batch sizes and learning rates used in our experiments were
optimal choices. Specifically for the Segment Anything Model,
as mentioned in Section IV-E, we were unable to experiment
with higher batch sizes. A basic exploration of what hyperpa-
rameters suit each specific model on the task of mammography
segmentation might allow for a fairer performance comparison
between models.

1) Visual Prompt Tuning for the Segment Anything Model:
As we discussed in Section IV-D, we have succesfully im-
plemented Visual Prompt Tuning for the Segmentation Trans-
former. We also intended to implement VPT for SAM, which
had not been done before. This would result in a type of
contribution similar to the adapter-based fine-tuning technique
from [22]. Unfortunately, implementing VPT for the SAM
is significantly different than for the SETR. We have taken
a good look at the details of the SAM, but were unable to
comprehensively implement VPT for the image encoder used
in the SAM. Where the SETR is a direct adaptation of the
ViT into a model designed for segmentation, the SAM is not.
Rather, there is an extra step between the ViT from [11],
and the ViT variant used as the image encoder in [6]: the
modifications introduced as part of the ViTDet[29]; For most
of the encoder layers of the pre-trained Vision Transformer,
global attention has been replaced with window attention. The
window attention is computed over non-overlapping windows
of the encoder layer’s input. The ViTDet also introduced rel-
ative positional biases at each encoder layer. Because of these
modifications, it is not entirely straightforward to apply Visual
Prompt Tuning as it was originally designed. Concretely, we
ran into two issues:

1) VPT-Deep prepends prompts to the inputs of each
encoder layer. For global attention, this makes sense,
because new information can be gained by computing
attention between the prompts and the regular inputs. In
the context of window attention, this would run the risk



of putting all prompts in one of several windows, and
only providing added value for that specific window. It
seems likely that this will impact the effectiveness of
the prompts, because the model will not be allowed to
learn new task-related information for large parts of the
image, or only in a rather indirect fashion.

2) Secondly, the learned relative positional encodings have
a size that is dependent on the input length of each
encoder layer. This means that if we increase the length
of the layer’s input, the layer’s positional encoding and
the input are no longer compatible sizes. This requires
some way of resizing the positional encodings, while
still preserving their learned function.

One way of tackling the first obstacle is by choosing to
employ a reduced version of VPT; only prepending at the
layers that use global attention. An option that offers more
freedom is prepending prompts per window. For the second
obstacle, we notice that [29] mentions inspiration for the
relative positional embedding being taken from [26]. There it
is mentioned that such positional encodings can be adapted to
different window sizes through bi-cubic interpolation. These
are however potential remedies, and we have not taken the
time to put them into practice. Further time and experiments
would be needed to come to a conclusion about the effective-
ness of combining VPT with SAM.

A. Limitations

There is a small number of inherent limitations to our work.
The first limitation is that while the principle of training on
a public dataset and subsequently evaluating transfer perfor-
mance on a private dataset can be applied to other tasks than
just binary segmentation, there needs to be a certain level
of correspondence between the annotations that exist for the
public dataset and those that can be collected for the private
dataset. Concretely, the task definition should be the same for
both datasets. So far, we have only trained models for tumor
instance segmentation. This requires manual binary annotation
of regions of interest on the private samples. In the case of
semantic segmentation, e.g. recognizing the abnormality class
of the tumor, the process of manual annotation will also need
to take encoding this information into account. When the
task becomes more fine-grained, so do the required manual
annotations, requiring more effort by the experts who provide
these annotations.

Secondly, not every option for optimizing and evaluating
listed in Section III-A2 applies to every model. For instance,
the Zero-Shot application of a SETR is only well-defined
when its pre-train task has the same number of classes as
the zero-shot task. An example that would not work, would
be pre-training a SETR for ADE20K segmentation with 150
segmentation classes, and subsequently trying to apply this
model to a binary segmentation task like the mammography
segmentation task we have considered in this work. The best
way to work around this seems to be to find a pre-train task
with the same number of segmentation classes as the zero-shot
task.

Finally, we remark that the manually collected set of annota-
tions covers less than 1% of the images present in the private
dataset from Ziekenhuis Groep Twente (206 out of 84,299
images have been annotated.) This raises concerns about the
representativeness of the annotated subset, and the robustness
of conclusions drawn based on evaluation with this subset.

VII. CONCLUSIONS

We establish a framework for training state-of-the-art mod-
els on public mammography datasets, and assessing their
subsequent performance on unseen out-of-distribution data.
We’ve used this framework to compare performance of three
models: the U-Net, the Segmentation Transformer, and the
Segment Anything Model. The model that showed by far the
best performance on the public CBIS-DDSM is the Segment
Anything Model. Importantly however, we’ve seen that this
result does not mean that high performance on other mam-
mography datasets is guaranteed. When applying the SAM
to a private dataset from Ziekenhuis Groep Twente, overlap
metrics drop. The likely cause is samples with deliberately
empty ground truth masks. We publish all code used in our
experiments.3
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APPENDIX A
REPRODUCTION: U-NET EXPERIMENTS IN RELATION TO

RESULTS REPORTED IN CONNECTEDUNETS++[21]
In order to anchor our results with other reports, in this

appendix we attempt to reproduce the experiments conducted
by Sarker et al. [21]. We prefer comparing to Sarker et al.
[21] over Baccouche et al. [19] because the former use entire
images (just like our work does), while the latter evaluate on
regions. We did not find a published implementation of the
models used by Sarker et al. [21]. We did notice a publicly
available repository for some of the experiments by Baccouche
et al. [19]4. Since Sarker et al. [21] derived from Baccouche et
al. [19] it seems unlikely that Sarker et al. [21] and Baccouche
et al. [19] are using significantly different architectures for
what they call a “basic U-Net”, so we have incorporated some
of the implementation by Baccouche et al. [19] into our own
experiments.

Our reproduction experiments have similar implementation
details to those laid out in Section IV-C. These reproduction
experiments can be thought of as a bridge between the U-Net
used by Sarker et al. [21] and our U-Net result in Table I. We
are aware of two important differences between our U-Net and
the U-Net used by Sarker et al. [21]:

1) We use the AdamW optimizer in our experiments, while
Sarker et al. [21] used the Adam optimizer.

2) We choose to tackle segmentation of not only mass ab-
normalities: we also include calcification abnormalities
in the task. The inclusion of calcification cases likely
makes the model’s task more difficult, since it needs to
recognize a more diverse set of abnormalities.

To account for these differences, in Table III all models were
trained with the Adam optimizer, and we’ve trained one U-Net
on both masses+calcifications and one U-Net on only masses
(Mass-only).

model IoU (%) Dice (%)
U-Net Mass-only (Sarker et al. [21]) 27 41
U-Net Mass-only (ours) 15.13 19.95
U-Net (ours) 10.30 13.70

TABLE III: Reproduction results for the U-Net architecture,
using the Adam optimizer.

In Table III it is clear that our results differ from Sarker
et al. [21]. We also see that training the U-Net for the task
of segmenting both calcifications and masses results in lower
overall performance, as expected.

There could be an implementation detail that either we
missed, or was not mentioned in their paper. There are many
other possible reasons why there might be a performance
difference. However, the performance difference seems un-
likely to be random. Access to the original code of the
experiments conducted by Sarker et al. [21] would be very
helpful in finding out the key differentiating factor in our
training approaches.

4https://github.com/AsmaBaccouche/Connected-Unets-and-more

From our perspective, a likely culprit could have been the
use of a different moment to checkpoint the model before
testing. Since the training loss is monitored and early stopping
is applied after 40 epochs of not improving, it might make
quite a big difference at what point the model’s state is saved
for evaluation. In all of our U-Net experiments, we have saved
the model after these 40 last epochs. It could well be that
Sarker et al. [21] checkpoint the model at its ’best’ i.e. at
the point of lowest training loss. This could explain a large
part of the difference in evaluation metrics. To investigate the
likelihood of this being the cause of any performance deficit,
for U-Net Mass-only (ours) we have plotted the progression
of the IoU and Dice metrics, and the validation and training
loss for all epochs. See Figure 7.

Fig. 7: U-Net Mass-only (ours): Validation metrics progression
over all epochs, together with validation loss and training loss.
There is no obvious deterioration in validation performance
over the last 40 epochs.

None of the metrics in Figure 7 have deteriorated drastically
over the last 40 epochs. Since the validation metrics are close
to the test result in Table III, our idea that the performance
difference could be explained by a different checkpointing
moment falls flat.

https://github.com/AsmaBaccouche/Connected-Unets-and-more
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