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Marker-Less Prediction of L5/S1 Compression Loads during
Dynamic lifting Activities using a musculoskeletal approach.

Daniela Sofia Rubiano Blanco1, Mohamed Irfan Mohamed Refai 1, Massimo Sartori 1

Abstract—Lower back disorders are a significant health
concern for industrial workers. Assessing compressive
spine loads is essential for predicting low back pain
(LBP). Marker-based motion tracking systems are the gold
standard for human motion analysis to understand the
biomechanics of the spine and its relation to LBP. However,
markers placement is labor-intensive and intrusive. Exist-
ing marker-less methods often require multiple cameras
and do not consider muscle forces, which are crucial for
precise movement analysis. To address these limitations,
this study designs and tests a marker-less approach using
a single Microsoft Kinect, Nuitrack and a musculoskeletal
model to compute L5/S1 joint compression loads during
dynamic lifting activities. Ten participants performed dif-
ferent static and dynamic lifting techniques while lifting a
5kg dumbbell. OpenSim was used for inverse kinematics,
dynamics, and load computations, while CEINMS handled
muscle forces. The marker-less method showed strong
agreement with the marker-based system, with R² values
between 0.84 to 0.93 and RMSE ranging from 0.33 to 0.68
for inverse kinematics results. ANOVA results indicated
significant differences between peak compression load esti-
mates between the marker-less and marker-based methods
(p<0.05). This research validates the marker-less approach
for accurately computing L5/S1 forces, highlighting the
significance of muscle force analysis and demonstrating its
potential to be used in industrial environments, thereby
improving safety.

Index Terms—Lower back pain, L5/S1 compression
loads, Marker-less tracking, Musculoskeletal modeling,
Kinect, OpenSim, CEINMS

I. INTRODUCTION

Lower back disorders are the main health concern for
industrial workers, causing about 40% of work-related
musculoskeletal disorders (WMSDs) [1], [2]. Activities
such as load lifting and manual materials handling
(MMH) contribute to 63% of reported back injuries
[3]–[6]. To improve workplace safety and reduce injury
risk, it’s essential to evaluate the load and moment
of spine structures during lifting and MMH tasks [1],
[3], [4], [7]. Studies reveal that the intervertebral joint
L5/S1 is where highest loads typically occur at the
lumbar spine’s lower end [5], [7]. Hence, assessing

1Neuromechanical Engineering, Department of Biomechanical En-
gineer ing, University of Twente, Enschede, The Netherlands

compressive spine loads, commonly with lumbosacral
joint moments, is crucial for predicting low back pain
(LBP).
There are several methods already in use for studying
the compressive spine loads. The National Institute
for Occupational Safety and Health (NIOSH) offers
a lifting mathematical model to estimate safe lifting
limits, considering factors like load location and lifting
frequency. However, it does not account for dynamic
movements or individual differences [8]. Another
method is by direct measurement involving sensors
implanted in the intervertebral disc, providing real-time,
accurate data but being invasive [9]. Furthermore,
musculoskeletal models can be used to simulate
movement mechanics and forces on bones, joints, and
muscles. They’re non-invasive, adaptable to individual
differences, and useful for real-world applications [10].
Among the tools used for motion capture and
musculoskeletal modeling, there are several versatile
and widely used platforms available. OpenSim is an
open-source server platform that provides both forward
and inverse dynamics approaches [11], with various
generic models tailored for specific activities. In one
study, an OpenSim full-body model with detailed lumbar
spine for estimating lower lumbar spine loads during
symmetric and asymmetric lifting tasks was validated
[12]. With this model, it is possible to study the L5/S1
kinematics and torques during lifting activities.
In addition, incorporating electromyography (EMG)
data into a musculoskeletal model improves accuracy
and functionality by providing precise muscle activation
information [13]. EMG data ensures the model accounts
for muscle activation patterns that vary between
individuals leading to more personalized models [14].
CEINMS is an open-source software designed to assess
internal body properties such as muscle forces, utilizing
a forward dynamic modeling approach to calibrate
neuromusculoskeletal computational models. It reads
EMG signals from muscles and employs advanced
methods for the detection, decomposition, processing,
and classification of these signals [15].
To create accurate musculoskeletal models, it is first
necessary to capture the subject’s motion. Marker
based Motion tracking systems (MTSs) are considered
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as the gold standard for human motion analysis
[16]. These have been widely used across several
studies [1], [3], [7], [17] to examine the L5/S1 joint
moment during lifting tasks. However, its use is
constrained to specialized laboratories because of
their bulky size [4], [7]. Nevertheless, the process of
marker placement is laborious, intrusive, susceptible to
positional discrepancies caused by the operator, and
vulnerable to artifacts from skin movement, particularly
on soft tissues [18], [19]. Markers can dislodge from
the body due to sudden accelerations or sweat, and they
can also impede natural movements [19].
Multiple technologies have been explored to tackle the
challenges associated with marker placement. Inertial
Measurement Units (IMUs) solve complex setup and
calibration required by camera systems. But, still need to
be attached to the subject to measure gravity and angular
rate and are prone to drift over time [20]. Another
potential option is a network of RGB cameras, offering
a non-invasive solution for motion capture without
the need for intrusive markers. The cameras act as
nodes to obtain temporally stable 3D reconstructions of
multiple subjects’ motion [21]. However, they demand
meticulous calibration, intricate setup, substantial
storage space, and high computational power [17].
Researchers have also explored the use of depth sensors,
such as the Intel RealSense or the Microsoft Kinect.
Some studies [8], [22] used the Kinect’s skeletal model
to estimate L5/S1 loads, revealing significant errors
compared to traditional methods when relying on the
Kinect markerless skeletal model’s ”spine base” location
instead of the L5/S1 joint, with discrepancies of up
to 33.7 cm. It highlighted the necessity for methods
that minimize estimation errors while retaining the
advantages of the Kinect marker less approach.
To tackle this issue and with the rise of advanced deep
neural networks, various computer vision algorithms
have been designed to estimate 3D human pose.
OpenPose [23] is an open-source system designed to
detect the human body from single images, enabling 3D
pose reconstructions through the utilization of multiple
2D calibrated images [24]. Alternatively, Nuitrack, is a
real time motion tracking system. It utilizes depth data
to map the detected joint positions into a 3D space and
offers a range of key points valuable for analyzing spine
biomechanics. While it is not open source, it provides
APIs to integrate with several systems and its algorithm
undergoes continuous updates to improve precision and
reliability.
Numerous researchers have combined networks of
RGB cameras and different computer vision algorithms
to evaluate L5/S1 loads during lifting tasks. One

study proposed Detectron2 for 2D key-point detection,
VideoPose3D for reconstructing workers’ 3D poses, and
a top-down inverse dynamic biomechanical approach for
estimating joint angles and moments at the L5/S1 joint
[2]. Another study introduced Pose2Sim, an open-source
marker less kinematics workflow to connects OpenPose
with OpenSim. To our knowledge only this paper has
used OpenSim for skeletal modeling. It showed that
a carefully designed model, when correctly scaled
and constrained, can lead to accurate results from a
markerless approach, despite poorly labeled joint centers
and despite a low number of detected keypoints [17].
However, it didn’t consider muscle forces, which can
provide more accurate movement analysis and serve to
identify injury-prone postures [25]. And, as the majority
of the proposed methods, operates with a network
of cameras, requiring additional steps to transition
from 2D key-points to 3D poses. None of the papers
have utilized CEINMS for computing muscle forces
or attempted to gather data from moving subjects, a
scenario encountered in factory settings.
Thus, the aim and scope of this study is to design,
implement and test a new marker-less approach to
compute L5/S1 joint compression loads during dynamic
lifting activities. We utilize a single Microsoft Kinect
device paired with nuitrack to reconstruct 3D poses. We
have developed a process to bridge nuitrack’s output
with OpenSim, involving data filtering, coordinate
system standardization, and translation of keypoints into
markers. Subsequently, OpenSim’s LFB model [12] is
used to compute ID, followed by CEINMS for muscle
force estimation and finally OpenSim to compute
compression loads. These findings will be compared
against a marker-based motion tracking system.

II. METHODS

Figure 1 illustrates our proposed pipeline for comput-
ing L5S1 compression loads. Initially, (a) the raw data
from Nuitrack and Qualisys were processed separately,
as described in Sections 2.B and 2.C, to account for
their distinct data formats and requirements. However,
following these initial steps, (b) the remaining analysis
pipeline was identical for both datasets to ensure valid
and reliable comparisons between the two systems.

The subsequent sections provide detailed descriptions
of each component shown in figure 1.

A. Nuitrack’s bridge to OpenSim

We chose to utilize Nuitrack’s Key points as experi-
mental markers for future applications within OpenSim’s
LFB model. Nuitrack Software presents 19 key points
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Fig. 1: Overview of the data processing pipeline used to compute L5S1 compression loads (Subsections 2.B-
2.F). (A) MATLAB (orange) is used to process raw marker coordinates from Nuitrack and Qualysis separately,
producing filtered marker coordinates for each, hand forces and normalized EMG envelopes. (B) OpenSim (blue)
and CEINMS (grey) are then used. The process is consistent for any approach, differing only in the specific filtered
marker coordinates used. Scaling uses filtered markers from a static trial to create a subject-specific model. This
model and filtered markers from experiments are inputs for Inverse Kinematics, computing joint angles. These
angles are inputs for Muscle Analysis, calculating moment arms and MTU lengths. Inverse Dynamics uses hand
forces and joint angles to determine L5-S1 torques. CEINMS uses these torques, MTU lengths, moment arms, and
EMG envelopes for calibration and execution, yielding muscle forces. Finally, Joint Reaction Analysis uses muscle
and hand forces to compute compression loads. Inputs and outputs are represented by arrows, with distinct software
blocks highlighted in different colors for clarity.

designed to accurately depict human poses across various
scenarios, including the waist joint, neck joint, shoulders
and more. However, the labeled ”joints” like ”Waist”
lack direct anatomical significance. Consequently, We
selected 15 of these key points to approximate main
anatomical bony landmarks. These key points where
chose to align with conventional marker placements used
in the marker-based approach, ensuring comparable data
for validation and consistency. They capture essential
kinematic data for biomechanical analysis, enabling ac-
curate skeletal movement reconstruction. Figure 2 shows
these key points alongside the marker-based approach
experimental markers.

To address the tracking limitations of Nuitrack’s sys-
tem, which focuses primarily on the front surface of
the body, we conducted additional measurements on
the subject. Specifically, we acquired the mid-thoracic
anteroposterior diameter by measuring the distance from
the front of the chest to the back at the level of the
T7 vertebra and the xiphoid. We also measured the
length of the foot from the ankle to the fifth metatarsal,
and the distance between the left and right Posterior
Superior Iliac Spine. These additional measurements

Fig. 2: Experimental markers from marker-based ap-
proach alongside the 15 selected keypoints from Nu-
itrack that correspond to these markers

were necessary to accurately compute markers placed on
the back of the subject, such as the C7 and T10 vertebrae.
Finally, cluster markers were computed by measuring the
distance between keypoints at the extremities of each
limb and dividing it by two. Unlike the marker-based
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TABLE I: Computed experimental markers

Bony landmark Nuitrack’s keypoint Virtual marker

Lateral Malleolus R/L ankle R/L LM
Fifth Metatarsal Tuberosity R/L ankle + foot R/L 5MT
Lateral Femoral Epicondyle R/L knee R/L LFE
Anterior Superior Iliac Spine R/L hip R/L ASI
Second metacarpophalangeal joint R/L hand R/L 2K
Lateral Radioulnar Sulcus R/L wrist R/L RS
Lateral Humeral Epicondyle R/L elbow R/L LHE
Acromion R/L shoulder R/L ACR
Clavicle (R+L shoulder)/2 CLAV
seventh cervical vertebra CLAV - chest depth C7
tenth thoracic
vertebra Torso T10

Posterior Superior Iliac Spine Waist - (Psis/2) L-R PSI
Note: R/L denotes the marker positioned at the identical anatomical
location on both the left and right sides of the body.

approach, which uses three cluster markers per limb, we
computed only one. A total of 29 experimental markers
were created, in contrast to the 60 markers of the marker-
based approach. Table I provides a summary of relevant
computed experimental markers for Nuitrack.

Nuitrack and Opensim both follow the right-handed
coordinate system convention. However, in Nuitrack, the
origin (0,0,0) is established by the position of the depth
sensor, in this case 3 meters away from the subject and
1.5 meters above the ground. Conversely, in OpenSim,
the origin is defined by the initial standing position of the
subject at the start of the trial. As a result, the origin of
Nuitrack was adjusted to align with OpenSim’s system.
This adjustment involved subtracting 3 meters from the
x-coordinate and establishing the ankles of the subject as
the origin in the y-direction. Finally, a rotation of 180°
was performed around the y-axis. Subsequently, the po-
sitions of other markers were determined by measuring
their distance from the ankles.

The final experimental markers for the marker-less
approach were subjected to filtration using a fourth-
order Butterworth low-pass filter set at 6 Hz to remove
noise and to ensure data consistency during frames
where the body position was lost. Subsequently, the
data was resampled to 50 Hz to maintain uniformity for
comparison with the marker-based approach.

Finally, it is important to note that the output data
collected by Nuitrack is stored in a Comma-Separated
Values (.csv) file. This file format is not compatible with
OpenSim. Therefore, the .csv file was used as input
in MATLAB (2022a, The Mathworks, Natick, MA) to
perform the to perform the processes described earlier
in this section and obtain the final filtered coordinate
markers. Ultimately, data was saved into a trace file (.trc),
effectively bridging Nuitrack and OpenSim.

B. Marker-based approach pre-processing

MATLAB was used to pre-process the marker-based
data and to get inputs for OpenSim, CEINMS and further
analysis.

All signals underwent filtering using a zero-lag 2nd

order Butterworth filter with a cut-off frequency of 6 Hz.
Linear EMG envelopes were derived through consecutive
bandpass filtering within the 30-300 Hz range, followed
by full-wave rectification, and low-pass filtering with a
cutoff frequency of 6 Hz. The EMG signals captured
during the maximum voluntary contraction (MVC) trials
were utilized to identify maximum muscle activations to
subsequently normalize EMG linear envelopes. Then, all
filtered signals were resampled at 50 Hz.

C. OpenSim musculoskeletal modelling

This study utilized the OpenSim lifting full-body
model (LFB) [12]. The generic LFB model was adjusted
to match the participant’s anthropometric measurements
using the scaling tool within OpenSim. Two scaled
model were developed, one for the marker-less approach
and one for the marker-based approach. Scaling factors
were determined based on anatomical marker positions
recorded during a static trial. Subsequently, the scaled
model was utilized for further analyses. Inverse kinemat-
ics (IK) calculations were performed to determine joint
angles at each time point using the IK toolbox in Open-
Sim. Additionally, inverse dynamics (ID) analysis was
executed to compute L5-S1 joint torques. Hand forces
were computed by calculating the shared acceleration
of the hands and payload, and using the known mass
which was assumed to be equally distributed between
both hands. These where introduced as external forces
during the ID calculations to simulate the impact of
external loads. Muscle analysis was then conducted using
the ”Analyze” tool in OpenSim to obtain muscle-tendon
unit (MTU) lengths and moment arms specific to the
L5-S1 flexion-extension coordinate.

D. EMG driven modelling with CEINMS

We developed subject-specific, real-time EMG-driven
musculoskeletal models using CEINMS. These models
were used to estimate L5S1 joint torques and muscle
forces. The required data included the inverse dynam-
ics of the trials, normalized EMG data, L5S1 flexion-
extension moment arms, and MTU lengths.

The process involved both calibration and execution
phases. During the calibration phase, an uncalibrated
model from OpenSim was adapted to match the subject’s
anatomical and physiological parameters. These param-
eters were determined using the normalized EMG data,
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inverse dynamics of the trials, L5S1 flexion-extension
moment arms, and Muscle tendon unit (MTU) lengths
obtained from OpenSim. The calibration algorithm uti-
lized one lifting repetition per lifting technique, where
the subject remained stationary (see section 2.F) as a
reference. Meanwhile, another model was calibrated for
trials where the subject not only lifted, but also walked
(see section 2.F). The execution phase was then carried
out for the remaining repetitions.

E. Computing compression Loads

Finally, the OpenSim ”Analyze” Tool was employed
to compute the joint reaction loads, specifically focusing
on compression loads. The inputs included hand forces,
IK results, and muscle forces computed using CEINMS.
The muscle forces were used to provide detailed internal
muscle dynamics. The hand forces were introduced as
external forces, ensuring accurate representation in the
analysis. Additionally, the inverse IK results were used
as the coordinates to supply the time history of the
generalized coordinates for the model.

F. Experimental protocol

10 healthy (6 men, 4 women, age: 23 ± 1.69 years,
weight: 61.6 ± 7.518 kg, height: 160.44 ± 4.52 cm)
participants were enrolled in the study. None of them had
a history of back or/and lower limb injuries. To ensure
accurate study results regarding muscular activity, they
refrained from engaging in strenuous physical activity
24 to 36 hours prior to the experiment. All of them
provided written informed consent ethically approved by
the Natural Sciences and Engineering Sciences Ethics
Committee of the University of Twente (application
number: 240249).

All participants lifted a hex dumbbell (w×d×h =
19×6×10 cm, weight = 5 kg) using two symmetric lifting
(SL) techniques: Stooping (ST) and Squatting (SQ),
as well as one asymmetric lifting technique: Bilateral
Twisting (BT). For each of these techniques, both static
(S) and dynamic (D) experiments were conducted. In
the static experiment, participants performed the lifting
technique while remaining in the same place. In the
dynamic experiments, participants combined lifting with
walking. These tasks were designed to evaluate how
the marker-less approach would perform with real-life
factory movements. An overview is shown in figure 3.

Before each experiment, it was necessary to perform
some movements to synchronize the systems as follows:

• Movement synchronization: At the beginning of all
experiments, participants were asked to take one
step forward and one step backward so that Nuitrack

Fig. 3: Tasks to be performed (a) squat lifting (b)
stoop lifting (c) bilateral lifting (d) Diagram for dynamic
experiments. All measurements are given in cm

could track their movements. After this, participants
were instructed to move one arm up and down.
Once these preliminary steps were completed, par-
ticipants proceeded with the main experiment.

For the static (S) experiments, participants were asked
to perform the following:

• Symmetric lifting techniques (S-SQ and S-ST):
participants were instructed to stand in front of a
table (46 cm in height) with the weight positioned
in front of them. They were then asked to lift the
5 kg dumbbell from the table using either the SQ
or the ST, stand upright holding the weight, and
place it back on the table by reversing the lifting
technique. This sequence was repeated six times.

• Asymmetric lifting technique (S-BT): participants
were asked to move the weight from a table posi-
tioned diagonally to the right to one positioned to
the left. After standing straight, the participant had
to return the weight to the starting table. These ac-
tions included one BT movement and were repeated
three times.

For the dynamic (D) experiments, participants were
asked to perform the following:

• Symmetric lifting techniques (D-SQ and D-ST):
participants had to lift a weight from table A in
front of them, walk a short distance, and place the
weight on table B. This process was repeated six
times.

• Asymmetric lifting technique (D-BT): participants
lifted a weight from table A, positioned diagonally
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to the right, walked, and placed it on table B, posi-
tioned diagonally to the left. After standing straight,
participants repeated the process from left to right.
These actions constituted one D-BT movement and
were repeated three times.

Each participant performed both static and dynamic
experiments. A complete static experiment included six
SQ, six ST, and three BT trials, which was also the case
for dynamic experiments. Thus, each participant per-
formed a total of 36 liftings. Between trials, participants
had a recovery period of approximately 20 seconds. The
trials were divided into static and dynamic categories.
The ordering of symmetric or asymmetric trials, as well
as their sequence, was randomized.

G. Data collection

For the marker less method, RGB-D data was captured
utilizing a Microsoft Kinect (Microsoft Corporation,
Redmond, WA, USA) positioned 3.5m away from the
origin, operating at a frame rate of 30 Hz. Nuitrack
software (3DiVi Inc., Delaware, USA) was employed to
translate the detected joint positions into a 3D spatial
representation.

The Qualisys motion capture system (Qualisys Medi-
cal AB, Gothenburg, Sweden) was used as the marker-
based to record the experimental sessions. Sixty spherical
reflective markers were affixed to the subject’s body
using double-sided adhesive tape, serving to track sub-
ject kinematics. Markers placement was done as shown
in Figure 2. Additionally, one marker was specifically
utilized to mark the upper-left corner of the hex dumbbell
(w×d×h=19×6×10 cm, weight = 5 kg) to be lifted. The
3D trajectories of both the subject’s markers and the
box were tracked with a 12-camera Oqus system from
Qualisys, operating at a frame rate of 128 Hz.

Wireless surface EMG system from COMETA (Pi-
colite EMG, Milan, Italy) was used to record EMG
signals at a sampling rate of 2048Hz. Bipolar electrodes
were placed bilaterally to record 5 dorsal muscles ac-
tive during lifting and lowering activities: Longissimus
Thoracis pars Thoracis (LTpT), Longissimus Thoracis
pars Lumborum (LTpL), and right Iliocostalis (IL). All
EMG signals, as well as the marker trajectories, were
synchronized by Qualisys track manager software. Elec-
trodes were placed as described in Moya-Esteban et al.
[26].

H. Data analysis

After performing the different tests and experimental
measurements, we need a reference to compare the val-
ues and understand the effectiveness of the process. We

compared the results for the compression loads obtained
by the marker-less approach versus the values obtained
by the marker-based approach. We used the following
equation to evaluate the magnitude of the prediction
errors [27].

RMSE =

√∑n
i=1 (Vval − Vest)

2

n
(1)

this equation represents the root mean squared error
(RMSE), where Vest is the estimated value with the
marker-less approach and Vval is the marker-based ap-
proach. This equation takes into consideration n samples.

By definition, the RMSE indicates how closely the
experimental model (marker-less) results match the stan-
dard (marker-based) data. A lower RMSE value repre-
sents a better model, as it indicates a smaller difference
from the standard. Conversely, a high RMSE means that
the model significantly deviates from the standard.

In addition to the RMSE, we also evaluated the
variance of the data gathered from the model, this can
be achieved by studying the coefficient of determination
[27], [28].

R2 = 1−
∑n

i=1(Vval − Vest)
2∑n

i=1(Vval − V̄val)2
(2)

Where, R2 is the actual coefficient, (Vval) is the
marker-based approach, (Vest) the marker-less approach
and(V̄val) the mean. This is also done for a n number of
samples.

In this case, the value of the coefficient of determina-
tion indicates how the marker-less data fits the marker-
based data, and how it can be used to predict future
results [29]. Hence, a high value means that the marker-
less approach predictions are closely aligned with the
marker-based data points, suggesting that is a good fit
and accurately represents the underlying data patterns.

To assess the statistical significance of the differences
in the estimated compression loads between the marker-
less and marker-based motion analysis techniques, a two-
way analysis of variance (ANOVA) was conducted. Prior,
the data underwent Shapiro-Wilk normality testing to
confirm normal distribution, ensuring the validity of the
results. The analysis satisfied all the assumptions of a
generalized linear model ANOVA. The model included
estimation method and lifting technique as independent
factors, with interaction effects examined.

III. RESULTS

A. Marker-less IK performance

Figure 4 illustrates results obtained for the average
L5S1 flexion extension angles across all subjects for



8

Fig. 4: Inverse kinematic results across all subjects for several lifting techniques with a 5 kg dumbbell. The
techniques include S-SQ (a), S-ST (b), S-BT (c), D-SQ (d), D-ST (e), and D-BT (f). Red lines represent the
marker-based approach, while blue lines represent the marker-less approach. Shaded areas indicate ± 1 standard
deviation. RMSE and R2 values as expressed as mean(standard deviation).

several lifting techniques. These techniques include S-
SQ (a), S-ST (b), S-BT (c), D-SQ (d), D-ST (e), and
D-BT (f), all performed with a 5 kg dumbbell. The
plots depict similar patterns across static and dynamic
conditions. Notably, the marker-less data exhibits slightly
higher variability, as seen in the wider blue shaded
regions. Despite this, the marker-less and marker-based
curves align closely. Minimal phase shifts are observed,
particularly in the peaks and troughs, suggesting that the
marker-less data captures the timing of the lifting cycles
accurately.

The R2 values are uniformly high across all tech-
niques, ranging from 0.520 to 0.939. The lowest R2 val-
ues (0.520 and 0.541) are observed in the SQ technique
for static and dynamic experiments. The other trials
present values higher to 0.90 demonstrating particularly
strong agreement with the marker-based in these cases.
RMSE values range from 0.445 to 0.681, indicating the

extent of deviation between the marker-less approach
and the marker-based. The lowest RMSE value (0.445)
is observed in the D-BT technique, suggesting that the
marker-less approach performs best in this scenario with
the least error. The consistently high R2 values indicate
robust agreement, while the RMSE values show that the
deviations are minimal and manageable.

B. Marker-less ID performance

Figure 5 illustrates results obtained for the average
L5S1 moment (normalized to body weight) across all
subjects for all lifting techniques. The shapes of the
curves are quite similar across both methods, with both
exhibiting peaks and troughs at corresponding phases of
the lifting cycle. Generally, the marker-less method ex-
hibits a wider shaded area, suggesting higher variability
compared to the marker-based method. There are minor
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Fig. 5: Inverse dynamics results (normalized to body weight) across all subjects for several lifting techniques with a
5 kg dumbbell. The techniques include S-SQ (a), S-ST (b), S-BT (c), D-SQ (d), D-ST (e), and D-BT (f). Red lines
represent the marker-based approach, while blue lines represent the marker-less approach. Shaded areas indicate ±
1 standard deviation. RMSE and R2 values as expressed as mean(standard deviation).

phase shifts between the two methods, but overall, the
curves align closely, especially in dynamic conditions.

The R2 values are uniformly high across all tech-
niques, ranging from 0.665 to 0.934. The lowest R2

value (0.665) is observed in the S-ST technique, indicat-
ing a slightly lower agreement between the marker-less
and marker-based methods. The other techniques R2 val-
ues higher than 0.90, demonstrating particularly strong
agreement with the marker-based method in these cases.
RMSE values range from 0.122 to 0.263, indicating the
extent of deviation between the marker-less approach
and the marker-based. The lowest RMSE value (0.122)
is observed in the D-BT technique, suggesting that
the marker-less approach performs best in this scenario
with the least error. The consistently high R2 values
indicate robust agreement across all techniques, while
the RMSE values show that the deviations are minimal
and manageable.

C. Marker-less Compression loads performance

Figure 6 illustrates results obtained for the average
compression loads (expressed as times body weight)
across all subjects. The curves exhibit smooth wave-
forms, reflecting the cyclical nature of the lifting ac-
tivities, with peaks and troughs aligning closely. The
shaded areas show that the marker-less data (blue) has
higher variability compared to the marker-based data
(red). Despite this increased variability, the overall trends
and patterns between the two data sets remain consistent.
Minor phase shifts are observed, particularly in the
timing of peaks and troughs, indicating that while the
marker-less data is slightly out of sync, it still captures
the key phases of the lifting cycles reasonably well.

The R2 values range from 0.237 to 0.832, indicating a
strong correlation between the marker-less approach and
the marker-based approach across all lifting techniques.
The highest R2 value is 0.832 for the D-ST technique,
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Fig. 6: Results of L5/S1 compression forces (expressed as times body weight) across all subjects for several lifting
techniques with a 5 kg dumbbell. The techniques include S-SQ (a), S-ST (b), S-BT (c), D-SQ (d), D-ST (e), and
D-BT (f). Red lines represent the marker-based approach, while blue lines represent the marker-less approach.
Shaded areas indicate the standard deviation. RMSE and R2 values as expressed as mean(standard deviation).

suggesting the best alignment with the marker-based
approach. The lowest R2 value is 0.237 for the S-BT
technique, indicating relatively lower correlation. The
RMSE values range from 0.298 to 0.57, showing varying
levels of deviation between both approaches. The lowest
RMSE value is 0.298 for the D-SQ technique, indicating
the least deviation and highest precision. The highest
RMSE value is 0.57 for the S-BT, suggesting the greatest
deviation and lower precision.

Overall, the marker-less approach for ID moment mea-
surements shows better correlation with higher R2 values
and lower RMSE, particularly in dynamic conditions.
The compression load measurements also show strong
correlation, with high R2 values, but have slightly higher
RMSE compared to ID moments. The IK results, while
showing good correlation, have higher RMSE values
than both ID moments and compression loads, indicating
slightly lower precision.

D. Peak compression loads

Figure 7 illustrates the differences in L5-S1 peak
compression load estimations using the marker-less ap-
proach compared to the marker-based for all lifting
techniques. Talking about the static experiments, S-ST
consistently shows the largest differences across most
trials, particularly in trials 4, 6, and 7, while S-BT
generally exhibits the smallest differences except for
spikes in trials 6 and 8. For dynamic experiments, the D-
ST technique demonstrates higher differences in several
trials, notably 1, 4, 7, and 8, whereas D-BT shows more
consistent and lower differences, with occasional peaks
in trials 7 and 8.

The results of ANOVA are reported in the Appendix
A. They show that there is a statistically significant
difference between the means of the groups for the
dependent variable compression loads. The technique (S-
SQ, S-ST, S-BT, D-SQ, D-ST, D-BT) has a statistically



11

Fig. 7: Difference between L5-S1 peak compression
loads estimations with marker-less and marker-based
approach for static (a), dynamic (b) techniques

significant effect on the compression loads, while the
method (marker-less, marker-based) variable does not.
The interaction between the method variable and the
technique variable is not statistically significant.

E. Other results

Average results for normalized EMG envelopes of a
representative subject can be found in the appendix B.

IV. DISCUSSION

The aim and scope of this project was to design
and test a marker-less approach to compute L5-S1 joint
compression loads during dynamic lifting activities with
a musculoskeletal model. This was evaluated by compar-
ing the compression loads obtained from the marker-less
approach and the ones obtained by the marker-based ap-
proach.Participants performed static and dynamic squats,
stoops, and bilateral twists while lifting a 5kg dumbbell.

This project validated the marker-less workflow only
for flexion/extension, despite OpenSim’s LFB model
allowing for analysis in three degrees of freedom (DoF).

Inverse kinematics results (Figure 4) showed that
while marker-less data may have slightly higher vari-
ability, it still provides accurate information about the
timing and overall patterns of movement, making it a
viable alternative to marker-based methods. It is impor-
tant to note that at the beginning of each task, partic-
ipants had to move slightly forward and backward to
synchronize the marker-based and marker-less systems.
This initial movement may have caused the variability
within gathered data. Despite this, the L5-S1 flexion-
extension angle’s amplitude and overall patterns align
with reported values in existing literature [30], indicating
that the range of motion captured by both the marker-
based and marker-less systems is normal.

Figure 4 that there is a small phase shift between the
marker-less and marker-based approaches, particularly in
peaks and troughs. We hypothesize that this discrepancy
may be attributed to the number of cluster markers used
in the marker-less approach compared to the marker-
based system. In the marker-less method, each limb
is tracked using a single cluster marker, while the
marker-based system employs three markers per limb.
This discrepancy bears significance because the use of
three markers defines a plane, ensuring precise limb
orientation determination [31], whereas a lone marker
only provides positional data. Employing three markers
enables the capture of both rotational and translational
movements, a crucial aspect for accurately modeling
intricate human limb movements, especially in activities
like squats, where high knee flexion exacerbates soft-
tissue movement [32]. This hypothesis could be strength-
ened by delving deeper into the computed RMSE and R2

values. Notably, the SQ technique exhibits the lowest
R2 values (0.520 and 0.541) for both static and dynamic
experiments, accompanied by the highest RMSE values
(0.682 and 0.593) within these categories These values
suggest that the results obtained from the marker-less
approach for the SQ technique significantly deviate from
the actual observed values, implying considerable inac-
curacies in the technique’s estimations.

It is also important to consider that Nuitrack’s tracking
system operates focusing primarily on the front surface
of the body. This means it can accurately identify and
track keypoints visible from the front view. However, it
lacks depth perception beyond this front-facing perspec-
tive. While it can pinpoint certain body parts like the
clavicle, it may miss those obscured from its view, like
the C7 vertebra. Hence, as detailed in section 2.A, it
was imperative to gather supplementary measurements
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from the subject to compute additional markers, albeit
with less precision compared to the keypoints directly
obtained from Nuitrack. Furthermore, since Nuitrack
interprets visual data, factors such as lighting, movement
velocity, distance from the sensor, and height can all
introduce noise or ambiguity into the data, making it
more challenging for the system to accurately track
motion [1], [3], [4], [17], [19]. For instance, it was
observed that when a subject was too tall and the Kinect
didn’t fully capture their head, Nuitrack attempted to
locate the head of the person, resulting in a shift in the
entire skeleton downwards. Additionally, it was noted
that for dynamic activities, R2 values were higher (0.92
and 0.939), and the RMSE values were lower (0.231 and
0.217). This was because as the subject moved forward,
they were closer to the depth sensor, and the closer they
were, the more accurate the gathered data became [33].

Inverse dynamics results, illustrated in Figure 5, also
showed minor phase shifts between the marker-less and
marker-based approaches. Yet, the curves align closely,
especially in dynamic conditions. The obtained torque
values fall within the range to those obtained in other
studies under similar weight conditions [30], [34], [35].
Across all experimental trials, ST technique resulted in
higher L5-S1 torques compared to SQ technique, as
depicted in Figure 5. These results align with reported
values in existing literature that reported that lifting
techniques induce greater L5-S1 torques compared to
squat [36].

Figure 6 demonstrates that compression load re-
sults show minor phase shifts between the marker-
less and marker-based approaches. Overall, the curves
align closely, especially in dynamic conditions. When
compared to IK results, the RMSE values obtained for
compression loads are lower, suggesting that the marker-
less approach provides a better fit to the marker-based
approach. However, there is also a decrease in R2 values,
indicating that the overall variance explained by the
model has decreased. It is hypothesized that this could
be due to the integration of EMG data to compute
muscle forces. IK process is relatively straightforward
yielding high R2 values. It focuses on fitting joint
angles to marker data by solving a least-squares problem
that minimizes the differences between the measured
marker locations and the model’s virtual marker loca-
tions, subject to joint constraints [37]. On the other hand,
computing muscle forces involves solving more com-
plex dynamic equations. These computations consider
muscle activations, force-length-velocity properties, and
other biomechanical factors [15]. While these detailed
computations can capture finer nuances of movement,
improving the fit between both methods (as evidenced

by lower RMSE values), they also introduce noise and
additional variability that were not present when consid-
ering kinematics alone. This highlights a trade-off: the
model achieves a better fit (lower RMSE) at the cost of
explaining less overall variance (lower R2), due to the
increased complexity and variability introduced by in-
corporating EMG data and more detailed biomechanical
factors.

An ANOVA test was performed to evaluate if the
differences between the marker-less and marker-based
approaches in L5-S1 compression loads are statistically
significant. The analysis revealed that the technique
used has a significant impact on the compression loads,
suggesting it is a key factor in determining the variance
observed in the results. This indicates that variations
in technique can lead to meaningful differences in L5-
S1 compression loads. On the other hand, the method
applied did not show a statistically significant effect,
indicating that changes in the method do not lead to
notable differences in compression loads. Additionally,
the interaction between method and technique was not
significant, implying that the combination of these fac-
tors does not influence the compression loads signifi-
cantly. Therefore, it can be concluded that the specific
technique used is a crucial factor in influencing L5-S1
compression loads, while the method and its interaction
with the technique do not play a significant role.

Overall, the marker less approach allows the analysis
of dynamic movements and accommodates to individual
differences, providing more precise and personalized
analyses than the NIOSH lifting model, which relies
on generalized factors. This non-invasive method avoids
the risks associated with sensor-based techniques. Unlike
MTSs, which are accurate but confined to specialized
laboratories and involve laborious setups, our marker
less system enables motion capture in natural settings.
This reduces setup time and minimizes artifacts from
skin movement, enhancing the feasibility and comfort
of motion analysis.

However, our study has a few limitations that are
worth mentioning, with one significant concern being the
lack of control over lifting speed. Consequently, different
stages of lifting were not synchronized across repetitions,
hindering the analysis of how speed influences motion
tracking using the Kinect. Future research within this
limitation could involve implementing controlled speed
protocols to precisely examine the impact of lifting speed
on motion tracking accuracy.

Another limitation pertained to the evaluation of only
one weight or object. In industrial settings, workers often
lift objects of various sizes and weights. Given that
Nuitrack relies on visual data, it would have been crucial
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to assess how objects obstructing different parts of the
subject’s body affect motion tracking. Future research
could address this limitation by conducting experiments
with a diverse range of objects, simulating not only
real-world industrial activities but also scenarios. This
could involve analyzing how objects of varying sizes
and shapes impact motion tracking accuracy and de-
veloping algorithms to mitigate the effects of occlusion
on tracking precision. For example, predictive modeling
techniques could estimate the position of occluded joints
based on visible body parts and prior motion patterns.
Additionally, machine learning techniques, like training
convolutional neural networks (CNNs) with datasets of
occluded and non-occluded poses, could enhance the
system’s ability to predict hidden body parts accurately.

Additionally, the study solely focused on subjects
facing the camera, neglecting movements such as turning
and walking in the opposite direction, where only the
subject’s back is visible to the camera. And, due to time
constraints, only flexion and extension movements were
considered, overlooking other degrees of freedom (DOF)
in motion analysis. Future research within this limitation
could involve expanding the analysis to other DOF and
walking in different directions.

Finally, future investigations could explore the efficacy
of using three cluster markers per limb to enhance
the accuracy and reliability of the marker-less approach
in motion tracking systems. This could lead to im-
provements in tracking precision, especially in scenarios
involving complex movements or occluded body parts
by objects.

By rectifying the limitations noted, future progress
in motion tracking technology might pave the way for
the creation of tailored, resilient systems designed for
industrial settings. These systems could enable early
identification of improper lifting techniques or other
workplace injury risks. Improved motion tracking pre-
cision could consequently foster safer workplaces and
diminish occupational hazards for industrial workers.

V. CONCLUSIONS

This research has successfully proposed a new marker-
less approach to compute L5/S1 joint compression loads
during dynamic lifting activities using a musculoskele-
tal model. The proposed approach has been tested for
several lifting techniques relevant to manual material
handling industries. Results indicate a strong correlation
between the marker-less and marker-based methods, par-
ticularly in dynamic conditions, validating the marker-
less approach as a viable alternative. Additionally, the
inclusion of muscle force estimations using CEINMS
contributed to the accuracy of the compression load

calculations, highlighting the importance of considering
muscle forces in movement analysis. This method offers
a more flexible and less intrusive option for motion anal-
ysis, with potential applications in improving workplace
safety.

VI. AI USE

“During the preparation of this work the author(s)
used ChatGPT, Copilot and Gemini for spelling and
grammar checking. After using this tools, the author(s)
reviewed and edited the content as needed and take(s)
full responsibility for the content of the work.”
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APPENDIX

A. ANOVA TEST

Results of ANOVA for all lifting techniques can be seen in figure A.1. The peak compression loads were
considered to be the dependent variable. Factors such as the lifting method (S-SQ, S-ST, S-BT, W-SQ, W-ST,
W-BT) and the estimation method (marker-less, marker-based) were considered as independent factors. The effect
of independent factors along with their interaction effects on the dependent variable were studied using ANOVA
with alpha=0.05.

Fig. A.1: Peak compression loads ANOVA results performed in SPSS

B. EMG normalized envelopes

Figure B.1 shows all the obtained normalized EMG envelopes of a representative subject for all lifting conditions.

Fig. B.1: Normalized EMG envelopes of a representative participant (subject 9) for the right IL and left/right LTpL
and LTpT muscles. Plot show the results for several lifting techniques with a 5 kg dumbbell. The techniques include
S-SQ (a), S-ST (b), S-BT (c), D-SQ (d), D-ST (e), and D-BT (f). Solid line represents the mean and shaded region
the standard deviation
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