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The use of artificial intelligence (AI) has dramatically increased
over the past few years. With the recent surge of Large
Language Models (LLMs) and text-to-image generation models,
the general public has begun to see the possibilities of artificial
intelligence and use them in their personal and professional
lives. A large contributor to this is the advancements in both
hardware and software technologies. However, these new
technologies require careful consideration regarding their energy
consumption. As models become more computationally
intensive, their training drastically increases their energy
consumption.

Balancing the benefits LLMs can bring to our lives and their
energy requirements is essential to ensure that this technological
progress does not come at the expense of environmental impact.
Therefore, researchers should aim to use efficient techniques
that lower the electricity use of such artificial intelligence
models. This research aims to create a model of the electricity
consumption of training LLMs and explore techniques machine
learning researchers should use to reduce the electricity use of
training LLMs.
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1 INTRODUCTION
Artificial intelligence (AI) is a computer science research field
that was formally named an academic field in 1956 [33].
Since then, it has gone through several periods of optimism
and disappointment, and more recently, several innovations
such as deep learning, and the transformer have brought it
back to life, making it one of the most researched scientific
disciplines [41, 4].

Artificial intelligence applications range from
recommendation systems used on social media and
superhuman play in strategy games such as chess or Go [36],
to autonomous vehicles and creative tools such as AI art. Most
recently, tools like ChatGPT and DALL·E have taken over the
world, with ChatGPT being the product with the highest
growth rate of new users in its first months [5]. This has
therefore further increased the interest and funding in the
field.

With this much funding, companies have created very big
language models, with up to 70 billion parameters, which
consume a lot of energy, spending billions of dollars on
hardware alone [23, 20, 39]. Companies, such as Google and
Meta, usually use over 10,000 graphics processing units

(GPU) to train their AI models, which can use up to 3740
kilowatt-hours per year per GPU. This is as much energy as
an entire household for one single GPU [23, 21]. This is an
alarmingly high number and begins to make researchers ask
themselves if it is even worth the cost.

Data center energy requirements is a thoroughly debated
topic. Some recent research shows that data center electricity
requirements are expected to increase to up to 321
terawatt-hours (or even 752 terawatt-hours in a worst-case
scenario) in 2030 [19, 14]. This would put global data center
energy consumption at a total of 2% of the global electricity
available. It is hard to estimate the exact increase, but
researchers generally agree that it has an upward trend. For
this reason, it is essential to better understand why data
centers require electricity and how it is used.

The insights from this study help researchers and industry
professionals get a better understanding of exactly how a
change in the model architecture or training process will affect
the total required electricity. By seeing exactly how, for
example, the choice of data center impacts the electricity
needed, researchers will be able to make more informed and
therefore better and more sustainable decisions. Furthermore,
this study also provides several solutions as to exactly how to
tackle the main problems identified. This should help
researchers easily make language models more efficient and
environmentally friendly.

2 PROBLEM STATEMENT
As seen above, with the improvement in artificial intelligence
software and hardware technologies, comes a great increase in
energy consumption. Training big models requires large data
centers, which have increased electricity consumption, up to
3740 kilowatt-hours per year per GPU [23].

Data center energy consumption is expected to increase
drastically [19, 14], especially with the recent demand for
large-scale AI training and inference systems. This trend not
only has significant financial implications but raises
environmental concerns. Consequently, understanding the
energy demands of AI systems and how they can be mitigated,
has become a critical area of research.

The purpose of this research is to perform a combination of
systematic and unsystematic literature review, create a system
dynamics model of the energy consumption of training an
LLM, and evaluate the existing options for reducing the
energy use of artificial intelligence systems and how they can
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be applied by researchers. Therefore, the main research
question is the following.

What methodologies should researchers use to mitigate the
electricity use associated with the training process of large
language models?

This will be split into two different sub-research questions
that, when put together, should answer the main question.
Before looking at reducing electricity use, the main parts that
use electricity should be established. This can then be
modeled using a system dynamics (SD) model as it is a great
tool to showcase the interdependencies in complex systems
[8].

Lastly, the research will focus on identifying methodologies to
reduce electricity in each specified area of the model and
explaining how they can be used by researchers and industry
professionals; therefore leading to the following sub-research
questions.

1. How can the primary contributors to electricity
consumption in the training process of large language models
be estimated and modeled under a system dynamics
approach?

2. How can the electricity consumption of each identified area
in the system dynamics model be decreased?

To address these questions, the paper is divided into the
following sections. Section 3 shows the most recent and
relevant work that has been done in the fields of AI, AI
sustainability and LLM energy use modeling. Subsequently,
Section 4 describes the research methods used, delineating
exact information such as sources, search queries and
exclusion criteria. Section 5 identifies and explains the main
aspects that affect the electricity consumption of an LLM and
explains the model created. This section also runs three
simulations validating the model using real world data from
well known language models. Section 6 offers ideas and
solutions that AI researchers could implement to reduce the
energy use of their LLM. Next, Section 7 addresses the
limitations and assumptions of the findings as well as
suggestions for possible future research directions. Lastly,
Section 8 summarizes the findings and contributions of this
research.

3 RELATEDWORK
This section will highlight some of the most important
research that has been done in the general AI field as well as
the energy consumption of AI, specifically large language
models.

An important recent discovery is deep learning [15]. This
technology was extremely revolutionary and was used in a lot

of fields, ranging from computer vision to climate science.
Another important recent discovery is the architecture of the
transformer [41]. Developed primarily for natural language
processing tasks, transformers have demonstrated remarkable
capabilities in modeling sequential data and capturing
long-range dependencies efficiently. This directly led to the
current AI boom that started in 2020. Since then, plenty of
new companies and tools have launched that leverage the use
of AI. Tools like ChatGPT, DALL·E, Bing Copilot, Tesla
Autopilot and many others, all make use of neural networks
and variations of the transformer architecture.

In the domain of sustainable AI, one of the most relevant and
recent research by Patterson et al [31] suggests that energy
consumption of artificial intelligence is actually very low;
even creating an interesting comparison, by stating that “the
portion of the 22,000 people from 68 countries who in 2019
flew to attend the two major ML conferences (NeurIPS and
CVPR) collectively had a CO2e impact arguably had
~10x–100x higher than the impact of training of all the ML
models in this paper”. They consider the percentage of total
energy use of big tech companies, such as Google, to be very
low for machine learning tasks, representing less than 15% of
the overall electricity consumption. However, it is important
to mention that most authors of the paper are Google
employees. Nine out of the eleven authors are high ranking
employees. This means that they have a vested interest in
portraying this is a small problem. This does not nullify their
research, but should be kept in mind when considering their
measurements. Moreover, the paper only considers the cost of
training and not inference; which has been shown to be highly
underestimated in recent research [6].

Another piece of important research, done by Schwarz et al,
[43] in the field of artificial intelligence sustainability,
suggests that the environmental friendliness of artificial
intelligence is heavily understudied. They encourage
researchers to pay more attention to this topic and incorporate
sustainability considerations into AI development. Their
research highlights the use of sustainable practices,
advocating for “making efficiency an official contribution in
major AI conferences” [43].

In terms of understanding the energy use of an LLM,
researchers at Massachusetts Institute of Technology and New
York University have conducted experiments to understand
the “computational and energy utilization of inference with
LLMs.” [34]. In their study, they tried to evaluate inference
energy consumption of Llama 65B. They found that the
energy required to run inference on it was in the range 300 to
1000 watts. They mention that this depends a lot on the
hardware used and the number of GPUs. They also found that
the energy per output token was about 3-4 Joules.
Additionally, they also suggest that “at a minimum, 8 V100
GPUs each with 32 GB of RAM or 4 A100 GPUs each with
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80GB of memory are required for any meaningful inferences
with the 65B LLaMA model.”

Lastly, another very recent paper [12] takes a higher level
approach, investigating the carbon footprint of the entire
life-cycle of large language model chatbots. It identifies eight
main phases in the life cycle of LLM-powered chatbots, from
research and development to hardware manufacturing and
waste disposal. It analyzes every single phase in detail and
shows how the phases influence one another. It concludes by
suggesting three strategic pathways to tackle this issue. The
first pathway advocates for systematic and dynamic reporting
to accurately estimate the carbon footprints of chatbots. The
second pathway suggests an overall greener process:
designing greener training and fine-tuning processes for
LLMs, incentives for end-of-life management and proactive
reporting of energy consumption to avoid lag. The last
pathway says governments should establish international
non-profit organizations, implement emission legislation and
promote international collaboration.

4 METHODOLOGY
This study employs a combination of systematic and
unsystematic literature review. The research focuses on
synthesizing existing research about electricity consumption
of training LLMs. Additionally, a system dynamics approach
is used to model the energy use of the LLM.

4.1 Systematic Literature Search
Scopus and Google Scholar were selected as the main
databases for the systematic review due to their popularity and
substantial information content. In order to assure high quality
and relevant resources, the following search queries were
used:

(“Energy” OR “Electricity”) AND (“Artificial Intelligence”
OR “Machine Learning” OR “Large Language Model”)

“Large Language Model” AND (“Training Cost” OR
“Electricity Consumption”)

Both queries target the intersection of the two main areas of
interest, artificial intelligence and energy consumption
analysis. The first one is aimed at more general and high level
aspects about the intersection of the domains, while the
second is directed towards exactly what is being researched.

To assure low-quality and outdated research is filtered out,
several exclusion criteria have been applied. Given that AI is
a rapidly evolving area of research and there have been
several breakthroughs in the recent past, on which most AI
work is based, only recent research (2020 and onwards) was
considered. As this domain is heavily studied, the papers were

thoroughly checked for relevancy in order to assure they are
on topic. Additionally, the articles should be freely available
online in order to comply with the “Twente Student
Conference on IT” guidelines.

After applying all exclusion criteria, the initial search yielded
a small number of relevant articles; only five met all criteria.
The strictness of the exclusion criteria was intentional, to
ensure only relevant and high quality articles are selected.
However, it became apparent that this approach was actually
too restrictive. In an attempt to address this, the criteria was
slightly loosened, by allowing for papers published before
2020. Now, the opposite problem surfaced, most of the new
papers identified were either not relevant to the specific topic
of this research or were outdated. For example, due to how
fast natural language processing has evolved, even papers
from 2018 used old techniques that are not very relevant in
today's research. Moreover, the few papers found lacked
comprehensive information, especially regarding energy
consumption or training costs. Consequently, the limited
number of useful papers required an alternative approach to
gather the required information.

4.2 Unsystematic Literature Search
As the systematic search proved to not have enough relevant
information to be able to come to clear conclusions, some
unsystematic literature search was also employed. This
allowed for a more flexible and adaptable literature
exploration. It consisted of three primary methods: papers
received from the research supervisor, LLM technical papers
and several other relevant books and articles referenced in
papers.

First of all, a collection of academic papers and articles
provided by the professor served as foundation and technical
background knowledge to better understand the landscape of
AI energy consumption. This included recent studies
regarding the carbon emissions of machine learning, data
center energy use and AI sustainability. This provided a
curated starting point for further research.

Secondly, to get a more nuanced and technical understanding
of large language models, several technical papers, published
by authors of the large language models, were also included in
the research process. This includes technical papers from
some of the best [18] and recent LLMs such as GPT-3,
Gemini 1.5 and LLama 2. This served as a comprehensive
and up-to-date view of how modern language models are built
and what tools and techniques are used in the process of
training them.

Lastly, some of the literature from the above mentioned
methods referenced several other key research papers that
were highly relevant. This proved to be a highly effective
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method that unveiled crucial information about topics such as
what hardware data centers use, hyperparameters of certain
language models, and much more.

4.3 System Dynamics Modelling and
Simulation
One of the goals of this research is to create a system
dynamics model of the energy consumption of training a large
language model. Then, several simulations are run using
publicly available data, to validate it.

System Dynamics Modelling is a modeling and simulation
tool useful for both experienced researchers and people with
little experience in the modeling field. It helps to easily
showcase and simulate different scenarios and understand the
behavior of a system. Using it will help visualize and explain
exactly how energy is used when training LLMs.

To create the model, the online tool Insight Maker is used. It
is a free “web-based, general-purpose simulation and
modeling tool” [8]. Even though InsightMaker offers three
modeling approaches: System Dynamics, Agent-Based
Modeling, and imperative programming, for the purpose of
this research only the System Dynamics tool is used. It offers
several primitives such as stocks, variables, and converters;
however, to keep the diagram simple and understandable, only
variables, and links are used. Variables are depicted as light
orange ovals and are used to show how aspects of the LLM
interact with each other, through links (shown as gray dotted
lines), and arrive at the final result.

This model is then used to run several simulations using
publicly available data to check its validity and accuracy.
Section 5.1 dives deeper into the required input data, the
calculation of each intermediary variable of the model, and
how the final result is calculated.

5 LLM ENERGY USE MODEL
This section is split into two parts. The first subsection will
explain the system dynamics model created to estimate the
power consumption of training a large language model. Then,
the second subsection will validate the model using publicly
available data from some of the biggest, open source, and
well-known LLMs.

5.1 Explanation of the Model
In order to better understand exactly what requires energy
when training large language models, the following system
dynamics model was created (Figure 1).

Figure 1. System Dynamics Model of LLM Training Energy
Consumption

The goal of the model is to estimate how much electricity a
large language model would require to be trained. It takes in 6
input values: PUE, GPU TDP, GPU Speed, Epochs, Dataset
Size, and Model Parameters. The final result is the Total
Electricity. A full list of the formulas and the corresponding
variable can be found in Table 1.

Variable Formula

Total Electricity 𝑀𝑜𝑑𝑒𝑙 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 × 𝑃𝑈𝐸

Model Electricity 𝐺𝑃𝑈 𝑇𝐷𝑃 × 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑇𝑖𝑚𝑒

Training Time 𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 ÷ 𝐴𝑐𝑡𝑢𝑎𝑙 𝐺𝑃𝑈 𝑆𝑝𝑒𝑒𝑑 ÷ 3600

Actual GPU Speed 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 × 𝐺𝑃𝑈 𝑆𝑝𝑒𝑒𝑑

Total Compute 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑆𝑡𝑒𝑝𝑠 × 𝑇𝐹𝐿𝑂𝑃𝑠 𝑝𝑒𝑟 𝑆𝑡𝑒𝑝

Training Steps 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 𝑆𝑖𝑧𝑒 × 𝐸𝑝𝑜𝑐ℎ𝑠 

TFLOPs per Step 𝐹𝐿𝑂𝑃𝑠 𝑝𝑒𝑟 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑝𝑒𝑟 𝑡𝑜𝑘𝑒𝑛×𝑀𝑜𝑑𝑒𝑙 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠
1000

Table 1. Formulas for variables of the System Dynamics Model

Starting from the end, Total Electricity represents how much
electricity the training of the LLM is expected to consume and
is measured in watt-hours (Wh). It is a direct result of the
calculated Model Electricity multiplied by the PUE. PUE
stands for Power Usage Effectiveness, measuring the
efficiency of the data center used to train the model. For an
average data center, this value is close to 1.58 and 1.10 for
cloud providers [31].

Next, the Model Electricity shows how much energy is
needed to train the LLM before accounting for the
inefficiency of the data center and is also measured in
watt-hours. Multiplying the GPU TDP by the Training Time,
results in this value. GPU TDP represents the thermal design
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power of the graphics processing unit. A graphics processing
unit is the device used by data centers to train AI models.
Some data centers still use CPUs (central processing unit) but
it has been shown that GPUs are drastically more efficient,
especially for machine learning tasks [7]. TDP is a measure
for the amount of heat that the GPU is designed to produce
under heavy use and is a decent approximation for the power
required to use it when training AI models [21, 40]. Table 2
shows details about the most commonly used GPUs in big
tech data centers.

GPU FP64 Tensor Core TDP

Nvidia V100 7 TFLOPS 112 TFLOPS 250 watts

Nvidia A100 9.7 TFLOPS 312 TFLOPS 300 watts

Nvidia H100 25.6 TFLOPS 756 TFLOPS 700 watts
Table 2. Most common GPUs in big tech data centers

Training Time represents how long it would take to train the
model on a single GPU - measured in hours. This is calculated
by dividing the Total Compute by the Actual GPU Speed and
transforming from seconds to hours by further dividing by
3600. The Actual GPU Speed is the GPU Speeds reported by
the manufacturer, Nvidia, multiplied by the Utilization Rate.
The Utilization Rate shows how efficiently the GPUs are
actually being used. Research shows this value is very hard to
approximate. It can be anywhere between 20-90% depending
on the model, data center architecture and several other
factors [10, 11].

AI tasks usually require floating point operations (FLOPs) at
different precision levels (64 bits, 32 bits and 16 bits).
Occasionally, when very well optimized, it may also make use
of tensor cores: specialized hardware in GPUs that can
perform mixed precision calculations, such as combining
16-bit floating point precision (FP16) and FP32 [17]. GPUs
have different speeds for the different precision levels; see
Table 2 for the FP64 and Tensor Core speeds of popular
GPUS, measured in tera floating point operations per second
(TFLOPS). In practice, models use all of these speeds at
different parts of the training [17]. For the purpose of this
research, only FP64 is used as that seems to be the most
realistic [10,11].

The Total Compute is the number of FLOPs required to fully
train the LLM. It is calculated by multiplying the Training
Steps by the number or FLOPs per Step. The number of
Training Steps represents the total number of times the
weights (parameters) of the model are updated. It is calculated
by multiplying the Dataset Size (expressed in tokens) by the
number of Epochs. An epoch is a pass of the entire training
data set through the algorithm. It shows how many times the
dataset is used to train the model. It is a hyperparameter (a
setting) of the model.

Finally, the number of FLOPs per Step represents how many
operations have to be performed in a Forward Pass and
Backward Pass of the model. To get this value, the number of
Model Parameters is multiplied by the number FLOPs per
parameter per token and divided by 1000 to express it in
teraFLOPs. The number of parameters is dictated by the
architecture and is an input variable.

The number of FLOPs per parameter per token is a measure of
the number of operations required for each parameter in the
model to process a single token. It can be approximated using
OpenAI’s scaling law [13, 3] to a value of 6. This does not
account for potential optimizations, but for the purpose of this
research, this is kept as a constant, 6.

5.2 Model Validation
In order to assure the system dynamics model is correct, it has
been validated using publicly available information about
some of the most well known and influential LLMs: GPT-3,
Llama 2 and Llama 3. To be able to check the validity of the
model, the six input values are necessary: PUE, GPU TDP,
GPU Speed, Epochs, Dataset Size and Model Parameters; as
well as the total electricity required to train the model. These
are gathered from technical papers, the source code of the
model and other relevant research that analyzes the model and
hardware used. Appendix A shows the data used for
validating the model and the output (Calculated Electricity).

GPT-3 (Generative Pre-trained Transformer 3) is an LLM
developed by OpenAI. It was released by OpenAI in 2020. In
2020, OpenAI also released a research paper where they
reveal several key pieces of information about GPT-3 [2].
Using it, as well as several other studies and technical
information [31, 25, 28, 17], the needed values were
identified. The result of the model was 2.75E+08 watt-hours,
while the true value is 1.28E+09.

Llama 2 is an open source and free to use for both research
and commercial purposes LLM developed by Meta (formerly
Facebook). It was released, along with a technical paper
describing its capabilities, specifications and training process,
by Meta in July, 2023 [22, 23]. Information gathered from it
and details about Meta’s data centers and technical hardware
details proved enough to use it for validation [20,30]. The
result of the model was 6.29E+08 Wh, while the true value is
6.88E+08.

Llama 3, the successor of Llama 2, is also an open source
model created by Meta. It was released in April, 2024 in a
blog post [23]. Unfortunately, as of writing this paper, Meta
has not yet published the technical paper about it, making
gathering information about it harder. Nevertheless, sufficient
information was found in the source code, information on the
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data center it was trained in and hardware description [24, 16,
29]. The result of the model was 4.17E+09, while the true
value is 4.48E+09.

As can be seen, the system dynamics model’s result is very
close to the actual electricity consumed in the case of the
Llama 2 and Llama 3 models, but around 5 times off in the
case of GPT-3. This discrepancy is likely due to factors that
are not accounted for; such as model architecture or other
aspects of the way the model is trained (i.e. batching or
parallelism) [38]. Nonetheless, this model can still be used to
approximate the energy use. The goal of the model is not to
calculate the electricity exactly, but rather give a fair
estimation based on a few parameters.

6 DECREASING ENERGY USE
As the main parts that influence the energy use of training an
LLM have been highlighted above, this section will
investigate how each identified area of the model can be
targeted in order to decrease the resulting energy use.

A big factor that influences the required energy to train the
LLM is the power usage effectiveness of the data center where
the model is trained. This value is close to 1.58 for the
average data center and 1.1 for cloud providers [31, 32]. This
means that just by choosing the average cloud provider over
the average data center, almost 50% less energy is required. It
is a very big difference and therefore highlights the
importance of choosing the right data center. As seen in
Appendix A, all 3 models used very efficient data centers.
GPT-3 used a V100 GPU cluster provided by Microsoft’s
cloud computing solution Azure [2, 17], while Meta used their
own AI Research SuperCluster for Llama 2 [42, 20] and the
Meta GenAI Infrastructure for Llama 3 [23, 16, 21]. All of
these have excellent PUEs of 1.1, 1.09 and 1.09 respectively.

Another important consideration is to use the best and most
recent hardware available for the data center. The most used
processors nowadays are Nvidia V100, A100 and H100. It is
crucial to choose hardware that is specifically optimized for
machine learning tasks as it can improve performance and
efficiency by 2 to 5 times [31].

Additionally, to further leverage the potential of the GPU,
using mixed precision training to optimize for tensor cores is
also a great way to reduce the overall energy use [35, 37, 17,
1]. These can increase the processing power of the GPU by up
to 8 times, leading to less time taken to train and therefore less
energy consumption.

Also, using the most recent and efficient machine learning
models is a good way to further decrease the energy necessary
to train the LLM. For example, the Primer architecture is
shown to be about 4 times faster than the normal Transformer,
without sacrificing quality [31, 37]. Implementing such

advanced models not only optimizes performance, but also
contributes to the sustainability of AI research.

Moreover, when building the model, the developers should
strongly consider the size of the language model, specifically
the number of neurons in the network. Recent research shows
that “a good portion of neurons are redundant and can be
removed to reduce energy consumption without a significant
impact on accuracy” [43].

Furthermore, as the budget rises, the model size (parameters
number) and the number of training tokens should be scaled
equally: “for every doubling of model size the number of
training tokens should also be doubled” [25, 9]. This has
proven to help both model accuracy and efficiency of training.

7 DISCUSSION
This research has had several assumptions and faced multiple
limitations that this section intends to address. The end of this
section proposes several future research topics, based on
problems faced in this paper.

7.1 Assumptions and Limitations
First of all, as mentioned before, the system dynamics model
presented relies on simplified representations of complex
interactions between multiple factors. While it helps simplify
the model and make it easier to understand, it does omit
certain nuances that influence energy consumption. This can
also be seen in the validation section; where the numbers do
not exactly match with the expected result. Additionally, some
values in the model had to be estimated as there is no clear
answer in some cases. For example, the GPU processing
speed is very dependent on the model architecture and data
center configuration and the GPU utilization rate is not a very
well researched topic so it’s hard to be sure of the estimation.
Several different sources use very different values with not
much explanation [11, 10].

Second of all, during the validation process, there were
several assumptions made. It is assumed that both OpenAI
and Meta used the same training practices, which may not be
the case as different companies often have proprietary
optimization techniques they use. This might overlook
specific efficiencies or inefficiencies unique to each company
and model.

Next, the model assumes all training is done on one GPU,
which in practice is obviously not true and might come with
additional costs related to communication and
synchronization. This simplification also underestimates the
complexity of distributed training. Furthermore, it is also
assumed that the model can be scaled up and down infinitely,
without any changes in the model architecture or training
process. In reality, scaling up introduces new challenges and
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inefficiencies. “As model size and complexity increase,
efficiently scaling training becomes a challenge” [26].

Lastly, this research is constrained by the TScIT requirement
that all sources should be openly available to the public. This
constraint has lessened the number of sources on top of the
fact that, due to the nature of this research domain and how
fast it has advanced in the past few years, there is little
previous research that is valuable and up to date.
Consequently, all of the findings and recommendations are
based solely on publicly accessible information, which likely
does not capture all current practices and standards.

7.2 Future Work
Future research could focus on perfecting the system
dynamics model and creating variations tailored to specific
model architectures and training processes. The model created
in this research, while not perfectly accurate, serves as a
general and comprehensible framework. It should allow other
researchers to build upon and customize it to increase its
accuracy for different models and training scenarios

Additionally, energy consumption during inference could be
another important area to look at. This study only looked at
energy costs associated with training; but based on analyzed
literature, it became evident that inference is an understudied
research area. Given how widespread AI has been deployed
and how much people have started using it, understanding and
optimizing inference energy consumption is necessary for the
development of sustainable AI.

Lastly, another seemingly understudied topic is the utilization
rate of GPUs. Most papers analyzed in this research seem to
use an arbitrary value for the utilization rate without providing
detailed justifications. A more systematic study of GPU
utilization rates could provide useful information and help
create more accurate energy models. These research directions
should provide more in-depth insights into reducing energy
demands of AI technologies.

8 CONCLUSION
All in all, the goal of this research was to better understand
what aspects of a large language model impact the energy cost
when training it and what researchers should do to diminish
the overall energy use of training the model. By the use of a

system dynamics model, this research has shown a simplified
overview of how different factors affect the resulting
electricity cost. The model was then validated by the use of
publicly available data about some of the biggest and most
well-known language models: GPT-3, Llama 2, and Llama 3.
Lastly, based on the literature analysis, several methods are
proposed to tackle each aspect of the model that contributes to
electricity use.

The main contributors to electricity consumption identified in
this research are as follows: data center power usage
effectiveness, the thermal dynamic power of the GPUs used
by the data center, the processing power of the GPUs, epoch
count, the dataset size used to train the model and the number
of parameters of the model. The way these factors interact
with one another and how the final value is calculated can be
seen in Figure 1 and Table 1.

To reduce energy use, the following methods have been
identified from the literature search. First of all, to get the best
possible power usage effectiveness available right now, the
use of efficient data centers such as cloud providers, is
recommended. It can reduce total electricity by up to 50%.
Secondly, choosing the best hardware that is optimized for
machine learning tasks is another crucial factor, leading to
performance and efficiency increases by up to 5 times.
Thirdly, using mixed precision training to optimize for tensor
cores can reduce energy consumption by up to 8 times. Lastly,
using up-to-date model architectures and scaling the training
data set size with the model size equally can further increase
model accuracy and efficiency.

This research has highlighted several critical insights into the
factors influencing energy consumption in training LLMs. By
understanding these contributors, researchers and industry
professionals should be able to make more informed
decisions, specifically in optimizing data center operations by
selecting appropriate hardware and training techniques to
minimize energy use. Furthermore, data centers and
researchers should be able to better understand and more
accurately estimate costs associated with model training,
aiding budgeting and resource allocation. Moreover, these
insights should encourage the development of more
energy-efficient training methodologies, hardware and
software, ultimately contributing to more sustainable AI
practices.

7



TScIT 41, July 5, 2024, Enschede, The Netherlands Emil Todirascu

A Model Validation Values Table

Model GPU Used GPU TDP
(watts)

GPU Speed
(TFLOPS)

PUE Epochs Dataset Size
(billion
tokens)

Model
Parameters
(billions)

Calculated
Electricity
(watt-hours)

Actual
Electricity
(watt-hours)

GPT-3 V100 250 7 1.1 1 300 175 2.75E+08 1.28E+09

LLAMA 2 A100 300 9.7 1.09 1 2000 70 6.29E+08 6.88E+08

LLAMA 3 H100 700 25.6 1.09 1 15000 70 4.17E+09 4.48E+09
Table 3. Values used to validate the System Dynamics model
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