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Abstract

Parsers and printers are commonly used to transfer data, for example, using the JSON or
XML formats. The correctness of these parsers and printers is pertinent to the functioning
of the systems that use them to communicate. The separate design and programming of
parsers and printers can cause slight differences in behaviour over time due to programming
mistakes. By programming the parser and printer simultaneously, using the same expres-
sion, we can be sure their behaviours never deviate. Software verification is the practice
of verifying the correctness of software. If a piece of software is verified, the verifier might
need to verify the parsers and printers in the software as well. In this work, we introduce
both a parser and printer bidefinition-combinator library and systems to verify that the
bidefinitions created with it are compatible, created in the Isabelle proof assistant. To
define what compatible behaviour means, we will describe various efforts made in the past
to determine this and explain our choice of definition.

Keywords: Parsing, Printing, Parser Combinators, Software Verification



Chapter 1

Introduction

The separate definition of parsers and printers may cause deviations over time, as changes
are made. This might cause issues in parser and printer compatibility, which can cause
large issues in software systems. The ubiquitous server-client architecture for websites and
desktop software depends on parsers and printers being compatible such that no confusion
occurs. As such, we introduce a library that focuses on creating parsers and printers in one,
using a parser-combinator-style mechanism. The following few sections will introduce the
necessary background knowledge. First, we introduce the idea of a parser and explain some
methods of creating parsers. We will then focus on parser combinators, one specifically
relevant method of creating parsers. When those have been introduced the counterpart of
the parser, the printer, is introduced. Some examples of printers with different goals are
called upon, to compare the various ways that the word is used.

With parsers and printers introduced we focus on the relationship between them, show-
ing that choices made in the implementation of the printer influence the way that the parser
must read the printed text. Then, we introduce the idea of software verification, which
can help us verify statements about the ways that parsers and printers can influence each
other.

With these elements as a basis, the research goal for this thesis is introduced, together
with subgoals that help in reaching the overarching goal.

The Isabelle code for this thesis is on github in repository https://github.com/
Matthias-Sleurink/bidefinition-thesis-theories.

1.1 Parsers

A parser transforms input data into a format that a program can understand. This might
be source code to an AST, text to JSON, or bytes to an image that can be displayed.
They are pervasive in communication between computers, where data is put into some
form (be that JSON, XML, or even raw bytes) then transmitted, and upon being received,
parsed back into the object that was sent. Their functionality is used in all webpages, for
the conversion of the HTML, CSS, and JS text into objects that the browser can use to
display the webpage. And also in many native applications, as they communicate to the
servers that store the data they show the user.

Parsers can be constructed using many methods. Some examples include parser gener-
ators, which create parsers from a grammar description, PEGs [3], with which the to-be-
parsed language is described in a parsing expression grammar from which a parser can be
generated, and parser combinators. This last example is especially relevant to our work,
so will be explained below.
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1.1.1 Parser Combinators

Parser combinators are a method of flexibly creating parsers from core building blocks.
These building blocks can be split into two groups. That being the parsers and the combi-
nators. Parsers are the functions that can parse some input, and combinators are functions
that take some parsers or other input and produce new parsers.

For example, say we have the parser one_character, which parses any single character,
and the combinator then which takes two parsers and returns a parser that applies both
parsers to the input in order. With this, we can create a parser that parses two subsequent
characters like so: then one_character one_character.

An important advantage of parser combinators is that combinators create parsers that
can be put back into combinators to create more complex parsers, and so on. This allows
the programmer to make complex parsers from simple building blocks, and combine those
complex parsers in the same way that they combined the simpler parsers.

1.2 Printers

Printers, also known as pretty-printers or serialisers, transform some input object into text
or binary data. Examples include Google protobuf, Javas Serializable, and Pythons
pickle. Though serialisers and printers can be seen as similar, they have different goals.
Where a serialiser often intends to write in a format that is fast to read by a computer,
a pretty printer might focus more on readability by humans. For example, the before-
mentioned protobuf software writes encodings of data in the shape of variable-length byte
arrays. In contrast, the JSON serialiser built for the Kotlin language has a mode to
pretty-print data, adding newlines between elements and adding indentation for nested
structures.

1.3 The Relationship Between Parsers and Printers

If a server serialises some object to be transmitted to a client it expects that client to be
able to read the object without any data loss (modulo networking issues). If this goes wrong
in any way, it could cause very significant problems for the software package as a whole.
Imagine for example a messaging application. The client sends the current timestamp and
the message text to the server. It first writes the current timestamp as 8 consecutive bytes,
and after that writes the Unicode bytes of the text. On the server side, the server wrongly
starts reading the text and interprets the last 8 bytes as the timestamp. This is the kind
of issue that can occur when parsers and printers are developed separately.

Another issue like this is the printing and parsing of variable-length lists of elements.
How does the parser know when it should stop parsing list elements? We lay out various
ways of resolving this:

First, the printer might print the amount of elements in the list before the list. It might
print some special terminating element after the last element in the list, though it has to
be sure that the terminator cannot be confused for a list element. It may print a specific
marker before each element of the list, with a different marker being printed when there are
no more elements to be parsed. It may encode the elements in such a way that whatever
is printed after the last list element can never be interpreted as another list element.

This last option is especially interesting because it does not require adding extra data
into the printed stream, but it is also especially difficult, because it might be hard to tell
when the element printed after the list cannot be parsed by the parser that parses the list
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elements. Because this is difficult to tell, it may be good to prove that this confusion can
indeed never happen. For this, we use Software Verification.

1.4 Software Verification

Software verification is the practice of verifying the correctness of software. It may be
done by relating the input and output of some procedure to each other with mathematical
equations. For example, a function that increases a number might look like f i = i+1. Does
the function adhere to predicate f i > i ? Yes, assuming that numbers are implemented in
such a way that they do not wrap around. So, numbers implemented as Peano numbers
would adhere to the predicate, but an 8-bit integer like in the x86 computer architecture
does not.1

1.4.1 Software Verification, Testing, and Bounded Model Checking

Software verification might seem similar to software testing. However, there is a difference
that makes the guarantees given by testing significantly weaker than guarantees given by
software verification. For example, let us go back to the function f i = i+1. If we wanted
to test that this function adheres to the predicate f i > i we might design a few tests. We
would at least want to test at -1 and 1, and then possibly also at 0 and other interesting
values. But with software testing, we can never cover every input. A core advantage of
software verification is that a predicate is proven for every possible input, not shown for a
few inputs. Even if the amount of possible inputs is so large it could never be enumerated
in a lifetime.

Bounded model checking is closer to software verification than testing, but also has
its limits. CBMC is described by its authors as "a tool for the formal verification of
ANSI-C programs using Bounded Model Checking"[1]. CBMC creates a model of code
and checks that that model adheres to some given predicates. This model, however, may
be infinitely large, and can only be checked up to a certain bound. Thus, the "bounded"
part of the model checking limits the guarantees this software gives to being weaker than
the guarantees that can be given by software verification as a whole.

1.4.2 Interactive Theorem Provers

Interactive theorem provers are programs that can verify the correctness of mathematical
proofs. The interactive part in the name denotes that the software provides an IDE-style
interface to the user. Which is used to "program" the proofs. The IDE shows the user the
assumptions that they can use, and the goal that they need to prove from them. Examples
of interactive theorem provers include Coq [15], Isabelle [12], and Lean [9].

1.4.3 Isabelle Proof Assistant

The Isabelle Proof Assistant is software that can help the user create and verify the cor-
rectness of mathematical proofs. It is built upon the idea of a trusted core [12]. Upon this
trusted core a large amount of "correct by construction" proof methods and tools are built.
One of those tools is Isabelle/HOL. Isabelle/HOL is especially useful for software verifica-
tion because it can be used as a functional programming language. In fact, the manual for
Isabelle/HOL [11] introduces HOL with the equation HOL = Functional Programming +

1An overflow error caused the standard library binary search implementation of the JDK to throw
unexpectedly between 2004 and 2006 [14]
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Logic. When using HOL an Isabelle user has access to all the things a programmer expects
from a functional programming language. These facilities are built into the mathematical
language that Isabelle uses to create lemmas. This makes the Isabelle Proof Assistant,
especially together with the Isabelle/Jedit IDE, an effective tool for software verification.

1.5 Research Goal

The main research goal for this thesis is to ‘define an easy-to-use library for verified parser-
and printer-combinators.’ To create a verification system for parsers and printers we must
first define what makes a parser and printer pair well-formed. For this, we define our first
subgoal: ‘Defining a notion of "well-formed" for a parser and printer pair.’

When we have defined a notion of well-formedness we need to formalise this as a
predicate in a proof assistant. For us, the proof assistant of choice is Isabelle/HOL. So,
our second subgoal is: ‘Formalising this well-formedness in Isabelle.’

Separate from the creation and formalisation of the well-formedness criteria we need
to actually create the library. We need several parser-printer pairs (bidefinitions) and
combinators that operate on these pairs (bicombinators). For this, we define our third
subgoal: ‘Creating a library of parser and printer bidefinitions and bicombinators.’

The next step after creating the formalisation and the bidefinitions and bicombinators
is to create lemmas that show that the bidefinitions and bicombinators are well-formed.
This includes statements like ‘the bidefinition for a single character is well-formed’, but also
like ‘to prove that these two bidefinitions when composed consecutively are well-formed we
need to show that...’ This process is captured in the fourth subgoal: ‘Creating lemmas to
prove the well-formedness of these bidefinitions and bicombinators’

Once we have this library, and the rules to prove the elements are well-formed, we need
to show that the library is usable. For this, we will create and verify the well-formedness
of a bidefinition for the DIMACS file format. This process will then fulfil the last subgoal:
‘Show the usability of the library by creating a bidefinition for an example file format and
proving that it is well-formed.’
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Chapter 2

Literature review

The bidefinition of parsers and printers has been investigated multiple times:
In 2010 T. Rendel and K. Ostermann created a system of parsers, printers and combina-

tors that together allow the user to create more complex parser and printer combinations.
They called them invertible syntax descriptions. Their system can properly handle asso-
ciativity and priorities for infix operators, as well as variable whitespace [13].

Zirin Zhu, et al. created the BiYacc [19] library for Haskell, based on bidirectional
transformers, it allows the user to write code once, and get a parser and printer. They
include a system of normalisers such that changes to the AST (like from optimizers) are
reversed in the printing step. They aim not to have the input and output equal but to
have syntactic characteristics like brackets to stay the same. As such, they do not make
any strict claims about the relationship between the parsed and printed text.

Freed Wiedijk, in his work on Pollack Consistency, investigated the relationship between
parsed and printed texts [18]. The claim Wiedijk makes is that the parser and the printer
of a proof assistant must be connected such that the printer never prints a true statement
in such a way that it is parsed as a false statement by the same proof assistant. For
Isabelle, the counter-example given is a proof for "False", which uses specific instructions
to the Isabelle parser to accept the text "False" as notation for the boolean value true.
This notation context is not printed when terms that were originally parsed by Isabelle
using the notation are printed. As such, Isabelle will happily print "False" for the boolean
value true without this notation context. This, in turn, means that the Isabelle parser will
parse the boolean value false from the text "False" and will not be able to prove this equal
to true.

The verification of parsers has also been discussed before. A. Korpowski and H. Binsz-
tok present TRX, their parser interpreter that is developed and verified in Coq [5]. They
extract a parser from a PEG [3], and prove that this extracted parser is terminating, and
correct with respect to the original grammar and the semantics of PEGs.

Also in Coq, S. Lasser, et al. present the fast and verified ALL(*) parser Costar [7].
Their parser is sound, complete for non-left-recursive grammars, and provides a termination
guarantee for those non-left-recursive grammars.

J. Xiaodong, et al. present a parser generator and recognizer, also verified in Coq [4].
Their system is proven correct with respect to the grammar, and the time complexity of
the parsing algorithm is also verified with respect to the grammar.

We aim to improve upon these works by including our printer in the definitions of
"verified". Our work is also different in that it focuses on parser combinators as a method
of creating parser printer pairs, instead of using a PEG or grammar description to base
the parser and printer on.
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The importance of the verification of parsers can also be seen in other work. In 2024
P. Lammich presents a verified UNSAT certificate checking algorithm that is written and
verified completely in Isabelle [6]. The project verifies every part of the certificate checking,
including the parsing step. This clearly shows that a generalised library for the parsing
step of a verification project would be helpful to verification efforts.

In 2024 S. Tilscher and S. Wimmer present an LL(1) parser generator for use in Is-
abelle [16]. Their system can, from a given LL(1) grammar, generate a parser which is
proven correct, sound, and terminating. The release announcement for this tool contains
the following statement: "Great news for everyone who uses Isabelle to build practical tools
that involve parsing an input (i.e., all practical tools?)." [17] This, again, clearly shows
that there is indeed a need for a generalised library for the parsing step of a verification
project.

2.1 Comparison of Existing Bidefinition Techniques

Two existing methods for bidefinitions have been noted above in the literature review.
They are Invertible Syntax Descriptions [13], and BiYacc [19]. Since our work claims to
improve upon these works it makes sense to compare various features.

First, what kinds of guarantees do the authors make about the created bidefinitions?
For Invertible Syntax Descriptions, the authors only show a few examples that show inver-
sion, but no claims about parsers being compatible with printers are ever made. Similarly,
their system for two-way functions has no safeguards against misuse.

The BiYacc system claims that its parsers and printers are fully compatible. The au-
thors state that "The pairs of parsers and printer generated by BiYacc are thus always
guaranteed to satisfy the usual round-trip properties." Which they later describe as ensur-
ing that the parsers can parse a string into exactly the same AST as was used as input
by a printer, and vice versa. There is a limitation to this method of compatibility. They
assert that parse(print(o)) = o and that print(parse(t)) = t, which means that, for
example, a parser that can parse a variable amount of whitespace between two characters,
may not allow the printer to print a different default amount. This style of un-parsing is
not a goal for our library. More about why we believe this is a disadvantage for bidefi-
nitions in Section 3.5 which describes what we believe is a better option for parser and
printer compatibility.

Secondly, what does the user need to do to describe their parser and printer? For
Invertible Syntax Descriptions, the syntax is similar to the syntax of the Applicative type
class in Haskell. Actions are sequenced using operators < ∗ >, < ∗, and ∗ >. Where the
first applies both and returns from parsing (and takes as input for printing) the result of
both, and the second and third return the result of only the left and right respectively.
From these composition operators, more complex combinators like many and foldl can be
created, which are used in the same way as parser combinators are. When a user wants to
operate on the results of the parser (and on the input to printers) they use a combinator
that takes a function for both cases separately.

For BiYacc, the user must implement three things. An abstract data type, which is
what is returned from the parser, a concrete syntax definition (very similar to a grammar),
which is what describes the shape of the parsed and printed string, and a set of actions
that describe how to transform the abstract data type into the concrete syntax definition
returned by the parser.
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Chapter 3

Solution Design

In this section, we describe the choices made to define the parsers, printers, and bidefini-
tions. We follow that up with a technical explanation of how to define bidefinitions that
might run forever (like many) in Isabelle, which does not allow us to trivially define non-
terminating functions. After that, we describe the methods used to make statements about
parser and printer results and errors. Based on these methods we build our formalisation
of well-formedness.

3.1 Defining Parsers and Printers

A parser is a function from a string to a result, since they do not always succeed, they
need an error case. Since a parser might not consume the whole input, we also need to
return the leftover string if there is a successful result. Lastly, for reasons that will be
explained in Section 3.3, the partial function setup needed for possibly non-terminating
parsers requires another optional to wrap this result type. So, the type is as follows:
’ a par s e r = s t r i n g ⇒ ( ’ a × s t r i n g ) opt ion opt ion

Returning None means the parser did not terminate for that input, returning Some None
means the parser had an error for that input, and returning Some Some (A, L) means the
parser succeeded in parsing object A from the input string and did not consume string L.

A is a function from an object to a string, they do not always succeed, so need an error
case. Lastly, for the same reason that will be explained later in Section 3.3 the partial
function setup needed for possibly non-terminating printers requires another optional to
wrap this result type. So, the type is as follows:
’ a p r i n t e r = ’ a ⇒ s t r i n g opt ion opt ion

Where returning None means the printer did not terminate for that input, returning Some
None means the printer had an error for that input, and returning Some Some T means the
printer succeeded with the result string T.

3.2 Bidefinitions

To create a parser combinator-style system to create parsers and printers at the same
time we must first define such a bidefinition. We define this as an object that we can
ask to provide a parser and a printer. So, we make the type bidefinition with at least
two accompanying functions: parse :: ’a bidefinition => ’a parser and print ::
’a bidefinition => ’a printer

7



Since we have no infrastructure for bidefinitions yet, our first bidefinitions will be made
by combining a parser and a printer into a bidefinition. This can be done with a tuple, a
GADT, or any other method. In our case, we choose a function: bdc :: ’a parser =>
’a printer => ’a bidefinition.

So, with as an example a bidefinition for any single character, we will explain the idea
of what we need to do. First, the parser, it needs to take a string input, error on empty,
and return the head as a result if not:1

fun a_char_parser : : " char par s e r " where
"a_char_parser [ ] = Some None"

| "a_char_parser ( c#cs ) = Some (Some ( c , c s ) )"

The printer function takes a character, and returns a string containing only that character:
fun a_char_printer : : " char p r i n t e r " where

" a_char_printer c = Some (Some [ c ] ) "

Now the bidefinition can be created as follows:
d e f i n i t i o n a_char : : " char b i d e f " where

"a_char = bdc a_char_parser a_char_printer "

Of course, our end goal is to make parsers and printers at once. So, we will now create
a combinator that can directly take bidefinitions. For example, let us try to create a
bicombinator that receives two bidefinitions and applies them subsequently. In a grammar
or a PEG this would be the composition operator.

The parser for this combinator needs to apply the input string to the parser of the
first bidefinition. Then if the first parser fails the combined parser should also fail. If the
first parser succeeds, the combined parser needs to apply the leftover from the first parse
operation to the second parser. If the second parser fails, the combined parser should also
fail. Otherwise, if the second parser succeeds, the combined parser should return both
results in a pair.
fun compose_parser : : " ’ a par s e r ⇒ ’ b par s e r ⇒ ( ’ a × ’ b ) par s e r " where

"compose_parser A B i = ( case A i o f
None ⇒ None

| Some None ⇒ Some None
| Some (Some ( ra , i ’ ) ) ⇒ ( case B i ’ o f

None ⇒ None
| Some None ⇒ Some None
| Some (Some ( rb , l ) ) ⇒ Some (Some ( ( ra , rb ) , l ) ) ) ) "

Since the parser returns a pair of results, it makes sense for the printer to receive a
pair of objects to print. So, we apply the left input to the first printer. Similar to the
parser, if the first printer fails we fail too. Otherwise, the right input is applied to the right
printer. If the second printer fails, the composition printer fails too. Otherwise, the right
print output is appended to the left print output and the complete string is returned as
the combined print result.
fun compose_printer : : " ’ a p r i n t e r ⇒ ’ b p r i n t e r ⇒ ( ’ a × ’ b ) p r i n t e r " where

" compose_printer A B (a , b) = ( case A a o f
None ⇒ None

| Some None ⇒ Some None
| Some (Some ra ) ⇒ ( case B b o f

None ⇒ None
| Some None ⇒ Some None
| Some (Some rb ) ⇒ Some (Some ( ra @ rb ) ) ) ) "

1This is real code, located in the example_small_examples.thy file.
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Then we can use the same mechanism used above to create a bidefinition from the
parser and printer.
d e f i n i t i o n compose : : " ’ a b i d e f ⇒ ’ b b i d e f ⇒ ( ’ a × ’ b ) b i d e f " where

"compose A B = bdc ( compose_parser ( parse A) ( parse B) )
( compose_printer ( p r i n t A) ( p r i n t B) )"

Now, we can pass the character bidefinition to the compositing combinator twice to get
a bidefinition that parses (and prints) any two characters.
d e f i n i t i o n two_chars : : "( char × char ) b i d e f " where

"two_chars = compose a_char a_char"

It’s not satisfying to create every bidefinition and bicombinator as a pair of parser
and printer that needs to be combined. So, we create a set of basic bidefinitions and
bicombinators that use this low-level creation mechanism and then build all others on top
of these basic elements.

3.2.1 The Basic Elements

Similar to the implementation of PEG [3] we split up the elements of the library into the
basic and the derived groups. The basic group is built out of a parser and printer, which
is then combined with the bidefinition constructor into a bidefinition. The derived group
is built on top of this basic group. The basic elements are:

1. one_char :: char bidefinition
Parses and prints any one character.

2. return :: ’a => ’a bidefinition
Parser consumes nothing and returns the given value. Printer prints nothing if the
value is the same as the passed-in value, and fails if not.

3. fail :: ’a bidefinition
Parser always fails, printer always fails.

4. if_then_else
:: ’a bidefinition => (’a => ’b bidefinition)
=> ’c bidefinition => (’b => ’a)
=> (’b + ’c) bidefinition
Tries the first bidefinition, on success it uses the result to create the second and runs
that, if the first bidefinition failed it runs the third bidefinition.

5. ftransform
:: ’a bidefinition => (’a => ’b option) => (’b => ’a option)
=> ’b bidefinition
Transforms the result of the inner bidefinition. If the transformation fails the com-
binator fails too.

6. peek :: ’a bidefinition => ’a bidefinition
Runs the inner bidefinition, fails if it does, on success it returns the result but acts
like nothing was consumed or printed.

We can create our whole library of bidefinitions and bicombinators on top of these seven.
This is good, because it allows us to create most of the library without needing to create
parsers and printers separately. In essence, in creating our library we are experiencing our
library as well.
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We can now see that the composition bicombinator that we created from scratch above
can be implemented as a special case of the if_then_else bicombinator.

3.2.2 Examples

To display how the derived elements are made, we will show a few bidefinitions that use
these basic elements as building blocks.

Character for Predicate

With the fallible_transform bicombinator and the one_char bidefinition we can create
a bidefinition that parses any character as long as a boolean predicate holds for that
character.
fun char_for_predicate : : ( char => bool ) => char b i d e f i n i t i o n where

char_for_predicate P = f a l l i b l e_ t r an s f o rm one_char
(\ c . i f P c then Some c e l s e None )
(\ c . i f P c then Some c e l s e None )

At parse time the fallible_transform bicombinator applies the one_char parser, and it
parses a character. Then, the transformation shows that only if the predicate holds for the
given character the parser succeeds. If the predicate does not hold the parser fails. The
same occurs on the printing side.

Note that this bidefinition is used for many parsers that are available in parser com-
binator libraries. For example, the this_char, char_from_set, and the not_this_char
parsers.

Two of the same character

This is a bidefinition that can be made in various ways.
First, we will consider the variant made with the dependent_then bicombinator. The

type of which shows how it functions fairly well: dependent_then :: ’a bidefinition
=> (’a => ’b bidefinition) => (’b => ’a) => ’b bidefinition. We give it a bidef-
inition, and the second bidefinition is created from the parse result of the first. This
bidefinition is then also applied. The result of the second bidefinition is the result of the
bicombinator.

With this combinator, we can create the char_twice bidefinition.
d e f i n i t i o n char_twice : : char b i d e f where

char_twice = dependent_then
one_char
(\ c . char_for_predicate (\ c ’ . c ’ = c ) )
id

Another way to construct this bidefinition is with the composition and fallible transform
bicombinators.
d e f i n i t i o n char_twice : : char b i d e f where

char_twice = f a l l i b l e_ t r an s f o rm
( one_char then one_char )
(\ cs . i f ( f s t cs = snd cs ) then Some f s t cs e l s e None )
(\ c . Some ( c , c ) )

The first lambda passed to the transform bicombinator is the parse time transformation.
Here we check if the characters are equal, and if so return one as a parse result. The second
lambda is the print time transformation, it needs to duplicate the one passed in character
so that the then bicombinator can pass them along to the inner bidefinitions for printing.
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Both of these bidefinitions have the same behaviour.2

3.3 Partial Function Setup

Any function defined in Isabelle needs to have a termination proof. Most often this proof
is generated automatically by the underlying system defining the function. But, in some
cases, this is not enough. For us, for example, the many :: ’a bidef => ’a list bidef
bicombinator provides an issue for these automated proofs. The issue comes from the
infinitely recursive nature of the bicombinator. It is defined as follows:3

many a =
transform

( sum_take : : ’ a + ’ a ⇒ ’ a )
(λ l . i f l = [ ] then Inr [ ] e l s e I n l l )
( i f_then_else

a
(λr . dep_then (many a ) (λ r r . r e turn ( r#r r ) ) t l )
( r e turn [ ] )
(hd ) )

This equation is infinitely recursive. The automatic termination proof system finds that
there is only one parameter and tries to prove that this parameter shrinks every recur-
sive call. Since this does not happen, the automatic system cannot prove that this is a
terminating recursive call, so it is rejected. So, how do we define this combinator?

For this, we make use of the partial function package. Specifically, the Complete Partial
Order 2 package in the HOL library. This package allows defining recursive functions using
chain complete partial orders.

To use this package we define an ordering and a least upper bound for bidefinitions. The
ordering we chose is a combined ordering on the parser and the printer. Two bidefinitions
are ordered if and only if both the parser and printer are ordered. The parser and the
printer, in turn, are ordered such that returning None, which means nontermination, is
smaller than returning an error or a result. Following this same technique, the least upper
bound of a set of bidefinitions can be found by creating a bidefinition from the least upper
bound of all the parsers and the least upper bound of the printers.

From this definition of the least upper bound it follows that the bottom bidefinition is
the one where the parser and printer both always return nontermination.

So, to define the many bicombinator, we can use the same definition as above, only
instead of having the function package define it, we define it via the partial_function
package, which does not make the termination argument over the bidefinition object, which
is infinitely recursive, but over it being applied to the input.

We still need one more thing. For the partial function package to be convinced the
function body is indeed terminating we have to show that it is monotonic. For this, we can
again use the idea of the basic elements as laid out in Section 3.2.1. We prove that every
basic element is monotone, and then we can build the monotonicity proofs on top of those.
In practice, this means that every monotonicity proof for a bidefinition or a bicombinator
looks as follows:4

lemma mono_then [ partial_function_mono ] :
assumes ma: "mono_bd A"
assumes mb: "mono_bd B"

2The proof for this is in the Isabelle sources; file example_char_twice.thy
3Note that the real definition in derived_many.thy is slightly different, but it works the same way.
4Slightly simplified for clarification, but no assumptions have been left out.
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shows "mono_bd ( then A B)"
un fo ld ing b_then_def us ing ma mb
by pf_mono_prover

The pf_mono_prover method is the method that the partial function system uses to prove
the monotonicity of the function bodies that are defined in a partial function. It uses
the rules in the partial_function_mono set and splits any if and case statements recur-
sively. So, by adding our rules to this set, we can ensure that the method can prove the
monotonicity of partial function bodies that use our custom combinators. For the many
definition, as shown above, the following rules are used:5

mono_bd A =⇒ mono_bd ( trans form f f ’ A)
mono_bd A; ∀ a . mono_bd (B a ) ; mono_bd C =⇒ mono_bd ( i f_then_else A B C f )
mono_bd A; ∀ a . mono_bd (B a ) =⇒ mono_bd ( dep_then A B f )
mono_bd ( re turn i )

3.3.1 Induction Over Partial Functions

The partial function package provides an induction rule for every function defined using it.
The intuition of the rule is that every meaningful instantiation of the function has some
bottom that is never called upon because the ‘level’ above it, the function returns. If the
predicate holds for this lowest level, and also for any level above it, the predicate holds
in general. Precisely this means: We want to prove some predicate P for bidefinition A
defined as A = B A. First, we require that P is admissible. In general, this means that P is
of the right shape to be handled by the induction setup. Precisely, it says that: for every
possible chain that emerges from the ordering, the predicate holds for the Least Upper
Bound of that chain. Now, if we can show that P holds for the bottom bidefinition and
that from the assumption that P A’ holds, we can show that P (B A’) holds, we get that
P holds for A.

This is usable, for example, in well-formedness proofs.
There are limits to this technique though, as it requires the bottom bidefinition to

adhere to the predicate in question. This causes issues for predicates that directly state
that the parser must succeed with some result, or fail in some way. Section 3.4.3 lays out
the idea of partial correctness, which might be a way to resolve this difficulty.

3.4 Proving Statements About the Result and Error States
of Parsers and Printers

Before we explain how specific statements about parsers and printers can be made we will
first lay out two methods that Isabelle users can use to prove statements in general.

The first of those is simplification. Simplification is the application of equality rules in
any place they can, until a state is reached where no rule applies. A simplification rule is
simply any rule of the shape LHS = RHS. When this rule is applied to an equation, any in-
stance of LHS is replaced by RHS. A much-used example has the following four simplification

5These rules are slightly simplified, but no assumptions are left out.
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rules:

1. 0 + n = n

2. (Suc m) + n = Suc (m+ n)

3. (Suc m ≤ Suc n) = (m ≤ n)

4. (0 ≤ m) = True

Now we will use these rules to show that 0 + (Suc 0) ≤ (Suc 0) + x:

0 + Suc 0 ≤ Suc 0 + x
(1)
=

Suc 0 ≤ Suc 0 + x
(2)
=

Suc 0 ≤ Suc (0 + x)
(3)
=

0 ≤ 0 + x
(4)
=

True

The second relevant system is introduction rule application. The rules for rule appli-
cation are in the form of JA1; ...;AnK =⇒ A. This means that to prove A it suffices to
show all assumptions A1...An. So, to prove a subgoal C using this rule Isabelle must unify
A and C, and then replace the subgoal C with the new subgoals A1...An. Taking care to
replace all the unified variables and sub-expressions during unification in the assumptions
as well.

To proof things about parsers and printers we need to relate the input of parsers and
printers to their output. It would be ideal if we could take some proof about a bicombinator
with its parameters and split it up into smaller proofs about the parameters themselves.
This allows us to split up these proofs until we get to a level of abstraction that allows us
to perform the proof.

For this, we devised the NER (Nontermination, Error, Result) scheme. Where we make
rules for each bicombinator and bidefinition that relate their input to their output state.
So, a predicate for when it has a result, returns an error, or returns nontermination. We
focus especially on removing one "layer" of bicombinator per rule so that proofs are split
up into smaller sub-proofs that can be solved using the same mechanism again recursively.

3.4.1 Printers: Nontermination, Error, and Result

As mentioned above, because of the Partial Function setup for bidefinitions, printers can
be non-terminating, denoted by the predicate p_is_nonterm :: ’a printer => ’a =>
bool. Then, if and only if a printer returns an error for some input the following predi-
cate holds: p_is_error :: ’a printer => ’a => bool. Then we can complement this
with a predicate for having a result: p_has_result :: ’a printer => ’a => string
=> bool, which holds if and only if the printer, when given said input, prints said string.

Example: then has result

Now, say that we have the bicombinator then, which runs two bidefinitions subsequently.
What can we say about the predicate p_has_result for then? Well, we can make a rule
like so: 6

6Proof for this rule is in the Isabelle sources. In file derived_then.thy.
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p_has_result ( p r i n t ( then A B) ) (Av, Bv) t ←→
(∃ ta tb . ta@tb = t
∧ p_has_result ( p r i n t A) Av ta
∧ p_has_result ( p r i n t B) Bv tb )

Stating that the printer that prints A and B subsequently has result t if and only if the
two sub-printers have results that when appended create t.

Example: printer never prints empty

Let us say, for example, that we want to prove that some printer always prints at least one
character. First, let us imagine some bidefinition to prove this for:

apple = b_then ( th i s_s t r i ng " apple ") ( op t i ona l ( this_char ’ s ’ ) )

This bidefinition will parse either the text apple or the text apples.
Then, the predicate that we want to prove.
¬ p_has_result ( p r i n t apple ) i [ ]

The relevant lemmas are the p_has_result lemmas for then and this_string.7

p_has_result ( p r i n t ( b_then ab bb ) ) ( va , vb ) t ←→
(∃ta tb . ta@tb = t

∧ p_has_result ( p r i n t ab ) va ta
∧ p_has_result ( p r i n t bb) vb tb )

p_has_result ( p r i n t ( th i s_s t r i ng s ) ) i r ←→ r = s ∧ i = s

We can apply these two rules to prove the lemma. The simplified proof, with simplified
proof states interspersed between the statements, looks as follows.8

lemma ¬ p_has_result ( p r i n t apple ) i [ ]
un fo ld ing apple_def
¬p_has_result p r i n t b_then ( th i s_s t r i ng " apple " ) ( op t i ona l this_char ’ s ’ ) i [ ]

apply ( r u l e b_then_p_has_result )
∄ta tb . ta@tb =[ ] ∧ p_has_result p r i n t th i s_s t r i ng " apple " ( f s t i ) ta . . .

apply ( r u l e this_str ing_p_has_result )
∄ta tb . ta @ tb = [ ] ∧ ( ta = " apple " ∧ f s t i = " apple ") . . .

by b l a s t

This shows that on the printer side, this idea of peeling away the bicombinators one by
one via these rules is quite effective. Each rule application simplifies the proof goal in
such a way that another rule matches with it. Then, when a state is reached where no
bicombinator or bidefinition rules apply, the proof can be finished by the existing proof
automation facilities in Isabelle.

3.4.2 Parsers: Nontermination, Error, and Result

Just like printers, parsers also have the nontermination, error, and result states. The
predicates are as follows:
is_nonterm :: ’a parser => string => bool
is_error :: ’a parser => string => bool
has_result :: ’a parser => string => ’a => string => bool
The first two are obvious, the last takes three parameters, an input string, the result, and
the leftover after parsing.

7Real code; in files derived_then.thy and derived_this_string.thy
8Real proof; in file example_small_examples.thy
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Example: or has result

The bicombinator or :: ’a bidefinition => ’b bidefinition => (’a + ’b) bidefinition
takes two bidefinitions and uses the first if it succeeds, or the second if the first fails. The
type shows that the result of the parser is either the result from the first parameter, or the
result of the second parameter. The rules that govern when it has a certain result look as
follows:9

i s_e r ro r ( parse ( or p1 p2 ) ) i ( I n l l r ) l ←→ has_resu l t ( parse p1 ) i l r l
i s_e r ro r ( parse ( or p1 p2 ) ) i ( Inr r r ) l ←→ i s_e r ro r ( parse p1 ) i ∧

has_resu l t ( parse p2 ) i r r l

This rule too shows the focus on peeling away one level of bicombinator per rule application.
If we want to prove that the result came from the first bidefinition passed in, and we apply
this rule, the second bidefinition passed in disappears from the proof state. Note that in
practice there also exists a rule that is generic over if the left or right parser succeeds,
which is useful in places where a proof needs to be made regardless of which side succeeds.

Example: Proving Parsers Error on Empty Input

One of the bicombinators in the library we created is optional :: ’a bidefinition =>
’a option bidefinition. Here, when the inner bicombinator fails, instead of failing, it
returns an empty optional. To prove that this bicombinator is well-formed (more about
this later on in Section 3.5) we need to prove that the bidefinition that is inserted returns
an error for an empty input. So, let us see how we prove that.

First, let us imagine some bidefinition to prove this for:
apple = b_then ( th i s_s t r i ng " apple ") ( op t i ona l ( this_char ’ s ’ ) )

This bidefinition will parse either the text apple or the text apples.
Then, the predicate that we want to prove. We state that the parser extracted from

our bidefinition returns an error result when given an empty input.
i s_e r ro r ( parse apple ) [ ]

Relevant for us here are the is_error rules for b_then and this_string:10

i s_e r ro r ( parse ( b_then ab bb ) ) i ←→
i s_e r ro r ( parse ab ) i ∨
(∃ r l . has_resu l t ( parse ab ) i r l ∧

i s_e r ro r ( parse bb) l )

i s_e r ro r ( parse ( th i s_s t r i ng ( c#cs ) ) ) i ←→
i = [ ] ∨
(hd i ̸= c ∨
i s_e r ro r ( parse ( th i s_s t r i ng cs ) ) ( t l i ) )

We can apply these two rules to prove the lemma. The proof, with simplified proof states
interspersed between the statements, looks as follows.11

lemma i s_er ro r ( parse apple ) [ ]
un fo ld ing apple_def

i s_e r ro r parse ( b_then ( th i s_s t r i ng " apple ") ( op t i ona l this_char ’ s ’ ) ) [ ]
apply ( r u l e b_then_is_error )

. . . =⇒ i s_e r ro r ( parse ( th i s_s t r i ng ’ ’ apple ’ ’ ) ) [ ]
apply ( r u l e th i s_st r ing_i s_er ro r )

9Real code; in file derived_or.thy
10Real code; in files derived_then.thy and derived_this_string.thy.
11Real proof; in file example_small_examples.thy
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. . . =⇒ [ ] = [ ] ∨ hd [ ] ̸= ’ a ’ ∨ i s_e r ro r parse th i s_s t r i ng " pple " ( t l [ ] )
by c la r s imp

This shows that the idea of peeling away one bicombinator at a time with proof rules is
also effective on the parser side. After applying the first rule the proof state has simplified
significantly, as there is no mention of the right-hand side of the b_then bicombinator
anymore. Then, when the second rule is applied, we see the input string being compared
to the parameter to this_string directly. From this state, many built-in proof automation
tools are capable of finishing the proof.

3.4.3 Total and Partial Correctness

The has_result predicate models the idea of total correctness. The alternative to this,
partial correctness, defines the idea that a parser has a certain result, or it does not
terminate, for a given input. This idea comes from the induction rule that the partial
function setup (explained in Section 3.3.1) provides.

This fixpoint induction rule has a big limitation for our use. For the induction to work,
the predicate needs to hold for the bottom bidefinition, which is the bidefinition that does
not terminate for any parse or print input.

This is not a problem for predicates that first assume that there is some result, and
then require something about that result like so:
has_resu l t P i r l −→ pr ed i c a t e i r l

Because the assumption of the implication is false for the bottom parser the predicate is
trivially true. Examples of predicates like this include well-formedness (3.5), PNGI (4.3.1)
and does not peek past end (4.2.1).

Predicates that it does cause issues for, are predicates that directly assert some result
or failure. For example, the claim that a parser returns an error on the empty input, or
that a printer succeeds on any input. These claims are not true for the bottom bidefinition,
so we cannot use fixpoint induction to prove them.

This comes up, for example, in well-formedness proofs with the many bicombinator. For
the well-formedness of the many bicombinator, it is necessary to prove that the bidefinition
passed in does not parse whatever is printed after the list of elements it is actually meant
the parse. For example, if a list parser parses the closing bracket as a list element it would
not be well-formed, since it parses a list element that was not printed. So, this proof
eventually involves a subgoal that states that is_error P i. This does not hold for the
bottom bidefinition, so it cannot be used in the induction step of the proof.

From this problem, a possible solution emerges in partial correctness. Since we cannot
make statements about there being a result or error state, why not try making the state-
ment that there is either a result or nontermination? Experiments with this technique
show that this is a meaningful approach. Though it of course has the limitation of not
making very strong statements about the results of parsers. To get back these statements
it would be necessary to create a proof technique that asserts termination for inputs.

On the other hand, the parser induction rule for the many combinator shows that it is
possible to create a meaningful and usable ‘total’ induction rule for combinators defined via
the partial function package. The many combinator runs a parser as often as it can, and
when the parser fails, it returns the list of results. Intuitively the ‘failure condition’, that
is, when the parser would be non-terminating, is when the inner parser does not consume
anything but does succeed. So, if we can assert that the parser does not behave in that
manner, we can create a total induction rule. This rule is formalised as follows:
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lemma many0_induct :
assumes pas i : "PASI ( parse bd)"
assumes s tep : "∀ i r l . has_resu l t ( parse bd) i r l −→

(∀ r r l ’ . ( l ength l < length i ∧ Q l r r l ’ ) −→
Q i ( r # r r ) l ’ ) "

assumes la s t_step : "∀ i . i s_e r ro r ( parse bd) i −→ Q i [ ] i "
shows " has_resu l t ( parse (many bd ) ) i r l −→ Q i r l "
( proo f . . . )

PASI where means that the Parser Always Shrinks Input. That is: has_result p i r l
−→ (∃ c. (i = c @ l ∧ c ̸= [])) This asserts that there is no ‘step’ in the parsing
process that consumes nothing, yet succeeds, which would cause an infinite loop. The step
assumption is the induction step, taking the predicate from the existing list of elements to
a list one longer. Then the last step assumption is to show that the predicate must hold
when the parser fails. From this, we can show that some predicate Q holds for any parse
result of the many bicombinator when the given bidefinition is applied to it.

This predicate shows that it is viable to make statements about total correctness for
parsers, even if they are defined via the partial function setup. The idea presented in
this predicate, that is, that induction is possible on the size of the input string, can be
transposed to any application of a partial function defined bidefinition.

3.5 Well-formedness in the Context of Bidefinitions

To show that a pair of printer and parser are compatible, or, well-formed, it makes sense
to want a few things: One, the parser should be able to parse anything that the printer
can print, creating the same value as inserted into the printer. Second, the printer should
be able to print anything that the parser can parse. Intuitively it sounds sensible to say
that the printer should print out the exact same text that the parser parsed for the object,
but for our intentions that is not a goal.

For example, parsing a list of elements with spaces in between. It seems appreciable
for the parser to allow a variable amount of whitespace between the elements. But that
means that there is no unique source text to create each parsed list. For example, the text
‘a_b’ and ‘a__b’ both parse to the list [‘a’,‘b’]. So, for the printer to be able to print
the exact source text, the parser would also have to return some information on the source
text, like the amount of whitespace. This kind of exact ‘unparsing’ is not a goal of this
thesis. As such, we choose not to require the printed text to be the same as the parsed
text.

So, we can formalise this well-formedness by stating that a bidefinition is well-formed
if the following two predicates hold for its parser and printer:12

parser_can_parse_print_result par p r i ←→
∀t pr . p_has_result p r i t pr → has_resu l t par pr t [ ]

pr inter_can_print_parse_result par p r i ←→
∀t i l . has_resu l t par i t l → (∃pr . p_has_result p r i t pr )

Parsers Should Not Change Characters They do not Consume

As an implementation detail, we also require that the parser of a well-formed bidefinition
does not change the characters it does not consume. Which is formalised in the predicate:
has_resu l t p i r l −→ (∃ c . i = c @ l )

12Real code; in file types.thy
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This means that for every possible result of the parser, it must hold that the input can be
split into two strings, the consumed characters and the leftover. In the below discussion of
proofs for well-formedness, this facet will not be elaborated here, because it is a predicate
for which the proof is easily automated. So, it will be discussed under the name PNGI in
Section 4.3, which describes the proof automation results.

3.5.1 Well-formedness of Bidefinitions

With the predicates above defined, we can start to prove well-formedness for our basic
bidefinitions.

fail is trivially well-formed, as it never succeeds.
return is well-formed too, not as trivially, but since it always prints the empty string,

and always succeeds in parsing it is obvious that the predicates hold.
one_char is well-formed too: For parser_can_parse_print_result we know that the

printer always prints a string with just the character that should be printed and that
the parser always succeeds if there is at least one character in the input, and that the
parse result is the head of the input string, so we know it holds. For printer_can_
print_parse_result we know that the printer can print any character, so it holds.

The proofs for these statements are also formalised in the files for the respective bidef-
initions.

3.5.2 Well-formedness of Bicombinators

Just like in the NER system explained above it would be ideal if we could peel away at well-
formedness by having rules for each bicombinator. This works fine, but being well-formed
is more involved than one might intuitively think. To show why, we will show the rules
needed to prove correct well-formedness for the bidefinitions created by three relatively
simple bicombinators:

3.5.3 Example: optional Well-formed

optional :: ’a bidefinition => ’a option bidefinition is a relatively simple bidef-
inition. If the passed-in bidefinition fails to parse an input the outer bidefinition still
succeeds, but it returns an empty optional. Then, during printing, an empty optional is
printed as the empty string, and an optional with content has the content passed along to
the inner bidefinition.

To prove that it is well-formed we need to prove both inner predicates. We will proof
both in order:
parser_can_parse_print_result ( parse ( op t i ona l b ) ) ( p r i n t ( op t i ona l b ) )

We will unfold the definition:
∀t pr . p_has_result ( p r i n t ( op t i ona l b ) ) t pr −→

has_resu l t ( parse ( op t i ona l b ) ) pr t [ ]

Then we can apply the p_has_result rule for optional.
∀t pr . ( case t o f None ⇒ pr = [ ]

| Some r r ⇒ p_has_result ( p r i n t b) r r pr ) −→
has_resu l t ( parse ( op t i ona l b ) ) pr t [ ]

Now we see that a None is printed to an empty string, so when it is parsed it also needs
to turn into None. Applying the has_result rule for optional will show what needs to
be true for that to happen.
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∀t pr . ( case t o f None ⇒ pr = [ ]
| Some r r ⇒ p_has_result ( p r i n t b) r r pr ) −→

( case t o f None ⇒ i s_e r ro r ( parse b) pr ∧ pr = [ ]
| Some r ⇒ has_resu l t ( parse b) pr r [ ] )

So, we will split into two cases, either t is None, or it is not. We will also run the simplifier
on both subgoals:
1 . Jpr = [ ] ; t = NoneK =⇒ i s_e r ro r ( parse b) [ ]
2 .

∧
a . Jp_has_result ( p r i n t b) a pr ; t = Some aK =⇒

has_resu l t ( parse b) pr a [ ]

Now it has become clear what we require of bidefinition b. It needs to error on an empty
input to resolve the first subgoal, and for the second subgoal, we need it to satisfy the
parser_can_parse_print_result predicate.

For the second sub-predicate:
printer_can_print_parse_result ( parse ( op t i ona l b ) ) ( p r i n t ( op t i ona l b ) )

We will unfold the definition:
∀t i l . has_resu l t ( parse ( op t i ona l b ) ) i t l −→
∃ ta . ( p_has_result ( p r i n t ( op t i ona l b ) ) t ) ta

Now we apply both the printer and parser has_result rules for optional:
∀t i l . ( case t o f None ⇒ i s_e r ro r ( parse b) i ∧ i = l

| Some r ⇒ has_resu l t ( parse b) i r l ) −→
(∃ta . case t o f None ⇒ ta = [ ]

| Some r r ⇒ p_has_result ( p r i n t b) r r ta )

From this we see that if t is None, there needs to exist some ta that is the empty string,
which is trivially true. So, we split into two subgoals, one where t is None and one where
t is not None. The simplifier proves the first subgoal for us, and we are left with the
following:
Jhas_resu l t ( parse b) i a l ; t = Some aK =⇒ ∃t . p_has_result ( p r i n t b) a t

Now we see what we require from bidefinition b. If parse b can parse some text i into
result a with leftover l, we need there to be some text t that print b can print element
a into. This is covered by predicate printer_can_print_parse_result.

We can formalise these found requirements into the following rule:
lemma optional_well_formed :

assumes " i s_e r ro r ( parse b) [ ] "
assumes "bidef_well_formed b"
shows "bidef_well_formed ( op t i ona l b)"
( proo f )

So, for optional b to be well-formed we need the parser for b to error on the empty
input, and we need b to be well-formed. What we have shown here13 is an example of a
rule where we can peel away the bicombinator to get two ‘smaller’ subgoals that we can
then attack recursively using the same tactics.

3.5.4 Example: or Well-formed

or :: ’a bidefinition => ’b bidefinition => (’a + ’b) bidefinition is a slightly
more complex bidefinition. If the first passed in bidefinition fails to parse something then
the second bidefinition may try, if that also fails then the whole bidefinition fails. During

13Real proof; in file derived_optional.thy
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printing the sum type variant that is filled in chooses the bidefinition that is used. To
prove that it is well-formed we need to prove both inner predicates. We will show how to
proof both, in order:
parser_can_parse_print_result ( parse ( or b1 b2 ) ) ( p r i n t ( or b1 b2 ) )

We unfold the definition of the predicate, and also the has_result and p_has_result
rules for or:
case t o f I n l l r ⇒ p_has_result ( p r i n t b1 ) l r pr

| Inr r r ⇒ p_has_result ( p r i n t b2 ) r r pr =⇒
case t o f I n l l r ⇒ has_resu l t ( parse b1 ) pr l r [ ]

| Inr r r ⇒ i s_e r ro r ( parse b1 ) pr ∧
has_resu l t ( parse b2 ) pr r r [ ]

Then we split into two subgoals, for if t is Inl or Inr, and we run the simplifier on both
new goals:
Jp_has_result ( p r i n t b1 ) a pr ; t = In l aK =⇒ has_resu l t ( parse b1 ) pr a [ ]
Jp_has_result ( p r i n t b2 ) b pr ; t = Inr bK =⇒ i s_e r ro r ( parse b1 ) pr ∧

has_resu l t ( parse b2 ) pr b [ ]

The first subgoal is resolved if b1 satisfies parser_can_parse_print_result. The second
subgoal shows us that b2 needs to satisfy the same predicate, and also parse b1 must
error on any output of print b2.

Now for the second predicate:
printer_can_print_parse_result ( parse ( or b1 b2 ) ) ( p r i n t ( or b1 b2 ) )

We unfold the definition of the predicate and the has_result and p_has_result rules for
or:
case t o f I n l l r ⇒ has_resu l t ( parse b1 ) i l r l

| Inr r r ⇒ i s_e r ro r ( parse b1 ) i ∧
has_resu l t ( parse b2 ) i r r l =⇒

∃ l . case t o f I n l l r ⇒ p_has_result ( p r i n t b1 ) l r l
| Inr r r ⇒ p_has_result ( p r i n t b2 ) r r l

Again we split the proof into two subgoals for the possible states of t and then run the
simplifier:
Jt = In l a ; has_resu l t ( parse b1 ) i a l K =⇒ ∃ l . p_has_result ( p r i n t b1 ) a l
Jt = Inr b ; i s_e r ro r ( parse b1 ) i ; has_resu l t ( parse b2 ) i b l K =⇒

∃ l . p_has_result ( p r i n t b2 ) b l

These subgoals show that b1 and b2 both must satisfy printer_can_print_parse_result.
These found requirements can be formalised into the following rule:

lemma or_well_formed :
assumes "bidef_well_formed b1"
assumes "bidef_well_formed b2"
assumes "∀ v t . p_has_result ( p r i n t b2 ) v t −→ i s_e r ro r ( parse b1 ) t "
shows "bidef_well_formed ( or b1 b2 )"
( proo f )

So, we see that or b1 b2 is well-formed if both b1 and b2 are well-formed, and if parse
b1 always errors on the results of print b2.14 Note that just like for optional, this rule
is an example of a rule that peels away the bicombinator to create smaller subgoals that
can be dispatched recursively using the same tactics.

14Real proof; in file derived_or.thy
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3.5.5 Example: then Well-formed

then :: ’a bidefinition => ’b bidefinition => (’a × ’b) bidefinition is the com-
position bicombinator. It runs the first bidefinition first, and if it succeeds it runs the second
bidefinition on the leftover. To prove that it is well-formed we need to prove both inner
predicates. We will show how to proof both, in order:
parser_can_parse_print_result ( parse ( b_then b1 b2 ) ) ( p r i n t ( b_then b1 b2 ) )

We unfold the definition and apply the parser and printer has_result lemmas:
Jp_has_result ( p r i n t b1 ) a ta ; p_has_result ( p r i n t b2 ) b tbK =⇒
∃ l ’ . has_resu l t ( parse b1 ) ( ta @ tb ) a l ’ ∧ has_resu l t ( parse b2 ) l ’ b [ ]

Note how the parser for b2 needs to parse the leftover of b1. So, we need to add the
assumption that the first parser does not eat into the ‘territory’ of the second parser. We
do that by adding the assumption that b1 and b2 satisfy the following predicate:
no_co l l i s i on b1 b2 = (∀t1 pr1 t2 pr2 .

p_has_result ( p r i n t b1 ) t1 pr1 ∧ p_has_result ( p r i n t b2 ) t2 pr2 −→
has_resu l t ( parse b1 ) ( pr1 @ pr2 ) t1 pr2 )

We use the fact that we assume b2 to be well-formed to get that it can parse its own print
result pr2. This is convenient in some proofs, but not always. Later on, we discuss ways
that this assumption breaks the proof, and alternatives that we have. Regardless, by using
this assumption and the assumption that b1 and b2 are well-formed we can solve the proof
goal.

The second predicate is proven easier:
printer_can_print_parse_result ( parse ( b_then b1 b2 ) ) ( p r i n t ( b_then b1 b2 ) )

We unfold the definition and the parse and print lemmas for b_then to gain the following
two subgoals:
1 . Jhas_resu l t ( parse b1 ) i a l ’ ; has_resu l t ( parse b2 ) l ’ b l K =⇒

∃ta . p_has_result ( p r i n t b1 ) a ta
2 . Jhas_resu l t ( parse b1 ) i a l ’ ; has_resu l t ( parse b2 ) l ’ b l K =⇒

∃ta . p_has_result ( p r i n t b2 ) b ta

As we intuitively expect, the printers are not connected in the same way that the parsers
are. We need to prove that they both have a result, but those results do not need to be
compatible in any way, as that is proven on the parser side. So, we can solve these two
subgoals using the assumption that both b1 and b2 are well-formed.

This gives rise to the following formalisation of the requirements found above:
lemma b_then_well_formed :

assumes "bidef_well_formed b1"
assumes "bidef_well_formed b2"
assumes "pa_does_not_eat_into_pb_nondep b1 b2"
shows "bidef_well_formed (b_then b1 b2 )"
( proo f )

Where the predicate in the third assumption is defined as follows:
pa_does_not_eat_into_pb_nondep ba bb ←→ (
∀ t1 pr1 t2 pr2 . p_has_result ( p r i n t ba ) t1 pr1 ∧

p_has_result ( p r i n t bb) t2 pr2
−→ has_resu l t ( parse ba ) ( pr1@pr2 ) t1 pr2 )

This way of proving that then is well-formed is not the only method. In Section 4.2
we will discuss the ways to prove that parsers do not interfere with each other and a way
that parsers can interfere with each other but still get the correct result.
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Chapter 4

Results

This section starts with the introduction of all the bidefinitions and bicombinators created
for the library and their well-formed rules. From that, several patterns are extracted which
are looked at closely in sections about consecutive parsers (4.2) and proof automation
(4.3). After that, we explain for each bidefinition and bicombinator which of the described
predicates hold for it, and any preconditions needed. We conclude this section with an
example, we will create a bidefinition for the DIMACS file format. The process of creating
the bidefinition will be laid out step by step, and various proof techniques will be displayed.

4.1 Enumeration of Bidefinitions, Bicombinators, and Their
Well-formed Rules

Now that we have explained the derivation of a few example well-formed rules we will
enumerate all well-formed rules in the library. In this enumeration, a pattern of predi-
cates will appear. After this pattern is noted the various oft-recurring predicates will be
laid out in Section 4.2. The bidefinitions, bicombinators, and well-formed proofs shown
below can be found in their respective Isabelle source files. For the basic elements they
are called basic_<name>.thy, and for the derived elements the name follows the pattern
derived_<name>.thy.

Fail

The bidefinition fail :: ’a bidef always fails. It is a basic bidefinition, trivially well-
formed, as it can never print or parse a result, and it always terminates.

Fallible Transform

The bicombinator ftransform :: (’a => ’b option) => (’b => ’a option) => ’a
bidef => ’b bidef allows the user to transform the result of the passed in bidefinition. It
can also be used to select a subset of results by not transforming the result, but returning
None for those elements of the type that are not in the wanted set. It is part of the set of
basic bicombinators.

Intuitively, this bicombinator is well-formed when the transformation functions are the
inverse of each other. This is true, and it can be used to prove well-formedness, but it is an
overestimation of the requirements actually needed. Since the passed in bidefinition might
not be able to create each element of its type with its parser, we can constrain the inverse
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requirement to only needing to hold in those cases where the parameter bidefinition can
actually parse or print the elements. This gives rise to the following well-formed rule:
lemma ftransform_well_formed :

assumes funcs : "well_formed_ftransform_funcs f f ’ b"
assumes wf : "bidef_well_formed b"
shows "bidef_well_formed ( f t rans fo rm f f ’ b )"
( proo f . . . )

Where the predicate well_formed_ftransform_funcs models the idea of two functions
that are each other’s inverses in the cases where the parser and printer can handle the
object. Which is formalised as follows:
well_formed_ftransform_funcs f f ’ b ←→ (

(∀ i v l v ’ . has_resu l t ( parse b) i v l ∧ Some v ’ = f v −→
f ’ v ’ = Some v )

∧ (∀ pr t . p_has_result ( p r i n t ( f t rans fo rm f f ’ b ) ) t pr −→
(∃t ’ . f ’ t = Some t ’ ∧ f t ’ = Some t ) ) )

One Char

The bidefinition one_char :: char bidef is a basic bidefinition that parses and prints
any single character. It only fails when the parse input is empty, never fails to print, and
never returns the nontermination result. It is well-formed, as it can parse any printed
character, and it can print any parsed character.

Peek Result

The bicombinator peek :: ’a bidef => ’a bidef is a basic bicombinator that runs the
passed-in parser or printer, and if it succeeds, returns the result without printing any text
and consuming any parse input. The peek combinator is intuitively not easy to be well-
formed, because well-formedness requires the parser to be able to parse a print result, but
the printer prints nothing, yet the parser does expect the passed in bidefinition to parse
successfully. Hence, the well-formed rule for this bicombinator works by requiring that
the passed-in bidefinition fails on anything that is not the empty string, which is the only
thing that peek will ever print.
lemma peek_well_formed_empty :

assumes "bidef_well_formed b"
assumes "∀ t . t ̸= [ ] −→ i s_e r ro r ( parse b) t "
shows "bidef_well_formed ( peek b)"
( proo f . . . )

Return

The bidefinition return :: ’a => ’a bidef is a basic bidefinition that always succeeds
parsing with the parameter as parse result, and succeeds printing only if the value to print
is the same as originally passed in as a parameter. It never returns the nontermination
result, and never fails to parse. It is always well-formed, as it parses and prints only the
empty string.

If Then Else

The bicombinator if_then_else :: ’a bidef => (’a => ’b bidef) => ’c bidef => (’b
=> ’a) => (’b + ’c) bidef is a basic bicombinator which is the basis of control flow in
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the library. At parse time it runs the first parser, if it succeeds it creates the second bidef
with the result from the first and runs it on the leftover input. If the first failed it runs
the third parameter on the initial parse input. At print time it either uses the printer for
’c, or uses the transformation function to create an ’a from the ’b object to be printed,
uses that to create the bidefinition for ’b, and then prints the ’a and ’b objects in order.

The if-then-else bicombinator has a well-formed rule, but most uses of this bicombinator
in the library do not use this rule, because their instantiations stub out some parameters,
which means that it is easier for them to work on the definition directly. Intuitively, what
we need for well-formedness is a few things.

Firstly, if a printed text is printed by the else parameter of the bidefinition, it must not
be parsable by the if parameter. Secondly, if a printed text is printed by the if and then
parameters of the bidefinition, it must not be the case that the if parameter fails to parse
it. Lastly, the passed-in parameters must be well-formed, and all the ‘then’ bidefinitions
that can be made from the ‘if’ bidefinitions results must be well-formed as well. This is
formalised in the following rule:
lemma if_then_else_well_formed :

assumes "bidef_well_formed ab"
assumes "∀ i r l . has_resu l t ( parse ab ) i r l −→ bidef_well_formed ( a2bb r )"
assumes "bidef_well_formed cb"
assumes "b2_res_trans_is_b1_res ab a2bb b2a"
assumes "b1_then_b2_print_parse_loop ab a2bb b2a"
assumes "b1_cannot_parse_b3_print_result ab cb"
assumes "pa_does_not_eat_into_pb ab a2bb"
shows "bidef_well_formed ( i f_then_else ab a2bb cb b2a )"
( proo f . . . )

The first three assumptions regard the well-formedness of the passed in bidefinitions.
The fourth assumption states that any result that can be created by the ‘then’ bidefinition
when transformed back into the type of the ‘if’ bidefinition, can be a result of the parser
of that bidefinition. This is to ensure that the transformed back elements stay ‘inside’ the
set of elements that well-formedness makes statements about. The fifth assumption states
that the print results from the ‘if’ and ‘then’ bidefinitions, when appended together, must
be parsable into the same objects as were printed originally. The fifth assumption ensures
that the ‘if’ parser fails on prints from the ‘else’ printer. Then the last assumption ensures
that the ‘if’ parser does not eat into the printed text of the ‘then’ printer. A variant of
this last predicate will return in many proofs that concern consecutive bidefinitions, and
will thus be laid out in detail in Section 4.2, which explains the various ways to handle
consecutive parsers.

Or

The bicombinator or is a derived bicombinator which attempts to parse using the first
parameter first, and only if that fails, runs the second. At print time the type of the print
input is used to decide which printer is used. It is defined as follows:
d e f i n i t i o n or : : " ’ a b i d e f ⇒ ’ b b i d e f ⇒ ( ’ a + ’b) b i d e f " where

" or a b = i f_then_else a re turn b ( id : : ’ a ⇒ ’ a )"

Intuitively, for it to be well-formed it must be the case that both parameter bidefinitions
are well-formed, and the first bidefinition should not be able to parse print results from
the second bidefinition. This is formalised in the following rule:
lemma or_well_formed :

assumes "bidef_well_formed b1"
assumes "bidef_well_formed b2"
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assumes "∀ v t . p_has_result ( p r i n t b2 ) v t −→ i s_e r ro r ( parse b1 ) t "
shows "bidef_well_formed ( or b1 b2 )"
( proo f . . . )

Transform

The bicombinator transform is a derived bicombinator used to transform a value from
one type to another if that transformation can never fail. This is usable, for example, in
cases where a type constructor needs to be called with the parse result. Its definition is as
follows:
d e f i n i t i o n trans form : : " ( ’ a ⇒ ’ b ) ⇒ ( ’ b ⇒ ’ a ) ⇒ ’ a b i d e f ⇒ ’ b b i d e f " where

" trans form t t ’ b i = f t rans fo rm (Some o t ) (Some o t ’ ) b i "

Intuitively the transform combinator requires the transformation functions to be each
other’s inverse, but, for the same reason as in the fallible transform case described above,
(Section 4.1) this inverse property only has to hold for the values of the type that the inner
bidefinition can actually parse and print. This is formalised in the following rule:1

lemma transform_well_formed :
assumes funds : "well_formed_transform_funcs f f ’ b"
assumes wf : "bidef_well_formed b"
shows "bidef_well_formed ( trans form f f ’ b )"
( proo f . . . )

Where the predicate well_formed_transform_funcs is defined as follows:
well_formed_transform_funcs f f ’ b ←→ (

(∀ i v l . has_resu l t ( parse b) i v l −→ f ’ ( f v ) = v)
∧ (∀ pr t . p_has_result ( p r i n t ( trans form f f ’ b ) ) t pr −→ f ( f ’ t ) = t ) )

Dependent Then

The bicombinator dep_then is a derived bicombinator that fulfils the function of the bind
function in a monad. It is meant for running two bidefinitions in order, where the second
depends on the result of the first. The definition is as follows:
d e f i n i t i o n dep_then : : " ’ a b i d e f ⇒ ( ’ a⇒ ’ b b i d e f ) ⇒ ( ’ b⇒ ’ a ) ⇒ ’ b b i d e f " where

"dep_then ab a2bb b2a = ( trans form p r o j l I n l
( i f_then_else ab a2bb f a i l b2a ) )"

Well-formedness here requires, just like if then else before this, that when parsing, the
first bidefinition does not eat into the text that the second bidefinition has printed. This
intuition is formalised in the following rule:
lemma dep_then_well_formed :

assumes "bidef_well_formed ba"
assumes "∀ i r l . has_resu l t ( parse ba ) i r l −→ bidef_well_formed ( a2bb r )"
assumes " reversed_b2_result_is_b1_result ba a2bb b2a"
assumes "pa_does_not_eat_into_pb ba a2bb"
shows "bidef_well_formed ( dep_then ba a2bb b2a )"
( proo f . . . )

All assumptions are similar to the ones for if then else described in 4.1. The passed-
in bidefinitions need to be well-formed, the transformation function needs to create the
correct results, and the parser of the first parameter must not eat into the print result of
the second bidefinition.

1This rule is actually called transform_well_formed4, and the predicate is similarly changed in name.
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Character for Predicate

The bidefinition char_for_predicate is a derived bidefinition that parses and prints any
character that satisfies the passed-in predicate. It is always well-formed, regardless of the
predicate. The definition is as follows:
d e f i n i t i o n char_for_predicate : : "( char ⇒ bool ) ⇒ char b i d e f " where

" char_for_predicate p = dep_then one_char
(λfound . i f p found then return found

e l s e f a i l )
id "

Any from set

The bidefinition any_from_set is a derived bidefinition that parses and prints any character
that is in the given set.
d e f i n i t i o n any_from_set : : " char s e t ⇒ char b i d e f " where

"any_from_set s = char_for_predicate (λfound . found∈s )"

It is well-formed for any set. This bidefinition forms the basis for the bidefinitions for
specific character sets listed below:

1. Any digit character
2. Any lowercase alphabet character
3. Any uppercase alphabet character
4. Any alphabet character
5. Any alphanumeric character
6. Any whitespace character

This Character

The bidefinition this_char is a derived bidefinition that parses and prints only the passed-
in character. It is well-formed for any character, and is defined as follows:
d e f i n i t i o n this_char : : " char ⇒ char b i d e f " where

" this_char c = any_from_set {c }"

This String

The bidefinition this_string is a derived bidefinition that parses and prints only the
passed-in string. It is well-formed for any string, and is defined as follows:
d e f i n i t i o n th i s_s t r i ng : : " char l i s t ⇒ char l i s t b i d e f " where

" th i s_s t r i ng = m_map this_char "

Character not in Set

The bidefinition char_not_in_set :: char set => char bidef is a derived bidefinition
that parses and prints any character that is not in the given set. It is well-formed for any
set, and is defined as follows:
d e f i n i t i o n char_not_in_set : : " char s e t ⇒ char b i d e f " where

"char_not_in_set s = char_for_predicate (λfound . found /∈s )"

26



Then

The bicombinator b_then is a derived bicombinator which runs the two parameter bidefi-
nitions consecutively.
d e f i n i t i o n b_then : : " ’ a b i d e f ⇒ ’ b b i d e f ⇒ ( ’ a × ’ b ) b i d e f " where

"b_then ab bb = dep_then ab (λa . trans form ( Pair a ) snd bb) f s t "

Intuitively, it is well-formed when both parameter bidefinition are well-formed, and the
first bidefinition can parse the print output from the second appended to the first without
breaking the second parser. This intuition, described in more detail above in the section
that introduces well-formedness above (3.5.5), is formalised as follows.
lemma b_then_well_formed :

assumes "bidef_well_formed b1"
assumes "bidef_well_formed b2"
assumes "pa_does_not_eat_into_pb_nondep b1 b2"
shows "bidef_well_formed (b_then b1 b2 )"
( proo f . . . )

Where the predicate in the third assumption is defined as follows:
pa_does_not_eat_into_pb_nondep ba bb ←→ (
∀ t1 pr1 t2 pr2 . p_has_result ( p r i n t ba ) t1 pr1 ∧

p_has_result ( p r i n t bb) t2 pr2
−→ has_resu l t ( parse ba ) ( pr1@pr2 ) t1 pr2 )

This is not the most general way to formalise the well-formedness of then. Note how the
definition of the predicate above requires the leftover after the parser for ba has run, to be
the exact same text as was printed by bb, this is not strictly necessary. More about this,
and other ways of ensuring consecutive parsers can work, in Section 4.2.

Many

The bicombinator many is a derived bicombinator which runs a parser as often as it can
and returns the full list of results. It is defined by the partial function setup as described
in Section 3.3.
pa r t i a l_ func t i on (bd) many : : " ’ a bd ⇒ ’ a l i s t bd " :
"many a = transform

sum_take
(λ l . i f l = [ ] then Inr [ ] e l s e I n l l )
( i f_then_else

( dep_then a (λr . dep_then (many a ) (λ r r . r e turn ( r#r r ) ) t l ) hd )
re turn
( re turn [ ] )
( id )
)"

The well-formedness of the many bicombinator intuitively depends on the parameter
being well-formed, and not ‘eating into’ its own print results. Sadly, using the same
predicate as we use for then (Section 4.1) is not enough. Mainly because if a parser does
not eat into itself it may still eat into two of itself. Possible solutions for this include
requiring that the parser does not eat into many of itself, or requiring that the parser does
not peek past its end, or its own first character.

There are four rules for the well-formedness of many A for any A. They have three
assumptions in common:
lemma well_formed_many . . . :

assumes "bidef_well_formed A"
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assumes "PASI ( parse A)"
assumes "¬is_nonterm ( parse A) [ ] ∨ i s_e r ro r ( parse A) [ ] "
assumes " D i f f e r s Each Time"
shows "bidef_well_formed (many A)"
( proo f . . . )

Then, the four different predicates are:
"parse_result_cannot_be_grown ( parse b)"
"does_not_peek_past_end ( parse A)"
"parse_result_cannot_be_grown_by_printer ( parse b) ( p r i n t (many b ) )"
"∀ i c . f i r s t_pr in t ed_char i ( p r i n t A) i c

−→ does_not_consume_past_char3 ( parse A) c"

The first two are very similar. They both express the idea that if a piece of text can be
parsed into a result, it must also be parsable into that same result when the leftover text
is changed. The third expresses the intuition that even if a parse result can be changed by
some text, it can never be grown by text that can be printed by many times itself. Then,
lastly, we specialise the third statement by saying that if A does not consume past its own
first character then it can make many well-formed. The second and fourth are explained
in more detail in Section 4.2 about consecutive parsers.

Lastly, there is a specialization for many where the bidefinition inserted is an application
of then:
lemma WF_many_then :

// same common assumptions as above
assumes "∀ i c . f i r s t_pr in t ed_char i ( p r i n t B) i c

−→ does_not_consume_past_char3 ( parse A) c"
assumes "∀ i c . f i r s t_pr in t ed_char i ( p r i n t A) i c

−→ does_not_consume_past_char3 ( parse B) c"
shows "bidef_well_formed (many (b_then A B))"

This specialisation is especially useful for cases where showing that the two bidefinitions,
when combined, do not eat into some characters is harder than doing it separately, which
is almost always the case.

Many1

The bicombinator many1 is a derived bicombinator that parses with the passed in bidefi-
nition as long as it succeeds and fails if zero elements were parsed. Similarly, the printer
fails on the empty list. It is defined as follows:
d e f i n i t i o n many1 : : " ’ a b i d e f ⇒ ’ a l i s t b i d e f " where
"many1 a = f t rans fo rm

(λ ( r , r s ) . Some ( r#r s ) )
(λ l . i f l = [ ] then None e l s e Some (hd l , t l l ) )
( b_then a (many a ) )"

For well-formedness, the library shows that proving well-formedness of many A also
shows well-formedness of many1 A with the following rule:
lemma many1_well_formed_from_many :

assumes "bidef_well_formed (many b)"
shows "bidef_well_formed (many1 b)"
( proo f . . . )
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Natural Number

The bidefinition nat_b is a derived bidefinition that parses and prints any natural number.
That is, any whole number larger than or equal to zero. It is well-formed, and defined as
follows.
d e f i n i t i o n nat_b : : "nat b i d e f " where

"nat_b = transform
nat_from
print_nat
(many1 dig i t_char )"

Integer

The bidefinition int_b is a derived bidefinition that parses and prints any integer. That
is, any whole number. It is well-formed, and defined as follows:
d e f i n i t i o n int_b : : " i n t b i d e f " where

" int_b = transform
(λ I n l i⇒ − ( i n t i ) | Inr n ⇒ i n t n)
(λn . i f n < 0 then I n l ( nat (−n ) ) e l s e Inr ( nat n ) )
( i f_then_else

( this_char CHR ’ ’ − ’ ’ )
(λ_. nat_b)
nat_b
( const CHR ’ ’ − ’ ’ ) )"

Separated By

The bicombinator separated_by is a derived bicombinator that parses and prints any
amount of instances of the first parameter, separated by the second parameter. Since the
bidefinition does not return the parse results of the separator, it takes in an additional
parameter which is used as print input for the separator. This bicombinator works on the
basis that a list of elements separated by separators can be parsed by first parsing one of
the elements, and then parsing pairs of separators and elements together. It needs to take
special care of the case where the first element parse fails though, as it has to ensure that
this means the overall parser does not fail but returns empty. Accordingly, it is defined as:
d e f i n i t i o n separated_by : : " ’b bd ⇒ ’ a bd ⇒ ’ b ⇒ ’ a l i s t bd" where
" separated_by sep elem sep_orac le =

transform
(λm_al . case m_al o f None ⇒ [ ] | Some (a , l ) ⇒ a#(map snd l ) )
(λ l . case l o f [ ] ⇒ None | ( a#as ) ⇒ Some (a , map ( Pair sep_orac le ) as ) )
( op t i ona l ( b_then elem (many (b_then sep elem ) ) ) ) "

Similarly to the many rule described above (4.1) there are multiple ways of being well-
formed for separated by. The two most relevant rules follow the same pattern. The only way
they differ is in how they show that the element and the separator parser do not interfere
with each other. With one rule using the does not consume past character method, and
the other using the does not peek past end method. The first one is displayed here:
lemma separated_by_well_formed_no_consume_past_char :

assumes "∃r . p_has_result ( p r i n t sep ) o r a c l e r "
assumes "bidef_well_formed elem"
assumes "bidef_well_formed sep "
assumes " i s_e r ro r ( parse elem ) [ ] "
assumes " i s_e r ro r ( parse sep ) [ ] "
assumes "PASI ( parse elem ) ∨ PASI ( parse sep )"
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assumes "∀ i c . f i r s t_pr in t ed_char i ( p r i n t elem ) i c −→
does_not_consume_past_char3 ( parse sep ) c"

assumes "∀ i c . f i r s t_pr in t ed_char i ( p r i n t sep ) i c −→
does_not_consume_past_char3 ( parse elem ) c"

assumes "∀ i c . f i r s t_pr in t ed_char i ( p r i n t ( b_then sep elem ) ) i c −→
does_not_consume_past_char3 ( parse ( b_then sep elem ) ) c"

shows "bidef_well_formed ( separated_by sep elem o r a c l e )"
( proo f . . . )

The first three assumptions are obvious. The oracle needs to be printable, and the
element and separator bidefinitions need to be well-formed. Then, the fourth is to ensure
that empty parses fail correctly. That is, if there is no printed text, then the first element
parser must not return a result. The fifth is to ensure that there is no way for the element
parser to see another printed element text right after itself. That is, since the ‘does not
consume past char’ assumptions are all based on the ‘next’ bidefinition we must ensure that
it cannot look at itself in the text. The sixth is to ensure that the combinator application
b_then sep elem is PASI. That is, it always consumes at least one character. This is to
ensure that the bicombinator never enters a loop where the separator and element parse
correctly, but nothing is consumed, so they again parse correctly, and so on. The last three
assumptions are the parts where we ensure that the parsers never look past their own
‘territory’. However, we limit that requirement to only those cases where the character
after their own ‘territory’ is printable by the other bidefinition.

Separated By 1

The separated_by1 is a derived bidefinition to parse elements separated by separators,
ensuring that at least one element is parsed and printed. This bidefinition is not derived
from the separated_by bicombinator, as that one’s implementation is complicated by
needing to support the 0 element case. As such, it is defined as follows:
d e f i n i t i o n separated_by1 : : " ’ a b i d e f ⇒ ’ b b i d e f ⇒ ’ b ⇒ ’ a l i s t b i d e f " where
" separated_by1 elem sep o r a c l e =

f t rans fo rm
(λ(x , xs ) . Some (x#(map snd xs ) ) )
(λ i . case i o f [ ] ⇒ None | x#xs ⇒ Some (x , map ( Pair o r a c l e ) xs ) )
( b_then elem (many (b_then sep elem ) ) ) "

As described above in the section about the well-formedness of separated_by and
b_then, the well-formedness of bicombinators that operate their parameters subsequently
can be resolved in many ways. This is the reason that this bidefinition does not have a
complex rule, but rather dispatches the proof to the b_then and many combinators like so:
lemma separated_by1_well_formed :

assumes "∃t . p_has_result ( p r i n t sep ) o r a c l e t "
assumes "bidef_well_formed elem"
assumes "bidef_well_formed (b_then elem (many (b_then sep elem ) ) ) "
shows "bidef_well_formed ( separated_by1 elem sep o r a c l e )"
( proo f . . . )

Drop

The bicombinator drop is a derived bicombinator that turns the result type of a bidefinition
to unit, and always prints the same value. This can be useful for any proofs that are
inductive over the elements of the result type, where this bicombinator ensures that there
is only one element in the result type. An example of a place like this is ignorable whitespace
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parsing, where the specific amount of whitespace parsed does not matter. It is defined as
follows:
d e f i n i t i o n drop : : " ’ a b i d e f ⇒ ’ a ⇒ uni t b i d e f " where

"drop A o r a c l e = transform ( const ( ) ) ( const o r a c l e ) A"

The well-formedness rule is obvious:
lemma drop_well_formed :

assumes wf_A: "bidef_well_formed A"
assumes good_oracle : "∃t . p_has_result ( p r i n t A) o r a c l e t "
shows "bidef_well_formed ( drop A o r a c l e )"
( proo f . . . )

Then drop first (and Then drop second)

The bicombinators then_drop_first are derived bicombinators to remove elements from
the result tree that are not important. They both take in two bidefinitions and some
element to print in place of the one that is ignored in the result tree. They are defined as
follows:
d e f i n i t i o n then_drop_first : : " ’ a b i d e f ⇒ ’ b b i d e f ⇒ ’ a ⇒ ’ b b i d e f " where

" then_drop_first ab bb a = transform
( snd : : ( ’ a× ’ b ) ⇒ ’ b )
( (λ b . ( a , b ) ) : : ’ b ⇒ ( ’ a× ’ b ) )
( b_then ab bb : : ( ’ a× ’ b ) b i d e f )"

d e f i n i t i o n then_drop_second : : " ’ a b i d e f ⇒ ’ b b i d e f ⇒ ’ b ⇒ ’ a b i d e f " where
"then_drop_second ab bb b = transform

( f s t : : ( ’ a× ’ b ) ⇒ ’ a )
( (λ a . ( a , b ) ) : : ’ a ⇒ ( ’ a× ’ b ) )
( b_then ab bb : : ( ’ a× ’ b ) b i d e f )"

This can for example be useful in places where some element needs to be pre- or
succeeded by a variable amount of whitespace, but the amount of whitespace does not
matter for the parse result. Which would be implemented as then_drop_first (many1
whitespace) (AST) ” ” :: AST bidef which results in a parser that parses one or more
elements of whitespace and then some AST, returns only the AST as a result, and at print
time, uses the default one space character to fill in the whitespace.

And so, for both bicombinators, the rules look like this:
lemma then_drop_first_well_formed :

assumes "bidef_well_formed b1"
assumes "bidef_well_formed b2"
assumes "pa_does_not_eat_into_pb_nondep b1 b2"
assumes "∃ i . has_resu l t ( parse b1 ) i a [ ] "
shows "bidef_well_formed ( then_drop_first b1 b2 a )"
( proo f . . . )

The first three assumptions are directly lifted from the b_then well-formed rule, and the
last is to ensure that the oracle element passed in to replace the ignored results can be
parsed, which, via the well-formedness of its bidefinition, also means that it can be printed.

ws char ws, ws char, and char ws

These tree bidefinitions ws_char_ws, char_ws, ws_char are derived bidefinitions that
ignore any whitespace on the left or right side of the parsed character, print no whitespace,
and return a unit. This unit is returned for the reason described in the section about drop
above, it is useful for proofs that are generic over the elements of the return type.
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char_ws is well-formed. The other two bidefinitions are well-formed if the passed-in
character is not in the whitespace set.

They are defined as follows:
d e f i n i t i o n char_ws : : " char ⇒ uni t b i d e f " where

"char_ws c = drop (b_then ( this_char c ) (many whitespace_char ) ) ( c , [ ] ) "

d e f i n i t i o n ws_char : : " char ⇒ uni t b i d e f " where
"ws_char c = drop (b_then (many whitespace_char ) ( this_char c ) ) ( [ ] , c )"

d e f i n i t i o n ws_char_ws : : " char ⇒ uni t b i d e f " where
"ws_char_ws c = drop (b_then (many whitespace_char )

( b_then ( this_char c )
(many whitespace_char ) ) )

( [ ] , c , [ ] ) "

End Of File

The bidefinition EOF :: unit bidef is a derived bidefinition that succeeds in parsing
only at the end of the file, and always prints the empty string. It is well-formed.
d e f i n i t i o n eo f : : " un i t b i d e f " where

" eo f = trans form
(λr . case r o f I n l _ ⇒ undef ined | Inr ( ) ⇒ ( ) )
Inr
( i f_then_else one_char (λ_. f a i l ) ( r e turn ( ) ) id )"

Optional

The bicombinator optional is a derived bicombinator that returns None if the parameter
bidefinition fails to parse, and if it succeeds it returns the value inside a Some.
d e f i n i t i o n op t i ona l : : " ’ a b i d e f ⇒ ’ a opt ion b id e f " where

" op t i ona l b = trans form
(λr . case r o f I n l v⇒ Some v | Inr _ ⇒ None )
(λr . case r o f None ⇒ Inr ( ) | Some v ⇒ I n l v )
( i f_then_else b return ( re turn ( ) ) id )"

As discussed in more detail in Section 3.5.3 the well-formedness of the optional bi-
combinator depends on the parameter being well-formed, and the passed in bidefinition
failing on the empty string, which is the print output of the None case. As such, the rule
is formalised as follows:
lemma optional_well_formed :

assumes " i s_e r ro r ( parse b) [ ] "
assumes "bidef_well_formed b"
shows "bidef_well_formed ( op t i ona l b)"
( proo f . . . )

Peek Boolean

The bicombinator peek_bool is a derived bicombinator that executes the given parser but
does not consume anything. It returns false if the passed-in parser failed, and true if it
succeeded. It always prints the empty string. As discussed in the section about the peek
bicombinator that does return the result (4.1), it does not make sense to have a well-formed
rule for it. It is defined as follows:
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d e f i n i t i o n peek_bool : : " ’ a b i d e f ⇒ ’ a ⇒ bool b i d e f " where
"peek_bool a o r a c l e = transform (Not o Option . is_none )

(λb . i f b then Some o r a c l e e l s e None )
( peek ( op t i ona l a ) )"

Monadic Map

The bicombinators m_map is a derived bicombinator that creates a list of bidefinitions from
a list of parameters with a given function and executes them all consecutively. Its recursive
definition is as follows:
fun m_map : : " ( ’ a ⇒ ’ b b i d e f ) ⇒ ’ a l i s t ⇒ ’ b l i s t b i d e f " where

"m_map f [ ] = return [ ] "
| "m_map f ( a#as ) = f t rans fo rm

(Some)
(λ [ ] ⇒ None

| ( i#i s ) ⇒ Some ( i#i s ) )
( dep_then ( f a )

(λB. dep_then (m_map f as )
(λBs . re turn (B#Bs ) )
t l )

hd)"

To be well-formed it first makes sense to require that all the parameters in the list, when
applied to the function, create a well-formed bidefinition. Then, the created bidefinitions
must not eat into the bidefinitions created from the elements that come after it in the list.
This is formalised, less precisely, in the following predicate:
lemma m_map_well_formed :

assumes "∀ i∈ s e t i s . bidef_well_formed ( a2bi i )"
assumes "∀ i i s . pa_does_not_eat_into_pb_nondep ( a2bi i ) (m_map a2bi i s )"
shows "bidef_well_formed (m_map a2bi i s )"
( proo f . . . )

This rule is significantly less precise than the one lined out in the intuition. That is because
the only consumer in our library is the this_string bidefinition, which creates this_char
bidefinition with the function, and that bidefinition never peeks past its own end, so it
trivially does not eat into the bidefinitions created by the rest of the input list.

4.1.1 Patterns From all Bidefinitions and Bicombinators

From this listing, we can see two patterns. Firstly, the rules for combinations all make some
requirements on the relationship between the passed in bidefinitions and then make well-
formedness requirements on the passed in bidefinitions. This follows a pattern of ‘peeling
away’ layers (bicombinators) to eventually reach the bottom of the definitions. This ties
up well with the goals laid out in Section 3.4 which introduced the ideas of has_result
and the other related predicates. The usability of this technique is expanded upon later,
in Section 4.3 which describes various applications of proof automation.

Secondly, we can see that every bicombinator that deals with multiple bidefinitions
being run consecutively has to deal with the parsers not eating into each others’ ‘territory’
somehow. The various ways that this can be done have shortly been noted in the above
enumeration and will be expanded upon more in Section 4.2, which focuses on various
predicates created to prove that parsers do not interfere with the results of later parsers.
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4.2 Consecutive Parsers

In this section, we describe the various ways that we use to describe that two parsers can be
used consecutively without interfering with each other. This section is general across any
two consecutive parsers, but it is best read by keeping in mind the context of Section 3.5.5
and 4.1. The first describes how a well-formed proof for the then bicombinator is made,
and the second, the enumeration of all bidefinitions, bicombinators, and their well-formed
rules.

In practice, we want to show that, if we have two printed texts A and B, parsing AB
gets the same two results as parsing A and B separately. Or, more formally:2

p_has_result ( p r i n t A_bd) A_object A ∧ p_has_result ( p r i n t B_bd) B_object B
−→ has_resu l t ( parse A_bd) (A@B) A_object C
∧ has_resu l t ( parse B_bd) C B_object [ ]

4.2.1 Does Not Peek Past End

The most restricted way that a parser can fulfil this requirement is by not peeking past
its end. That is, for any successfully parsed text, it must not matter how the leftover
characters are changed, which is formalised with the following predicate:
does_not_peek_past_end p ←→ (∀ c r l l ’ .

has_resu l t p ( c@l ) r l −→ has_resu l t p ( c@l ’ ) r l ’ )

Intuitively this means that the parser only looks at the characters that are consumed and
that any changes in the leftover are not seen.

How to use does not peek past end in a proof goal

So, if a printer appends two print results, and the first adheres to this predicate, then the
well-formedness of both the parsers shows us that they can be parsed together as well. The
formal proof goal, and the proof to show this are as follows:3

Jp_has_result ( p r i n t A) a ar ; p_has_result ( p r i n t B) b brK =⇒
has_resu l t ( parse A) ( ar @ br ) a br ∧ has_resu l t ( parse B) br b [ ]

Now we can split this conjunction into two proofs. The first is as follows:
Jp_has_result ( p r i n t A) a ar ; p_has_result ( p r i n t B) b brK =⇒

has_resu l t ( parse A) ( ar @ br ) a br

Now we bring in the assumption that A does not peek past its end and the relevant part
of well-formed:
Jp_has_result ( p r i n t A) a ar ;

p_has_result ( p r i n t B) b br ;
has_resu l t ( parse A) ar a [ ] =⇒ has_resu l t ( parse A) ( ar @ br ) a br ;
p_has_result ( p r i n t A) a ar =⇒ has_resu l t ( parse A) ar a [ ]

K =⇒ has_resu l t ( parse A) ( ar @ br ) a br

Now we can resolve the last assumption with the first, and then that can be resolved with
the third assumption, which in turn solves the proof goal. The second subgoal created
above is simpler to prove.
Jp_has_result ( p r i n t A) a ar ; p_has_result ( p r i n t B) b brK =⇒

has_resu l t ( parse B) ( br ) b [ ]

This can be resolved with the assumption that B is well-formed.
2This is an example predicate, the actual proof goals fulfilled by the below predicates are varied but

similar.
3Real proof; in file types.thy named consecutive_parses_proof_for_thesis
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Examples

Examples of parsers that adhere to this predicate include parsers that only parse one
character, or that parse some set amount of characters. Also included are parsers like
(this_char ‘{’) then (many (this_char ‘A’)) then (this_char ‘}’) which inter-
nally do not adhere to the predicate, but as a whole do.4

4.2.2 Does Not Peek Past Character

Does not peek past character is a slightly less constrained variant of does not peek past
end. Instead of requiring that the parser does not peek past what it itself has parsed, we
allow it one character to ‘stop’ its parsing process. So, intuitively, a parser that adheres
to this predicate returns the same result for the same text, regardless of changes in the
leftover part, as long as the leftover part starts with the specific characters given. We
define this formally as:
does_not_consume_past_char p ch ←→ (∀c r l l ’ .

has_resu l t p ( c@l ) r l −→ ( has_resu l t p c r [ ] ∧
has_resu l t p (c@( ch#l ’ ) ) r ( ch#l ’ ) ) )

We prove in Isabelle that if and only if this holds for every character the parser also adheres
to does_not_peek_past_end.5

Examples of parsers that have a character they do not peek past include many this_char
‘A’, which does not peek past any character but ‘A’, and many (this_char ‘A’ then
this_char ‘B’) which also does not peek past any character that is not ‘A’, as well as the
nat and int bidefinitions, which do not peek past any characters that are not digits. 6

4.2.3 First Printed Character

Now that we have a way of saying that a parser does not peek past a character, it makes
sense to want to formalise a way of gathering which characters could be the first character
for a bidefinition. This is what the predicate first_printed_chari :: ’a printer =>
’a => char => bool is for. It is true if and only if the given printer prints the given object
successfully into a string that starts with the passed-in character.

We can use this predicate in proof states that look like the following:
Jp_has_result ( p r i n t A) a ar ; p_has_result ( p r i n t B) b brK =⇒

has_resu l t ( parse A) ( ar@br ) a br

Let us assume that we can show that A does not peek past some character c. We would
like to prove that the first character of br is c. This is exactly what this predicate is made
for. It is defined as follows:
f i r s t_pr in t ed_cha r i p i c ←→ (∃t . p_has_result p i t ∧ t ̸= [ ] ∧ (hd t ) = c )

Example: The first printed characters for then

What are the possible first characters of A then B when printing some object (a, b)?
They must be the first characters of A when printing a, or, if that is empty, the first
characters of B when printing b. So, we can formalise the fpci rule for then as follows:

4Proof; in file example_small_examples.thy named example_does_not_peek_past_char
5Proof; in file types.thy named does_not_consume_past_any_char3_eq_not_peek_past_end
6Proof; in file example_small_examples.thy named many_two_chars_no_peek_past_anything_but_A

and many _this _char _no _peek _past _any _other _char, and in the files derived _nat.thy and derived
_int.thy.
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f p c i ( p r i n t ( b_then A B) ) (a , b ) c ←→ (
i f p_has_result ( p r i n t A) a [ ] then

( f p c i ( p r i n t B) b c )
e l s e

( f p c i ( p r i n t A) a c ∧ (∃t . p_has_result ( p r i n t B) b t ) ) )

Note that in the case that a is not printed empty we need to be sure that b can actually be
printed. Otherwise, the overall printer for then might fail, which means there is no overall
print result to take the first character from. We see in this rule again the application of
‘peeling away’ one bicombinator to gain new proof goals, which can be attacked using the
same technique again.

4.2.4 First Parsed Character

When showing how fpci works we showed a proof goal that included a premise which
decided the value of the string by going through the printer. In the cases that the premise
includes a clause that decides the value of the string by going through a parser, we have
fpc. Which stands for First Parsed Character. This predicate holds when a parser can
parse a given object starting from a given character:
fpc p t c ←→ (∃cs l . has_resu l t p ( c#cs@l ) t l )

So, if we have the following proof state:
Jp_has_result ( p r i n t A) a ar ; has_resu l t ( parse B) br b [ ] K =⇒

has_resu l t ( parse A) ( ar@br ) a br

We can try to find all possible characters c for which fpc (parse B) b c holds. If we
have that, we can prove that parse A does not peek past those characters to satisfy this
proof goal. But also, in short, to show that this result holds for whatever comes after br.
No matter what other things we append to this input text, parse A will still parse the
same result a.

Example: The first parsed characters for or

What are the possible first characters for A or B when parsing some object i? If the A
parser succeeds it must be the first parsed characters for A, else if B succeeds it must be
the first parsed characters for B. As such, the fpc rule for or is as follows:
fpc ( parse ( or A B) ) i c ←→ (

case i o f I n l i ’ ⇒ fpc ( parse A) i ’ c
| Inr i ’ ⇒ fpc ( parse B) i ’ c )

Again you see that we peel away one bicombinator in this rule to split the proof goal into
smaller subgoals that can be proven recursively using the same method.

4.2.5 Consecutive parsers that do eat into each other

Now that we have seen two ways of showing that parsers do not eat into the coming text,
it makes sense to think; What if a parser does eat into the text of another bidefinition, but
the other bidefinition’s result is not impacted?

Commonly, parsers need to ignore any whitespace after or before parsing something.
Imagine for example a parser for a common list literal syntax. It parses the ‘[’ character
to start the list and then needs to drop whitespace until the first element. Now imagine
the parser has parsed the last element. We parse any leftover whitespace and then the
closing ‘]’. Assuming that there is some way using the above methods to resolve the
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conflicts between those parsers we only need to resolve the case where the list is empty.
The opening bracket parser parses ‘[’ and whitespace, and the closing bracket parser parses
whitespace and then ‘]’. There clearly is a conflict here. The first parser looks past its end,
and it looks past whitespace characters, which can be the first characters that the closing
parser parses. So, our existing predicates cannot solve this case.

What we need is a predicate that shows that the first parser might interfere with the
second, but in such a way that the result does not change. The predicate takes the shape
of:
Jhas_resu l t ( parse A) ( ca @ cb @ l ) a ( cb @ l ) ;

has_resu l t ( parse B) ( cb @ l ) b l K =⇒
∃ l ’ . has_resu l t ( parse A) ( ca @ cb @ l ’ ’ ) a l ’ ∧

has_resu l t ( parse B) l ’ b l ’ ’

This predicate works similarly to does not peek past character, but states that it does not
peek past the parsed text of another parser.

A simple parser that shows behaviour where this predicate is useful is:
empty_list = b_then ( char_ws CHR ’ ’ [ ’ ’ ) (ws_char CHR ’ ’ ] ’ ’ )

Here the bidefinitions char_ws and ws_char parse one character and then whitespace, and
whitespace and then one character respectively. The proof that this parser is well-formed
and that it does not peek past its own end (even if it has an inner parser that does peek
past its own end) are in file example _small_examples.thy named empty_list_wf and
empty_list_no_peek_past_end.

4.3 Proof Automation

This section describes the various proof automation methods that we have created and
applied. These methods run on the basis of simplification and introduction rules, which
were both explained in Section 3.4. For each proof automation we will explain the rules
involved, and what the idea is behind their applications.

4.3.1 Parsers Should not Change Characters They do not Consume

This property of a parser describes that for any successful parse action, the input can be
split into two strings, the consumed part, and the leftover. Or, formally:
PNGI p ←→ (∀ i r l . has_resu l t p i r l −→ (∃ c . i = c @ l ) )

PNGI originally stood for Parser Never Grows Input. This meaning fell by the wayside, but
the abbreviation stuck.
This rule system is built upon a few core rules for the basic bicombinators and bidefinitions.
PNGI ( parse f a i l )
PNGI ( parse one_char )
PNGI ( parse ( peek_resu lt b ) )
PNGI ( parse ( re turn v ) )
PNGI ( parse b i ) =⇒ PNGI ( parse ( f t rans fo rm t t ’ b i ) )
JPNGI ( parse ab ) ; PNGI ( parse cb ) ;
∀ i r l . has_resu l t ( parse ab ) i r l −→ PNGI ( parse ( a2bb r ) ) K =⇒
PNGI ( parse ( i f_then_else ab a2bb cb b2a ) )

Note that all the basic bidefinitions are PNGI, and the bicombinators are PNGI if their
parameters are. From these rules, we can create rules for derived bidefinition and bicom-
binators by combining the rules for all the elements used in the definition of the derived
elements.
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The only place that this becomes somewhat hard is the derived bicombinator many ::
’a bidef => ’a list bidef. Its (significantly simplified) implementation is:
many a = b_then a (many a )

Now imagine that we want to prove that this bicombinator creates PNGI bidefinitions
if we give it a PNGI bidefinition. We get the proof goal: PNGI (b_then a (many a)).
We apply the b_then rule (PNGI A; PNGI B =⇒ PNGI (b_then A B)), and get the proof
goal: PNGI a; PNGI (many a). It quickly becomes clear that this is not a viable proof
method for bicombinators that are infinitely recursive.

We need to use the fixpoint induction that the partial function implementation (ex-
plained in Section 3.3) provides. With this we can, instead of unfolding the definition
infinitely often, use the induction principle that every meaningful usage of the function
does not recurse infinitely deep. We prove that PNGI is admissible (see Section 3.3.1 that
explains the induction rule in detail). Then we show that the bottom bidefinition is PNGI.
This proof is trivial, as the bottom bidefinition never has a result. Then the induction step
requires us to show that adding one ‘layer’ of the many definition preserves PNGI-ness.
Since it, following the b_then rule, clearly does, we have now shown that:

PNGI A =⇒ PNGI (many A)

Now that we have these basic rules, we can derive a new PNGI rule for each newly
created bidefinition or bicombinator, and register it into the set of rules. Then, any time
we need to prove PNGI of some bidefinition we apply these intro rules over and over again
until we are done. The technique as described has one caveat. For example, sometimes
the goal has the shape of:
PNGI ( parse A) =⇒ PNGI ( parse ( b_then A ( this_char ‘C’ ) ) )

Now when the automation applies the intro rule for b_then it gets the following two
subgoals:
PNGI ( parse A) =⇒ PNGI ( parse A)
PNGI ( parse A) =⇒ PNGI ( parse ( this_char ‘C’ ) )

We have a rule in the set that shows that this_char C is PNGI, so the recursive solving
setup can dispatch that subgoal. But, the first subgoal cannot be resolved because the
knowledge is in the assumptions. Accordingly, in our recursive setup we must first check if
we can prove the subgoal with an assumption, and only if that is not possible do we apply
rules and recurse. In Isabelle, this can be written as follows:
method pngi_solver = ( repeat_new ⟨ assumption | r u l e PNGI_intros ⟩)

This is written in the method builder syntax. repeat_new means that this method is
tried on the goal, and that for every new subgoal, the method is applied recursively. The
assumption method tries to solve the goal using only assumptions. The vertical bar syntax
means to use the left method first, and then the right method only if the left method fails.
The rule method takes a set of rules as a parameter and applies them.

We know that this method will always work on proof goals that only include the basic
or derived bidefinitions and bicombinators in the library because those all have intro rules
that show PNGI if the parameters are also PNGI.

4.3.2 Print Empty: Can This Printer Print Empty Text?

When trying to figure out what the first printed character of a printer can be it often
matters if a printer can print empty. For example, if we run two printers consecutively and
the first prints empty, then the first printed character comes from the second printer, not
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the first. For this we create a ruleset of printer has result rules (introduced in 3.4) that
focus purely on the first character. This automation uses simp rules, a few examples are
shown here:
p_has_result ( p r i n t nat_b) n [ ] = Fal se
p_has_result ( p r i n t (many b ) ) [ ] [ ] = True
p_has_result ( p r i n t (many b ) ) ( i # i s ) [ ] = p_has_result ( p r i n t b) i [ ] ∧

p_has_result ( p r i n t (many b ) ) i s [ ]
p_has_result ( p r i n t ( b_then A B) ) ( ia , ib ) [ ] = p_has_result ( p r i n t A) i a [ ]

∧ p_has_result ( p r i n t B) ib [ ]

When a subgoal matches a rule like this, and the right-hand sides of these rules only
create easily dispatched subgoals, or subgoals that match rules in this form, they can be
unfolded automatically to a true or false result. Assuming that there are rules for all the
bidefinitions and bicombinators involved. In the library, we indeed see that these rules
work very well. However, some combinators can make this harder.

The ftransform bicombinator allows the user to provide a parse and print time function
to transform the element which can also cause the parser and printer to fail. So, to make
it print empty both the transformation function must succeed and the result of that must
be printed empty. This second part is the simple case, but since the bicombinator allows
any function to be used to transform the given element this part of the proof can be as
difficult as the function needs.

Any bicombinator that needs a printer to succeed, but ignores the result, has a similar
issue. For example, the peek bicombinator, which parses but does not consume, and uses
the printer only to check if it succeeds or fails. The only possible print result of peek is
the empty string, but it will only succeed in printing if the inner printer succeeds on the
given parameter. The rule we create thus looks as follows:
p_has_result ( p r i n t ( peek b ) ) i [ ] ←→ (∃t . p_has_result ( p r i n t b) i t )

Note how the left-hand side only mentions printing to empty lists, but the right-hand side
does not constrain itself to that. At this point, we have ‘escaped’ the subset of printer
rules that only print to empty, and must use the more general printer simp set or other
proof methods.

4.4 The Library

The following is a table of all bidefinitions and bicombinators, with information on the
various predicates that they adhere to. The table is split into two, first the basic bidefi-
nitions and bicombinators and then the derived elements. To save space the columns are
strongly condensed. An explainer for each bidefinition and bicombinator is given in Section
4.1 which contains an enumeration of all elements and their well-formed rules, in detail.
The WF column contains ‘Y’ if there is a rule, or it is proven well-formed, in the case
of bidefinitions. A ‘N’ is given when there is no rule, or the rule is such that it excludes
any useful bidefinitions. The DNPPE column describes, for the ‘Does Not Peek Past End’
rule: ‘Y’ if there is a rule for it, ‘Parameter’ if the rule is such that it purely defers to
the parameters, and ‘N’ if there is no rule for it, which can either be because it cannot
be proven, or because there is no rule. In the DNPPC column for the ‘Does Not Peek
Past Character’ rule, the bidefinitions have a description of what characters they do not
peek past, and bicombinators, same as before, state if the rule exists, and if it defers to
the parameters. The FPCI column, for the ‘First Printed Character’ rule, describes for
bidefinitions what their first printed character is, and bicombinators will note the number
of rules defined.
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Basic Elements WF DNPPE DNPPC FPCI
fail Y Y Any None

ftransform Y Parameter Parameter Parameter
one_char Y Y Any Parameter

peek N Parameter Parameter Does not print
return Y Y Any Does not print

if_then_else Y Parameter N Parameter
Derived Elements WF DNPPE DNPPC FPCI

or Y Parameter Parameter Parameter
transform Y Parameter Parameter Parameter
dep_then Y Y N Parameter

char_for_predicate Y Y Any Parameter
The above also holds for instantiations of this rule, as noted in 4.1.

any_from_set Y Y Any Parameter
this_char Y Y Any Parameter

this_string Y Y Any Parameter
char_not_in_set Y Y Any Parameter

b_then Y Y Y Parameter
many Y N Y Y

many1 Y N N Y
nat_b Y N Not digit Digit
int_b Y N Not digit - or digit

separated_by Y N Y Parameter
separated_by1 Y N N Parameter

then_drop_first Y Y N Parameter
then_drop_second Y Y N Parameter

drop Y Parameter Parameter Oracle
char_ws Y N Not whitespace Parameter

ws_char_ws Y N Not whitespace Parameter
ws_char Y Y Any Parameter

eof Y Y Any Does not print
optional Y Parameter Parameter Parameter

peek_bool N Parameter Parameter Does not print
m_map Y Parameter N Parameter
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4.5 Example: DIMACS

The DIMACS format is used by SAT solvers to read formulas to solve. [2] A DIMACS
file contains a header and then a line for each clause. The header line starts with p cnf
and then two numbers. First the number of variables, and then the number of clauses,
separated by a space character. Each line representing a clause contains positive and
negative instances of variables denoted by positive and negative numbers separated by
whitespace, and ending in a 0. An example of a file like this is:
p cnf 12 4
5 6 7 −8 −9 10 11 12 0
2 3 4 6 0
1 5 −6 0
2 6 9 10 12 0

Following this specification we will create and verify a bidefinition using the above-
described library. We will first create a bidefinition for the header, then one for a line, and
then combine these to create one for the whole file.

4.5.1 The DIMACS File Header

We will first show the definition of the header, then explain it, and then describe the
well-formed proof.
d e f i n i t i o n DIMACS_header : : "( nat × nat ) b i d e f " where

"DIMACS_header = then_drop_first
( th i s_s t r i ng ’ ’ p cn f ’ ’ )
( b_then

(nat_b)
( then_drop_first

( this_char CHR ’ ’ ’ ’ )
( nat_b)
(CHR ’ ’ ’ ’ ) ) )

’ ’ p cn f ’ ’ "

We use the bicombinator then_drop_first to parse two elements but only use the second
in the result. It takes two bidefinitions as parameters and as a third parameter the value
that the first should print. This helps us simplify the datatype that the bidefinition parses
and prints. First, we parse the start of the header, which is always static text, and remove
it from the datatype. After that we parse a natural number, then a space character is
ignored, after which the last number is parsed.

Well-formed Proof

The following section does not aim to be a direct transcription of an Isabelle proof session.
We aim to provide the main steps of the proof and show the intuition involved in the proof
steps. Largely duplicate proof steps will only be noted shortly. The proof text itself will
be, for context, provided at the end of this section.

We start with the following proof goal:
bidef_well_formed DIMACS_header

Then, we unfold the definition of DIMACS_header and get:
bidef_well_formed ( then_drop_first ( t h i s_s t r i ng ’ ’ p cn f ’ ’ )

( b_then nat_b ( then_drop_first ( this_char CHR ’ ’ ’ ’ )
nat_b CHR ’ ’ ’ ’ ) ) ’ ’ p cn f ’ ’ )
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As described in the section that introduced the well-formed rules (4.1) we apply a rule
corresponding to the outermost combinator. In this case that is the then_drop_first
combinator. It requires both parameters to be well-formed, and that the first does not eat
into the second.
1 . bidef_well_formed ( th i s_s t r i ng ’ ’ p cn f ’ ’ )
2 . bidef_well_formed (b_then nat_b

( then_drop_first ( this_char CHR ’ ’ ’ ’ )
nat_b CHR ’ ’ ’ ’ ) )

3 . pa_does_not_eat_into_pb_nondep ( th i s_s t r i ng ’ ’ p cn f ’ ’ )
( b_then nat_b

( then_drop_first ( this_char CHR ’ ’ ’ ’ )
nat_b CHR ’ ’ ’ ’ ) )

4 . ∃ i . has_resu l t ( parse ( th i s_s t r i ng ’ ’ p cn f ’ ’ ) ) i ’ ’ p cn f ’ ’ [ ]

The bidefinition this_string is known to be well-formed. The collision between this_string
and the rest of the bidefinition can be solved via the idea of a parser not peeking past its
own end, as described in Section 4.2.1. Intuitively we say that the this_string parser does
not peek past its end, so it does not matter what is printed after, it will never be consumed.
The fourth subgoal fulfils the idea that the third parameter to the then_drop_first bi-
combinator, that is, the object it must print, is actually printable. It is trivially solved via
the has result ruleset.

We focus on the second subgoal and apply the well-formed rule for b_then. Again we
see that the two bidefinitions passed in must be well-formed and that they must not eat
into each other.
1 . bidef_well_formed nat_b
2 . bidef_well_formed ( then_drop_first ( this_char CHR ’ ’ ’ ’ ) nat_b CHR ’ ’ ’ ’ )
3 . pa_does_not_eat_into_pb_nondep nat_b

( then_drop_first ( this_char CHR ’ ’ ’ ’ ) nat_b CHR ’ ’ ’ ’ )

The natural number bidefinition is known to be well-formed. The third subgoal inhabits a
different case for the collision between parsers. We know that the natural number parser
does peek past its end. Nonetheless, we know that it only does this for characters that are
in the digits set. So, since the first character that is printed by the bidefinition coming
after it is not a digit character, we know that there is no collision. (This mechanism is
described in more detail in Section 4.2.2, which introduces the idea of not peeking past a
character.) The proof that this first printed character is not a digit character is provided
by the fpci concept introduced in Section 4.2.3. Since this is the first time we see it in this
proof it will be shown in detail. When we apply the rule to use this technique, then see
this subgoal:
f i r s t_pr in t ed_cha r i

( p r i n t ( then_drop_first ( this_char CHR ’ ’ ’ ’ ) nat_b CHR ’ ’ ’ ’ ) ) i c
−→ does_not_consume_past_char3 ( parse nat_b) c

This tells us that we need to use the fpci rules to see what the value of c is, and then prove
that the natural number parser does not peek past it. The application of these rules, in
addition to the print empty rules (shown in 4.3.2), tells us that the only character that can
be the first in a print result of the given bidefinition is the space character. Since space is
not a digit, and we know that the natural number parser only peeks past digits, we know
that this collision is resolved.

Following this, for subgoal two, we apply the well-formed rule for then_drop_first. It
asks us to show that the two parameters are well-formed, which nat_b and this_char are.
Lastly, as above, it asks us to show that this_char CHR ” ” can print the space character,
which it can.
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There are two styles that this proof can be written with. The first is a more explorative
method, where rules are applied one-by-one, and where the created subgoals are easier for
the user to interpret. The second is a proof style more applicable to a knowledgeable user,
rules are applied in one fell swoop, and created subgoals have no clear origin.

The previous proof, when written in the first style in Isabelle, looks as follows:
1 lemma header_wf_proof_for_thesis :
2 "bidef_well_formed DIMACS_header"
3 un fo ld ing DIMACS_header_def
4 apply ( r u l e then_drop_first_well_formed )
5 subgoal by ( ru l e this_str ing_wf )
6 subgoal
7 apply ( r u l e b_then_well_formed )
8 subgoal by ( ru l e nat_b_well_formed )
9 subgoal

10 apply ( r u l e then_drop_first_well_formed )
11 subgoal by ( ru l e this_char_well_formed )
12 subgoal by ( ru l e nat_b_well_formed )
13 subgoal
14 un fo ld ing pa_does_not_eat_into_pb_nondep_def
15 apply ( c la r s imp simp add : fp_NER)
16 by ( c la r s imp simp add : NER_simps)
17 subgoal by ( c la r s imp simp add : NER_simps)
18 done
19 subgoal by ( auto simp add : pa_does_not_eat_into_pb_nondep_def
20 NER_simps fp_NER takeWhi le_tai l )
21 done
22 subgoal
23 apply ( r u l e does_not_peek_past_end_implies_does_not_eat_into )
24 subgoal by ( ru l e this_string_does_not_peek_past_end )
25 subgoal by ( ru l e this_str ing_wf )
26 done
27 subgoal by ( c la r s imp simp add : NER_simps)
28 done

This might seem like a lot of work to prove that this bidefinition is well-formed. Note how
most rule applications are done by hand, and how the subgoal keyword is used very often
to simplify the presented proof state, which makes the origin of new subgoals clearer. The
above proof shows the process of a user applying rules one by one to get a good look at
what proof goals come up, and how they want to solve those rules. That process is more
exploratory than an experienced user would do. Once a user has gained more experience
with which rules are available this proof can be done significantly simpler:

1 lemma header_WF :
2 "bidef_well_formed DIMACS_header"
3 un fo ld ing DIMACS_header_def
4 by ( auto i n t r o ! : then_drop_first_well_formed b_then_well_formed
5 simp add : this_str ing_wf nat_b_well_formed this_char_well_formed
6 pa_does_not_eat_into_pb_nondep_def fp_NER NER_simps
7 takeWhi le_tai l )

This proof largely applies the same rules, but those rules are applied all at once. With
no regard given for accidental applications, or more streamlined methods. Note how, for
example, the two rules that are used to dispatch collision proofs (does_not_eat_into. . . )
are disregarded, in favour of proving the predicate directly. This proof method requires
more knowledge of what the various proof methods can do, but in turn, is more streamlined
and faster to write. A disadvantage of this proof method is that sometimes a rule can be
applied in a place where it is not intended to be applied. The solution for this is to extract
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the subgoal to a different lemma to prove, such that this rule application site does not
appear when the wrong rule is available.

4.5.2 A Line in a DIMACS File

When the header has been parsed, the next step is to parse the clauses. Each clause is one
line, so it makes sense to create a bidefinition for just one line. Let us remind ourselves:
each line in the file is a clause of positive and negative numbers split by whitespace. So,
the bidefinition looks like this:
d e f i n i t i o n DIMACS_line : : " i n t l i s t b i d e f " where

"DIMACS_line = separated_by1 int_b ( this_char CHR ’ ’ ’ ’ ) (CHR ’ ’ ’ ’ ) "

Here, separated_by1 takes a bidefinition, and then another bidefinition that should be
in between each instance of the result bidefinition. The third parameter is the value
that should be printed by the separator printer. So, this bidefinition will parse numbers
separated by space characters.

Well-formed Proof

This proof description will follow the same general structure as the proof description above.
It will shortly mention, but not explain again, proof methods and proofs that have already
been shown in said proof description above.

After unfolding the definition we get the following well-formed proof goal:
bidef_well_formed separated_by1 int_b ( this_char CHR ’ ’ ’ ’ ) (CHR ’ ’ ’ ’ )

The separated_by1 well-formed rule does not do a lot. We need to show that the given
oracle can be printed by the separator. Since the oracle is a space character, it can be
printed by the this_char CHR ” ” bidefinition. Secondly, it requires the element bidefini-
tion to be well-formed, and int_b is. The last requirement gives a view into the definition
of the bidefinition.
bidef_well_formed (b_then int_b (many (b_then ( this_char CHR ’ ’ ’ ’ ) int_b ) ) )

We see that the bidefinition is defined using the idea that parsing an element separated by
a separator is the same as parsing one element, and then a separator and another element
as long as it is possible to do so.

From the b_then well-formed rule we get that int_b and the other side of the bidef-
inition must be well-formed, as well as that the parser for int_b must not eat into the
‘territory’ of the rest of the bidefinition. The third requirement is shown by the fact that
the integer parser does not peek past anything but digit characters and that the other
side of the b_then bidefinition has as the first printed character, always a space character,
which is not a digit. So, the collision between the two parsers is resolved.

Now what is left is the well-formedness of the second parameter to the b_then bicom-
binator.
bidef_well_formed (many (b_then ( this_char CHR ’ ’ ’ ’ ) int_b ) )

The outermost combinator is the many combinator. There are a few rules to show that it
is well-formed, of which one is a specialisation specifically made for when the bidefinition
passed into many is an application of b_then. The idea of this rule is that the fact that
each iteration of the parser does not interfere with the next is proven by showing that
this_char does not eat into int_b, and vice versa. Which can sometimes be easier than
showing that one iteration of b_then (this_char CHR ” ”) int_b does not eat into itself.
This rule gives us the following new subgoals:
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1 . i s_e r ro r ( parse int_b ) [ ]
2 . i s_e r ro r ( parse ( this_char CHR ’ ’ ’ ’ ) ) [ ]
3 . ¬ PASI ( parse ( this_char CHR ’ ’ ’ ’ ) ) =⇒ PASI ( parse int_b )
4 . ∀ i c . f i r s t_pr in t ed_char i ( p r i n t int_b ) i c −→

does_not_consume_past_char3 ( parse ( this_char CHR ’ ’ ’ ’ ) ) c
5 . ∀ i c . f i r s t_pr in t ed_char i ( p r i n t ( b_then ( this_char CHR ’ ’ ’ ’ ) int_b ) ) i c
−→ does_not_consume_past_char3 ( parse ( b_then ( this_char CHR ’ ’ ’ ’ )

int_b ) ) c

The first three subgoals are there to ensure that the ‘separator, element’ parse loop does
not go on forever. That is, it eventually fails, and never succeeds without consuming
something. The third subgoal uses the predicate PASI to show that second part, it stands
for Parser Always Shrinks Input, the case being made is that either the separator, or
the element parser must always shrink the input when succeeding. The fourth and fifth
subgoals concern the idea that the element and the separator do not eat into each other.
The fourth can be resolved by using the idea that this_char CHR ” ” does not peek past
its end, and thus does not consume past any character. The fifth subgoal can be simplified
by applying the fpci and print empty rulesets. From this appears the following goal:
does_not_consume_past_char3 ( parse ( b_then ( this_char CHR ’ ’ ’ ’ ) int_b ) )

CHR ’ ’ ’ ’

Now we can resolve this proof goal by applying that this_char does not peek past its own
end, and int_b does not consume past space characters.

4.5.3 The Header, and then as Many Lines as Possible

Now that we have the header and the line as well-formed bidefinitions we combine them to
get a bidefinition for the whole file. For this, we need to apply the header bidefinition first,
after that a newline character, and then we parse the line bidefinition as often as possible,
separated by a newline character. The object parsed by, and printed by, this bidefinition
includes both the result of the header bidefinition and all the lines. It excludes the newline
characters separating it.
d e f i n i t i o n DIMACS : : " ( ( nat × nat ) × i n t l i s t l i s t ) b i d e f " where

"DIMACS = b_then ( then_drop_second DIMACS_header
( this_char CHR ’ ’\n ’ ’ ) CHR ’ ’\n ’ ’ )

( separated_by ( this_char CHR ’ ’\n ’ ’ )
DIMACS_line CHR ’ ’\n ’ ’ ) "

Well-formed Proof

We can apply the well-formed rules for b_then and then_drop_second. The subgoals that
appear from this are very similar to the ones shown above. We need to show that the
header is well-formed, which we have, and that the header does not eat into the newline
character, which is easy to show as the header ends in the natural number bidefinition
which does not eat into non-digit characters. The two interesting subgoals that appear
are the ones that require that the combination of the header and the newline character
bidefinition does not eat into the lines, and that the lines themselves are well-formed.
1 . pa_does_not_eat_into_pb_nondep

( then_drop_second DIMACS_header ( this_char CHR ’ ’\n ’ ’ ) CHR ’ ’\n ’ ’ )
( separated_by ( this_char CHR ’ ’\n ’ ’ ) DIMACS_line CHR ’ ’\n ’ ’ )

2 . bidef_well_formed ( separated_by ( this_char CHR ’ ’\n ’ ’ )
DIMACS_line CHR ’ ’\n ’ ’ )
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We prove the first subgoal via the fact that parsing the header and then the newline ends
with parsing the newline, which does not peek past its end. Adding to that the point that
the header does not eat into the newline character, and we have resolved the first subgoal.

For the second subgoal, we apply the proof rule for the well-formedness of separated_by.
This gives us 11 total subgoals:
1 . bidef_well_formed DIMACS_header
2 . bidef_well_formed ( this_char CHR ’ ’\n ’ ’ )
3 . pa_does_not_eat_into_pb_nondep DIMACS_header ( this_char CHR ’ ’\n ’ ’ )
4 . bidef_well_formed DIMACS_line
5 . bidef_well_formed ( this_char CHR ’ ’\n ’ ’ )
6 . i s_e r ro r ( parse DIMACS_line) [ ]
7 . good_separated_by_oracle ( this_char CHR ’ ’\n ’ ’ ) CHR ’ ’\n ’ ’
8 . ¬ PASI ( parse ( this_char CHR ’ ’\n ’ ’ ) ) =⇒ PASI ( parse DIMACS_line)
9 . ∀ i c . f i r s t_pr in t ed_char i ( p r i n t DIMACS_line) i c =⇒

does_not_consume_past_char3 ( parse ( this_char CHR ’ ’\n ’ ’ ) ) c
10 . ∀ i c . f i r s t_pr in t ed_char i ( p r i n t ( this_char CHR ’ ’\n ’ ’ ) ) i c =⇒

does_not_consume_past_char3 ( parse DIMACS_line) c
11 . ∀a b c . f i r s t_pr in t ed_char i

( p r i n t ( b_then ( this_char CHR ’ ’\n ’ ’ ) DIMACS_line ) ) ( a , b ) c =⇒
does_not_consume_past_char3 ( parse ( b_then ( this_char CHR ’ ’\n ’ ’ )

DIMACS_line ) ) c

The first five subgoals are easy to resolve via methods already seen above. The sixth
subgoal is to ensure that, if we had printed zero lines, the parser does not parse one line.
(Which would not be well-formed.) It is easily resolved with the has result ruleset. The
seventh subgoal requires that the separator can print the given object. In this case, that
means that the this_char CHR ”\n” can print CHR ”\n”, which can easily be resolved
with the printer has result ruleset. The eighth subgoal appears for the same reason as
shown in the well-formed proof for the line bidefinition. It requires that the ‘element,
separator’ parse loop consumes at least one character, which ensures that it cannot ‘spin
in place’. The ninth subgoal requires that the line parser does not eat into the newline.
This proof is resolved the same way as above, breaking up the parser into smaller pieces
and showing that the last does not eat into a newline, that the second to last does not
eat into the last, and so on. The tenth subgoal requires that the newline parser does not
eat into the line bidefinition, which is trivially proven by the fact that the newline parser
only parses one character, so never eats into anything. The last subgoal shows that the
‘newline, line’ parser does not consume past the first printed character of the ‘newline,
line’ printer. This first character is the newline character. The proof for this is similar to
the ones shown above.

Conclusion

The above section has shown both the design and the well-formed proof for a DIMACS
bidefinition. It shows that the ‘parser combinator’ style function application-based building
of bidefinitions makes it easy to create bidefinitions in parts, and combine those parts into
larger wholes. It also shows one of the drawbacks of this approach, that it can become
hard to understand the nesting of the various applications of composition functions like
then. A possible solution for this, in the shape of a monad syntax, is described in the
future work section below (5.1.1.) Another facet of the library that has been displayed
is the proof methods for well-formed proving. We’ve shown how the combinators make
it possible to break up proofs into smaller, easier, sub-proofs. With that, we’ve shown
various proof methods introduced earlier (4.2, 4.3) in use in a practical example.

What this means, is that we now have an object that can provide a parser and a printer.
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For these two functions it holds that if we have a DIMACS object, we print it, and then we
parse it again, this is guaranteed to result in the exact same DIMACS object. Similarly,
any object that is parsed from some input can be printed, with the same guarantees for the
re-parsing. The last guarantee given is that any text in the input string after the DIMACS
data is not changed. All three of these are desirable guarantees for SAT solvers, and any
tools that use SAT solvers like proof assistants, including Isabelle, and tools like planning
software for classrooms or hotels.
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Chapter 5

Conclusion

In this thesis, we laid out our definition of the correctness of bidefinitions, described meth-
ods used to prove this, a library that encapsulates these methods, and presented an example
bidefinition for the DIMACS file format that is proven correct using the methods presented.

The main research goal (1.5) for this thesis is: "define an easy-to-use library for verified
parser- and printer-combinators." The well-formed rule enumeration (4.1), the example
bidefinition for the DIMACS format (4.5), and the description of the various proof methods
(4.2), show that this has been completed up to a point. In the future work section below,
we describe various methods through which both the definition of bidefinitions (5.1.1) and
the well-formedness proofs (5.1.3) can be simplified and improved.

A few subgoals have been defined to guide the process. First and second, "Defin-
ing a notion of "well-formed" for a parser and printer pair." and "Formalising this well-
formedness in Isabelle." We show this in Section 3.5, which describes well-formedness. Our
method is different from others that try to gain a full and exact un-parsing of the source
string. This has advantages and disadvantages. On the one hand, this means that users
of the library do not have to carry around information about the source string needed to
un-parse the object. On the other hand, this means that the library does not automatically
try to recreate whitespace or other ‘separator’ text, which can be a downside for pretty-
printers and formatters. This notion of well-formedness works well, and gives satisfying
guarantees, but there are improvements possible. In the future work section (5.1.2) we
describe how the adherence to structural equality for the types could be improved upon in
the future.

The third subgoal, "Creating a library of parser and printer bidefinitions and bicombi-
nators." is described mainly in Section 4.4 which enumerates all bidefinitions and bicom-
binators and describes the rules and predicates that are proven for them. In addition to
that, Section 4.1 shows how we fulfilled the fourth subgoal: "Creating lemmas to prove the
well-formedness of these parsers and printers."

Then, the use of these lemmas is exemplified in sections 4.5. This fulfils the last subgoal:
"Show the usability of the library by creating a bidefinition for an example file format and
proving that it is well-formed."

In Section 2.1 we described two existing bidefinition techniques, those being Invertible
Syntax Descriptions [13], and BiYacc [19]. We have shown our library to be better than
the existing options in various ways. Firstly, Invertible Syntax Descriptions makes no
claims about the compatibility of generated parsers and printers. BiYacc does, but their
correctness requires that parse and print are each other’s inverse, which we show in Section
3.5 is not ideal for our use case. Secondly, the way bidefinitions are created. Invertible
Syntax Descriptions have a function application system very similar to ours, BiYacc has
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three inputs that have to be created and kept synchronised through changes over time.

5.1 Future Work

In this section, we lay out three different categories of improvements to the bicombinator
system explained above. The first is about improving the creation process of bidefinitions,
the second is about improving the bidefinitions that are made with the combinators, and
the last is about improving the process of proving bidefinitions well formed.

5.1.1 Improving the Creation of Bidefinitions

Relevant to the idea of a better creation method for these bidefinitions are elements like
transform, and dep_then. Both of these elements have parse-time and print-time functions
which are supposed to reverse each other. Well-formed proofs for these elements require
proving that these functions reverse each other correctly. Various methods to ensure re-
versibility exist, one is included in the parse and un-parse library BiYacc [19] mentioned
above, which uses specific methods to create functions that can always be inverted. Other
works describing invertible computing include Matsuda K. and Wang Mm, which intro-
duce Sparcl, a programming language for partially invertible computation [8] and Mu S. et
al. which introduced a combinator calculus with an implementation that has relational
semantics in such a way that it can express only invertible computations [10]. Should a
method of invertible computation be included in the way combinators are used this could
further unify the parsing and printing sides of the program, and thus simplify the creation
of bidefinitions.

The programming of bidefinitions is done via the ‘parser combinator’ style function
application. This can be quite confusing when many composition operators are used. An
example of this is the example DIMACS bidefinition given in Section 4.5. A different
manner of presenting parsers or printers is the more declarative ‘parser monad’. A parser
monad, especially in the do notation syntax, is a very natural way of representing parsers,
our bidefinition type has a return function, and the dep_then combinator is similar to
bind, if the print-time conversion parameter is ignored. This might eliminate most explicit
uses of composition combinators like then, and dep_then. Creating Isabelle syntax rules
such that do notation syntax can be used to define bidefinitions might make the library
significantly easier to use.

Many parsers include some level of whitespace permissiveness. In the implementation
of our library, this comes up in ws_char, ws_char_ws, and char_ws. These kinds of special
cases work well, but only in the case that the parser needs exactly one character with
whitespace around it. In cases where the whitespace surrounds a larger parser requires
more work. The library could be expanded with even more special cases, but looking into
more generic methods of skipping whitespace might result in more reusable results.

5.1.2 Improving the Resultant Bidefinitions

The bidefinitions in the library are programmed in a simple and straightforward manner.
Their definitions are not optimized and might be quite slow. Future work could evaluate
the efficiency of the created parsers, possibly taking into account the various languages that
code can be exported to. The results of this evaluation could be used to optimize the library
by verifying the equality of parsers (and combinators) with more efficient implementations.
For example, one could implement many (this_char c) in the form of a (take/drop)
While (=c) call, which might be faster to execute.
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Users of parsers, for example for programming languages and user-facing interfaces,
are interested in explaining to users why a parser fails to parse their input. Think for
example of messages like ‘parse error on line 17 column 12, found IF where IDENTIFIER
was expected.’ In our implementation of the fundamental types of the parser and printer,
there is no room for this information. The error case is simply a ‘None’. To make this
library more user friendly this functionality could be created. For example, by replacing
the existing optional type in the parse result with an either, which could carry around
error information.

None of the bicombinators in the library are specific to a character being the token.
Only the bidefinitions themselves are specific to the token type. This implies that there
might be an abstraction level above the existing bidefinition type which allows parametri-
sation over the token type. An application of this would allow pre-tokenisation of the input
text. As well as the direct parsing of binary files that include non-character bytes.

Our definition of well-formed requires that an object, when parsed from some text T , is
the same as the object that was printed into text T . For some domains, this can turn out
to not be the right choice. Consider, for example, a compiler. It might parse the text if a
then b else skip into the AST IF(a,b,skip). The printer may realise that the language
supports leaving out the else clause, and prints if a then b. This text is parsed into the
AST IF(a,b). These two ASTs are not strictly the same. But they can be considered
semantically the same. Future research might seek to replace our equality requirement
with some semantic equality function (possibly provided by the user of the library.)

5.1.3 Improving the Proving Process

The proof automation Section 4.3 mentions only one method that directly solves proof
goals. (PNGI) The other proof automations are actually sets of lemmas that together solve
most of the goals that can come up in their shapes. Though this is effective, it leaves much
to be desired, could other predicates’ proof attempts be automated? To mind comes the
section about consecutive parsers, (4.2) which builds up various methods that parsers can
work consecutively. It makes sense to imagine that a proof search could at least solve the
low-hanging-fruit proof goals in this territory. That is, the proof goals where most if not all
sub-bidefinitions adhere to does_not_peek_past_end or does_not_consume_past_char.
This would be valuable to users of the library as it frees up effort from the mechanic proof
steps in these proofs for more involved proofs in other steps.

Section 3.3 explains the partial function setup. It is the basis of the many combinator,
which is used in many places in the library. To resolve the problem with the induction rule
from the partial induction setup we have created a custom induction rule for the many
combinator, which uses the idea that if a parser always shrinks the input, it will never get
stuck in an infinite loop. Generalising this rule to arbitrary bicombinators and bidefinitions
defined via the partial function setup would improve the usability of the library when
creating bidefinitions and bicombinators with partial functions. Other possible solutions
include the idea of partial correctness, as introduced in Section 3.4.3.
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