

Meta Object Facility (MOF)
investigation of the state of the art

Ing. J.F. Overbeek
June 2006

Software Engineering,
Electrical Engineering, Mathematics

and Computer Science,
University of Twente

Dr. ir. A. Rensink
Drs. A.G. Kleppe
Prof. dr. ir. M. Akşit

 - 2 -

 - 3 -

Abstract
Model Driven Engineering (MDE) is the new trend in software engineering. MDE is the collection of all
approaches that use models as core principle for software engineering. The Model Driven Architecture
(MDA) is the proposed approach for MDE given by the Object Management Group (OMG). The core
element of the MDA is the Model Object Facility (MOF), which is the object of study of this assignment.

In the history of software engineering, we are continuously searching for a technique that provides us with
a better and more natural approach for defining a system in a more abstract way. The aim of the MDA is to
reach an abstraction level that is more focused on defining the structure and behavior of the system,
disregarding the underlying implementation technology. With the release of the Unified Modeling
Language (UML), OMG has become the market leader in providing a modeling language for software
engineering. Recently the OMG released the MDA, which covers the complete scope of using models in
software engineering. Given the already earned market sector, the potential of the MDA can be significant.
The MOF as a fundamental part in the MDA is therefore an important part to investigate.

The major goal of this thesis is codifying the usefulness and availability of the MOF. As approach for
investigation, we will first investigate the scope of modeling in the domain of software engineering. Next,
we investigate the standard itself, and after that the practical use of the standard.

The modeling approach is a good shift in software engineering to obtain a higher level of abstraction for
defining a system. With the arrival of the MDA, the modeling concept for software engineering is
standardized. Furthermore, the UML already booked success and is widely used. Based on this success the
MDA has the potency to obtain the same position as UML. The same will hold for the MOF.
Unfortunately, the MOF standard is not yet stable, and can still use some polishing especially in the area of
the semantics.

Samenvatting
Model Driven Engineering (MDE) is de nieuwe tendens in softwaretechnologie. MDE is de verzamelnaam
voor alle aanpakken die modellen als basis zien voor software technologie. De Model Driven Architecture
(MDA) is de voorgestelde benadering voor MDE die door de Object Management Group (OMG) wordt
gegeven. MDA bezit als kern de Model Object Facility (MOF), en deze is de doelstelling van deze
opdracht.

In de geschiedenis van software technologie, zijn we onophoudelijk op zoek naar een techniek die ons een
betere en natuurlijkere benadering geeft voor het bepalen van een systeem op een abstractere manier. Het
doel van MDA is een abstractieniveau te bereiken dat zich meer concentreert op het bepalen van de
structuur en het gedrag van het systeem los van de onderliggende implementatie technologie. Met de
uitgave van de Unified Modeling Language (UML) is OMG marktleider geworden in het verstrekken van
modelleringstalen voor softwaretechnologie. Onlangs heeft OMG de MDA uitgegeven, welke het volledige
werkinggebied voor het gebruik van modellen in software technologie behandelt. Gezien het reeds
verdiende marktsegment, kan de kracht van MDA significant zijn. MOF als fundamenteel deel in MDA is
daardoor een belangrijk deel om te onderzoeken.

Het belangrijkste doel van deze thesis is het vastleggen van het nut en de bruikbaarheid van MOF. De
aanpak van het onderzoek is als volgt. We zullen eerst het werkingsgebied van modellering op het gebied
van software technologie onderzoeken. Vervolgens onderzoeken wij de standaard zelf, en afsluitend het
praktisch gebruik van de standaard.

De modelleringbenadering is een goede verschuiving in software technologie om een hoger niveau van
abstractie te verkrijgen voor het bepalen van een systeem. Door de komst van de MDA zijn de
modelleringconcepten voor softwaretechnologie gestandaardiseerd. Verder boekte UML al reeds succes en
wordt al veel gebruikt. Gebaseerd op dit succes heeft MDA de kracht om dezelfde positie te verdienen als

 - 4 -

UML. Hetzelfde zal voor MOF gelden. De MOF standaard is alleen nog niet stabiel, en kan nog wat
verbetering gebruiken vooral op het gebied van de semantiek.

 - 5 -

Acknowledgements
I would like to thank all the people that made it possible to finish my master degree. First, I would like to
thank all colleague students that helped me in finishing courses. Second, I would like to thank my
supervisors Arend Rensink and Anneke Kleppe. They gave me lots of freedom, and the opportunity to
create my own research. They made the lonely job of writing my thesis passable. Third, I would like to
thank my family, my friends, and especially my girlfriend they gave me enough joy in live to get over
difficult moments, which gave me the power to continue the job.

 - 6 -

 - 7 -

List of contents

1 INTRODUCTION ..- 9 -
1.1 BACKGROUND ... - 9 -
1.2 GOALS... - 9 -
1.3 APPROACH .. - 10 -
1.4 STRUCTURE OF THE REPORT .. - 10 -
2 BASIC CONCEPTS ...- 13 -

2.1 WHAT IS A MODEL? ... - 13 -
2.2 MEANING OF A MODEL .. - 14 -
2.3 LANGUAGE.. - 15 -
2.4 METAMODEL ... - 16 -
2.5 RUNTIME... - 17 -
2.6 HIERARCHY... - 18 -
2.7 META METAMODEL .. - 19 -
2.8 REFLECTION .. - 19 -
2.9 MODULARITY.. - 21 -
3 MOF 2.0 STANDARD..- 23 -

3.1 HISTORY OF MOF ... - 23 -
3.2 LANGUAGE ARCHITECTURE .. - 24 -

3.2.1 Metamodel Hierarchy...- 24 -
3.2.2 MOF Architecture...- 25 -
3.2.3 UML infrastructure library...- 26 -
3.2.4 MOF ...- 28 -

3.3 LANGUAGE FORMALISM.. - 31 -
3.3.1 MOF specification ..- 31 -
3.3.2 Import and Merge...- 36 -
3.3.3 Instantiation..- 39 -

3.4 SELF-REPRESENTATION ... - 43 -
3.4.1 Self-representation in EMOF ...- 43 -
3.4.2 Self-representation in CMOF ...- 49 -

4 MOF BASED EXAMPLE.. - 53 -
4.1 ELECTRICAL DIAGRAM .. - 53 -
4.2 MOF HIERARCHY .. - 54 -
4.3 ELECTRICAL DIAGRAM METAMODEL.. - 54 -

4.3.1 ElectricalDiagrams ..- 55 -
4.3.2 DCVoltageSource ...- 56 -
4.3.3 Resistors ...- 57 -
4.3.4 Switch ...- 58 -
4.3.5 PrimitiveTypes ..- 59 -

4.4 SEMANTICS ... - 59 -
4.5 EXAMPLES... - 60 -
5 RELATED WORK...- 63 -

5.1 MOF SPECIFICATION SERIES.. - 63 -
5.1.1 MOF Query/View/Transformation ...- 63 -
5.1.2 MOF Versioning and Development Lifecycle...- 64 -
5.1.3 Mappings ..- 64 -

5.2 COMPLIANT TOOLS.. - 64 -
5.2.1 MDR ...- 65 -

 - 8 -

5.2.2 MOFLON..- 65 -
5.2.3 ModX ..- 65 -
5.2.4 JMI..- 65 -
5.2.5 aMOF2.0forJava ..- 65 -

5.3 MOF-BASED METAMODELS... - 66 -
5.3.1 Ontology Definition Metamodel ...- 66 -
5.3.2 Common Warehouse Metamodel ..- 66 -

5.4 RELATED APPROACHES.. - 67 -
5.4.1 Eclipse Modeling Framework...- 67 -
5.4.2 Linguistic and ontological metamodeling...- 67 -

6 CONCLUSIONS AND RECOMMENDATIONS..- 71 -
7 GLOSSARY ..- 75 -
8 REFERENCE ...- 77 -
A. HISTORY OF RELEASED OMG STANDARDS...- 80 -
B. EMOF..- 81 -
C. UML NOTATION FOR MOF ..- 82 -
D. ISSUES ..- 87 -

D.1. ISSUES UML INFRASTRUCTURE LIBRARY.. - 87 -
D.2. ISSUES MOF.. - 90 -

 - 9 -

1

Introduction

1.1 Background
Model Driven Engineering (MDE) is the new trend in software engineering. MDE is the collection of all
approaches that use models as a core principle for software engineering. The Model Driven Architecture
(MDA) is the proposed approach for the MDE given by the Object Management Group (OMG). The core
element of the MDA is the Model Object Facility (MOF), which is the objective of this assignment.

Why modeling?
If we look to the history of software engineering, we can detect that we are continuously searching for a
technique that provides a better and more natural approach for defining a system. For example, the
introduction of the first FORTRAN compiler in 1957 brought a shift in defining a system in a more abstract
way. At this point programmers were able to specify what a machine should do rather than how the
machine should do it. (Atkinson and Kühne [38]) After the introduction of the first compiler the aim to
develop a technique that provides the ability to define a system in an even higher abstraction level
continues, for example with the arrival of procedural and object-oriented languages. The aim of the MDA
is to reach an abstraction level that is more focused on defining the structure and behavior of the system
disregarding the underlying implementation technology.

Why MOF?
With releasing the first Unified Modeling Language (UML) OMG became the market leader in providing a
modeling language for software engineering. Until now UML is still the most used modeling language.
Recently the OMG released the MDA, which covers the complete scope of using models in software
engineering. Given the already earned market sector the potency of the MDA can be significant. The MOF
as a fundamental part in the MDA is therefore an important part to investigate.

The current purpose of the MOF, given by the OMG [10], is to enable the development and interoperability
of model and metadata driven systems, such as modeling and development tools, data warehouse systems
and metadata repositories. For realizing this, MOF provides a metadata management framework, and a set
of metadata services. The current released version of the MOF is 2.0, and originates from a previous
version and is a response to the so-called Request For Proposals (RFPs).

1.2 Goals
The major goal of this thesis is codifying the usefulness and availability of the MOF. We can further
specify this goal into three sub goals, namely basic concepts, MOF standard, practical use.

Basic concepts
The MOF is nowadays the fundamental part of the MDA. This is a relatively new technique in the software
engineering, and especially as approach for defining a complete system. By means of the introduction of
this technique, concepts as models, metamodels and modeling are getting a meaning according the scope of
the software engineering. The goal is to investigate the meaning of these concepts according to software
engineering.

 - 10 -

MOF standard
The MOF standard is specified in the MOF specification. The goal is to investigate the most recently
released MOF specification and analyze the structure and behavior of all concepts introduced in this
specification.

Practical use
The MOF standard can be practically used by building implementations based on the standard. MOF
compliant implementations can be checked on the interpretation and use of the MOF standard. The goal is
to investigate these implementations on their interpretation and use of the standard.

1.3 Approach
For investigating the basic concepts we are mainly concentrated on the modeling technique for software
engineering in general. The approach is to investigate the modeling technique in a broader sense, and not
purely concentrated on the modeling technique as introduced by the OMG. This provides a description of
the theoretical ideas behind modeling in contents of software engineering. The modeling approach uses
models as first class concepts in the design of software. Therefore, we first define what a models is, and
continue with describing the meaning of the model. In the current software engineering a programming
language has a dominant roll in the design of software. Therefore, we describe what a language is, and
continue with what its roll is according to modeling. In this research part, the meaning of metamodels,
metamodeling and other related aspects is described as well. Together, this provides the theoretical
background to investigate the MOF standard.

The idea for investigating the MOF standard is to get an exact view of how to use the standard. We analyze
the most recent version of the MOF. However, for briefly describing how the MOF is originated, we
investigate the preceding releases of the standard as well. For analyzing the MOF standard, we first
concentrate on analyzing the architecture, after we continue with analyzing the formalism. The research on
the architecture provides an overview of all concepts used, and their correspondent meaning. In analyzing
the MOF formalism, the specification techniques used in the standard are described. This continues with a
detailed description of essential concepts as introduced in the standard.

The next approach for investigation is more concentrated on using the MOF. In this investigation we are
building metamodels based on the MOF. First, we analyze metamodels that are already defined based on
the MOF. The most common used metamodels that are based on the MOF metamodel are UML and CWM,
but the MOF itself as well. We choose to investigate the self-describing ability of the MOF in more detail.
The MOF is a compact metamodel compared with the UML and CWM. Furthermore, investigating the self-
describing ability of the MOF is more inline of the research done before. Second, we define a new
metamodel based on the MOF. Besides describing how to define a metamodel, we also describe how to use
the defined metamodel. Therefore, we instantiate some example models based on this metamodel, and
further instantiate them as runtime models. With this we show the usage of the complete metamodel
hierarchy.

The last approach for investigation is concentrated on related work in the area of the MOF. In this part we
summarize the specification that are closely related to the MOF, tools that implemented the MOF standard,
MOF metamodels, and related approaches. This provides an overview of the current state of the MOF
standard. Furthermore, we can see in which area the MOF is already used.

1.4 Structure of the report
Chapter 2 describes the basic concepts for the MDE approach. This chapter will discuss the basic concepts
needed for modeling. First, we will concentrate on a model, with the objective to explain what the meaning
of a model is. Next, we will concentrate more on the aspects that are related to a model.

 - 11 -

Chapter 3 describes the MOF standard. In this chapter, we will briefly describe the history of MOF. After
that, the architecture used in the metamodel is considered, and the last section discusses the specification
approach used to define the MOF 2.0.

Chapter 4 describes an example compliant with the MOF standard. In this chapter, a small subset of the
electrical diagrams domain is defined as a metamodel based on the MOF. This chapter will further explain
the instantiation of models based on this metamodel.

Chapter 5 describes related work in the area of the MOF. In this chapter, we will mention related work
according to the MOF. As related work we can distinguish the following categories: MOF specifications
series, compliant tools, MOF metamodels, and related approaches.

Chapter 6 describes the conclusion and recommendation made based on the investigation.

 - 12 -

 - 13 -

2

Basic Concepts

This chapter will discuss the basic concepts needed for modeling. First, we will concentrate on a model,
with the objective to explain what the meaning of a model is. Next, we will concentrate more on the aspects
that are related to a model.

2.1 What is a model?
The term model is applicable in a broad area, which leads to many definitions. For example, a definition of
model according to Benyon is [25], “A model is a representation of something, constructed and used for a
particular purpose.” The process of making a model is called modeling. A modeler constructs the model.
The interpreter is using the model. Both modeler and interpreter have a particular purpose for the
construction or use of the model. The model is always the representation of something.

A model on its own has no meaning. The meaning of the model is related to the situation and context
wherein the model is used. Stachowiak [26] stated this as the pragmatic feature of the model. Like
information and data [22], the data is the syntactic representation of information. Data on its own has no
meaning, but in combination with an interpretation, the information behind it can be extracted and
understood.

According to Benyon’s definition of a model, we can detail the pragmatic use of the model as shown in
Figure 1.

Something

Model

<<represent>>

InterpreterModeler <<constructed>> <<used>>

PurposePurpose

Figure 1 : Pragmatic use of the model

Let us illustrate this in more detail in the following example. A manufacturer of inverters would like to
build a model of the inverter, to show how to work with the inverter. This is done for the customer that
needs to know how to work with the inverter. The manufacturer decides to model the inverter as a truth
table, which explains the working of the inverter. According to this, we have the following situation and
context wherein the model is used:

• Something is the inverter.
• Modeler is the manufacturer.
• Purpose of the modeler according the model is, explaining the working of the inverter.
• Interpreter is the customer.
• Purpose of the interpreter according the model is, knowing the working of the inverter.
• Model is a truth table, showing the behavior of the inverter.

 - 14 -

The Figure 2 shows the complete pragmatic use of the model.

Something
“inverter”

<<represent>>

Interpreter
“customer”

Modeler
“manufacturer” <<constructed>> <<used>>

Purpose
“knowing how to work

with the inverter”

Purpose
“explaining how to work

with the inverter”

Truth Table

Input Output

“0” “1”

“0”“1”

Model

Figure 2 : Manufacturer of inverters example

2.2 Meaning of a model
In this section we will explain the meaning of a model in more detail. The meaning is related to the
pragmatic users of the model. The modeler and interpreter will have an important role in the meaning of the
model.

The modeler as constructor of the model will define together with constructing the model the meaning of
the model. The modeler will construct the model in such way that based on the representation the meaning
can be extracted. Therefore, the modeler is using already commonly understood concepts. As with the
manufacturer of inverter, the manufacturer modeled the inverter in a commonly understood way for
defining logical gates.

The role of the interpreter is to extract the meaning from the model. The interpreter is only capable of
extracting the correct meaning if the interpreter has the same common understanding of the concepts used
for the model.

The exchange of a model between a modeler and an interpreter is called communication. In the case of a
modeler and an interpreter, the modeler is communicating with the interpreter. We can assign
communication with a degree of meaning. The degree of meaning can be fuzzy, but we can at least define a
minimum and maximum degree of meaning. The minimum degree of meaning is called meaningless, and
maximum degree is called meaningful. If the modeler communicates with the interpreter, the modeler has a
purpose for communicating. The communication between the modeler and interpreter is meaningful if the
purpose is obtained, if the purpose is not obtained the communication is meaningless.

In the case of the manufacturer of inverters, if the customer knows how to work with the inverter based on
the model, the communication between the manufacturer and the customer is meaningful. So, if we can
check whether the customer actually knows how to work with the inverter, we can validate that the
communication was meaningful.

The manufacturer predicts what the customer has as common understanding, and therefore what the
interpreter can interpret. If the manufacturer can perfectly predict the common understanding of the
customer, the chance for meaningful communication will increase. To enlarge the chance that the customer
can interpret the model, the manufacturer can refer to a description of the notation of the model. This can
be useful if the notation of a truth table is new for the customer. Therefore, the customer should be capable
of interpreting the description of the truth table, otherwise we need again a description of the description of
a truth table.

 - 15 -

2.3 Language
In the section 2.2, we introduced the common understanding concept. In this section, we will discuss how
to describe a common understanding.

For structurally describing something, we use a language. A language can be compared with the common
understanding as described in section 2.2. The language is used for communication, and will at least need
the following concepts. A language needs a concrete notation, which can be stored or transported.
Furthermore, an interpretation is needed that will explain the meaning of the language constructs. These
definitions are the fundamental concepts of a language, and are described as syntax and semantics [22]. The
syntax of the language defines the notation, and the semantics describes the meaning of the notation.

Both syntax and semantics can be divided into aspects that are more specific. For the syntax those aspects
are concrete syntax, syntax mapping, and abstract syntax, and for the semantics those aspects are semantic
mapping and semantic domain. Those aspects are related to each other in some way. The Figure 3 shows an
overview of those aspects and the relation with each other.

SemanticsSyntax

Semantic DomainConcrete Syntax Abstract Syntax<<Syntax Mapping>> <<Semantic Mapping>>

Figure 3 : Overview syntax and semantic specific aspects

As shown in Figure 3, the syntax of the language is divided into concrete syntax and abstract syntax.
Where the concrete syntax defines the physical notation, the abstract syntax defines the structure of the
notation. The structure of the notation is defined independently of the physical notation. Both syntaxes are
mapped to each other by means of the syntax mapping, which provides the ability for defining a program
using the physical notation according the abstract syntax.

For describing the meaning of the language the semantics are used, which describes the meaning in terms
of the concepts that are already well-defined and well-understood. The well-defined and well-understood
concepts are covered in the semantic domain, which is part of the semantics. For the semantic domain, we
can use a variety of notations, like natural language or mathematical definitions. The abstract syntax is
mapped to the semantic domain. This provides the abstract syntax with a well-defined and well-understood
meaning.

As for everything we would like to describe, we need a language for describing it. In the case of the defined
language aspects, it is not necessary that the same language is capable of describing each aspect.

The language used for describing models is called a modeling language. We can view the modeling
language as a pragmatic user of the model, as shown in Figure 4 a.. The relationship between the modeling
language and the model is that the model is expressed by using the modeling language. The modeler and
interpreter need an understanding of the modeling language. The modeler can construct the model, based
on this understanding. For the interpreter, the understanding will provide the ability to extract the correct
meaning of the model. The relationship between the interpreter and modeling language is shown in Figure
4 b..

 - 16 -

Language

Model InterpreterModeler <<constructed>> <<used>>

PurposePurpose

Something

<<expressed using>>

<<represent>>

Language

Model InterpreterModeler <<constructed>> <<used>>

PurposePurpose

Something

<<expressed using>>

<<represent>>

<<understanding>>

b.a.

<<understanding>>

Figure 4 : Language as a pragmatic user of the model

2.4 Metamodel
A model that represents a modeling language is called a metamodel [24]. Meta is Greek for about or
beyond, and is used for describing something. In the case of a metamodel it describes the possible models
that can be expressed using the language, as shown in Figure 5. The model is an instantiation based on the
metamodel. The relationship between a model and metamodel is called an instance of relationship.

Metamodel

Model

<<expressed using>>

Language<<represent>>

<<instance of>>

Figure 5 : The relationship between metamodel, model, and language

In section 2.3, we divided the language into aspects, as concrete syntax, syntax mapping, abstract syntax,
semantic mapping, and semantic domain. The literature generally not agrees what should be part of the
metamodel. In our opinion, the metamodel will at least represent the abstract syntax; the other language
aspects are optional, but can be part of the metamodel, as shown in Figure 6.

SemanticsSyntax

Semantic DomainConcrete Syntax Abstract Syntax<<Syntax Mapping>> <<Semantic Mapping>>

Metamodel

Figure 6 : Metamodel representing a language

Let us illustrate this in more detail with an example. In section 2.1 we modeled a representation for an
inverter. We will now use this for building a metamodel that represents the modeling language for
modeling inverters. The metamodel of the inverter contains anyhow the abstract syntax of the modeling
language. The Figure 7 shows the abstract syntax for the inverter.

InverterValue <<input>> Value<<output>>

Abstract Syntax

Metamodel

Figure 7 : Metamodel representing abstract syntax inverter modeling language

The truth table for the inverter, as defined in section 2.1, is the inverter explained in well-defined and well-
understood concepts. According to this, we can use the truth table as semantic domain and map it with the

 - 17 -

abstract syntax of the inverter, which will enlarge the metamodel with semantics. Figure 8 shows the
semantic mapping between the abstract syntax and the semantic domain of the inverter.

InverterValue <<input>> Value<<output>>

Abstract Syntax

Input Output

“0” “1”

“0”“1”

Truth Table Inverter
Semantic Domain

Semantics

<<mapping>>

<<mapping>>

<<mapping>>
Figure 8 : Semantic mapping of the inverter modeling language

We can define the concrete syntax for the inverter as well. We can take, for example, the ANSI/IEEE
notation for the inverter. By means of the syntax mapping, we can map the concrete syntax with the
abstract syntax, as shown in Figure 9.

InverterValue <<input>> Value<<output>>

Abstract Syntax InverterConcrete Syntax Inverter

Syntax

<<mapping>>

<<mapping>>

<<mapping>>

1

Figure 9 : Syntax mapping of the inverter modeling language

2.5 Runtime
The model is the representation of a system. The runtime is the representation an interpreter that
interpreting the system. An important aspect in this is the time, the interpretation occurs always in time.
The most basic form of time can be defined in three phases, namely future, present, and past. According to
the interpreter, we have the following situations; the interpreter will interpret the system (future), the
interpreter is interpreting the system (present), and the interpreter did interpret the system (past).

For example we model an inverter with input value “1”. The inverter is an instantiated inverter based on the
inverter metamodel as defined in section 2.4. The interpreter will use the model and interpret it according to
the inverter metamodel. The modeled inverter is shown in Figure 10.

Model

1“1”

Figure 10 : Modeled inverter

The representation of the runtime is not defined in the metamodel. For viewing the runtime as a model, we
use a combination of the defined abstract syntax and semantic domain. The inverter is replaced by the truth
table, as defined in the semantic domain, for exactly showing which decision the inverter makes. According
to the time definitions, we can make three models showing the interpretation of the modeled inverter,
namely future inverting, present inverting, and past inverting. The complete runtime view of the
interpretation of the modeled inverter is shown in Figure 11.

 - 18 -

Value
“1”

Inverter

Value

Future Inverting

<<input>> <<output>>

Input Output

“0” “1”

“0”“1”

Value

Inverter

Value

Present Inverting

<<input>> <<output>>

Input Output

“0” “1”

“0”“1”

Value

Inverter

Value
“0”

Past Inverting

<<input>> <<output>>

Input Output

“0” “1”

“0”“1”

Figure 11 : Runtime view of the inverter

In this case the present form of the inverting has a very simple representation and can be shown in one
figure. When we have a more complex model, we can have multiple views of the present process of
interpreting the model.

2.6 Hierarchy
The involving parts for modeling are forming a modeling hierarchy. The hierarchy is divided into layers
and each layer will contain a certain involving part. As described before we can have a metamodel for a
model, which is located in the meta-layer of the modeling hierarchy. The model constructed by the modeler
and interpreted through the interpreter is located in the model-layer of the modeling hierarchy. The view of
decisions and actions that are made by the interpreter during modeling is located in the runtime-layer. In
Figure 12 the complete modeling hierarchy is given.

Meta-layer

Metamodel

Model-layer

Model

Runtime-layer

Model

Modeling Hierarchy

<<instance of>>

<<interpretation>>

Figure 12 : Modeling hierarchy modeler

The number of meta-layers in a modeling hierarchy can be infinitive, which means that above a meta-layer
always another meta-layer can appear. Normally we work with a fixed number of meta-layers.

If in a modeling hierarchy all models are described by a metamodel located in the meta-layer above, the
modeling hierarchy is called strict. In a modeling hierarchy with infinity layers there is always a meta-layer

 - 19 -

above a meta-layer, and can be strict if for each layer it is true that the containing models are described in
the meta-layer above. In the case we have a fixed number of layers, the hierarchy always ends with a top-
layer. Looking from the perspective of the modeling hierarchy, the top-layer will not have a meta-layer
above it that describes it, and therefore the hierarchy cannot be strict.

If we take another perspective, we can define two ways of describing the top-layer of the metamodeling
hierarchy. We will use the taxonomy as introduced by Gitzel and Hildenbrand [5]. The first option is taking
another language that will describe the top-layer, but this language is not covered in the modeling
hierarchy. We call this an axiomatic-top-layer. The hierarchy with an axiomatic-top-layer can never be
strict. The second option is a top-layer capable of describing itself, which results in the fact that no
additional language is needed. We call this a recursive-top-layer. (See section 2.8 for more details about
recursive top layers) The hierarchy with a recursive-top-layer can be strict.

2.7 Meta Metamodel
A meta metamodel is a specialized metamodel that describes other metamodels. The position in the
modeling hierarchy defines if a metamodel is a meta metamodel. The model in a meta-layer that is directly
above model-layer is called a metamodel. The model in a meta-layer that has a meta-layer below it is called
a meta metamodel.

We can of course continue this terminology by calling the model in the meta-layer above two meta-layers a
meta meta metamodel. In this thesis, we will only speak about metamodels. The reason for this is that
besides the position in the modeling hierarchy there are no differences between these models.

2.8 Reflection
In defining a language, reflection is one technique to provide an open system. Smith first introduced
reflection in 1982 [2]. He defined reflection as:

"In as much as a computational process can be constructed to reason about an external world in virtue of
comprising an ingredient process (interpreter) formally manipulating representations of that world, so too
a computational process could be made to reason about itself in virtue of comprising an ingredient process
(interpreter) formally manipulating representations of its own operations and structures".

A reflective system defines a representation of its own behavior and structure, which provides the ability to
access, reason about and alter its own interpretation [3]. This representation, called self-representation, has
a causal connection with the system. A causal connection will hold if the domain represented by the system
and internal structure and behavior of the system is linked in such a way that when one form is changing,
the other form is changing as well. So if the self-representation has a causal connection with the system, the
self-representation will always be an accurate representation of the system.

The reflective ability of a system can be a complete or partial representation of its internals. We will call a
system with complete representation abilities a fully reflective system and a system with partial
representation abilities a system with reflective facilities [19]. The most commonly used reflective facilities
are structural reflection and behavioral reflection, where structural reflection concerns the internal
architecture of the system and the behavioral reflection concerns the internal actions in the system.

The main purpose of building a reflective system is self-inspection and self-adaptation [19]. The open
internal structure and behavior provide the ability for inspecting what is happening in the system. This is
useful in monitoring certain activities in the system, for example, in building a debugging tool where you
would like to rely on the meta-objects for accessing the implementation details. The adaptation usually has
the form of change or addition of new features to the system. This can be used, for example, in optimizing
systems, like changing the quality of service of video on detecting quality of service violations.

The reflective technique is introduced in metamodeling as well. In the case of metamodeling, you would
like to build the metamodel as a model with self-representation capability. Building the metamodel as self-

 - 20 -

representing model will prove that the metamodel is expressive enough for defining itself. Therefore, no
additional language is needed in building the metamodel, which means that the metamodel can be the
highest layer in the metamodeling hierarchy. In which degree the metamodel is reflective depends on what
the metamodel is representing. For example if the metamodel is concerned with defining an abstract syntax,
the metamodel will have the structural reflective facility.

Because of the fact that the self-representation of the metamodel is built as a model based on the
metamodel, the metamodel and the model are causally connected. This will provide the ability that when
the metamodel is changing the model will change as well, and vise-versa.

For explaining reflection in more detail, we will consider the following examples. First, we will show the
ability of building a self-representing model for a metamodel. Through structural reflection, we will define
the self-representing model by only instantiating constructions defined in the metamodel. The example
metamodel we will use, can define elements that can be connected with each other through relationships, as
shown in Figure 13. For defining the self-representing model, we do not have to introduce any new
constructions, instead we can instantiate each construction based on the defined ones in the metamodel.

Element

Meta-layer

Self-representation-model-layer

Modeling Hierarchy

Relationship

Element Relationship

<<instance of>>
<<instance of>>

<<instance of>>

Figure 13 : Self-representation of metamodel

The instances of elements will have the same representation as elements in the metamodel. The instances of
relationship are lines between two instances of elements. The fact that the instantiated relationship has
another representation is not covered in this metamodel. As explained in the section 2.4 this is defined in
the concrete syntax and mapped with the abstract syntax.

Next, we will consider the reflective ability of inspection and adaptation in more detail. For example,
assume that a metamodel defines only a single inheritance construction. Through the self-adaptation, the
inheritance construction can be changed in a multiple one. The ability to change the model is not always
safe. For example, assume that the current metamodel already defines a multiple inheritance construction
and through the self-adaptation we will change it in a single inheritance construction. This will lead to
conflicts if the multiple inheritance construction is already used in defining the metamodel. In order to
avoid this we should have restrictions on the ability for changing the metamodel.

In the modeling hierarchy, we use a recursive-top-layer for avoiding that another top-layer is needed. The
recursive-top-layer does contain a metamodel that can represent itself. For creating the self-representation
of the metamodel, we can build a virtual meta-layer that can produce the self-representation, as shown in
Figure 14. The virtual-meta-layer does contain the same metamodel as the meta-recursive-top-layer. Based
on this metamodel we can describe the complete metamodel below.

 - 21 -

Virtual-Meta-layer

Metamodel

Meta-recursive-top-layer

Metamodel

Model-layer

Model

Modeling Hierarchy Modeler

Runtime-layer

Model

<<instance of>>
<<same>>

<<instance of>>

<<interpretation>>

Figure 14 : Self-representation through a virtual meta-layer

2.9 Modularity
Modularity is the method for grouping and organizing models [21]. Modularity is one of the major
architectural features in modeling, and is used very often. We can design a system as a set of fine-grained
groups, where each group contains the elements that logically belong to each other. A well defined
modularly architecture helps in understanding the system and simplifies the reuse of particular parts. Using
the organized groups in combination with the ability to define dependencies between them will allow
building a coherent architecture. The dependencies can allow that models that are defined in one group to
be reusable for other groups. This can be done for further specifying models or reusing the same models in
multiple groups.

We will illustrate the use of modularity in more detail according to a more concrete example. We define a
grouped hierarchy for a business metamodel. The business metamodel contains a products, a sales, a
purchase, and a warehouse group. The products group is divided into simple products and advanced
products, which are nested groups inside the products group. This will have as result the grouped hierarchy
as shown in Figure 15.

Business
Products

Simple Products
Advanced Products

Sales
Purchase
Warehouse

Figure 15 : Tree hierarchy business metamodel

The advanced products are specializations on the simple products. Furthermore, the sales, purchase, and
warehouse groups will use the advanced product in these groups. For showing these dependencies, we
introduce relationships, which can be used between groups. The purpose of the dependency is defined as
label on the relationship. The dependencies between the business groups are shown in Figure 16.

 - 22 -

Advanced
Products

Simple
Products

Sales Purchase Warehouse

<<specializing>>

<<using>> <<using>> <<using>>

Figure 16 : Dependencies in business metamodel

 - 23 -

3

MOF 2.0 Standard

The MOF 2.0 standard is described in the MOF 2.0 Core specification [10], which describes the abstract
syntax and the semantics of the MOF. The MOF 2.0 Core specification is a metamodel that represents the
MOF modeling language.

The MOF specification is written for programmers who build tools compliant with the MOF standard. This
makes the specification in some point hard to read. With this section we aim to explain in more detail how
to use the MOF standard. The basis of this section is extracted from the MOF specification, and enlarges it
with our own interpretation on this subject. Therefore, we use where possible examples that directly show
how to use a particular concepts of the standard.

The structure of the chapter is as follow, we will briefly describe the history of MOF. After that, the
architecture used in the metamodel is considered, and the last section discusses the specification approach
used to define the MOF 2.0.

3.1 History of MOF
The OMG, founded in 1989, has as its goal to provide a solution for reducing complexity, lower cost, and
hasten the introduction of new software applications. Therefore, OMG introduced an architectural
framework with supporting detailed interface specification. The specification should lead to interoperable,
reusable, portable, software components based on standard object-oriented interfaces. The members of the
OMG believe that the object-oriented approach to software construction best supports their goals. The first
solutions were introduced as Object Management Architecture (OMA) and Common Object Request
Broker Architecture (CORBA) [15].

The OMA provides a framework for implementing distributed systems. It defines four components, one of
them is the Object Request Broker (ORB), which describes how objects interact in a distributed
environment. Another component is the Object Services, which is used for general object management.
Therefore, it performs tasks such as creating objects, access control, keeping track of relocated objects, etc.
The other two, Facilities and Application Objects, support the end user with functions for many application
domains, available through a class interface. CORBA is a concrete implementation of the architectures and
specifications for the OMA ORB [15].

In 1996 the first request is released for a Meta-Object Facility. According to this RFP the MOF should
define [13]: “the interfaces and sequencing semantics needed to create, store and manipulate object
schemas that define the structure, meaning, and behavior of other objects within the OMG Object
Management Architecture.”

In the same period the OMG releases a concept of modeling. This started in 1995 with a request for
proposal for Unified Modeling Language (UML), and with the release of UML 1.0 in 1997 the first step
was taken. This language can be used for specifying, constructing and documenting the artifacts of systems,
and is very rapidly accepted in the world of software engineering

 - 24 -

In 2001 the OMG launched the Model Driven Architecture (MDA) as the new approach for developing
software using models and modeling techniques. The aim of the MDA is to reach an abstraction level that
more concentrates on defining the structure and behavior of the system independent from the underlying
implementation technology. The MDA adopted the already defined technologies for enabling the model-
driven approach, as UML and MOF [4].

With the adoption of the MOF by the MDA, the MOF made a shift from being part OMA to being the core
element of the MDA. This shift change the purpose of the MOF from being a framework to create, store
and manipulate object schemas into being a meta metamodel used for defining metamodels, like UML.

In 2004 the architecture of UML is changed into an UML 2.0 superstructure and an UML 2.0 infrastructure
library. In the same year the MOF 2.0 is released, with as major goal a better alignment with the UML.
Therefore, the MOF 2.0 is reusing the UML 2.0 infrastructure library, which provides a better alignment
between both standards.

In appendix A, we provide an overview of relevant adopted OMG standards and there releases in time.

3.2 Language Architecture
The MOF is used in combination with a metamodel hierarchy. In this section we will discuss the
architecture of the metamodel hierarchy as well as the MOF architecture.

3.2.1 Metamodel Hierarchy
The MOF is designed to be the top layer in the OMG metamodel hierarchy. The metamodel hierarchy
provided by the OMG contains four layers, namely:

• M3; meta-metamodel layer
• M2; metamodel layer
• M1; model layer
• M0; run-time layer

The M3 and M2 layers are language specification layers. The purpose of metamodels in M3 is to specify
other metamodels. This layer contains only one metamodel, which is the MOF. The next language
specification layer is the metamodel layer. The metamodels in this layer are more specific with respect to
the meta- metamodel layer, but still abstract. The metamodels are used in specifying models. This layer can
contain multiple metamodels. The model layer is a user specification layer. This layer will contain a
concrete definition of the data. The run-time layer contains the objects instantiated out of the model. The
representation of this is dynamic in time. In Figure 17 the OMGs metamodel hierarchy is given.

 - 25 -

CWM

UML

<<instance of>>

M3

M2

MOF

CWM

<<instance of>>

UML Model

M1

Run-time system

M0

<<instance of>>

<<instance of>>

Figure 17 : OMGs metamodel hierarchy

As shown in the Figure 17, the M2 layer contains the UML and CWM metamodels, which are standardized
metamodels based on the MOF provided by the OMG.

The MOF is a recursive top layer, as described in section 2.8, so in theory no additional language is needed
to describe MOF. Besides describing itself, MOF is capable of describing metamodels in the M2 layer. All
described metamodels in the M2 layer will have a strict instance-of relationship with the MOF metamodel.
This will hold for the self-description of the MOF as well. The same relationship is used for defining the
dependencies between the M2 and M1 layer, and the M1 and M0 layer.

3.2.2 MOF Architecture
As already discussed in section 2.9, a modular architecture is an essential part in modeling. This holds for
the MOF as well. The whole structure that is used to define the MOF heavily relies on a modular
architecture. The modularity for the MOF is introduced in the UML infrastructure library, as “a principle
of strong cohesion and loose coupling is applied to group constructs into packages and organize features
into metaclasses” [6].

In order to group constructs the MOF uses the concept of package. The packages do allow nested packages,
which provide the ability for creating a hierarchy out of packages. When defining the package hierarchy
used for the MOF, the outermost packages are the MOF and UML infrastructure library.

The dependencies between the MOF and UML infrastructure library are twofold, as shown in Figure 18.
The first dependency is a reuse relationship, which is done for aligning reasons. The second dependency is
the fact that UML is an instance of MOF.

 - 26 -

M3

M2

MOF

UML infrastructure
library

<<reuse>>

<<instance-of>>

UML infrastructure
library

Figure 18 : Dependencies MOF and UML infrastructure library

In the next sections, we will further explain the packages that are in the MOF package hierarchy. We will
first start with explaining the UML infrastructure library package and then continue with the MOF package.
For the sub architecture of both packages the dependencies import and merge are used, in section 3.3.2
these dependencies are further explained.

3.2.3 UML infrastructure library
The purpose of the UML infrastructure library is defining common metalanguage elements, which can be
reused for defining other metamodels, like MOF and UML [6]. The advantage of reusing the same
infrastructure between more metamodels is to obtain architecturally aligned metamodels. The
acrchitecturally alignment is obtained because of; both MOF and UML are using the same language
elements as core language elements, which ensure that both architectures are equal.

The package hierarchy of the UML infrastructure library is shown in Figure 19; in the figure, the package
hierarchy is limited to two levels.

UML infrastructure library
Core

PrimitiveTypes
Abstractions
Basic
Constructs

Profiles
Figure 19 : Tree hierarchy UML infrastructure library

Core
The first subpackage of the UML infrastructure library is the Core with as subpackages PrimitiveTypes,
Abstractions, Basic, and Constructs. The dependencies between these packages are shown in Figure 20. The
dependencies between the Basic and Abstraction, and the Constructs and Abstraction are based on the subpackages
of Abstractions, in the section below we will explain this in more detail.

 - 27 -

Basic

PrimitiveType

<<import>>

Constructs

Abstractions

<<import>>

<<merge>>

Figure 20 : Core package with dependencies between them

The Abstractions, Basic, and Constructs packages contain common metalanguage elements in such a way that
each package defines a complete set for a metalanguage. The differences between these packages are the
degree of abstractions. Furthermore, the PrimitiveTypes package contains predefined types that directly or
indirectly are reused by the other packages.

• Abstranctions
The Abstractions package contains the most abstract set of common metalanguage elements. It is further
divided into a number of finer-grained packages that together form the complete set needed for a
metalanguage. The abstract character and finer-grained packages structure is meant to support a high
level of reuse in defining new metamodels. The Abstractions package itself is directly reusing the
predefined types in the PrimitiveTypes package.

• Basic
The Basic package provides a minimal set needed for a class-based metalanguage. The Basic package is
not divided into sub-packages, as its intention is to be completely reused. For defining the Basic
package a couple of packages from the Abstractions package are reused, and the PrimitiveTypes package is
reused.

• Constructs
The last package that the Core package contains is the Constructs package, which contains the most
concrete set of common metalanguage elements. The purpose of these elements is to be used in object-
oriented modeling. For defining the Constructs package the Basic package and parts of the Abstractions
package are reused. Because, the complete Basic package is reused the PrimitiveTypes package is indirect
reused as well.

The Constructs package is an example of showing the reusability of the Abstractions packages. As shown in
Figure 21, the Constructs package merged almost the complete set of Abstractions subpackages.

 - 28 -

Abstractions
BehavioralFeatures
Changeabilities
Classifiers
Comments

Constructs

Constraints
Elements
Expressions

Instance
Generalizations

Literals
Multiplicities
Namespaces
Ownerships
Redefinitions
Relationships
StructuralFeatures
Super

Visibilities
TypedElements

<<
m

er
ge

>>

Basic

<<merge>>

Figure 21 : Dependencies Constructs package

The Basic package reuses the Abstractions packages in a more lightweight manner, compared to the Constructs
package. The Basic package import a set of four Abstractions subpackages, as shown in Figure 22.

Abstractions
BehavioralFeatures
Changeabilities
Classifiers
Comments

Basic

Constraints
Elements
Expressions

Instance
Generalizations

Literals
Multiplicities
Namespaces
Ownerships
Redefinitions
Relationships
StructuralFeatures
Super

Visibilities
TypedElements

<<
im

po
rt>

>

PrimitiveType

<<import>>

Figure 22 : Dependencies Basic package

Profiles
The second subpackage of the UML infrastructure library, the Profiles package, is used as mechanism to
tailor existing metamodels towards specific platforms or domains. The package is dependent on the
Core::Constructs package and aligned with the Extension package, used in the MOF. The major difference
between these two is that the Profiles package uses a more lightweight approach with restrictions that are
enforced to ensure that the implementation and usage of profiles should be straightforward and more easily
supported by tool vendors [6]. The instance models of the MOF use the Profiles package, whereas the
Extension package is part of the MOF.

3.2.4 MOF
Besides the UML infrastructure library as outermost package, the MOF package hierarchy contains the
MOF package. The package hierarchy of the MOF is as shown in Figure 23.

 - 29 -

MOF
EMOF

Reflection
Identifiers
Common
Extension

CMOF
CMOFReflection
CMOFExtension

SemanticDomain
Figure 23 : Tree package hierarchy MOF

The MOF package contains three subpackages, namely the Essential MOF (EMOF), the Complete MOF
(CMOF), and the SemanticDomain. The MOF defines the purpose for both EMOF and CMOF packages as: “A
primary goal of EMOF is to allow simple metamodels to be defined using simple concepts while supporting
extensions (by the usual class extension mechanim in MOF) for more sophisticated metamodeling using
CMOF” [10].

Both CMOF and EMOF packages are further divided into subpackages. These subpackages are stated as
additional language capabilities for discovering, manipulating, identifying, and extending metamodels.

The MOF categorizes the following capabilities [10]:

• Reflection: Extends a model with the ability to be self-describing.
• Identifiers: Provides an extension for uniquely identifying metamodel objects without relying on

model data that may be subject to change.
• Extension: A simple means for extending model elements with name/value pairs.

All the capabilities are introduced in the EMOF as packages. Each capability corresponds with a package,
with exception of the capability Identifiers that is divided into an Identifiers package and a Common package.
The CMOF will not introduce new capabilities, but only extend the capabilities introduced in the EMOF.

EMOF
A complete overview of the dependencies relationships of EMOF with other packages from the MOF
package hierarchy is shown in Figure 24. The EMOF package merges the Core::Basic package and imports the
Core::PrimitiveTypes package out of UML infrastructure library. Furthermore, the EMOF merges the introduced
packages Reflection, Identifiers, Common, and Extension.

EMOF

Core::
Basic

Core::
PrimitiveTypes

Reflection

IdentifiersCommonExtension

<<import>>

<<merge>>

<<merge>>

<<merge>> <<merge>> <<merge>>

<<import>>

<<import>>

Figure 24 : Dependencies EMOF

• Reflection
The purpose of the Reflection package is to provide models with the ability for self-describing. For self-
describing a model, we need the ability to create new elements. Creating new elements in EMOF will be
done through instantiating meta-classes. For instantiating meta-classes, the Reflection package has the
Factory capability, which contains operations for creating new elements as instances of a meta-class.

 - 30 -

Furthermore, the Reflection package introduces the Object capability, which contains operations to
manipulate and change properties. This will provide the ability to set the newly created elements with
the correct properties values.

• Identifiers
The Identifiers package is an extension for uniquely identifying metamodel objects without relying on
model data that may be subject to change. Providing the uniqueness is done with an identifier. The
identifier is used to distinguish elements from each other.

Because of the reflection ability, the model data can be changed, and manipulated through itself.
Providing the identifiers independently of the model data will avoid that these are changed and
manipulated through reflection.

The identifier provides the identification as Extent and as URIExtent. The URI is the universally unique
identification of the package following the IETF URI specification (RFC 2396). The identifier will
import the Common package to maintain the identification for elements.

• Common
The Common package provides the ability for accessing multiple elements in such a way that the
ordering is maintained and the uniqueness of each element is guaranteed. This package contains two
elements, namely ReflectiveCollection and ReflectiveSequence. The ReflectiveCollection can be used for
unordered collections and the ReflectiveSequence for ordered collections. The ReflectiveSequence will use an
index for maintaining the ordering.

• Extension
The extension package will provide the ability to add tags to elements. These tags can contain named
values, which are useful for adding information missing from the model.

CMOF
The second subpackage of the MOF package, CMOF, depends on other packages from the MOF package
hierarchy as shown in Figure 25. The CMOF package merges the Core::Constructs package out of the UML
infrastructure library and EMOF package and includes some additional language capabilities beyond the
EMOF ones. These are defined in the CMOFReflection and CMOFExtension capability packages, which are merged
as well.

<<import>>

Core::
Constructs

Core::
PrimitiveTypes

CMOFEMOF

CMOFReflection

CMOFExtension
<<merge>>

<<merge>>

<<merge>>

<<merge>>

Figure 25 : Dependencies CMOF

The introduced packages of CMOF are an extension on the Reflection and Extension package of EMOF. The
CMOFReflection package is introducing the ability for instantiating Association. As the EMOF already introduced
the instantiation of classes, the instantiation of associations is done in the same way.

 - 31 -

SemanticDomain
The third subpackage of the MOF package is the SemanticDomain package. The SemanticDomain package
describes the semantic domain for the CMOF and is optional for the EMOF. According to [10] the
SemanticDomain package describes: “the functional capabilities of a modeled system and how those
capabilities are related to elements in the model”. Therefore, the CMOF is taken from being a metamodel
to being a modeled system (CMOF model representing a CMOF system). So according to this the semantic
domain does describe the way MOF elements are instantiated. More precisely, the semantic domain is
purely concentrated on class diagrams from the Core::Constructs package, and is an extension on the abstract
syntax of the Core::Abstractions::Instances package, as shown in Figure 26.

<<extend>> SemanticDomain
Core::

Abstractions::
Instances

Core::
Constructs

<<import>>

Figure 26 : Dependencies SemanticDomain

For illustrating the SemanticDomain package in more detail we will use Figure 27. which represents the
complete overview of all packages related to the SemanticDomain, and also shows the dependencies between
the packages. The representation is based on the in section 2.4 defined representation of a metamodel with
correspondent dependencies.

The CMOF metamodel is a combination of the package CMOF and SemanticDomain. The CMOF package as
described above is the abstract syntax part of the metamodel. The SemanticDomain package is a CMOF model
representing a CMOF system. The SemanticDomain package is the semantic domain part of the metamodel.
This semantic domain will provide the meaning for each element defined in the CMOF package. Using a
semantic mapping, we can combine the CMOF package with the SemanticDomain package.

CMOF Metamodel

SemanticsSyntax

CMOF System

<<represent>>

SemanticDomain
“CMOF as

Modeled System”

CMOF
“abstract syntax”

CMOF Model <<represent>>

<<instance of>>

Figure 27 : CMOF as modeled system

3.3 Language Formalism
This chapter will cover the specification approach used for the MOF. First, we will briefly discuss the
specification approach used in the MOF. Second, the fundamental MOF techniques are mentioned in more
detail, as import, merge and instantiation.

3.3.1 MOF specification
To explain what is used to describe the MOF, we will provide an overview of all specification techniques
involved in describing the MOF.

 - 32 -

The MOF specification is stated to use the following specifications techniques [10]: “a subset of UML, an
object constraint language, and precise natural language”. The subset of UML is the UML infrastructure
library that is extended by the MOF.

As described in section 3.2.1 the MOF is located in the top-layer. Therefore, in the modeling hierarchy
there is no meta-layer above the M3 layer. For defining the dependencies between the additional
specification techniques and the MOF we will use a virtual-layer above the top-layer, which contains all
additional specification techniques. The virtual-layer with the specification techniques used for the MOF is
shown in Figure 28.

OCLPrecise Natural
Language

M3

Virtual Layer

MOF

MOF

<<instance of>>

Figure 28 : Virtual layer for MOF specification

First, the MOF specification is not self-contained, meaning that we need other specifications as well to
reach a complete specification of the MOF. In the case of the MOF, the UML specification: infrastructure
[6] is needed as well, to reach a complete MOF specification. The UML specification: infrastructure does
contain the, in section 3.2.3 already mentioned, UML infrastructure library. For both specifications, the
same specification techniques are used, which will allow a better reuse of one specification with the other
specification.

According to [6], the specification techniques are used in gain of the following goals:

• Correctness. The specification techniques should improve the correctness of the metamodel by
helping to validate it. For example, the well-formedness rules should help validate the abstract
syntax and help identify errors.

• Precision. The specification techniques should increase the precision of both the syntax and
semantics. The precision should be sufficient so that there is no syntactic nor semantic ambiguity
for either implementors or users.

• Conciseness. The specification techniques should be parsimonious, so that the precise syntax and
semantics are defined without superfluous detail.

• Consistency. The specification techniques should complement the metamodeling approach by
adding essential detail in a consistent manner.

• Understandability. While increasing the precision and conciseness, the specification techniques
should also improve the readability of the specification. For this reason a less than strict formalism
is applied, since a strict formalism formal techniques.

As shown in the Figure 28, the MOF is located in the virtual-layer, instead of the UML infrastructure
library (subset of UML). The UML infrastructure library is not used to describe the MOF, but is extended
by the MOF. Therefore, the UML infrastructure library and MOF are located in the same layer. The MOF
can describe the UML infrastructure library and the MOF itself. For this reason, the MOF is a specification
technique for the MOF, and is located in the virtual layer as well.

 - 33 -

Additional specification techniques
We will first explain the additional specification techniques that are used in the virtual layer in more detail.

Precise natural language
Precise natural language is capable to describe all additional constructs needed. The advantage of the
precise natural language is the fact that it is easy to read and write. The drawback is that even precise
natural language is not very precise, and will result in ambiguities. Especially semantics defined in natural
language will have the well-known limitations, as described by Harel and Rumpe [22].

In most cases, the additional constructs defined in precise natural language are for explaining concepts in
more detail. When we need to define concepts that are essential, it makes sense to define it in a formal
language as well. Formal languages have as advantage to be unambiguous. In contrast to the precise natural
language, formal languages are mostly hard to read and write, because of the heavy use of mathematics for
making the language unambiguous.

Object Constraint Language
The MOF specification states to use an object constraint language, more precise this is the Object
Constraint Language (OCL). The OCL as described in [20], is a formal language used to describe
expressions on models. These expressions typically specify invariant conditions that must hold for the
system being modeled or queries over objects described in a model. Avoiding that the language is only
readable and writeable for mathematical persons, the language is designed to have an easy to read and write
character while remaining unambiguous.

For illustrating the use of OCL in the MOF specification, we will use the following examples. The first
example is the use of OCL in the UML infrastructure library. The example shows an extract from the UML
infrastructure library that defines a constraint and an additional operation for a particular element.

The Core::Abstractions::Multiplicities::MultiplicityElement (MultiplicityElement) contains an attribute lower, which can not
be a negative integer literal. Therefore, the MultiplicityElement contains the constraint [6, page 67]:

Constraints
[2] The lower bound must be a non-negative integer literal.

lowerBound()->notEmpty() implies lowerBound() >= 0

The lowerBound() operation is an additional operation of the MultiplicityElement, defined as [6, page 67]:

Additional Operations
[4] The query lowerBound() returns the lower bound of the multiplicity as an integer.

MultiplicityElement::lowerBound() : [Integer];

lowerBound = if lower->notEmpty() then lower else 1 endif

In this example the constraint and additional operation is written in the OCL. The constraint is an example
of an invariant condition that must hold for the system being modeled. The additional operation is a
described query that can be used over objects described in a model.

The second example we give, represents the use of OCL in the MOF::SemanticDomain package. In the
MOF::SemanticDomain package, the OCL is used to define the capabilities. The example shows an Object
Capability, defined as [10, page 64]:

Object Capabilities
Object::container(): Object modeled as Instance::container(): ClassInstance

post: result = self.get(self.owningProperty())

The owningProperty() operation is an additional operation, defined as [10, page 71]:

 - 34 -

Additional Operations
[4] This returns the single Property that represents the current owner of the Object based on
current instance values; may be null for top level objects

Object::owningProperty(): Property

post: result = self.allProperties->select(op| op.isComposite and self.get(op) <>

null)

Both Object Capability and Additional Operation are described as queries in the OCL.

MOF specification
We will now continue with explaining the structure of the MOF specification. We will divide the
specification into the language aspects as introduced in section 2.3.

Concrete Syntax
The concrete syntax of the MOF can be divided into two parts, namely the part that describes the concrete
syntax used for representing the MOF and the concrete syntax used for representing the MOF based
metamodels. In the case of the MOF, for both the same concrete syntax is used.

A subset of UML is used as concrete syntax. The subset of UML covers the notation for class diagrams,
defined as the UML infrastructure library. UML infrastructure library contains the complete notation for
class diagrams needed for defining the MOF graphical notation. In the UML infrastructure library each
element can contain a description in precise natural language that defines the graphical notation according
to the class diagram.

Illustrating the graphical notation in more detail we will use the following examples. The first example, as
shown below, is the description for a Classifier as located in the UML infrastructure library Core::Abstractions
package [6, page 37].

Notation
The default notation for a classifier is a solid-outline rectangle containing the classifier’s name,
and optionally with compartments separated by horizontal lines containing features or other
members of the classifier. The specific type of classifier can be shown in guillemets above the
name. Some specializations of Classifier have their own distinct notations.

The second example will show the standard specification for a textual notation. The UML infrastructure
library uses a variant of the Backus-Naur Form (BNF) to specify the legal formats [6], as shown in the
example below [6, page 68]:

Notation
 <multiplicity> ::= <multiplicity-range>

<multiplicity-range> ::= [<lower> ‘..’] <upper>
<lower> ::= <integer>
<upper> ::= ‘*’ | <unlimited_natural>

The example shows the BNF specification for the notation of Multiplicity. According to this specification
notations in the form of [0..5] or [0..*] are valid Multiplicity notations.

The EMOF and CMOF do not introduce any new notations. Therefore, the complete notation of these two
can be extracted from the UML infrastructure library. In the appendix C a detailed overview of the notation
for the EMOF and CMOF is given.

Abstract syntax
The MOF specification is mostly concentrated on defining the abstract syntax. The abstract syntax for the
UML infrastructure library, EMOF, and CMOF are all defined in a similar way. The abstract syntax is

 - 35 -

defined as class diagram. Each element in the class diagram contains a detailed description that explains the
element in more detail.

For describing the class diagram the MOF specification is used, by means of the self-describing. This will
be further explained in section 3.4. The detailed description for each element in a class diagram is described
in precise natural language and OCL.

We will now show a fragment from the MOF specification as example how the combinations of
specification techniques are used to form the abstract syntax of the MOF. The following Figure 29 is a copy
out of the MOF specification [10, page 31, 33], which describes the Identifier package, as part of the
EMOF.

Figure 29 : MOF abstract syntax example

The left part of Figure 29 is the abstract syntax of the Identifier capability package. This is defined in a
UML notation. For further and additional explanation, each element has a more precise description. The
additional explanation is build out of a couple of subsections, these subsections are:

• Description: the common description for the element.
• Properties: description for each property.
• Operations: description for each operation.
• Constraints: set of rules that must be satisfied by all instances of this element.
• Semantics: the meaning of the element.
• Rationale: the reason why an element is introduced.
• Changes from MOF 1.4: description of the changes made compared with MOF 1.4.

The additional explanations are written in precise natural language; with exception of the constraints part,
which can be defined in OCL as well.

Semantic Domain
The semantic domain of the MOF does contain the instances model. Besides the instances model it contains
capabilities and additional operations. The instances model is a class diagram described in MOF. The
capabilities and additional operations are expressed in OCL.

The capabilities defined in the SemanticDomain will map the operations defined in the abstract syntax with
ones modeled in the instances model. This is shown in the example below, where the Object::container()
operation is mapped with the Instance::container() operation, where the Object::container() operation is part of the
abstract syntax and the Instance::container() operation is part of the instances model.

Capabilities
Object::container(): Object modeled as Instance::container(): ClassInstance

In the example (Figure 29) used for showing the representation of the abstract syntax of the MOF, each
element in a class diagram can contain a semantics description. These textual descriptions can be used to

 - 36 -

interpret the meaning of each element when involving in instantiating. The semantics can contain
references to elements that are defined in the instances model of the semantic domain.

For example, the semantic description of the Class as located in the UML infrastructure library Core::Basic.
The semantic description for the Class is shown below [6, page 97]:

Semantics
… The instances of a class are objects. … An object has a slot for each of its class’s direct and
inherited attributes. …

In this case, the slot is an element in the instances model.

3.3.2 Import and Merge
As discussed before, for defining the MOF a modular architecture is used. For providing the ability to build
a modular architecture, we will need constructions that support the combining of fine-grained packages.
The constructions used through the MOF for combining packages are also described by the MOF,
according to self-describing ability of the MOF. These constructions are import and merge.

The import and merge constructions will allow the ability to build a modular architecture, wherein each
modular defined part can be reused. Both import and merge are reusing modular parts such that the reused
parts stays connected with it source, as a causal connection. So when the source is changed the reused parts
will change as well.

Import
There are two possible ways for importing, namely with elements and packages. The package import can
be seen as importing each element in the package using element import.

The element import provides the ability to use the element in the importing package. The element import
works through reference. The importing package obtains a reference element of the elements in the
imported package, as shown in Figure 30. In the importing package we can further define the reference
element, but the element in the imported package will always stay the same.

ImportedPackage

Element

ImportingPackage

<<import>>

ImportedPackage

Element

ImportingPackage

<<referenced>>
Element

(from ImportedPackage)

Transformation
<<import>>

Figure 30 : Transformation of packages according import

Merge
Merging is a more advanced technique than importing. The technique allows predefined constructs to be
combined with each other. The merge can only be between packages, where one will be merged with the
other one. If in both packages an element represents the same entity, the elements will be merged into a
single element. Important is to define when an entity is equal to another entity. In examples we will always
define entities equal if names are the same. Normally, entities are identified by there direct reference but for
readability, we will use name reference.

 - 37 -

In merging we always have a merged package and a receiving package. After the merge, a conceptual
package is created with the package merge as result. So after defining the merge relation between two
packages a transformation can be performed that will create the actually resulting package, as shown in
Figure 31 [6].

A

B

<<merge>>
Transformation

merged package
A

receiving package
B

Package
merge

resulting package
<<conceptual>> B

Figure 31 : Transformation of packages according merge

The exact way of merging is defined in the rules of package merge, which are part of the semantics. These
rules are divided into constraints and transformations rules. The constraints rules will be used to check if a
merge can be performed correctly. On the other hand, the transformations rules will be used to define the
actual effect of the merge. To perform a valid merge, each rule defined in the merge semantics should be
applicable.

Example Merge and Import
We will now show the actual use of the merge and import, using a merge and import as performed in the
UML infrastructure library. The example is shown in Figure 32. The Core::Abstractions::Ownerships package
does contain a <<referenced>> Element and an Element. The <<referenced>> Element is imported from the
Core::Abstractions::Elements package. By means of the Element, which has the <<referenced>> Element as superclass,
an association is added. The introduction of Element is needed, because it is not possible to directly change
the <<referenced>> Element. We can only refer to an imported element, as done with the superclass
relationship.

The Core::Abstractions::Comments package has an import relationship with the Core::Abstractions::Ownerships
package. Therefore, it contains a <<referenced>> Element that represents the imported Element. The
Core::Abstractions::Comments package adds an Element, a Comment, and two associations.

Next, both Core::Abstractions::Comments and Core::Abstractions::Ownerships package are merged with the
Core::Constructs package.

 - 38 -

Core::Abstractions::Ownerships

<<referenced>>
Element

(from Elements)

Element

*
/ownedElement

{union}

0..1
/owner
{union}

Core::Abstractions::Comments

<<referenced>>
Element

(from Ownerships)

Element 0..1
+ownedElement
{subset owner}

*
ownedComment

{subset ownedElement}

Comment

annotatedElement
*

<<import>>

Core::Constructs

<<merge>>

<<merge>>

Figure 32 : Example merge and import

For the Core::Constructs package, we can draw a resulting package, which contains the elements after the
merge is performed. The resulting package for Core::Constructs is shown in Figure 33. The elements that are
merged should be equal. In the example elements are equal based on their names. So in Figure 32 the
Element in Core::Abstractions::Ownerships package is equal to Element in Core::Abstractions::Comments package.
Furthermore, the <<referenced>> Element in Core::Abstractions::Comments is representing the Element imported from
Core::Abstractions::Ownerships package. These elements are reduced into one Element, which contains all
associations. The <<referenced>> Element in Core::Abstractions::Ownerships package is not merged because; this
element is representing the Element from Core::Abstractions::Elements package, which is not part of the merge.

 - 39 -

Resulting package
<<conceptual>> Core::Constructs

Element

0..1
+ownedElement
{subset owner}

*
ownedComment

{subset ownedElement}

Comment

annotatedElement
*

*
/ownedElement

{union}

0..1
/owner
{union}

<<referenced>>
Element

(from Elements)

Figure 33 : Resulting package for Core::Constructs

3.3.3 Instantiation
We already discussed in section 3.2.4 that through the reflection capability of the MOF new elements can
be introduced. In this section, we will discuss in more detail the instantiation behavior of each language
construction. The instantiation behavior for each language construction is described in the correspondent
semantics. Furthermore, the language construction can contain a number of constraints rules. The
instantiation of a language construction will be correct if each rule holds.

Because most of the language constructs are directly reused from the UML infrastructure library, these
semantics are reused as well. Inside the UML infrastructure library, semantics are as much as possible
aligned with each other. With as result, that comparable elements used in EMOF and CMOF will have the
same meaning.

For the notation, we are using the instances representation, which is used in object diagrams. This notation
is described in the appendix C. Furthermore, the correspondent invoking sequence is shown in a dashed
square.

Instantiating classes
The result of instantiating a class is an object. A class can only be directly instantiated if it is a non-abstract
class. When instantiating the class each superclass is indirectly instantiated as well. The object will contain
all properties and operations defined in its class and its superclass [6].

The capability for creating objects as instances of classes is introduced in the EMOF::Reflection package, in the
class Factory. For realizing this, the Factory class contains a couple of operations. Besides that, it contains the
attribute Factory.package. By means of this attribute, we can define the package that contains the classes that
we need to instantiate. For example, if we need to create objects as instances of EMOF classes, we need to
assign the EMOF package to an instance of the Factory, as shown in Figure 34. The assigning of EMOF
package to an instance of the Factory is based on the reflection of the package.

 - 40 -

:Factory

Factory.package = EMOF

Factory.createFromString(dataType : DataType, string : String) : Object
Factory.convertToString(dataType : DataType, object : Object) : String
Factory.create(metaClass : Class) : Element

EMOF

Figure 34 : :Factory with assigned EMOF package

The :Factory object can now create objects as instance of each non-abstract class in the EMOF package. For
doing this, the Factory contains the operations createFromString and create. So when we, for example, invoke
the create operation with parameter Class an object will be returned which is an instance of Class, as shown in
Figure 35.

:Class
NamedElement.name =
Class.isAbstract = false

Object.getMetaClass() : Class
Object.container() : Element
Object.equals(element : Object) : Boolean
Object.get(property : Property) : Object
Object.set(property : Property, value : Object)
Object.isSet(property : Property) : Boolean
Object.unSet(property : Property)
Type.isInstance(object : Object) : Boolean

Invoking

Factory.create(Class)
return

Figure 35 : Create operation of Factory

Because the Object class is in the inheritance tree of Class, the returned object given by the create operation its
properties and operations as well. These operations will provide the ability to access, reason about, and
alter the object. For example, with the Object.set operation we can set the NamedElement.name property with
the value Video, which gives the object a name, as shown in Figure 36.

Video:Class
NamedElement.name =Video
Class.isAbstract = false

Object.getMetaClass() : Class
Object.container() : Element
Object.equals(element : Object) : Boolean
Object.get(property : Property) : Object
Object.set(property : Property, value : Object)
Object.isSet(property : Property) : Boolean
Object.unSet(property : Property)
Type.isInstance(object : Object) : Boolean

Invoking

.Object.set(NamedElement.name, Video)

Figure 36 : Example for altering the object

The actually invocation of operations is not covered by the Reflection package in the EMOF, and there are no
semantics for executing an operation in EMOF. The CMOF does introduce the ability to actually invoke an
operation. For this purpose, CMOF’s CMOFReflection package extends the Object class with the operation
invoke. This invoke operation allows invocation of all operations that are part of the class. So for instance, we
would like to invoke the operation Object.get for the property NamedElement.name, the Object.invoke operation is
used as shown in Figure 37.

For adding parameters to the invoking operation, we can use the invoke parameter arguments. The parameter
arguments is an Argument DataType, which is introduced in the CMOF’s CMOFReflection package as well. The
Argument DataType contains two attributes, name and value, for building a correct Argument. So, as shown in
Figure 37, for the operation Object.get we need to set the parameter property with value NamedElement.name.
Therefore, we define an argument with name property and value NamedElement.name.

When serving the invoke operation with the correct argument it returns the Element that is normally returned
by the invoked operation. So in the case of the Object.get operation, the Object.invoke operation will return the
Object with as value Video.

 - 41 -

Video:Class
NamedElement.name =Video
Class.isAbstract = false

Object.getMetaClass() : Class
Object.container() : Element
Object.equals(element : Object) : Boolean
Object.get(property : Property) : Object
Object.set(property : Property, value : Object)
Object.isSet(property : Property) : Boolean
Object.unSet(property : Property)
Object.invoke(op : Operation, arguments : Argument[0..*]) : Element[0..*]
Type.isInstance(object : Object) : Boolean

Invoking

Argument argument
argument.Object.set(Argument.name, property)
argument.Object.set(Argument.value, NamedElement.name)
Video.Object.invoke(Object.get, argument) -> Video

Figure 37 : Invocation of an operation

Operations, properties, and parameters
For operations, properties, and parameters it is also possible to have multiple instantiations. These elements
handle the multiplicity in the same way. The multiplicity provides the ability to set lower and upper bound
for denoting the number of possible instantiations. Furthermore, it is possible to assign if the instantiated
elements should be in order and if each element has to be unique. The two attributes can be used in
combination, which provides four possible states. In the following Table 1, each combination is worked out
for a property.

{ordered, unique} OrderedSet
aProperty[0] = name
aProperty[1] = description
aProperty[2] = code

{ordered} Sequence
aProperty[0] = name
aProperty[1] = name
aProperty[2] = code

{unique} Set
aProperty[] = name
aProperty[] = description
aProperty[] = code

{} Bag
aProperty[] = name
aProperty[] = name
aProperty[] = code

Table 1 : Combinations for ordered and unique

In Table 1 the ordering is maintained by the index behind the property name. Further, the uniqueness is
based on the name, so in a unique collection each name must be unique.

For maintaining the collection of multiple instantiated elements, the EMOF introduced the Common package.
This package provides two classes, namely a ReflectiveCollection class for maintaining unordered multiple
instantiated elements and a ReflectiveSequence for maintaining ordered multiple instantiated elements. These
classes are used in combination with the operations used in maintaining the properties. For example, the
Class can own multiple ordered attributes. These attributes can be set with the operations Object.set as shown
before. Therefore, the operation Object.set will recognize that you would like to set a multiple ordered
property and use the ReflectiveSequence to maintain them, as shown in the Figure 38, where the Video class is
set with the properties name, description, and code.

 - 42 -

name:Property

description:Property

Video:Class
NamedElement.name =Video
Class.isAbstract = false
Class.ownedAttribute[0] = name
Class.ownedAttribute[1] = description
Class.ownedAttribute[2] = code

Object.getMetaClass() : Class
Object.container() : Element
Object.equals(element : Object) : Boolean
Object.get(property : Property) : Object
Object.set(property : Property, value : Object)
Object.isSet(property : Property) : Boolean
Object.unSet(property : Property)
Object.invoke(op : Operation, arguments : Argument[0..*]) : Element[0..*]
Type.isInstance(object : Object) : Boolean

code:Property

:ReflectiveSequence

ReflectiveCollection.addAll(objects : ReflectiveSequence) : Boolean
ReflectiveCollection.clear()
ReflectiveSequence.add(index : Integer, object : Object)

Invoking

Property name = Factory.create(Property)
name.Object.set(NamedElement.name, name)
Property description = Factory.create(Property)
description.Object.set(NamedElement.name, description)
Property code = Factory.create(Property)
code.Object.set(NamedElement.name, code)

ReflectiveSequence sequence = Video.Object.get(Class.ownedAttribute)
sequence.add(0, name)
sequence.add(1, description)
sequence.add(2, code)
Video.Object.set(Class.ownedAttribute, sequence)

Figure 38 : A collection maintain with ReflectiveSequence

Both EMOF and CMOF are not directly supporting any facility for maintaining the uniqueness of each
element in a collection of elements.

Associations
The EMOF only provides the ability to instantiate classes; in contrast, the CMOF provides the ability to
instantiate associations as well. The instantiation of associations is introduced in CMOF’s CMOFReflection
package. This provides a Link class, which denotes an instantiated association. Furthermore, the Factory class
is extended with the operation createLink, which will create a Link. An association is always between two
classes, and a link is always between two objects. Therefore, the operation createLink will contain two
parameters for setting both objects.

The ability to create links will allow us to enlarge the example shown in Figure 38 with links between the
properties and class, as shown in Figure 39.

name:Property

description:Property

code:Property

Invoking

createLink(“class -- ownedAttribute” , name, Video)
createLink(“class -- ownedAttribute” , description, Video)
createLink(“class -- ownedAttribute” , code, Video)

Video:Class
NamedElement.name =Video
Class.isAbstract = false
Class.ownedAttribute[0] = name
Class.ownedAttribute[1] = description
Class.ownedAttribute[2] = code
Object.getMetaClass() : Class
Object.container() : Element
Object.equals(element : Object) : Boolean
Object.get(property : Property) : Object
Object.set(property : Property, value : Object)
Object.isSet(property : Property) : Boolean
Object.unSet(property : Property)
Object.invoke(op : Operation, arguments : Argument[0..*]) : Element[0..*]
Type.isInstance(object : Object) : Boolean

Figure 39 : The creation of links

In all the examples above, we use the names for referring to elements; this is done to make the example
more readable. The actual referring is done by direct object reference, which is supported through the
EMOF’s Identifiers package. This package introduces two classes, which can be used for getting information

 - 43 -

about element identifiers. The way an element becomes a member of the identifier capability is not covered
in the MOF Core specification.

An instantiation only succeeds when all defined constraints’ hold as well. The CMOF has the ability for
assigning constraints to elements. Therefore, it introduces a Constraint class, which will contain the
constraint, and an attribute for assigning elements for which the constraint should hold. For highlighting
that a constraint does not hold, the CMOF introduced the Exception class in the CMOFReflection package. This
Exception class can be used for providing information about the constraint that does not hold.

3.4 Self-representation
In this chapter, we will describe the self-representation ability of the MOF. The MOF stated the self-
representation as follows [10]:

“EMOF and CMOF are both described using CMOF, which is also used to describe UML 2.0. EMOF is
also completely described in EMOF by applying package import, and merge semantics from its CMOF
description. As a result, EMOF and CMOF are described using themselves, and each is derived from, or
reuses part of the InfrastructureLibrary.”

For explaining the self-representation, we will consider the prominent constructions used to define the
metamodel and instantiate these based on the metamodel itself. We will define this for both EMOF and
CMOF.

Normally we define the abstract syntax of the MOF as a class diagram, but because the MOF is self-
describing, we can show the abstract syntax also as an object diagram. For showing the self-representation
of the MOF, we will instantiate parts of the MOF and represent them as object diagrams. Therefore, we will
use the construction as shown in Figure 40, the top-layer is the MOF as class diagram and the layer below
will be the MOF as object diagram. In the object diagram we can show the settings of the attributes, which
are normally used in mapping the concrete syntax. In the representation of the MOF as object diagram the
most important attributes will be highlighted.

MOF
“class diagram”

MOF
“object diagram”

M3

Self-representation

Figure 40 : Construction of showing the self-representation of the MOF

In all the examples, we will refer to classes by use of their names. The official way in referring to model
elements is by direct object reference but for readability, we will use name reference.

3.4.1 Self-representation in EMOF
For building the self-representation for the EMOF, we will need the EMOF without the use of any package
merge and import. The EMOF is not capable of defining those constructs. Based on the semantics of the
merge and import construction, we can extract this construction out of the EMOF through actually
performing the merge and import. Appendix B contains the complete view of EMOF after performing the
merge and import.

 - 44 -

Class
We will start with the self-representation of the Class. Class is a non-abstract class with a Boolean attribute
isAbstract, which has a default value false, as shown in Figure 41.

Class

isAbstract : Boolean = false

Figure 41 : EMOF Class

Class is an instance of the metaClass Class. The Class attributes will be set with “Class” as NamedElement.name
and the Class.isAbstract will remain false. For creating the Boolean attribute isAbstract, a Property is instantiated
and configured with NamedElement.name being isAbstract, Property.default being false, and TypedElement.type being
Boolean, the other attributes are maintaining there default values. The Type Boolean, which is the value of
TypedElement.type, is an instantiation of PrimitiveType, predefined in the EMOF::Core::PrimitiveType. Properties
which have as type an indirect instantiation of DataType, will be notated as attributes inside classes, as in the
case of the isAbstract:Property. The object diagram for the Class is shown in Figure 42.

Class:Class

NamedElement.name = Class
Class.isAbstract = false
Class.ownedAttribute = isAbstract

isAbstract:Property

NamedElement.name = isAbstract
Property.isReadOnly = false
Property.default = false
Property.isComposite = false
Property.isDerived = false
Property.isID = false
TypedElement.type = Boolean

<<instance of>>

<<instance of>>

Self-representation
object diagram

EMOF – class diagram

Property

isReadOnly : Boolean = false
default : String [0..1]
isComposite : Boolean = false
isDerived : Boolean = false
isID : Boolean

Class

isAbstract : Boolean = false

Type TypedElement

NamedElement

name : String [0..1]

class
0..1

{ordered}
ownedAttribute

n

type
0..1

<<primitive>>
Boolean

DataType

PrimitiveType

<<instance of>>

Figure 42 : Object diagram Class

 - 45 -

Inheritance
The following construction we will consider is inheritance. We will take as example the inheritance
relationship between Type and Class. In this case, the non-abstract class Class is inheriting from the abstract
class Type, as shown in Figure 43.

Class

Type

Figure 43 : Inheritance relationship between Type and Class

To create the element Type, Class is instantiated and the attributes NamedElement is set with “Type”, further
attribute Class.isAbstract has value “true”. Class is instantiated as shown in the example before. Further, the
association end Class.superClass has value “Type”, which will denote that Class is inheriting form Type. The
inheritance relationship between Type and Class is shown in Figure 44 as object diagram.

Class:Class
NamedElement.name = Class
Class.isAbstract = false
Class.superClass = Type

<<instance of>>
<<instance of>>

Class

isAbstract : Boolean = false

Type

NamedElement

name : String [0..1]

Type:Class

NamedElement.name = Type
Class.isAbstract = true

superClass
*

Self-representation
object diagram

EMOF – class diagram

Figure 44 : Inheritance relationship between Type and Class as object diagram

 - 46 -

Association
The EMOF defines associations as a couple of properties configured as each other’s opposite. As example,
we will describe the association between Class and Property. There is an association between both non-
abstract classes, which has a composite end at the Class side. Further, the association contains the name
“class” with MultiplicityElement lower bound 0 and upper bound 1, the name “ownedAttribute” with
MultiplicityElement unlimited and constraint ordered. The example is shown in Figure 45.

Class class
0..1

{ordered}
ownedAttribute

*

Property

Figure 45 : Association between Class and Property

For constructing the association, we will instantiate two properties, attribute NamedElement of one property
has value “ownedAttribute” and attribute NamedElement of the other property has value “class”. For defining
the composite end at the Class side the attribute Property.isComposite of ownedAttribute:Property has value “true”.
For defining that both properties are forming together an association the attribute Property.opposite of
ownedAttribute:Property has value “class” and the attribute Property.opposite of has class:Property value
“ownedAttribute”.

Further, for ownedAttribute:Property the association end TypedElement.type has value “Property”, the attribute
MultiplicityElement.isOrdered has value “true”, the attribute Multiplicity.isUnique has value “false”, the attribute
MultiplicityElement.lower has value “0”, and the attribute MultiplicityElement.upper has value “*”, other attributes
remain their defaults. For the class:Property the association end TypedElement.type has value “Class”, the
attribute MultiplictyElement.isUnique has value “false”, and the attribute MultiplicityElement.lower has value “0”, other
attributes remain their defaults. The association between Class and Property as object diagram is shown in
Figure 46.

<<instance of>>

<<instance of>>

Property

isReadOnly : Boolean = false
default : String [0..1]
isComposite : Boolean = false
isDerived : Boolean = false
isID : Boolean

Class

isAbstract : Boolean = false

Type TypedElement

NamedElement

name : String [0..1]

class
0..1

{ordered}
ownedAttribute

*

type
0..1

MultiplicityElement

isOrdered : Boolean = false
isUnique : Boolean = true
lower : Integer = 1 [0..1]
upper : UnlimitedNatural =1 [0..1]

class:Property

NamedElement.name = class
Property.isReadOnly = false
Property.default =
Property.isComposite = false
Property.isDerived = false
Property.isID = false
Property.opposite = ownedAttribute
TypedElement.type = Class
MultiplicityElement.isOrdered = false
MultiplicityElement.isUnique = false
MultiplicityElement.lower = 0
MultiplicityElement.upper = 1

Property:Class

NamedElement.name = Property
Class.isAbstract = false
Class.ownedAttribute = class

ownedAttribute:Property
NamedElement.name = ownedAttribute
Property.isReadOnly = false
Property.default =
Property.isComposite = true
Property.isDerived = false
Property.isID = false
Property.opposite = class
TypedElement.type = Property
MultiplicityElement.isOrdered = true
MultiplicityElement.isUnique = false
MultiplicityElement.lower = 0
MultiplicityElement.upper = *

Class:Class

NamedElement.name = Class
Class.isAbstract = false
Class.ownedAttribute = ownedAttribute

<<instance of>> <<instance of>>

opposite
0..1

Self-representation
object diagram

EMOF – class diagram

Figure 46 : Association between Class and Property as object diagram

 - 47 -

The next example we will consider is an association with a navigated end. The example we use is Class that
contains an association to itself for defining the superClass. The navigated end of the association is assigned
with the name superClass with MultiplicityElement unlimited, as shown in Figure 47.

Class

superClass
*

Figure 47 : Association with navigated end

Again, the Class is instantiated as shown in previous examples. For the association the superClass:Property is
instantiated based on Property. Furthermore, for this object the attribute TypedElement.type has value “Class”,
the attribute MultiplicityElement.isUnique has value “false”, the attribute MultiplicityElement.lower has value “0”, and
the attribute MultiplicityElement.upper has value “*”, the other attributes remain their defaults. The instantiation
of a navigating association is comparable with the instantiation of an attribute, with those differences that
the TypedElement.type for the navigating association is set with an instance of Class and in the case of an
attribute with an instance of Datatype. The navigated end represented as object diagram is shown in Figure
48.

<<instance of>>

Property

isReadOnly : Boolean = false
default : String [0..1]
isComposite : Boolean = false
isDerived : Boolean = false
isID : Boolean

Class

isAbstract : Boolean = false

Type TypedElement

NamedElement

name : String [0..1]

class
0..1

{ordered}
ownedAttribute

*

type
0..1

MultiplicityElement

isOrdered : Boolean = false
isUnique : Boolean = true
lower : Integer = 1 [0..1]
upper : UnlimitedNatural =1 [0..1]

<<instance of>>

superClass
*

superClass:Property

NamedElement.name = superClass
Property.isReadOnly = false
Property.default =
Property.isComposite = false
Property.isDerived = false
Property.isID = false
TypedElement.type = Class
MultiplicityElement.isOrdered = false
MultiplicityElement.isUnique = false
MultiplicityElement.lower : Integer = 0
MultiplicityElement.upper : UnlimitedNatural = *

Class:Class

NamedElement.name : String = Class
Class.isAbstract : Boolean = false
Class.ownedAttribute : Property = superClass

Self-representation
object diagram

EMOF – class diagram

Figure 48 : Navigated end as object diagram

 - 48 -

Operation
Besides defining properties, we can also define operations. For example, the abstract class Type contains an
isInstance with as return type Boolean and as Parameter an element with type Element, as shown in Figure 49.

Type

+isInstance(element : Element) : Boolean
Figure 49 : Operation

An operation is a combination of the Operation class and the Parameter class. In the case of our example we
have an element:Parameter instantiated from Parameter. For assigning the type for the element:Parameter as
TypedElement.type, we need to instantiate an Element class as well. The isInstance:Operation is instantiated based
on Operation, and assigned with the element:Parameter as value for ownedParameter attribute. Furthermore, the
isInstance:Operation has the type Boolean, assigned as TypedElement.type. In order, the Class.ownedOperation attribute
is assigned with isInstance, which will provide the Type:Class with the operation. The instantiation is shown in
Figure 50.

<<instance of>>

Class

isAbstract : Boolean = false

Type

+isInstance(element : Element) : Boolean

TypedElement

NamedElement

name : String [0..1]

class
0..1

{ordered}
ownedOperation

*

type
0..1

MultiplicityElement

isOrdered : Boolean = false
isUnique : Boolean = true
lower : Integer = 1 [0..1]
upper : UnlimitedNatural =1 [0..1]

isInstance:Operation

NamedElement.name = isInstance
TypedElement.type = Boolean
MultiplicityElement.isOrdered = false
MultiplicityElement.isUnique = false
MultiplicityElement.lower = 1
MultiplicityElement.upper = 1
Operation.ownedParameter = element

Type:Class

NamedElement.name = Type
Class.isAbstract = true
Class.ownedOperation = isInstance

ParameterOperation

{ordered}
ownedParameter

*

{ordered}
operation

*

element:Parameter

NamedElement.name = element
TypedElement.type = Element
MultiplicityElement.isOrdered = false
MultiplicityElement.isUnique = false
MultiplicityElement.lower = 1
MultiplicityElement.upper = 1

Element:Class

NamedElement.name = Element
Class.isAbstract = true

<<primitive>>
Boolean

DataType

PrimitiveType

<<instance of>>

<<instance of>> <<instance of>> <<instance of>>

Self-representation
object diagram

EMOF – class diagram

Figure 50 : Operation as object diagram

The operation contains a + sign as well. This + sign denotes that the operation is public, which is part of the
visibility. The EMOF does not contain any constructions for defining visibility, as described in [10] chapter
12.4 EMOF Constraints; “[4] Core::Basic and EMOF does not support visibility. All property visibilities
expressed in the UML MOF model will be ignored (and everything assumed to be public). Name classes
through names thus exposed should be avoided.”

 - 49 -

3.4.2 Self-representation in CMOF
The CMOF defines on top of the EMOF some more advanced constructions. The EMOF contains the
capability to instantiate classes. The CMOF enlarges its capability with the possibility to instantiate
associations as well. According to this capability, we can use the instantiated associations in the object
diagram as well. Furthermore, the CMOF provides additional capability according to defining associations.
In the section below, we will show the CMOF possibilities according to associations in more detail.

Associations
Associations in EMOF are coupled properties with an opposite attribute pointing to each other. The CMOF
introduced the Association class, which contains the properties that represent the association. Besides that, the
CMOF is capable of instantiating an Association as a Link. For explaining the associations in CMOF in more
detail, we will first take a same example as used in EMOF. Figure 51 shows the example.

Class class
0..1

{ordered}
ownedAttribute

*

Property

Figure 51 : Association between Class and Property

For building the association in CMOF, as done in EMOF two properties can be instantiated and set with the
correct name and multiplicity. For combining the two properties, we can now use the instance of the
Association class. The two properties are associated with the association through the instantiation of the
association association/memberEnd. In the example the association end “class” is composite. Therefore, the
attribute Property.isComposite of ownedAttribute:Property has value “true”. The association between Class and
Property as object diagram is shown in Figure 52.

<<instance of>>

class:Property

NamedElement.name = class
MultiplicityElement.lower = 0
MultiplicityElement.upper = 1

Property:Class

NamedElement.name = Property
Class.isAbstract = false

ownedAttribute:Property
NamedElement.name = ownedAttribute
Property.isComposite = true
MultiplicityElement.isOrdered = true
MultiplicityElement.isUnique = false
MultiplicityElement.lower = 0
MultiplicityElement.upper = *

Class:Class

NamedElement.name = Class
Class.isAbstract = false

Association Property

isComposite : Boolean = false
memberEnd

2..*
{ordered,

subsets member}

association
0..1

Class

isAbstract : Boolean = false
class
0..1

{subsets namespace,
subsets featuringClassfier,

subsets classfier}

ownedAttribute
*

{ordered,
subsets attribute,

subsets ownedMember}

:Association
association

class

<<instance of>>

<<instance of>>

<<instance of>>

StructuralFeature

TypedElement

typetype

class ownedAttribute

association

ownedAttribute

memberEnd

Self-representation
object diagram

CMOF – class diagram type
0..1

Classifier

Type

memberEnd

Figure 52 : Association between Class and Property as object diagram

As shown in the Figure 52, the associations in the class diagram also contain subset constraints. The ability
for defining subsets is first introduced in the CMOF. The subset constructions provide the ability to define

 - 50 -

association ends in a collection. For showing how to instantiate subset constructions, we will use the
following example, as shown in Figure 53.

NamedElementNamespace /member
*

{union}

Classifier

RedefinableElement

Feature/featuringClassifier
0..*

{union}

/feature
*

{union,
subsets member}

Figure 53 : Subset of association end

In the example, association end feature is a subset of member. Therefore, the association end member does
contain a union constraint, which denotes that the associating end is a derived union of its subsets. The
complete instantiation of the example is shown in Figure 54. The subset relationship is realized by setting
member as the subsettedProperty for feature. The object diagram of the example contains two instantiated
associations, for the association with the navigated end the instance of relationship is shown in Figure 52.
The instance of relationship of the other association is comparable with the instantiated association in
Figure 54.

NameSpace:Class

NamedElement.name = NameSpace
Class.isAbstract = true

member:Property

NamedElement.name = member
Property.isDerivedUnion = true
MultiplicityElement.isOrdered = false
MultiplicityElement.isUnique = false
MultiplicityElement.lower = 0
MultiplicityElement.upper = *

Association Property

isDerivedUnion : Boolean = false

memberEnd
2..*

{ordered,
subsets member}

association
0..1

+navigateOwnedEnd
*

{subsets ownedEnd}

Class

isAbstract : Boolean = false
class
0..1

{subsets namespace,
subsets featuringClassfier,

subsets classfier}

ownedAttribute
*

{ordered,
subsets attribute,

subsets ownedMember}

subsettedProperty
*

:Association

class

ownedAttribute

<<instance of>>

<<instance of>>

<<instance of>>

<<instance of>>

+navigateOwnedEnd

:Association

featureClassifier:Property

NamedElement.name = featureClassifier
Property.isDerivedUnion = true
MultiplicityElement.isOrdered = false
MultiplicityElement.isUnique = false
MultiplicityElement.lower = 0
MultiplicityElement.upper = *

feature:Property

NamedElement.name = feature
Property.isDerivedUnion = true
MultiplicityElement.isOrdered = false
MultiplicityElement.isUnique = false
MultiplicityElement.lower = 0
MultiplicityElement.upper = *

subsettedProperty

Classifier:Class

NamedElement.name = NameSpace
Class.isAbstract = true

Feature:Class

NamedElement.name = Feature
Class.isAbstract = true

memberEnd[1]

association

memberEnd[0]

association

class

ownedAttribute

class

ownedAttribute

RedefinableElement:Class

NamedElement.name = RedefinableElement
Class.isAbstract = true

NamedElement:Class

NamedElement.name = NamedElement
Class.isAbstract = true

typetype

type

superClass
*

{redefines general}

superClass
superClass

superClass

StructuralFeature

TypedElement type
0..1

<<instance of>>

:Property

NamedElement.name =
Property.isDerivedUnion = false
MultiplicityElement.isOrdered = false
MultiplicityElement.isUnique = false
MultiplicityElement.lower =
MultiplicityElement.upper =

memberEnd

type

class

ownedAttribute

<<instance of>>

Classifier

Type

Self-representation
object diagram

CMOF – class diagram

Figure 54 : Subset of association end as object diagram

 - 51 -

Another ability for association end is to redefine an inherited association end. This is done in the case of
Class, the association superClass is redefining the association general, as shown in Figure 55.

+general
*

Classifier

Feature

+superClass
*

{redefines general}
Figure 55 : Redefine association end

The redefining of association ends work in the same way as with subsets, with the differences that the
association redefinedProperty is used between properties, as shown in Figure 56.

superClass:Property

NamedElement.name = superClass
Property.isDerivedUnion = false
MultiplicityElement.isOrdered = false
MultiplicityElement.isUnique = false
MultiplicityElement.lower = 0
MultiplicityElement.upper = *

Association Property

isDerivedUnion : Boolean = false

memberEnd
2..*

{ordered,
subsets member}

association
0..1

+navigateOwnedEnd
*

{subsets ownedEnd}

Class

isAbstract : Boolean = false
class
0..1

{subsets namespace,
subsets featuringClassfier,

subsets classfier}

ownedAttribute
*

{ordered,
subsets attribute,

subsets ownedMember}

redefinedProperty
*

{subsets redefinedElement}

:Association

<<instance of>>

+navigateOwnedEnd

association

class

ownedAttribute

Class:Class

NamedElement.name = Class
Class.isAbstract = false

type

superClass
*

{redefines general}

StructuralFeature

TypedElement

:Property

NamedElement.name =
Property.isDerivedUnion = false
MultiplicityElement.isOrdered = false
MultiplicityElement.isUnique = false
MultiplicityElement.lower =
MultiplicityElement.upper =

memberEnd

type

class

ownedAttribute

type
0..1

Classifier

Type

general:Property

NamedElement.name = general
NamedElement.visibility = public
MultiplicityElement.isOrdered = false
MultiplicityElement.isUnique = false
MultiplicityElement.lower = 0
MultiplicityElement.upper = *

:Association

+navigateOwnedEnd

association

class

ownedAttribute

Classifier:Class

NamedElement.name = NamedElement
Class.isAbstract = true

type

:Property

NamedElement.name =
Property.isDerivedUnion = false
MultiplicityElement.isOrdered = false
MultiplicityElement.isUnique = false
MultiplicityElement.lower =
MultiplicityElement.upper =

memberEnd

type

class

ownedAttribute

redefinedProperty

superClass

Self-representation
object diagram

CMOF – class diagram

Figure 56 : Redefine association end as object diagram

 - 52 -

 - 53 -

4

MOF based example

For investigating how the MOF actually can be used, we will develop an example metamodel based on the
MOF. Most examples now available for the MOF are in the area of UML. The examples mostly
concentrate on extending MOF constructions in more advanced ones.

Instead, we would like to provide a more concrete example, which is easy to understand, even without
knowledge about the MOF specification.

As example, we will build a metamodel for electrical diagrams. We will take a small subset that covers a
limited area of the electrical diagrams domain. In the example, we will try to provide information for both
the model as well as the run time layer, so that we can cover the whole four layered metamodel hierarchy
used with the MOF.

4.1 Electrical diagram
The electrical diagram we will use, can contain the following components: resistors, switches, and a DC
voltage source. A resistor has a resistance in ohms (Ω). A switch can have two states: on or off. The DC
voltage source has a voltage in volts. The components are connected with each other using wires. The
combination of components and wires forms an electrical circuit. Through the electrical circuit a current in
amperes is flowing. Figure 57 contains two electrical circuits that are implemented based on the electrical
diagram definition.

+

R1

R2 R3
+

S1

R1 R2

a. b.
Figure 57 : Examples of electrical circuits

Furthermore, a couple of operations can be applied on an electrical circuit. We can apply the Ohm’s law for
calculating the voltage over a resistor or a combination of resistors. Ohm’s law is:

U=I*R

where ‘U’ is the voltage in volts, ‘I’ is the current in amperes, and ‘R’ is the resistance in ohms. The
equivalent resistance (Req) of a combination of resistors can be calculated through the following properties:

Calculating serial resistors: eq 1 2 nR =R R ... R+ + +

Calculating parallel resistors:
eq 1 2 n

1 1 1 1= + +...+
R R R R

 - 54 -

The named R’s, like ‘R1’, in the calculation corresponds with the resistors in the electrical circuits. The
serial and parallel calculation can be used in combination. For example, for the electrical circuit in Figure
57 a. the calculation for equivalent resistance over resistors R1, R2, and R3 will be:

eq 1

2 3

1R =R + 1 1+
R R

4.2 MOF hierarchy
The Electrical Diagram metamodel is built as metamodel based on the MOF. The metamodel provides the
structure for building the electrical diagrams as models and the ability to execute them. In Figure 58 the
Electrical Diagram Metamodel is placed in the MOF layered hierarchy.

<<instance of>>

<<instance of>>

<<instance of>>

M3

M2

M1

M0

MOF
(self-representation)

Electrical
Diagram

Metamodel

Electrical
Diagram Model

Electrical
Diagram
Runtime

Figure 58 : Modeling hierarchy for Electrical Diagram metamodel

For defining the Electrical Diagram Metamodel we will use the same style as used for UML infrastructure
library and MOF itself. Therefore, the abstract syntax of the Electrical Diagram metamodel will be given as
a class diagram, together with a detailed description. As in the UML infrastructure library each defined
element can contain a description about the notation. We will do this also to define the concrete syntax for
the Electrical Diagram metamodel.

In the electrical diagram, new components are introduced. We will explain these components based on the
well-defined and well-understood concepts in the mathematics, like Ohm’s law and the function for
calculating the equivalent resistance.

4.3 Electrical Diagram Metamodel
We build the Electrical Diagram Metamodel based on the CMOF. This done because the CMOF provides
more modeling constructions that can be used in building the metamodel, like the merge and import of
packages and the subsetting of associations.

In Figure 59, the package structure of the Electrical Diagram Metamodel is given.

 - 55 -

ElectricalDiagrams

DCVoltageSources

Resistors
<<merge>>

<<merge>>

PrimitiveTypesUML i. l.::
Core::PrimitiveTypes

<<import>>

<<import>>

Switch
<<merge>>

Figure 59 : Package structure Electrical Diagram Metamodel

4.3.1 ElectricalDiagrams

Component WireEnd

ElectricalCircuit

current() : Ampere
equivalentResistance() : Ohm

1
component

wireEnd
1..*

{union}

electricalDiagram
1

component
1..*

Wire

wire
1

ownedEnd
2..*

ownedWire
*

ElectricalCircuit

Description:
The ElectricalCircuit Class is representing an electrical circuit. The Class has as capability calculating the
equivalent resistance and the flowing current in the electrical circuit.

Associations:

• component 1..* Components owned by the ElectricalCircuit
• ownedWire * Wires owned by the ElectricalCircuit

Operations:

• current() : Ampere Returns the current in Ampere that is flowing in the
circuit.

• equivalentResistance() : Ohm Return the equivalent resistance in Ohm of the
circuit.

 - 56 -

Component

Description:
Component is an abstract classes for generalize the elements that can be add to the electrical circuit.

Associations:

• ElectricalCircuit 1 ElectricalCircuit where the Component is a member
of.

• wireEnd 1..* The WireEnds owned by the Component.

WireEnd

Description:
An instance of a WireEnd is the connection between a component and a Wire.

Associations:

• component 1 The Component owned by the WireEnd.
• wire 1 The Wire owned by the Component.

Wire

Description:
The Wire is connecting components with each other, which is based on the owned WireEnds.

Associations:

• ownedEnd 2..* The WireEnds owned by the Wire. At least two
WireEnds are needed to create a Wire.

Notation:
The wire is a line between components. The wire ends of the wire are dots.

Example:

4.3.2 DCVoltageSource

DCVoltageSource

voltage : Volt

Component

WireEndplus
1

{subset wireEnd}

min
1

{subset wireEnd}

 - 57 -

DCVoltageSource

Description:
The DCVoltageSource is the voltage source for the circuit, which provides a direct current voltage.

Attributes:

• voltage : Volt The voltage value of the DCVoltageSource in Volt.

Association:

• plus 1 The plus WireEnd owned by the DCVoltageSource,
which subsetting the wireEnd as is owned by
Component.

• min 1 The min WireEnd owned by the DCVoltageSource,
which subsetting the wireEnd as is owned by the
Component.

Notation:
The DC voltage source are two lines at a right angle on a wire. The plus wire end of the DC voltage source
is denoted with a thin line and a “+” sign. The min wire end of the DC voltage source is denoted with a
thick line. The voltage value is added through a gray label.

Example:

+
10V

4.3.3 Resistors

Resistor

resistance : Ohm
name : String

Component

WireEnd

resistorEnd
2

{subset wireEnd}

Resistor

Description:
Component that can be used as a resistor in the circuit, which will be identifying by its name and providing
a certain amount of resistance.

Attributes:

• resistance : Ohm The amount of resistance in Ohm contained by the
Resistor.

• name : String The name contained by the Resistor, which is for
identifying the Resistor in the ElectricalCircuit.

 - 58 -

Associations:
• resistorEnd 2 The WireEnds owned by the Resistor, which

subsetting the wireEnd as is owned by the
Component.

Notation:
The resistor is a rectangle with two wire ends. The resistor contains the name, and the resistance value is
added through a gray label.

Example:

4.3.4 Switch

Switch
name : String
-on : Boolean = false
switch()
resistance() : Ohm

Component

WireEnd

switchEnd
2

{subset wireEnd}

Switch

Description:
Component that can be used as a switch in the circuit, which will be identified by its name. Furthermore,
the Switch can have two states, namely an on and off state. Depending on the state the switch will have a
zero or infinity resistance value.

Attributes:

• name : String The name contained by the Switch, which is for
identifying the Switch in the ElectricalCircuit.

• -on : Boolean = false Private attribute used for controlling the state of the
switch, the default state of the switch is off.

Associations:

• switchEnd 2 The WireEnds owned by the Switch, which
subsetting the wireEnd as is owned by the
Component.

Operations:

• switch() Operation will change the state of the switch.
• resistance() : Ohm Return the resistance value in Ohm of the switch.

 - 59 -

Notation:
The switch is a line that can have two positions, a horizontal line is a switch in the on state, and a slope line
is a switch in the off state. Furthermore, it contains two wire ends.

Example:

S1
S1

4.3.5 PrimitiveTypes

<<primitive>>
Volt

<<primitive>>
Ohm

<<primitive>>
Ampere

Volt

Description:
Volt is a primitive type representing the voltage value. An instance of volt is an element in the (infinite) set
of Reals.

Notation:
The notation for volt is the capital letter V.

Ohm

Description:
An ohm is a primitive type representing the resistance value. An instance of ohm is an element in the
(infinite) set of Reals.

Notation:
Ohm will appear as the type using the Greek capital letter omega (Ω) as notation.

Ampere

Description:
An ampere is a primitive type representing the current value. An instance of ampere is an element in the
(infinite) set of Reals.

Notation:
The notation for volt is the capital letter A.

4.4 Semantics
As semantic domain, we will use a mathematical domain that is capable of defining and calculating the in
section 4.1 defined operations.

 - 60 -

Through the semantic mapping, we can map the following abstract syntax elements with semantic domain
elements:
Abstract syntax Semantic domain
DCVoltageSource::voltage U
ElectricalDiagram::current I
Resistor::resistance and Resistor::name Rn

Switch::resistance() and Switch::name Rn
ElectricalDiagram::equivalentResistance Req

Furthermore, when calculating the equivalent resistance over a number of resistors it is necessary to know
if the resistors are in serial or parallel. In the abstract syntax of the electrical diagram, this can be checked
through the wires. A wire with two ends, where both ends are connected with a different resistor, will
indicate that at least these two resistors are serial. For parallel, we need a pair of wires, where each wire
will contain the same number of wire ends, with as minimum number of wire ends three. Furthermore, both
wires must have the same connected resistors for each wire end, with exception to one wire end.

4.5 Examples
We will now build Electrical Diagram Models based on the Electrical Diagram Metamodel. Therefore, we
will implement the example circuits given in Figure 57.

Example 1
The first example we will implement is shown in Figure 60. In the electrical circuit, we are setting the DC
voltage source with a voltage value of 10 V. Furthermore, we are setting each resistor with an Ohm value,
R1 with a resistance value of 500 Ω, R2 and R3 with a resistance value of 1000 Ω.

Figure 60 : Example 1 electrical circuit

The representation as shown in the Figure 60 is the one where the abstract syntax is mapped with the
concrete syntax. For giving a more precise view of how the abstract syntax is instantiated, we will construct
the electrical circuit as object diagram, as shown in Figure 61.

 - 61 -

dcVoltageSource:DCVoltageSource

voltage = 10

:WireEnd

:WireEnd

:Wire :WireEnd
R1:Resistor

resistance = 500
name = R1

:Wire

:WireEnd

:WireEnd

:WireEnd

R2:Resistor

resistance = 1000
name = R2

R3:Resistor

resistance = 1000
name = R3

:WireEnd

:WireEnd
:Wire

electricalDiagram:ElectricalDiagram

current() : Ampere
equivalentResistance() : Ohm

Figure 61 : Electrical circuit as object diagram

After mapping the in Figure 61 defined object diagram with the concrete syntax the model will be
representing as in Figure 60. The other mapping that is needed is the semantic mapping, which maps the
abstract syntax with the semantic domain. Using the semantic mapping we can represent the abstract syntax
as a mathematic formula. In Figure 62, the layer M1 shows both representations of the abstract syntax.

Figure 62 : M1 and M0 layer for electrical circuit example 1

Now the M1 layer is completely defined, the model can be instantiated as runtime. In the runtime we can
query the model, which results in getting the values as based on the given values in the model, as shown in
Figure 62 representing in the M0 layer. The queries that can be preformed on the model are
electricalCircuit.current for the flowing current and electricalCircuit.equivalentResistance that gives the
equivalent resistance, according the semantics the flowing current is 0.01 A and the equivalent resistance is
1000 Ω.

The second example will show how we can have multiple instantiations as the runtime. Therefore, the
example will have a switch Component that can be changes at runtime. The abstract syntax will be almost
the same as the first example, and therefore we will directly continue with the semantic definition for the
syntax. The Figure 63 is showing the complete overview of model implementation and runtime view. In the

 - 62 -

semantics the resistance operation of the S1 Switch is now mapped with the R1 resistance defined in the
semantic domain. The defined model can now be instantiated as runtime. The M0-1 layer as representing in
the Figure 63 is an instantiation based on the model where the S1 Switch will have is default value. If we
now use the S1.switch query, the runtime will change as shown in the M0-2 layer.

Figure 63 : M1 and M0 layer for electrical circuit example 2

 - 63 -

5

Related work

In this section, we will mention related work according to the MOF. As related work we can distinguish the
following categories: MOF specification series, compliant tools, MOF metamodels, and related approaches
according to the MDA.

5.1 MOF specification series
In this thesis we have described the MOF 2.0 Core, which is part of the MOF 2.0 specification series. The
MOF 2.0 specification series contains five specifications in total. The Core specification defines the most
essential parts of the MOF 2.0. The other specifications are extensions on the Core specification. These
other specifications are the MOF Query/Views/Transformations, the MOF Versioning and Development
Lifecycle, the MOF IDL Mapping, and the MOF XMI Mapping. Next, we will briefly discuss each
specification.

5.1.1 MOF Query/View/Transformation
Model transformation plays an essential role in the MDA. The MOF Query/View/Transformation (QVT)
specification [30] defines a language for describing transformations between models. The defined language
has a hybrid declarative/imperative nature, meaning that the specification defines a combination of a
declarative and imperative language. The Figure 64 shows the exact architecture of these languages.

Figure 64 : Relationships between QVT metamodels

The declarative part of the language defines the Relation and Core metamodel. The Core metamodel should
not be confused with the Core as defined in the MOF. The Relation metamodel represents a high level
language and the Core metamodel represents a low level language. The defined RelationsToCore
transformation is capable of translating Relation models into Core models. The imperative part of the
language is Operational mappings, an imperative language for defining Relations or Core based
metamodels, and Black box, which provides a plug-in facility. The goals for the Black box implementation
are [30]:

• It allows complex algorithms to be coded in any programming language with a MOF binding
• It allows the use of domain specific libraries to calculate model property values.
• It allows implementations of some parts of a transformation to be opaque.

 - 64 -

The current version of the MOF QVT depends on the EMOF package of the MOF 2.0 Core specification
[28] and the OCL as defined in the OCL 2.0 specification [20].

5.1.2 MOF Versioning and Development Lifecycle
The purpose of the MOF Versioning and Development Lifecycle specification is [29]: “to manage the co-
existence of multiple versions of metadata in a MOF and their inclusion in different configurations”. So
this specification is concentrated on the evolution of the system during its development. In the development
of the system, changes are made to improve the system, for example the change in lifecycle, as going from
a draft system to a live system. On the other hand, we can have small changes to the system in the form of
fixing bugs. In most cases it is useful to save each state in developing the system, and make it possible to
return to a specific point in the development of the system. Therefore, the MOF series contains this
specification.

The current version of the MOF Versioning and Development Lifecycle [29] depends on some packages
from the MOF 2.0 Core specification [28].

5.1.3 Mappings
The other two specifications, IDL Mapping and XMI Mapping, are mappings between the MOF
specification and other specifications. The definition of mapping according to the OMG [4] is
“Specification of a mechanism for transforming the elements of a model conforming to a particular
metamodel into elements of another model that conforms to another (possibly the same) metamodel”. The
mappings defined for the MOF are the XML Metadata Interchange (XMI) and Interface Definition
Language (IDL). The difference between both mappings is that the one is for interchange of metadata and
the other for defining an interface.

MOF XMI Mapping
Through the XMI specification [32], the MOF is mapped to XML, which provides the ability for defining,
interchanging, manipulating and integrating XML data and object. This is used for integrating tools,
repositories, applications and data warehouses.

The current version of XMI [32] is 2.1, which is compliant with the MOF 2.0 as defined in the MOF Core
specification 2.0 [28].

MOF IDL Mapping
The MOF IDL mapping specification defines the benefit of the mapping as [31]: “the MOF IDL Language
Mapping specification defines a standard mapping from meta-models defined using the MOF Model onto
server interfaces. The interfaces themselves are expressed in CORBA IDL that can be generated by
instantiating "templates" defined in the MOF specification. The intended semantics of these interfaces are
also defined in the specification”. The MOF IDL mapping is compliant with the MOF 2.0. The mapping
rules for mapping MOF elements with IDL elements are defined in OCL 2.0.

5.2 Compliant tools
Tools that are MOF compliant can operate in different areas for providing help in using the MOF
specification. Most tools at least support the ability to store MOF compliant metamodels. Furthermore, a
tool can be specialized in managing these stored data, by providing an interface that will provide access to
the data. Another specialization is providing an environment for creating MOF-based metamodels, like
through a graphical interface that provides an environment for drawing the metamodels.

In the section below, we will discuss the MOF compliant tools we found during our investigation. In our
investigation, we try to use some of the tools, like MDR and Modx, but the fact that those tools are not
compliant with the latest version of the MOF made them not very useful in our research. The tools
MOFLON and aMOF2.0forJava are released in the end phase of our investigation, and therefore we were
not able to use them.

 - 65 -

5.2.1 MDR
The Metadata Repository project (MDR) is a plug-in for the Netbeans tool [16]. It implements the MOF as
metadata repository. The tool Netbeans provides a platform, on top of this platform we can write plug-ins,
as done with the MDR. The MDR is compatible with Netbeans version 3.6. The MDR implements the
MOF 1.4 as defined in the MOF specification 1.4 [9]. The MDR provides a storage mechanism for storing
metadata. The metadata can imported into and exported from MDR using XML documents that conforms
to the XMI 1.2 standard. The metadata in the MDR can be managed using a Java Metadata Interface (JMI)
API.

5.2.2 MOFLON
MOFLON [17] provides a graphical interface for building MOF compliant metamodels. MOFLON is a
plugin for the FUJABA tool. The FUJABA tool is a graph transformation tool that implements graph
transformation in the form of Story Driven Modeling. The aim of FUJABA is to become UML 2.0
compatible. Therefore, they use the implementation of MOF 2.0 as the first step to become UML 2.0
compatible.

Besides drawing new MOF metamodels with the MOFLON, there is the ability to import MOF metamodel
stored as XML documents in the XMI 2.1 format. Furthermore, the drawn MOF metamodels are exportable
as JMI code.

5.2.3 ModX
The ModX tool [18] provides a graphical interface for defining two types of models, namely the MOF-
based metamodels and models based on the defined MOF-based metamodels. The tool provides also an
interface to define a new graphical notation for the metamodel. So besides defining the abstract syntax of
the metamodel, we can define the concrete syntax of the metamodel as well.

The metamodels that we can draw, using the ModX tool, are MOF 1.4 compliant. Already existed
metamodels can be imported when stored as XML documents in the XMI 1.1 format. Furthermore, the built
metamodels can be exported in the XMI 1.1 format.

5.2.4 JMI
The Java Metadata Interface (JMI) provides a mapping between the MOF and Java. According to the [34],
“The JMI specification enables the implementation of a dynamic, platform-independent infrastructure to
manage the creation, storage, access, discovery, and exchange of metadata”. The JMI implementation
provides the ability for the generation of a Java interface for each MOF-based metamodel. Furthermore,
JMI supports the interchange of metadata and metamodels via XML by using the XMI specification.

Unisys develops JMI in cooperation with Sun Microsystems, Hyperion, IBM, and Oracle. The current
version of JMI is compliant with MOF 1.4 and can handle XML documents stored in the XMI 1.1 format.

5.2.5 aMOF2.0forJava
The aMOF2.0forJava provides as the JMI a mapping between the MOF and Java. The difference between
both tools is that the aMOF2.0forJava is compliant with the MOF 2.0 instead of the MOF 1.4. The
Humboldt University of Berlin develops the tool, with the objective [35]: “to capture the new modeling
capabilities and provide them to the programming environment of a modern implementation language”.
The tool has as main features, as extracted from [35]:

• Implementation of the CMOF model
• Implementation of the UML Infrastructure library. This library is used as a basis for the CMOF

model, and it can be used in user meta-models, thus allowing easy development of new languages,
based on a given abstract basis.

• XMI import and export of meta-models and models
• Reflection facilities
• Generation of user repositories based on meta-models

 - 66 -

• Integration of user code for derived features and operations
• Programming with repositories through an easy to use and type-safe API
• Implemented redefinition and property subsetting semantics

5.3 MOF-based metamodels
The most often used metamodel that is based on the MOF is UML, which is described in section 3.2.3 as
part of the MOF Core specification. In this section we will briefly discuss other metamodels that are based
on the MOF.

5.3.1 Ontology Definition Metamodel
The Ontology Definition Metamodel (ODM) is a collection of metamodels and mappings between those
metamodels that enable ontology modeling. Ontology is a discipline rooted in philosophy, and defined by
the ODM specification [11] as:

“An ontology defines the common terms and concepts (meaning) used to describe and represent an area of
knowledge. An ontology can range in expressivity from a Taxonomy (knowledge with minimal hierarchy or
a parent/child structure), to a Thesaurus (words and synonyms), to a Conceptual Model (with more
complex knowledge), to a Logical Theory (with very rich, complex, consistent and meaningful
knowledge).”

The ODM uses seven metamodels, which can be grouped into a formal first order and description logics,
structural and subsumption / descriptive representations, and traditional conceptual or object-oriented
software modeling. Below we describe briefly the seven metamodels as extracted from the ODM
specification [11]:

• The group of formal first order and description logics contains the Description Logics (DL) as
defined in [39] and the Common Logic (CL) a declarative first-order predicate language as defined
by the ISO in [41]. These languages together cover a broad range of representations that lie on a
continuum ranging from higher order, modal, probabilistic and intentional representations to very
simple taxonomic expression.

• There are three metamodels that represent more structural or descriptive representations, which are

the abstract syntax for Resource Description Framework Schema (RDFS) as defined in [42], Web
Ontology Language (OWL) [40; 44], and Topic Maps (TM) as defined in [43]. RDFS, OWL and
TM are commonly used in the semantic web community for describing vocabularies, ontologies
and topics, respectively.

• Two additional metamodels considered essential to the ODM represent more traditional, software

engineering approaches to conceptual modeling: UML 2 [45; 6] and Entity Relationship (ER)
diagrams. UML and ER methodologies are the two most widely used modeling languages in
software engineering today, particularly for conceptual or logical modeling. Interoperability with
and use of intellectual capital developed in these languages as a basis for ontology development
and further refinement is a key goal of the ODM.

5.3.2 Common Warehouse Metamodel
The Common Warehouse Metamodel (CWM) is a released specification [46] by the OMG for describing
metadata interchange between warehouse tools. The OMG describes the CWM as [47]: “a specification
that describes metadata interchange among data warehousing, business intelligence, knowledge
management and portal technologies. The OMG MOF bridges the gap between dissimilar meta-models by
providing a common basis for meta-models. If two different meta-models are both MOF-conformant, then
models based on them can reside in the same repository.” The current version of CWM as defined in
CWM specification [46] is compliant with the MOF 1.3.

 - 67 -

5.4 Related approaches
All specifications released by the OMG are according to the MDA approach. Besides the MDA approach as
introduced by the OMG there exists a variation of approaches in the same area. In this section we will
briefly describe some relevant and interesting approaches released for the purpose similar to the MDA.

5.4.1 Eclipse Modeling Framework
The Eclipse Modeling Framework (EMF) is a related approach for defining a model driven environment, as
the MDA provided by the OMG. IBM develops the EMF as plug-in for the open source Eclipse project.
The difference between the EMF and the MDA is that the EMF is an already implemented system, where in
the case of the MDA the concept exists as an abstract specification. The advantage of the EMF is that it is
directly useable as tool.

The following description of EMF is extracted from [36]: EMF is a modeling framework and code
generation facility for building tools and other applications based on a structured data model. From a model
specification described in XMI, EMF provides tools and runtime support to produce a set of Java classes
for the model, a set of adapter classes that enable viewing and command-based editing of the model, and a
basic editor. Models can be specified using annotated Java, XML documents, or modeling tools like
Rational Rose, then imported into EMF. Most important of all, EMF provides the foundation for
interoperability with other EMF-based tools and applications.

EMF consists of three fundamental pieces:

• EMF - The core EMF framework includes a metamodel (Ecore) for describing models and runtime
support for the models including change notification, persistence support with default XMI
serialization, and a very efficient reflective API for manipulating EMF objects generically.

• EMF.Edit - The EMF.Edit framework includes generic reusable classes for building editors for
EMF models.

• EMF.Codegen - The EMF code generation facility is capable of generating everything needed to
build a complete editor for an EMF model. It includes a GUI from which generation options can
be specified, and generators can be invoked. The generation facility leverages the JDT (Java
Development Tooling) component of Eclipse.

Three levels of code generation are supported:

• Model - provides Java interfaces and implementation classes for all the classes in the model, plus a
factory and package (meta data) implementation class.

• Adapters - generates implementation classes (called ItemProviders) that adapt the model classes
for editing and display.

• Editor - produces a properly structured editor that conforms to the recommended style for Eclipse
EMF model editors and serves as a starting point from which to start customizing.

The Ecore metamodel used in the EMF is almost similar to the EMOF metamodel as defined in the MOF
2.0 Core. For an exact mapping between the Ecore and the EMOF metamodel we refer to the E-MORF
[52].

5.4.2 Linguistic and ontological metamodeling
Künhne and Aktinson [38; 49] introduce some new concepts in their vision on the MDA, mentioned as the
Model Driven Development (MDD). These concepts concentrate on a more advanced way of
metamodeling, which they distinguish in linguistic and ontological metamodeling. Linguistic
metamodeling is used for defining language type constructs, and ontological metamodeling is used for
defining domain specific facts.

Künhne and Aktinson explain the difference between linguistic and ontological with the following example
[38]. The distinction of metamodeling in linguistic and ontological is introducing two types of instance-of
relationships, namely the linguistic and ontological instance-of. First, we will illustrate metamodeling from
a linguistic view, as shown in Figure 65. In Figure 65 a four-layered metamodel hierarchy is illustrated,

 - 68 -

where the layers M2 and M3 are representing metamodels. The elements in the layers M1 and M2 have a
linguistic instance-of relationship with the elements in the layer above.

Figure 65 : Linguistic Metamodeling View

Besides the linguistic instance-of relationship, Figure 65 also contains an ontological instance-of
relationship, as located in layer M1 between the elements Collie and Lassie. In the next example we will
focus more on the ontological instance-of relationship. Therefore, we will metamodel the same example as
shown above, but now from an ontological view.

Figure 66 : Ontological Metamodeling View

Figure 66 illustrates an ontological metamodeling view of the example. As shown in Figure 66 the layered
structure of the hierarchy is changed. The hierarchy now contains two meta dimensions, namely a linguistic
(L) and an ontological (O). Each dimension can be divided into a number of layers. The ontological
dimension is divided into three layers, where the elements in the O1 and O2 layers are ontological
instantiation based on the layer above. The linguistic dimension of the hierarchy is containing two layers,
which are vertically positioned in the hierarchy. The three layers of the ontological dimension are part of
the L0 layer. For each element in this layer, a linguistic instance-of relationship can be defined with the
meta element in the L1 layer.

 - 69 -

Distinction of metamodeling into linguistic and ontological and using a multiple dimensional hierarchy can
provide the ability to define elements in a more natural way. Authors as Bézivin and Lemesle [50] or
Geisler et al. [51] also propose the approach of defining more distinctions in metamodeling.

 - 70 -

 - 71 -

6

Conclusions and recommendations

The MOF as available in the current specification is part of the MDA. The OMG releases the MDA as the
new approach for developing software using models and modeling techniques. If we look at the history of
software engineering, we can detect that we are continuously searching for a technique that provides a
better and more natural approach for defining a system. For example, the introduction of the first
FORTRAN compiler in 1957 brought a shift in defining a system in a more abstract way. At this point
programmers were able to specify what a machine should do rather than how the machine should do it.
(Atkinson and Kühne [38]) After the introduction of the first compiler, the aim to develop a technique that
provides the ability to define a system in an even higher abstraction level continues, like with the arrival of
procedural and object-oriented languages.

The current techniques used in software engineering, are still concentrating on the implementation of the
system. The aim of the MDA is to reach an abstraction level that more concentrates on defining the
structure and behavior of the system independent from the underlying implementation technology.

Models and modeling techniques are already often used in all kind of engineering disciplines. In those
disciplines models are used for reducing mistakes in working out solutions for a complex problem. The
models are the conceptual view of the problem. The aim of modeling is to reach an accurate representation
of the problem in the form of models. These models provide a better understanding of the problem, which
is necessary before working out the problem as a real world concept. For the notation of the model a
representation is needed that easily allows extracting the solution for the problem.

Nowadays, software engineering mainly relies on code-based notations. Code is limited in providing a
proper understanding. With modeling we have the ability to define a more sophisticated notation that is
closer to our intuition for representing certain concepts.

If we look to the current use of models in the software engineering, we can conclude that in most situations
they are only used as documentation. The models are used as the first step in the design of the system.
Afterwards, the programmer interprets the models for programming the system. The problem with this
method is that the models and the coded system are not connected with each other. This has as result that
design changes in the phase of programming have to be manually changed in the models as well.
Unfortunately, this is not done in most of the cases, leading to the fact that models easily diverge from code
system.

The aim in the MDA is to use the models for automatically generating the system. This will solve the
problem that the models are not connected with the system. So the modeled system is so complete that it is
an exact representation of the system.

A technique for automatically generating the system from the models, is translating the models into code,
which can be used in the traditional way. For example, translate the models into Java code. The Java code
can be compiled and runned using the available java compilers and virtual machines. Unfortunately, tools

 - 72 -

now available are in most cases only producing code skeletons and fragments, which leads to the fact that
additional code is needed for making a complete system. This directly abandons the models from the
system. The MDA compliant tools should in the future aim to automaticallygenerate the complete system.

Standard
Standardization is a good approach for codifying techniques, and it helps by specialization of concepts into
more sophisticated ones. Furthermore, standardization is useful in realizing interoperability between tools.
Important for a standard is that the techniques are correct and understandably defined. The quality of
artifacts is stipulated by the quality of the defined techniques in the standard.

The MOF is introduced in 1996 as a request for proposals. In 2006 the latest final specification version is
released. In the ten years that the MOF exists the standard has endured some major changes. In the first
request for proposal the standard should be part of the OMA, as framework to create, store and manipulate
object schemas. Nowadays the MOF is part of the MDA, and is placed as the meta metamodel in the
metamodel hierarchy.

All changes in the MOF standard during the past ten years have resulted in the fact that the standard is not
stable. Stabilizing a standard is important. It will allow that tools can implement the standard without the
consequence that the standard is raptly changed again. Furthermore, it is important for the standard that it is
widely accepted, and implemented in many tools. More implementations of the standard will also help in
checking of the standard is correct and workable. The first step in stabilizing the MOF standard would be
solving the issues as mentioned in appendix D.

OMG's release order of standards is striking. In the case of the MDA introduction, the OMG first released a
modeling language, shortly after that they released the language that can be used to define the modeling
language. A couple of years later they stabilized a standard that covers the complete modeling vision of
which both languages are part. A more logical release order would be to first stabilize the complete vision,
after that to release the languages.

Reusing subsets out of other standards is a very often used approach for defining a new standard. The
advantage of this approach is that through the reuse standards are easily aligned with each other. The
problem with this approach is that the design of a standard heavily relies on the reused architecture. This
can lead to the situation where not the best solution is taken but the easiest to use. Furthermore, the result of
first releasing, for example, a modeling language and then releasing the language for defining the modeling
language is that the design of the latter language heavily relies on the modeling language.

Besides the release order of the OMG, we can also see that the priority of the OMG lies more at standards
that already earned their position in the software engineering, like UML. The UML is a self-contained and
sophisticated described specification. The MOF specification looks messy in our opinion, especially if we
compare it with UML. The UML introduces a specification style that is consistently used in the complete
specification. The MOF is not introducing any specification style, but is using one that is similar to the one
in UML. Unfortunately, it is inconsistently used in the specification, as mentioned in one of the issues in
appendix D.2. It would be more appropriate to release the MOF as self-contained specification. First, the
MOF is used for defining UML. Second, the MOF can define other models besides UML. In the current
release it is necessary to read a subset of UML to become familiar with the MOF, if the MOF is a self-
contained specification this will be avoided.

Metamodel and Metamodeling
The MOF is released as meta metamodel, which means that it is specialized in defining metamodels. With
the arrival of modeling in software engineering, the concept of metamodels and metamodeling is
introduced as well. The metamodel represents a language that is used for defining models. With
metamodeling we define metamodels and will use a meta metamodel as language for defining the
metamodels. This is done to provide all types of languages (metamodels) concentrated on different
domains, but still based on the same source language (meta metamodel). The idea of defining a domain
specific language is that domain experts can better translate their knowledge into a system. Each domain

 - 73 -

expert can define a part of the system in the area of his/her specialty. This helps in defining systems that are
more sophisticated.

The MOF defines the most essential concepts needed for software engineering and modeling. Therefore,
the MOF standard is released in a series of specifications, where each specification is specializing on a
concept. The core of the standard is a specification that defines an object-oriented modeling language.
Object-oriented languages are nowadays quite often used in the software engineering, and are a good
approach for specifying constructions in levels of abstractions. Besides concepts that are already often used
in the domain of object-orientation, the MOF defines some concepts that are not very commonly used in
this domain, like “subset” and “redefine-of” associations. Especially for these concepts, MOF should
provide a good specification that exactly describes what the meaning of the concepts is. The current
specification for those concepts is quite limited, which makes it hard to extract correct use of those
concepts.

The MOF expects that we talk about one metamodel. Actually, there are two of them, namely an essential
one and a more complete metamodel. The idea is that the essential version can describe the more complete
metamodel, but in which way and how is not defined in the specification. In some cases this works
misleading. It is questionable if metamodels defined based on the essential metamodel are compliant with
metamodels defined based on the complete metamodel.

Syntax
The notation as introduced by UML is commonly accepted in the software engineering. For example, class
diagrams are very often used in defining the class architecture of a system. The MOF is reusing these
diagrams for its own representation and for the representation of the instantiated metamodels. Reusing this
notation provides the MOF with a representation that is commonly accepted, and makes the standard and
instantiated metamodels easier to understand for software engineers.

Semantics
The semantics in the MOF are weak, and they are not considered the most imported part of the standard, as
stated in the UML infrastructure library [6]:“Currently, the semantics are not considered essential for the
development of tools; however, this will probably change in the future.”

In our opinion a well-defined semantics part of a language is as essential as all other language parts. The
best way for defining the semantics is in a formal language that does not contain any ambiguity in its
definition. Nevertheless, the best way is most times also the hardest way. Therefore, defining semantics in a
formal language is difficult. A more easy way is to define the semantics in a natural language. Especially
when still stabilizing the standard it is a good option to provide a relative correct and easy to interpret
semantics, but we should carefully consider the limitations of semantics defined in natural language.

With the reuse of the UML infrastructure library, we consider that the semantics of the UML infrastructure
library also becomes part of the MOF, although that this is not stated in the MOF standard. The semantics
in the UML infrastructure library are relatively well defined and understandable, with some exception, for
example, the inheritance of operations is incomplete. If we look to the MOF semantics, we can conclude
that these semantics are weakly defined and incomplete. Many constructions are not containing any
semantics, and constructions that contain semantics are very weak.

One of the goals of the MOF is to enable interoperability between tools. For realizing this, semantics
specified in a natural language are not enough. We will need a more formal definition that provides the
ability for checking the compliance and interoperability between tools.

The MOF should improve their semantics. The semantics are essential for obtaining the goals, like enabling
interoperability. The first step of improving the semantics will be to write them correctly and completely in
precise natural language, as already is done but not so correct and complete. The next step will define them
by using a formal language.

 - 74 -

Reflection
The reflective ability of UML infrastructure library is defined as [6]:
“A specific characteristic about metamodeling is the ability to define languages as being reflective, i.e.,
language that can be used to define themselves. The InfrastructureLibrary is an example of this, since it
contains all the metaclasses required to define itself. When a language is reflective, there is no need to
define another language to specify its semantics. MOF is reflective since it is based on the
InfrastructureLibrary, and there is thus no need to have additional meta-layers above MOF.”

In other words, the reflective ability of UML infrastructure library is defined as the fact that it contains all
the metaclasses required to define itself. Because of this facility, it does not requires another language to
specify its semantics.

The definition of the reflective ability defined in the UML infrastructure library contradicts with the
definition of semantics and reflection, as given in section 2.3 and 2.8. With the semantics we describe the
meaning in terms of the concepts that are already well-defined and well-understood. Therefore, we at least
need another language to define the semantics in order to explain them in an already well-defined and well-
understood way. This because of it is impossible to explain the meaning of new concepts when only using
those concepts.

Furthermore, reflection provides the ability for self-representation of its own behavior and structure. This
does not say any thing about the meaning of the system. Therefore, semantics are out of the scope of
reflection. So it makes no sense to state that not another language is needed to define the semantics if we
have a reflective language.

The metamodel hierarchy
The metamodel hierarchy as introduced by the OMG is criticized a lot in the literature. In most cases the
hierarchy is found to be too limited to provide the correct representation. The OMG states relationship
between elements in different layers as instanceOf. However, not each layer represents the same concept. It
is important to represent concepts as accurately as possible. When relationships are given the same name
they should represent exactly the same concepts. In the case of OMGs hierarchy this is doubtful, for
example, the instantiation of a metaclass into a class is not the same as the runtime interpretation of a class
as an object. In our opinion, a more specialized hierarchy will be useful.

Evaluation
Our first approach for investigating MOFs state of the art is looking for practical usage of the standard.
Tools will have a central role in the investigation. The way tools have implemented the standard is the
central concern for investigating the practical use of the MOF. Therefore, tools that claim to be MOF
compliant are investigated on the degree of supporting the MOF standard. Unfortunately, MOF compliant
tools are very rare, and most of the available tools are still very experimental implemented. According to
this, we changed our approach for investigating MOFs state of the art. Therefore, we described the practical
use in a more theoretical way. With the new approach we were able to describe our interpretation of the
standard and build based on this implementation an example MOF-based metamodel. Furthermore, we
found some undocumented issues remaining in the standard, which are described in appendix D.

Summary of conclusion
The modeling approach is a good shift in software engineering to obtain a higher level of abstraction for
defining a system. With the arrival of the MDA, the modeling concept for software engineering is
standardized. The MOF standard is as an object-oriented meta metamodel a good approach for
metamodeling. The standard can still use some improvement. The issues as mentioned in the appendix D
should be solved. The standard should be more stable, so that more tools are implementing it. The standard
should be released as self-contained specification for improving the readability. The standard should
improve the semantics. Therefore, the semantics defined in natural language should be complete, and
further they should be defined in a formal language. The standard should be more precise about the ability
of being a reflective language. The metamodel hierarchy, as used in combination with the MOF, should be
revised on its limitations.

 - 75 -

7

Glossary

Abstract syntax: defines the structure of the notation.

Axiomatic-top-layer: top layer in a modeling hierarchy described by another language.

Causal connection: connection that will hold if the domain represented by the system and internal structure
and behavior of the system is linked in such a way that when one form is changing the other form is
changing as well.

Concrete syntax: defines the physical notation.

Interpreter: one who interpret models.

Meaning: an interpreted goal or intent.

Meaningful: having meaning, function, or purpose.

Meaningless: having no meaning or direction or purpose.

Meta metamodel: model representing a language for describing metamodels.

Meta-layer: layer in a modeling hierarchy, will contain metamodels.

Metamodel: model representing a language for describing models.

Modeler: one who models.

Modeling hierarchy: collection of the metamodels, models, and runtime divided into layers.

Modeling: to make a model.

Model-layer: layer in a modeling hierarchy, will contain models.

Purpose: a result or effect that is intended or desired; an intention.

Recursive- top-layer: top layer in a modeling hierarchy described by itself.

Reflective system: defines a representation of its own behavior and structure, which provides the ability to
access, reason about, and alter its own interpretation [3].

Runtime-layer: layer in a modeling hierarchy, will contain the runtime view of a model.

 - 76 -

Semantic Domain: the well-defined and well-understood concepts, can be used for explaining a new
concept.

Semantics: defines the meaning.

Strict modeling hierarchy: modeling hierarchy where each element in a model has at least one relationship
with a meta-element.

Syntax: defines the notation.

 - 77 -

8

Reference

[1] Bézivin, J., Lemesle, R., Towards a True Reflective Modeling Scheme. In Reflection and Software
Engineering, W. Cazzola, R. Stroud and F. Tisato (eds.). Lecture Notes in Computer Science, Vol. 1826,
pp.21-28, Springer, Heidelberg, Germany, 2000

[2] Smith, B.C., Procedural Reflection in Programming Languages, PhD Thesis, MIT, Available as MIT
Laboratory of Computer Science Technical Report 272, Cambridge, Mass., 1982

[3] Blair, G., Notes on Reflective Middleware. Technical report, Computing Department, Lancaster
University, Bailrigg, Lancaster, LA1 4YR, UK, 1997

[4] Miller, J., Mukerji, J., eds.: MDA Guide Version 1.0.1. Object Management Group, 2003

[5] Gitzel, R., Hildenbrand, T., A Taxonomy of Metamodel Hierarchies, to appear, website:
http://bibserv7.bib.uni-mannheim.de/madoc/volltexte/2005/993/, 2005

[6] OMG, UML 2.0 Infrastructure Specification, OMG Adopted Specification, ptc/04-10-14, 2004

[7] Kühne, T., Understanding metamodeling, ACM Press, New YORK, 2005

[8] Atkinson, C., Kühne, T., “Calling a Spade a Spade in the MDA Infrastructure”, in: Proceedings of the
Metamodeling for MDA First International Workshop, pp. 9-12, York, UK, 2003

[9] OMG, Meta Object Facility (MOF) Specification 1.4, 2002

[10] OMG, Meta Object Facility (MOF) 2.0 Core Specification, ptc/04-10-15, 2004

[11] OMG, Ontology Definition Metamodel, 05-08-01, 2005

[12] Konstantas, D., Interoperation of object oriented applications. In O. Nierstrasz and D. Tsichritzis,
editors, Object-Oriented Software Composition, pages 69–95, Prentice-Hall, 1995.

[13] OMG, Meta-Object Facility “Common Facilities RFP-5”, cf/96-05-02, 1996

[14] Matula, M., NetBeans Metadata Repository, 2003

[15] Soley, R. M., Stone, C. M., Object Management Architecture Guide, Revision 3.0, 1995

[16] MetaData Repository website: http://mdr.netbeans.org/

[17] MOFLON website: http://www.es.tu-darmstadt.de/moflon/index.html

 - 78 -

[18] ModX website: http://noce.univ-lille1.fr/projets/ModX/

[19] Meas, P., Nardi, D., Meta-Level Architectures and Reflection, Elsevier Science Inc., New York, USA,
1988

[20] OMG, OCL 2.0 Specifications, ptc/2005-06-06, 2005

[21] Lemesle, R., Meta-modeling and modularity : Comparison between MOF, CDIF & sNets formalisms,
Laboratoire de Recherche en Sciences de Gestion, Université de Nantes, 1997

[22] Harel, D., Rumpe, B., Meaningful Modeling: What’s the Semantics of “Semantics”?, IEEE Computer
Society, 2004

[23] Rose Model containing UML2 metamodel, InfrastructureLibrary.041004.cat, ptc/04-10-05, 2004

[24] Seidewitz, E., What Models Mean, IEEE Computer Society, 2003

[25] Benyon, D., Information and Data Modelling, second edition, McGraw-Hill, Wokingham, 1997

[26] Stachowiak, H., Allgemeine Modelltheorie. Springer-Verlag, Wien and New York, 1973

[27] Kühne, T., What is a Model?, Darmstadt University of Technology, Darmstadt, Germany, 2005

[28] OMG, Meta Object Facility (MOF) 2.0 Core Specification, formal/06-01-01, 2006

[29] OMG, Meta Object Facility (MOF) 2.0 Versioning and Development Lifecycle Specification, ptc/05-
08-01, 2005

[30] OMG, Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification, ptc/05-11-01, 2005

[31] OMG, Meta Object Facility (MOF) IDL Language Mapping Specification, formal/06-01-02, 2006

[32] OMG, MOF 2.0/XMI Mapping Specification, v2.1, formal/05-09-01, 2005

[33] Gardner, T., Griffin, C., Koehler, J., Hauser, R., A review of OMG MOF 2.0 Query / Views /
Transformations Submissions and Recommendations towards the final Standard, In Workshop on
Metamodeling for MDA, pp. 179–197, 2003

[34] Java Metadata Interface (JMI) website: http://java.sun.com/products/jmi

[35] aMOF2.0forJava website:
http://www2.informatik.hu-berlin.de/sam/meta-tools/aMOF2.0forJava/index.html

[36] Eclipse Modeling Framework website: http://www.eclipse.org/emf/

[37] IDL website: http://www.omg.org/gettingstarted/omg_idl.htm

[38] Atkinson, C., Kühne, T., Model-Driven Development: A Metamodeling Foundation, IEEE Software
20(5), pp. 36-41, 2003

[39] Baader, F., Calvanes, D., McGuinness, D.L., Nardi, D., Patel-Scheider, P.F., The Description Logic
Handbook: Theory, Implementation and Applications, Cambridge University Press, 2003

[40] Dean, M., Schreiber, G., OWL Web Ontology Language Reference. W3C Recommendation 10, Latest
version is available at http://www.w3.org/TR/owl-ref/, 2004

 - 79 -

[41] ISO/IEC CD 24707 Information technology – Common Logic (Common Logic) – A Framework for a
Family of Logic-Based Languages, Latest version is available at http://cl.tamu.edu/docs/cl/24707-for-CD-
Spring-2005.doc, 2005

[42] Brickley, D., Guha, R.V., RDF Vocabulary Description Language 1.0: RDF Schema, Latest version is
available at http://www.w3.org/TR/rdf-schema/, 2004

[43] ISO/IEC FCD 13250-2: Topic Maps – Data Model, Latest version is available at
http://www.isotopicmaps.org/sam/sam-model/, 2005

[44] Patel-Schneider, P.F., Hayes, P., Horrocks, I., OWL Web Ontology Language Semantics and Abstract
Syntax, Latest version is available at http://www.w3.org/TR/owl-semantics/, 2004

[45] OMG, UML 2.0 Superstructure Specification, OMG Adopted Specification, ptc/2004-10-02, 2004

[46] OMG, Common Warehouse Metamodel (CWM) specification, OMG Adopted Specification, ad/01-
02-01, 2001

[47] Common Warehouse Metamodel (CWM) website: http://www.omg.org/technology/cwm/

[48] Álvarez, J.M., Evans, A., Sammut, P., Mapping between Levels in the Metamodel Architecture,
Proceedings of the 4th International Conference on The Unified Modeling Language, Modeling Languages,
Concepts, and Tools, pp. 34-46, 2001

[49] Atkinson, C., Kühne, T., Rearchitecting the UML Infrastructure, ACM Trans. Modeling and
Computer Simulation, vol. 12, no. 4, pp. 290-321, 2002

[50] Bézivin, J., Lemesle, R., Ontology-Based Layered Semantics for Precise OA&D Modeling, Lecture
Notes in Computer Science 1357, pp. 151-154, Springer, 1998

[51] Geisler, R., Klar, M., Pons, C., Dimensions and Dichotomy in Metamodeling, 3rd BCS-FACS
Northern Formal Methods Workshop, Ilkley, UK, 1998

[52] Gerber, A., Raymond, K., MOF to EMF: There And Back Again, Proc. Eclipse Technology Exchange
Workshop, OOPSLA 2003, Anaheim. USA, pp 66-70, 2003

 - 80 -

A. History of released OMG standards
This appendix shows the released OMG standards in a timetable.

 Year

Release 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

OMA [1] [2]

CORBA [1]

MDA [1] [2]

UML [2] [3] [5],[6]

RFP [1] [4]

MOF [2] [3] [4] [6] [7]

RFP [1] [5]

 Modeling

OMA
[1] OMG Object Management Architecture Guide (OMA Guide), Revision 1.0, 1990
[2] OMG Object Management Architecture Guide (OMA Guide), Revision 3.0, 1995

CORBA
[1] Common Object Request Broker: Architecture and Specification Reversion 1.1, 1991

MDA
[1] MDA Guide Version 1.0, 2001
[2] MDA Guide Version 1.0.1, 2003

UML
[1] Unified Modeling Language (UML) RFP, 1995
[2] Unified Modeling Language (UML) 1.0 and 1.1, 1997
[3] Unified Modeling Language (UML) 1.4, 2001
[4] Unified Modeling Language (UML) 2.0 Superstructure RFP, 2000
[5] Unified Modeling Language (UML) Specification: Infrastructure version 2.0, 2004
[6] Unified Modeling Language (UML) Superstructure version 2.0, 2004

MOF
[1] Meta-Object Facility "Common Facilities RFP-5", 1996
[2] Meta Object Facility (MOF) 1.1, 1997
[3] Meta Object Facility (MOF) Specification version 1.3, 2000
[4] Meta Object Facility (MOF) Specification version 1.4, 2002
[5] Meta Object Facility (MOF) 2.0 Core RFP, 2001
[6] Meta Object Facility (MOF) 2.0 Core Specification, 2004
[7] Meta Object Facility (MOF) 2.0 Core Specification, 2006

 - 81 -

B. EMOF
Figure 67 shows the EMOF without the use of any import and merge.

Comment
body : String

+type
0..1

Class

isAbstract : Boolean = false

+package
0..1

{ordered}
ownedAttribute

0..*

superClass
0..*

Factory

createFromString(dataType : DataType, string : String) : Object
convertToString(dataType : DataType, object : Object) : String
create(metaClass : Class) : Element

Tag
name : String
value : String

DataType

Operation

Parameter

EnumerationPrimitiveType

Type

+ isInstance(object : Object) : Boolean

URIExtent

contextURI() : String
Uri(object : Element) : String
element(uri : String) : Element

Extent

useContainment() : Boolean
elements() : ReflectiveSequence

ReflectiveSequence

add(index : Integer, object : Object)
get(index : Integer) : Object
remove(index: Integer) : Object
set(index : Integer, object : Object) : Object

ReflectiveCollection

add(object : Object) : Boolean
addAll(objects : ReflectiveSequence) : Boolean
clear()
remove(object : Object) : Boolean
size () : Integer

Object

getMetaClass() : Class
container() : Element
equals(element : Object) : Boolean
get(property : Property) : Object
set(property : Property, value : Object)
isSet(property : Property) : Boolean
unSet(property : Property)

Element

NamedElement

name : String [0..1]

EnumerationLiteral+enumeration
0..1

+ownedLiteral
{ordered} 0..*

Package
uri : String

+ownedType
0..*

+nestingPackage
0..1

+nestingPackage
0..*

Package
1

0..*

+annotatedElement
0..*

+ownedComment
0..*

0..1

+element
0..n

TypedElement

Property

isReadOnly : Boolean = false
default : String [0..1]
isComposite : Boolean = false
isDerived : Boolean = false
isID : Boolean

class
0..1

class
0..1

{ordered}
ownedOperation

0..*

raisedException
0..*

0..*

ownedParameter
{ordered} 0..*

operation

MultiplicityElement

isOrdered : Boolean = false
isUnique : Boolean = true
lower : Integer = 1 [0..1]
upper : UnlimitedNatural =1 [0..1]

Figure 67 : EMOF without import and merge

 - 82 -

C. UML notation for MOF

This appendix contains the explanation for the UML notation that is used as concrete syntax for the MOF.

Class
The notation of a class is a rectangular box with inside the class name. A class can be splits into two types,
namely abstract and non-abstract. The representation for defining if a class is abstract or non-abstract is
done through the class-name, in case of an abstract class the class-name will be italic and for a non-abstract
class the class-name will be normal. Figure 68 will show an abstract and non-abstract class.

AbstractClass NonAbstractClass

Figure 68 : Abstract and non-abstract class

EMOF and CMOF define an abstract or non-abstract class through the class attribute isAbstract. An abstract
class will have an isAbstract set to true, and a non-abstract class will have an isAbstract set to false.

Properties, operations, and parameters
For notating properties, operations, and parameters, a textual notation will be used. The textual notation can
contain a huge amount of options, and the exact syntax to notate these options will be explained in BNF.

Multiplicity
Each item can have the ability to define a multiplicity, the BNF for multiplicity is:

 <multiplicity> ::= <multiplicity-range>

<multiplicity-range> ::= [<lower> ‘..’] <upper>
<lower> ::= <integer>
<upper> ::= ‘*’ | <unlimited_natural>

Where:
BNF Description [UML] EMOF CMOF
<lower> The lower bound of

the multiplicity
interval

MultiplicityElement::lower MultiplicityElement::lower

<upper> The upper bound of
the multiplicity
interval

MultiplicityElement::upper MultiplicityElement::upper

<integer> Representing the
integer value

PrimitiveType::integer PrimitiveType::integer

<unlimited_natural> Representing the
unlimited natural
value

PrimitiveType::
unlimitednatural

PrimitiveType::
unlimitednatural

If the <lower> bound is equal to the upper bound, then an alternate notation is to use the string containing
just the <upper> bound. For example, “1” is semantically equivalent to “1..1”.
A multiplicity with zero as the <lower> bound and an unspecified <upper> bound may use the alternative
notation containing a single asterisk “*” instead of “0..*”. [6]

Visibility
Properties and operations can have a visibility, the BNF for visibility is:

 <visibility> ::= ‘+’ | ‘-‘

 - 83 -

Where:
BNF Description [UML] EMOF CMOF
<visibility> The visibility of the

property
X <<enumeration>>

VisibilityKind with literal
values: public, private

Property
Properties are used for attributes and associations, depending on there use they have a particular notation.
The BNF for property is:

 <property> ::= [<visibility>][‘/’]<name>[‘:’<prop-type>] [‘[‘<multiplicity>’]’]

 [‘=’<default>] [‘{‘<prop-property>[‘,’<prop-property>]*’}’]
<prop-modifier> ::= ‘readOnly’ | ‘union’ | ‘subsets‘ <property-name> | ‘redefines’
 <property-name> | ‘ordered’ | ‘unique’ | <prop-constraint>

Where:
BNF Description [UML] EMOF CMOF
‘/’ signifies that the property is

derived
Property::isDerived Association::isDerived

Property::isDerived
<name> The name of the property NamedElement::name NamedElement::name
<prop-type> the name of the Classifier

that is the type of the
property

TypedElement::type TypedElement::type

<multiplicity> multiplicity of the property.
If this is omitted it implies a
multiplicity of exactly one.

See Multiplicity See Multiplicity

<default> An expression that evaluates
of the default value or values
of the property.

Property::default Property::default

readOnly Means that the property is
read only

Property::isReadOnly Property::isReadOnly

union Means that the property is a
derived union of its subsets

X Property::isDerivedUnio
n

subsets <property-
name>

Means that the property
redefines an inherited
property identified by
<property-name>

X Property::subsettedPrope
rty

redefines <property-
name>

Means that the property
redefines an inherited
property identified by
<property-name>

X Property::redefinedPrope
rty

ordered Means that the property is
ordered

MultiplicityElement::is
Ordered

MultiplicityElement::isO
rdered

unique Means that there are no
duplicates in a multi-valued
property

MultiplicityElement::is
Unique

MultiplicityElement::isU
nique

Examples:

Property as attribute: Property as association:
aProperty : Property [1..2] {ordered, unique} aProperty 1..2 {ordered, unique}

Attribute

 - 84 -

Properties can be used as attributes; therefore, the property is notated in the class, as shown in Figure 69.

ClassA

Attribute : String

Figure 69 : Attribute

EMOF and CMOF define attributes as a Property with as type an instantiated DataType. A class can own the
attributes by means of the association ownedAttribute.

Operation and Parameter
Operations and parameters are always used in combination, where the parameter is a part of the operation.
Operations in combination with parameters are notated in the class. The BNF for operation and parameter
is:

 <operation> ::= [<visibility>] <name> ‘(‘ [<parameter-list>] ‘)’ [‘:’ [<return-type>]

 ‘{‘ <oper-property>[‘,’ <oper-property>]* ‘}’]
<parameter-list> ::= <parameter> [‘,’<parameter>]*
<parameter> ::= [<direction>] <parameter-name> ‘:’ <type-expression>
 [‘[‘<multiplicity>’]’][‘=’ <default>]
 [‘{‘ <parm-property> [‘,’ <parm-property>]* ‘}’]
<oper-property> ::= ‘redefines’ <oper-name> | ‘query’ |
 ‘ordered’ | ‘unique’ | <oper-constraint>

Where:
BNF Description [UML] EMOF CMOF
<name> The name of the operation NamedElement::name NamedElement::name
<return-type> The type of the return result

parameter if the operation
has one defined

TypedElement::type TypedElement::type

<direction> ‘in’ | ‘out’ | ‘inout’ (defaults
to ‘in’ if omitted)

X <<enumeration>>
ParameterDirectionKind

<parameter-name> The name of the parameter NamedElement::name NamedElement::name
<type-expression> An expression that specifies

the type of the parameter
TypedElement::type TypedElement::type

<default> An expression that defines
the value specification for
the default value of the
parameter

Parameter::default Parameter::default

<parm-property> Indicates additional property
values that apply to the
parameter

See Multiplicity See Multiplicity

redefines <oper-
name>

Means that the operation
redefines an inherited
operation identified by
<oper-name>

X Operation::redefinedOpe
ration

query Means that the operation
does not change the state of
the system

X Operation::isQuery

ordered Means that the values of the
return parameter are ordered

MultiplicityElement::is
Ordered

Operation::isOrdered

unique Means that the values
returned by the parameter
have no duplicates

MultiplicityElement::is
Unique

Operation::isUnique

 - 85 -

oper-constraint is missing from above table.
The notation for an operation and parameter is as follow:

operation(object : Object [1..2] {ordered, unique}) : Object [1..2] {ordered, unique}

EMOF and CMOF define the operations and parameters as Operation and Parameter class. A class can own
operations and parameters by means of the association ownedOperation.

Associations between classes
Associations are notated as a line between two classes, where each association end can have a property, as
shown in Figure 70.

ClassA ClassBpropertyA

propertyB

Figure 70 : Association

EMOF defines an association as two properties that are paired with each other. Therefore, the opposite
attribute of both properties are set with the opposite property. CMOF defines an association with the class
Association, this class contains both properties that form the association. Both properties are defined in the
same way as with the EMOF.

We can distinguish the following special associations, which can be used between classes.
Composite
Special association between two classes, where one class is the composed class and the other the
composing class, as shown in Figure 71.

ComposingClass ComposedClass
composite

Figure 71 : Composite association

EMOF and CMOF define composite through the property attribute isComposite. Setting the property which
owning the composed class with isComposite is true, will result in representing the filled diamond next to the
composing class.

Navigate
The navigate association will point to the navigated class, as shown in Figure 72.

Class NavigatedClass
navigatedClass

Figure 72 : Navigate association

EMOF defines a navigate association through assigning in the class an attributes with as type an
instantiated Class. CMOF defines a navigate association through associate the navigated property with the
association by means of the association navigableOwnedEnd.

Inheritance
Inheritance is a special association between two classes, where one class is the inherited class and the other
the inheriting class. The representation of inheritance is given in Figure 73.

 - 86 -

InheritedClass

InheritingClass

Figure 73 : Inheritance

EMOF and CMOF define inheritance by means of the class association superClass. The superClass association
is owned by the inheriting class and will point to the inherit class.

Package
A package is shown as a large rectangle with a small rectangle (a “tab”) attached to the left side of the top
of the large rectangle. The name of the package is placed within the large rectangle if the members of the
package are not shown within the large rectangle. Otherwise, the name of the package is placed within the
tab, as shown in Figure 74 [6].

Package

Package

Element

Figure 74 : Package

EMOF and CMOF define this by means of the class Package.

Instance
An instance is using the same notation as Class, with those differences that the name is underlined and will
contain name of the instantiated class as well. The instance name and instantiated class name are separated
with a colon ‘:’. The instance contains all attributes and operations direct owned and inherited by the
instantiated class. The name of the attributes and operations are enlarged with the originated class name,
both names are separated with a point ‘.’. Figure 75 is showing an instance example.

object:ClassB
ClassA.attributeA = valueA
ClassB.attributeB = valueB
ClassA.funcA()
ClassB.funcB()

Figure 75 : Object

 - 87 -

D. Issues

D.1. Issues UML infrastructure library

The following issues are related to the structure of the Basic package. The issues did arise after comparing
the infrastructure specification [6] with the Rose model [23] implementation of the infrastructure.

Issue: Unclear relationship between the Basic and Abstractions packages
1) According to the infrastructure specification [6] the Basic package is using metaclasses from the
Abstractions package, as indicated by the following text.
“Basic also contains metaclasses derived from shared metaclasses defined in packages contained in
Abstractions. These shared metaclasses are included in Basic by copy.”[6 page 91]
First, the mentioned copy construction is not defined in the infrastructure. Second, in contrary to the copy
definition, the Rose Model [23] of the infrastructure defines the deriving of metaclasses as import on the
package Abstractions::Elements and Abstractions::Multiplicity. (see Figure 76)

2) Furthermore, the infrastructure specification described the reuse of the package Abstractions::Comments
as followes.
“Basic::Comment reuses the definition of Comment from Abstractions::Comments.” [6 page 92]
The Rose Model [23] does not contain this import.

Abstractions

Elements

Comments

Ownerships

<<import>>

<<import>>

Multiplicities
<<import>>

Basic

<<import>>

<<import>>

Figure 76

3) The infrastructure specification described the Basic::MultiplicityElement as the reuse of
Abstractions::MultiplicityElement:
“Basic::MultiplicityElement reuses the definition from Abstractions::MultiplicityElement”[6 page 97]
The Abstractions package does not contain an Abstractions::MultiplicityElement. Instead of, the
Abstractions package does contain an Abstractions::Multiplicities::MultiplicityElement and an
Abstractions::MultiplicityExpressions::MultiplicityElement. Owing to the import of
Abstractions::Multiplicities the Abstractions::MultiplicityElement should be
Abstractions::Multiplicities::MultiplicityElement.

 - 88 -

Issue: Description of Element
The infrastructure specification [6] described the metaclass Element as followes:
“Element is an abstract metaclass with no superclass. It is used as the common superclass for all
metaclasses in the infrastructure library.” [6, page 45 and page 93]
Both packages, Abstraction and Basic, are using the same definition for Element. Therefore, it is logical to
assume that both packages will contain their own class Element, as shown in Figure 77.

InfrastructureLibrary

Abstractions Basic

Element Element

Figure 77

The Rose Model [23] specifies one single class Element, a metaclass that is part of Abstractions. The exact
name is Abstractions::Elements::Element. The Basic package imports this metaclass. (see Figure 78). We
assume this is the correct interpretation, therefore the text on page 93 should be changed accordingly.

InfrastructureLibrary

Basic

Abstractions

Element
(from Elements)

<<import>>

Figure 78

 - 89 -

Issue: Element and Comment in Basic
The definition of the classes Element and Comment in the Basic package is ambiguous. The Basic package
imports Abstractions::Elements::Element and Abstractions::Comments::Comment. An inheritance
relationship and an Association called ownedComment is introduced between Element and Comment in the
package Basic. However, these relationships were already defined for these classes in the package
Abstractions (see the top two diagrams in Figure 4). Therefore, the complete model of Element and
Comment in the Basic package is the model shown in Figure 79, clearly showing a redundant association
called ownedComment, and a redundant inheritance relationship between Abstractions::Elements::Element
and Comment.

Abstractions

Element
(from Elements)

Element
(from Comments)

Comment
(from Comments)

Element
(from Ownerships)

+owningElement

0..1

{subsets owner}

ownedComment

*
{subsets ownedElement}

0..1

*

annotatedElement
**

Basic (after import abstractions)

Element
(from Comments)

Element
(from Ownerships)

Element
(from Elements)

Comment
(from Comments)

+owningElement

0..1

{subsets owner}

annotatedElement
*

0..1

ownedComment

*
{subsets ownedElement}

0..1

*

*

+ownedComment
0..n

0..1

0..n

Basic

Comment
(from Comments)

Element
(from Elements)

+ownedComment
0..n

0..10..1

0..n

<<import>>

<<import>>

Figure 79

 - 90 -

D.2. Issues MOF

The following issues are according the MOF 2.0 specification [10]. For each issue the changes are given
according to the MOF 2.0 specification [28].

Typos issues EMOF

Issue – Common::ReflectiveCollection operation remove [10 page 36]:
The syntax for Common::ReflectiveCollection defines the operation remove as:

“remove(object : Object) : Boolean”

The explanation for Common::ReflectiveCollection defines the operation remove as:

“remove(object:Object) : Object
Removes the specified object from the collection. Returns true if the object was removed.”

The syntax and the explanation should define the same operation. Therefore, only one of these definitions
can be correct.

According [28]: No change.

Issue – Identifiers::Extent operation elements [10 page 32]:
The last sentence of the explanation for the operation elements is:

“See Chapter 4, “Reflection” for a definition of reflectiveSequence”

Chapter 4 of the MOF 2.0 core [10] is about “Terms and Definitions” and does not cover anything about
reflectiveSequence. The Chapter 9 is about “Reflection”, and Chapter 10 “Identifiers” explains the
ReflectiveSequence element in detail, as Chapter 10.5.2 “ReflectiveSequence”.

According [28]: No change.

Issue – EMOF Constraints [10 page 45]
The referred chapter in the sixes constraint is incorrect. The referred chapter should be Chapter 15, instead
of Chapter 1.

According [28]: Chapter number is changed in 15.

Issue – Class Specification Structure is missing [10 page 35, 36]
The sections “10.5.1 ReflectiveCollection” and “10.5.2 ReflectiveSequence” are not described according
the class specification structure.

According [28]: No change.

Issue – Explanation Type is missing. [10 page 25]
In chapter “9 Reflection” the explanation for type is missing.

According [28]: No change.

 - 91 -

Design Issues MOF

Issue – addAll operation of ReflectiveCollection [10 page 35]
For using the addAll operation for the ReflectiveCollection class the argument objects should be of the type
ReflectiveCollection.

According [28]: No change.

Issue – inheritance operations [10 page 36]
The ReflectiveSequence class does have as superclass the ReflectiveCollection and redefines the operations
introduced in ReflectiveCollection, as described as follows:

“Behavior of particular operations defined in ReflectiveCollection is the following when applied to a
ReflectiveSequence:

add(object: Object): Boolean
Adds object to the end of the sequence. Returns true if the object was added.”

The ability that inherited operations can be redefined in the inheriting class is not defined in the semantics
for inheritance.

According [28]: No change.

Issue – Object Capabilities, Object::getType(): Type [10 page 64]
The Reflective signature interpreted/modeled as the equivalent operation on the Instance model does
contain the following reflective capability:

“Object::getType(): Type modeled as ObjectInstance::getType(): Type
 post: result = self.classifier”

The Object as located in Reflection::Object does not contain an operation getType.

According [28]: No change.

Issue – Convenience/helper OCL operations [10 page 64]
The 15.3 Notes provide the following information about the Convenience/helper OCL operations:

“Convenience/helper OCL operations are used: these are defined in 10.8.”

If 10.8 is a number for a section in the MOF specification; there is no section 10.8 that defined the
Convenience/helper OCL operations.

According [28]: The part “: these are defined in 10.8” is deleted.

Issue – Return type operations as defined in the Object Capabilities [10 page 64, 65]
The following operations are defined in the 15.4 Object Capabilities as:

“Object::container(): Object modeled as Instance::container(): ClassInstance”

“Object::get(Property p): Element modeled as ObjectInstance::get(Property p): ElementInstance”

 - 92 -

In the Reflection package [10 page 25] the Reflection::Element does contain the operations, as container() and
get(). In case of the Reflection::Element operations, the return type is not corresponded. In Reflection::Element the
operations are defined as:

“container(): Element”

“get(property: Property): Object”

If the 15.4 Object Capabilities mean the same operations these return values should be aligned with each
other.

According [28]: No change.

