Vuil op weg

Modelmatige besparingen in ritindelingen van Twente Milieu

Bacheloropdracht Twente Milieu

Auteur: Jos Mulder
Studentnummer: s0089621
Onderwijsinstelling: Universiteit Twente
Studierichting: Technische bedrijfskunde
Vak: Voorbereiden Voorstel Bacheloropdracht (412807)
1e begeleider: Dhr L.L.M. van der Wegen
2e begeleider: Dhr J.M.G. Heerkens
Opdrachtgever: Twente Milieu
Begeleider vanuit opdrachtgever: Dhr. J.W.M. Smook
Huidige versie: Versie 9 (18 november 2007)
Inleverdatum 1e versie: 9 mei 2007
Voorwoord

“Bij deze bejaardenflats, kan je altijd zien als er weer een is heengegaan, dan ligt er allemaal afval naast de container omdat ze hebben geprobeerd een hele rol oud tapijt erin te proppen”; één van de vele wijsdheiten van de vuilniswagen.

Voor u ligt mijn bachelorverslag, een verslag dat het proces beschrijft dat ik tijdens mijn bacheloropdracht heb doorlopen en de resultaten waartoe dit heeft geleid. Het was aan mij de eer om ruim drie maanden lang te genieten van de intensieve samenwerking met Twente Milieu. Vooral de directe toepassing, van de resultaten, in de praktijk was een grote drijfveer alles uit de opdracht te halen wat erin zat. Twente Milieu is enerzijds een warm bedrijf waar je jezelf als stagiair direct thuis voelt. Anderzijds heeft iedereen in de maatschappij ermee te maken wat maakte dat de opdracht aanspraak bij mensen in mijn omgeving.
Ik wil hierbij Twente Milieu en met name mijn begeleider Jos Smook bedanken dat hij mij deze kans heeft gegeven. En daarnaast wil ik mijn zeer gewaardeerde collega’s Jan, Peter en Liesbeth bedanken voor hun humor en hun support, het waren drie fantastische maanden. Ook mijn begeleiders vanuit de universiteit, Leo van der Wegen en Hans Heerkens, hebben mij erg geholpen met hun kritiek en commentaar, mede door hun strenge toezicht kan ik nu zeggen dat ik trots ben op het verslag dat nu voor u ligt. Dank gaat ook uit naar mijn vriendin, Yvonne, die de naam aan het verslag heeft geschonken en met haar trouwe nieuwsgierigheid mij telkens weer terug liet kijken op de stappen die ik had gevolgd. Als laatste ben ik mijn moeder mijn dank verschuldigd, zij was behalve een luisterend oor en volleerd motivator ook de persoon die het verslag als volwaardig leek kon beschouwen. Bedankt mam.
Dan rest mij niets meer dan u plezier te wensen met het lezen van het verslag en Twente Milieu succes te wensen met haar verdere werkzaamheden.

Jos Mulder, 18 november 2007
Management summary

Het management van Twente Milieu heeft begin 2007 besloten om kosten binnen de uitvoerende afdeling te gaan reduceren. Aanleiding hiervoor zijn de personeelsuren die worden uitbetaald maar waarin overduidelijk geen werk meer wordt verricht. De vestigingsmanagers kregen de opdracht om kostenreducerende veranderingen door te voeren om met name de personeelsuren in de uitvoering terug te brengen.

Om te bepalen waar kostenreducerende mogelijkheden lagen voor de vestigingsmanagers is een nader onderzoek uitgevoerd naar de oorzaken van het bovengenoemde urenprobleem. Vervolgens is, mede op basis van kostenreducerende potentie, bepaald welke oorzaak onderwerp zou worden van uitgebreider onderzoek, met als uiteindelijke doel om hiervoor een oplossing te ontwikkelen en zodoende besparingen te realiseren. Op basis van interviews met mensen binnen Twente Milieu en relevante literatuur is een oplossing ontwikkeld die een oorzaak voor het urenprobleem wegneemt en aan de eisen van de eindgebruikers binnen Twente Milieu voldoet. De oplossing is geëvalueerd en de besparingen zijn geschat. Bovendien is nagedacht over de implementatie van de oplossingen en de consequenties hiervan voor de verschillende betrokken stakeholders.

Uit de eerste stap, het nader onderzoek, bleek dat het bestaan van de uren die wel betaald worden maar waarin geen werk meer wordt uitgevoerd twee hoofdoorzaken kent. Een van de oorzaken heeft te maken met de naleving van de P90-norm. Een oplossing voor dit probleem is wenselijk en zou de zojuist genoemden uren kunnen reduceren maar behaald daarmee geen werkelijke besparing omdat de huidige werkzaamheden slechts over meer uren uitgespreid worden. De andere oorzaak ligt in de verouderde ritplanning, de verdeling van de ledigingen van containers over de vijf vaste werkdagen, die door Twente Milieu wordt gehanteerd. Dit is een probleem waarbij een oplossing daadwerkelijk uren bespaart op zowel personeel als tractie.

Gebaseerd op gesprekken met mensen op verschillende afdelingen en locaties binnen Twente Milieu en relevante literatuur is gekozen voor het ontwerpen van een model om het uitwerken van een ritplanning door de planner te ondersteunen. Het model kan gebruikt worden om tot een optimale verdeling te komen voor de ledigingen van de containers over de vijf werkdagen.

Er is voor gekozen om het model in eerste instantie af te stemmen op de lediging van blokcontainers in Hengelo met de intentie om hem zo universeel te houden dat hij ook op andere locaties toepasbaar zou zijn. De invoering van de verdeling uit het model kan ten opzichte van de huidige situatie van de blokcontainerlediging in Hengelo een jaarlijkse besparing opleveren van €25.000. Dit houdt een reductie in van 14 procent van het totaal aantal personeelsuren gebruikt voor de blokcontainerlediging op deze locatie.

Hoewel het gebruik van het model een aardige besparing op kan leveren in Hengelo, zal dit niet per definitie voor iedere vestiging gelden. Dit is met name afhankelijk van de huidige ritplanning van de blokcontainerlediging op de desbetreffende locatie. Het gebruik van het model is eenvoudig en vergt niet veel tijd waardoor de gebruiksdrempel voor de planners laag is. Toch zal het management van Twente Milieu het gebruik moeten stimuleren omdat urenreductie niet de voornaamste taak is van de planners.

Tot slot dient te worden aangegeven dat het gebruik van het model voor andere inzamelsystemen dan de blokcontainers niet zonder de nodige aanpassingen kan geschieden, er zal daarvoor opnieuw gekken moeten worden naar de relevante variabelen, hun rol in het probleem en hoe hierdoor de opzet van het model wordt beïnvloed.
Inhoudsopgave

Voorwoord .. 2
Management summary .. 3
Inhoudsopgave .. 4
H1 Inleiding .. 6
H2 Probleemidentificatie .. 7
 2.1 Achtergrond ... 7
 2.2 Situatieschets ... 7
 2.3 Doelstelling .. 7
 2.4 Probleemkluwen ... 8
 2.5 Probleemstelling .. 12
 2.6 Afbakening .. 13
 2.7 Gevolgde werkwijze .. 15
H3 Praktijk en kostenoverzicht .. 17
 3.1 De prakrijk van de blokcontainerlediging in Hengelo ... 17
 3.2 Kostenoverzicht .. 18
H4 Eisen, wensen en beperkingen ... 20
 4.1 Betrokken partijen .. 20
 4.2 Doelfunctie ... 22
 4.3 Classificatie van ritplanningsproblemen en geïdentificeerde restricties 23
H5 Modelvorming ... 31
 5.1 Modeldefinities en oplossingsrichtingen .. 31
 5.2 Vergelijkbare praktijkproblematiek .. 40
 5.3 Keuze modelprincipe ... 42
 5.4 Evaluatie .. 43
H6 Uitwerking blokcontainermodel .. 45
 6.1 Doel en werking .. 45
 6.2 De opbouw ... 46
 6.3 De uitwerking .. 47
 6.4 Evaluatie ... 51
H7 Besparingsoverzicht .. 53
 7.1 Directe besparingen door het blokcontainermodel .. 53
 7.2 Indirecte besparingen door het blokcontainermodel ... 54
H8 Conclusies .. 56
H9 Aanbevelingen en verder onderzoek ... 58
 9.1 Implementatie ... 58
 9.2 Verandering in de dagelijkse werkwijze ... 60
 9.3 Mogelijkheden voor verder onderzoek .. 62
H10 Literatuurlijst ... 64
Bijlage 1... 67
Bijlage 2... 68
Bijlage 3... 69
Bijlage 4... 69
Bijlage 5... 70
Bijlage 6... 71
H1 Inleiding

Twente Milieu, de afvalinzameldienst van Enschede en omgeving, heeft bij het plannen van haar routes nooit gebruik gemaakt van een planningsalgoritme. Zij maakte haar routes op basis van het instinct en de ervaring van de planner en de chauffeurs. Inmiddels is het al weer een behoorlijke tijd geleden dat de routes herzien zijn. Dit leidde ertoe dat Twente Milieu heeft besloten om de ritindeling, routeplanning en de bezetting van deze routes door personeel en materieel eens opnieuw onder de loep te laten nemen. Twente Milieu verwacht hiermee een forse besparing op de personeelsuren te kunnen realiseren. Dit onderzoek heeft geresulteerd in een praktisch toepasbaar model voor de ritindeling van blokcontainers en een model waarin routes van minicontainers in de wintermaanden op basis van het aanbodpercentage worden samengevoegd. Daarnaast bevat het rapport aanbevelingen voor de implementatie van de, met behulp van de modellen, gegenereerde oplossingen en presenteert het mogelijkheden voor verder onderzoek met het oog op extra besparingen voor Twente Milieu.

Het rapport geeft een beeld van de doorlopen stappen tijdens het onderzoek; het in kaart brengen van de huidige en gewenste situatie en de formulering van een werkbare probleemstelling staan in hoofdstuk 2. In hoofdstuk 3 is de beschrijving van de praktijk en een kostenoverzicht uitgewerkt. De betrokkenen die te maken krijgen met de invoering van de ontworpen oplossingen zijn geïdentificeerd in hoofdstuk 4. Verder behandelt dit hoofdstuk de relevante variabelen en restricties die voor het blokcontainermodel van belang zijn. Na de uiteenzetting van bestaande principes volgt in hoofdstuk 5 de ontwikkeling van het model. Vervolgens wordt in hoofdstuk 6 het praktisch toepasbare model uitgewerkt dat Twente Milieu in staat stelt om op korte termijn een efficiëntieslag te maken in de ritindeling en de materiële en personele bezetting. In hoofdstuk 7 wordt een overzicht gepresenteerd van de besparingsmogelijkheden die met behulp van het model te realiseren zijn.

De conclusies met betrekking tot het uitgevoerde onderzoek zullen in hoofdstuk 8 worden gepresenteerd. Ten slotte zullen in het laatste hoofdstuk aanbevelingen gedaan worden omtrent de implementatie van de nieuwe ritindeling en inzet van personeel en materieel om deze soepel te laten verlopen. Het rapport wordt afgesloten met interessante mogelijkheden voor verder onderzoek met het oog op extra besparingen voor Twente Milieu.

Tijdens het uitvoeren van het onderzoek bleek dat een andere besparing mogelijk was die ook betrekking had op ritindelingen. Dit onderwerp heeft echter geen betrekking op de blokcontainers maar op de lediging van minicontainers en valt zodoende buiten de probleemafbakening van dit onderzoek. Het model ontwikkeld voor de ritindeling van de GFT-minicontainers en bijbehorende kostenbesparingen worden om die reden beschreven in bijlage 11.
H2 Probleemidentificatie

Een probleem ontstaat wanneer de huidige situatie afwijkt van de gewenste situatie. Om de gewenste situatie te kunnen toetsen aan de huidige situatie zullen beide eerst inzichtelijk gemaakt moeten worden.

2.1 Achtergrond

Twente Milieu NV is in 1997 ontstaan uit een samenwerking van de gemeenten Oldenzaal, Hengelo, Almelo, Enschede en Hof van Twente. Naderhand heeft de gemeente Losser zich hierbij aangesloten (Organisatie – bedrijfsprofiel, 2005). Zij verricht verschillende diensten voor deze gemeenten waaronder de huisvuilinzameldienst, het onderdeel waar deze opdracht betrekking op heeft. De huisvuilinzameldienst is verantwoordelijk voor de inzameling (ook wel lediging) van minicontainers (ook wel otto’s of kliko’s genoemd), inzameling van wijkcontainers (waaronder blokcontainers en ondergrondse containers) en inzameling van grofvuil. De opdracht richt zich specifiek op de eerste twee activiteiten (voor meer toelichting zie bijlage 7).

De dienstovereenkomsten met de verschillende gemeenten zijn op het gebied van huisvuilinzameling voor allen gelijk. Eind maart van het vorige jaar zijn overeenkomsten met de gemeenten opgebroken en omgezet in contracten voor onbepaalde tijd.

Afstemming tussen het aanbod van afval en de inzet van materieel en personeel verliep in de beginperiode voor het grootste gedeelte op basis van ervaring van de planner. Voor de route langs de containers werd veel vrijheid gelaten aan de chauffeurs die meestal vaste wijken afwerkten. De situatie is betreffende de manier van plannen in de laatste jaren niet veel veranderd, er wordt nog steeds niet gewerkt op basis van een planningsalgoritme, toch zal een uitgebreidere schets van de huidige situatie in het volgende hoofdstuk verhelderend werken. Maar eerst zal vanuit een probleemkluwen, waarin oorzaken en gevolgen van problemen op logische wijze aan elkaar gelinkt worden, een duidelijke probleemstelling worden gedestilleerd.

2.2 Situatieschets

Twente Milieu heeft het idee dat de ritindeling, de verdeling van de wekelijkse lediging van de containers over de dagen, en de routeplanning van de verschillende huisvuilophaaldiensten niet optimaal is. Dit idee is ontstaan doordat het geplande werk voor een werkdag van acht uur vaak al binnen zes uur gedaan is. Daarbij komt dat de routes in het verleden zijn opgesteld en sindsdien niet meer zijn herzien terwijl de diensten aan veel veranderingen, zoals nieuwe modellen containers en vuilniswagens, onderhevig zijn. Er zijn wel verbetermogelijkheden aangedragen door de chauffeurs, die uit eigen initiatief andere routes hebben voorgesteld echter deze zijn nooit doorgerekend of uitgeprobeerd omdat het verantwoordelijke personeel hier niet de tijd voor heeft gehad.

2.3 Doelstelling

Het doel van de opdracht is herziening van de ritindeling, routeplanning en de bezetting daarvan door personeel en materieel van de huisvuilinzameldienst van Twente Milieu zodat deze drie efficiënter worden en daarmee een kustentechnisch voordeel wordt behaald.

Om te bepalen of de ritindeling en routeplanning daadwerkelijk de centrale problemen zijn, oplossingen hiervoor mogelijk zijn en deze Twente Milieu vooruit kunnen helpen, is in de volgende paragraaf een probleemkluwen uitgewerkt. De probleemkluwen is opgesteld op basis
van eigen ervaring, momenten waarop meegelopen werd met dagelijkse activiteiten in en rond de huisvuilinzameling en gesprekken met de planner en de vestigingsmanager te Hengelo.

2.4 Probleemkluwen

2.4.1 Kostenbesparing
Vanuit het hoofdkantoor is voor het komende jaar een verlaging van drie procent van het totaal aan gebruikte uren voor de huisvuldiensten opgedragen bij de verschillende vestigingen (voor regio Hengelo betekent dit 2.497 uur, bijlage 5). Op het hoofdkantoor heerst dus het idee dat de loonkosten onnodig hoog zijn. Uit een blik op de financiële cijfers en overleg met de vestigingsmanagers door het management is gebleken dat de personele uitgaven, naast een grote kostenpost door haar variabele karakter ook een goed beïnvloedbare kostenpost is. Het is nu aan de vestigingsmanagers om deze kostenpost omlaag te brengen.

2.4.2 Personeelskosten
Op basis van het totale aantal wekelijks te legen containers lijkt de aanname gerechtvaardigd dat er teveel personeel voor de containerleding wordt ingezet. Dit lijkt te worden bevestigd door het feit dat het personeel dagelijks wordt betaald voor vaste werktijd waarin ze in de praktijk geen werk meer verrichten (voor visualisatie zie figuur 2). Hiervoor zijn verschillende oorzaken te noemen. Met name het feit dat het personeel hardwerkt en dus de vastgestelde de P90-norm, de norm voor de fysieke belastbaarheid van vuilnismannen (zie bijlage 3), maakt dat het personeel zich na de vuilnisinzameling vroegtijdig op het ABP meldt. Ze mogen dan echter geen ander werk meer doen. Dit heeft Twente Milieu doen besluiten om het personeel dan ook een uur eerder naar huis te laten gaan. Om dit verworven recht volledig uit te buiten is het personeel geneigd de pauzemomenten over te slaan.

Op het moment dat het personeel volle werkdagen bezig is met de inzameling van huisvuil (binnen de P90-norm) is het bovengesignaleerde deelprobleem opgelost.

Het teveel aan personeel kan verder worden verklaard door het feit dat er met een verouderde indeling van de ritten wordt gewerkt en dat er een eveneens verouderde planning bestaat voor de routes en de bijbehorende bezetting hiervan door materieel en personeel.

2.4.3 Ritindeling en routeplanning
Zoals gezegd zijn deze indeling en planning gebaseerd op instinct en ervaring van de planner en de chauffeurs en niet op een planningsalgoritme. Het feit dat er geen gebruik wordt gemaakt van een planningalgoritme betekent echter dat deze niet voorhanden is. Twente Milieu heeft sinds kort de beschikking over een applicatie die ontworpen is voor het plannen van routes. Deze is tot op heden alleen nog niet gebruikt. Met name door het ontbreken van een aanleiding in de ogen van de planner.

Hoewel de vastliggende leegdag van de minicontainers een harde restrictie is met gevolgen voor zowel de huidige planning als de toekomstige oplossing is een belangrijke oorzaak van de niet passende planning dat er nooit echt gekkeken is naar het aanbod van GFT- en restafval (zowel in kilo’s als in percentage van de aangeboden containers) en de afstemming daarop. Het besef bestaat dat het aanbod van GFT in de wintermaanden significant lager is dan in de zomer (zie figuur 1), echter hier is het bij heden niets mee gedaan waardoor personeel in de winter zelfs rond 12 uur ’s middags al klaar was. Dit komt in feite doordat het aantal geleegde containers op zo’n dag ver onder de norm ligt. Bovendien zijn de huisvuildiensten aan verscheidene veranderingen onderhevig, zoals nieuwe modellen containers en vuilnismawagens, zonder dat hier met de planning
adequaat op in wordt gespeeld.

![Graph of monthly average GFT containers per trip over the last 2.5 years](image)

Fig. 1
Vergelijking van het maandelijkse gemiddeld aantal GFT-containers per rit over de laatste 2,5 jaar.

2.4.4 P90-norm
Dat het personeel sneller werkt dan de norm kan inhouden dat de norm niet realistisch is, of dat ze, zoals bij het plannen van het legen van de ondergrondse containers meer werk krijgen dan volgens de norm verantwoord is. Maar het kan ook betekenen dat het personeel gestimuleerd wordt hard te werken dan genormeerd doordat ze eerder naar huis kunnen als het werk vroegtijdig af is. Werkend met de P90-norm is het in een aantal gevallen lastig om een planning te maken die enerzijds voorkomt dat personeel vroegtijdig klaar is en anderzijds geen andere kostenposten zal laten stijgen zoals benzinekosten (door meer verspreide routes).

Bijkomende gevolgen van het snelle werken hebben direct invloed op de totale kosten, zo zorgt het voor onzorgvuldigheid bij het ledigen van de containers wat leidt tot schade aan de vuilniswagen, de containers maar ook aan privé eigendommen van klanten (met name auto’s) en worden containers gemist waarvoor later nog moet worden terug gegaan. Daarnaast heeft Twente Milieu te maken met snel oplopende onderhoudskosten in de levenscyclus van de vuilniswagens. Deze worden naast ouderdom veroorzaakt door onvoorzichtige omgang, slecht onderhoud door de chauffeurs en het tekort aan tijd om kleine problemen aan de vuilniswagens te verhelpen waardoor grotere en duurdere reparaties zouden kunnen worden voorkomen.

De wettelijk vastgestelde P90-norm is wel een belangrijke reden voor de korte dagen die het personeel maakt maar ongeacht of de norm realistisch is, Twente Milieu heeft zich eraan te houden. Dit probleem is zodoende niet beïnvloedbaar. De manier waarop Twente Milieu dient om te gaan met de gevolgen van de P90-norm, zoals de korte dagen en het onzorgvuldig werken zijn meer bedrijfskundig van aard en zullen niet direct invloed hebben op de hoge personeelskosten. Vandaar dat dit buiten het kernprobleem valt.
Personeel wordt betaald voor werktijd waarin niet gewerkt wordt

Te veel personeelsuren

Oplopende schade- en reparatiekosten aan vuilniswagens, containers en privé-eigendommen van burgers

Er wordt geen gebruik gemaakt van een planningalgoritme

Er wordt geen rekening gehouden met verandering in de markt

Onzorgvuldigheid door te snel willen werken

Te hoge kosten

Containers moeten alsnog worden geleegd

Er is nooit gekeken naar aanbodpercentages van afval

De P90-norm is onrealistisch

Verouderde ritindeling

Verouderde routeplanning

Personeel houdt zich niet aan de pauzemomenten

Personeel werkt harder dan de P90-norm

Chauffeurs nemen niet de moeite om vuilniswagens goed te onderhouden

Personeel mag, als men klaar is met de inzameling, een uur eerder naar huis

Geen werk meer als personeel op ABP terugkomt

Figuur 2. De probleemkluwen
2.4.5 Eliminatie overige oplossingsrichtingen
De kosten van Twente Milieu bestaan naast de genoemde kosten in de probleemkluwen onder andere uit afschrijvingskosten van het materieel. Deze kosten zouden verlaagd kunnen worden als de vuilniswagens een hogere bezettingsgraad zouden hebben. Dit kan bewerkstelligd worden door te werken in shifts. Voor Twente Milieu zijn dit soort veranderingen echter de komende tijd geen optie, doordat eerst een geplande invoering van een nieuw heffingsmodel voor de burgers (DIFTAR¹) dient te worden ingevoerd, vandaar dat dit deel van de kosten buiten beschouwing is gelaten. In hoofdstuk 7 zal verder op dit nieuwe heffingsmodel worden ingegaan.

2.4.6 Kernprobleem
Uit de probleemkluwen (figuur 2), blijkt dat de hoge personeelskosten, gesuggereerd door het hoofdkantoor, inderdaad deels veroorzaakt worden door een verouderde ritindeling, routeplanning en bezetting van deze routes door materieel en personeel. De verwachte besparing die het gebruik van een planningsalgoritme voor nieuwe (efficiëntere) routes met zich meebrengt, is met name van tijdtechnische aard, wat zou inhouden dat het personeel dat gebonden is aan de P90-norm nog eerder klaar is. Dit zal geen werkelijke besparing opleveren aangezien het personeel niet voor extra werk kan worden ingezet.

Echter een planningsalgoritme voor het indelen van ritten zou wel kunnen bijdragen aan de gewenste besparing. Een efficiëntere indeling van de ritten kan ervoor zorgen dat het personeel werkelijk het maximale aantal containers per dag ledigt. Waardoor Twente Milieu op de minimale personeelsinzet uit zou moeten komen. Hoewel het lastig is om in te schatten wat het besparende effect op de personeelsuren daadwerkelijk zal zijn, kan uit de probleemkluwen worden opgemaakt dat een oplossing voor de verouderde ritindeling in vergelijking met de andere oorzaken van het probleem de meest directe en meest verlagende invloed zal hebben op de totale personeelskosten. Dit wordt onderstreept door de vestigingsmanager. Dit vormt om die reden het hoofdprobleem binnen deze opdracht.

2.4.7 Begripsomschrijving kernprobleem
Nu duidelijk is dat de verouderde ritindeling een belangrijke oorzaak voor de hoge kosten vormt, kan verder worden ingegaan op de principes van het indelen van ritten. Om te beginnen volgt hier een eerste begripsomschrijving. Voor het indelen van ritten gebruikt men in het algemeen een model. Een model is een versimpelde weergave van de werkelijkheid en helpt ons om op vereenvoudigde wijze oplossingen te vinden voor complexe problemen. Een optimalisatiemodel (minimalisatie/maximalisatie van een doelfunctie) maakt in de regel gebruik van algoritmen en/of heuristieken (v d Heijden & v d Wegen, 2004). Het verschil tussen beide is dat een algoritme zorgt voor absolute optimale oplossingen terwijl heuristieken trachten een zeer goede benadering te geven van de optimale oplossing. Een algoritme kan in het geval van routeplanning optimale oplossingen slechts genereren voor een beperkt aantal, laten we zeggen klanten, want hoe meer klanten moeten worden bediend hoe meer mogelijke routes langs deze klanten ontstaan. Heuristieken daarentegen kunnen vele grotere aantallen klanten aan, maar benaderen slechts de optimale oplossing. Een stapje abstracter dan de planning van de routes staat de indeling van de ritten. Deze indeling bepaalt welke container op welke dag geleegd dient te worden. Beide hangen met elkaar samen doordat na de indeling van de ritten de routes gepland dienen te worden en als de eerste stap geografisch onlogisch plaatsvindt dan kan dat in de tweede stap niet of zeer moeizaam worden recht gezet. De karaktereigenschappen (v d Heijden & v d Wegen, 2004) (A.

¹ DIFTAR staat voor gedifferentieerd tarief voor afvalverwijdering
Assad, 1988) van het probleem bepalen of het oplossingsmodel zal werken op basis van een algoritme of een heuristiek. Van beide bestaan verschillende vormen waarvan gebruik kan worden gemaakt, verderop in het rapport zullen deze behandeld en uitgewerkt worden. De twee zojuist benoemde stappen vormen de basis voor zogenaamde planningsalgoritmen. Anders dan de naam doet vermoeden bestaan deze planningsalgoritmen zowel uit heuristieken als algoritmen en worden gebruikt voor allerlei logistieke doeleinden. Zoals zowel uit de probleemkluwen als uit deze paragraaf is gebleken dat de ritindeling het meeste invloed heeft op de dagelijkse inzet van materieel en personeel terwijl de routeplanning in het geval van Twente Milieu slechts enige tijdwinst en besparing van benzine kan opleveren. In hoofdstuk 4 zal zodoende verder geconcentreerd worden op de eerste stap, de ritindeling.
Het optimalisatiemodel is kwantitatief (uitgedrukt in getallen) en bestaat zodoende uit een doelfunctie; datgene dat bereikt dient te worden, variabelen en restricties; beperkingen die aan het model zijn opgelegd (Winston, 2004). Deze worden later allen uitvoerig behandeld.
Zoals gezegd zijn de huisvuilinzameldiensten onderhevig aan veel veranderingen. Het eenmalig leveren van optimale ritindelingen zou kunnen inhouden dat deze op korte termijn niet meer optimaal zijn en weer opnieuw moeten worden herzien. Twente Milieu is dan ook meer gebaat bij een universeel model dat eenvoudig aan te passen is en herhaaldelijk gebruikt kan worden om optimale ritindelingen en bijbehorende bezetting van personeel en materieel te berekenen voor de verschillende regio’s waarin zij actief is.

2.5 Probleemstelling

Twente Milieu wenst een model voor het efficiënter indelen van de ritten voor haar huisvuilinzameldiensten waarbij opnieuw wordt gekeken naar de inzet van personeel en materieel. Deze wens wordt gerechtvaardigd door datgene wat uit de probleemkluwen is gebleken; het biedt een deeloplossing voor het terugdringen van de benodigde personeelsuren en de totale kosten. Aangezien de planners zullen werken met de modellen dient het in de eerste plaats aan hun wensen te voldoen. De mogelijke herindeling dient daarnaast een kostentechnische besparing op te leveren. Hierbij moet rekening worden gehouden met de restricties die aan het werk en de resources gekoppeld zijn.
De probleemstelling luidt dan ook als volgt:

‘Ontwerp een model waarmee Twente Milieu de ritindeling van haar huisvuilinzameldiensten kan optimaliseren’

Aangezien uit bovenstaande niet direct duidelijk wordt waar het model aan moet voldoen in de ogen van Twente Milieu terwijl dit van groot belang is bij het ontwerpen van het model zal in hoofdstuk 4 eerst een antwoord gevonden moeten worden op de volgende onderzoeksvraag:

‘Welke partijen binnen Twente Milieu ondervinden gevolgen van de invoering van het nieuwe model voor ritindelingen en hebben bovendien invloed op het vooraf op te stellen pakket van eisen?’

Als helder is welke rollen de verschillende partijen spelen en welke eisen ze (mogen) stellen aan het model dient te worden vastgesteld welke beperkingen de aard van het werk met zich mee
brent voor het model. Zodoende zal later in hoofdstuk 4 uitgegaan worden van de volgende onderzoeksvraag:

‘Welke beperkingen gelden voor het model waarmee Twente Milieu haar ritindelingen kan optimaliseren?’

Zoals aangegeven zal het model bestaan uit een of meerdere algoritmen of heuristieken. Om een geschikte keuze te kunnen maken uit de bestaande algoritmen en heuristieken wordt hiervan in hoofdstuk 5 een overzicht gemaakt, gebaseerd op de onderzoeksvraag:

‘Welke algoritmen en heuristieken bestaan er die relevant zijn voor het ontwikkelen van een model voor ritindelingen en welk algoritme, heuristiek of combinatie hiervan is het meest geschikt voor het probleem bij Twente Milieu?’

Als de bovenstaande onderzoeksvragen zijn uitgewerkt kan daarmee een model worden ontworpen dat invulling geeft aan de probleemstelling. Dit model zal in hoofdstuk 6 worden uitgewerkt. Om het nut van de implementatie van het model kracht bij te zetten zal in hoofdstuk 7 een overzicht gepresenteerd worden met de verwachte directe en indirecte besparingen na invoering van het model. Om de implementatie binnen Twente Milieu zo goed mogelijk te laten verlopen zullen in hoofdstuk 8 hiervoor de nodige aanbevelingen gedaan worden. Ook worden in dit hoofdstuk suggesties gedaan voor verbeteringen in de werkwijze binnen de huisvuildiensten van Twente Milieu en worden mogelijkheden aangedragen voor verder onderzoek met het oog op extra besparingen. Het rapport wordt afgesloten met de belangrijkste conclusies die uit het onderzoek naar voor zijn gekomen. In de laatste paragraaf van dit hoofdstuk komen de gevolgde stappen binnen dit onderzoek meer in detail, in de vorm van de gevolgde werkwijze, naar voren.

2.6 Afbakening

Hoewel Twente Milieu graag direct het ontworpen model, mits het daadwerkelijk kostenbesparend blijkt te werken, toe wil passen op de verschillende inzamelsystemen en in de verschillende regio’s waarin zij actief is, dient rekening te worden gehouden met het feit dat tussen de systemen en regio’s verschillen bestaan die niet eenvoudig overbrugbaar zijn door kleine aanpassingen in het model. Deze verschillen zullen in de volgende alinea’s worden behandeld. Zodoende zal de uitwerking van deze opdracht zich in eerste instantie beperken tot één inzamelsysteem in één regio. Hieronder zal duidelijk worden welke afbakening is gekozen voor het inzamelsysteem en de regio en waarom. Vanaf dit moment zullen belangrijke karaktereigenschappen en restricties van het model die in een tekstgedeelte van dit rapport naar voren komen, gevolgd worden door een verwijzing naar de desbetreffende paragraaf in hoofdstuk 4; ‘Eisen wensen en beperkingen’.

2.6.1 Opsplitsing soorten containers

Hoewel de inzameling van minicontainers en wijkcontainers eerder in één adem werden genoemd bestaat er met betrekking tot het uitwerken van de probleemstelling wel een wezenlijk verschil tussen beide. Wat tot gevolg heeft dat de modellen voor beide diensten dusdanig verschillend van aard zullen worden dat deze niet meer met simpele aanpassingen in elkaar zijn om te schrijven. De verschillen zullen hieronder besproken worden.
Minicontainers
- De dag waarop huisvuil in minicontainers in een bepaalde wijk wordt opgehaald mag niet veranderen ten opzichte van de huidige situatie.

Deze beperking is Twente Milieu niet door de gemeente opgelegd, echter een eerdere uiterst slechte ervaring met het veranderen van de ophaaldag van veertig adressen heeft het hoofdkantoor in overleg met de vestigingsmanager doen besluiten dit als restrictie op te leggen voor het model van de inzameling van de minicontainers.

Voor de inzameling van de minicontainers betekent dit dus dat er slechts geoptimaliseerd kan worden over de volgorde van verschillende wijken op de vaste ophaaldag, de momenten waarop geleegd dient te worden en de inzet van personeel en materieel.

Wijkcontainers: ondergrondse containers en blokcontainers
- Voor de inzameling van de wijkcontainers geldt dat de dagen voor het ophalen van het huisvuil niet vastliggen (§4.3 Geïnventariseerde beperkingen).

Dit geeft meer vrijheid betreffende optimalisatie van de ritindeling.

Om het model in eerste instantie zo universeel mogelijk op te bouwen zal uit worden gegaan van wijkcontainers. Want Nuortio (2006) stelt dat de optimalisatie van de minicontainerroutes goed vergelijkbaar is met een latere fase in het optimaliseren van routes waarbij de leegdag nog niet vastligt.

Binnen de inzamelsystemen van de wijkcontainers wordt gebruik gemaakt van zowel blokcontainers als ondergrondse containers (voor extra toelichting zie bijlage 10). Hoewel het verschil hiertussen kleiner is dan tussen wijkcontainers en minicontainers is een keuze tussen beide belangrijk om de restricties specifiek genoeg te maken zodat het model uiteindelijk daadwerkelijk praktische waarde heeft.

Keuze voor de blokcontainer
- Momenteel geldt voor het inzamelsysteem van de ondergrondse containers een capaciteitskort.

Voor het legen van de ondergrondse containers in de regio Hengelo (inclusief de ondergrondse containers van Enschede) is momenteel slechts één vuilniswagen beschikbaar en het aantal containers overschrijdt nu al het P90-normafhankelijke aantal van 266 containers. Om deze reden is het niet zinnig om hier een model voor te ontwikkelen.

- Het aantal blokcontainers is vrij constant (in ieder geval binnen de tijd die staat voor deze opdracht) terwijl het aantal ondergrondse containers snel toeneemt (zie bijlage 2), het constante karakter maakt het toetsen van het model eenvoudiger.

Doordat dit inzamelsysteem breed is in het aantal facetten dat dient te worden meegenomen in het model (denk onder andere aan meerdere vuilniswagens [§4.3 Geïnventariseerde beperkingen], de P90-norm [§4.3 Geïnventariseerde beperkingen] en de niet-vastliggende inzameldag) zal het, nadat het eenmaal ontwikkeld is, eenvoudiger zijn dit model om te zetten naar andere inzamelsystemen, immers het uitschakelen van restricties kost minder moeite dan het op de juiste manier toevoegen ervan.

2.6.2 Opsplitsing van de regio’s

Nu de keuze op de inzameling van blokcontainers is gevallen, zal ook nog afgebakend moeten worden binnen welke regio dit inzamelsysteem bekeken zal worden.
Twente Milieu kent een opdeling van de gemeenten in drie regio’s: gemeente Almelo staat als regio op zichzelf, Losser valt onder regio Enschede en Hof van Twente en Oldenzaal zijn ondergebracht bij Hengelo. Deze regio’s werken op operationeel niveau onafhankelijk van elkaar.

- Dit houdt in dat optimalisatie van de ritindeling en inzet van personeel en materieel slechts per regio kan geschieden [§4.3 Geïnventariseerde beperkingen].

Zonder duidelijke structuurverschillen tussen de regio’s is binnen de regio Hengelo specifiek gekozen voor de stad Hengelo om het basismodel op te baseren. Dit vanwege de fysieke plek van mijn stage, de korte, directe communicatielijnen met de aanwezige planner en vestigingsmanager en het opgebouwde contact met de rest van het personeel. Vanuit Twente Milieu is echter de wens gekomen om hierbij ook Hof van Twente mee te nemen, omdat deze 29 blokcontainers anders nog apart bekeken moeten worden en een besparing daarop is dan in ieder geval niet mogelijk.

2.6.3 Randproblemen
Het feit dat het personeel harder werkt dan de norm is een probleem dat buiten de scope van mijn opdracht valt. In het verleden zijn al complete studies gedaan naar cultuurproblemen binnen bedrijven. Zo ook binnen Twente Milieu, echter tot invoering van voorstellen is het tot op heden nog niet gekomen. Dit heeft voornamelijk te maken gehad met tijdsgebrek en andere prioriteiten op dat moment. Het beperkt de mogelijke oplossingen niet als hier in deze opdracht geen aandacht aan wordt besteed, vandaar dat deze problemen niet worden meegenomen. Echter om de praktische toepasbaarheid van het model te verhogen zullen dit soort zaken in hoofdstuk 8; ‘Aanbevelingen’, alsnog kort in behandeling worden genomen.

Deze paragraaf heeft duidelijk gemaakt dat de opdracht zich in eerste instantie zal richten op het ontwerpen van een model voor het optimaliseren van de ritindeling van de inzameldiensten van blokcontainers in de stad Hengelo. Dit vormt het uitgangspunt voor de vervolgstappen van de probleemaanpak.

2.7 Gevolgde werkwijze
Uit de beschrijving van de huidige situatie zijn elementen gefilterd voor de karakteristieken voor het model. Deze leggen vast welke heuristieken of algoritmen het meest geschikt zijn als basis voor het model. Vervolgens heeft een inventarisatie van de eisen en wensen van de partijen binnen Twente Milieu voor een groot deel bepaald hoe het model verder vormgegeven is. Dit heeft grotendeels vast gesteld in welk programma het model geschreven is en welke mogelijkheden het model moest bieden. Toen duidelijk was wat het model precies zou moeten kunnen, zijn de variabelen en de doelfunctie opgesteld. De aard van het werk legde vervolgens in combinatie met de wettelijk vastgestelde normen, in onder andere de CAO-bepalingen, beperkingen op aan het model.

Globaal moet het model voorzien in een ritindeling voor de verschillende dagen voor de lediging van de blokcontainers in Hengelo. Als de ritindeling is geoptimaliseerd kunnen daarna, door Twente Milieu met behulp van de applicatie voor routeplanning, ook de routes worden geoptimaliseerd als hier behoefte aan is.

Door een schatting te maken van de verwachte besparing is getoetst in hoeverre het model aan de doelstelling van Twente Milieu bijdraagt. Aangezien de implementatie van het model niet zal plaatsvinden in de periode van de uitvoering van deze opdracht zal Twente Milieu zelf de evaluatie van de werking van het model moeten uitvoeren. Aan de hand van deze evaluatie kan er
terugkoppeling naar het model en de processen plaatsvinden, deze zouden dan beter op elkaar kunnen worden afgestemd. Uiteindelijk kunnen op basis van een goed werkend model waarvan de prestaties bekend zijn toekomstige prestaties voorspeld worden en daardoor wordt een adequatere planning mogelijk (Sussams, 1969).

Samenvatting en vooruitblik
Uit dit hoofdstuk is duidelijk geworden wat het kernprobleem is waar Twente Milieu momenteel mee te maken heeft; een verouderde ritindeling. Dit heeft geleid tot een probleemstelling als beginpunt voor verder onderzoek. De probleemstelling is opgedeeld in drie in zekere zin onafhankelijke onderzoeksvragen die in de hoofdstukken 4 en 5 beantwoord zullen worden. Om het onderzoek enigszins behapbaar te houden zijn de nodige afbakeningen aangegeven met als belangrijkste uitkomst dat het onderzoek zich zal concentreren op de blokcontainerlediging in Hengelo.

In de laatste paragraaf van dit hoofdstuk zijn, aan de hand van de gevolgde werkwijze, globaal de gevolgde stappen tijdens het onderzoek besproken. Deze stappen zijn, zo zal blijken, voor een groot deel overgenomen in de opzet van dit rapport. Voordat in hoofdstuk 4 de eerste twee deelvragen zullen worden beantwoord, geeft het volgende hoofdstuk een beschrijving van de alledaagse praktijk bij de blokcontainerlediging in Hengelo en gaat het in op de kosten die hierbij een rol spelen. De beschrijving is niet noodzakelijk in de ontwikkelstappen van het model, maar desalniettemin verschaf het meer inzicht in de situatie omtrent de lediging van blokcontainers door Twente Milieu (handig voor lezers die hier niet bekend mee zijn) en maakt het duidelijk waar de kosten vandaan komen die in het model meegenomen zullen worden.

De verdere indeling van het rapport ziet er als volgt uit:

Hoofdstuk 3 geeft een praktijkbeschrijving van de blokcontainerlediging in Hengelo en presenteert aan de hand hiervan een kostenoverzicht met relevante kosten voor het model.

Hoofdstuk 4 behandelt de eisen en wensen die Twente Milieu aan het model stelt en gaat in op de beperkingen omtrent de blokcontainerlediging waar in het model rekening mee gehouden dient te worden.

Hoofdstuk 5 schetst een theoretisch kader voor het probleem door in te gaan op de verschillende bestaande modeldefinities en oplossingsrichtingen.

Hoofdstuk 6 staat in het teken van de uitwerking van het model. Hierbij komen doel, opbouw, werking en evaluatie van het model aan de orde.

Hoofdstuk 7 geeft een overzicht van verwachte directe en indirecte besparingen bij invoering van het model.

Hoofdstuk 8 presenteert de belangrijkste conclusies uit het onderzoek.

Hoofdstuk 9 sluit het rapport af met aanbevelingen omtrent de implementatie van het model en suggesties voor verbeteringen in de huidige werkwijze van de huisvuildiensten. Tot slot worden in dit hoofdstuk mogelijkheden aangedragen voor verder onderzoek met het oog op extra besparingen.
H3 Praktijk en kostenoverzicht

Aangezien het model uitgaat van de huidige situatie zal eerst een meer uitvoerige beschrijving worden gegeven van de activiteiten in de huidige situatie bij de inzameling van blokcontainers in Hengelo. Deze beschrijving is niet noodzakelijk voor het begrijpen van het ontwikkelde model maar zorgt voor een beter begrip van het onderzochte onderwerp. Bovendien zal in paragraaf 3.2 een kostenoverzicht worden gepresenteerd dat gebaseerd is op kostenposten die uit de praktijk beschrijving worden gedestilleerd. De beschrijving in paragraaf 3.1 heeft een globaal karakter, in hoofdstuk 4, waar onder andere de restricties voor het model worden behandeld, zal in meer detail worden ingegaan op de overige variabelen die een rol spelen in het model. De beschrijving in dit hoofdstuk is gebaseerd op eigen feitelijke waarnemingen en is aangevuld met de ervaringen van de planner en vestigingsmanager in Hengelo.

Zoals aangegeven zal in paragraaf 3.2 een overzicht gepresenteerd worden van de kosten die een rol spelen bij de huisvuilinzameldiensten. Voor de herkomst van de kosten zal worden terugverwezen naar de praktijk beschrijving. Dan zal ook duidelijk worden dat niet alle kosten relevant zijn voor het model. Er zal kritisch worden bekeken welke wel en welke niet dienen te worden meegenomen en welke invloed ze zullen hebben op de werking en de uitkomst van het model.

3.1 De prakrijk van de blokcontainerlediging in Hengelo

Zoals eerder aangegeven bestaat de huisvuildienst van Twente Milieu uit een aantal componenten, waarvan minicontainers en wijkcontainers uiteindelijk de belangrijkste toepassingsgebieden zijn van het model. In deze opdracht ligt de focus op de blokcontainers in Hengelo. Deze paragraaf zal zich dan ook hiertoe beperken. Gegevens over het totale toepassingsgebied zijn opgenomen in bijlage 7.

3.1.1 Een doorsnee werkdag

Na een deel van de route (het legen van een aantal blokcontainers) rijdt de vuilniswagen naar Twence, een groot afvalverwerkingsbedrijf. Het moment waarop geleegd wordt is afhankelijk van de gebruikte capaciteit van de vuilniswagen en de positie waar de vuilniswagen zich bevindt [§4.3 Geïnventariseerde beperkingen]. Immers als de vuilniswagen vol zit moet er geleegd worden, anderzijds als de vuilniswagen praktisch langs Twence rijdt hoewel er nog capaciteit over is, kan het efficiënt zijn om toch te gaan legen. Personeel verantwoordelijk voor het legen van blokcontainers maken meestal gebruik van hun

[^2]: Het ABP is het terrein waar inwoners van Hengelo hun (gроф)vuil kunnen storten. Op dit terrein wordt al het afval gescheiden. Vervolgens wordt het afval hiervandaan naar verscheidene afvalverwerkingsfabrieken in de regio gebracht
pauzes, om ongeveer 10:00 uur en 12:00 uur, in de kantine op het ABP Hengelo [§4.3 Geïnventariseerde beperkingen]. Tussen 14:00 uur en 15:00 uur zijn de meesten klaar en komt iedereen binnendruppelen op het ABP in Hengelo. Ze moeten dan tot kwart over drie zijn voor de meeste wachten voordat ze naar huis mogen. In deze tijd zijn geen taken meer ingeroosterd voor het personeel, meestal blijven ze in die tijd in de kantine wachten. Ze worden echter wel tot kwart over vier betaald.

3.1.2 Uitzonderingen
Het gebeurt geregeld dat het personeel op de wagens gebeld wordt vanwege een extra opdracht, bijvoorbeeld een container die de dag ervoor of eerder die dag is overgeslagen bij het legen of als containervervoer bij een ontruiming van een huis of wietplantage [§4.3 Geïnventariseerde beperkingen].
Als feestdagen waarop niet wordt geleegd op een doordeweekse dag vallen dan worden deze ledigingen altijd op de voorafgaande zaterdag al gedaan of ingehaald op de eerst volgende zaterdag, afhankelijk welke dag van de week het betreft, het gaat altijd om de dichtstbijzijnde zaterdag [§4.3 Geïnventariseerde beperkingen].
Zoals gezegd worden iedere dag de vuilniswagens die gaan rijden vooraf gecontroleerd op gebreken. Deze gebreken worden op een inspectielijst bijgehouden. Een aantal gebreken brengen de veiligheid dusdanig in gevaar dat deze eerst verholpen dienen te worden voordat de vuilniswagen de weg op mag. Het gebeurt ook regelmatig dat een van de vuilniswagens tijdens een rit uitvalt, dit wordt dan meestal opgevangen door de andere vuilniswagens op de weg of door een reserve wagen, mits deze niet in gebruik is door een andere regio [§4.3 Geïnventariseerde beperkingen].

3.1.3 Wekelijkse aantal ledigingen
Per week worden in Hengelo 724 ledigingen van blokcontainers verricht. Er staan 352 blokcontainers door Hengelo verspreidt, hiervan worden er 332 tweemaal weeks en 20 driemaal weeks geleegd. In Hof van Twente worden wekelijks 29 containers éénmaal geleegd, wat het totaal brengt op 753 ledigingen. Dit is gebaseerd op gemeentelijk onderzoek aan het begin van 2007.

3.2 Kostenoverzicht
Uit de bovenstaande beschrijving zijn verschillende kostenposten te destilleren. Echter lang niet alle posten zijn van belang voor het model. Tabel 3.1 geeft een overzicht van de kosten die relevant zijn voor het model inclusief het tarief van deze kosten zoals deze gebruikt zullen worden in het model. Deze tarieven zijn gebaseerd op de begroting van Twente Milieu van 2007.

<table>
<thead>
<tr>
<th>Kostenpost</th>
<th>Tarief</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gemiddelde kosten van een vast in dienst zijnde chauffeur/belader</td>
<td>€ 30,95 per uur</td>
</tr>
<tr>
<td>Gemiddelde kosten van een invalkracht van Randstad; belader (zie, bijlage 8)</td>
<td>€ 25,31 per uur</td>
</tr>
<tr>
<td>Gemiddeld uurtarief voor het gebruik van een kraakperswagen, vuilniswagen voor het legen van blokcontainers (excl. personeel, incl. brandstofverbruik)</td>
<td>€ 31,15 per uur</td>
</tr>
<tr>
<td>Dagtarief voor het huren van een kraakperswagen (GCB/GEC) bij Cleanmat*</td>
<td>€ 293,50 per uur</td>
</tr>
</tbody>
</table>

* De vuilniswagens kunnen alleen per dag gehuurd worden en dit is het tarief per 1 januari 2007 inclusief kosten voor brandstofverbruik (zie hiervoor bijlage 6).
De kosten voor personeel zijn inclusief alle premies voor de werkgever. In het uurtarief van het gebruik van een kraakperswagen zijn naast de afschrijvingen en het brandstofverbruik ook kosten opgenomen voor onderhoud, de standplaats, verzekeringen en keuringen.
Er zijn nog wel andere kostenposten te noemen die verbonden zijn aan de inzameling van huisvuil maar die zullen door het gebruik van het model niet worden beïnvloed. Deze worden logischerwijs niet mee genomen in het model. Een voorbeeld van zulke kosten zijn de kosten van leidinggevende op vestigingsniveau. De kostenposten die van belang zijn voor deze opdracht vallen onder de afdeling uitvoering, materieel en personeel. In bijlage 9 staat een overzicht van de opbouw van de kosten. Het model zal geen onderscheid maken tussen deze kostenfracties, maar zal voor zowel personeel als materieel uitgaan van de totale kosten per uur (voor verdere toelichting zie bijlage 4).

Hoewel in de begroting een tarief per uur wordt berekend wordt personeel en materieel per dagdeel (vier uur) ingezet. Dit betekent bijvoorbeeld dat personeel en materieel op papier twee dagdelen achter elkaar worden ingezet en dus ook voor een hele dag betaald worden terwijl ze bijvoorbeeld maar zes uur werk hebben te doen hebben. In het model zal zodoende ook gerekend worden met dagdelen.

Budgetstructuur
Twente Milieu heeft sinds het begin van dit jaar, in overleg met de gemeenten, een nieuw kostprijsmodel (Kostprijsmodel 2007, pag. 8-10) ingesteld. Hierin is eerst onderscheid gemaakt tussen verschillende kostenposten binnen Twente Milieu (bijlage 9). Vervolgens is het cumulatieve budget van de gemeenten volgens een bepaalde verdeelsleutel over deze posten verdeeld. Zo heeft iedere regio naar rato (in verhouding met de werkzaamheden) een budget te besteden.

Samenvatting en vooruitblik
In dit hoofdstuk is een beschrijving gegeven van de huidige situatie omtrent de blokcontainerlediging in Hengelo. Deze beschrijving heeft een globaal karakter en dient voornamelijk voor meer inzicht in het onderwerp van dit onderzoek en de kostenposten die een rol spelen binnen dit onderwerp. Dit heeft in de laatste paragraaf geleid tot een overzicht van de relevante kosten met betrekking tot de blokcontainerlediging. Naast kosten is er nog een groot aantal andere variabelen die een rol spelen binnen dit probleem, deze zullen in het komende hoofdstuk worden behandeld. Aan het einde van dat hoofdstuk zal antwoord gegeven worden op de eerste twee onderzoeksvragen omtrent eisen en wensen binnen Twente Milieu ten aanzien van het model en de restricties die uit de probleemkarakteristieken voort komen en in het model dienen te worden opgenomen.
H 4 Eisen, wensen en beperkingen

Om antwoord te kunnen geven op de onderzoeksvraag:

‘Welke partijen binnen Twente Milieu ondervinden gevolgen van de invoering van het nieuwe model voor ritindelingen en hebben bovendien invloed op het vooraf op te stellen pakket van eisen?’

zal in paragraaf 4.1 bepaald moeten worden welke partijen gevolgen zullen ondervinden van het in te voeren model. Hieruit zal bovendien moeten blijken welke betrokkenen ook daadwerkelijk eisen kunnen stellen aan het model en welke eisen dit zijn. Met deze partijen of representatieve personen daarbinnen zal worden overlegd om zo te komen tot een pakket van eisen waaraan het model moet voldoen. Gebaseerd op de doelstelling en het pakket van eisen van Twente Milieu volgt in paragraaf 4.2 de doelfunctie voor het model.

Paragraaf 4.3 zal de karakteristieke eigenschappen van ritplanningsproblemen doorlopen en het probleem bij Twente Milieu hieraan spiegelen, op die manier vindt er een classificatie van het probleem plaats. Dit maakt het ontwikkelen van een passend model eenvoudiger. Uit de classificaties zullen direct restricties worden gefilterd die het probleem en daarmee het model beperken. Hiermee wordt antwoord gegeven op de tweede onderzoeksvraag:

‘Welke beperkingen gelden voor het model waarmee Twente Milieu haar ritindelingen kan optimaliseren?’

Deze restricties komen behalve van de genoemde partijen ook vanuit algemeen geldende normen, CAO-bepalingen, contracten met de gemeenten en vastgestelde wetten.

4.1 Betrokken partijen

Een inventarisatie van de betrokkenen binnen het werkgebied van Twente Milieu bij de gevolgen van de invoering van het nieuwe model heeft het volgende overzicht opgeleverd. Als de bewuste partij eisen kan stellen aan of wensen kan uitspreken voor de invulling van het model dan zullen deze direct worden genoemd.

4.1.1 Vestigingsmanager

De uiteindelijke verantwoordelijke voor de invoering van het model en de werkwijze waarin het model advies geeft, is de vestigingsmanager. Mocht het model onverhoopt toch leiden tot complicaties dan is het de verantwoordelijkheid van de vestigingsmanager om deze problemen op te lossen. Het gevoel van het al dan niet slagen van het model zal voor hem een belangrijk deel afhangen van de complicaties bij de invoering en het gebruik. De kans op complicaties dient daar waar mogelijk geminimaliseerd te worden. Daarnaast is het aan de vestigingsmanager om het totale aantal werkuren terug te brengen (opdracht vanuit het hoofdkantoor (zie § 2.4)), de mate waarin het model hierin slaagt, zal voor hem belangrijk zijn. Het terugbrengen van de werkuren mag geen afbreuk doen aan de totale kostenbesparing oftewel de totale kosten dienen te worden geminimaliseerd en daarmee het totaal aantal werkuren. Naast een minimalisering van de totale kosten dienen de personeelsuren zoveel mogelijk te worden teruggebracht.
Ten slotte is voor hem naleving van de P90-norm erg belangrijk, deze staat in principe vast. **Het model dient de P90-norm strak te hanteren.** Pas als uit de gevoeligheidsanalyse blijkt dat, bij wijze van spreken één container kan leiden tot een significante extra besparing kan worden gekeken of er enige rek in zit.

4.1.2 Afdeling planning
Het indelen van de ritten, plannen van de routes en het verzorgen van de bezetting van deze routes door personeel en materieel zijn taken die liggen bij de afdeling planning. Zij zal uiteindelijk moeten werken met het model. Momenteel wordt puur voor het digitaal bijhouden van de ritindeling van de blokcontainers een Accesssysteem gebruikt. Hierin worden wijzigingen doorgevoerd op het moment dat er bijvoorbeeld nieuwe containers bijkomen of verdwijnen of containers worden toegewezen aan andere ritten. Voor deze afdeling is het van belang dat de uitkomsten van het model gemakkelijk te gebruiken zijn in de Access-applicatie. Access wordt door alle vestigingen van Twente Milieu gebruikt en men wil dit graag zo houden. **Kortom het model dient rekening te houden met het gebruiksgemak voor de planners.** Dit houdt in dat planners eenvoudig waarden van restricties moeten kunnen aanpassen en restricties eenvoudig in en uit moeten kunnen schakelen. Daarbij komt dat de uitkomsten van het model eenvoudig naar de Access-applicatie moeten worden omgeschreven. Tot slot is het voor de planner belangrijk dat het geheel overzichtelijk is zoals het aantal ritten per dag en het aantal containers per rit aangezien hiermee rekening moet worden gehouden in de planning. **Het model en haar uitkomsten dienen overzichtelijk gepresenteerd te worden.**

4.1.3 Hoofdkantoor
De directie zou graag het model toepasbaar willen hebben voor de verschillende inzamelsystemen en regio’s, mits het model uiteraard een (kosten)besparing oplevert. **Voor hen is het universele karakter van het model van belang waardoor het eenvoudig in de andere regio’s en voor andere inzamelsystemen gebruikt kan worden.**

4.1.4 Vestigingsmanagers regio’s Enschede en Almelo
In de regio’s Enschede en Almelo zijn andere vestigingsmanagers verantwoordelijk, als het model ook bij hen in gebruik genomen dient te kunnen worden, zal het ook aan hun eisen moeten voldoen. Om ook aan hun eisen en wensen tegemoet te komen is hen gevraagd kritisch te kijken naar een voorlopige modelomschrijving. Hier is geen commentaar op geweest.

4.1.5 Personeel (vuilniswagens)
Het gebruik van het model zal naar alle waarschijnlijkheid tot gevolg hebben dat de leegdag van een aantal containers verandert. Dat hiermee ook de routes veranderen ligt voor de hand. De samenstelling waarin het personeel aan de nieuwe routes gekoppeld wordt kan verschillen van de huidige situatie, maar dat is geen gegeven. De grootte van het personeelsbestand, inclusief het flexibele gedeelte, zal worden afgestemd op de behoefte vanuit de planning. Door gebruik van het model en hierdoor beter benutten van de personele capaciteit kunnen de werkdagen langer worden, maar de inschatting door de vestigingsmanager is zo dat het personeel nog ruim op tijd klaar zal zijn en dat het zodoende niet op tegenstand zal stuiten.

4.1.6 Technische dienst (onderhoud vuilniswagens)
De nieuwe indeling kan als gevolg hebben dat minder vuilniswagens gebruikt worden, maar wel langer per dag. Dit zou betekenen dat de vuilniswagens langer in de garage kunnen blijven staan.
dat dus niet alleen de hoognodige reparaties gedaan kunnen worden, maar ook vaker groot onderhoud verricht kan worden en dat de wagens op die manier veel beter onderhouden kunnen worden. Echter door de strakkere indeling van de vuilniswagens zal het vaker gebeuren dat kleine, noodzakelijke reparaties, voor gebreken die onderweg zijn ontstaan, nog in de avonduren moeten worden uitgevoerd.

4.1.7 Aangesloten gemeenten en klanten (bewoners van de verschillende steden/regio’s)
Zij zullen in principe niets merken van de veranderingen in de ritindeling of de routes. Het zou echter zo kunnen zijn dat in de beginperiode, door nieuwigheid enige complicaties optreden zoals containers die niet geleegd worden doordat ze worden vergeten, maar dit zullen uitzonderingen zijn.

Zoals is gebleken zijn alleen de eerste vier genoemde partijen in de positie om voorwaarden te stellen aan het model. Het personeel op de vuilniswagens en uit de werkplaats (technische dienst) zullen de gevolgen van de invoering en het gebruik wel merken, hun wensen wijken echter te veel af van de behoeften van het management. Dit maakt dat laatstgenoemde heeft aangegeven dat voorwaarden aan het model niet door het uitvoerende personeel gesteld kunnen worden.
Nu naast de vooraf omschreven doelstelling duidelijk is aan welke eisen het model zal moeten voldoen, welke wensen dienen te worden na gestreefd en welke kosten zullen worden meegenomen, is het tijd om de doelfunctie van het model op te stellen.

4.2 Doelfunctie
In de doelfunctie van een kwantitatief model wordt altijd een variabele geminimaliseerd of gemaximaliseerd (Winston, 2004). In het geval van een ritindeling kan deze optimalisatiefunctie gebaseerd worden op verschillende variabelen. Zo kan bijvoorbeeld gekozen worden voor het minimaliseren van het totaal aantal gereden kilometers of het minimaliseren van het totaal aantal in te zetten vuilniswagens. De keuze voor de variabelen binnen de doelfunctie hangt af van datgene wat met het model bereikt dient te worden. In het geval van Twente Milieu is gekozen voor het maximaliseren van de totale besparingen oftewel het minimaliseren van de totale operationele kosten (aangezien dit de enige kosten zijn waar in dit model naar gekeken wordt). Zodoende is de doelfunctie, in woorden, als volgt geformuleerd:

‘Minimaliseer de totale operationele kosten’

Het kostenoverzicht (incl. de daar genoemde bijlagen) dat in paragraaf 3.2 is weergegeven, is in wezen de uitwerking van de kennisvraag: ‘Waaruit zijn de operationele kosten van de inzameling van blokcontainers binnen Twente Milieu opgebouwd?’

Op basis van de cijfers en modellen uit die paragraaf zullen de huidige operationele kosten vergeleken kunnen worden met de operationele kosten die gelden na nadat het nieuwe model in gebruik is genomen. Mits het model goed functioneert, zou het opvolgen van de uitkomst ervan in praktijk moeten leiden tot besparingen. Maar om goed te functioneren moet de opbouw en vervolgens de input uiterst betrouwbaar zijn. Naast de doelfunctie behoren ook de restricties tot de opbouw van het model. Zoals eerder aangegeven komt een groot aantal restricties uit algemeen geldende normen, CAO-bepalingen, contracten met gemeenten en vastgestelde wetten. Daarnaast zijn er ook technische restricties waaraan het model gebonden is, zo heeft iedere regio een bekend en doorgaans vast wagenpark en iedere vuilniswagen weer een vaststaande capaciteit.
In de volgende paragraaf zal aan de hand van de karakteristieke eigenschappen van routeringproblemen het geheel van alle restricties behorende bij het model worden behandeld.

4.3 Classificatie van ritplanningsproblemen en geïdentificeerde restricties

4.3.1 Routering en scheduling

Er wordt onderscheid gemaakt tussen problemen die enkel geografische aspecten in beschouwing nemen, zoals de ligging van klanten en problemen die puur gericht zijn op tijd. Als klanten moeten worden bezocht zonder dat hiervoor vaste tijden zijn afgesproken of tijdvensters bestaan (voorbeeld: klant A moet tussen 8 en 9 uur ’s ochtends bediend worden) spreekt men van een zuiver routeringprobleem. Liggen de tijdstippen waarop klanten moeten bezocht helemaal vast (bijvoorbeeld: klant B moet precies om 14h 30 worden bezocht) dan heeft men te maken met een zuiver schedulingprobleem. Uiteraard bestaan er tussenvormen zoals problemen met tijdvensters.

Het probleem waar Twente Milieu mee te kampen heeft is een zuiver routeringprobleem. Er gelden geen tijdrestricties die bindend zijn voor het bedienen van de klanten. En er worden met name geografische aspecten in beschouwing genomen. Dit betekent niet dat reiskosten per definitie in afstanden gerekend worden of dat klanten 24 uur per dag bediend moeten worden. Het betekent slechts dat er geen harde tijdsvensters gelden voor de ritplanning.

4.3.2 Vlootkarakteristieken

De omvang en de samenstelling van de inzetbare wagens, de vloot, bepalen mede de complexiteit van het probleem. Naast aantallen kan bijvoorbeeld ook de capaciteit een rol spelen en de complexiteit van het probleem neemt toe als er bijvoorbeeld wagens met verschillende capaciteit kunnen worden ingezet.

Twente Milieu Hengelo heeft de beschikking over een beperkt aantal vuilniswagens en de mogelijkheid tot het inhuren van extra wagens voor additionele capaciteit. De voertuigen hebben allen een beperkte capaciteit, één opvangcompartiment en zijn verder homogen.

In het model zal gewerkt worden met gewicht als capaciteitsrestrictie hoewel het volume bepalend is voor het feit of de vuilniswagen vol zit. Uit ervaring binnen Twente Milieu blijkt namelijk dat het volume en het gewicht in grote mate rechtevenredig zijn en op het Twence, het afvalverwerkingspunt wordt slechts gekeken naar het gewicht dat wordt gestort, hiervan zijn dus betere gegevens beschikbaar.

- De bruikbare capaciteit (gewicht) van de vuilniswagen gebruikt voor de lediging van blokcontainers ligt rond 8,8 ton (zie voor toelichting bijlage 4).
- Op dit moment worden de blokcontainers in Hengelo met twee vuilniswagens geledigd
die qua specificaties identiek zijn.

Hierbij is de reserve vuilniswagen niet meegenomen, deze wordt slechts ingezet in het geval dat een van de andere twee vaste wagens voor onderhoud in de garage wordt gehouden. Aangezien in het model de tijd dat vuilniswagens in onderhoud zijn niet wordt meegenomen, zorgt de inzet van de reserve auto modelematig gezien niet tot uitbreiding van de capaciteit van het wagenpark (voor het legen van blokcontainers).

- Voor aanvullende capaciteit kunnen extra vuilniswagens worden ingehuurd bij Cleanmat, een verhuurder van groot materieel (zie bijlage 6).

4.3.3 Depotkarakteristieken
Het aantal depots in het probleem is van belang voor het toewijzen van klanten aan de verschillende depots. Naast klanten moeten ook wagens worden toegekend aan de depots en het kan bovendien zijn dat de depots bepaalde capaciteitsrestrictie hebben.

Bij Twente Milieu is slechts één depot vanwaar alle voertuigen vertrekken en waar zij ook weer eindigen, alle klanten en vuilniswagens worden dus hieraan toegewezen. Voor het storten van afval wordt gebruik gemaakt van het afvalverwerkingpunt Twence. Zowel het depot als het Twence kent geen capaciteitsrestricties.

4.3.4 Klantenkarakteristieken
Het is belangrijk om onderscheid te maken tussen diensten waarbij goederen vanaf het depot naar de klanten moeten worden gebracht en goederen die moeten worden opgehaald. Ook een combinatie is uiteraard mogelijk. Het maakt dan wel uit of beide bij één klant gebeurt of dat iets bij de ene klant dient te worden gebracht en bij een andere klant weer moet worden afgegeven, dit vanwege volgordebeperkingen. In vrijwel alle gevallen dient rekening te worden gehouden met capaciteitsrestricties. Ook is het de vraag of een opdracht in één keer moet worden voldaan of dat gesplitste leveringen (of ophaal) mogelijk is. Daarnaast is het belangrijk of een opdracht bij een klant plaats vindt of dat iets vervoerd moet worden op een traject tussen twee klanten. Ten slotte is de aard van de vraag van belang; ligt deze vast (deterministisch) of is de vraag niet van te voren bekend (stochastisch).

Bij de meeste transportproblemen moeten goederen naar de klanten worden gebracht, echter in dit geval gaat het om inzameling bij de klanten. Het afval moet vervolgens worden gestort bij het Twence. Het inzamelen en storten zijn dus verschillende opdrachten, maar moeten afzonderlijk wel in één keer geschieden, het kan niet zo zijn dat een container maar voor de helft geleegd wordt. Bovendien zal altijd eerst afval gehaald moeten worden voordat het weggebracht kan worden, maar dit is meer een capaciteitsrestrictie (vergelijkbaar met een vrachtwagen die meerdere keren terug moet naar het depot omdat niet alle goederen in één keer in de wagen pasten) dan een volgordeafhankelijke bepaling. De locaties van inzameling staan vast, aangezien de blokcontainers vast staan. Hoewel het gewicht aan afval per container en per week niet helemaal hetzelfde is, kan van een gemiddelde uit worden gegaan (van 78 kg, met σ: 9,5 kg) mits in de planning niet van de maximale capaciteit van de vuilniswagens wordt uitgegaan.

3 Bepaald op basis van vijftig metingen verdeeld over drie weken verspreid door het jaar.
Aangezien blokcontainers in de regel gebruikt worden voor het storten van restafval door flatbewoners zijn fluctuaties in het aanbod tussen zomer- en wintermaanden niet aan de orde. Er zal worden uitgegaan van het gemiddelde aanbod per container.

- Het gemiddelde gewicht per blokcontainer is 78 kilo, bepaald aan de hand van de stortbewijzen en het aantal blokcontainers in de gereden ritten (precieze toelichting zie bijlage 4).

4.3.5 Wegenkarakteristieken
Wegennetwerken worden gebruikt om afstanden tussen locaties weer te geven. Er is een verschil tussen een gericht wegennetwerk, waarbij de richting waarin een weg wordt afgelegd van belang is en een ongericht wegennetwerk waarbij dit om het even is. Ook een gemengd wegennetwerk kan voorkomen, met zowel gerichte als ongerichte trajecten. In meeste gevallen voldoet een wegennetwerk aan de driehoeksongelijkheid wat inhoudt dat een wagen er langer (of even lang) over doet om van A via B naar C te rijden dan direct van A naar C.

Twente Milieu heeft te maken met een ongericht wegennetwerk, want door de gemeentelijke ontzeggingen (voor bijvoorbeeld 1-richtingsverkeer) maakt de richting waarin een straat wordt afgelegd niet uit. De driehoeksongelijkheid geldt ook bij het wegennetwerk van Twente Milieu.

4.3.6 Tijdrestricties
Tijd speelt in veel routeplanningsproblemen een belangrijke rol, zo is de maximale duur van ritten een belangrijke restrictie of dient rekening gehouden te worden met tijdvensters of volgorderelaties. Echter deze restricties zijn alleen relevant als ze daadwerkelijk een knelpunt vormen. Als goederen moeten worden overgeladen tussen voertuigen kan het ene voertuig niet vertrekken voordat het andere voertuig is aangekomen, hier dient in het model rekening mee gehouden te worden. Tot slot kunnen restricties worden onderscheiden die bepalen dat een groep klanten binnen een bepaalde periode, een planningshorizon, bezocht moeten worden. Klanten dienen dan optimaal over deze horizon verdeeld te worden.

De maximale tijd van een rit hangt af van de werktijd van het personeel omdat niet in ploegendienst wordt gewerkt. Doorgaans wordt het probleem met dergelijke restricties nog steeds gezien als een zuiver routeringprobleem. Dit wordt in het geval van Twente Milieu versterkt doordat uit de huidige situatie is gebleken dat de (werk)tijd in de meeste gevallen niet het knelpunt is, omdat de ingeroosterde containers ruim binnen de werktijd geleegd kunnen worden. Een belangrijke eigenschap van het probleem bij Twente Milieu is de planningshorizon. Het model moet rekening houden met het periodieke karakter en het feit dat containers binnen een week minimaal één keer geleegd dienen te worden. De te legen containers moeten dus optimaal verdeeld worden over de dagen van de week.

Het vaste personeel dat verantwoordelijk is voor het legen van de blokcontainers in Hengelo heeft een veertigurige werkelijkheid (CAO Energie- en Nutsbedrijven, 2005). Dit komt neer op acht uur per dag. Overwerk is hierbij toegestaan, hier zal later bij de kostenfactoren op worden teruggekomen. De normen omtrent de werktijden zijn gebaseerd op de arbeidstijdenwet.

4 Bij het storten op het Twence krijgen chauffeurs een stortbewijs, hierop staat het inweeggewicht, het uitweeggewicht en het verschil ertussen (het gestorte gewicht).
Werknemers werken 8 uur per dag exclusief pauzes (tussen 7:30 – 16:15).

Het Twence is alleen overdag geopend op werkdagen van 7.00 – 19.00 uur en op vrijdag tot 18.00 uur. Aangezien de werktijden van Twente Milieu binnen deze openingstijden liggen zal dit geen beperking opleveren en worden ze verder niet meegenomen in het model.

Het blokcontainerpersoneel maakt meestal gebruik van haar pauzes om een kopje koffie te drinken en een broodje te eten in de kantine op het ABP in Hengelo. De normen betreffende pauzes gaan ook uit van de arbeitstijdenwet. Werknemers hebben recht op een half uur pauze als zij meer dan 5,5 uur achtereenvolgens werken, de pauze mag desgewenst gesplitst worden in twee maal een kwartier. De tijd die nodig is om vanuit de route terug te rijden naar het ABP is niet geheel verwaarloosbaar, maar omdat tijd niet het knelpunt is in het probleem zal hier in het model verder geen aandacht aan worden besteed.

Hoewel de leegdag van de blokcontainers in principe variabel is dient het model wel rekening te houden met het feit dat er containers zijn die meerdere keren per week geleegd dienen te worden. De leegfrequentie is vastgelegd in de DVO’s (contracten met de gemeenten) en hier heeft Twente Milieu zich aan te houden.

- De lediging van blokcontainers die driemaal weeks geleegd dienen te worden, moet minimaal over vijf dagen verdeeld worden, met minimaal een dag tussen iedere leegdag. Wat resulteert in lediging op maandag, woensdag en vrijdag.
- Blokcontainers die tweemaal weeks geleegd dienen te worden, mogen niet twee dagen achtereengeleegd worden, hier moeten minimaal twee dagen tussen zitten.
- De lediging van blokcontainers die slechts eenmaal per week geleegd hoeven te worden, kan plaatsvinden op iedere willekeurige werkdag.

4.3.7 Routerestricties
Het maximum aan de lengte van een rit is evenals het maximale aantal ritten per dag een routerestrictie die per probleem verschilt.

Het maximum aantal te legen containers per rit is een belangrijke voorwaarde vanwege de strakke P90-norm. Vuilniswagens mogen wel meerdere ritten per dag doen, mits het totale aantal containers, met dezelfde personele bezetting, het maximum aantal niet overschrijdt.

Aangezien de P90-norm geldt voor iedereen op de vuilniswagen gaat het model uit van de het maximale aantal te legen containers door de oudste chauffeur/belader op de wagen (zie bijlage 3). Dit zou kunnen betekenen dat in de ene rit, gereden door jonge werknemers meer containers geleegd kunnen worden dan in een rit gereden door oudere werknemers. Maar aangezien de planning van materieel en personeel flexibel moet blijven (in verband met ziekte en onderhoud aan de wagens), zal in het model uitgegaan worden van de P90-norm voor personeel tussen de 30 t/m 39 jr., de oudste groep werknemers bij Twente Milieu, voor het aantal te legen containers per rit.
Dit zijn maximaal 125 blokcontainers per rit, waarbij een rit gelijk staat aan een werkdag van acht uur.

4.3.8 Kostenfactoren
De kosten die een rol spelen binnen een ritplanningprobleem zijn onder te verdelen in variabele ritkosten (benzine), kosten per levering (uurtarief), vaste kosten per voertuig (afschrijvingen) en penaltykosten voor de overschrijding van bepaalde condities.

In paragraaf 3.2 is een duidelijk kostenoverzicht gegeven van de kostenposten die in dit probleem een rol spelen. Hierin zijn zowel de variabele ritkosten (loonkosten, benzinekosten e.d.) als vaste kosten per voertuig (afschrijving en jaarlijks onderhoud) meegenomen. De meeste kosten worden bij Twente Milieu echter in het uurtarief van de voertuigen doorberekend. Overwerk is een voorbeeld van een overschrijding waarvoor penaltykosten worden gerekend en die in het probleem van Twente Milieu een rol zouden kunnen spelen.

In de CAO is bepaald dat voor het overwerken extra kosten in rekening worden gebracht. Overwerk betekent dat de wekelijkse, vaststaande 40 uren zijn overschreden. De kosten voor overwerken zijn per uur 125% van het standaard uurloon.

Hoewel overwerk theoretisch mogelijk is, komt het bij de huisvuilinzameldiensten enkel voor in geval van storing aan de vuilniswagen. Bovendien wordt het eerste uur boven de reguliere werktijd wel als overwerk gezien, maar niet als zodanig uitbetaald. Overwerk zal om de zojuist genoemde redenen niet worden meegenomen in het blokcontainermodel.

Voor de bezetting van een vuilniswagen voor de lediging van blokcontainers geldt een eis van minimaal twee personen per vuilniswagen (8; CAO Energie- en nutsbedrijven, 2005). Twee personen is ook de norm die door Twente Milieu gehanteerd wordt in de begroting.

Het model gaat er vanuit dat de blokcontainers bezet worden door een vaste chauffeur/belader van Twente Milieu en een belader van Randstad, dit is de afgelopen jaren zo geweest, met uitzondering van de vakantieperiodes. De regelingen die met Randstad zijn getroffen met betrekking tot het inhuren van uitzendkrachten door Twente Milieu zijn opgenomen in bijlage 8.

4.3.9 Optimalisatiecriteria
Een model dient haar doelfunctie te optimaliseren. In de meeste gevallen is dit het minimaliseren van de totale (operationele) kosten, hoewel veiligheid of comfort ook kunnen worden geoptimaliseerd.

In het geval van Twente Milieu betekent optimaliseren van de doelfunctie, dat het model de totale operationele kosten dient te minimaliseren. Zie § 4.2 voor een toelichting op de doelfunctie.

4.3.10 Overige aspecten
Naast de harde restricties, zoals de capaciteit bestaan er zachte randvoorwaarde; restricties waar in principe aan moet worden voldaan maar waarvan de naleving niet zeer nauw hoeft te zijn. Neem nu de werktijd; deze loopt dagelijks tot 16:15, maar als een zeer goede route resulteert in
een uitloop van vijf minuten is dit geen reden om de route af te ketsen. Tegenover de zachte randvoorwaarden staan meestal boetekosten zoals een hoger tarief bij overwerk.
Daarnaast speelt in sommige problemen tijdsafhankelijkheid een rol, dit is bijvoorbeeld het geval bij filerijden (hierdoor neemt de reistijd vaak enorm toe). Afhankelijk van het vertrektijdstip heeft men dan met files te maken. Het maakt daarnaast ook nog uit of de route iedere dag opnieuw dient te worden bekeken of dat er één vaste route gemaakt moet worden langs alle klanten die dag in dag uit gereden wordt. Het laatste aspect is dynamische planning, wat inhoudt dat de route afhangt van de opdrachten die op de dag zelf nog binnenkomen.

Binnen het probleem bij Twente Milieu zijn maar weinig restricties waar rek in zit die bovendien een knelpunt zouden kunnen vormen. Zodoende zullen geen zachte voorwaarden in het model worden gehanteerd en zal het louter bestaan uit harde restricties. Het model zal daarnaast tijdsafhankelijkheid negeren, oftewel er zal bijvoorbeeld geen rekening gehouden worden met de kans op files. Immers de lediging van blokcontainers beperkt zich tot de gemeente Hengelo waardoor de kans op echte files praktisch is uitgesloten. De ritindeling is bedoeld voor langere tijd, veranderingen zullen alleen voorkomen als het aantal blokcontainers sterk stijgt of daalt of op het moment dat er iets verandert in het wagenpark of organisatorisch vlak binnen Twente Milieu. Hierbij is het aantal containers dat dagelijks geleegd moet worden al ver van te voren bekend, dus geen dynamische planning. Bovendien zal het model worden gebruikt om een optimale ritindeling te ontwikkelen uitgaande van ‘normale’ omstandigheden. Dit houdt in dat het model geen rekening houden met eenmalige opdrachten of orders.

4.3.11 Afbakening modelfunctionaliteiten
Nu alle karaktereigenschappen van het probleem gedefinieerd zijn, dient nog te worden gekeken naar een aantal afbakeningen. Deze gelden op een hoger detailniveau dan de eerdere afbakeningen aan het model, het inzamelsysteem en plaats van eerste executie, het richt zich hier namelijk op de functionaliteiten van het model; waar dient het model wel en waar dient het geen rekening mee te houden.

Als bijvoorbeeld door een doordeweekse feestdag de dag van ophalen verplaatst naar een zaterdag zullen de containers leger of voller zijn dan normaal. Omdat het hier slechts gaat om uitzonderingen zullen deze factoren niet meegenomen worden in het model.

Zoals bij de tijdsrestricties al naar voren kwam is de werktijd van het uitvoerende personeel niet de beperkende factor bij de ritindeling van de blokcontainers. Om die reden zullen de gemiddelde leegtijd per container en de gemiddelde leegtijd op het Twence wel worden berekend (bijlage 4) maar niet in het model worden meegenomen.

In de overeenkomsten met de gemeenten is een clausule opgenomen met betrekking tot klachten over geleverde diensten. Het model zelf zal geen rekening houden met de kans op klachten en de bijbehorende kosten. In de ontwikkelfase van het model echter zal de kans op problemen wel een belangrijk aspect zijn, een kans die geminimaliseerd dient te worden.

Het model zal niet voorzien in een personele bezetting van de ritplanning. Hoewel deze voorziening handig zou kunnen zijn voor de planner, doordat snel te zien is wie het beste kan worden ingedeeld op welke ritten en hoeveel extra arbeidskrachten moeten worden ingehuurd, kleven er teveel negatieve kanten aan. Zo verliest het model zijn waarde als versimpeling van de
werkelijkheid, is het vaste personeelsbestand door het hoge ziekte verzuim toch erg variabel, zijn er veel persoonlijke restricties (bv. krampverschijnselen bij lang zitten) die niet eenvoudig mee te nemen zijn in het model maar die wel gehonoreerd dienen te worden en is er bovendien nog een aantal andere taken, die moeten worden ingevuld door hetzelfde personeel, die niet worden meegenomen in het model.

In de praktijk werkt Twente Milieu met twee dagdelen; van 7:30 tot 11:30 en van 12:00 tot 16:00. In de huidige situatie van de blokcontainerlediging vervolgt men na de lunch de route waarmee die dag begonnen is, maar het model zal rekening houden met de opsplitsing van de dagdelen wat kan inhouden dat men na de lunch wordt vrij geroosterd van blokcontainerlediging. Voor vast personeel, die acht uur per dag dienen te werken, wordt door de planner ander werk gezocht voor het tweede dagdeel. Inhuurkrachten kunnen wel per dagdeel worden ingehuurd.

4.3.12 Uitwerking van de wensen
De genoemde wensen van de betrokken partijen dienen een praktische toepassing te krijgen in het model of de ontwikkelfase daarvan. Deze toepassingen zullen nu kort uiteen worden gezet.

Universeel karakter
In ieder modelontwerp dient het detailniveau afgewogen te worden; enerzijds geldt hoe algemener/universeler het model is opgezet, des te breder kan het (binnen de organisatie) worden ingezet, anderzijds bepaalt het detailniveau ook de praktische toepasbaarheid; hoe gedetailleerder het model hoe beter het aansluit op de werkelijkheid, hiermee neemt echter ook de complexiteit toe.
Het is (eis vanuit het hoofdkantoor) de bedoeling dat het model voor Twente Milieu een hoge praktische toepasbaarheid heeft, dit heeft tot gevolg dat het model voor hetzelfde inzamelsysteem vrij eenvoudig over gezet kan worden naar andere regio’s vanwege het vrij homogene karakter van het inzamelsysteem van blokcontainers maar dat toepassing op andere inzamelsystemen de nodige aanpassingen vereist.

Gebruiksgemak
De uitkomsten uit het model moeten op eenvoudige wijze gebruikt kunnen worden om de ritindeling in de Access-applicatie te kunnen instellen. De planner is namelijk gewend om met deze applicatie te werken. En het is bovendien zonde om veel tijd te stoppen in het verder uitbouwen van model met extra functies terwijl deze prima door de bestaande applicatie kunnen worden vervuld. Het aantal handelingen om tot een nieuwe indeling te komen, dient zo klein mogelijk te zijn om het gebruik te stimuleren.
Het model moet daarnaast op eenvoudige wijze aan te passen kunnen zijn, kijkend naar de restricties betekent dit: mogelijkheden voor het in- of uitschakelen ervan en het aanpassen van de gebruikte waarden zoals bijvoorbeeld de bruikbare capaciteit in het geval dat er grotere vuilniswagens komen.
Een verzoek van de planner is het tonen van het aantal containers per rit, het huidige Accesssysteem mist deze functionaliteit.
Ten slotte zal het model voorzien moeten worden van een eenvoudige doch duidelijke handleiding voor de planner [§ 6.1].
Herbruikbaarheid
Het moet binnen het model eenvoudig zijn om containers toe te voegen of te verwijderen uit de reeks in te plannen containers. Op die manier wordt het gebruik bevorderd en blijft het model herbruikbaar.

Samenvatting en vooruitblik
Hoofdstuk 4 heeft duidelijk gemaakt welke eisen en wensen door de verschillende belanghebbende partijen binnen Twente Milieu aan het model gesteld worden. Het heeft daarmee antwoord gegeven op de eerste onderzoeksvraag. Met deze informatie en de informatie uit de voorgaande hoofdstukken was het mogelijk om de doelstelling van het model te formuleren; het minimaliseren van de totale operationele kosten. In de laatste paragraaf is het probleem bij Twente Milieu gespiegeld aan de classificatiekarakteristieken van routeringproblemen. Hierbij zijn de restricties voor het model gedefinieerd; het antwoord op de tweede onderzoeksvraag. Ten slotte heeft er een afbakening van functionaliteiten plaatsgevonden mede op basis van de eisen en wensen van Twente Milieu.

 Dit hoofdstuk dient als basis om in de literatuur naar vergelijkbare problemen te kunnen zoeken. In het volgende hoofdstuk bestaat zodoende de mogelijkheid om de derde onderzoeksvraag omtrent bestaande en geschikte heuristieken en algoritmen te beantwoorden. Hoofdstuk 5 zal vergelijkbare problemen in de literatuur zoeken en de toegepaste oplossingsrichtingen worden onderzocht. Een overzichtelijke presentatie van dit onderzoek zal het selecteren van een algoritme of heuristiek voor het te ontwikkelen model vereenvoudigen.
H5 Modelvorming

Als uitbreiding op de begripsomschrijving van ritplanning in paragraaf 2.4 zal dit hoofdstuk worden gewijd aan de modelvorming van een ritindelingprobleem. De eerste paragraaf zal bestaan uit een literatuurstudie die zal leiden tot een overzicht van bestaande principes omtrent de oplossingsrichting van de ritindelingproblematiek. In paragraaf 5.2 wordt gekeken naar vergelijkbare praktijkproblemen. De eerste twee paragrafen dienen als basis voor de keuze van het modelprincipe bij Twente Milieu in § 5.3. Hiermee beantwoord dit hoofdstuk de derde en tevens laatste onderzoeksvraag:

Welke algoritmen en heuristieken bestaan er die relevant zijn voor het ontwikkelen van een model voor ritindelingen en welk algoritme, heuristiek of combinatie hiervan is het meest geschikt voor het probleem bij Twente Milieu?

Ten slotte zal in de laatste paragraaf bepaald worden hoe de evaluatie van het model in zijn werk zal gaan. In het volgende hoofdstuk kan worden overgegaan tot het uitwerken van het blokcontainermodel in pseudo-code.

5.1 Modeldefinities en oplossingsrichtingen

Uit het overzicht van de karaktereigenschappen in het vorige hoofdstuk is duidelijk geworden dat Twente Milieu te maken heeft met een zuiver routeringprobleem. In dit hoofdstuk zal hier dan ook duidelijk de nadruk op liggen. Toch zal ook enige aandacht besteedt worden aan het begrip scheduling. Een nadere verklaring van beide begrippen zal de verschillen onderstrepen. Ook lineair en geheeltallig programmeren zullen, als mogelijke oplossingsmethoden, in deze paragraaf worden toegelicht.

5.1.1 Routering

Voor het TSP geldt dat voor grote problemen met veel steden exacte oplossingen niet meer haalbaar zijn en moet worden overgegaan op het gebruik van heuristieken. Dit probleem wordt zodoende ook wel NP-lastig genoemd; oftewel het is onwaarschijnlijk dat er een algoritme bestaat die een optimale oplossing vindt zonder dat de rekentijd die daarvoor nodig is, explodeert. Heuristieken doorlopen dezelfde stappen een groot aantal keren (iteraties) en stoppen wanneer geen verbetering meer gevonden wordt (loopingeffect) (Kytöjokia, 2004, pag. 2744). Ze zijn in te delen in constructieheuristieken en verbeterheuristieken. Constructieheuristieken genereren geldige oplossingen door middel van opeenvolgingen van eenvoudige operaties waarbij nieuwe steden, op een logische wijze, aan een route worden toegevoegd. De meest gebruikte constructieregels zijn de nearest neighbour en versies van de insertion procedures.
Meestal wordt een constructieregel gecombineerd met één of meer verbeterregels, hetgeen tot zeer goede resultaten kan leiden.

Een variant van het TSP is het standaard voertuigrouteringsprobleem (oftewel Vehicle Routing Problem, VRP). Het grootste verschil met het TSP is de capaciteitsrestrictie van de vracht- of vuilniswagens en de vraaghoeveelheid per klant. Dit betekent dat het voertuig een beperkt aantal klanten kan bedienen, terug moet naar het depot om nieuwe vracht op te halen en vervolgens de andere klanten langs kan gaan (v d Heijden & v d Wegen, 2004, pag. 39-52) (zoals uit hoofdstuk 4 is gebleken heeft ook Twente Milieu te maken met capaciteitsrestricties).

Kytöjoki et al. (Kytöjokia, 2004, pag. 2744) geeft aan dat bij het VRP exacte algoritmes tot nu toe gebruikt zijn om oplossingen tot 50 klanten aan te dragen in een rekentijd die te overzien is. Echter voor problemen waarin ongeveer 500 klanten bediend moeten worden, wordt gebruik gemaakt van heuristieken. In de laatste jaren is men zich meer en meer gaan focussen op de ontwikkeling van een derde soort heuristieken; metaheuristieken. Deze heuristieken leiden combinaties van de andere heuristieken (constructie- en verbeterheuristieken) tot betere oplossingen door ze in verschillende volgordes en door elkaar te gebruiken. Hiermee kunnen problemen tot 30.000 klanten worden opgelost. Deze combinaties van heuristieken zijn ingewikkeld om te modeleren en leveren bij kleinere aantallen vaak minder goede oplossingen dan de eenvoudige heuristieken (Golden, 1998). Deze ‘eenvoudige’ heuristieken kunnen worden onderverdeeld in vier groepen:

- Gebaseerd op savings (constructie heuristiek)
- Cluster first – route second (constructie heuristiek)
- Route first – cluster second (constructie heuristiek)
- Improvement / exchange procedures (verbeter heuristiek)

Hoewel het model dat ontwikkeld zal worden niet in zal gaan op de uiteindelijke routeplanning, immers Twente Milieu heeft hier een speciale computerapplicatie voor aangeschaft, is het voor een beeld van de werking van dergelijke programma’s goed om de bovenstaande eenvoudige heuristieken, die aan de grondslag liggan van de meeste oplossingsrichtingen, hier kort toe te lichten. De improvement/ exchange procedures zijn overigens verbeterheuristieken die net als bij het TSP gebruikt kunnen worden om optimalisatieslagen te maken binnen routes of tussen routes door middel van bijvoorbeeld uitwisselprocedures.

5.1.1.1 Clarke & Wright savings
Het basisidee van dit savingsalgoritme is het samenvoegen van twee ritten mits dit een besparing oplevert. Het volgende voorbeeld geeft hiervan een visualisatie (v d Heijden & v d Wegen, 2004, pag. 33). Figuur 3 vormt de basis, twee losse routes en figuur 4 vormt de verbetering.
Het samenvoegen betekent voor de totale kosten dat twee verbindingen verdwijnen en er één voor terugkomt, oftewel nieuwe totale kosten = oude totale kosten – verbindingskosten (verbk.) 3-0 – verbk. 4-0 + verbk. 3-4. Als verbk. 3-4 < (verbk. 3-0 + verbk. 4-0) levert het samenvoegen een besparing op voor de totale kosten, hierbij dient rekening gehouden te worden met de capaciteitsrestricties. Er wordt altijd gekozen voor de samenvoeging van ritten die de grootste besparing opbrengt. Alleen verbindingen die direct met het depot verbonden zijn worden bekeken, het bekijken van andere verbindingen blijkt weinig op te leveren. Het savingsalgoritme heeft als voordelen dat het eenvoudig is en zo flexibel dat gemakkelijk extra restricties kunnen worden toegevoegd. Nadeel is dat het algoritme in sommige gevallen, door de capaciteitsrestrictie, niet in staat is om een toegelaten oplossing te vinden. Bijvoorbeeld bij drie routes van vier klanten, twee voertuigen met beide capaciteit 6.

5.1.1.2 Cluster first – route second
In de eerste stap worden clusters van klanten gevormd die dicht bij elkaar liggen, deze clusters komen niet boven de capaciteitsgrens van de vuilniswagens uit. In de tweede en laatste stap wordt per cluster de beste route langs de klanten bepaald met behulp van een handelsreizigersprobleem. Om de clusters te creëren kan bijvoorbeeld gebruik worden gemaakt van het sweep-algoritme van Gillet en Miller (1974). Dit houdt in dat op een coördinatenrooster, waarop de klanten en het depot staan, vanuit het depot een halve lijn richting een van de klanten wordt getrokken. Vervolgens wordt deze lijn als een wijzer van een klok over de andere klanten heen bewogen. Een cluster is gevormd als de eerst volgende klant de capaciteitsgrens van een rit overschrijdt. Bij deze klant beginnt dan het volgende cluster. Er volgt opnieuw een visualisatie (v d Heijden & v d Wegen, 2004, pag. 57). In figuur 5 worden de clusters gevormd en in figuur 6 worden binnen de gevormde clusters routes ontworpen, de tweede stap.

De gevonden oplossing kan worden verbeterd door te beginnen met verschillende startlocaties of door de lijn tegen de klok in te laten bewegen. De beste van deze oplossingen wordt gekozen. Vervolgens kan binnen de ritten ook nog gebruik worden gemaakt van de verbeterheuristieken van het handelsreizigerprobleem.
De beperking van dit algoritme is dat het bedoeld is voor problemen waarin de reiskosten worden weergegeven in Euclidische afstanden. Het werkt minder goed als de werkelijke kostenstructuur
hier te veel van afwijkt.

5.1.1.3 Route first – cluster second
Hierbij wordt eerst één lange rit gemaakt langs alle klanten. Vervolgens wordt deze lange rit opgedeeld in kleine stukken, clusters, die rekening houden met de capaciteitsgrens. Hierbij gaat men uit van het principe dat het niet moeilijk is om één lange rit optimaal op te delen in kleinere stukken. Om de lange route te maken, een TSP, wordt gebruik gemaakt van een goede heuristiek. Vervolgens moet deze route worden opgedeeld. Dit houdt in dat na een aantal klanten in de grote tour geknipt wordt, de klanten waartussen geknipt wordt, worden met het depot verbonden, zo ontstaan kleine routes voor een cluster van klanten. Bij wijze van voorbeeld. Er wordt begonnen met een van de twee klanten die in de grote route verbonden zijn aan het depot. De volgende klanten in de lange route worden samen geclusterd tot de capaciteitsgrens wordt overschreden. De klant die als eerste zorgt voor de overschrijding is het beginpunt van het volgende cluster. De onderstaande figuren verduidelijken dit voorbeeld. De totale kosten volgen uit de kosten van de verschillende clusterroutes. Het minimaliseren van deze kosten gebeurt door iedere keer op verschillende plaatsen in de lange tour te knippen, de totale kosten te berekenen en de laagste uit te kiezen. Aangezien het gaat om een acyclisch netwerk (vanuit een stad kan je alleen naar een volgende stad, niet terug) is dit probleem met behulp van een eenvoudig recursief algoritme op te lossen (v d Heijden & v d Wegen, 2004, pag. 68). In figuur 7 wordt de eerste stap van dit algoritme getoond, het vormen van een grote tour langs alle punten. In de volgende stap, figuur 8, wordt deze tour opgedeeld in kleine routes door het afbakenen van clusters.

Zoals uit de uitwerking van de bovenstaande heuristieken is gebleken, geldt dat voor het optimaliseren van de routeplanning de afstand tussen de afvalaansluitingen een belangrijk gegeven is. Om deze afstand te berekenen zijn verschillende mogelijkheden. De eerste optie gaat uit van de Euclidische afstand, maar aangezien de routes te maken hebben met het wegenetwerk zou deze afstand vermenigvuldigd moeten worden met een getal tussen de 1.1 en 1.2 afhankelijk van de spreiding van de aansluitingen (Fleuren, 1988, pag. 83). Om dit computergestuurd uit te rekenen kunnen de coördinaten van de aansluitingen vanaf de plattegrond worden ingevoerd. De andere optie, die zowel nauwkeuriger is als een hoop moeite scheelt, maakt gebruik van een tabel van werkelijke afstanden gebaseerd op ervaring (die dan wel aanwezig moet zijn). Tegenwoordig kunnen deze werkelijke afstanden met behulp van satellieten eenvoudig worden bepaald dit is nu dan ook de meest gangbare methode (TomTom).

Welke constructie- en verbeteralgoritmes door de verschillende computerapplicaties worden gebruikt voor het plannen van routes is op basis van de uitkomst, de daadwerkelijke route, niet te zeggen, maar dat is voor de rest van dit onderzoek ook niet zoozeer van belang.

Om het verschil tussen routering en scheduling aan te geven en uit te sluiten dat Twente Milieu met een schedulingprobleem te maken heeft, zullen nu de begrippen scheduling en timetabling nader worden toegelicht.
5.1.2 Scheduling
Problemen die vallen binnen het gebied van het inplannen van taken (scheduling) kennen over het algemeen eenzelfde basis. Men heeft te maken met n jobs die binnen een bepaald tijdsbestek bewerkingen moeten ondergaan op m verschillende machines. De oplossing voor dergelijke problemen bestaat uit een planning voor het volledig bewerken van de verschillende jobs zodat een bepaald doel wordt geoptimaliseerd. Dit kan bijvoorbeeld betekenen dat de totale bewerkingstijd wordt geminimaliseerd of dat het totaal aantal afgeronde jobs voor een deadline wordt gemaximaliseerd. Met name in de productiesfeer wordt veel gebruik gemaakt van scheduling algoritmen om productieprocessen te optimaliseren.

Hoewel het plannen van taken, bijvoorbeeld het legen van containers, wel iets weg heeft van het bovenstaande wordt het lastig om het probleem bij Twente Milieu te definiëren als een scheduling probleem doordat tijd, het belangrijkste aspect van scheduling, er nauwelijks een rol speelt. Het is op basis van de bestudeerde literatuur (Brucker, 2001, pag. 1-7) niet mogelijk om een doelfunctie te kiezen voor dit probleem waar een schedulingalgoritme mee kan werken. Timetabling is een onderdeel van de problemen die onder scheduling geschaard worden. Hoewel we op basis hiervan weten dat het probleem bij Twente Milieu niet gevat kan worden in deze probleemformulering opgelost, heeft het toch een aantal kanten, die vanuit het gezichtspunt van het blokcontainermodel interessant zouden kunnen zijn.

5.1.2.1 Timetabling
Het basisidee achter timetabling is dat door middel van één van de vele bedachte methoden de resources zo worden ingedeeld dat een toelaatbare oplossing ontstaat, hierbij wordt dus rekening gehouden met de beperkingen waar het probleem in de praktijk mee te maken heeft. Een timetabling problem (TP) wordt ook wel gezien als een allocatie probleem met restricties (assignment type problem with side constraints) (Ferland & Lavoie, 1990).
Timetablingproblemen kunnen op tal van verschillende manieren worden opgelost, dat wil zeggen dat vrijwel ieder probleem net iets afwijkende karakteristieken heeft waardoor een aangepaste methode dient te worden gebruikt om tot een (goede) toelaatbare oplossing te komen. Het meest bekende timetablingprobleem, dat bovendien wordt gezien als de basis voor de andere voorbeelden uit deze problematiek, is het class-teacher model. Gewoonlijk gaan de oplosmethode van dit probleem uit van twee opeenvolgende stappen: a) allereerst wordt het curriculum voor de klassen vastgesteld en worden de middelen in de vorm van mankracht of materiaal over deze klassen verdeeld. In de tweede stap, b) als de verdeling is gelukt, wordt bekeken of een werkbare oplossing kan worden gevonden (in de vorm van een (wekelijks)rooster) waarin rekening wordt gehouden met alle restricties. De laatste stap gebeurt sinds een aantal jaren met de computer (D. de Werra, 1985).

In een vergelijking van het zojuist geschetste TP met het probleem bij Twente Milieu zouden de blokcontainers gezien kunnen worden als items en de vrachtwagens als (de beperkte) middelen. Optimalisatie zou inhouden dat er kosten worden toegekend aan de koppeling tussen een item en een middel. Echter het probleem bij Twente Milieu ligt wel iets gecompliceerder, immers het aantal vrachtwagens kan worden aangevuld en de items of containers kunnen wel onafhankelijk worden gezien en verplaatst maar niet onafhankelijk worden gekoppeld aan kosten. Het probleem kan dus niet worden gezien als een timetabling problem.
5.1.3 Lineair programmeren
Als oplosmethode voor een scala aan alledaagse problemen (vergelijkaar met de bovenstaande) wordt gebruik gemaakt van lineair programmeren (LP). LP problemen bestaan in principe uit drie delen:
1) Een lineaire functie (de doelfunctie) van beslissingsvariabelen (bv x, y, z) die moet worden geminimaliseerd of gemaximaliseerd.
2) Een verzameling voorwaarden (die allen lineaire (on)gelijkheden moeten zijn) die de waarden beperken die de variabelen kunnen aannemen.
3) De tekenrestricties, die aangeven of een beslisvariabele positief, negatief of beide mag zijn.

Als een probleem geformuleerd kan worden als een LP probleem heeft dat als voordeel dat het eenvoudig op te lossen is met behulp van een model en een computer. Door het invoeren van de drie bovengenoemde stappen in een daarvoor bestemde computerapplicatie kan eenvoudig de optimale oplossing voor het probleem gevonden worden binnen het toegestane gebied. Dit gebied bestaat uit de oplossingen die voldoen aan alle voorwaarden. Een belangrijk aspect van het LP is het lineaire karakter, dit houdt in dat de kosten/opbrengsten van de beslisvariabelen lineair (moeten) stijgen. (Winston, 2004)

Als een probleem vergelijkbaar is met het zojuist beschreven LP probleem maar de stijging/daling van kosten/opbrengsten in stappen verloopt dan valt het onder integer (geheeltallig) lineair programmeren (IP). Hierbij kan de eis gesteld worden dat variabelen geheeltallig moeten zijn. Als alle variabelen geheeltallig moeten zijn spreken we van een puur IP, als dit een gedeeltel is dan is het een mixed IP. Een variant op de IP problemen is het vaste kostenprobleem (fixed-charge problem), hierbij komt een deel vaste kosten op het moment dat wordt begonnen met bijvoorbeeld de productie van goederen, deze veranderen niet als er meer of minder goederen worden gemaakt. De kosten zijn er echter niet als een product helemaal niet wordt gemaakt. Voor het oplossen van IP’s worden door Winston (2004) verschillende methoden aangedragen, omdat deze afwijken van de eerdere LP-oplosmethoden zal kort een van deze methoden beschreven worden. De Branch-and-Bound methode gaat uit van het principe dat de oplossingsruimte kan worden opgedeeld. Op basis van een aantal regels kunnen gedeeltel van de oplossingsruimte vroegtijdig worden uitgesloten, wat de snelheid van het vinden van de optimale oplossing bevordert. Het oplossen van een IP probleem als LP probleem wordt de LP relaxatie genoemd. Als deze oplossing alleen geheeltallige antwoorden geeft dan is de LP relaxatie hetzelfde als de optimale oplossing voor het IP. Maar als de antwoorden niet geheeltallig zijn dan wordt het probleem opgedeeld in subproblemen die vervolgens als LP worden opgelost. Als deze antwoorden weer niet geheeltallig zijn worden ook de subproblemen nog verder opgedeeld tot een geheeltallig antwoord wordt gevonden. Deze methode wordt veel gebruikt om een optimalisatieprobleem met zeer veel mogelijke toelaatbare oplossingen op te lossen.

Veel optimalisatieproblemen kunnen zo worden vereenvoudigd dat ze oplosbaar worden met behulp van LP of IP. In principe geldt voor het routeringprobleem bij Twente Milieu dat het oplosbaar is met behulp van IP. Echter de oplosmethoden zoals Branch-and-Bound zijn erg omslachtig en dus kostbaar.

Op de volgende pagina is tabel 5.1 opgenomen, deze geeft een overzicht van de bestaande relevante modeldefinities met betrekking tot het te ontwerpen model. In de eerste kolom is de afkorting van het principe aangegeven. De tweede kolom geeft de bijbehorende betekenis. In de middelste kolom wordt aangegeven wat de gevolgen zijn van het principe voor het gebruik in een
model. In de daaropvolgende kolom is duidelijk gemaakt hoe het principe werkt en in de laatste kolom staat de bruikbaarheid voor het blokcontainermodel.

In deze paragraaf is vrij uitvoerig ingegaan op de het TSP en VRP omdat deze problemen de basis vormen voor alle overige modeldefinities genoemd in tabel 5.1. Deze groep overigen zal verder niet besproken worden enerzijds omdat het slechts uitbreidingen (wel kort genoemd in tabel 5.1) zijn op het VRP en anderzijds gaan ze erg diep in op het ontwerpen van routes en niet zozeer op het indelen van ritten; het afgebakende onderwerp van dit onderzoek. Meer uitgebreide informatie over deze modeldefinities is te vinden in de publicaties waarnaar verwezen wordt in de tabel.
<table>
<thead>
<tr>
<th>Modeldefinitie</th>
<th>Afkorting uitgeschreven</th>
<th>Beknopte uitleg van het principe</th>
<th>Gebruikte methode</th>
<th>Toepasbaarheid</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSP (Johnson & McGeoch, 1995)</td>
<td>Travelling Salesman Problem</td>
<td>Een verkoper moet verschillende steden eenmaal aan doen en verplaatst zich via de kortste mogelijke route terug naar de beginstad.</td>
<td>Nearest neighbour Insertion procedures 2-opt, …., k-opt</td>
<td>Vormt de basis voor alle volgende modeldefinities</td>
</tr>
<tr>
<td>ARP (Corberan, 2005) en (Dror, 2000)*</td>
<td>Arc Routing Problem</td>
<td>Wegen moeten in hun geheel worden afgereden omdat overal potentiële klanten kunnen zijn, zelfs als een aantal vaste aanbiedpunten bekend zijn, hierbij moeten de kosten van de route geminimaliseerd worden.</td>
<td>Branch & Cut Algorithm Price- and reoptimize algorithm</td>
<td>Dit geldt niet voor de blokcontainers maar voor de minicontainers</td>
</tr>
<tr>
<td>PDPTW (Lau & Liang, 2001) en (Dumas, Desrosiers, Soumis, 1990)</td>
<td>Pick-up & Delivery Problem with Time Windows</td>
<td>Dit gaat om de combinatie van ophaal- en afleveropdrachten bij klanten, die binnen bepaalde tijdschema’s moeten worden volbracht. Geen weigering mogelijk en één klant bediend door één wagen. Totale kosten worden geminimaliseerd.</td>
<td>Large Neighbourhood search Construction heuristic & tabu search</td>
<td>Er wordt eerst afval opgehaald en vervolgens gestort. Deze definitie is echter niet periodiek en gebruikt tijdensters, dus deels bruikbaar</td>
</tr>
<tr>
<td>SVRP (Dror, 1993)</td>
<td>Stochastic Vehicle Routing Problem</td>
<td>Omdat er in sommige gevallen factoren zijn met een variabel karakter (onzekerheden), dient hier in het model rekening mee gehouden te worden. Dit principe houdt rekening met deze onzekerheden (zoals reistijden en grote van de vraag).</td>
<td>Modified savings algorithm (C&W) Branch-and-cut approach Cross Entropy Method</td>
<td>Hoewel er variatie in de waarde van de alle variabelen zit, wordt deze verwaarloosbaar geacht, dit scheelt in de modelcomplexiteit</td>
</tr>
<tr>
<td>SPVRPTW (Nuortioa, 2006)</td>
<td>Stochastic Periodic Vehicle Routing Problem with Time Windows and a limited number of vehicles</td>
<td>Het principe gaat uit van een onbekende hoeveelheid aangeboden goederen en een beperkt aantal voertuigen dat binnen gezette tijden en op periodieke basis één of meerdere keren langs klanten dient te rijden.</td>
<td>Guided Variable Neighborhood Thresholding (GVNT) metaheuristic</td>
<td>Sterk vergelijkbaar met het probleem bij Twente Milieu, echter de hierop gebaseerde heuristieken presteren pas goed bij zeer veel klanten (>10.000). Bovendien zijn de heuristieken zeer complex en gaan te ver voor dit probleem</td>
</tr>
</tbody>
</table>

* Het ARP vormt de basis voor vele variaties waaronder modellen met capaciteitsrestricties (CARP) en draaibeperkingen voor de voertuigen (CARPTC) (Bautista, 2007).

** Een combinatie van PVRP en CARP levert een PCARP op, een Periodic Capacitated Arc Routing Problem, deze maakt gebruik van Scatter Search (SS) als algoritme.
5.2 Vergelijkbare praktijkproblematiek

De verschillende genoemde methoden in de vorige paragraaf zijn allen ontworpen om alledaagse of juist (grote) eenmalige problemen op te lossen. Om de toepassing van deze methoden te zien en te vergelijken met het ritindelingprobleem bij Twente Milieu zullen nu verschillende praktijkvoorbeelden behandeld worden. Door te bepalen welke problemen goed vergelijkbaar zijn met het probleem bij Twente Milieu en de bijbehorende oplossingsrichtingen uiteen te zetten, zal beter inzicht verkregen worden in de algoritmen en heuristieken die als oplossingsmethode bij het onderzochte probleem van Twente Milieu passen.

5.2.1 Melkcollectie

Hoewel het inzamelen van huisvuil typische kenmerken heeft, zoals gebleken is uit paragraaf 4.3 zijn er ook veel overeenkomsten met andere logistieke problemen. Zo is de melkcollectie bij boeren door grote coöperaties goed vergelijkbaar met het probleem bij Twente Milieu. De melk moet worden opgehaald en afgeleverd, hoewel het aanbod van melk niet altijd gelijk is, is er wel behoefte aan regelmaat in het ophaalpatroon; cycli moeten zich herhalen. Sommige boeren moeten vaker dan eenmaal per cyclus worden aangedaan vanwege veel aanbod en/of weinig opslagmogelijkheden, maar bij de boeren wordt altijd gehaald en bij de zuivelproducenten wordt alleen gebracht. Ook bij de melkcollectie hebben ze te maken met meerdere wagens. Een van de verschillen is de houdbaarheid van melk, echter dit is wellicht te vergelijken met de capaciteit van de containers, als die te lang niet geleegd worden dan raken ze overvol en dat is niet de bedoeling. Daarnaast heeft de melkcollectie te maken met de vraag naar melk van de zuivelverwerkingsfabrieken en afstemming daarop wat er voor zorgt dat dit model een aantal extra restricties mee krijgt ten opzichte van afvalinzameling. De oplossingsrichting van het probleem is deels gebaseerd op een mixed integer programmingmodel (Claassen & Hendriks, 2006).

5.2.2 Orderpicking

Minstens evenveel toegepast in de huidige economie maar wellicht minder voor de hand liggend om er routingalgoritmen te zoeken zijn de grote warehouses met hun orderpicksysytemen (Roodbergen & Koster, 2000). In principe gebeurt in deze uitgestrekte magazijnen in grote lijnen hetzelfde als bij Twente Milieu. Oftewel de problemen zijn deels vergelijkbaar. Ook hier dienen goederen opgehaald te worden en dit moet zo efficiënt mogelijk gebeuren. Met behulp van algoritmen worden de robots langs de verschillende schappen gestuurd om de onderdelen voor de orders te rapen in een route die de totale afstand minimaliseert. Het grootste verschil tussen de twee systemen zijn de onregelmatige routes. Waar Twente Milieu wekelijks de zelfde routes wenst te rijden, bestaat iedere order uit verschillende items dus is ook iedere route in een warehouse verschillend. Vergelijkbaar is de capaciteitsrestrictie (afhankelijk van de grote van de items per order) die bepaald of een robot tussentijds terug moet om een lege verzamelbak te halen. Door de kleinere afstanden tussen de ligplaatsen van de verschillende items dient het algoritme in een warehouse nog prezer te werken. Bovendien speelt hier de mogelijkheid een rol om de lay-out van het magazijn te veranderen om hierdoor de prestaties nog verder te optimaliseren, wat overigens wel erg duur is en met name speelt bij de (ver)bouw(ing) van een magazijn. De oplossingsrichting is een algoritme dat slechts beperkt afwijkt van het standaard TSP probleem (Ratliff & Rosenthal, 1983).
5.2.3 Postinzameling
Waar het voorgaande probleem minder gelijkenis vertoonde met het probleem bij Twente Milieu door de veranderende routes en de mogelijkheid om de lay-out van het magazijn aan te passen is het probleem van de inzameling van de post uit brievenbussen even statisch als de lediging van blokcontainers (Russell & Igo, 1979). De inzamelaar van de post rijdt dagelijks een vaste route langs de brievenbussen om alle brieven te collecteren. Hoewel niet iedere dag exact evenveel brieven gepost worden is door historische data vrij zeker te schatten hoeveel het ongeveer zal zijn. In combinatie met de capaciteitsrestrictie van de busjes is hier dus ook de route op af te stemmen. Het algoritme dat door Russell & Igo als uitgangspunt is genomen gaat uit van het VRP. Een verschil met het probleem bij Twente Milieu is het aantal brievenbussen dat geleegd kan worden, dit hangt niet af van een (fysieke) norm zoals de P90-norm maar van de tijd waarop de post uiterlijk op het postkantoor moet zijn om te worden uitgezocht, dus efficiëntere routes kunnen bij de post meer (personele) besparingen opleveren. Bovendien heeft Twente Milieu te maken met de ledigingen bij Twence tijdens de ritten. Het algoritme zal als doelfunctie dan ook per route het aantal brievenbussen (klanten) binnen de gestelde tijd willen maximaliseren.

5.2.4 Kranten bezorgen
Als laatste voorbeeld zal gekeken worden naar het voorbeeld van een krantenbezorger (op basis van eigen ervaring). Hoewel het probleem in essentie een bezorgprobleem is in plaats van een inzamelprobleem heeft het toch een aantal interessante raakvlakken met het probleem bij Twente Milieu. Zo weet ook een krantenbezorger van te voren niet precies hoeveel kranten hij in één keer mee kan nemen (door het verschil in dikte van de krant). Maar hij zal in ieder geval iedere deur van zijn vaste wijk langs moeten. Hij kan natuurlijk bij het ophalen van de kranten nog een nieuwe route bepalen, maar normaliter volgt hij een dagelijkse route tot zijn kranten op zijn. Daarna moet hij terug om het overige deel te halen. Hij zal er op gebrand zijn om zo snel mogelijk klaar te zijn, daarmee maximaliseert hij namelijk zijn opbrengsten per uur. Uiteraard heeft ook de krantenbezorger een uiterste tijd waarop de krant in de bus moet liggen, daarmee wordt ook het maximale aantal kranten vastgesteld dat een bezorger per dag mag/kan rondbrengen. Het verschil tussen een ochtendwijk en een wijkkrant is vergelijkbaar met het verschil tussen blokcontainers en minicontainers en heeft te maken met de spreiding. De minicontainers en de wijkkranten werken op basis van het ARP, omdat ze in principe ieder huis/aansluiting langs moeten. De blokcontainers en de adressen van ochtendkranten liggen veel verder uit elkaar en straten kunnen dan ook vaker bereden en/of gekruist worden, een meer standaard VRP.
5.3 Keuze modelprincipe

Nu een overzicht van de verschillende principes de mogelijkheden voor het ontwerp van het blokcontainermodel heeft duidelijk gemaakt en enige voorbeelden uit de praktijk zijn bestudeerd, kan een keuze worden gemaakt voor een te gebruiken heuristiek of algoritme. Daarnaast moet het programma worden gekozen waarin het model geschreven zal worden.

5.3.1 Afweging heuristiek / algoritme

Hoewel het probleem de verdeling van ruim 750 lege containers per week behelst, waardoor een algoritme eigenlijk niet meer mogelijk lijkt, kan het dusdanig vereenvoudigd worden dat dit toch met een algoritme opgelost kan worden. Dit betekent dat een optimale oplossing voor het probleem op eenvoudige wijze moet kunnen worden bepaald. De mogelijkheid tot vereenvoudiging heeft vooral te maken met het feit dat kosten per dagdeel worden gemaakt. Kijkend naar de P90-norm komt een dagdeel overeen met een batch van 63 containers (125/2 (afronden naar boven)). Het maakt voor de kosten binnen het model dus niet uit of er 43 of 63 containers in een rit zitten.

Kijkend naar de genoemde heuristieken in § 5.1 sluit de cluster first – route second heuristiek het beste aan op het probleem bij Twente Milieu. Immers er dient eerst een indeling gemaakt te worden van de leegdruk van de containers over de wekelijkse werkdagen door middel van het te ontwikkelen model en daarna worden per rit de routes gepland. Gebruik van een clusterheuristiek voor dit probleem zou in de praktijk betekenen dat op een grote kaart van Twente Milieu alle containers aangegeven moeten worden en dat vervolgens met behulp van een lange lineaal swings worden gemaakt om de containers te verdelen over de dagen. Vervolgens kan de planningsapplicatie gebruikt worden om de snelste route per cluster te ontwikkelen. Een behoorlijk karwei voor iemand die onbekend is met deze methode en dit moet uitvoeren voor ruim drieëfhonderd containers. De kwaliteit van de oplossing hangt bovendien voor een groot deel af van de keuze van de begincontainer en de keuze om de swing met de klok mee te maken of juist er tegenzitten. Indien containers verdwijnen, dienen ook de bijbehorende stipjes op de kaart te worden verwijderd. De planner zal vervolgens zelf moeten bepalen hoeveel containers er moeten verdwijnen om opnieuw een besparing te kunnen bewerkstelligen. Dan dient hij alle handelingen opnieuw uit te voeren en te bepalen of daadwerkelijk een besparing is verkregen. Erg omslachtig voor iemand die niet met de methodes vertrouwd is.

Een tweede optie is om de containers niet meer als unieke containers te benaderen maar te scharen onder een categorie op basis van het aantal keren dat de container wekelijks geleegd dient te worden. Op deze manier kan een verdeling gemaakt worden over de week waarbij alleen aangegeven wordt hoeveel containers per categorie per dag geleegd moeten worden. Het is dan vervolgens aan de planner om te bepalen welke containers dit dan precies zijn. Daarna kan met behulp van de computerapplicatie een route gemaakt worden langs de geselecteerde containers. Het nadeel van de laatste methode is dat de planner goed in zijn hoofd moet hebben zitten waar de verschillende containers staan (of natuurlijk gebruik maken van een wegenkaart). Het voordeel is echter dat de verdeling maar weinig hoeft te verschillen van de huidige ritindeling, immers de planner kan zelf bepalen welke containers in de indeling verplaatst moeten worden. Bovendien kan de laatste methode volledig op de computer worden uitgevoerd.

In overleg met de planner is besloten om te kiezen voor de laatste methode. Dit houdt in dat hiervoor geen bestaande heuristiek of algoritme gebruikt zal worden maar op basis van een eigen ontwerp een algoritme ontwikkeld zal worden.
5.3.2 Afweging tool
Het te ontwerpen model zal operationeel moeten worden gemaakt met behulp van een programma dat hiertoe in staat is. Het meest gangbare programma om rekenkundige modellen in te ontwerpen is op dit moment Excel. Naast het feit dat vrijwel iedereen het kent is het vrij eenvoudig om hierin modellen te maken van beperkte grootte. De uitkomsten van het model zullen gemakkelijk te interpreteren zijn en dus gemakkelijk toepasbaar in Access. Daarbij komt dat in de toekomst veranderingen binnen Twente Milieu kunnen optreden die vereisen dat het model wordt aangepast, de planners zijn bekend met Excel wat het voor hen dus eenvoudiger maakt om veranderingen door te voeren. De transparantie heeft hier mee te maken en is dus ook van belang. Een nadeel van het gebruik van Excel is dat het niet specifiek bedoeld is voor het oplossen van planningsproblemen waardoor een aantal extra mogelijkheden niet beschikbaar of lastig te verkrijgen is (zoals bijvoorbeeld een kaart van Hengelo (met de plaatsen van de containers)). Maar op het moment is Excel het beste alternatief voor dit doel, dus het model zal hierin opgebouwd worden.

5.4 Evaluatie
In wezen zou de evaluatie van het model uit twee delen moeten bestaan, enerzijds de werking van het model zelf en anderzijds de kwaliteit van de oplossing die wordt voortgebracht door het model. Aangezien het gebruik van het model en de invoering van de oplossing pas zullen plaatsvinden als dit onderzoek al is afgerond, zal het model voortijdig een aantal keer getest worden in samenwerking met de planner. De uitkomsten van deze testen zullen nog worden gebruikt voor terugkoppeling naar en verbetering van het model.

- Aangezien de operationele kosten geen rekening houden met de hoeveelheid tijd die de planner kwijt is aan het gebruik van het model zal ook dit geëvalueerd worden. Als het model in de ogen van de planner te omslachtig is, zal worden bekeken of het aantal stappen gereduceerd kan worden.

- Het gebruiksgemak zal aan de eisen van de planner moeten voldoen. Aangezien veel van deze eisen pas tijdens het gebruik naar voren komen zal in de ontwikkel fase veel overlegd worden met de planner, maar ook tijd worden ingeruimd voor terugkoppeling na gebruik.

- Daarnaast is de herbruikbaarheid van het model van groot belang. De eenvoud om veranderingen door te voeren in de waarden van de restricties of in de restricties zelf zal worden geëvalueerd.

Twente Milieu zal bij het gebruik van het model zelf de oplossing van het model moeten evalueren. Hiervoor kan ze kijken naar:

- De geschatte kostenbesparing oftewel het behalen van de doelfunctie, het minimaliseren van de totale operationele kosten. De huidige kosten, om te kunnen vergelijken, zijn bepaald in samenwerking met de financiële afdeling van Twente Milieu.

- Naast de kostenbesparing is de aanvaardbaarheid van de aangedragen oplossing van belang. De aanvaardbaarheid is uit te splitsen naar:
- Grootte van de verandering voor de klanten (aansluitingen)
 - Kans op extra klachten
- Gevolgen voor de routeplanning
- Gevolgen voor het personeel

- Om het model optimaal te laten functioneren, zal na het in gebruik nemen, moeten worden gekeken of de schattingen en aannames die gedaan zijn, juist zijn. Dit kan pas echt goed gebeuren na een jaar.

- Ook zullen onvoorziene, bijkomende problemen geëvalueerd moeten worden.

Samenvatting en vooruitblik
Als vervolg op de begripsomschrijving van ritplanning in §2.4 is in dit hoofdstuk ingegaan op verschillende ontwikkelde modeldefinities en oplossingsrichtingen van routeringsproblemen op basis van een literatuuronderzoek. Vervolgens is een keuze gemaakt met betrekking tot de oplossingsrichting die voor het probleem van Twente Milieu het beste aansluit. Er is besloten om het detailniveau van het probleem zo te kiezen dat containers niet meer individueel in het model zullen terug komen, maar opgedeeld naar drie categorieën. De opdeling is op basis van het aantal keren dat de containers wekelijks geleegd dienen te worden. Het model zal mede vanwege algemene bekendheid ontwikkeld worden in Excel. In de laatste paragraaf zijn evaluatiecriteria aangegeven. Deze kan Twente Milieu hanteren om de kwaliteit van het gebruik van het model en de geleverde oplossing te evalueren.

Na de eerste twee onderzoeksvragen is in dit hoofdstuk ook de derde en laatste onderzoeksvraag beantwoord. Dit betekent in principe dat het nu mogelijk is om een model te bouwen zoals omschreven in de probleemstelling, waarvan de eisen en wensen bekend zijn, de variabelen en restricties geformuleerd en de oplossingsrichting gekozen. In hoofdstuk 6 zal dit model worden uitgewerkt zodat het bruikbaar wordt voor de planners van Twente Milieu.
H6 Uitwerking blokcontainermodel

Nu duidelijk is welke wensen en eisen aan het model gesteld worden vanuit de verschillende partijen binnen Twente Milieu, welke variabelen en restricties een rol spelen binnen het model en welke oplossingsrichting gebruikt wordt als basis voor het model kan het model nu daadwerkelijk gebouwd worden.

In de eerste paragraaf zullen nogmaals het doel van en het idee achter het model beschreven worden. Daarna wordt de opbouw van het model behandeld in paragraaf 6.2. In de laatste paragraaf worden de stappen binnen het model uitgewerkt. Ter illustratie zijn er tussendoor voorbeelden gegeven van de fysische werking van het model in Excel.

6.1 Doel en werking

Het doel van het model is zoals in paragraaf 4.2 aangegeven eenvoudig te formuleren als:

‘Minimaliseer de totale operationele kosten’

De operationele kosten die een rol spelen bij de blokcontainerlediging binnen Twente Milieu zijn gevat in de kostenposten genoemd in tabel 3.1; ‘Relevante kostenposten’. Het doel is dus dat de operationele kosten dalen bij het in gebruik nemen van het model. Oftewel dalende operationele kosten bij het invoeren van de ritplanning (clustering) die als resultaat van het gebruik van het model naar voren komt.

Dalende operationele kosten betekent een toenemende besparing, dit geldt ook omgekeerd dus een toenemende besparing betekent dalende operationele kosten. De besparingen dienen dus te worden gemaximaliseerd. Het model zal niet de totale kosten tonen, maar de totale besparing die wordt behaald.

Het basisidee om tot deze besparingen te komen gaat er van uit dat het totaal aantal ritten zo min mogelijk mag afwijken van het totaal aantal wekelijkse ledigingen gedeeld door 125, het maximum aantal blokcontainers dat per persoon per werkdag, dus per rit, mag worden geleegd (P90-norm). In het model wordt overigens gewerkt met halve ritten van 63 containers waardoor er 126 containers in een hele rit passen, maar dat is geen probleem (§4.1.1; eisen en wensen van de vestigingsmanager). Ritten zullen dus zoveel mogelijk tot het maximum gevuld worden.

Hierbij dient wel rekening gehouden te worden met het aantal wekelijkse ledigingen van de containers. De leegdagen van containers die driemaal per week geleegd dienen te worden liggen al vast (maandag, woensdag en vrijdag) (zie §4.3.6; tijdsrestricties). Containers die tweemaal per week geleegd dienen te worden kunnen alleen geleegd worden op een van de twee combinaties van dagen maandag-donderdag of dinsdag-vrijdag (zie §4.3.6; tijdsrestricties). De containers die maar één keer per week geleegd dienen te worden kunnen op iedere willekeurige dag worden geplaatst.

De manier waarop de ritten worden opgevuld bepaald de besparing die behaald wordt. Het model kent hiervoor drie varianten die enigszins van elkaar verschillen maar die alle drie zorgen voor een optimale clustering van de containers. De drie varianten kennen allen twee fasen; een verdelingsfase en een verbeterfase. In de verdelingsfase wordt het minimale aantal benodigde ritten bepaald dat nodig is voor de wekelijkse lediging van alle containers. In de verbeterfase worden groepen van 63 containers verplaatst over de verschillende dagen waardoor de besparing wordt gemaximaliseerd.

In het model wordt de locatie van de containers niet meegenomen (zie §5.3.1; Afweging heuristiek/algoritme), dit houdt in dat de clustering slechts een aantal containers per categorie per rit zal voortbrengen. Het is vervolgens aan de planner om te bepalen welke containers binnen de
categorieën deze clusters (ritten) zullen vormen. Omdat de kwaliteit van de route (geproduceerd door de planningsapplicatie) sterk afhangt van de keuze (van de planner) van de containers per rit wordt sterk aanbevolen om hiervoor gebruik te maken van zogenaamde vuistregels voor bedrijfslogistiek (Ballou, 1991). In bijlage 1 zullen relevante vuistregels worden uitgewerkt en toepasbaar worden gemaakt voor de planners van Twente Milieu.

De uitwerking van het model zal de bovengenoemde fasen verder verduidelijken en de stappen binnen deze fasen uiteenzetten.

6.2 De opbouw

Globaal gezien behoeft het model invoergegevens, deze worden verwerkt en het model levert vervolgens een uitvoer. Omdat de mogelijkheden voor het behalen van een besparing met behulp van het model afhangen van de kwaliteit van de huidige ritplanning begint het model met een vergelijking van de huidige situatie met een ideale situatie. Als dit verschil te klein is, wat inhoudt dat er niet te veel ritten worden gereden in verhouding tot het totaal aantal ledigingen, dan heeft het doorlopen van het model theoretisch gezien geen zin. Wellicht in praktisch opzicht wel, maar dat is niet in te schatten. Is het verschil wel groot genoeg dan wordt aangeraden het model te doorlopen.

Invoer

De invoer van het model bestaat uit de volgende gegevens:

- Het aantal blokcontainers dat driemaal weeks geleegd dient te worden (categorie 3)
- Het aantal blokcontainers dat tweemaal weeks geleegd dient te worden (categorie 2)
- Het aantal blokcontainers dat eenmaal per week geleegd dient te worden (categorie 1)

En

- Het huidige aantal ritten (waarbij een dagdeel gezien wordt als een rit)

Daarnaast dienen de waarden van de volgende parameters gecontroleerd te worden:

- Het dagelijkse aantal beschikbare vuilniswagens
- Het aantal benodigde werknemers per vuilniswagen
- Het aantal betaalde werkuren per dag
- Het gemiddeld bruto uurloon voor een werknemer (chauffeur/belader)
- De maximale capaciteit per oudste persoon op de vuilniswagen (containers)
- De kosten per uur voor het laten rijden van een vaste vuilniswagen
- De kosten per uur voor het laten stilstaan van een vaste vuilniswagen
- De kosten per dag voor de inzet van een extra vuilniswagen (Cleanmat)
- Het aantal uren voor extra inzet vuilniswagen (Cleanmat)

Verwerking

De planner zal met het doorlopen van de stappen van het model binnen de toelaatbare mogelijkheden de besparing maximaliseren oftewel de operationele kosten minimaliseren. De stappen die het model volgt, zijn beschreven in de uitwerking van de heuristiek.
Uitvoer

Uit het model komt een optimale clustering (ritindeling) waarin per dag (voor één week) het aantal containers per categorie is bepaald. Zoals gezegd dient de planner deze containers te selecteren. Voor een hoge kwaliteit routes is het noodzakelijk dat deze selectie met zorg wordt uitgevoerd. Het gebruik van de vuistregels (Ballou, 1998, bijlage 1) wordt hierbij sterk aanbevolen. Na het selecteren van de containers voor de verschillende ritten dient de planner routes te plannen. Dit kan door gebruik te maken van de plannings applicatie of ervaren chauffeurs.

6.3 De uitwerking

De uitwerking van het model zal gebeuren aan de hand van een fictief voorbeeld. Dit voorbeeld is redelijk vergelijkbaar met de huidige situatie van Twente Milieu maar verschilt enigszins doordat de huidige indeling niet helemaal volgens ‘de regels’ is opgebouwd; containers uit categorie 2 werden bijvoorbeeld op dinsdag en donderdag geleegd. In het voorbeeld zijn in de huidige situatie van de drie categorieën respectievelijk 80, 284 en 20 containers aanwezig. In totaal zijn dit 708 ledigingen per week. Voor deze ledigingen worden momenteel 13 dagdelen gebruikt. Dit zijn gemiddeld 55 containers per dagdeel. Voor de uitvoering van de ledigingen zijn twee eigen vuilniswagens beschikbaar. De huidige situatie van dit fictieve voorbeeld is weergegeven in onderstaand figuur.

<table>
<thead>
<tr>
<th>Categorie</th>
<th>Maandag</th>
<th>Dinsdag</th>
<th>Woensdag</th>
<th>Donderdag</th>
<th>Vrijdag</th>
<th>Totaal cat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>135</td>
<td>149</td>
<td>135</td>
<td>149</td>
<td>284</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>15</td>
<td>30</td>
<td>25</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>165</td>
<td>164</td>
<td>50</td>
<td>160</td>
<td>169</td>
<td>708</td>
</tr>
</tbody>
</table>

Fig. 6.2 De huidige situatie van het fictieve voorbeeld

Stap 1. Plaats de containers van categorie 3 op maandag, woensdag en vrijdag. Plaats alle
containers van categorie 2 op maandag (en automatisch ook op donderdag). Plaats de containers van categorie 1 op de woensdag.

Scenario 1

<table>
<thead>
<tr>
<th>Categorie</th>
<th>Maandag</th>
<th>Dinsdag</th>
<th>Woensdag</th>
<th>Donderdag</th>
<th>Vrijdag</th>
<th>Totaal cat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Categorie 3</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Categorie 2</td>
<td>284</td>
<td></td>
<td></td>
<td>284</td>
<td>0</td>
<td>284</td>
</tr>
<tr>
<td>Categorie 1</td>
<td></td>
<td></td>
<td>80</td>
<td></td>
<td></td>
<td>80</td>
</tr>
</tbody>
</table>

Fig. 6.3 De situatie na stap 1; scenario 1 voor het fictieve voorbeeld

Stap 2. Plaats containers van categorie 2 van de maandag naar de dinsdag zodat op de maandag het maximaal haalbare veelvoud van 63 ontstaat.

Scenario 1

<table>
<thead>
<tr>
<th>Categorie</th>
<th>Maandag</th>
<th>Dinsdag</th>
<th>Woensdag</th>
<th>Donderdag</th>
<th>Vrijdag</th>
<th>Totaal cat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Categorie 3</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Categorie 2</td>
<td>232</td>
<td>52</td>
<td></td>
<td>232</td>
<td>52</td>
<td>284</td>
</tr>
<tr>
<td>Categorie 1</td>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td></td>
<td>80</td>
</tr>
</tbody>
</table>

Fig. 6.4 De situatie na stap 2; scenario 1 voor het fictieve voorbeeld

Stap 3. Plaats containers van categorie 1 van de woensdag naar de dinsdag tot ook daar een veelvoud van 63 ontstaat of alle containers van categorie 1 zijn toebedeeld aan de dinsdag.

Scenario 1

<table>
<thead>
<tr>
<th>Categorie</th>
<th>Maandag</th>
<th>Dinsdag</th>
<th>Woensdag</th>
<th>Donderdag</th>
<th>Vrijdag</th>
<th>Totaal cat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Categorie 3</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Categorie 2</td>
<td>232</td>
<td>52</td>
<td></td>
<td>232</td>
<td>52</td>
<td>284</td>
</tr>
<tr>
<td>Categorie 1</td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>89</td>
<td>80</td>
</tr>
</tbody>
</table>

Fig. 6.5 De situatie na stap 3; scenario 1 voor het fictieve voorbeeld

Stap 4. Plaats vervolgens containers van categorie 1 van de woensdag naar de vrijdag tot hier een veelvoud van 63 ontstaat of alle containers van categorie 1 zijn toebedeeld aan de dinsdag of de vrijdag.

Scenario 1

<table>
<thead>
<tr>
<th>Categorie</th>
<th>Maandag</th>
<th>Dinsdag</th>
<th>Woensdag</th>
<th>Donderdag</th>
<th>Vrijdag</th>
<th>Totaal cat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Categorie 3</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Categorie 2</td>
<td>232</td>
<td>52</td>
<td></td>
<td>232</td>
<td>52</td>
<td>284</td>
</tr>
<tr>
<td>Categorie 1</td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>15</td>
<td>54</td>
</tr>
</tbody>
</table>

Fig. 6.6 De situatie na stap 4; scenario 1 voor het fictieve voorbeeld
Stap 5. Plaats daarna op donderdag de containers van categorie 1 vanaf de woensdag tot op donderdag een veelvoud van 63 ontstaat of alle containers van categorie 1 zijn toebedeeld aan dinsdag, vrijdag of donderdag.

<table>
<thead>
<tr>
<th>Scenario 1</th>
<th>Maandag</th>
<th>Dinsdag</th>
<th>Woensdag</th>
<th>Donderdag</th>
<th>Vrijdag</th>
<th>Totaal cat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Categorie 3</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Categorie 2</td>
<td>232</td>
<td>232</td>
<td>52</td>
<td>52</td>
<td>284</td>
<td></td>
</tr>
<tr>
<td>Categorie 1</td>
<td>11</td>
<td>0</td>
<td>15</td>
<td>54</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 6.7 De situatie na stap 5; scenario 1 voor het fictieve voorbeeld

Stap 6. Laat ten slotte alle overige containers van categorie 1 op woensdag staan.

Op deze manier houden we in dit voorbeeld 12 ritten over. Dit is een oplossing die theoretisch leidt tot de minste ritten want het totaal van 708 ledigingen gedeeld door 63 ledigingen per rit is 11,2 (dit dient naar boven te worden afgerond omdat geen kwart ritten gereden kunnen worden). Hiermee is echter nog niet gezegd dat dit ook de hoogst haalbare besparing oplevert aangezien het aantal ritten per dag nog invloed kan hebben op de totale besparingen en deze is op dit punt nog niet geoptimaliseerd. Hiervoor is stap 7, er worden alternatieven gegenereerd die vergeleken kunnen worden om zo de optimale oplossing te bepalen.

Stap 7. Plaats tegelijk 63 containers van de maandag naar de dinsdag (dezelfde verplaatsing vindt plaats van de donderdag naar de vrijdag).

Stap 8. Herhaal stap 7 een aantal keer en vergelijk de besparingsmogelijkheden. Ga door tot dit een interessante oplossing oplevert (maximale besparing / weinig wisselingen van containers).

Deze optimalisatieslag heeft alleen zin als op een of meerdere dagen zooveel containers staan ingepland dat er een extra vuilniswagen moet worden gehuurd terwijl op andere dagen eigen vuilniswagens stil staan. Voor het gebruikte voorbeeld leidt de optimalisatieslag niet tot extra besparingen. Maar zoals te zien is, heeft de herverdeling van de containers wel geleid tot een besparing, immers er zijn nu nog maar twaalf dagdelen nodig voor de totale wekelijkse lediging.

Als alternatief voor de oplossingen uit de eerste zeven stappen kan gebruik worden gemaakt van de stappen 9 tot en met 14.

Dit alternatief vertoont zeer grote gelijkenis met de vorige stappen, alleen wordt nu vanuit de vrijdag gestart in plaats van de maandag. Dit levert geen extra besparingen op, maar wellicht lijken de oplossingen meer op de huidige situatie of hebben ze andere voordelen ten opzichte van de eerdere oplossingen.

Stap 9. Plaats de containers van categorie 3 op maandag, woensdag en vrijdag. Plaats alle containers van categorie 2 op vrijdag (en automatisch ook op dinsdag). Plaats de containers van categorie 1 op de woensdag.
Stap 10. Plaats containers van de vrijdag naar de donderdag zodat op de vrijdag het maximaal haalbare veelvoud van 63 ontstaat.

Stap 11. Plaats containers van categorie 1 van de woensdag naar de donderdag tot ook daar een veelvoud van 63 ontstaat of alle containers van categorie 1 zijn toebedeeld aan de donderdag.

Stap 12. Plaats vervolgens containers van categorie 1 van de woensdag naar de maandag tot hier een veelvoud van 63 ontstaat of alle containers van categorie 1 zijn toebedeeld aan de donderdag of de maandag.

Stap 13. Plaats daarna op dinsdag de containers van categorie 1 van de woensdag tot op dinsdag een veelvoud van 63 ontstaat of alle containers van categorie 1 zijn toegedeeld aan donderdag, maandag of dinsdag.

Stap 14. Laat ten slotte alle overige containers van categorie 1 op woensdag staan.

<table>
<thead>
<tr>
<th>Scenario 2</th>
<th>Maandag</th>
<th>Dinsdag</th>
<th>Woensdag</th>
<th>Donderdag</th>
<th>Vrijdag</th>
<th>Totaal cat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>57</td>
<td>Categorie 3</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>58</td>
<td>Categorie 2</td>
<td>52</td>
<td>232</td>
<td>52</td>
<td>232</td>
<td>284</td>
</tr>
<tr>
<td>60</td>
<td>Categorie 1</td>
<td>54</td>
<td>15</td>
<td>11</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>61</td>
<td>Weektotaal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>708</td>
</tr>
<tr>
<td>62</td>
<td>Dagtotaal</td>
<td>126</td>
<td>247</td>
<td>20</td>
<td>63</td>
<td>252</td>
</tr>
</tbody>
</table>

Fig. 6.8 De situatie na stap 14; scenario 2 voor het fictieve voorbeeld

Dit is wederom een oplossing die theoretisch leidt tot de minste ritten maar ook hier is het aantal ritten per dag nog niet geoptimaliseerd wat nog wel invloed kan hebben op de totale besparingen. Hiervoor is stap 15.

Stap 15. Plaats tegelijk 63 containers van de vrijdag naar de donderdag (dezelfde verplaatsing vindt plaats van de dinsdag naar de maandag). Herhaal nu de bewerkingen uit stap 17, maar schuif één kolom op zodat u een volgend alternatief genereert en eerder gemaakte alternatieven blijven staan.

In de voorgaande stappen is geprobeerd de woensdag zoveel mogelijk vrij te plannen. Dit alternatief zal de woensdag echter gebruiken om de andere dagen te ontlasten. De uitgangsspositie van dit scenario is gelijk aan de verdeling van de containers van categorie 2 in de meest interessante oplossing uit alternatief 1 of 2.

Stap 17. Plaats containers van categorie 1 van de woensdag naar de dinsdag zodat op de woensdag een zo hoog mogelijk veelvoud van 63 ontstaat.

Stap 18. Plaats containers van categorie 1 van de dinsdag naar de vrijdag zodat op dinsdag een veelvoud van 63 containers overblijft of stop als alle containers van categorie 1 zijn verdeeld.
Stap 19. Plaats containers van categorie 1 van de vrijdag naar de donderdag zodat op vrijdag een veelvoud van 63 containers overblijft of stop als alle containers van categorie 1 zijn verdeeld.

Stap 20. Als door stap 23 het aantal containers op donderdag een extra veelvoud van 63 overstijgt (dus 120 wordt 140) dan kunnen de overige (meer dan het veelvoud) containers van categorie 1 worden geplaatst op de dag met de minste ritten.

<table>
<thead>
<tr>
<th>77</th>
<th>Scenario 3</th>
<th>Maandag</th>
<th>Dinsdag</th>
<th>Woensdag</th>
<th>Donderdag</th>
<th>Vrijdag</th>
<th>Totaal cat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>78</td>
<td>Categorie 3</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>79</td>
<td>Categorie 2</td>
<td>232</td>
<td>52</td>
<td>232</td>
<td>52</td>
<td>284</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Categorie 1</td>
<td>11</td>
<td>43</td>
<td></td>
<td>26</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Weektotaal</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>Dagtotaal</td>
<td>252</td>
<td>63</td>
<td>63</td>
<td>232</td>
<td>98</td>
<td>708</td>
</tr>
</tbody>
</table>

Fig. 6.9 De situatie na stap 20; scenario 3 voor het fictieve voorbeeld

Ook deze oplossing levert een minimum aan ritten op. Voor een optimale besparing kan bekeken worden of het uitmaakt als containers van categorie 1 van de woensdag met 63 containers tegelijk verplaatst worden naar een andere dag. Plaats deze containers dan op de dag met de minste ritten.

6.4 Evaluatie

Nu een werkend model voorhanden is kan het eerste gedeelte van de evaluatie; de werking van het model (§5.4) reeds geschieden. De drie punten die onder dit gedeelte vallen zijn hieronder geëvalueerd.

Gebruiksdrempel

Het feit dat het model maar enkele keren per jaar gebruikt hoeft te worden door de planner maakt enerzijds dat de noodzaak voor een zeer beperkte handelingstijd van het model lager wordt. Anderzijds houdt dit feit in dat er geen spraken zal zijn van echte ervaring in het gebruik, waardoor de handelingstijd van het model na enkele malen gebruik te zijn, zou kunnen dalen. De tijd die het de planner nu kost om het gehele stappenplan te doorlopen is ongeveer 30 minuten. Dit is als acceptabel bestempeld door de planner in Hengelo. Als dit leidt tot een nieuwe indeling van containers zal ook in het doorvoeren van deze veranderingen de nodige tijd en energie gaan zitten. Hier moet door de planners rekening mee gehouden worden.

Gebruiksgemak

Door het model vanuit het oogpunt van het gebruik door de planner vorm te geven, voldoet het model nu aan het gewenste gebruiksgemak voor de planners. Zo worden gekleurde cellen gebruikt voor cellen waarin getallen veranderd dienen te worden, zo wordt voorkomen dat planners lang moeten zoeken naar cellen of formules in het model per ongeluk worden veranderd. Daarnaast zijn verschillende tabbladen gebruikt voor de interface (daar waar gegevens moeten worden ingevuld) en het achterliggende rekenmodel. Bovendien worden ingevoerde getallen zoveel mogelijk met elkaar vergeleken waardoor typ- of rekenfouten doorgaans snel worden achterhaald en kunnen worden gecorrigeerd. Ten slotte is een uitgebreide handleiding bijgevoegd die tot op de cel nauwkeurig aangeeft welke cijfers waar dienen te worden ingevuld.
Herbruikbaarheid
Het model kan zo vaak gebruikt worden als de planner nodig acht, maar een richtlijn voor het herrunnen van het model gaat er van uit dat het zinnig is om het model opnieuw te runnen als het totaal aantal ledigingen per week gedaald (of gestegen) is tot een veelvoud van 63. Dit is dus aan de planner om bij te houden. Praktisch gezien kan dit vrij eenvoudig door in de Access-applicatie een filter toe te passen op de desbetreffende gemeenten en de blokcontainers.
De term ‘benaderen’ heeft alles te maken met het feit dat één container extra nog wel door de vingers kan worden gezien (zie eisen en wensen van de vestigingsmanager, § 4.1).

Samenvatting en vooruitblik
Op basis van de antwoorden op de onderzoeksvragen die in eerdere hoofdstukken werden onderzocht is in dit hoofdstuk het blokcontainermodel ontworpen. Vanuit het doel en het idee achter de werking van het model is de overgang gemaakt naar het stappenplan waarop het model gebaseerd is. Aan de hand van een fictief maar realistisch voorbeeld is dit stappenplan doorlopen. Hieruit is al gebleken dat het niet in alle gevallen noodzakelijk is om alle stappen en scenario’s in hun geheel te doorlopen. De ‘noodzaak’ hangt met name af van de kwaliteit van de oplossing uit het eerste scenario. In de laatste paragraaf zijn de benodigde tijd, gebruiksvriendelijkheid en herbruikbaarheid van het model geëvalueerd. Genoemde eigenschappen voldoen aan de verwachtingen van de planner.
Nu een werkend model beschikbaar is, bestaat de mogelijkheid om deze toe te passen op de huidige situatie van de blokcontainerlediging in Hengelo. De besparingen die het gebruik van het model in Hengelo met zich mee brengt, zullen in het volgende hoofdstuk besproken worden. Hier zal worden ingegaan op zowel de directe als de indirecte besparingen.
H7 Besparingsoverzicht

In dit hoofdstuk zal een overzicht gepresenteerd worden van de geschatte besparingen van de invoering van het blokcontainermodel. Dit overzicht zal zich in eerste instantie beperken tot regio Hengelo. Het is vervolgens aan Twente Milieu om het model ook voor de andere regio’s te gebruiken om te verifiëren of het aldaar ook tot besparingen kan leiden.

Besparingen kunnen in verschillende vormen voorkomen, in dit geval zal een combinatie van besparingen in het overzicht worden getoond die direct of indirect volgen uit het gebruik van het model.

7.1 Directe besparingen door het blokcontainermodel

Het uitsparen van personeel en materieel zijn directe gevolgen van de invoering van het model.

Het invoeren van de oplossing uit het blokcontainermodel kan in de huidige situatie leiden tot een besparing. Theoretisch gezien kan de besparing door middel van het blokcontainermodel in Hengelo maximaal een dagdeel zijn. Dit is 416 personeelsuren en 208 uren tractie (bespaarde personeelsuren delen door het aantal personen op de vuilniswagen). De besparing is als volgt opgebouwd:

\[(\text{huidig aantal dagdelen per week} - \text{toekomstig aantal dagdelen per week}) \times \text{het aantal uren per persoon per dagdeel} \times \text{het aantal personen op de vuilniswagen} \times \text{het aantal weken per jaar}\]

Echter in de praktijk lukt het de planner om chauffeurs van het ABP, die afval van het ABP naar onder andere het Twence verplaatsen, op woensdagochtend het twintigtal containers (die in totaal driemaal weeks geleegd dienen te worden) te laten legen. Hierdoor wordt wekelijks een gehele dag (woensdag) aan personeel uitgespaard en zes uur aan tractie (want de vuilniswagen is nog nodig voor de twintig containers). Dit leidt tot een totale besparing van 832 uren personeel en 312 uren tractie. Binnen tractiekosten dient onderscheid gemaakt te worden tussen het vaste en het variabele gedeelte. De vaste kosten bestaan onder andere uit afschrijvingen, verzekering en stalkosten. Het variabele gedeelte wordt bepaald door de benzinekosten. Enkel de variabele kosten per uur (€5,08) zullen bij stilstand verdwijnen. Omgerekend in euro’s levert de oplossing een totale besparing op van (416 * €30,95 + 416 * €25, 31+ 312 * €5,08=) €25.000 op jaarbasis.

Het aantal personeelsuren dat wordt bespaard is 33,3 procent van de totale besparing die zou moeten worden behaald (zie §2.4 Probleemkluwen). Op het totaal aantal uren voor de blokcontainerinzameling is dit 14,3 procent.

Aandachtspunten

De verlaging van het aantal benodigde personeelsuren kan eigenlijk pas een besparing genoemd worden als het uitgespaarde personeel gewoon voor minder uur kan worden ingehuurd (uitzendkrachten) of op een andere plek binnen het bedrijf te werk kan worden gesteld (vast personeel). Het is dus belangrijk dat de vestigingsmanagers weten wat ze de chauffeur laten doen als deze een halve dag wordt uitgeroosterd van blokcontainerlediging.
7.2 Indirecte besparingen door het blokcontainermodel

Naast de besparingen op kosten voor personeel en materieel, waar het model in eerste instantie voor bedoeld is, bestaat de mogelijkheid dat de invoering ook op andere vlakken besparingen op levert. Deze besparingen worden als indirecte besparingen gezien omdat het niet de eerste intentie van het model is om deze te bewerkstelligen.

Het uitsparen van een vuilniswagen voor één of meerdere dagdelen kan betekenen dat de wagen langer stil staat of voor andere activiteiten kan worden ingezet. Beide opties kunnen een extra besparing betekenen. Als de vuilniswagen stil staat, betekent dit dat de technische dienst meer tijd/ mogelijkheden heeft om klein- of groot onderhoud aan de wagen te verrichten. Het extra onderhoud verlengt in de regel de levensduur van het materiaal. Om deze mogelijkheid optimaal te benutten zouden de wagens zo moeten rouleren dat deze om de beurt een dag/ dagdeel ‘vrij’ gepland worden. De kosten van onderhoud zijn jaarlijks 16% van de totale aanschafprijs van de vuilniswagen (gemiddeld €173.000), dus het terugdringen van deze kosten zal Twente Milieu een forse besparing kunnen opleveren.(kan je hiervan een schatting maken?) Als ervoor gekozen wordt om het voertuig elders in te zetten scheelt dit per direct in de kosten van aanschaf van een nieuwe vuilniswagen of het huren van een vuilniswagen bij Cleanmat.

De zojuist besproken besparingsmogelijkheden voor de blokcontainers waren voor Twente Milieu aanleiding om te komen met het verzoek om ook de besparingsmogelijkheden bij minicontainers te bekijken. Helaas was het ontwikkelde model niet geschikt voor dit specifieke probleem. Echter door de ontwikkeling van een vrij eenvoudig nieuw model bleken er wel besparingen mogelijk. Omdat de minicontainers buiten de afbakening vallen van de probleemstelling binnen dit onderzoek worden de besparingsmogelijkheden voor de minicontainers behandeld in bijlage 11.
Samenvatting en vooruitblik
Het besparingsoverzicht heeft aangetoond dat het gebruik van het model voor de huidige situatie van de blokcontainerlediging in Hengelo interessante besparingen op kan leveren. Hiervoor dient de vestigingsmanager wel de mogelijkheid te hebben om de bespaarde uren van vast personeel elders in het bedrijf zinvol in te zetten. Naast deze directe besparingen is er een reële kans dat het gebruik van het model in de toekomst ook zal leiden tot indirecte besparingen zoals een daling van de jaarlijkse onderhoudskosten van de voertuigen.
In de laatste twee hoofdstukken van dit rapport worden respectievelijk de conclusies en aanbevelingen omtrent het onderzoek gepresenteerd. Hierin zullen beide besparingsmodellen (omtrent de blokcontainer- en minicontainerlediging) in beschouwing worden genomen omdat de conclusies en aanbevelingen voor beide modellen in zekere mate overlap vertonen.
H8 Conclusies

De modellen die tijdens dit onderzoek bij Twente Milieu zijn ontwikkeld, werken zowel in theoretisch als in praktisch opzicht. Het gebruik van de modellen levert nieuwe ritplanningen op voor de blokcontainer- en minicontainerlediging. Met deze nieuwe ritplanningen kan in vergelijking met de huidige situatie een jaarlijkse besparing van ruim € 40.000 euro gerealiseerd worden.

Het percentage aan personeelsuren dat door de invoering van beide modellen kan worden uitgespaard is ruim 50% van het totale aantal personeelsuren dat Twente Milieu Hengelo op jaarbasis wil besparen in de uitvoering.

Door veranderingen in de ritindeling van Twente Milieu zijn dus forse besparingen mogelijk. Maar om de uigespaarde uren daadwerkelijk om te zetten in besparingen dient de vestigingsmanager mogelijkheden te creëren om het vaste personeel elders binnen het bedrijf effectief in te zetten.

Daarnaast dient door Twente Milieu wel rekening gehouden te worden met het belang van een mentaliteitsverandering onder het uitvoerende personeel. Er zullen per dag meer containers worden geleegd dan voorheen het geval was, wat betekent dat het personeel langer door zal moeten werken dan ze tot nu toe gewend was. Dit vormt een onderdeel van een goede voorbereiding op de aanstaande veranderingen en zal uiteindelijk leiden tot een betere benutting van de mogelijkheden tot besparingen.

Naast de directe besparingen door de invoering van de oplossingen zijn er andere raakvlakken met de praktische uitvoering wellicht profiteren van de veranderingen die worden doorgevoerd. Hoewel de besparingen die hier worden behaald lastig in te schatten zijn, vormt bijvoorbeeld ‘onderhoud’ een interessante post waar een reële kans bestaat dat de invloed van de veranderingen merkbaar zal zijn.

De kracht van het ontwikkelde blokcontainermodel ligt voor een deel in de gebruikte heuristiek, die zo goed mogelijk is afgestemd op de activiteiten bij Twente Milieu, maar schuilt ook voor een deel in de overzichtelijkheid die de planner wordt verschaf in de situatie van de blokcontainers. De nieuwe inzichten blijken de planner naast de theoretische besparing te kunnen doen besluiten om in praktisch opzicht veranderingen door te voeren om de theoretische besparingen verder aan te vullen.

Ter illustratie; inefficiënties in de huidige indeling die door het model aan het licht komen maar die door het model zelf (theoretisch) niet verbeterd kunnen worden, zouden door een praktische aanpassing van de planner alsnog in extra besparingen kunnen worden omgezet.

Momenteel worden niet van alle ritten gegevens bijgehouden en is er nauwelijks sprake van een analyse van beschikbare data. De door de modellen gegenereerde oplossingen leveren theoretische besparingen op, die uitgaan van de ingevoerde gegevens. Dit houdt in dat de kwaliteit van de oplossingen afhankt van de kwaliteit van de invoerdata. Meer accurate en nauwkeurige invoerdata betekent een betere aansluiting van de oplossingen op de werkelijkheid.
In het laatste hoofdstuk zullen aanbevelingen worden gedaan omtrent de implementatie van de modellen en een aantal zaken in de dagelijkse werkwijze van Twente Milieu. Bovendien zullen mogelijkheden gepresenteerd worden voor verder onderzoek met het oog op aanvullende besparingen.
H9 Aanbevelingen en verder onderzoek

Er zal nu eerst gekeken worden naar de implementatie van de nieuwe ritindelingen die volgen uit het gebruik van de ontworpen modellen. Vervolgens zullen in §9.2 zaken worden besproken die gezien de huidige situatie in mijn ogen een aanbeveling behoeven. Ten slotte worden in §9.3 mogelijkheden aangedragen voor verder onderzoek met het oog op extra besparingen.

9.1 Implementatie

Gezien het feit dat het praktische gedeelte van deze opdracht al is afgerond voordat de oplossing wordt geïmplementeerd zal dit hoofdstuk zich beperken tot richtlijnen voor de implementatie. De oplossing uit het blokcontainermodel is door Twente Milieu begin september in Hengelo ingevoerd en het model voor de lediging van minicontainers zou begin november worden ingevoerd maar is enigszins vertraagd. Dit zal naar alle waarschijnlijk op korte termijn in gebruik worden genomen.

De volgende aanbevelingen zijn deels gebruikt bij de invoering van het blokcontainermodel in september, maar zullen de grootste waarde hebben voor de invoering van het minicontainermodel in Hengelo en de invoering van beide modellen in andere steden/regio’s waar Twente Milieu actief is.

9.1.1 Voorbereidingen implementatie

Omdat de voorgestelde oplossingen een grote verandering vereisen in de inzet van de mensen en dus de bedrijfscultuur, is het nodig dat al ver voor de implementatie aan de personeelsleden wordt duidelijk gemaakt dat de huidige situatie vanuit kostentechnisch perspectief niet optimaal is en dus niet voort kan duren. De noodzaak van de veranderingen voor het voortbestaan van Twente Milieu moet hen duidelijk worden.

Het is heel belangrijk dat de planner, diegene die gaat werken met het model, het idee heeft dat hij het model beheerst. Om dit te bevorderen zal hij betrokken worden bij de ontwikkelfase en heeft hij de mogelijkheid om tijdens de testen terugkoppeling te geven omtrent de werking maar met name het gebruiksgemak. Hier moet dan natuurlijk ook wel daadwerkelijk iets mee gedaan worden.

Het is aan de planner om aan de hand van de oplossing opnieuw de containers in de ritten in te plannen. Dit dient direct in Access te gebeuren. Bij het inplannen wordt de planner sterk aangeraden, gebruik te maken van de vuistregels van Ballou (1998, zie bijlage 1). Deze vuistregels worden gebruikt om eenvoudig vrij goede clusters te maken. Hiermee kan in de volgende stap, het ontwerpen van de routes, veel te rijden kilometers worden bespaard, wat scheelt in tijd en benzinekosten.

In deze volgende stap zijn twee scenario’s mogelijk; of de chauffeurs kunnen na een aantal ritten gevraagd worden om de routeplanning voor die rit te maken of Twente Milieu maakt gebruik van de daarvoor bestemde softwareapplicatie. Als de routeplanning is uitgestippeld dient ook dit te worden ingevoerd in Access.
Wanneer de inhoud van de veranderingen duidelijk wordt, moet tijdens werkoverleg het personeel op de hoogte gesteld worden van deze aanstaande veranderingen. Het is hierbij belangrijk dat duidelijk wordt uitgelegd met welk doel de veranderingen worden doorgevoerd en welke gevolgen dit heeft voor het personeel.

Het is van belang dat voor de daadwerkelijke implementatie van de oplossing goed wordt gekeken naar de invulling van de werkuren van de chauffeurs, die door de verandering een dagdeel worden vrij gepland. De implementatie moet er toe leiden dat de chauffeur die wordt vrijgemaakt elders betaald wordt ingezet of wellicht de keuze krijgt tot werktijdverkorting anders leidt de verandering niet tot een besparing.

Door de invoering van de oplossing voor de GFT-ritten zullen de chauffeurs op de zijladers langere dagen maken dan nu het geval is. Dit kan betekenen dat ze niet meer om kwart over drie klaar zijn en naar huis kunnen. Aangezien dit voor het personeel verantwoordelijk voor de lediging van blokcontainers niet opgaat, neemt de kans op scheve gezichten toe. Immers laatst genoemden weten dit op tijd naar huis. Twente Milieu heeft hier in principe twee mogelijkheden. Ze kan kiezen voor een planningtechnische oplossing; het om en om indelen van personeel op zijladers en blokcontainers (of achterladers, waarvoor ook de P90-norm geldt). De andere oplossing betekent dat Twente Milieu er toch voor zorgt dat er een taak is voor chauffeurs/beladers die vroeg klaar zijn met de inzameling. Al is het maar met het effect dat ze langer onderweg zijn. Op beide manieren kan geprobeerd worden te voorkomen dat de chauffeurs van de zijladers zich verongelijkt en benadeeld voelen. Bovendien zal het blokcontainerpersoneel bij de laatstgenoemde oplossingsrichting wellicht rustiger aan doen tijdens de ritten wat schadekosten door onvoorzichtigheid en extra ritten voor overgeslagen containers zal doen afnemen.

9.1.2 Werkelijke implementatie

Met inachtneming van de bovengenoemde aspecten die een belangrijke rol spelen bij de implementatie van de oplossingen zouden de voorspelde problemen (Golden & Assad, 1988) tot een minimum moeten worden beperkt. Naast een weloverwogen implementatie dient rekening gehouden te worden met zaken die niet heel direct met de werking van de modellen in relatie staan maar die het succes van de oplossingen wel sterk kunnen beïnvloeden. In de volgende paragrafen zullen deze besproken worden.
9.2 Verandering in de dagelijkse werkwijze

Bij het aanstippen van een probleem zal zover dit mogelijk is direct een mogelijke oplossing worden aangedragen. Oplossingen komen voort uit eigen observatie en gesprekken met het personeel en een collega inzamelbedrijf uit Apeldoorn en Deventer, Circulus.

Ondergrondse containerlediging

Een van de wensen was, het model universeel te houden zodat het model ook gebruikt zou kunnen worden voor andere inzamelsystemen, zoals de ondergrondse containers. Echter, op dit moment is er slechts één vuilnismacht beschikbaar voor het legen van de ondergrondse containers in de regio Hengelo (inclusief de ondergrondse containers van Enschede). Het aantal containers overschrijdt inmiddels de normafhankelijke 266 containers per week (norm voor personeel) wat een capaciteitstekort inhoudt. Het model is zo gemaakt dat het inefficiënte indelingen optimaliseert. De indeling van de ondergrondse containers is door de normoverschijding meer dan 100% efficiënt. Dit maakt dat het ontwikkeld model niet passend is voor dit probleem en dat verdere optimalisatie niet mogelijk is. Twente Milieu verwacht pas begin volgend jaar een extra wagen. In de tussentijd zullen nog veel nieuwe ondergrondse containers worden bijgeplaatst, waardoor dit probleem alleen maar dringender wordt.

Dit probleem zou kunnen worden opgelost door deze ene vuilniswagen per dag langer te benutten door gebruik te maken van twee chauffeurs die elkaar bijvoorbeeld halverwege de dag aflossen. Of door ook op zaterdagen te gaan legen wanneer ook papierroutes gereden worden.

Bijhouden ritgegevens

Van lang niet iedere rit worden door de chauffeurs de gegevens netjes bijgehouden. Door het belang hiervan extra te benadrukken zouden meer gegevens kunnen worden verzameld in de Accesdatabase. De invoergegevens voor de modellen zijn dan gebaseerd op meer gegevens en worden zo meer valide, wat de kwaliteit van de oplossingen ten goede komt. Dit zou uiteindelijk moeten leiden tot minder misrekeningen en meer accurate oplossingen.

Gedragsverandering personeel

Het is lastig om de gevolgen in te schatten van de invoering van de oplossing van de modellen op de manier van werken van het personeel. Zo geldt ook voor het uitvoerende personeel bij Twente Milieu dat ze normaal gesproken zo productief zijn als van hen verwacht wordt (in de vorm van opgedragen werk). Dit houdt in dat als Twente Milieu haar personeel de opdracht geeft om 750 containers te legen ze hier bijvoorbeeld 6 uur over doen. Krijgen ze de opdracht om er 800 te legen en mogen ze erna naar huis dan kan dat ook ineens in 6 uur. Oftewel het is maar de vraag of er aanmerkelijk meer overwerk zal ontstaan bij meer ingeplande containerledigingen (een gevoelsmatig logisch gevolg van meer te legen containers).

Om overwerk te voorkomen is het wel belangrijk dat Twente Milieu ervoor zorgt dat het personeel positief gestemd is en blijft over de komende veranderingen anders bestaat de kans dat ze juist zullen laten zien dat het teveel containers zijn in een te korte tijd door extra lang over de lediging te doen. Twente Milieu zal de gevolgen van de verandering nauwlettend in de gaten moeten houden om in te kunnen springen bij mogelijke verkeerde inschattingen of veranderingen in het bedrijf of de omgeving.
Update routelijsten
Het gebeurt nog wel eens dat chauffeurs per ongeluk een container overslaan. Meestal valt dit voor op de momenten dat de rit gereden wordt door chauffeurs die onbekend zijn met de route. Dit heeft vooral te maken met de ongeorganiseerde routeplanning; de te legen containers staan niet logisch op volgorde op de routelijsten die de chauffeurs meekrijgen.
Het zou voor zowel de chauffeurs als de planner in het gemak voorzien als de routeplanning van de verschillende ritten op volgorde zouden staan van de snelste route langs de containers. Als ervaren chauffeurs zelf een andere route rijden is dat geen probleem, maar voor onervaren chauffeurs zou het een uitkomst zijn. Daarnaast zou de lijst per container behalve een adres waarvoor het als leegplek dient ook een adres van de plaatsing moeten bevatten. Deze verschilt namelijk nogal eens, wat bij onervaren chauffeurs kan leiden tot onnodig zoekwerk en het wederom gemakkelijk overslaan van containers. Chauffeurs kunnen afwijkende standplaatsen tijdens het rijden van hun ritten noteren en bij de planner inleveren. Deze zal moeten zorgen voor de verwerking in Access.

Pauzemomenten
Door de pauzemomenten te laten afhangen van de route of andersom kan extra tijd en benzine worden bespaard. Hiermee wordt gedoeld op het feit dat pauze om precies twaalf uur routetechnisch in veel gevallen niet handig uitkomt, het personeel komt dan onafhankelijk van waar ze zich in de route bevinden terug naar het ABP wat extra tijd en benzine kost. Het is Twente Milieu aan te raden hier op te letten en beide op elkaar af te stemmen. Bij deze afstemming dient Twente Milieu rekening te houden met de sociale functie van gezamenlijk lunchen en de weerstand die zou kunnen ontstaan bij aanpassingen hieraan.

Managementparticipatie
Een belangrijke wens van het management van Twente Milieu was de universele opbouw van de modellen. Hier is bij de ontwikkeling zoveel mogelijk rekening mee gehouden. Echter om deze eigenschap te benutten dient het management het voortouw te nemen in de promotie van het gebruik van de modellen door de andere vestigingen. Ook de vestigingsmanager en de planner van vestiging Hengelo zullen hun collega’s moeten overtuigen van het nut van de modellen. Daarnaast dienen ze open te staan voor vragen van hun collega’s om de drempel voor het gebruik te minimaliseren. Uiteindelijk kan een organisatiebreed gebruik van de modellen meer besparingen opleveren dan alleen in Hengelo worden bewerkstelligd.

In de volgende en laatste paragraaf van dit rapport worden mogelijkheden aangedragen voor verder onderzoek met het oog op extra besparingen voor Twente Milieu.
9.3 Mogelijkheden voor verder onderzoek

Gevolgen DIFTAR

Twente Milieu heeft aangegeven dat ze op dit moment niet de capaciteit heeft om grote bedrijfsorganisatorische veranderingen door te voeren vanwege de invoering van een nieuw heffingsmodel voor de burgers in Enschede (DIFTAR\(^5\)). Dit heffingsmodel houdt in dat huishoudens gaan betalen voor de frequentie waarop ze de containers aan de weg zetten, gemeten door middel van chips in de containers. Dit concept wordt inmiddels in verschillende gemeenten in het land toegepast, zodoende zijn er gegevens over de gevolgen van de invoering hiervan. Logischerwijs zullen de aanbiedpercentages sterk dalen en de gewichten per container sterk stijgen. In het minicontainermodel zullen de waarden van deze variabelen dus sterk beïnvloed worden. En dat resulteert op haar beurt in geheel nieuwe oplossingen voor de ritplanning van de zijkladers in de wintermaanden.

Daarnaast bestaat de mogelijkheid dat mensen hun afval niet meer in hun eigen minicontainer zullen aanbieden maar hiervoor dichtbij gelegen blokcontainers gaan gebruiken (zodat ze niet voor het afval hoeven te betalen). Dit zou betekenen dat ook de waarden in het blokcontainermodel mogelijk veranderen.

Twente Milieu is op dit moment bezig met een kostprijs- en besparingsanalyse gebaseerd op de DIFTAR-invoering. Als het model voor de minicontainers ook in Enschede wordt toegepast zou het wellicht een optie zijn om het minicontainermodel dusdanig aan te passen dat voor het gehele jaar en zowel grijze als groene containers de mogelijke besparingen worden bekeken. Hetzelfde geldt uiteraard ook op het moment dat DIFTAR in Hengelo of andere gemeenten wordt ingevoerd.

Grensoverschrijdende samenwerking

Twente Milieu zou er verstandig aan doen om meer energie te steken in het onderzoeken van de mogelijkheden op het gebied van (meer) samenwerking tussen de verschillende gemeenten binnen een regio van Twente Milieu en ook tussen regio’s onderling. Het ligt voor de hand dat een dergelijke samenwerking met betrekking tot schaalvergroting interessante besparingen op kan leveren. Met deze samenwerking wordt vooral gedaan op gedeelde inzet van voertuigen en routeplannings over gemeentegrenzen heen. Hiermee zou ook de werking en daarmee de besparing van de modellen kunnen worden verbeterd en vergroot omdat de schaalvergroting meer mogelijkheden biedt voor besparingen.

In de tussentijd zou Twente Milieu op regionaal niveau in ieder geval de inzet van vuilniswagens en personeel kunnen combineren zoals in het geval van Hengelo en Hof van Twente.

Alternatief storten

Voor de routes binnen gemeente Hengelo kost het legen bij het Twence relatief weinig tijd, maar voor Almelo, Hof van Twente en Enschede ligt dit anders. Een rit naar het afvalverwerkingsbedrijf is voor deze gemeenten ‘dure’ tijd, immers in die tijd kunnen geen containers geleegd worden dus wordt er in principe niet verdiend.

In Hengelo is het wel eens gebeurd dat afval een nacht in de vuilniswagen is gelaten in plaats van dat het naar het Twence werd gebracht. Dit gebeurde bijvoorbeeld als een wagen was uitgevallen en niet meer alle containers voor sluiting van het Twence konden worden geleegd. Het ‘overnachten’ van het afval zou een mogelijkheid kunnen zijn om de werktijd van de chauffeurs

Optioneel kan afval ook op het ABP zelf worden afgegeven, zodat een extra rit naar Twence wordt bespaard. Dit gebeurt momenteel in Oldenzaal met de combilader. Dit brengt echter wel extra administratie met zich mee (met name voor het ABP) en bovendien moet dit afval uiteindelijk alsnog naar het Twence worden gebracht al is het door een andere wagen. Maar vaak hebben de chauffeurs van het ABP hier tijd genoeg voor en dit betekent extra tijd om containers te ledigen voor de inzamelvuilniswagens.
Twente Milieu zou de bovenstaande mogelijkheden verder kunnen onderzoeken om te kijken of de invoering ervan extra besparingen met zich mee brengt.

Gegevensanalyse
Twente Milieu heeft voorheen weinig energie gestoken in het analyseren van de gegevens omtrent de lediging van de verschillende inzamelvormen, laat staan het maken van schattingen op basis van historische data of veranderingen in de markt. Door hier de nodige aandacht aan te schenken kan een betere afstemming plaatsvinden van materieel en personeel op het toekomstige aanbod van verschillende vormen van afval. Met behulp van deze schattingen kunnen de modellen al in een vroegtijdig stadium gebruikt worden om toekomstige besparingen te bepalen. Met name in het geval van de invoering van een nieuw heffingsstelsel zoals DIFTAR kan een inschatting van de veranderingen op de bedrijfsvoering van enorm belang zijn. Zoals gezegd; als de invloed van de veranderingen van te voren worden geschat, kunnen de modellen gebruikt worden zonder dat er representatieve historische data aanwezig is.
H10 Literatuurlijst

1) Personeel & Organisatie, Handboek VCA Twente Milieu, maart 2005

2) Kostprijsmodel tarieven 2007, een besluit tijdens de algemene vergadering van aandeelhouders, 30 oktober 2006

4) A. Assad, Modeling and implementation issues in vehicle routing, Vehicle routing, 1988

9) Hoong Chuin Lau, Zhe Liang; Pickup and Delivery with Time Windows : Algorithms and Test Case Generation, 13th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'01), 2001, pag. 333

16) Hein Fleuren, A computational study of the set partitioning approach for vehicle routing and scheduling problems, proefschrift univeristeit Twente, Enschede, Nederland, 1988

19) M.C. van der Heijden, L.L.M. van der Wegen, Logistiek Management, collegediktaat, Universiteit Twente, Faculteit Bedrijf, Bestuur en Technologie, mei 2004

22) C.D. Noorlander Ritplanning kledinginzameling Literaturopdracht/computeropdracht, Rapport 2005.TL.6948, Sectie Transporttechniek en Logistieke Techniek

24) KJ. Roodbergen en R. de Koster; Routing order pickers in a warehouse with a middle aisle (2000), European Journal of Operational Research, Volume 133, Number 1, 16 August 2001, pag. 32-43

26) R.A. Russell and W. Igo; An assignment routing problem, Networks 9(1979), pag.1 –17

Bijlage 1

R.H. Ballou presenteert in zijn boek Business Logistic Management (1991) acht richtlijnen voor goede routering en scheduling (p. 492 -493). Een aantal van deze richtlijnen kunnen door de planners van Twente Milieu gebruikt worden om tot een goede clustering van containers te komen, niet allen zijn bruikbaar. Het zijn vrij eenvoudige regels, gebaseerd op gezond verstand, en daardoor gemakkelijk te begrijpen en toe te passen. Deze nuttige richtlijnen, ook wel vuistregels genoemd, zijn hieronder uitgewerkt, aangepast en toegespitst op de situatie van Twente Milieu:

1. **Laad de vuilniswaags vol met afval uit containers die zo dicht mogelijk bij elkaar staan.** De routes van de vuilniswaags moeten gevormd worden binnen clusters van dichtbij elkaar gelegen containers om de reistijd tussen ledigingen te minimaliseren, evenals de totale kosten van de route (voor visualisatie zie figuur 9).

2. **Ledigingen op verschillende dagen moeten zo ingedeeld worden dat ze nauwe clusters vormen.** Ledigingen op verschillende dagen vormen afzonderlijke routeringproblemen. Dit betekent dat clusters op verschillende dagen zo min mogelijk overlap zullen moeten vertonen. Dit minimaliseert het aantal benodigde vuilniswaags, evenals de totale wekelijkse afgelegde afstand (voor visualisatie zie figuur 10).

3. **Begin met het vormen van clusters om de verst van het depot afgelegen container.** Vorm een cluster van containers om de container die het verst van het depot afligt. Werk vanaf de verste container terug naar het depot net zolang tot de maximale capaciteit van de vuilniswaag is bereikt. Zet voor de overige containers van die dag een nieuwe vuilniswaag in.

4. **De opeenvolging van containers in een route zou zoveel mogelijk moeten lijken op een druppelvorm.** Als blijkt dat de routes gegenereerd door de computerapplicatie of de ervaren chauffeurs erg veel afwijken van een druppelvorm of gekruiste paden vertonen, zou overwogen kunnen worden om een andere clustering te gebruiken.

5. **Het storten van ingezameld afval zou zoveel mogelijk in de route moeten worden ingepland.** Er zou bij het clusteren zoveel mogelijk rekening gehouden moeten worden met het moment van storten op het Twence. Op die manier kan worden voorkomen dat vuilniswaags moeten storten op momenten dat ze erg ver verwijderd zijn van het Twence (en er later, half gevuld, nagenoeg langs rijden).

Figuur 9. Clustering van containers gebaseerd op kortste onderlinge afstand. Links een voorbeeld van slechte clustering en rechts een voorbeeld van goede clustering.
Figuur 10. Clustering op basis van verschillende leegdagen. Links een voorbeeld van slechte clustering en rechts een voorbeeld van goede clustering.

Het is aan de planners om deze vuistregels te gebruiken om tot een zo goed mogelijke clustering van containers te komen. Vervolgens kunnen op basis van deze clustering efficiënte routes gemaakt worden door ervaren chauffeurs of met behulp van de aanwezige computer applicatie.

Bijlage 2

Statistieken over de hoeveelheid restafval (figuur 9), grijs en groen, er is opgehaald door de regio Hengelo- Oldenzaal- Hof van Twente in 2006 en 2007, gegevens komen uit managementrapporten over het eerste kwartaal.

<table>
<thead>
<tr>
<th></th>
<th>1e kwartaal 2007</th>
<th>1e kwartaal 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restafval</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hengelo</td>
<td>5,438,960</td>
<td>5,137,200</td>
</tr>
<tr>
<td>Oldenzaal</td>
<td>2,072,100</td>
<td>2,265,460</td>
</tr>
<tr>
<td>Hof van Twente</td>
<td>1,963,540</td>
<td>1,837,120</td>
</tr>
<tr>
<td>Enschede restafval</td>
<td>285,977</td>
<td>245,340</td>
</tr>
<tr>
<td>Totaal</td>
<td>9,760,577</td>
<td>9,485,120</td>
</tr>
<tr>
<td>GFT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hengelo</td>
<td>1,502,360</td>
<td>1,158,900</td>
</tr>
<tr>
<td>Oldenzaal</td>
<td>328,860</td>
<td>207,640</td>
</tr>
<tr>
<td>Hof van Twente</td>
<td>843,600</td>
<td>677,540</td>
</tr>
<tr>
<td>Totaal</td>
<td>2,674,820</td>
<td>2,044,080</td>
</tr>
</tbody>
</table>

Het aanbod van huisafval (restafval en GFT) in de regio Hengelo- Oldenzaal- Hof van Twente wordt verdeeld over de mini- en wijkcontainers (de ABP’s buiten beschouwing gelaten). Uit de vergelijking van bovenstaande cijfers blijkt dat de hoeveelheid aangeboden restafval stabiel is en de hoeveelheid GFT-afval met ongeveer 25% is gegroeid. Hoewel het uit de cijfers niet direct op te maken is, vindt er een verschuiving plaats van blokcontainers naar ondergrondse containers. Deze passen volgens de gemeente beter in het straatbeeld en de verwachting is dat het aantal ondergrondse containers binnen drie jaar is verdrievoudigd. Dit houdt overigens niet in dat het aantal blokcontainers ook zo snel daalt. Ondergrondse containers worden namelijk bij alle nieuwbouw in de regio geplaatst, wat een groot deel van de sterke stijging verklaart.
Bijlage 3

Bij wet is vastgesteld dat een aantal activiteiten van vuilnismannen een dusdanige belasting vormt voor de gezondheid dat deze in een tijdsbestek van acht uur, een normale werkdag, tot een maximum aantal keren mag worden uitgevoerd. In de onderstaande tabel is een overzicht gegeven van deze norm. De cijfers zijn ontleend aan de P90-norm zoals opgesteld in januari 1998. Deze cijfers gelden nog steeds en blijven naar inzicht van de vestigingsmanager Hengelo ook nog wel een tijd van kracht.

<table>
<thead>
<tr>
<th>MC</th>
<th>WC</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 tot 30 jr.</td>
<td>11,3T-514C</td>
</tr>
<tr>
<td>30 t/m 39 jr.</td>
<td>8,3T-377C</td>
</tr>
<tr>
<td>> 39 jr.</td>
<td>5,2T-236C</td>
</tr>
</tbody>
</table>

MC = minicontainer WC = wijkcontainer T = ton C = colli (container unit)

Voor de groep werknemers ouder dan 39 jaar geldt dat als ze iedere twee jaar een medische keuring doorstaan ze mogen worden ingezet als een werknemer uit de groep 30 t/m 39 jaar. Twente Milieu houdt zich aan deze regeling en laat haar werknemers ouder dan 39 jaar iedere twee jaar medisch keuren.

Bijlage 4

Gegevens voor het model van de blokcontainers januari 2007.

<table>
<thead>
<tr>
<th>Aantal containers totaal</th>
<th>352 stuks (uit up-to-date productenboek)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aantal containers dat hiervan tweemaal weeks geleegd wordt</td>
<td>332 stuks (uit up-to-date productenboek)</td>
</tr>
<tr>
<td>Aantal containers dat hiervan driemaal weeks geleegd wordt</td>
<td>20 stuks (uit up-to-date productenboek)</td>
</tr>
<tr>
<td>Aantal inzamelingen totaal per week</td>
<td>724 stuks (uit up-to-date productenboek)</td>
</tr>
<tr>
<td>Aantal vuilniswagens</td>
<td>2 (plus een (zo nodig in te zette) reserve auto)</td>
</tr>
<tr>
<td>Bruikbare capaciteit van de vuilniswagen (tonnage)</td>
<td>8,8 ton, hierbij is uitgegaan van het gemiddelde stortgewicht van de eerste rit van vuilniswagens die meerdere keren per dag legen, zodat de kans zeer groot is dat de vuilniswagens bij het storten van de eerste keer vol zaten. Periode: januari tot mei 2007. (Uitgaan van de hoogste gewichten heeft geen zin, volgens de planner, aangezien hierbij de kans op storingen sterk toeneemt).</td>
</tr>
<tr>
<td>Capaciteit van het personeel</td>
<td>Maximaal 125 containers per dag</td>
</tr>
<tr>
<td>Kosten inzet van een extra vuilniswagen</td>
<td>€ 31,15 wordt in de begroting gebruikt als gemiddeld tarief voor één uur gebruik van een vuilniswagen voor het legen van blokcontainers (excl. personeel).</td>
</tr>
<tr>
<td>Gemiddelde benodigde leegtijd per container</td>
<td>3,84 min, hierbij wordt uitgegaan van de P90-norm van 125 containers in 8 uur.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Gemiddeld gewicht per container</td>
<td>78 kilo, bepaald uit het totale stortgewicht van 19 weken (1.073.260 kilo) gedeeld door het totaal aantal geleegde containers in die maanden (13756 ledigingen) uitgaande van het productboek. Periode: week 1 tot en met week 19 2007.</td>
</tr>
<tr>
<td>Openingstijden afvalverwerkingpunt Twence</td>
<td>Op werkdagen van 7.00 – 19.00 uur, op vrijdag tot 18.00 uur</td>
</tr>
<tr>
<td>Gemiddelde leegtijd op het afvalverwerkingpunt Twence</td>
<td>11,36 min, bepaald uit het gemiddelde verschil tussen de tijd van inwegen en uitwegen zoals genoteerd op de stortbonnen van het Twence. Exclusief de tijd die nodig is om naar het Twence te rijden.</td>
</tr>
<tr>
<td>Lengte van een werkdag</td>
<td>8 uur exclusief pauzes (7:30-11:30 en 12:15-16:15). Overwerk is mogelijk, hierbij zijn de kosten 125% van het standaard uurloon.</td>
</tr>
<tr>
<td>Aantal benodigde werknemers op de vuilniswagen</td>
<td>2 personen (sporadisch drie personen afhankelijk van het aantal ingeplande containers in een rit en de P90-norm)</td>
</tr>
<tr>
<td>Pauzetijden</td>
<td>Werknemers hebben recht op een half uur pauze (krijgen drie kwartier) als zij meer dan 5,5 uur achtereen werken, de pauze mag gesplitst worden in twee maal een kwartier</td>
</tr>
<tr>
<td>Gemiddelde kosten van een chauffeur/belader</td>
<td>€ 30,95 per uur. Gebaseerd op de begroting van 2006.*</td>
</tr>
</tbody>
</table>

* Hoewel er nu ook nog enkele jongens onder vast contract staan die alleen als belader kunnen worden ingezet, is ervoor gekozen om deze te rekenen onder chauffeur/beladers omdat Twente Milieu uiteindelijk streeft naar een vast personeelsbestand waarin alleen beladers voorkomen die ook als chauffeur kunnen dienen in verband met de flexibiliteit. Bij de berekening is bovendien uitgegaan van de salarisschalen uit de CAO van 2005. Deze CAO zou inmiddels vervangen moeten zijn door een nieuwe CAO. Dit is echter door onderhandelingen tussen vakbonden en werkgevers tot op heden nog niet gebeurd. Er wordt vanuit gegaan dat de enige relevante nieuwe bepalingen alleen invloed zullen hebben op de salarisschalen.

Bijlage 5

Het totale aantal budgeturen voor regio Hengelo is opgebouwd uit de begrootte uren voor het Hof van Twente en Oldenzaal, 28.552 uren en voor Hengelo 54.682 uren en komt daarmee op 83.234. De drie procent die moet worden bespaard op dit totaal komt neer op 2.497 uur.
Bijlage 6

Uniforme huurtarieven 2007 bij Cleanmat via van Gansewinkel Groep

<table>
<thead>
<tr>
<th>Type voertuig</th>
<th>Huurtarief per dag Periode < 1 maand</th>
<th>Huurtarief per dag Periode 1–3 maanden</th>
<th>Huurtarief per dag Periode > 3 maanden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kraakperswagen/ minibelading</td>
<td>€ 253</td>
<td>€ 243</td>
<td>€ 233</td>
</tr>
<tr>
<td>Kraakperswagen/ GCB of GEC</td>
<td>€ 268</td>
<td>€ 258</td>
<td>€ 248</td>
</tr>
<tr>
<td>Zijlader met grabber arm</td>
<td>€ 390</td>
<td>n.v.t.</td>
<td>n.v.t.</td>
</tr>
<tr>
<td>Kraakperswagen met laadkraan t.b.v. ondergronds *</td>
<td>€ 480</td>
<td>n.v.t.</td>
<td>n.v.t.</td>
</tr>
</tbody>
</table>

* Deze worden in principe niet ingehuurd vanwege het hoge tarief, dan worden andere wagens omgebouwd zodat ze ook in staat zijn om ondergrondse containers te legen.

Deze tarieven zijn exclusief brandstofverbruik. Gebaseerd op de begroting van Twente Milieu van 2006 worden deze kosten geraamd € 40,5 per dag. Dit volgt uit de berekening: jaarlijkse kosten per vuilniswagen aan benzine zijn gemiddeld € 13.500 gerekend over 2600 uur tractie jaarlijks. Gemiddelde inzet per dag is 7,8 uur dus 13.500/2600 * 7,8 = € 40,50. Dit tarief geldt in principe voor iedere vuilniswagen.

Bijlage 7

Gegevens over de huidige situatie van de huisvuildiensten van Twente Milieu in het algemeen en regio Hengelo- Oldenzaal- Hof van Twente in specifieke gevallen.

Vuilnisswagens

Voor het legen van minicontainers zijn drie soorten vuilnisswagens in gebruik; de zijladers (met een zijwaarts geplaatste, vanuit de cabine en elektronisch bestuurbare, hydraulische grijparm, de duozijladers (met een grijs en een groen compartiment) en de meer bekende achterlader (waarbij de minicontainers door beladers en eventueel de chauffeur aan de achterkant van de vuilniswagen worden geleegd).

Deze drie modellen zouden in principe hetzelfde werk kunnen doen, ware het niet dat minicontainers op een aantal aanbiedplaatsen praktisch onmogelijk te legen zijn met de (duo)zijlader door beperkte ruimte voor het gebruik van de zijarm.

Voor het legen van wijkcontainers zijn ook twee verschillende modellen vuilnisswagens in gebruik; een model voor het legen van blokcontainers, die door beladers achter de wagen worden gehangen en een model voor het legen van ondergrondse containers, met een hydraulische grijparm, deze zijn, door de aard van de containers niet onderling inwisselbaar.

In de regio Hengelo- Oldenzaal- Hof van Twente rijden momenteel zes zijladers, een duozijlader en vier achterladers (waarvan twee duo-achterladers die alleen in Oldenzaal rijden) rond voor het legen van de minicontainers, twee vuilnisswagens voor het legen van blokcontainer en een wagen voor het legen van de ondergrondse containers. De laatst genoemde wagen wordt momenteel ook gebruikt voor het legen van de ondergrondse containers in de regio Enschede.

Personele bezetting

Voor de (duo)zijladers en de modellen die ondergrondse containers legen is bezetting door een chauffeur afdoende. Voor het legen van blokcontainers zijn normaal gesproken twee beladers
(waarvan minimaal één ook chauffeur is) afdoende, voor het legen van minicontainers door achterladers zijn drie beladers nodig (waarvan minimaal één ook chauffeur is). Het komt voor dat dit er vier zijn, dit heeft te maken met de P90-norm, de leeftijdsgerelateerde norm voor de fysieke belastbaarheid van de beladers.

De personele bezetting van de huisvuildiensten wil nog wel eens wisselen, maar de huidige status is dat het vaste personeelsbestand in de regio Hengelo- Oldenzaal- Hof van Twente bestaat uit vijftien vaste werknemers van wie drie enkel als belader kunnen functioneren, zij hebben niet de vereiste rijbewijzen voor het rijden op de vuilniswagens, de andere twaalf werknemers zijn zowel chauffeur als belader. Daarnaast kent Twente Milieu een variabel personeelsbestand dat deels in het bezit is van een detacheringcontract variërend van lengte van een half jaar tot driekwart jaar. Twente Milieu wil naar een vast personeelsbestand toe waarin enkel chauffeur/beladers voorkomen, aangevuld met flexibel personeel van een uitzendbureau.

Bijlage 8

Twente Milieu heeft een vast contract met Randstad Uitzendbureau. Laatstgenoemde levert op ieder gewenst moment aanvullend personeel voor alle vestigingen van Twente Milieu. Dit onteeneet de planner het nodige werk. Vanuit dit contract zijn onder andere de kosten te destilleren voor het inhuren van extra personeel.

- Kosten van een extra werknemer van Randstad zijn € 25,31, hierbij wordt ervan uitgegaan dat alleen beladers worden ingehuurd voor minicontainers. En € 30,92 voor de lediging van de ondergrondse containers, aangezien hierbij alleen wordt gewerkt met chauffeur/beladers.

Daarnaast is het uitzendbureau verplicht om iemand stand-by te plaatsen, hiervoor worden geen extra kosten in rekening gebracht. Normaal gesproken wordt voor een oproep dan voor 10 uur ’s ochtends gebeld door Twente Milieu, maar dit is geen vaststaande regel.

Bijlage 9

Kostprijsmodel tarieven 2007 (7; kostprijstarieven, 2007, pag.10) (Een zelf samengestelde samenvatting van het besluit)

Stappen kosten allocatie model

1. Toedeling interne kosten/overhead naar activiteiten
2. Vaststelling hoeveelheden totaal en per product
3. Berekening tarieven voor personeel en tractie per categorie
4. Berekening tarieven per product

Stap 1A Behandelt de 5 afdelingen met hoofdzakelijk ondersteunende functies, hierop zal het model geen invloed hebben.

Stap 1B Naast de ondersteunende afdelingen zijn er twee andere afdelingen te onderscheiden namelijk afdeling Materieel Beheer (werkplaats, wasplaats en overige materieelbeheer) en de afdeling Uitvoering.
Deze afdelingen bestaan standaard uit de volgende kosten:
Salarissen, Pensioenpremies, Sociale lasten, Ingehuurd personeel, Overige personeelskosten, Huisvestingskosten die direct betrekking hebben op deze activiteiten, Afschrijvingskosten en Materieelkosten.

De toedeling van de interne kosten van Materieel Beheer vindt plaats op basis van voorcalculatorische budgetten. Dit geldt zowel voor de kosten van de werkplaats, de wasplaats en materieelbeheer. Achteraf worden extra kosten doorgefactureerd.

De toedeling van de kosten van uitvoering vindt als volgt plaats (per categorie voertuig):
- kosten die betrekking hebben op materieel in de uitvoering worden ondergebracht in het “lease model” en direct via de bezetting uren toegerekend aan de producten.
- kosten die betrekking hebben personeel in de uitvoering worden via de uren direct toegerekend aan de producten.
- indirecte kosten van de uitvoering en toegedeelde interne kosten van de ondersteunende afdelingen. Deze worden toegerekend op basis van het aantal uitvoerende personeelsleden (met een wegingsfactor 2) en het aantal grote tractiemiddelen (met een wegingsfactor 1); dit betekent circa 80 procent aan personeel en circa 20% aan tractie.

Stap 2 Vaststelling hoeveelheden totaal per product
De vaststelling van de hoeveelheden uren tractie, personeel en overige kosten geschiedt op basis van de werkelijkheid 2005 en de begroting 2007.

Stap 3 Berekening tarieven voor personeel en materieel
- Tarieven personeel; totale personeelskosten (inclusief toerekeningen) gedeeld door het aantal uren.
- Tarieven materieel(tractie); totale materieelkosten zijn ondergebracht in een intern lease model. Hierin zijn verwerkt per categorie voertuigen:
 1. Afschrijvingen
 2. Rente
 3. Onderhoudskosten (zie kosten werkplaats)
 4. Brandstofkosten en accijnzen
 5. Motorrijtuigenverzekeringen
 6. Motorrijtuigenbelastingen en Eurovignetten
 7. Waskosten (zie kosten wasplaats)
 8. Beheerskosten (zie kosten materieelbeheer)
 9. Huisvestingskosten materieel
 10. Overige kosten samenhangend met materieel
 11. Indirecte kosten uitvoering

Per categorie voertuig is een bezetting vastgesteld zoals hierboven besproken.

Stap 4 Berekening tarieven per product. Deze zijn bedoeld voor de gemeenten en voor het model verder niet interessant.
Bijlage 10

Aangezien dit rapport zich in de essentie beperkt tot de inzameling van blokcontainers in Hengelo is in deze bijlage extra informatie opgenomen over de andere inzamelsystemen. Zodat het model voor de blokcontainers na de ontwikkeling vrij eenvoudig is om te schrijven naar modellen voor de andere inzamelsystemen. De informatie bestaat met name uit voorwaarden en beperkingen die afwijken van de voorwaarden en beperkingen die aan het model van de blokcontainers zijn opgelegd.

Ondergrondse containers

Arbeidsbeperkingen

Voor het personeel dat werkzaam is op de ondergrondse containers geldt een andere norm dan de P90-norm. Bij het in gebruik nemen van de ondergrondse containers is door Twente Milieu zelf een norm gesteld voor de tijd die nodig zou zijn om een container te legen.

- Deze norm ligt op 9 minuten per container wat neerkomt op 53 containers per dag en 266 per week.

Deze norm zal in dit model gehanteerd worden, mocht er een verandering in de norm komen dan zal dit eenvoudig aan te passen moeten zijn.

- Voor het legen van ondergrondse containers is maar één persoon per vuilniswagen vereist.

Materiele beperkingen

De bruikbare capaciteit (gewicht) van deze vuilniswagens ligt iets hoger dan bij de openkraakperswagens doordat bij blokcontainers vaak ook grofvuil ligt dat moet worden meegenomen, bij ondergrondse containers gebeurt dit niet en huisvuil kan in de regel beter worden samengeperst.

- De bruikbare capaciteit is 14 ton.

Ook voor het legen van ondergrondse containers geldt dat extra vuilniswagens kunnen worden ingehuurd. De kosten van de inzet van een extra vuilniswagen zijn terug te vinden in bijlage 6.

Routetechnische beperkingen

Voor de ondergrondse containers geldt dat normaal gesproken per container het gewicht van het afval kan worden bepaald. Echter het komt wel eens voor dat dit mechanisme niet goed werkt.

- Het gemiddelde soortelijk gewicht per container ligt op 0,11 kg/L, uitgaande van het uitgevoerde onderzoek in Zutphen.

Tijdsrestricties

De gemiddelde leegdruk per container wordt bepaald aan de hand van de gestelde norm, het aantal ledigingen per week zou zodoende ook aan een maximum moeten zitten van 266 containers per week. Hier gaat men op dit moment echter overeen en dit zal de komende tijd waarschijnlijk niet veranderen. Pas begin 2008 zal een nieuw bestelde vuilniswagen worden geleverd.
Een aantal gegevens zijn nog niet verzameld, dit zal ook pas gebeuren als het model voor de blokcontainers in gebruik wordt genomen en hier tijd voor wordt gemaakt.

Bijlage 11

Alternatieve ritindeling GFT

In het onderzoek lag de focus op het ontwerpen van het model voor de ritindeling van de inzameling van de blokcontainers. Hoewel het model de nodige besparingen heeft opgeleverd (zie hoofdstuk 8) is hiermee de volledige doelstelling voor het verlagen van de personeelsuren nog niet voldaan. Naar aanleiding van dit model en haar uitkomsten kwam vanuit Twente Milieu het verzoek om te kijken naar de mogelijkheden om dit model dusdanig aan te passen dat het ook voor de inzameling van minicontainers door zijladers toepasbaar zou zijn. In dit hoofdstuk zijn deze mogelijkheden onderzocht. De structuur van dit hoofdstuk zal enigszins vergelijkbaar zijn met de indeling van de hoofdstukken van dit rapport, alleen verkort en opgedeeld in paragrafen. Deze bijlage zal worden afgesloten met een korte blik op de besparingsmogelijkheden in Hof van Twente bij gebruik van het model.

11.1 Probleemidentificatie

Zoals in de probleemkluwen al naar voren kwam heeft Twente Milieu het vermoede dat het verschil in aanbodpercentage van GFT(minicontainers) tussen de zomer en wintermaanden dusdanig groot is dat er mogelijkheden bestaan om besparingen te creëren. De situatie van de lediging van minicontainers verschilt enigszins van de lediging van blokcontainers. In de komende paragrafen zal onderzocht worden of het probleem bij de lediging van minicontainers opgelost kan worden met (een aangepaste versie van) het blokcontainermodel of dat hier een geheel nieuw model voor moet komen.

11.1.1 Situatieschets

Uit de begroting van Twente Milieu blijkt dat door het jaar heen in Hengelo wekelijks 26500 minicontainers zouden kunnen worden aangeboden, dit komt neer op 5300 per werkdag. Echter doordat mensen de containers optioneel ter lediging aanbieden (verschil met de blokcontainers) kan het aantal aangeboden minicontainers van week tot week behoorlijk verschillen. Uit figuur 1 bleek al dat de afgelopen jaren het aantal aangeboden GFT-containers erg seizoensafhankelijk is.

Fig. 12
Vergelijking van het maandelijkse gemiddeld aantal grijze containers per rit over de laatste 2,5 jaar.
Het aantal aangeboden GFT-containers is lager en fluctueert bovendien meer dan het aangeboden aantal grijze containers (zie figuur 12), hetzelfde geldt voor het gewicht per container (zie figuur 13 en 14). Twente Milieu houdt bij het vormgeven van haar inzamelroutes gedeeltelijk rekening met deze verschillen in aanbodpercentages, zo is voor het aanbodpercentage grijze containers ten opzichte van het totaal aantal aansluitingen bepaald dat dit op 95% ligt en voor groen gaat men vooral nog uit van 75% voor het gehele jaar. Uit figuur 1 is echter wel gebleken dat dit percentage in de winterperiode nog veel lager ligt, wat leidt tot de doelstelling op de volgende pagina.

Figuur 13 (links) en figuur 14 (rechts)

Vergelijking van het maandelijkse gemiddeld gewicht per grijze/groene container over de laatste 2,5 jaar.

11.1.2 Doelstelling

Twente Milieu wil kijken of er mogelijkheden bestaan om besparingen te behalen door in te spelen op de lagere aanbodpercentages van GFT-containers in de winterperiode. Als deze mogelijkheden bestaan wil ze weten welke besparingen dit oplevert om te bepalen of ze de besparingsmaatregelen in zal voeren. Als de besparingen significant zijn wil ze kijken of het zin heeft om de maatregelen ook in andere regio’s in te voeren.

De beperkte tijd voor deze opdracht is ook bij Twente Milieu bekend en heeft haar doen besluiten om het onderzoek te beperken tot de mogelijkheden van het samenvoegen van ritten van de GFT-ritten in de winterperiode. Twente Milieu ziet meer in één uitgewerkte mogelijkheid dan in verscheidene oppervlakkige concepten en daarnaast is de verwachting (in de vorm van besparingen) van het samenvoegen van ritten op dit moment het hoogst. De verwachting is dat andere besparingsmogelijkheden gaandeweg het onderzoek nog wel naar voren zullen komen, deze zullen worden genoemd, maar niet verder worden uitgewerkt.

11.1.3 Probleemstelling

Het concentreren op de samenvoeging van de GFT-ritten leidt tot de volgende probleemstelling:

‘Bestaan er mogelijkheden voor Twente Milieu om besparingen te behalen door in de winterperiode GFT-ritten samen te voegen?’
Als deze mogelijkheden niet bestaan houdt het onderzoek na deze fase op, echter als er wel mogelijke besparingen te behalen zijn dan zal Twente Milieu antwoord moeten geven op de volgende vraag:

‘Welke mogelijkheid heeft de voorkeur en waarom?’

Aangezien het in deze opdracht met name draait om besparingen (in personeelsuren) zal dit ook voor Twente Milieu een zeer belangrijke rol spelen bij het beoordelen van de mogelijkheden. Om het beoordelingsproces te bevorderen zal een overzicht gemaakt worden van de mogelijke besparingen die de mogelijkheden met zich mee brengen. Om antwoord te kunnen geven op de probleemstelling zal naast de huidige situatie ook naar het verleden gekeken moeten worden, maar welke stappen precies ondernomen dienen te worden om tot een antwoord te komen, zal in het plan van aanpak naar voren komen.

11.1.4 Afbakening
Minicontainers in Hengelo worden deels geleegd door achterladers en deels door zijladers (voor extra uitleg zie bijlage 3). Achterladers legen vooral de containers die door zijladers om technische reden niet kunnen worden ingezameld. Omdat bij achterladers de containers door personeel achter de wagen worden gehangen speelt hier de P90-norm een belangrijke rol. Zijladers daarentegen worden alleen door de chauffeur vanuit de cabine bediend en hebben geen norm voor fysieke belastbaarheid. Fluctuaties in het aanbodpercentage kunnen zodoende gemakkelijker worden opgevangen door zijladers. Hoewel de tendens is dat het aanbodpercentage van GFT in de winterperiode afneemt kunnen ook hierin nog wel eens onverwachte pieken optreden. Twente Milieu wil zo min mogelijk risico lopen om de P90-norm te overschrijden en heeft daarom aangegeven dat het onderzoek beperkt kan worden tot de ritten van de zijladers. Wat echter de definitie van de winterperiode en zomerperiode precies is, is onduidelijk, oftewel deze perioden zijn vaag en liggen niet vast.

11.1.4 Plan van aanpak
Omdat men door het analyseren van een grafiek van één jaar nog niet kan praten over een trend is het voor de waarde van dit onderzoek van groot belang dat het zich uitbreidt over meerdere jaren. Het historisch onderzoek zal zich richten op de afgelopen 2,5 jaar, beginnend bij 1 januari 2005. Sinds dat moment is het aantal aansluitingen voor de minicontainers per rit stabiel gebleven. Omdat niet iedere chauffeur de gegevens bijhoudt over het aantal containers en het geleegde gewicht zal de historische data per maand worden beoordeeld (met gemiddeld ongeveer 50 ritten per maand).

Uit het historisch onderzoek zullen betrouwbare cijfers komen die gebruikt kunnen worden bij het bepalen van de trend in het aanbodpercentage. Op basis van deze trend kunnen vervolgens de besparingsmogelijkheden onderzocht worden. Hierbij zal met extra interesse gekeken worden naar GFT-routes en daarbinnen met name de winterperiode.

De besparingsmogelijkheden van het samenvoegen zullen gepresenteerd worden en om het Twente Milieu gemakkelijker te maken om een keuze te maken zal een overzicht van de besparingen worden gemaakt. Als een keuze is gemaakt zal deze mogelijkheid verder worden uitgewerkt, waarbij ook eisen van de betrokken partijen zullen worden meegenomen en alvast over de implementatie zal worden nagedacht.
11.2 Historisch onderzoek
Uit figuur 12 en 13 is gebleken dat zowel het gemiddelde aantal aangeboden grijze containers als het gemiddelde gewicht per grijze container door het jaar heen weinig fluctueert. Zodoende is gekozen om voor beide voor het gehele jaar uit te gaan van het gemiddelde over de laatste 2,5 jaar (zie tabel 11.1). Voor de groene containers gaat dit duidelijk niet op (zie figuur 1 en 14).

<table>
<thead>
<tr>
<th>Tabel 11.1</th>
<th>Gemiddeld aantal bakken per rit</th>
<th>Aanbodpercentage (in procenten)</th>
<th>Gemiddeld gewicht per route (kg)</th>
<th>Gem. gewicht per container (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zomer</td>
<td>Grijs</td>
<td>483</td>
<td>107</td>
<td>11.637</td>
</tr>
<tr>
<td></td>
<td>Groen</td>
<td>348</td>
<td>76</td>
<td>6.539</td>
</tr>
<tr>
<td>Winter</td>
<td>Grijs</td>
<td>483</td>
<td>107</td>
<td>11.637</td>
</tr>
<tr>
<td></td>
<td>Groen</td>
<td>252</td>
<td>54</td>
<td>3.833</td>
</tr>
</tbody>
</table>

11.3 Kostenoverzicht
Ten opzichte van de blokcontainers zijn de kostenposten hetzelfde alleen verschillen de bedragen. In tabel 11.2 wordt een overzicht gegeven van de kostenposten en bijbehorende waarden voor de lediging van minicontainers door zijladers in Hengelo. Ook deze waarden zijn gebaseerd op de begroting van Twente Milieu van 2007.

<table>
<thead>
<tr>
<th>Tabel 11.2 Overzicht relevante kosten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kostenpost</td>
</tr>
<tr>
<td>Gemiddeld bruto uurloon van een chauffeur/belader (zowel vast als inhuur)</td>
</tr>
<tr>
<td>Gemiddeld uurtarief voor het gebruik van een zijlader (excl. personeel, incl. brandstofverbruik)</td>
</tr>
<tr>
<td>Dagtarief voor het huren van een kraakperswagen (GCB/GEC) bij Cleanmat*</td>
</tr>
</tbody>
</table>

* De vuilniswagens kunnen alleen per dag gehuurd worden en dit is het tarief per 1 januari 2007 inclusief kosten voor brandstofverbruik (zie hiervoor bijlage 6)

11.4 Besparingsmogelijkheden
Voorgaande paragrafen hebben het kader geschapen waarbinnen gezocht kan worden naar besparingsmogelijkheden door het samenvoegen van de GFT-ritten in de winterperiode. Zoals gezegd is de scheidinng tussen de zomer- en winterperiode bij Twente Milieu niet strak gedefinieerd, hoewel de begrippen wel vaak gebezigd worden. Het verschil tussen de perioden heeft met name te maken met het verschil in aanbodpercentage en gewicht per container van de GFT-containers. Om deze scheidinng te bepalen is het naast het analyseren van de informatie uit de figuren 1 tot en met 4 belangrijk om te weten wat de capaciteit, in aantallen containers en leeggewicht (bij het Twence), van de zijladers is, immers het dagelijkse aantal containers dat geleegd kan worden, wordt hierdoor bepaald.
11.4.1 Belangrijke cijfers
De ritten die door de zijladers gereden worden, bevatten momenteel maximaal 900 aansluitingen. Deze ritten bestaan deels uit een groen en deels uit een grijs gedeelte, beide ongeveer 450 aansluitingen. Hierbij is uitgegaan van een aanbodpercentage van 100% voor zowel grijs als groen. Dit zou met de huidige aanbodpercentages neerkomen op ongeveer 428 grijze containers (95%) en 338 groene containers (75%) wat het totaal brengt op 766 containers per volledige rit.
De capaciteit (in gewicht) van een zijlader ligt voor grijs op 10 ton voordat geleegd moet worden op het Twence en voor groen is dit 12 ton (gebaseerd op de ervaring van de planner). In de huidige situatie betekent dit dat er per rit gemiddeld drie keer geleegd moet worden, immers tussen het ledigen van groene en grijze minicontainers moet eerst geleegd worden om te voorkomen dat het afval wordt vermengd.

11.4.2 Samenvoegen ritten; een begripsomschrijving
Voordat verder wordt gegaan met het vaststellen van het scheidingsmoment tussen de zomer- en winterperioden, is enige uitleg over het samenvoegen van ritten noodzakelijk. Op dit moment rijden zoals gezegd drie zijladers in Hengelo rond die dagelijks een rit rijden met een gedeelte groen en een gedeelte grijs. Het samenvoegen van ritten komt neer op het rijden van de drie dagelijkse GFT-ritten met twee zijladers in plaats van drie. In de praktijk komt dit op het volgende neer:
’s Ochtends worden door de drie zijladers, drie grijsritten gereden. ’s Middags blijft dan een zijlader op het ABP achter en de andere twee wagens rijden samen de drie GFT-ritten. Hiermee zou in de wintermaanden dagelijks zowel tractiekosten als een chauffeur kunnen worden uitgespaard. Of het samenvoegen mogelijk is hangt af van het aanbodpercentage en het gewicht van de containers. Twente Milieu wil namelijk overwerk zoveel mogelijk voorkomen om het personeel tevreden te houden en de mogelijkheid te houden kleine extra opdrachten in te plannen.

11.4.3 Besparingsmogelijkheden uitgaande van 100% aanbodpercentage
Om het samenvoegen van de ritten mogelijk te maken zal het aanbodpercentage zover moeten zakken dat het totaal aantal GFT-containers de 338 niet overstijgt, mits uiteraard de norm van het totaal van 766 containers niet wordt overschreden. Dit betekent dat het aanbodpercentage lager moet zijn dan 50% ((338 containers /1,5 rit)/450 containers).
Het gewicht van de twee nieuwe groene ritten mag bovendien niet boven de 12 ton komen omdat de zijlader anders een extra keer moet legen wat veel tijd kost en de kans op overwerk sterk doet toenemen. Dus het gemiddelde gewicht per container mag met inachtneming van de huidige norm niet boven de 35,5 kg komen (12000/338).

In principe is uit de figuren 1 en 14 af te leiden wanneer tegelijk aan beide restricties wordt voldaan. Op dit punt zou kunnen worden omgeschakeld van drie naar twee GFT-ritten. Als na een bepaalde periode één van beide restricties overschreden wordt dient te worden teruggestuurd naar de originele indeling van drie GFT-ritten. Het omschakelmoment is voor Twente Milieu van groot belang, te vroeg omschakelen betekent een grote kans op overwerk en bij te laat overschakelen, loopt zij besparingen mis. In principe zou je kunnen stellen dat het scheidingsmoment tussen de zomer- en winterperiode gelijk zou moeten vallen met het omschakelmoment van drie naar twee GFT-routes, immers de term winterperiode werd gebruikt om aan te geven dat met name het aanbodpercentage van GFT-containers erg was gedaald.
In onderstaande grafieken, respectievelijk figuur 15 en 16, is het gemiddelde aanbodpercentage en gewicht weergegeven als de GFT-minicontainers uit drie ritten worden verdeeld over de twee, het samenvoegen. Er is een lijn getrokken om de beperking of maximale waarde aan te geven die volgt uit de norm van 338 containers per rit, de limiet. Op het moment dat in een van beide grafieken de blauwe lijn boven de roze lijn komt is de limiet overschreden en kan er in die maand geen besparingen worden verkregen door het samenvoegen van de GFT-ritten.

11.4.4 Besparingsmogelijkheden uitgaande van historisch aanbodpercentage

Uit de figuren is allereerst af te leiden dat het gewicht bij deze norm geen rol speelt en dat het aanbodpercentage beperkend is. Zoals te zien is, wordt de grafiek uit figuur 15 helemaal niet gesneden, dit betekent dat er geen omschakelpunten mogelijk zijn en zodoende ook geen besparingen. Echter bij het stellen van de norm van 900 aansluitingen is Twente Milieu uitgegaan van 100% aanbod van containers. Men gaat er dus vanuit dat zijladers in staat moeten zijn om dagelijks daadwerkelijk 900 containers te legen. In het geval van de manier van werken in gemeente Hengelo zijn dit 450 groene en 450 grijze minicontainers per rit per dag. Als bij het bepalen van de omschakelpunten uitgegaan wordt van deze aantallen, levert dit een heel ander beeld op.

De grafiek van het gemiddelde gewicht per rit zal niet veranderen wat inhoudt dat er maanden zijn in zowel figuur 16 als 17 waarin de blauwe lijn onder de roze duikt. De maanden waarin dit gebeurt, zijn november tot en met maart. Hierin kan Twente Milieu in Hengelo dus in principe met slechts twee zijladers af. Wat dit precies betekent voor de besparingen zal in het volgende hoofdstuk beschreven worden.

Zoals gezegd zitten er weinig fluctuaties in het aanbodpercentage en het gewicht van de grijze minicontainers op de zijladerroutes in Hengelo. En zoals uit tabel 1 blijkt, ligt het gemiddelde
aanbodpercentage dusdanig hoog dat hiervoor minimaal drie zijladers nodig zijn oftewel hier zijn geen besparingen mogelijk door middel van het samenvoegen van ritten. Dus eigenlijk blijven er voor Hengelo naast het samenvoegen van de GFT-ritten in de wintermaanden zoals hierboven beschreven weinig andere besparingsopties over, die eenvoudig realiseerbaar zijn en wel een substantiële besparing opleveren.

11.5 Modelvorming
Aangezien er is gebleken dat er maar één reële optie is voor het samenvoegen van de GFT-ritten, was het aan Twente Milieu om aan te geven of zij de genoemde optie de moeite waard vonden om verder uit te werken. Zoals uit het volgende hoofdstuk zal blijken, levert de voorgestelde optie een dusdanige besparing dat Twente Milieu graag een verdere uitwerking hiervan zou zien.

Uit de beschrijving van de besparingsmogelijkheid bleek dat het vrij eenvoudig vast te leggen is vanaf wanneer, in het geval van Hengelo, de omschakeling van drie naar twee ritten in zou moeten gaan. Echter in de andere gemeenten rijden meer of minder zijladers en zijn de aanbodpercentages en gewichten wellicht anders (bijvoorbeeld door het gebruik van DIFTAR). Bovendien groeit het aantal inwoners van de gemeenten, wat kan inhouden dat er nieuwe routes voor de zijladers bijkomen en dat er op den duur wellicht extra zijladers worden ingezet. Daarnaast bestaat de mogelijkheid dat nieuwe modellen zijladers sneller en groter worden. Dit zal allemaal invloed hebben op de oplossing. Vandaar dat in overleg met Twente Milieu is besloten om hier een eenvoudig model voor te maken. Zodat de uitkomsten uit dit onderzoek meerdere keren gebruikt kunnen worden, oftewel onafhankelijk worden van tijd en plaats, waardoor de herbruikbaarheid verhoogd wordt.

Eisen, wensen en beperkingen
De betrokken partijen in dit probleem zijn dezelfde als bij de blokcontainers. De eisen en wensen aan het model verschillen echter op een paar punten. Zo speelt de nauwkeurigheid met betrekking tot het aanbodpercentage en de gewichten in dit model een belangrijkere rol, immers deze gegevens zullen bepalend zijn voor het vastleggen van de omschakelpunten en daarmee ook voor de grote van de besparingen. Daarnaast hebben ze via hun bepalende karakter voor de omschakelpunten ook indirect invloed op de kans op overschrijding van de werktijden en de mogelijkheid om ad hoc eenmalige opdrachten in te plannen voor de zijladers. Daarnaast wenst de planner dat de GFT-lediging zo veel mogelijk ’s middags plaatsvindt, ’s winters heeft het GFT-afval dan de mogelijkheid om enigszins te ontdooien zodat het gemakkelijker loskomt uit de containers wat een hoop klachten bespaart.

Functiebeschrijving
Het model moet in staat zijn om op basis van historische data, huidige gegevens en een aantal geformuleerde variabelen en restricties omschakelpunten tussen de zomer- en winterperiode te definiëren voor het samenvoegen van GFT-ritten. De omschakelpunten moeten zo gekozen worden dat zij de grootste besparing voor Twente Milieu opleveren en tegelijkertijd aan de restricties voldoen. In de volgende paragraaf is het model uitgewerkt, hier komen ook de verschillende variabelen en restricties naar voren.
Nauwkeurigheid
De kwaliteit van het model hangt af van de data die worden ingevoerd. Er is gekozen voor een tijdsspanne van drie jaar enerzijds om te zorgen dat uitschieters enigszins worden uitgevlakt en anderzijds om toch een trend te kunnen bemerken. In het model wordt rekening gehouden met ‘verversing’ van de data, de gebruikers zullen de data moeten updaten voor een optimaal gebruik van het model. Mocht het zo zijn dat er een verandering in het bedrijf zelf of in de omgeving optreedt die veel invloed heeft op de invoerdata van het model dan dient de gebruiker vanaf het moment van deze verandering enkel uit te gaan van deze nieuwe data en geen invloeden meer mee te nemen van de voorgaande periode voor de verandering.

Gebruiksvriendelijkheid
Net als bij de blokcontainers dient het minicontainermodel eenvoudig te zijn in het gebruik. Restricties, waarden van restricties en parameters dienen eenvoudig aangepast te kunnen worden. Daarnaast moet de historische data eenvoudig kunnen worden aangevuld met gegevens uit de toekomst.

Herbruikbaarheid
Aangezien het model gebruikt dient te worden om de jaarlijkse omschakelpunten vast te stellen tussen de zomer- en winterperiode heeft het geen zin om het model vaker dan eens per jaar te gebruiken. Sterker nog zolang er geen grote veranderingen optreden kan de gebruiker ervoor kiezen het updaten van de invoerdata een jaar uit te stellen en de omschakelpunten van het afgelopen jaar aan te houden. Dit wordt overigens aferaden als de omschakelpunten in het voorgaande jaar tegen een boven- of ondergrens aanzaten. Het moment in het jaar waarop het model gebruikt zou moeten worden ligt niet vast. Belangrijk is dat de gegevens van het voorgaande jaar bekend zijn en er genoeg tijd is om routes aan te passen als een omschakelpunt verschoven dient te worden, einde van de zomer lijkt zodoende een goed moment, maar nogmaals dit moment ligt niet vast.

Toolkeuze
Er zijn verschillende softwareprogramma’s met elk hun eigen karakteristieken waarin modellen ontworpen kunnen worden. Het programma dat voor dit model gebruikt zal worden, moet eenvoudig zijn en bovendien het liefst al in gebruik door de planners. Excel is een algemeen gangbare applicatie wat mede inhoudt dat vrijwel iedereen het kent en velen er mee kunnen werken. De huidige planners werken momenteel met Excel en ook van een eventuele vervanger wordt verwacht dat hij/zij dit kan. Het is belangrijk dat in het geval van veranderingen bij Twente Milieu in de toekomst het model hierop kan worden aangepast, dit gaat uiteraard makkelijker met een bekend programma. Momenteel is dit het enige programma waar de planners mee werken die ook de mogelijkheid biedt om een model in te ontwerpen zoals dat van de GFT-ritten. Het model zal dus in Excel opgebouwd worden.

11.6 Uitwerking GFT-model

11.6.1 Invoer
Het model heeft de volgende gegevens nodig, per rit:
- Het aantal beschikbare zijladers
• De bruikbare capaciteit per zijlader (aantal containers)
• De bruikbare capaciteit per zijlader, groen (gewicht)
• Het gemiddeld maandelijks gewicht per groene container
• Het gemiddeld maandelijks aanbodpercentage groene containers
• De kosten per uur voor het laten rijden van een vaste vuilniswagen
• Het aantal benodigde werknemers per vuilniswagen
• Het aantal betaalde werkuren per dag per werknemer besteed aan GFT-inzameling
• Het gemiddeld bruto uurloon voor een vaste werknemer (chauffeur/belader)

De meeste benodigde data is uit de Accesdatabase te halen. Dan is het echter nog niet bewerkt tot informatie. Door het in een Excel-schets te plaatsen en daar de nodige bewerkingen op uit te voeren kan de bovenstaande informatie worden verkregen die voor het model van belang is. De data zal moeten worden aangevuld met gegevens waarover de planner en de vestigingsmanager de beschikking hebben, zoals het aantal zijladers, het brutosalaris etc. De data moeten betrouwbaar zijn, dit houdt in dat data van meerdere jaren moeten worden verzameld. Hierbij mogen alleen jaren meegenomen worden die qua omstandigheden, zoals het heffingssysteem, hetzelfde zijn als de huidige toestand. In principe dient het model uit te gaan van historische data van de drie jaar voorafgaand aan het moment waarop het model gebruikt wordt. Dit is om de invoer gemakkelijk te houden, pieken uit te vlakken en trends te herkennen.

11.6.2 Verwerking
Het model zal de historische data van een aantal jaren gebruiken om een ‘gemiddeld jaar’ te presenteren. De data uit de verschillende jaren zullen even zwaar meewegen om het zo eenvoudig mogelijk te houden voor de planners. In dit geval is dat voor gemeente Hengelo. Op basis van dit ‘gemiddeld jaar’ kunnen de omschakelpunten bepaald worden. Dit gebeurt door de parameters: aanbodpercentage van GFT-minicontainers per rit en totaal gewicht per GFT-rit te toetsen aan de restricties. Vervolgens wordt de totale besparing bepaald die hiermee wordt behaald. Om de besparing te optimaliseren hoeft enkel te worden bekeken (vanaf de zomer) wanneer op zijn vroegst aan de restricties wordt voldaan en wanneer op zijn laatst niet meer.

Doelfunctie
‘maximaliseer de totale besparingen voor de GFT-ritten door het samenvoegen van ritten’

11.6.3 Uitvoer
De uitvoer van het model bestaat ofwel uit een melding dat er geen besparingen mogelijk zijn, omdat er gewoonweg in geen enkele maand wordt voldaan aan beide restricties of de uitvoer bestaat uit twee omschakelpunten, die de periode aangegeven waarin Twente Milieu bij de inzameling van GFT-minicontainers met minder zijladers afkan. Deze omschakelpunten voldoen dus aan beide restricties uit het model en brengen de grootste besparing met zich mee voor
Twente Milieu. Het is aan de planner om de door het model aangemerkte omschakelpunten al dan niet over te nemen. Het zou namelijk zo kunnen zijn dat de marges in de omschakelmaand zo klein zijn dat de planner het niet aandurft of dat het juist zo is dat ook nog wel een maand eerder begonnen of later gestopt kan worden omdat die maanden net iets boven de restricties zitten.

11.7 besparingsoverzicht

11.7.1 Directe besparingen door het minicontainermodel
Ook hier geldt dat de invoering van het model directe besparingen met zich meebrengt voor de personeel- en materiaalkosten.

Door het gebruik van het minicontainermodel kan in Hengelo worden gerekend op een besparing van 433,3 uur in tractie en personeel (dit is momenteel gelijk omdat er maar één werknemer per zijlader wordt ingezet). De berekening is als volgt opgebouwd:

Per dag: (huidig aantal zijladers – toekomstig aantal zijladers) * het aantal ingeroosterde uren GFT-lediging * het aantal werknemers per zijlader
Vervolgens wordt gesommeerd over de verschillende dagen en dit aantal uren wordt vermenigvuldigd met het gemiddeld aantal weken per maand en vervolgens met het aantal maanden waarin de besparing plaats kan vinden.

Bij deze berekening dient men rekening te houden met het feit dat niet op alle dagen van de week dezelfde besparing kan worden bewerkstelligd omdat het niet vanzelfsprekend is dat op alle dagen evenveel minicontainers worden geleegd en zodoende evenveel zijladers worden ingezet.

Het aantal personeelsuren dat wordt bespaard is 17,6 procent van de totale besparing die zou moeten worden behaald. Omgerekend in euro’s levert de oplossing een totale besparing op van (433,3 * €30,95 + 433,3 * €5,08) = €15.600 op jaarbasis.

11.7.2 Totale directe besparingen
Het sommeren over de twee modellen levert de volgende cumulatieve besparingen op:

Totale besparing aan personeelskosten 12.875 + 10.530 + 13.410 = € 36.800
Totale besparing aan tractiekosten 1.580 + 2.200 = € 3.780
Totaal afgerond € 40.600

Het percentage aan personeelsuren dat door de invoering van beide modellen kan worden bespaard is 51% van het totale aantal personeelsuren dat Twente Milieu Hengelo wil besparen in de uitvoering.

11.7.3 Indirecte besparingen van het minicontainermodel
Voor de zijladers geldt hetzelfde als voor de openkraakperswagens, door ze uit te sparen kunnen ze beter onderhouden worden of op ander plekken worden ingezet. Bovendien levert het minicontainermodel deels een oplossing voor het feit dat het personeel zo vroeg klaar is en naar huis gaat door gewoonweg meer werk in te plannen.
11.7.4 Beperkingen van de invoering van het model

Tegenover de besparingen, die de oplossing vanuit het model met zich meebrengt, staan (negatieve) gevolgen die tot op heden nog niet bekend zijn. Een aantal gevolgen kan wel voorspeld worden maar wat daarvan precies de uitwerking is, blijft onbekend tot het moment van de werkelijke invoering.

Door voor de capaciteit van de zijladers uit te gaan van de 900 dagelijks te legen containers in plaats van 900 aansluitingen oftewel ongeveer 766 dagelijks te legen containers is de mogelijkheid op besparingen gerealiseerd. Naast de besparingen heeft deze stap tot gevolg dat de zijladers het drukker zullen krijgen. De mogelijkheden om deze vuilniswagens in te zetten om extra, einmalige opdrachten te laten uitvoeren worden beperkt. Bovendien neemt met het strakker indelen van de zijladers ook de kans op overwerk toe.

In de ogen van de vestigingsmanager heeft het geen zin om het personeel zo strak in te delen dat zij zich onverantwoordelijk gaan gedragen om op tijd het werk af te hebben. Dit zal enkel averechts werken, denkend aan schade aan omgeving, eigen containers en de vuilniswagen. Daarnaast verhoogt het de kans op ongevallen door te hard rijden. Echter werk is uiteindelijk wel waarvoor het personeel betaald wordt. Bovendien is niet gezegd dat onverantwoordelijk gedrag vertoond zal worden, het is enkel de kans erop die toeneemt.

Een verhoging van de kans op overwerk komt behalve door meer containers per rit voort uit het feit dat de containers verder uit elkaar staan, wat de reistijden zal doen toenemen.

De bovengenoemde beperkingen zijn uiteraard serieuze aandachtspunten bij de invoering van het model. Echter een kleine nuance kan hierin worden aangebracht, de bovengenoemde problemen spelen namelijk met name net na het eerste omschakelpunt en net voor het tweede. In de tussentijd ligt het aanbodpercentage gemiddeld lager dus is de indeling ook minder strak.

11.8 Besparingsmogelijkheden Hof van Twente

Deze bijlage zal worden afgesloten met een kort overzicht van de besparingen die kunnen worden bewerkstelligd door het gebruik van het minicontainermodel voor de gemeente Hof van Twente. De situatie in Hof van Twente omtrent de inzameling van minicontainers verschilt met die in Hengelo doordat op maandag en dinsdag momenteel drie zijladers rijden en de rest van de week rijden er slechts twee zijladers. In tabel 11.3 is een aantal gegevens weergegeven met betrekking tot de huidige situatie in gemeente Hof van Twente.

<table>
<thead>
<tr>
<th>Tabel 11.3</th>
<th>Gemiddeld aantal bakken per rit</th>
<th>Gemiddeld gewicht per rit (kg)</th>
<th>Gem. gewicht per container (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zomer*</td>
<td>Grijs 462</td>
<td>9.291</td>
<td>20,12</td>
</tr>
<tr>
<td></td>
<td>Groen 360</td>
<td>7.433</td>
<td>20,65</td>
</tr>
<tr>
<td>Winter*</td>
<td>Grijs 462</td>
<td>9.291</td>
<td>20,12</td>
</tr>
<tr>
<td></td>
<td>Groen 273</td>
<td>4.607</td>
<td>16,85</td>
</tr>
</tbody>
</table>

*hier respectievelijk gedefinieerd als jun – aug en dec – feb

Hoewel het gemiddelde aantal bakken en het gemiddelde gewicht per rit lager liggen dan in Hengelo kent het aanbodpercentage in Hof van Twente eenzelfde seizoensrend als in Hengelo.
Zoals uit tabel 2.1 op te maken is, daalt in de winterperiode het aanbodpercentage van de GFT dusdanig dat samenvoegen van ritten wellicht mogelijk is, wat tot besparingen kan leiden. In de onderstaande figuren 18 en 19 (respectievelijk) zijn opnieuw het aanbodpercentage en het gewicht bij twee zijladers uitgezet tegen een ‘gemiddeld jaar’ en getoetst aan de limiet. Deze grafieken zijn in principe alleen interessant voor de maandag en de dinsdag omdat op de andere dagen maar met twee zijladers gereden wordt.

Het reduceren van twee zijladers tot slechts één zijlader is op basis van de gegevens uit tabel 11.3 niet mogelijk: in de winterperiode zou één zijlader in zijn eentje gemiddeld 462 + 2 * 273 = 1008 containers moeten leiden, dit overschrijdt de 900 containers wel erg ver.

Door het gebruik van het minicontainermodel kan in gemeente Hof van Twente worden gerekend op een besparing van 138,7 uur in tractie en personeel (dit is momenteel gelijk omdat er maar één werknemer per zijlader wordt ingezet). De berekening is net zo opgebouwd als eerder in dit hoofdstuk voor gemeente Hengelo. In totaal levert dit (4.270 + 700 =) € 5.000 euro op. Door nu op maandag en dinsdag één zijlader twee grijze routes te laten rijden, één in Hengelo en één in Hof van Twente hoeft niet voor twee chauffeurs een halve dag vervangend werk gezocht te worden.